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ABSTRACT

Collaborative robotics plays a significant role in the industrial sector, especially following
the advent of the 4" and 5™ industrial revolutions. In this context, humans and robots
share a workspace where they collaborate and exchange information, enhancing each
other’s strengths. Robots perform repetitive tasks with precision and speed, while
humans provide essential decision-making capabilities, ensuring an effective production
process. However, guaranteeing the safety of human-robot interaction is crucial, a
concept known as "safety collaboration". To achieve this, robots must recognize human
activities, such as detecting abrupt movements, and respond accordingly. The recognition
needs to be rapid to make the safety system activating as quickly as possible to prevent
collisions.

The objective of this study was to detect abrupt movements in real time using data from
magneto-inertial measurement units (MIMUs) and an artificial intelligence network. A
Long Short-Term Memory neural network was employed for this purpose, trained with a
dataset of 61 subjects who performed a pick-and-place task involving impulsive
movements. The data, acquired using MIMUs, consisted of accelerations and angular
velocities of the forearm during the movements. Tests were conducted in three different
spatial configurations relative to the experimental setup. First, the network was tested on
the data from the 61 subjects, which were segmented into fixed overlapping sliding
windows. The window length was set to 0.5 seconds, with various overlap percentages
(50%, 75%, 90%, 95%, 99%) evaluated to estimate the network’s performance and move
closer to real-time conditions. Specifically, the network’s ability to detect abrupt and
standard movements, as well as the recognition time, were evaluated. The results
demonstrated that a real-time recognition is achievable.

Subsequently, the same tests used to create the training dataset was repeated with the
same protocol and with five new subjects. The goal was to achieve a real-time recognition
of the movement. Sensor data were streamed in real-time directly into a Python script,
where they were immediately stored, pre-processed, and then analysed by the network
to identify the type of movement. Finally, the network’s performance and the time
required for data streaming, pre-processing, and recognition were evaluated. Results

showed that the network could effectively distinguish between abrupt and standard
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movements in conditions approaching real-time. For a single movement, data stream
from sensors to the Python script took around 3 seconds, pre-processing took a few
milliseconds (about 9 ms), and the network's recognition time was around a few hundred
milliseconds (approximately 300 ms).

The findings of this study demonstrated the effectiveness of using inertial sensors
together with artificial intelligence networks for a real-time identification of abrupt
movements, aimed at enhancing safety systems for human-robot interactions in industrial

settings.
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1. INTRODUCTION

1.1 Humans and robots in the industrial field

1.1.1 Industry 4.0 and Industry 5.0

The term “collaborative robotics”, or “cobotics”, refers to humans and intelligent machines
working together dynamically to perform tasks in a safe and effective way. Cobotics has
played a crucial role in the industrial sector, driving both the 4™ and 5% industrial

revolutions, known respectively as Industry 4.0 and Industry 5.0.

Industry 4.0 refers to the advanced integration of machines and processes within the
industrial sector, enabling intelligent control and automation of industrial operations. This
revolution is considered technology driven and it has the objective to achieve higher
productivity and efficiency (Xu et al., 2021). Conversely, Industry 5.0 provides a different
focus and point of view. It is considered a value-driven revolution, integrating social and
environmental priorities into technological innovation (Xu et al.,, 2021). Industry 5.0
complements and goes beyond Industry 4.0, exploiting these new technologies to improve

the worker's quality of life, sustainability, and social welfare.
Industry 5.0 relies on three core values (Xu et al., 2021):

1. Human-centricity: there is a shift from technology-driven processes to a human-
centric approach, where a safe and inclusive work environment is prioritized. This
approach emphasizes the physical and mental health of workers, as well as their
fundamental rights.

2. Sustainability: the industry must respect planetary boundaries by reducing waste
and minimizing environmental impact. To achieve this, it needs to develop circular
processes that reuse, repurpose, and recycle natural resources.

3. Resilience: the future industry needs to be able to rapidly address (geo)political

changes and natural emergencies.

The core goal is to create a shared space where humans and robots can exchange
information and collaborate, enhancing each other's strengths. Machines can assist
workers with tasks that require precision, strength, or speed, while humans bring

creativity, decision-making, and problem-solving skills (Zafar et al., 2024). By combining



their abilities, we can develop adaptive production systems that can rapidly adjust to
changes or faults (Zafar et al., 2024). Therefore, the aim is to work together rather than

replaces human labour.

1.1.2 Human-robot collaboration: from caged robots to cobots

The first industrial robots were introduced during the Third Industrial Revolution, also
known as Industry 3.0, where electronics and technology began playing a significant role
in production processes. These robots, confined to cages, were pre-programmed and
capable of performing specific tasks. As technology advanced, there has been a gradual

transition from caged robots to collaborative robots, or cobots.

The main difference between robots and cobots lies in the concept of collaboration. While
both can perform similar tasks, cobots work alongside human operators, whereas
traditional industrial robots typically replace human workers (Borboni et al., 2023). For
effective task performance, humans need to interact and work closely with cobots. As a
result, sensors, software, and safety devices are incorporated to ensure safe and efficient
collaboration, removing the traditional barriers between industrial robots and human
workers. Moreover, this reduction in barriers, due to improved robot safety, has led to

increased levels of collaboration, as illustrated in Figure 1.1.

~

® < Responsi
Cooperation o=’ | Responub{e
T"‘T « Collaboration
o ] I

B Sequential 1 b
= Collaboration r"? -
(=] !
[~
D
(=]
z)
& Coexistence
@
-
2 2, ¢
7 1
= 1 8
= Fenced Robots | | ' -
: -
—

fia

Level of Collaboration

Figure 1.1. Increasing levels of human—robot collaboration as safety improves. (Zafar et al., 2024)



According to (Zafar et al., 2024), the main stages of this transition are as follows:

Caged robots: the first industrial robots operated within physical barriers, such as
secured cages or fences, to prevent direct interaction or contact between robots
and human workers. The primary aim was to ensure safety in the workplace since
robots had limited functionalities and lacked the advanced safety features required
for safe collaboration.

Collision Avoidance: as technology progressed, robots began incorporating sensors

and cameras, allowing them to detect nearby humans. By sensing their presence,
robots could adjust their actions to prevent potential collisions or accidents. This
breakthrough significantly improved safety standards in collaborative work
environments.

Human-Robot Interaction (HRI): natural language processing and speech

recognition technologies transformed the way robots interacted with humans.
These innovations enabled robots to understand and respond to verbal
instructions, reducing the communication gap between humans and robots. This
marked the beginning of a new era in which robots became more interactive and
responsive, allowing for smoother collaboration.

Human-Robot Collaboration (HRC): at this stage, robots and humans work together

on tasks, requiring robots to not only understand human intentions but also
collaborate efficiently while ensuring safety. HRC marks a significant shift, moving
toward a model where humans and robots function as complementary partners.

Physical HRC (pHRC): this phase represents a deeper level of integration, where

robots actively interact with humans through physical contact. This can involve
activities like exchanging tools, handing over objects, or collaboratively
manipulating items. Successful pHRC requires advanced control and sensing
systems to ensure safe and efficient cooperation.

Human-Robot Teaming (HRT): in this advanced stage, robots are no longer tools

but become fully integrated as equal members of human teams. Achieving this
requires sophisticated Al and machine learning that allow robots to learn from and

adapt to human behaviour, preferences, and decision-making. Robots thus



become dynamic and adaptive team members that work together toward a shared

goal, marking a fundamental shift in how humans and robots interact.

1.1.3 Advantages of collaborative robots in industry

The use of collaborative robots in industry brings socio-economic benefits. In this context,
robots do not entirely replace human work but instead support and improve it. Robots
perform automatic and repetitive tasks, ensuring accuracy, precision, speed, and strength.
Additionally, they can handle heavy payloads and perform dangerous tasks, such as
manipulating toxic or hot objects (Vysocky & Novak, 2016). However, they are not capable
of adapting to changes or making decisions beyond the tasks they have been programmed
for. For this reason, human presence is essential due to their decision-making and
problem-solving skills. Figure 1.2 summarizes the collaboration between human and

robot, highlighting their respective strengths.

Level of Automation

+ Flexibility

+ Precision motorics
+ Decision opportunity
- Human capability

- Errors

Manual Manufacture

”

=

Human —Robot Collaboration

+ Speed

+ Quality

+ Low production costs
High initial costs

Limited adaptability

Full Automation

Figure 1.2. Graphical representation of Human—robot collaboration, highlighting their capabilities (Vysocky & Novak,

This collaborative workspace provides several crucial advantages in industry (Vysocky &

Novak, 2016; Zafar et al., 2024):

e Manufacturing systems can be more complex as new technologies can perform a

wider range of tasks.

2016)
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e Robots' repeatable positioning accuracy and ability to operate continuously result
in improved quality and a reduced need for post-processing and quality control,
enabling lower-cost production.

e Robots can speed up some processes and adapt to specific conditions, which can
lead to an increased production.

e Stressful, monotonous, and tedious labour, which can eventually lead to
occupational illness, is reduced, easing the burden on workers.

e A reduction in occupational injuries is also achieved by improving workplace
ergonomics and effectively managing the workload.

e The integration of collaborative robotics and safety-focused technology ensure a

secure working environment, decreasing the risk of injury.

1.1.4 Safety standards and levels of collaboration

When discussing collaboration, various types of interactions between humans and cobots
must be considered. Therefore, it is essential to define all levels of collaboration to address

different scenarios from both safety and human factors perspectives.

The introduction of industrial robots in human-robot collaborative applications offers
several advantages, as previously discussed, but it also presents new challenges regarding
safety. For this reason, the International Organization for Standardization (ISO) published
the specification ISO/TS 15066, which provides objective parameters for assessing safety
in collaborative applications (Rosenstrauch & Kruger, 2017). This standard first addresses
general hazard identification and risk assessment, serving as basic guidelines for

identifying, evaluating, and reducing risks. The main steps are summarized in Figure 1.3.

risk assessment

(EN 1SO 12100:2010) risk analysis
risk evaluation
risk reduction

1 residual risk

Figure 1.3. ISO/TS 12100:2010 basic procedure of risk assessment (Rosenstrauch & Kruger, 2017)
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The first step is the risk analysis, which involves identifying all potential risks or hazards,

including mechanical, electrical, thermal, and others. The second step is the risk

evaluation, which is the combination of the probability of occurrence and the extent of

potential damage. These two steps are followed by risk reduction, during which protective

measures and safeguards are implemented. As shown in Figure 3, this process is iterative,

continuing until the residual risk is minimized (Rosenstrauch & Kruger, 2017).

ISO/TS 15066 then presents the requirements for collaborative robot system applications,

distinguishing between four different operating modes (Rosenstrauch & Kruger, 2017):

Safety-rated monitored stop (Figure 1.4a). The robot is allowed to move only
when the operator is outside the collaborative workspace. As soon as he/she
enters the area to interact, the robot halts, resuming operation only when the
operator leaves the workspace.

Speed and separation monitoring (Figure 1.4b). The robot’s speed adjusts
dynamically based on the distance between the operator and the robot. As the
operator moves closer, the robot slows down, and if the distance falls below a
predefined safety limit, the robot stops to prevent any risk of collision.

Hand guiding (Figure 1.4c). Direct contact between the operator and the robot is
permitted. In this mode, the operator can guide the robot’s movements within the
collaborative space using a hand-guiding device or a force-torque sensor located
at the robot’s tool centre point.

Power and force limiting (Figure 1.4d). In a fully shared collaborative workspace,
unintentional and unpredictable contact between humans and the robot is
possible. Therefore, the robot’s power and force are limited to ensure safety.
Thresholds for pressure and force are set based on maximum permissible levels for
different body parts, distinguishing between quasi-static and transient contact.

This ensure that any contact remains within safe biomechanical limits.
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Figure 1.4. 1SO/TS 15066:2016 collaborative operation modes (Vysocky & Novak, 2016)
These four modes describe collaboration from a technical perspective, offering specific
configurations for the robot system to ensure safety after risk assessment. However, from
the human worker’s perspective, the assumption is that collaborative work is inherently
safe, regardless of the implemented safety method. To address this, Aaltonen and
colleagues proposed a new classification based on factors such as workspace sharing, the
type of joint effort, and the physical contact involved (Aaltonen et al., 2018). The aim is to
provide a comprehensive analysis of collaboration, ensuring compliance with safety
standards while also creating a positive experience for the human worker. Four levels of

collaboration are proposed:

e No coexistence: Physical separation, referring to traditional fenced robot cells.

e Coexistence: Humans and robots share the physical workspace (partially or
completely), but they do not work towards a shared goal.

e Cooperation: Humans and robots work toward a shared goal in a partially or
completely shared workspace.

e Collaboration: Humans and robots work simultaneously on the same object.

These levels are structured to represent progressively deeper forms of joint effort. For
instance, while coexistence and cooperation might appear similar from a safety
standpoint, they differ from the human worker’s perspective. If the human’s task depends
on the robot’s activity, the interaction reaches a higher level, and mutual awareness of the

situation becomes crucial for effective collaboration (Aaltonen et al., 2018).
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In the new industrial paradigm, humans are central to production processes, meaning that
collaboration with robots must not only be effective but, most importantly, safe. The key
concept is the "safety collaboration”, highlighting the need for research to focus on

ensuring a safe human-robot interaction.

1.2 The role of Artificial Intelligence in collaborative robotics

An essential component of Industry 5.0 is artificial intelligence (Al), making manufacturing
processes smarter and more efficient. According to the work of Borboni and colleagues,
many recent articles have highlighted the growing influence of Al in the development and
functionalities of cobots (Borboni et al., 2023). Furthermore, the incorporation of Al into
cobots has led to improved performance, suggesting that Al enhances their capability and

efficiency in collaborative tasks.

Recent advancements in Al have significantly improved Human—Robot Collaboration
through the development of a cognitive model. These models collect information from the
environment and the human operator, process it, and convert it into data that enables the
robot to adapt its behaviour (Zafar et al., 2024). This capability could reduce risks and

promotes a safer human-robot collaboration.

One of the most widely used Al approaches is Machine Learning (ML), which refers to a
machine’s ability to analyse data, learn from it, and improve its performance over time. A
subfield of ML is Deep Learning (DL), which is a neural network composed of multiple
layers of interconnected neurons. The term “deep” refers to the abundance of layers, or
“depth”, that are hierarchically organised to mimic the human cognitive functions (Borboni

et al., 2023).

In the work of Ordofiez and Roggen, differences between various deep learning
architectures are outlined (Ordéfiez & Roggen, 2016a). One effective model for
classification tasks is the feedforward neural network, or multi-layer perceptron (MLP).
This model consists of multiple neurons organized in layers and connected by weighted
links. However, MLPs assume that all inputs and outputs are independent, meaning they
don’t capture relationships between sequential data points. To model time-dependent
data, such as sensor signals, temporal information must be incorporated. Recurrent Neural

Networks (RNNs) are specifically designed to address this limitation. Each unit in a RNN
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has a recurrent connection, where the output of a neuron is fed back to itself with a weight
and a unit time delay. This feedback loop gives the neuron a memory (hidden value) of
past activations, allowing it to learn temporal patterns in sequential data. However, this
memory mechanism can make learning difficult when applied to real-world sequences. To
address this issue, Long Short-Term Memory (LSTMs) networks extend RNNs by using
memory cells instead of simple recurrent units. These memory cells store and manage
data more effectively, making it easier to learn patterns over long-time scales. At each time
step, LSTMs update their memory using a gating mechanism. There are three different
gates that control operations on the cell memory: the input gate controls when new
information is written, the output gate controls when stored information is read, and the
forget gate decides when to reset the memory. This mechanism allows LSTMs to better

manage temporal patterns over long sequences.

Figure 1.5 provides an overview of the units that define the structure of these neural

networks.
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Figure 1.5. Different types of units in neural networks. (a) MLP with three dense layers; (b) RNN with two dense layers;
(c) LSTM memory cell, where the internal memory can be updated, erased, or read. (Ordéfiez & Roggen, 2016b)
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1.3 Human activity recognition (HAR)

In a collaborative scenario, robots are designed to work alongside human workers. As a
result, industrial robots are required to recognize human movement and position in order
to dynamically adjust their pre-programmed task, both for safety reasons and to enable
effective teamwork and seamless communication. Consequently, Human Activity
Recognition (HAR) represents an important area of study in the field of human-robot

interaction.

HAR is based on the hypothesis that specific body movements produce distinct patterns
in sensor signals, which can be detected and classified using machine learning techniques.
However, HAR presents several challenges in real-world settings. First, motor movements
associated with specific activities can vary significantly (Orddfiez & Roggen, 2016a).
Second, determining the appropriate experimental setup for accurate data collection can
be difficult, as it is necessary to ensure that the collected data is representative of real-
world scenarios (Imanzadeh et al., 2024). Moreover, the collected datasets are used to
train a neural network, which plays a fundamental role in HAR. The choice of machine
learning algorithms, along with an appropriate dataset, is crucial for achieving accurate

recognition results.

1.3.1 HAR applications

In literature, various examples of collected datasets and neural networks can be found,
depending on the application field, whether clinical or industrial, and the specific
objectives. For instance, Buerkle and colleagues investigated the use of
electroencephalogram (EEG) signals to detect upper-limb movement intention (Buerkle et
al., 2021). The aim is to predict the operator's movements to prevent collisions with
robots, ensuring safe collaboration. A Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) was trained to detect and classify arm movement intentions. The results
suggested that this approach could be employed to dynamically adjust robot’s speed and

torque, thereby minimizing the risk of collisions.

Similarly, in the industrial field, in the work of Liu and colleagues three different datasets,
human body posture, voice commands, and hand motion data, with the aim of developing

arobot control interface, were collected (Liu et al., 2018). The first two datasets were used
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to train a Convolutional Neural Network (CNN), while the hand motion data was used to
train a Multilayer Perceptron (MLP). The workflow followed in this study is outlined in
Figure 1.6. The results demonstrate the potential of deep learning algorithms for
classification and recognition. However, for hand motion recognition, an LSTM would likely

be more suitable, as it is expected to outperform the MLP model used.

Hand motion Voice command

Body posture
dataset collecting dataset collecting

Body posture
model training model training

Body posture real-
time recognition

Bujssadoid eyep Sujuiea) daag

Control information fusion

Robot controller

Figure 1.6. Workflow of the study, from data collection to the development of a deep learning-based robot control
interface for human-robot collaboration. (Liu et al., 2018)

In addition to these types of signals, images can also be used to extract specific
information. For example, Amaral and colleagues extracted hand landmarks to identify
objects being grasped or manipulated (Amaral et al., 2023). A multi-class classifier was
used to predict the object based on the hand key points. This study focuses on evaluating
the classifier’s generalization ability for real-world application. In this context, active data

collection plays a crucial role.

Another way to collect data is through Inertial Measurement Units (IMUs), which are
sensors that include an accelerometer, gyroscope, and, in the case of magneto-inertial
measurement units (MIMUs), a magnetometer. These sensors can be worn on different
parts of the body and measure linear acceleration (via the accelerometer) and angular
velocity (via the gyroscope). IMUs offer several advantages: they are low-cost, minimally

17



invasive, easy to wear, and they can collect data outside of a lab setting (Digo, Polito,
Pastorelli, et al., 2024; Xiang et al., 2024). These features make them suitable for
biomechanical research in both industrial (Ordéfiez & Roggen, 2016a) and clinical (Xiang

et al., 2024) fields.

Ordofiez and Roggen proposed a deep neural network model called DeepConvLSTM for
recognizing modes of locomotion, postures, and different right arm gestures using IMU
sensors (Ordofiez & Roggen, 2016a). This model combines convolutional layers and
recurrent layers. The convolutional layers act as feature extractors from the sensor data,
while the recurrent layers take these features and learn how they evolve over time,
capturing temporal patterns in the data. The study’s results demonstrated that the LSTM-
based model can distinguish between activities that are similar but differ in the sequence
of sensor samples (e.g. Open/Close Door). Additionally, it works even when gestures
extend beyond the observation window. These findings highlight that the LSTM-based
model approach is better suited for handling sequences and time-dependent data, as it

learns how features change over time, compared to convolutional models alone.

An LSTM-based model, combined with time-series data from IMUs, is also applied in the
clinical field. For example, Xiang and colleagues implemented an LSTM-MLP model to
predict ankle joint biomechanics (Xiang et al., 2024). The model can identify and learn gait
characteristics and patterns from acceleration and angular velocity signals, enabling

accurate prediction of ankle joint angles, torques, and contact forces.

These studies demonstrate that IMU sensors, combined with LSTM neural networks,
provide a cost-effective and versatile tool for identifying human activity, representing a

reliable solution for developing safety and control systems in collaborative robotics.

1.4 Abrupt movements and real-time recognition systems

Typically, the tasks performed by an operator are repetitive and characterized by
controlled dynamics and kinematics. However, external disturbances or environmental
factors can cause abrupt and unpredictable gestures. These sudden movements can lead
to improper interactions with the robot, potentially creating unsafe conditions for the

human operator (Digo, Polito, Pastorelli, et al., 2024; Polito et al., 2023a).
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Accurate data collection that represents real-world conditions and the selection of the
appropriate neural network are essential for effectively identifying human activity. Abrupt
movements are characterized by high variability and uncertain patterns, making inertial
sensors particularly suitable for detecting these variations. In fact, these sensors are easy
to wear, do not restrict movement, and can capture accelerations and angular velocities
at high frequency, allowing for the detection of significant motion changes. Moreover, they
generate a time series of data. Given the importance of temporal dependencies, the LSTM
network is the most appropriate choice, as it effectively captures patterns in long

sequences.

To prevent collisions between humans and robots, it is crucial to identify these movements
in real-time. However, one of the main limitations of real-time recognition systems is
reaction time (Buerkle et al., 2021). Safety systems must be highly responsive, activating
as quickly as possible. According to (Vysocky & Novak, 2016), there are four possible

reactions based on the system's safety level:

1. Alert: When a potential hazard or risk of collision is detected, an audible alarm and
visual warning are activated to signal imminent danger.

2. Stop: The robot automatically halts to prevent any collision.

3. Compliance Control: The robot adjusts its position in response to force or physical
contact.

4. Trajectory Adjustment: The robot senses an obstacle and alters its trajectory to

completely avoid a collision.

A primary goal of research should be to reduce the reaction time of these systems to
enhance their efficiency and safety. The analysis of response times starts with the
network's ability to recognize movement, followed by the activation of the safety system.
Therefore, it is crucial to ensure that this classification occurs in the shortest possible time

to facilitate an equally rapid response.

1.5 Aim of the thesis

Since abrupt movements are still little approached and studied, this master thesis aims to
detect abrupt movements in real time using inertial sensors and an LSTM neural network.

Using data collected on 61 participants through a specified experimental protocol, the
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network's performance was tested on signals segmented into overlapping windows to
closely simulate real-time conditions. Following this, a real-time recognition protocol was
developed, enabling data from inertial sensors to be directly captured, pre-processed, and
analysed by the network. The study evaluated the network’s ability to distinguish between
impulsive and standard movements, along with the time required for each step. Timing
analysis is crucial to guarantee a rapid response in safety systems and to prevent potential
collisions. The steps followed in this work are outlined in Figure 1.7. Table 1.1 below

provides a summary of the article analysed in this chapter.

Data Preprocessing Segmentation of Data Development of a Real-
and Segmentation into Sliding Windows Time Recognition System
The data was preprocessed The data was divided into

Data from sensors is

and then segmented into sliding windows, with | ;
. . preprocessed in real-time
windows of 0.5 seconds. varying overlap
. : and analysed by the
The corresponding label percentages. Corresponding
network.
vector was also created. label vectors were created.
' P Creation of Training and Test  Models Evaluation and Testi . .
ol 2 C esting on Five Subjects
Rew Data Qrganlzation Sets and Network Training  Inference Time Analysis 8 L
Raw data from MIMUs The dataset was split into The segmented data was The system was tested on
and Arduino was training and test sets. Two provided to the two five subjects. The
organized into a Python LSTM networks were then networks. An analysis of the  performance of the network
dictionary for easy trained and evaluated. performance and inference ~ and the characteristic times
access. time was conducted. were evaluated.

Figure 1.7. Workflow followed in the experimental work.
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Table 1.1. Summary of article analysed in Chapter “1. Introduction”

Title Authors Year | Type Aim Area of Neural Network | Dataset Prediction Results
of interest | employed or
paper Recognition

Industry 4.0 Xu et al. 2021 | Review | Comprehensive | Industrial | — - - -
And Industry review on
5.0 — Inception, Industry 4.0 and
Conception, Industry 5.0,
Perception with a focus on

similarities and

differences
Exploring The Zafar et al. 2024 | Review | The aim of this | Industrial | — - - -
Synergies review is to
Between analyze the
Collaborative main
Robotics, characteristics
Digital Twins, of collaborative
Augmentation, robots, or
And Industry ‘cobots’, while
5.0 For Smart highlighting the
Manufacturing: benefits that
A State-Of-The- the use of this
Art Review technology,

together with

artificial

intelligence, has

brought to

Industry 5.0
Refining Levels | Aaltonen et 2018 | Article | This article aims | Industrial | — - - -
of al. to define levels

Collaboration

of collaboration



to Support
Design and
Evaluation of
Human-Robot
Interaction in
The
Manufacturing
Industry

Safe Human- Rosenstrauch | 2017 | Article
Robot et al.

Collaboration -

Introduction

and

Experimenting

Using ISO/TS

15066

between
human workers
and
collaborative
robots,
facilitating the
analysis of
collaborative
work from both
human and
safety
perspectives
This article Industrial
provides an
introduction to
safety
standards and
guidelines for
risk assessment,
with a detailed
description of
the
requirements
outlined for
collaborative
industrial
robots in the
technical
specification
ISO/TS 15066.
Additionally, an
experimental

The experiment
shows the residual
hazard potential in
case of incident
despite compliance
with ISO/TS 15066.



Human-Robot | Vysocky et 2016 | Review
Collaboration al.

in Industry

The Expanding | Borboni et 2023 | Review
Role of al.

Artificial

Intelligence in

Collaborative

Robotics for

Industrial

Applications: A

Systematic

Review of

Recent Works

EEG Based Arm | Buerkle et al. | 2021 | Article
Movement

Intention

Recognition

Towards

Enhanced

Safety in

use case
demonstrates
practical
application of
these
guidelines.
Advantages of
the use of
collaborative
robots in
industry
State-of-the-art
research on the
use of cobots in
the industry,
focusing on
recent
publications
related to
collaborative
workspace-type
robots and the
application of
artificial
intelligence
Recognition of
the upper-limb
movement
intentions in
order to
increase system
reaction time

Long Short-Term
Memory
Recurrent Neural
Network (LSTM-
RNN)

EEG signals,
divided into

three phases:

being idle,
intention to
move, actual
movement

Recognition

The results
demonstrate that
EEG signals and the
LSTM-RNN can be
used to detect and
classify the
intention for arm



Symbiotic
Human-Robot
Collaboration

Deep Learning-
Based
Multimodal
Interface for
Human-Robot
Collaboration

Ensemble Of
Deep Learning
Techniques to
Human Activity
Recognition
Using
Smartphone
Signals

Liu et al.

Imanzadeh
et al.

2018 | Article

2024 | Article

and improve
safety in
Human-Robot
Collaboration

Development of | Industrial
a robot control

interface using

a deep learning

algorithm for

human-robot

collaboration

systems

Industrial
and/or
clinical

Their aim is to
overcome the
challenges
associated with
small and noisy
datasets
collected in
real-world
settings by
developing a
solution using
an ensemble
learning

Convolutional
Neural Network
(CNN) and
Multilayer
Perceptron
(MLP)

Ensemble of
hybrid deep
models

Body posture,
voice
command, and
hand motion
data

Data from the
accelerometer,
magnetometer,
and gyroscope
on the
smartphone

Recognition

Recognition

movement. This
approach could be
employed to
dynamically adjust
robot’s speed and
torque, thereby
minimizing the risk
of collisions.

The results
demonstrate the
efficiency of deep
learning algorithms
for classification
and recognition,
highlighting their
potential benefits
for application in
human-robot
collaboration.

The proposed
ensemble approach
is able to classify
and recognize the
dataset collected
via smartphone
sensors. This novel
approach enables
improvement in
accuracy and
reliability of HAR in
real-world
applications.



Integrating An
LSTM
Framework for
Predicting
Ankle Joint
Biomechanics
During Gait
Using Inertial
Sensors

Deep
Convolutional
and LSTM

Xiang et al.

Orddiiez et

al.

2024 | Article

2016 | Article

approach to
achieve
accurate human
activity
recognition
(HAR).

This study aims
to provide a
model to
predict ankle
joint
biomechanics,
particularly
angles, torques,
and contact
forces.

Evaluation and
comparison of a
deep learning

Clinical

Industrial
and/or
clinical

LSTM-MLP
model

Convolutional
and long short-
term memory

Time-series
data from IMU
sensors

Data from IMU

sensors

Prediction

Recognition

The proposed
LSTM-MLP model
can identify and
learn gait
characteristics and
patterns from
acceleration and
angular velocity
signals, enabling
accurate prediction
of ankle joint
biomechanics.

The results
demonstrate that
this deep



Recurrent
Neural
Networks for
Multimodal
Wearable
Activity
Recognition

Recognition of | Amaral etal. | 2023 | Article

grasping
patterns using
deep learning
for human-
robot
collaboration

framework for
activity
recognition
using data from
wearable
sensors.

Recognizing the | Industrial
object grasped
by the operator
based on the
patterns of the
hand and finger
joints, enabling
an efficient
human-robot
collaboration.
This study
focuses on
evaluating the
classifier’s
generalization
ability for

recurrent layers
(DeepConvLSTM)

Convolutional
Neural Network
(CNN) and
transformer

Hand
landmarks
detected from
RGB images

Recognition

architecture is
capable of
performing activity
recognition using
data from wearable
sensors. Compared
to a standard
Convolutional
Neural Network, it
offers a good trade-
off between
performance and
training/recognition
time, and it is able
to distinguish
similar gestures.
The conducted
experiments
emphasized the
importance of
active data
collection to enable
effective
generalization of
the classifier across
various user
behaviours and
grasping patterns.



Abrupt
Movement
Assessment of
Human Arms
Based on
Recurrent
Neural
Networks for
Interaction
with Machines

Deep Learning
Techniques to
Identify Abrupt
Movements in
Human-Robot
Collaboration

Detection Of
Upper Limb

Polito et al.

Polito et al.

Digo et al.

2023 | Article
2023 | Article
2024 | Article

application in
real-world
scenarios.
Distinction
between
normal and
abrupt
movements
during a typical
repetitive
industrial task

Identification of
human abrupt
movements
using a
recurrent
neural network
trained with
wrist
acceleration
elaborated with
two different
methodologies

Training a
recurrent

Industrial

Industrial

Industrial

Long Short-Term
Memory

Long Short-Term
Memory

Long Short-Term
Memory

Forearms
accelerations
measured by
MIMUs

Accelerations
of the wrist
recorded
through
MIMUs

Forearms
acceleration

Recognition

Recognition

Recognition

The deep learning
network adopted
and the proposed
pre-classification
methods for
MIMUs
accelerations
demonstrate
potential for
identifying abrupt
movements

The results
demonstrated that
the methodology
adopted to address
real-time situations
achieved higher
classification
performance.
Therefore, the deep
learning network
and the pre-
classification
method employed
are suitable for
identifying human
abrupt movement.
The results
demonstrate that



Abrupt Gesture
for Human-
Machine
Interaction
Using Deep
Learning
Techniques

neural network
to distinguish
between
standard and
abrupt
gestures,
aiming for
effective real-
time gesture
classification

signals
recorded by
MIMUs

the data pre-
processing is
fundamental for
achieving effective
network training.
Specifically,
reducing the
window duration
leads to improved
classification.
Furthermore, the
results show that
classification time
can be reduced
without negatively
impacting the
results, enabling
real-time
classification.



2. MATERIALS AND METHODS

2.1 Materials

2.1.1 Inertial sensors

For the quantitative analysis of participants' movement, the necessary data were collected
using Opal™ V2R inertial sensors, produced by APDM WEARABLE TECHNOLOGIES INC. An

example of wearable sensor is displayed in Figure 2.1.

Figure 2.1. Opal V2R wearable sensor (Precision Motion for Research, n.d.)

These are small, lightweight, wireless sensors that can be worn on the body and use micro-
electromechanical systems to detect kinematic movement parameters. Specifically, these

sensors are equipped with:

e Two tri-axial accelerometers, with ranges of +16g and +200g, which provide the
instantaneous values of the three components of acceleration.

e A tri-axial gyroscope, with a range of +2000 deg/s, which measures angular
velocity.

e A tri-axial magnetometer, with a range of +8 Gauss, which measures the
components of the magnetic field along three directions. It is used to correct

gyroscope drift and provides a stable reference relative to the magnetic north.

By combining data from these three sensors, quaternions providing, information about

the object's orientation in space can be obtained.

One of the advantages of inertial sensors is their ease of application to specific body
segments. In our study, we focused on the movement of the upper torso, and five sensors

were attached to various body areas:
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e Onthe sternum

e On the upper right arm, just below the deltoid muscle
e On the upper left arm, just below the deltoid muscle
e On the distal part of the right forearm, near the wrist

e On the distal part of the left forearm, near the wrist

Data were collected using the proprietary software Motion Studio, with a sampling

frequency set at 200 Hz.

2.1.2 Experimental set up

For data acquisition, a custom experimental setup was specifically designed for this study

(Digo, Polito, Pastorelli, et al., 2024; Polito et al., 2023b), as shown in Figure 2.2.

Figure 2.2. Experimental setup viewed from the front (a) and from above (b).

The setup consists of:

e Atable and a stool

e Two chipboard panels: one (i) with 30 holes, each 6 cm in diameter, placed on the
table and raised 10 cm on four legs, and another (ii) with a single hole of the same
diameter, positioned higher using two lateral support rods.

e A container measuring 22 cm x 33 cm x 7 cm, holding 30 golf balls with a diameter
of 43 mm.

e A 1-meter aluminium slide to guide the balls from the single hole in panel (ii) to a
container measuring 12.8 cm x 20.4 cm x 9.6 cm.

e Three containers positioned between the table and the panel with 30 holes.

e Eight LED lights (four red, four green), mounted on 3D-printed supports.

e Three green cards indicating the correct holes based on the participant’s

anthropometric measurements.
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e An Arduino Nano board with an ATmega328 microcontroller, connected to a
computer via USB, and operated using Arduino software with instructions
implemented in MATLAB. This controls the activation of the LEDs and a buzzer

(auditory signal).

Each trial consists of 30 movements, of which 26 are normal and 4 are abrupt. The green
LEDs signal the standard movements and are activated at a frequency of 20 beats per
minute (every 3 seconds), while the red LEDs indicate abrupt movements, lighting up 0.5
seconds after the green LEDs. The MATLAB instructions are set so that the first five
movements are always normal, and at least two of the four abrupt movements must be
accompanied by a buzzer sound. Additionally, two of the abrupt movements occur during
the first half of the experiment, while the remaining two take place within the final 15

movements.

2.2 Methods

2.2.1 Long Short-Term Memory Neural Network

The objective of this study is to recognize abrupt movements using an LSTM neural
network. This neural network was developed using Keras, a high-level library written in
Python facilitating the creation of deep learning models. Keras is integrated with
TensorFlow, a framework that manages optimization and computational backend
operations. Information on how to implement a neural network using Keras can be found
in the official Keras documentation (Keras 3 APl Documentation, n.d.). This resource
provides detailed guides and examples for building and training neural networks with

Keras.

The first step was to define a sequential model, characterized as a plain stack of layers
where each layer has exactly one input tensor and one output tensor. The layers were

defined as follows:

e Inputlayer: This layer defines the shape of the input, specifying the number of time
steps in the sequence and the number of features present.
e LSTM layer: This is the recurrent layer, where the number of hidden units is set,

corresponding to the number of neurons.
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Dropout layer: Used to reduce overfitting by randomly setting a fraction of the
units to zero during training at a user-defined rate.

Dense layer: A densely connected layer that performs the final classification. For
binary classification, this layer has a single neuron with a ‘sigmoid’ activation
function. The output is a probability value between 0 and 1, representing the

likelihood of belonging to the positive class.

Next, it was necessary to compile the model, a critical step to configure it for training.

During this phase, essential functions for model training are specified:

Optimizer: This determines how the model updates its weights. The most common
choice is Adam optimization, a stochastic gradient descent method that leverages
adaptive estimation of first-order and second-order moments.

Loss: This specifies the loss function that the model will use during training. The
loss function measures the discrepancy between the model's predictions and true
values, guiding the optimizer in updating the model's weights. For binary labels (0
and 1), the most suitable loss function is ‘binary_crossentropy, which handles
binary classification tasks effectively.

Metrics: A metric is a function used to evaluate the model's performance. Unlike
loss functions, metrics do not influence weight updates during training but provide
insights into model performance. An example of a commonly used metric is

accuracy.

At this stage, the model is ready for training using the model.fit method. To proceed, it is

necessary to have the input data, which is used to train the model; the target data, or

labels, that the model aims to predict, which is used to calculate the loss during training;

and the validation data, a separate dataset used to evaluate the model performance after

each epoch. An epoch refers to one complete iteration over the entire input and target

data provided. The LSTM network expects the data to be provided with a specific array

structure in the form of [samples, time steps, features]. Each dimension represents:

Samples: the number of sequences in the dataset.

Time steps: the length of the time sequence.

Features: the number of variables observed at each time step.
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The model.fit() method returns a history object, which records the loss and metric values

over each epoch for both the training and validation datasets.

The specifications used to implement the model in this study are detailed in Figure 2.3.

num_hidden_units = 100
mini_batch_size = 27
max_epochs = 20
model = Sequential([
InputLayer(shape=(timesteps, n_features)),
LSTM(num_hidden_units, return_sequences=False),
Dropout(0.5),
Dense(1, activation="sigmoid")
1
optim = Adam(clipnorm=2.0)
model. compile(optimizer=optim,
loss="binary_crossentropy’,
metrics=["'accuracy'])
history = model.fit(
x_train, TrainlLabel, # input data and target data
epochs=max_epochs,
batch_size=mini_batch_size,
validation_data=(x_val, ValidationLabel),

shuffle=True,
verbose=0)

Figure 2.3. Python code for creating and training the network.

Once the network is trained, predictions can be generated using the model.predict()
function. This function takes new data as input, formatted to be compatible with the
network, and outputs predictions. In binary classification, the output is a probability
between 0 and 1, with higher values indicating a greater likelihood of belonging to the
positive class. However, to obtain binary values (0 or 1), the probabilities are converted
into class labels. Typically, a threshold of 0.5 is set to classify outputs into one of the two
classes. If the output is above 0.5, it is classified as positive (label = 1); otherwise, it is
classified as negative (label = 0). This threshold can be adjusted according to the specific
task requirements. In the presented work, the two classes are highly unbalanced, which
makes it more likely that standard windows will be incorrectly identified as abrupt,
significantly increasing false positives. To address this, the threshold was set to 0.9,

ensuring that only windows with high probability of being abrupt are classified as such.
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2.2.2 Training the Network: Data Collection and Preprocessing Protocol

Data Collection Protocol

The network was trained using data from a database of 61 participants (Digo, Polito,
Caselli, et al., 2024) who performed a specific task designed to simulate a typical industrial
work environment. Specifically, the task was a pick-and-place activity, where participants
were required to pick up a golf ball from a container and place it in a hole, indicated by a
LED light. The possible movement directions, shown in Figure 2.4, included four

orientations: anteroposterior (AP), oblique (OB), mediolateral (ML), and vertical (V).

Figure 2.4. Experimental setup viewed from above, highlighting the four different directions: anteroposterior (AP),
oblique (OB), mediolateral (ML), and vertical (V).

Each trial consists of 30 total movements, of which 26 are normal and 4 are abrupt. The

movements are guided by the LEDs according to the following three scenarios:

1) Green LED activation (Figure 2.5a): The participant picks up the ball and places it
in the designated hole, aiming for the smoothest possible movement (normal
movement).

2) Red LED activation (Figure 2.5b): This occurs 0.5 seconds after a green LED is
activated. In this case, the participant, initially moving toward the hole indicated
by the green LED, must ignore the previous instruction and moves the ball quickly
in a different direction to the hole indicated by the red LED, simulating an abrupt

movement.
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3) Buzzer activation (Figure 2.5c): After 0.5 seconds from green LED activation, a

sound signal is emitted. As in case (2), the participant must disregard the green LED

instruction and raises their arm vertically as quickly as possible, simulating another

abrupt movement.

Figure 2.5. (a) Green LED activation: the participant picks up the ball and places it in the designated hole. (b) Red LED
activation: the participant moves the ball quickly in a different direction to the hole indicated by the red LED. (c) Buzzer

activation: the participant raises their arm vertically as quickly as possible.

Data collection followed a protocol divided into four phases:

1) Phase 1: Collection of anthropometric data:

2)

3)

4)

a. Age

b. Gender

c. Height (cm)

d. Weight (kg)

e. Dominant hand

f. Arm length (cm)

g. Forearm length (cm)
Phase 2: Placement of the five MIMU sensors using elastic straps, positioned as
described in Section 2.1.1.
Phase 3: Task simulation to assess the correct distance of the participant from the
table and to determine the appropriate holes for the easiest reach. Additionally,
this phase allowed the participant to become familiar with the task and
equipment.
Phase 4: Data acquisition, during which the participant performed the 30
movements guided by LED activation. Each trial lasted 90 seconds and was
repeated in three different configurations:

a. Participant seated facing the table, using the right arm for movements (Trial

Frontal right — FR_r)
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b. Participant seated facing the table, using the left arm for movements (Trial

Frontal left — FR_I)

c. Participant seated sideways to the table, using the left arm for movements

(Trial Lateral left — LA )

Data Preprocessing protocol

Once key features such as acceleration, angular velocity, and quaternions were extracted

from the raw sensor data, they were further processed to serve as inputs to the LSTM

network.

First, the gravity component was removed from the acceleration data using the rotation
matrix derived from the quaternions. Next, the norms of both acceleration and angular
velocity were calculated. Temporal data was then segmented into 3-second windows, each
corresponding to a single movement and labelled as either normal (label = 0) or abrupt
(label = 1). In Figure 2.6, the acceleration signal of subject 1, trial FR_r, segmented into 3-

second windows is shown as an example.

Acceleration Over Time Segmented into 3-Second Windows

200 —— Acceleration
- Abrupt Windows

Acceleration (m/s”2)

W

SIVIN Y I
WM; W“d&‘w M" MQ«W\W 1‘ M‘WM WWA*‘W

0 40 50 60 70 80 EY
Time (s)

2

«n

Figure 2.6. Acceleration signal of Subject 1 during trial FR_r, segmented into 3-second windows (orange dashed
vertical lines), with the four abrupt movements highlighted (red rectangles).
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Following this, each 3-second window was further divided into 0.5-second sub-windows,
obtaining six sub-windows per movement, each associated with its corresponding label.
The segmented acceleration signal of subject 1, Trial FR_r, segmented into 0.5-second

windows is shown in Figure 2.7.

Acceleration Over Time Segmented into 0.5-Second Windows
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Figure 2.7. Acceleration signal of Subject 1 during trial FR_r, segmented into 0.5-second windows (orange dashed
vertical lines), with the four abrupt movements highlighted (red rectangles).

Among these six sub-windows, only sub-windows 2, 3, and 4 (representing the intervals
from 0.5 to 1s, 1 to 1.5s, and 1.5 to 2s, respectively) were classified as abrupt, as they
capture the peak acceleration. An example of the selected sub-windows is highlighted in
Figure 2.8. A new dataset was constructed from these identified abrupt sub-windows and
an equal number of normal sub-windows.
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Figure 2.8. Acceleration signal of Subject 1 during trial FR_r, with three abrupt 0.5-second windows highlighted (red
rectangles),
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For training the network, the dataset was split into two parts: 80% was used for training,
and the remaining 20% for testing, to evaluate the model's ability to generalize on new
data. The training set was further divided using k-fold cross-validation, with k=5. This
method involves dividing the set into five folds, using k-1 folds for training and one for
validation, iterating through each fold. The model achieving the highest accuracy across

these iterations was selected to classify data in the test set.

Finally, the segmented data was organized into arrays compatible with the LSTM network
format, as described in Section 2.2.1. Two networks were trained: one using only
acceleration data (Network 1) and another using both acceleration and angular velocity

data (Network 2).

2.2.3 Sliding windows

To evaluate the network performance for approaching real-time recognition, the sliding
windows approach was adopted. Each window has a fixed length and a step size that
moves it forward incrementally. Since the step size is shorter that the window length,

consecutive windows overlap.

In this study, the window length is fixed at 0.5 seconds, while the overlap percentage, and
thus the step size, varies to assess its influence on network performance. The step size is
calculated as the difference between the window length in samples and the overlap
length, also in samples. Using this, the total number of windows can be determined with
the following Equation (1):

X — Nsgmples

- +1
step size

(D number of windows =

Where:

e x:signal length (in samples)
®  Ngamples: NUMber of samples in each window of fixed length

e step size: number of samples to shift to the next window

To segment the data into the calculated number of overlapping windows, a for loop was
implemented to iterate over the signal, advancing by the determined step size. At each

iteration, the code extracts and stores the data for each time window.
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Once the signal has been divided, it is essential to assign a label to each window. For this
purpose, windows that correspond to the interval used for training the network were
classified as abrupt (see Section 2.2.2, Figure 8). Specifically, in a 3-second movement, the
interval from 0.5 s to 2 s is considered abrupt. To calculate the number of abrupt windows

within this interval, Equation (1) can be applied, using a signal length of 1.5 s.

The segmented data are provided as input to the network for recognition. The output is a
prediction vector from which the recognized movements are derived. These predictions
are then compared to the actual movements to construct a confusion matrix, a 2x2 table
where the rows represent the actual classes, and the columns represent the predicted
classes. A generic confusion matrix is illustrated in Figure 2.9.

Confusion Matrix

Class 0 Class 1
Class 0 1 N FP
©
2
4
Class 1 1 FN TP

Predicted

Figure 2.9. Generic example of a confusion matrix, with actual classes along the rows and predicted classes along the
columns.

Referring to Figure 2.9, each value in the matrix has a specific meaning:

e True Negative (TN): the number of normal movements (class 0) correctly identified
as normal (class 0).

e False Positive (FP): the number of normal movements (class 0) misclassified as
abrupt (class 1).

e False Negative (FN): the number of abrupt movements (class 1) misclassified as
normal (class 0).

e True Positive (TP): the number of abrupt movements (class 1) correctly identified

as abrupt (class 1).
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From the confusion matrix, various metrics can be calculated to evaluate the network's

performance. The following metrics were specifically computed:

e Balanced Accuracy: arithmetic mean of sensitivity and specificity. Sensitivity
measures the model's ability to correctly identify true positives, while specificity
measures its ability to correctly identify true negatives. This metric is particularly
useful for unbalanced datasets, as it averages the correct classification rates for
both classes, giving them equal weight. The formula to calculate balanced accuracy
is provided below (Equation (2)):

1

@) Balanced A = 3 e
alanced Accuracyy, = 2\TP+ FN TN + FP

e Precision (positive): evaluates the percentage of true positive predictions (TP)

)XIOO

among all positive predictions (TP and FP). It is computed using Equation (3) below:

3 Precisiony, = ———= X 100
3) recisiony, TP T FP

e Recall (positive): measures the percentage of true positive predictions (TP) out of

the total positive class (TP and FN). It is calculated using Equation (4) below:

TP
oy, = — X
4 Recally, TP L FN 100

e Macro Fl-score: arithmetic mean of the Fl-scores calculated for each class
individually. Each per-class F1 score is the harmonic mean of the precision and
recall for that specific class. This metric is particularly useful for unbalanced
classes, as it is independent of their distribution. The formulas for calculating the

per-class F1-score (Equation (5)) and the Macro F1-score (Equation (6)) are shown

below:
Precision x Recall
(5) Flscoreclass =2 x e class class
Precision s + Recall ;s
1
(6) Macro Flscorey, = > (Flscorepositive + Flscorenegative) x 100

e Specificity: measures the percentage of true negative predictions (TN) out of the

total negative class (TN and FP). It is calculated using the Equation (7) below:

TN
ficityy, = ————— X
(7) Specificityy, TN * FP 100
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Finally, a timing analysis was performed to evaluate the network's ability to quickly classify
a movement and its applicability to a real-time context. The Python function
time.perf_counter() was used to measure the time required for classification. Acting as a
timer, it starts at the beginning of the classification process and stops at the end. Two

inference times were calculated:

1) Average inference time: The average time taken by the network to classify the data

for a single subject. After measuring the time for all 61 subjects, the average was
calculated.

2) Total inference time: The total time required to classify all 61 subjects. The timer

started at the beginning of the for loop, where subjects were analysed individually,

and stopped once the entire loop was completed.

2.2.4 Real-time detection of abrupt movements

After evaluating the network performance with sliding windows, a real-time protocol for
recognizing abrupt movements was developed. The goal is to analyse sensor data
immediately, identifying the type of movement within a few milliseconds. This protocol
involves a data collection from five new subjects using the same methodology outlined in

Section 2.2.2 for training data. A Python script is employed for the analysis.
This code involves several steps:

e Step 1: Load the pre-trained LSTM model with acceleration data.

e Step 2: Configure the sensors using a Python script provided by the sensor
developer, named ‘autoconfigure_system.py’.

e Step 3: Establish the communication between the sensors and the Python script
using additional code, named ‘stream_data.py’, provided by the developer. This
code returns the data acquired from the MIMU sensors.

e Step 4: Once the communication with the sensors is established, a connection is
opened between Python and the MATLAB code controlling Arduino for LED
activation.

e Step 5: Save acceleration and quaternion data for a single 3-second movement in
a NumPy array, facilitating data preparation for the network. The time required to

read and save the data is measured using Python's time.perf_counter() function.
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e Step 6: Pre-process the data:

e Remove gravitational acceleration using the rotation matrix derived from the
quaternions.

e Calculate the acceleration norm.

e Segment the data into overlapping windows with 99% overlap.

e Organize the data in the required format for the network: [samples, time steps,
features].

e The time required to execute these steps is measured as in Step 4

e Step 7: Provide the pre-processed data to the network for recognition, generating
an output vector that contains predictions for each window. The inference time,
which is the time required for the network to process the input and return an
output, is evaluated, using the same function as in Step 4 and 5.

e Step 8: Interpret the prediction vector. If at least one window is classified as abrupt,
the entire movement is identified as such. If an abrupt movement is recognized, a
red window appears; if the movement is standard, a green window is displayed.

e Step 9: Saving Results: The movement recognition outcomes and the times
associated with Steps 4, 5, and 6, are saved in vectors for later performance

analysis.

The Python script is designed for continuous streaming and saving of data while
simultaneously recognizing movements. This is achieved using Python's threading library,
which allows parallel operations. Two threads are created: one for streaming and pre-
processing data, which encompasses Steps 4, 5 and 6, and another for recognition,
covering Steps 7 and 8. Once the data is ready, it is passed from the first thread to the

second one for recognition.

The performance of the system was then evaluated, focusing on both the network's

recognition capabilities and the timing, which are crucial for real-time applications.

For the recognition assessment, the LED activation data, corresponding to the normal or
abrupt movements performed by the subject, was compared to the predicted movements.

A confusion matrix was created, and the same metrics as in Section 2.2.3 were calculated.
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In the timing analysis, three main steps were evaluated: the time required to transmit
acceleration data from the inertial sensors to the analysis system (i.e., streaming time,
Step 4); the time to prepare the data (i.e., pre-processing time, Step 5); and the time
required by the network to classify the movement (i.e., inference time, Step 7). For each
of these steps, both the mean and standard deviation were calculated at two levels: intra-
subject (the mean and standard deviation calculated across movements for a single

subject) and inter-subject (calculated across all five subjects).

To further investigate the real-time system’s performance, an analysis was conducted on
the distribution of errors made by the network across the movements, divided into three

intervals:

1. Movements from 1to 10
2. Movements from 11 to 20

3. Movements from 21 to 30

A chi-square test for independence was performed to assess whether the observed error
frequencies in the three intervals matched the expected frequencies. Pairwise
comparisons were then conducted to determine whether statistically significant

differences (p-value < 0.05) existed in the error distribution among the intervals.

2.2.5 Participants

Five new subjects were recruited to participate in the test. Table 2.1 below provides a

summary of the participants’ data.

Table 2.1. Data of the five participants: gender, age, height, weight, BMI, dominant hand, forearm length, and arm
length. The inter-subject mean #* standard deviation for age, height, weight, BMI, forearm length, and arm length were
calculated.

. Forearm Arm
. . BMI Dominant
Gender Age Height (cm) | Weight (kg) (ke/m?) hand length length
& (cm) (cm)

4F, 1M | 23.4+0.49 | 162.249.22 | 55.8+12.07 | 20.73+2.56 4dx, 1sx 31.6+2.24 | 26.2+2.48
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3. RESULTS AND DISCUSSION

3.1 Sliding windows

3.1.1 Segmentation into overlapping windows

The acceleration and angular velocity data from the three trials conducted with the 61
subjects were divided into overlapping windows. Each trial lasted 90 seconds. A sampling
rate of 200 Hz and a window length of 0.5 seconds were defined. The following parameters
were calculated following the procedure outlined in Section 2.2.3: overlap percentage,
step size, abrupt windows per movement, windows per trial, total windows per subject

and total abrupt windows per subject. The resulting values are shown in Table 3.1.

Table 3.1. Step size, abrupt windows per movement, windows per trial, total windows per subject and total abrupt
windows per subject for different percentages of overlap (50%, 75%, 90%, 95%, 99%) are presented.

Overlap Step size Abrupt Windows per Total Total

(%) (samples) windows trial windows per abrupt
per subject windows
movement per subject

50 50 5 359 1077 60
75 25 9 717 2151 108
90 10 21 1791 5373 252
95 5 41 3581 10743 492
99 1 201 17901 53703 2412

The dataset is highly unbalanced, containing a significantly larger number of normal
windows compared to abrupt ones. In fact, only about the 5% of a subject's windows is
classified as abrupt. In cases like this, metrics such as accuracy and Fl-score may not
reflect the model’s ability to detect the minority class. As suggested by Rivera and
colleagues, performance metrics like balanced accuracy and macro Fl1-score are
particularly useful as they are not affected by class distribution, providing a more balanced

view of the performance of the model (Rivera et al., 2017).

In Figures 3.1, 3.2, 3.3, 3.4, and 3.5, the acceleration signal from Subject 26, trial FR_r, is

shown, with the abrupt sliding windows highlighted for each percentage of overlap. A
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single abrupt movement is enlarged to illustrate how the overlapping windows appear for

an individual abrupt movement.
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3.1.2 Comparison between actual and predicted abrupt windows

Once prepared, the data were processed by the two networks: specifically, acceleration

data were provided to Network 1, while both acceleration and angular velocity data were

provided to Network 2. With the obtained prediction vector, it was possible to compare

the actual and predicted abrupt windows. Referring to Subject 26, trial FR_r, Figures 3.6,

3.7, 3.8, 3.9, and 3.10 visually compare the results for each percentage of overlap.
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Figure 3.10. Acceleration signal of Subject 26 during trial FR_r,

, segmented into 3-second windows (orange dashed vertical

lines), with the actual and predicted abrupt sliding windows (99% overlap) highlighted (yellow rectangles) for both

Network 1 and Network 2.

3.1.3 Performance analysis

To evaluate the performance of the two networks, confusion matrices were first

constructed by comparing the prediction vector with the vector of true labels. In Figures

3.11 and 3.12, the confusion matrices for

Network 2, respectively, are presented.

Confusion Matrix for Network 1 (Overlap 50%)

each overlap percentage for Network 1 and

Confusion Matrix for Network 1 (Overlap 75%)

Class 0 Class 1 Class 0 Class 1
Class 0 61366 671 Class 0 123032 1591
© ©
2 2
< <
Class 1 1 1634 2026 Class 1 2815 3773
Predicted Predicted
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Confusion Matrix for Network 1 (Overlap 90%)
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Figure 3.11. Confusion matrix for each overlap percentage (50%, 75%, 90%, 95%, and 99%) for Network 1.
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Confusion Matrix for Network 2 (Overlap 99%)
Class 0 Class 1

Class 0 3061632 67119

Actual

Class 1 48142 98990

Predicted

Figure 3.12. Confusion matrix for each overlap percentage (50%, 75%, 90%, 95%, and 99%) for Network 2.

From this matrix, the metrics outlined in Section 2.2.3 were calculated. The balanced

accuracy trends across different overlap percentages for the two networks are shown in

Figure 3.13.
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Figure 3.13. Bar chart of the percentage values of balanced accuracy across different overlap percentages, comparing
Network 1 and Network 2.

The balanced accuracy values remain stable across different overlap percentages, with
Network 1 around 78% and Network 2 around 82%. As shown in Equation (2), the balanced
accuracy depends on the network’s ability to correctly detect both positive (abrupt) and
negative (normal) windows. Network 2 is therefore slightly more accurate in identifying
these windows, while varying the overlap percentage does not significantly affect the

network’s performance in correctly detecting the two classes.
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In this study, the primary objective is the detection of abrupt windows. Therefore, the
number of true positive should be high, while the false negatives, representing abrupt
windows incorrectly identified as normal, should be kept to a minimum. To assess this, the
precision, recall and F1-score for the positive class are analysed. These trends are shown

in Figures 3.14, 3.15, and 3.16, respectively.
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Figure 3.14. Bar chart of the percentage values of precision across different overlap percentages, comparing Network 1

and Network 2.
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Figure 3.15. Bar chart of the percentage values of recall across different overlap percentages, comparing Network 1
and Network 2.
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Fl-score at Different Overlap Percentages for Network 1 and 2
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Figure 3.16. Bar chart of the percentage values of F1-score across different overlap percentages, comparing Network 1
and Network 2.

The performance results do not fully meet expectations. Precision values are consistently
below 70%, with the only exceptions being the 50% and 75% overlap values for Network
1. This suggests a high number of false positives, meaning that normal windows are
misclassified as abrupt. Recall values show a similar trend, with recall percentages for
Network 1 specifically falling below 60%, indicating a high occurrence of false negatives.
This trend is also reflected in the F1-score, which, as the harmonic mean of precision and
recall, emphasises the overall performance. For Network 1, F1-scores are around 62%,
while Network 2 shows slightly higher values, around 64%, highlighting no significant
performance difference between the two networks in detecting abrupt movements.
Additionally, as with balanced accuracy, there are no notable performance differences

across the different overlap percentages.

The low precision and recall values may not necessarily reflect the network’s ability to
detect abrupt movements but rather indicate how many windows associated with such
movements are classified as positive. Observing acceleration graphs comparing actual and
predicted windows (see Figures 3.6 to 3.10) reveals that, within a single movement, the
network may identify more or fewer windows as abrupt than expected. This discrepancy

impacts the metrics, which may not fully represent the network’s performance. It is
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possible that the movement is correctly recognised, but the predicted number of windows

associated with it may not align with the expected count.

For normal window detection, specificity values can be evaluated. Figure 3.17 shows
specificity values for both networks across different overlap percentages. This metric
depends solely on the negative class, considering both correctly classified instances (True
Negatives) and misclassifications (False Positives). The graph reveals that both networks
perform exceptionally well in identifying the negative class, with values around 98% and

no substantial differences across different overlap percentages.
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Figure 3.17. Bar chart of the percentage values of specificity across different overlap percentages, comparing Network
1 and Network 2.

This strong performance is further supported by the Macro F1-score, which balances both
classes equally. Macro F1-score values are displayed in Figure 3.18. Notably, these values
(ranging between 80% and 82% for both networks) are higher than the F1-score calculated
for only the positive class, as they reflect the overall performance of the network.

Moreover, the overlap percentages does not affect the performance of both networks.
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Macro Fl-score at Different Overlap Percentages for Network 1 and 2
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Figure 3.18. Bar chart of the percentage values of Macro F1-score across different overlap percentages, comparing
Network 1 and Network 2.

The goal of this study is to assess whether the network can reliably identify abrupt
movements. Therefore, in the performance analysis, the focus should be on recognizing
movements rather than individual windows. Each trial includes 30 movements, 4 of which
are abrupt. Each subject completed three trials, resulting in a total of 5490 movements
across the 61 subjects, of which 732 are abrupt. In a 3-second movement, it was verified
whether at least one abrupt window was detected. Based on a comparison between the
movements performed by the subjects and the network’s predictions, a confusion matrix
was constructed. The confusion matrices for all overlap percentages for both networks are
shown in Figure 3.19 and 3.20. Both networks present low false negative rates, always less
than 100, demonstrating effective detection of abrupt movements. However, Network 2
has a significantly higher number of false positives. Although minimising false negatives is

the primary objective, a high false positive rate can still be a problem in industrial
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applications, as it would unnecessarily activate the safety system, slowing operations and

reducing efficiency.
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Figure 3.19. Confusion matrix for each overlap percentage (50%, 75%, 90%, 95%, and 99%) for Network 1.
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Figure 3.20. Confusion matrix for each overlap percentage (50%, 75%, 90%, 95%, and 99%) for Network 2.
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From these data, the metrics described in Section 2.2.3 were calculated. Figure 3.21

displays the balanced accuracy values as a function of the varying overlap percentages.

Balanced Accuracy at Different Overlap Percentages for Network 1 and 2
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Figure 3.21. Bar chart of the percentage values of balanced accuracy across different overlap percentages, comparing
Network 1 and Network 2.

The balanced accuracy values for 3-second movements confirm the strong overall
performance of both networks. Specifically, values exceed 85% for Network 1 and 83% for
Network 2. Except at overlap values of 50% and 75%, Network 1 demonstrates slightly
higher accuracy than Network 2, in contrast to results observed when analysing individual

windows. Overall, as before, no significant differences are observed across varying overlap

percentages.

To further assess the networks’ ability to identify abrupt movements, the trends of

precision, recall, and F1-score for the positive class, shown in Figure 3.22, 3.23, and 3.24

respectively, are analysed.
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Precision at Different Overlap Percentages for Network 1 and 2
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Figure 3.22. Bar chart of the percentage values of precision across different overlap percentages, comparing Network

1 and Network 2.

Recall at Different Overlap Percentages for Network 1 and 2
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Figure 3.23. Bar chart of the percentage values of recall across different overlap percentages, comparing Network 1

and Network 2.



Fl-score at Different Overlap Percentages for Network 1 and 2
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Figure 3.24. Bar chart of the percentage values of F1-score across different overlap percentages, comparing Network 1
and Network 2.

In this situation, precision and recall show completely different trends. Precision values
are quite low for both networks. Specifically, for Network 1, values range from 45% to 60%,
except at 50% overlap, where precision reaches 74%, making it the highest percentage.
For Network 2, precision values vary between 37% and 63%. Comparing the two networks,
it is clear that Network 2 has significantly lower precision percentages than Network 1.
Low precision values indicate a high number of false positive, which, as observed also in
the confusion matrices, are notably frequent in Network 2. Moreover, this time there is a

difference with varying overlap: precision values decrease as overlap increase.

On the other hand, recall performance is very high for both networks. This means that
false negatives remain consistently low, a highly favourable outcome for the objectives of
our study. For both Network 1 and Network 2, recall percentages remain steady across

overlap percentages, above 85% and 90% respectively.

Finally, Fl-score values reflect the trends observed in precision and recall. Overall,
Network 1 demonstrates stronger performance compared to Network 2 across all overlap

percentages, with an average difference of 6% between the two networks.
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For the negative class (standard movements), the specificity values shown in Figure 3.25
confirm the networks' ability to accurately identify these movements. Network 1
demonstrates higher specificity values, all exceeding 83%, in comparison to Network 2,

where specificity generally does not surpass 80% except for the 50% and 75% overlap

cases.
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Figure 3.25. Bar chart of the percentage values of specificity across different overlap percentages, comparing Network
1 and Network 2.

Finally, the Macro Fl-score, shown in Figure 3.26, was also analysed to provide an
overview of the overall performance of both networks. Here again, Network 1
demonstrates better performance compared to Network 2 across all overlap percentages,

with an average difference of 5% for each overlap case.
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Macro Fl-score at Different Overlap Percentages for Network 1 and 2
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Figure 3.26. Bar chart of the percentage values of Macro F1-score across different overlap percentages, comparing
Network 1 and Network 2.

In general, analysing the performance of both networks in terms of window recognition
as well as 3-second movement recognition reveals several insights. Regarding window
recognition, while both networks display relatively similar metrics, Network 2 shows
slightly higher balanced accuracy, F1l-score for positive class and Macro Fl-score values
than Network 1. This indicates that Network 2 is moderately more precise in recognizing

individual windows, regardless of the overlap percentage.

However, as previously mentioned, our main interest lies in recognizing the overall
movement rather than a single window. Looking at movement-level metrics, Network 1
generally exhibits better performance overall. Specifically, it achieves higher values in
balanced accuracy, specificity, and macro F1-score compared to Network 2. Focusing on
positive class recognition, Network 2 has a high number of false positives, which
significantly lowers its precision. In terms of recall, Network 2 shows slightly higher values,
but those of Network 1 are still highly acceptable, ensuring a low number of false

negatives.

Based on these considerations, it can be stated that Network 1 demonstrates superior
overall performance. Consequently, it has been selected for the next phase of the study,

which involves a real-time movement recognition.
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3.1.4 Time analysis

In real-time applications, timing analysis is crucial. For this reason, the time required by
the two networks to classify the movements of all 61 subjects was evaluated, using the
function described in Section 2.2.3. Tables 3.2 and 3.3 present the average inference time
per subject, representing the time needed by the network to classify the data for a single
subject, as well as the total inference time, indicating the time taken to classify all 61

subjects, for Network 1 and Network 2 respectively.

Table 3.2. Average inference time across all subjects and total inference time (in seconds) for each overlap percentage
(50%, 75%, 90%, 95%, and 99%) for Network 1.

Overlap (%) 50 75 90 95 99
Average Inference Time across all
subjects (seconds)
Total Inference Time (seconds) 85.76 | 145.93 | 275.65 | 562.88 | 3875.87

1.41 2.39 4.52 9.23 63.54

Table 3.3. Average inference time across all subjects and total inference time (in seconds) for each overlap percentage
(50%, 75%, 90%, 95%, and 99%) for Network 2.

Overlap (%) 50 75 90 95 99
Average Inference Time across all
subjects (seconds)
Total Inference Time (seconds) 81.95 130.67 | 283.76 | 574.95 | 3985.81

134 2.14 4.65 9.43 65.34

The obtained values show a non-linear trend, which is also evident when looking at the

graphs of the trends at varying overlap in Figures 3.27 and 3.28.
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Trend of Average Inference Time with Varying Overlap
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Figure 3.27. Line graph showing the variation of the average inference time across different overlap percentages (50%,
75%, 90%, 95%, and 99%) for both Network 1 and Network 2.
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Figure 3.28. Line graph showing the variation of the total inference time across different overlap percentages (50%,
75%, 90%, 95%, and 99%) for both Network 1 and Network 2.

Up to 95% overlap, the average inference times for both networks remain low, below 10
seconds. However, when the overlap reaches 99%, inference times increase exponentially,

exceeding one minute. The total inference time shows a similar pattern, with an
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exponential rise between 95% and 99% overlap, reaching up to six times the previous

value.

Both models are generally efficient, but as the overlap increases so does the number of
windows to be analysed, leading to longer inference times. Specifically, with higher
overlaps rates, the number of windows per subject nearly doubles compared to the
previous overlap percentage (see Table 1). A particularly significant case is the 99%
overlap, where the network must analyse 53703 windows per subject (see Table 1), more
than 5 times the number of windows to be analysed for the 95% overlap. This explains the

nonlinear progression of both average and total inference times.

Regarding the difference between the two networks, Network 2 is slightly faster than
Network 1 for 50% and 75% overlap. However, for higher overlap values, the situation
reverses. Moreover, up until 95% overlap, the inference times for both networks are
comparable, with minimal differences. Once 99% overlap is reached, the difference
becomes more evident, with Network 1 exhibiting both lower average and total inference

times compared to Network 2.

For a more accurate analysis of the network's performance in terms of time, it is useful to
examine the time it takes to analyse a single window. By knowing the average time and
dividing it by the number of windows per subject, an estimate can be obtained. The

obtained values are presented in Table 3.4.

Table 3.4. Average time required to analyse a single window (in milliseconds) for each overlap percentage (50%, 75%,
90%, 95%, and 99%) for both Network 1 and Network 2.

Overlap (%) 50 75 90 95 99
Network 1 1.30 ms 1.11 ms 0.84 ms 0.86 ms 1.18 ms
Network 2 1.24 ms 0.99 ms 0.87 ms 0.88 ms 1.22 ms

It is evident that both networks perform very well, with inference times for a single
window on the order of a millisecond. Additionally, the differences between the two
networks are confirmed: Network 2 is faster at 50% and 75% overlap, while Network 1

outperforms Network 2 at 90%, 95%, and 99% overlap.
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The time analysis confirms the selection of Network 1 for the next phase of the study, as

it is faster in conditions approaching the real-time.

3.2 Real-Time Recognition of Abrupt Movements

3.2.1 Performance analysis

This phase of the study involves the real-time recognition of abrupt movements as the
subject performs various movements, including abrupt ones. Five new participants
completed the test outlined in Section 2.2.2. The task required each subject to perform 30
movements of 3 seconds each across three configurations (Trial FR_r, Trial FR_I, and Trial
LA_l). In total, the network analysed 450 movements, including 60 abrupt movements. It
is important to note the continued class imbalance, with the positive class (abrupt

movements) being the minority.

After comparing the network predictions with LED activations, which indicate the
movements executed by the subject, a confusion matrix was constructed and displayed in
Figure 3.29. It is evident that the network performs well with few errors. Out of 60 abrupt

movements, only 9 are misclassified as normal, while the false positives amount to just

12.

Confusion Matrix: Real-Time Detection of Abrupt Movements
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Figure 3.29. Confusion matrix showing the classification results of the real-time system for detecting abrupt
movements.

For performance metrics, the same set of metrics as in previous analyses were calculated.

Table 3.5 presents the values for all six metrics.
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Table 3.5. Performance metrics for the classification of abrupt movements, including balanced accuracy, precision
(positive), recall (positive), F1-score (positive), macro F1-score, and specificity.

Balanced Precision Recall Fl-score Macro F1- Specificit
accuracy (positive) (positive) (positive) score P ¥
90.96 80.95 85.0 82.93 90.11 96.92

The network demonstrates a high level of balanced accuracy at 90.96%, indicating its
effectiveness in correctly classifying both abrupt and normal movements. In particular, the
specificity value highlights the network's strong ability to correctly identify the negative
class, reaching 96.92%. For the positive class, the network also shows strong performance,
with precision and recall values of 80.95% and 85%, respectively. While the network
exhibits a slightly higher rate of false positives than false negatives, this does not impact
the primary objective of our study. The F1-score for the positive class further confirms the
network’s strong performance, reaching nearly 83%. Overall, the Macro F1-score slightly
exceeds 90%, underscoring the network's robustness in recognizing both classes and

ensuring a minimal error rate.

The network thus confirms its ability to effectively recognize abrupt movements even

under real-time conditions, with all performance metrics considerably exceeding 80%.

3.2.2 Time analysis

In the context of human-robot collaboration safety, the activation timing of safety systems
is crucial. For this reason, in real-time conditions, a timing analysis is essential. As outlined
in Section 2.2.4, the mean and standard deviation for the three steps required to achieve

classification were calculated (Table 3.6).

Table 3.6. Streaming time (s), preprocessing time (ms), and inference time (ms) for each subject and across all subjects.
Values represent mean + standard deviation.

Subjects 01 02 03 04 05 Inter-

subject

Streaming time (s) 3.12 + 3.12 + 311+ 3.11+ 312+ 3.12¢+
0.05 0.13 0.11 0.05 0.18 0.11

Preprocessing time 890+ 9.12 + 9.13 ¢ 8.83 ¢ 9.04 + 9.00
(ms) 1.87 2.14 2.45 2.26 2.49 2.26

Inference time 263.8 + 265.1+ 251.3 % 253.7 + 264.7 + 259.7 +
(ms) 65.2 95.6 67.9 70.6 70.2 74.9
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Once the movement begins, the data is typically ready for the analysis after an average of
3.13 seconds, which includes both streaming and preprocessing times. Finally, the

network takes approximately 260 milliseconds to analyse the movement.

In terms of efficiency, the network performs exceptionally well, achieving recognition few
milliseconds after the movement’s completion. The network’s analysis operates in parallel
with data streaming, storage, and preprocessing. As a result, the time required for
recognition does not interfere with the data flow from the sensors. Consequently, the
temporal performance of the network is highly acceptable, ensuring rapid movement

recognition.

However, it is noteworthy that the time required to obtain the data (3.13 s) slightly exceeds
the duration of a single movement, which is precisely 3 seconds. This delay could result in
the network lagging in recognizing the movement or potentially missing critical samples
necessary for accurate classification. In this case, the network demonstrates extremely
high performance, so this time lag does not significantly compromise its capabilities,

although it may still lead to occasional errors.

To determine whether these errors are caused by the real-time system rather than the
network itself, an analysis of error distribution across the sequence of movements was
conducted. Table 3.7 summarises the 15 trials (three per each of the five subjects),
including the abrupt movements correctly recognized, not detected, and normal
movements misclassified as abrupt. Observing the error distribution reveals that the
system’s efficiency is excellent at the beginning of the test, with few errors. However,

toward the end of the test, there is a noticeable increase in the number of errors.

When dividing the movements into three intervals (1-10, 11-20, 21-30), it becomes
evident that errors increase significantly in the last interval, as shown in Figure 3.30. The
difference in error distribution across these intervals is statistically significant. Specifically,
there is a statistically significant difference between the first and third intervals, as well as

the second and third intervals, with a p-value < 0.001 for both.
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Figure 3.30. Comparison of error distribution across three different movement intervals: 1 — 10, 11 — 20, and 21 — 30.
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Statistical significance was determined using a chi-square test. ***p<0.001

The combined streaming and preprocessing time exceed the movement duration by few
milliseconds. Over time, these extra milliseconds may lead to a misalignment between the

system and the movements dictated by the LEDs, making the system more prone to errors

as the test progresses.
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Table 3.7. For each trial performed by all five subjects, abrupt movements correctly classified are highlighted in green, missed (not detected) abrupt movements are highlighted in red, and
normal movements incorrectly classified as abrupt are highlighted in orange.
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4. CONCLUSIONS AND FUTURE WORK

This experimental thesis demonstrates the effectiveness of an LSTM network trained with
wrist acceleration data acquired via MIMUs in recognizing abrupt movements in
conditions approaching the real-time. The aim of the study is to identify the abrupt
movements performed by an operator in industry, guaranteeing both efficiency and safety
for a scenario of human-robot collaboration. Indeed, ensuring an accurate real-time
movement detection enables the development of effective safety systems, enhancing

collaboration and making the workplace a safer environment for workers.

Initially, two networks were considered: one trained solely with acceleration data
(Network 1) and the other trained with both acceleration and angular velocity data
(Network 2). Their performance was compared using a sliding windows approach for signal
segmentation. In terms of metrics and processing times, Network 1 showed slightly better

performance, making it the preferred choice for the second phase of the study.

Subsequently, the LSTM network was integrated into a real-time system for abrupt
movement recognition. A pick-and-place tack was performed by five participants across
three different configurations. Results demonstrated the network’s ability to recognize
abrupt movements with high accuracy (balanced accuracy, macro F1-score, and specificity

> 90%) within a few hundred milliseconds (259.7 + 74.9 ms).

Despite some limitations, such as data streaming and preprocessing times that may slow
the system and increase the likelihood of errors, these findings highlight the network’s

capability to recognise abrupt movements moving towards real-time conditions.

Future studies could focus on improving the real-time signal acquisition system to reduce
streaming delays. Additionally, the current system processes signals only after the entire
movement sequence is collected. A more advanced approach would involve a system
capable of analysing incoming data in real-time, enabling the network to start processing

partial movement data even before the movement is completed.
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