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ABSTRACT 
Collaborative robotics plays a significant role in the industrial sector, especially following 

the advent of the 4th and 5th industrial revolutions. In this context, humans and robots 

share a workspace where they collaborate and exchange information, enhancing each 

other’s strengths. Robots perform repetitive tasks with precision and speed, while 

humans provide essential decision-making capabilities, ensuring an effective production 

process. However, guaranteeing the safety of human-robot interaction is crucial, a 

concept known as "safety collaboration". To achieve this, robots must recognize human 

activities, such as detecting abrupt movements, and respond accordingly. The recognition 

needs to be rapid to make the safety system activating as quickly as possible to prevent 

collisions.  

The objective of this study was to detect abrupt movements in real time using data from 

magneto-inertial measurement units (MIMUs) and an artificial intelligence network. A 

Long Short-Term Memory neural network was employed for this purpose, trained with a 

dataset of 61 subjects who performed a pick-and-place task involving impulsive 

movements. The data, acquired using MIMUs, consisted of accelerations and angular 

velocities of the forearm during the movements. Tests were conducted in three different 

spatial configurations relative to the experimental setup. First, the network was tested on 

the data from the 61 subjects, which were segmented into fixed overlapping sliding 

windows. The window length was set to 0.5 seconds, with various overlap percentages 

(50%, 75%, 90%, 95%, 99%) evaluated to estimate the network’s performance and move 

closer to real-time conditions. Specifically, the network’s ability to detect abrupt and 

standard movements, as well as the recognition time, were evaluated. The results 

demonstrated that a real-time recognition is achievable.  

Subsequently, the same tests used to create the training dataset was repeated with the 

same protocol and with five new subjects. The goal was to achieve a real-time recognition 

of the movement. Sensor data were streamed in real-time directly into a Python script, 

where they were immediately stored, pre-processed, and then analysed by the network 

to identify the type of movement. Finally, the network’s performance and the time 

required for data streaming, pre-processing, and recognition were evaluated. Results 

showed that the network could effectively distinguish between abrupt and standard 
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movements in conditions approaching real-time. For a single movement, data stream 

from sensors to the Python script took around 3 seconds, pre-processing took a few 

milliseconds (about 9 ms), and the network's recognition time was around a few hundred 

milliseconds (approximately 300 ms).  

The findings of this study demonstrated the effectiveness of using inertial sensors 

together with artificial intelligence networks for a real-time identification of abrupt 

movements, aimed at enhancing safety systems for human-robot interactions in industrial 

settings.  
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1. INTRODUCTION 
1.1 Humans and robots in the industrial field 

1.1.1 Industry 4.0 and Industry 5.0 

The term “collaboraƟve roboƟcs”, or “coboƟcs”, refers to humans and intelligent machines 

working together dynamically to perform tasks in a safe and effecƟve way. CoboƟcs has 

played a crucial role in the industrial sector, driving both the 4th and 5th industrial 

revoluƟons, known respecƟvely as Industry 4.0 and Industry 5.0. 

Industry 4.0 refers to the advanced integraƟon of machines and processes within the 

industrial sector, enabling intelligent control and automaƟon of industrial operaƟons. This 

revoluƟon is considered technology driven and it has the objecƟve to achieve higher 

producƟvity and efficiency (Xu et al., 2021). Conversely, Industry 5.0 provides a different 

focus and point of view. It is considered a value-driven revoluƟon, integraƟng social and 

environmental prioriƟes into technological innovaƟon (Xu et al., 2021). Industry 5.0 

complements and goes beyond Industry 4.0, exploiƟng these new technologies to improve 

the worker's quality of life, sustainability, and social welfare.  

Industry 5.0 relies on three core values (Xu et al., 2021): 

1. Human-centricity: there is a shiŌ from technology-driven processes to a human-

centric approach, where a safe and inclusive work environment is prioriƟzed. This 

approach emphasizes the physical and mental health of workers, as well as their 

fundamental rights. 

2. Sustainability: the industry must respect planetary boundaries by reducing waste 

and minimizing environmental impact. To achieve this, it needs to develop circular 

processes that reuse, repurpose, and recycle natural resources. 

3. Resilience: the future industry needs to be able to rapidly address (geo)poliƟcal 

changes and natural emergencies.  

The core goal is to create a shared space where humans and robots can exchange 

informaƟon and collaborate, enhancing each other's strengths. Machines can assist 

workers with tasks that require precision, strength, or speed, while humans bring 

creaƟvity, decision-making, and problem-solving skills (Zafar et al., 2024). By combining 
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their abiliƟes, we can develop adapƟve producƟon systems that can rapidly adjust to 

changes or faults (Zafar et al., 2024). Therefore, the aim is to work together rather than 

replaces human labour. 

1.1.2 Human-robot collaboraƟon: from caged robots to cobots 

The first industrial robots were introduced during the Third Industrial RevoluƟon, also 

known as Industry 3.0, where electronics and technology began playing a significant role 

in producƟon processes. These robots, confined to cages, were pre-programmed and 

capable of performing specific tasks. As technology advanced, there has been a gradual 

transiƟon from caged robots to collaboraƟve robots, or cobots. 

The main difference between robots and cobots lies in the concept of collaboraƟon. While 

both can perform similar tasks, cobots work alongside human operators, whereas 

tradiƟonal industrial robots typically replace human workers (Borboni et al., 2023). For 

effecƟve task performance, humans need to interact and work closely with cobots. As a 

result, sensors, soŌware, and safety devices are incorporated to ensure safe and efficient 

collaboraƟon, removing the tradiƟonal barriers between industrial robots and human 

workers. Moreover, this reducƟon in barriers, due to improved robot safety, has led to 

increased levels of collaboraƟon, as illustrated in Figure 1.1. 

 

Figure 1.1. Increasing levels of human–robot collaboraƟon as safety improves. (Zafar et al., 2024) 
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According to (Zafar et al., 2024), the main stages of this transiƟon are as follows: 

- Caged robots: the first industrial robots operated within physical barriers, such as 

secured cages or fences, to prevent direct interacƟon or contact between robots 

and human workers. The primary aim was to ensure safety in the workplace since 

robots had limited funcƟonaliƟes and lacked the advanced safety features required 

for safe collaboraƟon. 

- Collision Avoidance: as technology progressed, robots began incorporaƟng sensors 

and cameras, allowing them to detect nearby humans. By sensing their presence, 

robots could adjust their acƟons to prevent potenƟal collisions or accidents. This 

breakthrough significantly improved safety standards in collaboraƟve work 

environments.  

- Human-Robot InteracƟon (HRI): natural language processing and speech 

recogniƟon technologies transformed the way robots interacted with humans. 

These innovaƟons enabled robots to understand and respond to verbal 

instrucƟons, reducing the communicaƟon gap between humans and robots. This 

marked the beginning of a new era in which robots became more interacƟve and 

responsive, allowing for smoother collaboraƟon. 

- Human-Robot CollaboraƟon (HRC): at this stage, robots and humans work together 

on tasks, requiring robots to not only understand human intenƟons but also 

collaborate efficiently while ensuring safety. HRC marks a significant shiŌ, moving 

toward a model where humans and robots funcƟon as complementary partners. 

- Physical HRC (pHRC): this phase represents a deeper level of integraƟon, where 

robots acƟvely interact with humans through physical contact. This can involve 

acƟviƟes like exchanging tools, handing over objects, or collaboraƟvely 

manipulaƟng items. Successful pHRC requires advanced control and sensing 

systems to ensure safe and efficient cooperaƟon. 

- Human-Robot Teaming (HRT): in this advanced stage, robots are no longer tools 

but become fully integrated as equal members of human teams. Achieving this 

requires sophisƟcated AI and machine learning that allow robots to learn from and 

adapt to human behaviour, preferences, and decision-making. Robots thus 
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become dynamic and adapƟve team members that work together toward a shared 

goal, marking a fundamental shiŌ in how humans and robots interact. 

1.1.3 Advantages of collaboraƟve robots in industry  

The use of collaboraƟve robots in industry brings socio-economic benefits. In this context, 

robots do not enƟrely replace human work but instead support and improve it. Robots 

perform automaƟc and repeƟƟve tasks, ensuring accuracy, precision, speed, and strength. 

AddiƟonally, they can handle heavy payloads and perform dangerous tasks, such as 

manipulaƟng toxic or hot objects (Vysocky & Novak, 2016). However, they are not capable 

of adapƟng to changes or making decisions beyond the tasks they have been programmed 

for. For this reason, human presence is essenƟal due to their decision-making and 

problem-solving skills. Figure 1.2 summarizes the collaboraƟon between human and 

robot, highlighƟng their respecƟve strengths. 

 

Figure 1.2. Graphical representaƟon of Human–robot collaboraƟon, highlighƟng their capabiliƟes (Vysocky & Novak, 
2016) 

This collaboraƟve workspace provides several crucial advantages in industry (Vysocky & 

Novak, 2016; Zafar et al., 2024): 

 Manufacturing systems can be more complex as new technologies can perform a 

wider range of tasks. 
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 Robots' repeatable posiƟoning accuracy and ability to operate conƟnuously result 

in improved quality and a reduced need for post-processing and quality control, 

enabling lower-cost producƟon. 

 Robots can speed up some processes and adapt to specific condiƟons, which can 

lead to an increased producƟon.  

 Stressful, monotonous, and tedious labour, which can eventually lead to 

occupaƟonal illness, is reduced, easing the burden on workers. 

 A reducƟon in occupaƟonal injuries is also achieved by improving workplace 

ergonomics and effecƟvely managing the workload. 

 The integraƟon of collaboraƟve roboƟcs and safety-focused technology ensure a 

secure working environment, decreasing the risk of injury. 

1.1.4 Safety standards and levels of collaboraƟon 

When discussing collaboraƟon, various types of interacƟons between humans and cobots 

must be considered. Therefore, it is essenƟal to define all levels of collaboraƟon to address 

different scenarios from both safety and human factors perspecƟves. 

The introducƟon of industrial robots in human-robot collaboraƟve applicaƟons offers 

several advantages, as previously discussed, but it also presents new challenges regarding 

safety. For this reason, the InternaƟonal OrganizaƟon for StandardizaƟon (ISO) published 

the specificaƟon ISO/TS 15066, which provides objecƟve parameters for assessing safety 

in collaboraƟve applicaƟons (Rosenstrauch & Kruger, 2017). This standard first addresses 

general hazard idenƟficaƟon and risk assessment, serving as basic guidelines for 

idenƟfying, evaluaƟng, and reducing risks. The main steps are summarized in Figure 1.3.  

 

Figure 1.3. ISO/TS 12100:2010 basic procedure of risk assessment (Rosenstrauch & Kruger, 2017)  
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The first step is the risk analysis, which involves idenƟfying all potenƟal risks or hazards, 

including mechanical, electrical, thermal, and others. The second step is the risk 

evaluaƟon, which is the combinaƟon of the probability of occurrence and the extent of 

potenƟal damage. These two steps are followed by risk reducƟon, during which protecƟve 

measures and safeguards are implemented. As shown in Figure 3, this process is iteraƟve, 

conƟnuing unƟl the residual risk is minimized (Rosenstrauch & Kruger, 2017).  

ISO/TS 15066 then presents the requirements for collaboraƟve robot system applicaƟons, 

disƟnguishing between four different operaƟng modes (Rosenstrauch & Kruger, 2017): 

 Safety-rated monitored stop (Figure 1.4a). The robot is allowed to move only 

when the operator is outside the collaboraƟve workspace. As soon as he/she 

enters the area to interact, the robot halts, resuming operaƟon only when the 

operator leaves the workspace.  

 Speed and separaƟon monitoring (Figure 1.4b). The robot’s speed adjusts 

dynamically based on the distance between the operator and the robot. As the 

operator moves closer, the robot slows down, and if the distance falls below a 

predefined safety limit, the robot stops to prevent any risk of collision.  

 Hand guiding (Figure 1.4c). Direct contact between the operator and the robot is 

permiƩed. In this mode, the operator can guide the robot’s movements within the 

collaboraƟve space using a hand-guiding device or a force-torque sensor located 

at the robot’s tool centre point.  

 Power and force limiƟng (Figure 1.4d). In a fully shared collaboraƟve workspace, 

unintenƟonal and unpredictable contact between humans and the robot is 

possible. Therefore, the robot’s power and force are limited to ensure safety. 

Thresholds for pressure and force are set based on maximum permissible levels for 

different body parts, disƟnguishing between quasi-staƟc and transient contact. 

This ensure that any contact remains within safe biomechanical limits.  
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Figure 1.4. ISO/TS 15066:2016 collaboraƟve operaƟon modes (Vysocky & Novak, 2016) 

These four modes describe collaboraƟon from a technical perspecƟve, offering specific 

configuraƟons for the robot system to ensure safety aŌer risk assessment. However, from 

the human worker’s perspecƟve, the assumpƟon is that collaboraƟve work is inherently 

safe, regardless of the implemented safety method. To address this, Aaltonen and 

colleagues proposed a new classificaƟon based on factors such as workspace sharing, the 

type of joint effort, and the physical contact involved (Aaltonen et al., 2018). The aim is to 

provide a comprehensive analysis of collaboraƟon, ensuring compliance with safety 

standards while also creaƟng a posiƟve experience for the human worker. Four levels of 

collaboraƟon are proposed: 

 No coexistence: Physical separaƟon, referring to tradiƟonal fenced robot cells. 

 Coexistence: Humans and robots share the physical workspace (parƟally or 

completely), but they do not work towards a shared goal. 

 CooperaƟon: Humans and robots work toward a shared goal in a parƟally or 

completely shared workspace. 

 CollaboraƟon: Humans and robots work simultaneously on the same object. 

These levels are structured to represent progressively deeper forms of joint effort. For 

instance, while coexistence and cooperaƟon might appear similar from a safety 

standpoint, they differ from the human worker’s perspecƟve. If the human’s task depends 

on the robot’s acƟvity, the interacƟon reaches a higher level, and mutual awareness of the 

situaƟon becomes crucial for effecƟve collaboraƟon (Aaltonen et al., 2018). 
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In the new industrial paradigm, humans are central to producƟon processes, meaning that 

collaboraƟon with robots must not only be effecƟve but, most importantly, safe. The key 

concept is the "safety collaboraƟon", highlighƟng the need for research to focus on 

ensuring a safe human-robot interacƟon. 

1.2 The role of ArƟficial Intelligence in collaboraƟve roboƟcs 

An essenƟal component of Industry 5.0 is arƟficial intelligence (AI), making manufacturing 

processes smarter and more efficient. According to the work of Borboni and colleagues, 

many recent arƟcles have highlighted the growing influence of AI in the development and 

funcƟonaliƟes of cobots (Borboni et al., 2023). Furthermore, the incorporaƟon of AI into 

cobots has led to improved performance, suggesƟng that AI enhances their capability and 

efficiency in collaboraƟve tasks. 

Recent advancements in AI have significantly improved Human–Robot CollaboraƟon 

through the development of a cogniƟve model. These models collect informaƟon from the 

environment and the human operator, process it, and convert it into data that enables the 

robot to adapt its behaviour (Zafar et al., 2024). This capability could reduce risks and 

promotes a safer human-robot collaboraƟon.  

One of the most widely used AI approaches is Machine Learning (ML), which refers to a 

machine’s ability to analyse data, learn from it, and improve its performance over Ɵme. A 

subfield of ML is Deep Learning (DL), which is a neural network composed of mulƟple 

layers of interconnected neurons. The term “deep” refers to the abundance of layers, or 

“depth”, that are hierarchically organised to mimic the human cogniƟve funcƟons (Borboni 

et al., 2023). 

In the work of Ordoñez and Roggen, differences between various deep learning 

architectures are outlined (Ordóñez & Roggen, 2016a). One effecƟve model for 

classificaƟon tasks is the feedforward neural network, or mulƟ-layer perceptron (MLP). 

This model consists of mulƟple neurons organized in layers and connected by weighted 

links. However, MLPs assume that all inputs and outputs are independent, meaning they 

don’t capture relaƟonships between sequenƟal data points. To model Ɵme-dependent 

data, such as sensor signals, temporal informaƟon must be incorporated. Recurrent Neural 

Networks (RNNs) are specifically designed to address this limitaƟon. Each unit in a RNN 
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has a recurrent connecƟon, where the output of a neuron is fed back to itself with a weight 

and a unit Ɵme delay. This feedback loop gives the neuron a memory (hidden value) of 

past acƟvaƟons, allowing it to learn temporal paƩerns in sequenƟal data. However, this 

memory mechanism can make learning difficult when applied to real-world sequences. To 

address this issue, Long Short-Term Memory (LSTMs) networks extend RNNs by using 

memory cells instead of simple recurrent units. These memory cells store and manage 

data more effecƟvely, making it easier to learn paƩerns over long-Ɵme scales. At each Ɵme 

step, LSTMs update their memory using a gaƟng mechanism. There are three different 

gates that control operaƟons on the cell memory: the input gate controls when new 

informaƟon is wriƩen, the output gate controls when stored informaƟon is read, and the 

forget gate decides when to reset the memory. This mechanism allows LSTMs to beƩer 

manage temporal paƩerns over long sequences. 

Figure 1.5 provides an overview of the units that define the structure of these neural 

networks. 

 

Figure 1.5. Different types of units in neural networks. (a) MLP with three dense layers; (b) RNN with two dense layers; 
(c) LSTM memory cell, where the internal memory can be updated, erased, or read. (Ordóñez & Roggen, 2016b) 
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1.3 Human acƟvity recogniƟon (HAR) 

In a collaboraƟve scenario, robots are designed to work alongside human workers. As a 

result, industrial robots are required to recognize human movement and posiƟon in order 

to dynamically adjust their pre-programmed task, both for safety reasons and to enable 

effecƟve teamwork and seamless communicaƟon. Consequently, Human AcƟvity 

RecogniƟon (HAR) represents an important area of study in the field of human-robot 

interacƟon.  

HAR is based on the hypothesis that specific body movements produce disƟnct paƩerns 

in sensor signals, which can be detected and classified using machine learning techniques. 

However, HAR presents several challenges in real-world seƫngs. First, motor movements 

associated with specific acƟviƟes can vary significantly (Ordóñez & Roggen, 2016a). 

Second, determining the appropriate experimental setup for accurate data collecƟon can 

be difficult, as it is necessary to ensure that the collected data is representaƟve of real-

world scenarios (Imanzadeh et al., 2024). Moreover, the collected datasets are used to 

train a neural network, which plays a fundamental role in HAR. The choice of machine 

learning algorithms, along with an appropriate dataset, is crucial for achieving accurate 

recogniƟon results.  

1.3.1 HAR applicaƟons 

In literature, various examples of collected datasets and neural networks can be found, 

depending on the applicaƟon field, whether clinical or industrial, and the specific 

objecƟves. For instance, Buerkle and colleagues invesƟgated the use of 

electroencephalogram (EEG) signals to detect upper-limb movement intenƟon (Buerkle et 

al., 2021). The aim is to predict the operator's movements to prevent collisions with 

robots, ensuring safe collaboraƟon. A Long Short-Term Memory Recurrent Neural Network 

(LSTM-RNN) was trained to detect and classify arm movement intenƟons. The results 

suggested that this approach could be employed to dynamically adjust robot’s speed and 

torque, thereby minimizing the risk of collisions. 

Similarly, in the industrial field, in the work of Liu and colleagues three different datasets, 

human body posture, voice commands, and hand moƟon data, with the aim of developing 

a robot control interface, were collected (Liu et al., 2018). The first two datasets were used 
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to train a ConvoluƟonal Neural Network (CNN), while the hand moƟon data was used to 

train a MulƟlayer Perceptron (MLP). The workflow followed in this study is outlined in 

Figure 1.6. The results demonstrate the potenƟal of deep learning algorithms for 

classificaƟon and recogniƟon. However, for hand moƟon recogniƟon, an LSTM would likely 

be more suitable, as it is expected to outperform the MLP model used. 

 

In addiƟon to these types of signals, images can also be used to extract specific 

informaƟon. For example, Amaral and colleagues extracted hand landmarks to idenƟfy 

objects being grasped or manipulated (Amaral et al., 2023). A mulƟ-class classifier was 

used to predict the object based on the hand key points. This study focuses on evaluaƟng 

the classifier’s generalizaƟon ability for real-world applicaƟon. In this context, acƟve data 

collecƟon plays a crucial role. 

Another way to collect data is through InerƟal Measurement Units (IMUs), which are 

sensors that include an accelerometer, gyroscope, and, in the case of magneto-inerƟal 

measurement units (MIMUs), a magnetometer. These sensors can be worn on different 

parts of the body and measure linear acceleraƟon (via the accelerometer) and angular 

velocity (via the gyroscope). IMUs offer several advantages: they are low-cost, minimally 

Figure 1.6. Workflow of the study, from data collecƟon to the development of a deep learning-based robot control 
interface for human-robot collaboraƟon. (Liu et al., 2018) 
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invasive, easy to wear, and they can collect data outside of a lab seƫng (Digo, Polito, 

Pastorelli, et al., 2024; Xiang et al., 2024). These features make them suitable for 

biomechanical research in both industrial (Ordóñez & Roggen, 2016a) and clinical (Xiang 

et al., 2024) fields. 

Ordoñez and Roggen proposed a deep neural network model called DeepConvLSTM for 

recognizing modes of locomoƟon, postures, and different right arm gestures using IMU 

sensors (Ordóñez & Roggen, 2016a). This model combines convoluƟonal layers and 

recurrent layers. The convoluƟonal layers act as feature extractors from the sensor data, 

while the recurrent layers take these features and learn how they evolve over Ɵme, 

capturing temporal paƩerns in the data. The study’s results demonstrated that the LSTM-

based model can disƟnguish between acƟviƟes that are similar but differ in the sequence 

of sensor samples (e.g. Open/Close Door). AddiƟonally, it works even when gestures 

extend beyond the observaƟon window. These findings highlight that the LSTM-based 

model approach is beƩer suited for handling sequences and Ɵme-dependent data, as it 

learns how features change over Ɵme, compared to convoluƟonal models alone. 

An LSTM-based model, combined with Ɵme-series data from IMUs, is also applied in the 

clinical field. For example, Xiang and colleagues implemented an LSTM-MLP model to 

predict ankle joint biomechanics (Xiang et al., 2024). The model can idenƟfy and learn gait 

characterisƟcs and paƩerns from acceleraƟon and angular velocity signals, enabling 

accurate predicƟon of ankle joint angles, torques, and contact forces.  

These studies demonstrate that IMU sensors, combined with LSTM neural networks, 

provide a cost-effecƟve and versaƟle tool for idenƟfying human acƟvity, represenƟng a 

reliable soluƟon for developing safety and control systems in collaboraƟve roboƟcs.  

1.4 Abrupt movements and real-Ɵme recogniƟon systems 

Typically, the tasks performed by an operator are repeƟƟve and characterized by 

controlled dynamics and kinemaƟcs. However, external disturbances or environmental 

factors can cause abrupt and unpredictable gestures. These sudden movements can lead 

to improper interacƟons with the robot, potenƟally creaƟng unsafe condiƟons for the 

human operator (Digo, Polito, Pastorelli, et al., 2024; Polito et al., 2023a).  
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Accurate data collecƟon that represents real-world condiƟons and the selecƟon of the 

appropriate neural network are essenƟal for effecƟvely idenƟfying human acƟvity. Abrupt 

movements are characterized by high variability and uncertain paƩerns, making inerƟal 

sensors parƟcularly suitable for detecƟng these variaƟons. In fact, these sensors are easy 

to wear, do not restrict movement, and can capture acceleraƟons and angular velociƟes 

at high frequency, allowing for the detecƟon of significant moƟon changes. Moreover, they 

generate a Ɵme series of data. Given the importance of temporal dependencies, the LSTM 

network is the most appropriate choice, as it effecƟvely captures paƩerns in long 

sequences. 

To prevent collisions between humans and robots, it is crucial to idenƟfy these movements 

in real-Ɵme. However, one of the main limitaƟons of real-Ɵme recogniƟon systems is 

reacƟon Ɵme (Buerkle et al., 2021). Safety systems must be highly responsive, acƟvaƟng 

as quickly as possible. According to (Vysocky & Novak, 2016), there are four possible 

reacƟons based on the system's safety level: 

1. Alert: When a potenƟal hazard or risk of collision is detected, an audible alarm and 

visual warning are acƟvated to signal imminent danger. 

2. Stop: The robot automaƟcally halts to prevent any collision. 

3. Compliance Control: The robot adjusts its posiƟon in response to force or physical 

contact. 

4. Trajectory Adjustment: The robot senses an obstacle and alters its trajectory to 

completely avoid a collision. 

A primary goal of research should be to reduce the reacƟon Ɵme of these systems to 

enhance their efficiency and safety. The analysis of response Ɵmes starts with the 

network's ability to recognize movement, followed by the acƟvaƟon of the safety system. 

Therefore, it is crucial to ensure that this classificaƟon occurs in the shortest possible Ɵme 

to facilitate an equally rapid response. 

1.5 Aim of the thesis 

Since abrupt movements are sƟll liƩle approached and studied, this master thesis aims to 

detect abrupt movements in real Ɵme using inerƟal sensors and an LSTM neural network. 

Using data collected on 61 parƟcipants through a specified experimental protocol, the 
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network's performance was tested on signals segmented into overlapping windows to 

closely simulate real-Ɵme condiƟons. Following this, a real-Ɵme recogniƟon protocol was 

developed, enabling data from inerƟal sensors to be directly captured, pre-processed, and 

analysed by the network. The study evaluated the network’s ability to disƟnguish between 

impulsive and standard movements, along with the Ɵme required for each step. Timing 

analysis is crucial to guarantee a rapid response in safety systems and to prevent potenƟal 

collisions. The steps followed in this work are outlined in Figure 1.7. Table 1.1 below 

provides a summary of the arƟcle analysed in this chapter. 

 

Figure 1.7. Workflow followed in the experimental work. 

 

 

 



 

 
 

Table 1.1. Summary of arƟcle analysed in Chapter “1. IntroducƟon” 

Title Authors Year Type 
of 
paper 

Aim Area of 
interest 

Neural Network 
employed 

Dataset PredicƟon 
or 
RecogniƟon 

Results 

Industry 4.0 
And Industry 
5.0 – IncepƟon, 
ConcepƟon, 
PercepƟon 

Xu et al. 2021 Review Comprehensive 
review on 
Industry 4.0 and 
Industry 5.0, 
with a focus on 
similariƟes and 
differences 

Industrial – – – – 

Exploring The 
Synergies 
Between 
CollaboraƟve 
RoboƟcs, 
Digital Twins, 
AugmentaƟon, 
And Industry 
5.0 For Smart 
Manufacturing: 
A State-Of-The-
Art Review 

Zafar et al. 2024 Review The aim of this 
review is to 
analyze the 
main 
characterisƟcs 
of collaboraƟve 
robots, or 
‘cobots’, while 
highlighƟng the 
benefits that 
the use of this 
technology, 
together with 
arƟficial 
intelligence, has 
brought to 
Industry 5.0 

Industrial  – – – – 

Refining Levels 
of 
CollaboraƟon 

Aaltonen et 
al. 

2018 ArƟcle This arƟcle aims 
to define levels 
of collaboraƟon 

Industrial  
 
 

– – – – 



 

 
 

to Support 
Design and 
EvaluaƟon of 
Human-Robot 
InteracƟon in 
The 
Manufacturing 
Industry 

between 
human workers 
and 
collaboraƟve 
robots, 
facilitaƟng the 
analysis of 
collaboraƟve 
work from both 
human and 
safety 
perspecƟves 

Safe Human-
Robot 
CollaboraƟon – 
IntroducƟon 
and 
ExperimenƟng 
Using ISO/TS 
15066 

Rosenstrauch 
et al. 

2017 ArƟcle This arƟcle 
provides an 
introducƟon to 
safety 
standards and 
guidelines for 
risk assessment, 
with a detailed 
descripƟon of 
the 
requirements 
outlined for 
collaboraƟve 
industrial 
robots in the 
technical 
specificaƟon 
ISO/TS 15066. 
AddiƟonally, an 
experimental 

Industrial – – – The experiment 
shows the residual 
hazard potenƟal in 
case of incident 
despite compliance 
with ISO/TS 15066.  



 

 
 

use case 
demonstrates 
pracƟcal 
applicaƟon of 
these 
guidelines. 

Human-Robot 
CollaboraƟon 
in Industry 

Vysocky et 
al. 

2016 Review Advantages of 
the use of 
collaboraƟve 
robots in 
industry 

Industrial – – – – 

The Expanding 
Role of 
ArƟficial 
Intelligence in 
CollaboraƟve 
RoboƟcs for 
Industrial 
ApplicaƟons: A 
SystemaƟc 
Review of 
Recent Works 

Borboni et 
al. 

2023 Review State-of-the-art 
research on the 
use of cobots in 
the industry, 
focusing on 
recent 
publicaƟons 
related to 
collaboraƟve 
workspace-type 
robots and the 
applicaƟon of 
arƟficial 
intelligence 

Industrial – – – – 

EEG Based Arm 
Movement 
IntenƟon 
RecogniƟon 
Towards 
Enhanced 
Safety in 

Buerkle et al. 2021 ArƟcle RecogniƟon of 
the upper-limb 
movement 
intenƟons in 
order to 
increase system 
reacƟon Ɵme 

Industrial Long Short-Term 
Memory 
Recurrent Neural 
Network (LSTM-
RNN) 

EEG signals, 
divided into 
three phases: 
being idle, 
intenƟon to 
move, actual 
movement 

RecogniƟon The results 
demonstrate that 
EEG signals and the 
LSTM-RNN can be 
used to detect and 
classify the 
intenƟon for arm 



 

 
 

SymbioƟc 
Human-Robot 
CollaboraƟon 

and improve 
safety in 
Human-Robot 
CollaboraƟon 

movement. This 
approach could be 
employed to 
dynamically adjust 
robot’s speed and 
torque, thereby 
minimizing the risk 
of collisions. 

Deep Learning-
Based 
MulƟmodal 
Interface for 
Human-Robot 
CollaboraƟon 

Liu et al. 2018 ArƟcle Development of 
a robot control 
interface using 
a deep learning 
algorithm for 
human-robot 
collaboraƟon 
systems 

Industrial ConvoluƟonal 
Neural Network 
(CNN) and 
MulƟlayer 
Perceptron 
(MLP) 

Body posture, 
voice 
command, and 
hand moƟon 
data 

RecogniƟon The results 
demonstrate the 
efficiency of deep 
learning algorithms 
for classificaƟon 
and recogniƟon, 
highlighƟng their 
potenƟal benefits 
for applicaƟon in 
human-robot 
collaboraƟon. 

Ensemble Of 
Deep Learning 
Techniques to 
Human AcƟvity 
RecogniƟon 
Using 
Smartphone 
Signals 

Imanzadeh 
et al. 

2024 ArƟcle Their aim is to 
overcome the 
challenges 
associated with 
small and noisy 
datasets 
collected in 
real-world 
seƫngs by 
developing a 
soluƟon using 
an ensemble 
learning 

Industrial 
and/or 
clinical 

Ensemble of 
hybrid deep 
models 

Data from the 
accelerometer, 
magnetometer, 
and gyroscope 
on the 
smartphone 

RecogniƟon The proposed 
ensemble approach 
is able to classify 
and recognize the 
dataset collected 
via smartphone 
sensors. This novel 
approach enables 
improvement in 
accuracy and 
reliability of HAR in 
real-world 
applicaƟons. 



 

 
 

approach to 
achieve 
accurate human 
acƟvity 
recogniƟon 
(HAR).  

IntegraƟng An 
LSTM 
Framework for 
PredicƟng 
Ankle Joint 
Biomechanics 
During Gait 
Using InerƟal 
Sensors 

Xiang et al. 2024 ArƟcle This study aims 
to provide a 
model to 
predict ankle 
joint 
biomechanics, 
parƟcularly 
angles, torques, 
and contact 
forces. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clinical LSTM-MLP 
model 

Time-series 
data from IMU 
sensors 

PredicƟon The proposed 
LSTM-MLP model 
can idenƟfy and 
learn gait 
characterisƟcs and 
paƩerns from 
acceleraƟon and 
angular velocity 
signals, enabling 
accurate predicƟon 
of ankle joint 
biomechanics.  

Deep 
ConvoluƟonal 
and LSTM 

Ordóñez et 
al. 

2016 ArƟcle EvaluaƟon and 
comparison of a 
deep learning 

Industrial 
and/or 
clinical 

ConvoluƟonal 
and long short-
term memory 

Data from IMU 
sensors 

RecogniƟon The results 
demonstrate that 
this deep 



 

 
 

Recurrent 
Neural 
Networks for 
MulƟmodal 
Wearable 
AcƟvity 
RecogniƟon 

framework for 
acƟvity 
recogniƟon 
using data from 
wearable 
sensors. 

recurrent layers 
(DeepConvLSTM) 

architecture is 
capable of 
performing acƟvity 
recogniƟon using 
data from wearable 
sensors. Compared 
to a standard 
ConvoluƟonal 
Neural Network, it 
offers a good trade-
off between 
performance and 
training/recogniƟon 
Ɵme, and it is able 
to disƟnguish 
similar gestures.  

RecogniƟon of 
grasping 
paƩerns using 
deep learning 
for human-
robot 
collaboraƟon 

Amaral et al. 2023 ArƟcle Recognizing the 
object grasped 
by the operator 
based on the 
paƩerns of the 
hand and finger 
joints, enabling 
an efficient 
human-robot 
collaboraƟon. 
This study 
focuses on 
evaluaƟng the 
classifier’s 
generalizaƟon 
ability for 

Industrial ConvoluƟonal 
Neural Network 
(CNN) and 
transformer 

Hand 
landmarks 
detected from 
RGB images 

RecogniƟon The conducted 
experiments 
emphasized the 
importance of 
acƟve data 
collecƟon to enable 
effecƟve 
generalizaƟon of 
the classifier across 
various user 
behaviours and 
grasping paƩerns. 



 

 
 

applicaƟon in 
real-world 
scenarios. 

Abrupt 
Movement 
Assessment of 
Human Arms 
Based on 
Recurrent 
Neural 
Networks for 
InteracƟon 
with Machines 

Polito et al. 2023 ArƟcle DisƟncƟon 
between 
normal and 
abrupt 
movements 
during a typical 
repeƟƟve 
industrial task 

Industrial Long Short-Term 
Memory  

Forearms 
acceleraƟons 
measured by 
MIMUs 

RecogniƟon The deep learning 
network adopted 
and the proposed 
pre-classificaƟon 
methods for 
MIMUs 
acceleraƟons 
demonstrate 
potenƟal for 
idenƟfying abrupt 
movements 

Deep Learning 
Techniques to 
IdenƟfy Abrupt 
Movements in 
Human-Robot 
CollaboraƟon 

Polito et al. 2023 ArƟcle IdenƟficaƟon of 
human abrupt 
movements 
using a 
recurrent 
neural network 
trained with 
wrist 
acceleraƟon 
elaborated with 
two different 
methodologies 

Industrial Long Short-Term 
Memory 

AcceleraƟons 
of the wrist 
recorded 
through 
MIMUs 

RecogniƟon The results 
demonstrated that 
the methodology 
adopted to address 
real-Ɵme situaƟons 
achieved higher 
classificaƟon 
performance. 
Therefore, the deep 
learning network 
and the pre-
classificaƟon 
method employed 
are suitable for 
idenƟfying human 
abrupt movement. 

DetecƟon Of 
Upper Limb 

Digo et al. 2024 ArƟcle Training a 
recurrent 

Industrial Long Short-Term 
Memory 

Forearms 
acceleraƟon 

RecogniƟon The results 
demonstrate that 



 

 
 

Abrupt Gesture 
for Human-
Machine 
InteracƟon 
Using Deep 
Learning 
Techniques 

neural network 
to disƟnguish 
between 
standard and 
abrupt 
gestures, 
aiming for 
effecƟve real-
Ɵme gesture 
classificaƟon 

signals 
recorded by 
MIMUs 

the data pre-
processing is 
fundamental for 
achieving effecƟve 
network training. 
Specifically, 
reducing the 
window duraƟon 
leads to improved 
classificaƟon. 
Furthermore, the 
results show that 
classificaƟon Ɵme 
can be reduced 
without negaƟvely 
impacƟng the 
results, enabling 
real-Ɵme 
classificaƟon. 
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2. MATERIALS AND METHODS 
2.1 Materials 

2.1.1 InerƟal sensors 

For the quanƟtaƟve analysis of parƟcipants' movement, the necessary data were collected 

using Opal™ V2R inerƟal sensors, produced by APDM WEARABLE TECHNOLOGIES INC. An 

example of wearable sensor is displayed in Figure 2.1. 

 

These are small, lightweight, wireless sensors that can be worn on the body and use micro-

electromechanical systems to detect kinemaƟc movement parameters. Specifically, these 

sensors are equipped with: 

 Two tri-axial accelerometers, with ranges of ±16g and ±200g, which provide the 

instantaneous values of the three components of acceleraƟon. 

 A tri-axial gyroscope, with a range of ±2000 deg/s, which measures angular 

velocity. 

 A tri-axial magnetometer, with a range of ±8 Gauss, which measures the 

components of the magneƟc field along three direcƟons. It is used to correct 

gyroscope driŌ and provides a stable reference relaƟve to the magneƟc north. 

By combining data from these three sensors, quaternions providing, informaƟon about 

the object's orientaƟon in space can be obtained. 

One of the advantages of inerƟal sensors is their ease of applicaƟon to specific body 

segments. In our study, we focused on the movement of the upper torso, and five sensors 

were aƩached to various body areas: 

Figure 2.1. Opal V2R wearable sensor (Precision MoƟon for Research, n.d.) 
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 On the sternum 

 On the upper right arm, just below the deltoid muscle 

 On the upper leŌ arm, just below the deltoid muscle 

 On the distal part of the right forearm, near the wrist 

 On the distal part of the leŌ forearm, near the wrist 

Data were collected using the proprietary soŌware MoƟon Studio, with a sampling 

frequency set at 200 Hz. 

2.1.2 Experimental set up 

For data acquisiƟon, a custom experimental setup was specifically designed for this study 

(Digo, Polito, Pastorelli, et al., 2024; Polito et al., 2023b), as shown in Figure 2.2. 

The setup consists of: 

 A table and a stool 

 Two chipboard panels: one (i) with 30 holes, each 6 cm in diameter, placed on the 

table and raised 10 cm on four legs, and another (ii) with a single hole of the same 

diameter, posiƟoned higher using two lateral support rods. 

 A container measuring 22 cm x 33 cm x 7 cm, holding 30 golf balls with a diameter 

of 43 mm. 

 A 1-meter aluminium slide to guide the balls from the single hole in panel (ii) to a 

container measuring 12.8 cm x 20.4 cm x 9.6 cm. 

 Three containers posiƟoned between the table and the panel with 30 holes. 

 Eight LED lights (four red, four green), mounted on 3D-printed supports. 

 Three green cards indicaƟng the correct holes based on the parƟcipant’s 

anthropometric measurements. 

Figure 2.2. Experimental setup viewed from the front (a) and from above (b). 
(a) (b) 
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 An Arduino Nano board with an ATmega328 microcontroller, connected to a 

computer via USB, and operated using Arduino soŌware with instrucƟons 

implemented in MATLAB. This controls the acƟvaƟon of the LEDs and a buzzer 

(auditory signal).  

Each trial consists of 30 movements, of which 26 are normal and 4 are abrupt. The green 

LEDs signal the standard movements and are acƟvated at a frequency of 20 beats per 

minute (every 3 seconds), while the red LEDs indicate abrupt movements, lighƟng up 0.5 

seconds aŌer the green LEDs. The MATLAB instrucƟons are set so that the first five 

movements are always normal, and at least two of the four abrupt movements must be 

accompanied by a buzzer sound. AddiƟonally, two of the abrupt movements occur during 

the first half of the experiment, while the remaining two take place within the final 15 

movements. 

2.2 Methods 

2.2.1 Long Short-Term Memory Neural Network 

The objecƟve of this study is to recognize abrupt movements using an LSTM neural 

network. This neural network was developed using Keras, a high-level library wriƩen in 

Python facilitaƟng the creaƟon of deep learning models. Keras is integrated with 

TensorFlow, a framework that manages opƟmizaƟon and computaƟonal backend 

operaƟons. InformaƟon on how to implement a neural network using Keras can be found 

in the official Keras documentaƟon (Keras 3 API DocumentaƟon, n.d.). This resource 

provides detailed guides and examples for building and training neural networks with 

Keras. 

The first step was to define a sequenƟal model, characterized as a plain stack of layers 

where each layer has exactly one input tensor and one output tensor. The layers were 

defined as follows: 

 InputLayer: This layer defines the shape of the input, specifying the number of Ɵme 

steps in the sequence and the number of features present. 

 LSTM layer: This is the recurrent layer, where the number of hidden units is set, 

corresponding to the number of neurons. 
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 Dropout layer: Used to reduce overfiƫng by randomly seƫng a fracƟon of the 

units to zero during training at a user-defined rate. 

 Dense layer: A densely connected layer that performs the final classificaƟon. For 

binary classificaƟon, this layer has a single neuron with a ‘sigmoid’ acƟvaƟon 

funcƟon. The output is a probability value between 0 and 1, represenƟng the 

likelihood of belonging to the posiƟve class. 

Next, it was necessary to compile the model, a criƟcal step to configure it for training. 

During this phase, essenƟal funcƟons for model training are specified: 

 OpƟmizer: This determines how the model updates its weights. The most common 

choice is Adam opƟmizaƟon, a stochasƟc gradient descent method that leverages 

adapƟve esƟmaƟon of first-order and second-order moments. 

 Loss: This specifies the loss funcƟon that the model will use during training. The 

loss funcƟon measures the discrepancy between the model's predicƟons and true 

values, guiding the opƟmizer in updaƟng the model's weights. For binary labels (0 

and 1), the most suitable loss funcƟon is ‘binary_crossentropy,’ which handles 

binary classificaƟon tasks effecƟvely. 

 Metrics: A metric is a funcƟon used to evaluate the model's performance. Unlike 

loss funcƟons, metrics do not influence weight updates during training but provide 

insights into model performance. An example of a commonly used metric is 

accuracy. 

At this stage, the model is ready for training using the model.fit method. To proceed, it is 

necessary to have the input data, which is used to train the model; the target data, or 

labels, that the model aims to predict, which is used to calculate the loss during training; 

and the validaƟon data, a separate dataset used to evaluate the model performance aŌer 

each epoch. An epoch refers to one complete iteraƟon over the enƟre input and target 

data provided. The LSTM network expects the data to be provided with a specific array 

structure in the form of [samples, Ɵme steps, features]. Each dimension represents: 

 Samples: the number of sequences in the dataset. 

 Time steps: the length of the Ɵme sequence. 

 Features: the number of variables observed at each Ɵme step. 
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The model.fit() method returns a history object, which records the loss and metric values 

over each epoch for both the training and validaƟon datasets. 

The specificaƟons used to implement the model in this study are detailed in Figure 2.3. 

 

Once the network is trained, predicƟons can be generated using the model.predict() 

funcƟon. This funcƟon takes new data as input, formaƩed to be compaƟble with the 

network, and outputs predicƟons. In binary classificaƟon, the output is a probability 

between 0 and 1, with higher values indicaƟng a greater likelihood of belonging to the 

posiƟve class. However, to obtain binary values (0 or 1), the probabiliƟes are converted 

into class labels. Typically, a threshold of 0.5 is set to classify outputs into one of the two 

classes. If the output is above 0.5, it is classified as posiƟve (label = 1); otherwise, it is 

classified as negaƟve (label = 0). This threshold can be adjusted according to the specific 

task requirements. In the presented work, the two classes are highly unbalanced, which 

makes it more likely that standard windows will be incorrectly idenƟfied as abrupt, 

significantly increasing false posiƟves. To address this, the threshold was set to 0.9, 

ensuring that only windows with high probability of being abrupt are classified as such. 

 

Figure 2.3. Python code for creaƟng and training the network. 
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2.2.2 Training the Network: Data CollecƟon and Preprocessing Protocol 

Data Collection Protocol 

The network was trained using data from a database of 61 parƟcipants (Digo, Polito, 

Caselli, et al., 2024) who performed a specific task designed to simulate a typical industrial 

work environment. Specifically, the task was a pick-and-place acƟvity, where parƟcipants 

were required to pick up a golf ball from a container and place it in a hole, indicated by a 

LED light. The possible movement direcƟons, shown in Figure 2.4, included four 

orientaƟons: anteroposterior (AP), oblique (OB), mediolateral (ML), and verƟcal (V). 

 

Each trial consists of 30 total movements, of which 26 are normal and 4 are abrupt. The 

movements are guided by the LEDs according to the following three scenarios: 

1) Green LED acƟvaƟon (Figure 2.5a): The parƟcipant picks up the ball and places it 

in the designated hole, aiming for the smoothest possible movement (normal 

movement). 

2) Red LED acƟvaƟon (Figure 2.5b): This occurs 0.5 seconds aŌer a green LED is 

acƟvated. In this case, the parƟcipant, iniƟally moving toward the hole indicated 

by the green LED, must ignore the previous instrucƟon and moves the ball quickly 

in a different direcƟon to the hole indicated by the red LED, simulaƟng an abrupt 

movement. 

V 

OB 

AP 

ML 

Figure 2.4. Experimental setup viewed from above, highlighƟng the four different direcƟons: anteroposterior (AP), 
oblique (OB), mediolateral (ML), and verƟcal (V).  
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3) Buzzer acƟvaƟon (Figure 2.5c): AŌer 0.5 seconds from green LED acƟvaƟon, a 

sound signal is emiƩed. As in case (2), the parƟcipant must disregard the green LED 

instrucƟon and raises their arm verƟcally as quickly as possible, simulaƟng another 

abrupt movement. 

   

Data collecƟon followed a protocol divided into four phases: 

1) Phase 1: CollecƟon of anthropometric data: 

a. Age 

b. Gender 

c. Height (cm) 

d. Weight (kg) 

e. Dominant hand 

f. Arm length (cm) 

g. Forearm length (cm) 

2) Phase 2: Placement of the five MIMU sensors using elasƟc straps, posiƟoned as 

described in SecƟon 2.1.1. 

3) Phase 3: Task simulaƟon to assess the correct distance of the parƟcipant from the 

table and to determine the appropriate holes for the easiest reach. AddiƟonally, 

this phase allowed the parƟcipant to become familiar with the task and 

equipment. 

4) Phase 4: Data acquisiƟon, during which the parƟcipant performed the 30 

movements guided by LED acƟvaƟon. Each trial lasted 90 seconds and was 

repeated in three different configuraƟons: 

a. ParƟcipant seated facing the table, using the right arm for movements (Trial 

Frontal right – FR_r) 

Figure 2.5. (a) Green LED acƟvaƟon: the parƟcipant picks up the ball and places it in the designated hole. (b) Red LED 
acƟvaƟon: the parƟcipant moves the ball quickly in a different direcƟon to the hole indicated by the red LED. (c) Buzzer 

acƟvaƟon: the parƟcipant raises their arm verƟcally as quickly as possible. 

(a) (b) (c) 
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b. ParƟcipant seated facing the table, using the leŌ arm for movements (Trial 

Frontal leŌ – FR_l) 

c. ParƟcipant seated sideways to the table, using the leŌ arm for movements 

(Trial Lateral leŌ – LA_l) 

Data Preprocessing protocol 

Once key features such as acceleraƟon, angular velocity, and quaternions were extracted 

from the raw sensor data, they were further processed to serve as inputs to the LSTM 

network. 

First, the gravity component was removed from the acceleraƟon data using the rotaƟon 

matrix derived from the quaternions. Next, the norms of both acceleraƟon and angular 

velocity were calculated. Temporal data was then segmented into 3-second windows, each 

corresponding to a single movement and labelled as either normal (label = 0) or abrupt 

(label = 1). In Figure 2.6, the acceleraƟon signal of subject 1, trial FR_r, segmented into 3-

second windows is shown as an example. 

 

Figure 2.6. AcceleraƟon signal of Subject 1 during trial FR_r, segmented into 3-second windows (orange dashed 
verƟcal lines), with the four abrupt movements highlighted (red rectangles). 
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Following this, each 3-second window was further divided into 0.5-second sub-windows, 

obtaining six sub-windows per movement, each associated with its corresponding label. 

The segmented acceleraƟon signal of subject 1, Trial FR_r, segmented into 0.5-second 

windows is shown in Figure 2.7. 

Among these six sub-windows, only sub-windows 2, 3, and 4 (represenƟng the intervals 

from 0.5 to 1s, 1 to 1.5s, and 1.5 to 2s, respecƟvely) were classified as abrupt, as they 

capture the peak acceleraƟon. An example of the selected sub-windows is highlighted in 

Figure 2.8. A new dataset was constructed from these idenƟfied abrupt sub-windows and 

an equal number of normal sub-windows. 

 

Figure 2.8. AcceleraƟon signal of Subject 1 during trial FR_r, with three abrupt 0.5-second windows highlighted (red 
rectangles). 

Figure 2.7. AcceleraƟon signal of Subject 1 during trial FR_r, segmented into 0.5-second windows (orange dashed 
verƟcal lines), with the four abrupt movements highlighted (red rectangles). 
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For training the network, the dataset was split into two parts: 80% was used for training, 

and the remaining 20% for tesƟng, to evaluate the model's ability to generalize on new 

data. The training set was further divided using k-fold cross-validaƟon, with 𝑘=5. This 

method involves dividing the set into five folds, using 𝑘−1 folds for training and one for 

validaƟon, iteraƟng through each fold. The model achieving the highest accuracy across 

these iteraƟons was selected to classify data in the test set. 

Finally, the segmented data was organized into arrays compaƟble with the LSTM network 

format, as described in SecƟon 2.2.1. Two networks were trained: one using only 

acceleraƟon data (Network 1) and another using both acceleraƟon and angular velocity 

data (Network 2). 

2.2.3 Sliding windows 

To evaluate the network performance for approaching real-Ɵme recogniƟon, the sliding 

windows approach was adopted. Each window has a fixed length and a step size that 

moves it forward incrementally. Since the step size is shorter that the window length, 

consecuƟve windows overlap. 

In this study, the window length is fixed at 0.5 seconds, while the overlap percentage, and 

thus the step size, varies to assess its influence on network performance. The step size is 

calculated as the difference between the window length in samples and the overlap 

length, also in samples. Using this, the total number of windows can be determined with 

the following EquaƟon (1): 

(1)                   𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 =  
𝑥 − 𝑛௦௦

𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒
+ 1 

Where: 

 𝑥: signal length (in samples) 

 𝑛௦௦: number of samples in each window of fixed length 

 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒: number of samples to shiŌ to the next window 

To segment the data into the calculated number of overlapping windows, a for loop was 

implemented to iterate over the signal, advancing by the determined step size. At each 

iteraƟon, the code extracts and stores the data for each Ɵme window.  
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Once the signal has been divided, it is essenƟal to assign a label to each window. For this 

purpose, windows that correspond to the interval used for training the network were 

classified as abrupt (see SecƟon 2.2.2, Figure 8). Specifically, in a 3-second movement, the 

interval from 0.5 s to 2 s is considered abrupt. To calculate the number of abrupt windows 

within this interval, EquaƟon (1) can be applied, using a signal length of 1.5 s. 

The segmented data are provided as input to the network for recogniƟon. The output is a 

predicƟon vector from which the recognized movements are derived. These predicƟons 

are then compared to the actual movements to construct a confusion matrix, a 2x2 table 

where the rows represent the actual classes, and the columns represent the predicted 

classes. A generic confusion matrix is illustrated in Figure 2.9. 

 

Referring to Figure 2.9, each value in the matrix has a specific meaning: 

 True NegaƟve (TN): the number of normal movements (class 0) correctly idenƟfied 

as normal (class 0). 

 False PosiƟve (FP): the number of normal movements (class 0) misclassified as 

abrupt (class 1). 

 False NegaƟve (FN): the number of abrupt movements (class 1) misclassified as 

normal (class 0). 

 True PosiƟve (TP): the number of abrupt movements (class 1) correctly idenƟfied 

as abrupt (class 1). 

Figure 2.9. Generic example of a confusion matrix, with actual classes along the rows and predicted classes along the 
columns. 
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From the confusion matrix, various metrics can be calculated to evaluate the network's 

performance. The following metrics were specifically computed: 

 Balanced Accuracy: arithmeƟc mean of sensiƟvity and specificity. SensiƟvity 

measures the model's ability to correctly idenƟfy true posiƟves, while specificity 

measures its ability to correctly idenƟfy true negaƟves. This metric is parƟcularly 

useful for unbalanced datasets, as it averages the correct classificaƟon rates for 

both classes, giving them equal weight. The formula to calculate balanced accuracy 

is provided below (EquaƟon (2)): 

(2)                   𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦%  =  
1

2
൬

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 +  

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
൰ ×  100 

 Precision (posiƟve): evaluates the percentage of true posiƟve predicƟons (TP) 

among all posiƟve predicƟons (TP and FP). It is computed using EquaƟon (3) below: 

(3)                   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛% =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 ×  100 

 Recall (posiƟve): measures the percentage of true posiƟve predicƟons (TP) out of 

the total posiƟve class (TP and FN). It is calculated using EquaƟon (4) below: 

(4)                   𝑅𝑒𝑐𝑎𝑙𝑙% =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 ×  100 

 Macro F1-score: arithmeƟc mean of the F1-scores calculated for each class 

individually. Each per-class F1 score is the harmonic mean of the precision and 

recall for that specific class. This metric is parƟcularly useful for unbalanced 

classes, as it is independent of their distribuƟon. The formulas for calculaƟng the 

per-class F1-score (EquaƟon (5)) and the Macro F1-score (EquaƟon (6)) are shown 

below: 

(5)                   𝐹1𝑠𝑐𝑜𝑟𝑒௦௦ =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௦௦ 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙௦௦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௦௦ +   𝑅𝑒𝑐𝑎𝑙𝑙௦௦
 

(6)                𝑀𝑎𝑐𝑟𝑜 𝐹1𝑠𝑐𝑜𝑟𝑒% =  
1

2
൫𝐹1𝑠𝑐𝑜𝑟𝑒௦௧௩ + 𝐹1𝑠𝑐𝑜𝑟𝑒௧௩൯  × 100  

 Specificity: measures the percentage of true negaƟve predicƟons (TN) out of the 

total negaƟve class (TN and FP). It is calculated using the EquaƟon (7) below: 

(7)                   𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦% =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 ×  100 
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Finally, a Ɵming analysis was performed to evaluate the network's ability to quickly classify 

a movement and its applicability to a real-Ɵme context. The Python funcƟon 

Ɵme.perf_counter() was used to measure the Ɵme required for classificaƟon. AcƟng as a 

Ɵmer, it starts at the beginning of the classificaƟon process and stops at the end. Two 

inference Ɵmes were calculated: 

1) Average inference Ɵme: The average Ɵme taken by the network to classify the data 

for a single subject. AŌer measuring the Ɵme for all 61 subjects, the average was 

calculated. 

2) Total inference Ɵme: The total Ɵme required to classify all 61 subjects. The Ɵmer 

started at the beginning of the for loop, where subjects were analysed individually, 

and stopped once the enƟre loop was completed. 

2.2.4 Real-Ɵme detecƟon of abrupt movements 

AŌer evaluaƟng the network performance with sliding windows, a real-Ɵme protocol for 

recognizing abrupt movements was developed. The goal is to analyse sensor data 

immediately, idenƟfying the type of movement within a few milliseconds. This protocol 

involves a data collecƟon from five new subjects using the same methodology outlined in 

SecƟon 2.2.2 for training data. A Python script is employed for the analysis. 

This code involves several steps: 

 Step 1: Load the pre-trained LSTM model with acceleraƟon data. 

 Step 2: Configure the sensors using a Python script provided by the sensor 

developer, named ‘autoconfigure_system.py’. 

 Step 3: Establish the communicaƟon between the sensors and the Python script 

using addiƟonal code, named ‘stream_data.py’, provided by the developer. This 

code returns the data acquired from the MIMU sensors. 

 Step 4: Once the communicaƟon with the sensors is established, a connecƟon is 

opened between Python and the MATLAB code controlling Arduino for LED 

acƟvaƟon. 

 Step 5: Save acceleraƟon and quaternion data for a single 3-second movement in 

a NumPy array, facilitaƟng data preparaƟon for the network. The Ɵme required to 

read and save the data is measured using Python's Ɵme.perf_counter() funcƟon. 
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 Step 6: Pre-process the data: 

 Remove gravitaƟonal acceleraƟon using the rotaƟon matrix derived from the 

quaternions. 

 Calculate the acceleraƟon norm. 

 Segment the data into overlapping windows with 99% overlap. 

 Organize the data in the required format for the network: [samples, Ɵme steps, 

features].  

 The Ɵme required to execute these steps is measured as in Step 4 

 Step 7: Provide the pre-processed data to the network for recogniƟon, generaƟng 

an output vector that contains predicƟons for each window. The inference Ɵme, 

which is the Ɵme required for the network to process the input and return an 

output, is evaluated, using the same funcƟon as in Step 4 and 5. 

 Step 8: Interpret the predicƟon vector. If at least one window is classified as abrupt, 

the enƟre movement is idenƟfied as such. If an abrupt movement is recognized, a 

red window appears; if the movement is standard, a green window is displayed. 

 Step 9: Saving Results: The movement recogniƟon outcomes and the Ɵmes 

associated with Steps 4, 5, and 6, are saved in vectors for later performance 

analysis. 

The Python script is designed for conƟnuous streaming and saving of data while 

simultaneously recognizing movements. This is achieved using Python's threading library, 

which allows parallel operaƟons. Two threads are created: one for streaming and pre-

processing data, which encompasses Steps 4, 5 and 6, and another for recogniƟon, 

covering Steps 7 and 8. Once the data is ready, it is passed from the first thread to the 

second one for recogniƟon.  

The performance of the system was then evaluated, focusing on both the network's 

recogniƟon capabiliƟes and the Ɵming, which are crucial for real-Ɵme applicaƟons. 

For the recogniƟon assessment, the LED acƟvaƟon data, corresponding to the normal or 

abrupt movements performed by the subject, was compared to the predicted movements. 

A confusion matrix was created, and the same metrics as in SecƟon 2.2.3 were calculated. 
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In the Ɵming analysis, three main steps were evaluated: the Ɵme required to transmit 

acceleraƟon data from the inerƟal sensors to the analysis system (i.e., streaming Ɵme, 

Step 4); the Ɵme to prepare the data (i.e., pre-processing Ɵme, Step 5); and the Ɵme 

required by the network to classify the movement (i.e., inference Ɵme, Step 7). For each 

of these steps, both the mean and standard deviaƟon were calculated at two levels: intra-

subject (the mean and standard deviaƟon calculated across movements for a single 

subject) and inter-subject (calculated across all five subjects). 

To further invesƟgate the real-Ɵme system’s performance, an analysis was conducted on 

the distribuƟon of errors made by the network across the movements, divided into three 

intervals: 

1. Movements from 1 to 10 

2. Movements from 11 to 20 

3. Movements from 21 to 30 

A chi-square test for independence was performed to assess whether the observed error 

frequencies in the three intervals matched the expected frequencies. Pairwise 

comparisons were then conducted to determine whether staƟsƟcally significant 

differences (p-value < 0.05) existed in the error distribuƟon among the intervals. 

2.2.5 ParƟcipants 

Five new subjects were recruited to parƟcipate in the test. Table 2.1 below provides a 

summary of the parƟcipants’ data. 

Table 2.1. Data of the five parƟcipants: gender, age, height, weight, BMI, dominant hand, forearm length, and arm 
length. The inter-subject mean ± standard deviaƟon for age, height, weight, BMI, forearm length, and arm length were 
calculated. 

Gender Age Height (cm) Weight (kg) 
BMI 

(kg/m2) 
Dominant 

hand 

Forearm 
length 
(cm) 

Arm 
length 
(cm) 

4F, 1M 23.4±0.49 162.2±9.22 55.8±12.07 20.73±2.56 4dx, 1sx 31.6±2.24 26.2±2.48 
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3. RESULTS AND DISCUSSION 
3.1 Sliding windows 

3.1.1 SegmentaƟon into overlapping windows 

The acceleraƟon and angular velocity data from the three trials conducted with the 61 

subjects were divided into overlapping windows. Each trial lasted 90 seconds. A sampling 

rate of 200 Hz and a window length of 0.5 seconds were defined. The following parameters 

were calculated following the procedure outlined in SecƟon 2.2.3: overlap percentage, 

step size, abrupt windows per movement, windows per trial, total windows per subject 

and total abrupt windows per subject. The resulƟng values are shown in Table 3.1. 

Table 3.1. Step size, abrupt windows per movement, windows per trial, total windows per subject and total abrupt 
windows per subject for different percentages of overlap (50%, 75%, 90%, 95%, 99%) are presented. 

Overlap 
(%) 

Step size 
(samples) 

Abrupt 
windows 

per 
movement 

Windows per 
trial 

Total 
windows per 

subject 

Total 
abrupt 

windows 
per subject 

50 50 5 359 1077 60 

75 25 9 717 2151 108 

90 10 21 1791 5373 252 

95 5 41 3581 10743 492 

99 1 201 17901 53703 2412 

 

The dataset is highly unbalanced, containing a significantly larger number of normal 

windows compared to abrupt ones. In fact, only about the 5% of a subject's windows is 

classified as abrupt. In cases like this, metrics such as accuracy and F1-score may not 

reflect the model’s ability to detect the minority class. As suggested by Rivera and 

colleagues, performance metrics like balanced accuracy and macro F1-score are 

parƟcularly useful as they are not affected by class distribuƟon, providing a more balanced 

view of the performance of the model (Rivera et al., 2017). 

In Figures 3.1, 3.2, 3.3, 3.4, and 3.5, the acceleraƟon signal from Subject 26, trial FR_r, is 

shown, with the abrupt sliding windows highlighted for each percentage of overlap. A 
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single abrupt movement is enlarged to illustrate how the overlapping windows appear for 

an individual abrupt movement. 

(a)

 

(b)

 

Figure 3.1. (a) AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed 
verƟcal lines), with the four abrupt movements (red rectangles) and the abrupt sliding windows with 50% overlap 
highlighted (yellow rectangles). (b) Zoom on the fourth abrupt movement. 
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(a)

 

(b)

 

Figure 3.2. (a) AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed 
verƟcal lines), with the four abrupt movements (red rectangles) and the abrupt sliding windows with 75% overlap 
highlighted (yellow rectangles). (b) Zoom on the fourth abrupt movement. 
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(a)

  

(b)

 

Figure 3.3. (a) AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed 
verƟcal lines), with the four abrupt movements (red rectangles) and the abrupt sliding windows with 90% overlap 
highlighted (yellow rectangles). (b) Zoom on the fourth abrupt movement. 
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(a)

(b)

 

Figure 3.4. (a) AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed 
verƟcal lines), with the four abrupt movements (red rectangles) and the abrupt sliding windows with 95% overlap 
highlighted (yellow rectangles). (b) Zoom on the fourth abrupt movement. 
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(a)

(b)

 

Figure 3.5. (a) AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed 
verƟcal lines), with the four abrupt movements (red rectangles) and the abrupt sliding windows with 99% overlap 
highlighted (yellow rectangles). (b) Zoom on the fourth abrupt movement. 

3.1.2 Comparison between actual and predicted abrupt windows 

Once prepared, the data were processed by the two networks: specifically, acceleraƟon 

data were provided to Network 1, while both acceleraƟon and angular velocity data were 

provided to Network 2. With the obtained predicƟon vector, it was possible to compare 

the actual and predicted abrupt windows. Referring to Subject 26, trial FR_r, Figures 3.6, 

3.7, 3.8, 3.9, and 3.10 visually compare the results for each percentage of overlap. 
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Figure 3.6. AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed verƟcal 
lines), with the actual and predicted abrupt sliding windows (50% overlap) highlighted (yellow rectangles) for both 
Network 1 and Network 2. 

 

Figure 3.7. AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed verƟcal 
lines), with the actual and predicted abrupt sliding windows (75% overlap) highlighted (yellow rectangles) for both 
Network 1 and Network 2. 
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Figure 3.8. AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed verƟcal 
lines), with the actual and predicted abrupt sliding windows (90% overlap) highlighted (yellow rectangles) for both 
Network 1 and Network 2. 

 

Figure 3.9. AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed verƟcal 
lines), with the actual and predicted abrupt sliding windows (95% overlap) highlighted (yellow rectangles) for both 
Network 1 and Network 2. 
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Figure 3.10. AcceleraƟon signal of Subject 26 during trial FR_r, segmented into 3-second windows (orange dashed verƟcal 
lines), with the actual and predicted abrupt sliding windows (99% overlap) highlighted (yellow rectangles) for both 
Network 1 and Network 2. 

 

3.1.3 Performance analysis 

To evaluate the performance of the two networks, confusion matrices were first 

constructed by comparing the predicƟon vector with the vector of true labels. In Figures 

3.11 and 3.12, the confusion matrices for each overlap percentage for Network 1 and 

Network 2, respecƟvely, are presented. 



 

54 
 

 

Figure 3.11. Confusion matrix for each overlap percentage (50%, 75%, 90%, 95%, and 99%) for Network 1. 
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From this matrix, the metrics outlined in SecƟon 2.2.3 were calculated. The balanced 

accuracy trends across different overlap percentages for the two networks are shown in 

Figure 3.13.  

The balanced accuracy values remain stable across different overlap percentages, with 

Network 1 around 78% and Network 2 around 82%. As shown in EquaƟon (2), the balanced 

accuracy depends on the network’s ability to correctly detect both posiƟve (abrupt) and 

negaƟve (normal) windows. Network 2 is therefore slightly more accurate in idenƟfying 

these windows, while varying the overlap percentage does not significantly affect the 

network’s performance in correctly detecƟng the two classes.  

Figure 3.12. Confusion matrix for each overlap percentage (50%, 75%, 90%, 95%, and 99%) for Network 2. 

Figure 3.13. Bar chart of the percentage values of balanced accuracy across different overlap percentages, comparing 
Network 1 and Network 2. 
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In this study, the primary objecƟve is the detecƟon of abrupt windows. Therefore, the 

number of true posiƟve should be high, while the false negaƟves, represenƟng abrupt 

windows incorrectly idenƟfied as normal, should be kept to a minimum. To assess this, the 

precision, recall and F1-score for the posiƟve class are analysed. These trends are shown 

in Figures 3.14, 3.15, and 3.16, respecƟvely.  

 

Figure 3.14. Bar chart of the percentage values of precision across different overlap percentages, comparing Network 1 
and Network 2. 

Figure 3.15. Bar chart of the percentage values of recall across different overlap percentages, comparing Network 1 
and Network 2. 
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The performance results do not fully meet expectaƟons. Precision values are consistently 

below 70%, with the only excepƟons being the 50% and 75% overlap values for Network 

1. This suggests a high number of false posiƟves, meaning that normal windows are 

misclassified as abrupt. Recall values show a similar trend, with recall percentages for 

Network 1 specifically falling below 60%, indicaƟng a high occurrence of false negaƟves. 

This trend is also reflected in the F1-score, which, as the harmonic mean of precision and 

recall, emphasises the overall performance. For Network 1, F1-scores are around 62%, 

while Network 2 shows slightly higher values, around 64%, highlighƟng no significant 

performance difference between the two networks in detecƟng abrupt movements. 

AddiƟonally, as with balanced accuracy, there are no notable performance differences 

across the different overlap percentages. 

The low precision and recall values may not necessarily reflect the network’s ability to 

detect abrupt movements but rather indicate how many windows associated with such 

movements are classified as posiƟve. Observing acceleraƟon graphs comparing actual and 

predicted windows (see Figures 3.6 to 3.10) reveals that, within a single movement, the 

network may idenƟfy more or fewer windows as abrupt than expected. This discrepancy 

impacts the metrics, which may not fully represent the network’s performance. It is 

Figure 3.16. Bar chart of the percentage values of F1-score across different overlap percentages, comparing Network 1 
and Network 2. 
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possible that the movement is correctly recognised, but the predicted number of windows 

associated with it may not align with the expected count. 

For normal window detecƟon, specificity values can be evaluated. Figure 3.17 shows 

specificity values for both networks across different overlap percentages. This metric 

depends solely on the negaƟve class, considering both correctly classified instances (True 

NegaƟves) and misclassificaƟons (False PosiƟves). The graph reveals that both networks 

perform excepƟonally well in idenƟfying the negaƟve class, with values around 98% and 

no substanƟal differences across different overlap percentages. 

 

This strong performance is further supported by the Macro F1-score, which balances both 

classes equally. Macro F1-score values are displayed in Figure 3.18. Notably, these values 

(ranging between 80% and 82% for both networks) are higher than the F1-score calculated 

for only the posiƟve class, as they reflect the overall performance of the network. 

Moreover, the overlap percentages does not affect the performance of both networks. 

 

 

 

Figure 3.17. Bar chart of the percentage values of specificity across different overlap percentages, comparing Network 
1 and Network 2. 
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The goal of this study is to assess whether the network can reliably idenƟfy abrupt 

movements. Therefore, in the performance analysis, the focus should be on recognizing 

movements rather than individual windows. Each trial includes 30 movements, 4 of which 

are abrupt. Each subject completed three trials, resulƟng in a total of 5490 movements 

across the 61 subjects, of which 732 are abrupt. In a 3-second movement, it was verified 

whether at least one abrupt window was detected. Based on a comparison between the 

movements performed by the subjects and the network’s predicƟons, a confusion matrix 

was constructed. The confusion matrices for all overlap percentages for both networks are 

shown in Figure 3.19 and 3.20. Both networks present low false negaƟve rates, always less 

than 100, demonstraƟng effecƟve detecƟon of abrupt movements. However, Network 2 

has a significantly higher number of false posiƟves. Although minimising false negaƟves is 

the primary objecƟve, a high false posiƟve rate can sƟll be a problem in industrial 

Figure 3.18. Bar chart of the percentage values of Macro F1-score across different overlap percentages, comparing 
Network 1 and Network 2. 
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applicaƟons, as it would unnecessarily acƟvate the safety system, slowing operaƟons and 

reducing efficiency. 

 

 

 

Figure 3.19. Confusion matrix for each overlap percentage (50%, 75%, 90%, 95%, and 99%) for Network 1. 
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Figure 3.20. Confusion matrix for each overlap percentage (50%, 75%, 90%, 95%, and 99%) for Network 2. 
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From these data, the metrics described in SecƟon 2.2.3 were calculated. Figure 3.21 

displays the balanced accuracy values as a funcƟon of the varying overlap percentages.  

The balanced accuracy values for 3-second movements confirm the strong overall 

performance of both networks. Specifically, values exceed 85% for Network 1 and 83% for 

Network 2. Except at overlap values of 50% and 75%, Network 1 demonstrates slightly 

higher accuracy than Network 2, in contrast to results observed when analysing individual 

windows. Overall, as before, no significant differences are observed across varying overlap 

percentages. 

To further assess the networks’ ability to idenƟfy abrupt movements, the trends of 

precision, recall, and F1-score for the posiƟve class, shown in Figure 3.22, 3.23, and 3.24 

respecƟvely, are analysed.  

Figure 3.21. Bar chart of the percentage values of balanced accuracy across different overlap percentages, comparing 
Network 1 and Network 2. 
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Figure 3.22. Bar chart of the percentage values of precision across different overlap percentages, comparing Network 
1 and Network 2. 

Figure 3.23. Bar chart of the percentage values of recall across different overlap percentages, comparing Network 1 
and Network 2. 
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In this situaƟon, precision and recall show completely different trends. Precision values 

are quite low for both networks. Specifically, for Network 1, values range from 45% to 60%, 

except at 50% overlap, where precision reaches 74%, making it the highest percentage. 

For Network 2, precision values vary between 37% and 63%. Comparing the two networks, 

it is clear that Network 2 has significantly lower precision percentages than Network 1. 

Low precision values indicate a high number of false posiƟve, which, as observed also in 

the confusion matrices, are notably frequent in Network 2. Moreover, this Ɵme there is a 

difference with varying overlap: precision values decrease as overlap increase. 

On the other hand, recall performance is very high for both networks. This means that 

false negaƟves remain consistently low, a highly favourable outcome for the objecƟves of 

our study. For both Network 1 and Network 2, recall percentages remain steady across 

overlap percentages, above 85% and 90% respecƟvely. 

Finally, F1-score values reflect the trends observed in precision and recall. Overall, 

Network 1 demonstrates stronger performance compared to Network 2 across all overlap 

percentages, with an average difference of 6% between the two networks. 

Figure 3.24. Bar chart of the percentage values of F1-score across different overlap percentages, comparing Network 1 
and Network 2. 
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For the negaƟve class (standard movements), the specificity values shown in Figure 3.25 

confirm the networks' ability to accurately idenƟfy these movements. Network 1 

demonstrates higher specificity values, all exceeding 83%, in comparison to Network 2, 

where specificity generally does not surpass 80% except for the 50% and 75% overlap 

cases. 

 

Finally, the Macro F1-score, shown in Figure 3.26, was also analysed to provide an 

overview of the overall performance of both networks. Here again, Network 1 

demonstrates beƩer performance compared to Network 2 across all overlap percentages, 

with an average difference of 5% for each overlap case.  

 

 

 

 

 

 

Figure 3.25. Bar chart of the percentage values of specificity across different overlap percentages, comparing Network 
1 and Network 2. 
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In general, analysing the performance of both networks in terms of window recogniƟon 

as well as 3-second movement recogniƟon reveals several insights. Regarding window 

recogniƟon, while both networks display relaƟvely similar metrics, Network 2 shows 

slightly higher balanced accuracy, F1-score for posiƟve class and Macro F1-score values 

than Network 1. This indicates that Network 2 is moderately more precise in recognizing 

individual windows, regardless of the overlap percentage. 

However, as previously menƟoned, our main interest lies in recognizing the overall 

movement rather than a single window. Looking at movement-level metrics, Network 1 

generally exhibits beƩer performance overall. Specifically, it achieves higher values in 

balanced accuracy, specificity, and macro F1-score compared to Network 2. Focusing on 

posiƟve class recogniƟon, Network 2 has a high number of false posiƟves, which 

significantly lowers its precision. In terms of recall, Network 2 shows slightly higher values, 

but those of Network 1 are sƟll highly acceptable, ensuring a low number of false 

negaƟves. 

Based on these consideraƟons, it can be stated that Network 1 demonstrates superior 

overall performance. Consequently, it has been selected for the next phase of the study, 

which involves a real-Ɵme movement recogniƟon. 

Figure 3.26. Bar chart of the percentage values of Macro F1-score across different overlap percentages, comparing 
Network 1 and Network 2. 
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3.1.4 Time analysis 

In real-Ɵme applicaƟons, Ɵming analysis is crucial. For this reason, the Ɵme required by 

the two networks to classify the movements of all 61 subjects was evaluated, using the 

funcƟon described in SecƟon 2.2.3. Tables 3.2 and 3.3 present the average inference Ɵme 

per subject, represenƟng the Ɵme needed by the network to classify the data for a single 

subject, as well as the total inference Ɵme, indicaƟng the Ɵme taken to classify all 61 

subjects, for Network 1 and Network 2 respecƟvely. 

Table 3.2. Average inference Ɵme across all subjects and total inference Ɵme (in seconds) for each overlap percentage 
(50%, 75%, 90%, 95%, and 99%) for Network 1. 

Overlap (%) 50 75 90 95 99 

Average Inference Time across all 
subjects (seconds) 

1.41 2.39 4.52 9.23 63.54 

Total Inference Time (seconds) 85.76 145.93 275.65 562.88 3875.87 
 

Table 3.3. Average inference Ɵme across all subjects and total inference Ɵme (in seconds) for each overlap percentage 
(50%, 75%, 90%, 95%, and 99%) for Network 2. 

Overlap (%) 50 75 90 95 99 

Average Inference Time across all 
subjects (seconds) 

1.34 2.14 4.65 9.43 65.34 

Total Inference Time (seconds) 81.95 130.67 283.76 574.95 3985.81 
 

The obtained values show a non-linear trend, which is also evident when looking at the 

graphs of the trends at varying overlap in Figures 3.27 and 3.28. 
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Up to 95% overlap, the average inference Ɵmes for both networks remain low, below 10 

seconds. However, when the overlap reaches 99%, inference Ɵmes increase exponenƟally, 

exceeding one minute. The total inference Ɵme shows a similar paƩern, with an 

Figure 3.27. Line graph showing the variaƟon of the average inference Ɵme across different overlap percentages (50%, 
75%, 90%, 95%, and 99%) for both Network 1 and Network 2. 

Figure 3.28. Line graph showing the variaƟon of the total inference Ɵme across different overlap percentages (50%, 
75%, 90%, 95%, and 99%) for both Network 1 and Network 2. 
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exponenƟal rise between 95% and 99% overlap, reaching up to six Ɵmes the previous 

value. 

Both models are generally efficient, but as the overlap increases so does the number of 

windows to be analysed, leading to longer inference Ɵmes. Specifically, with higher 

overlaps rates, the number of windows per subject nearly doubles compared to the 

previous overlap percentage (see Table 1). A parƟcularly significant case is the 99% 

overlap, where the network must analyse 53703 windows per subject (see Table 1), more 

than 5 Ɵmes the number of windows to be analysed for the 95% overlap. This explains the 

nonlinear progression of both average and total inference Ɵmes. 

Regarding the difference between the two networks, Network 2 is slightly faster than 

Network 1 for 50% and 75% overlap. However, for higher overlap values, the situaƟon 

reverses. Moreover, up unƟl 95% overlap, the inference Ɵmes for both networks are 

comparable, with minimal differences. Once 99% overlap is reached, the difference 

becomes more evident, with Network 1 exhibiƟng both lower average and total inference 

Ɵmes compared to Network 2. 

For a more accurate analysis of the network's performance in terms of Ɵme, it is useful to 

examine the Ɵme it takes to analyse a single window. By knowing the average Ɵme and 

dividing it by the number of windows per subject, an esƟmate can be obtained. The 

obtained values are presented in Table 3.4. 

Table 3.4. Average Ɵme required to analyse a single window (in milliseconds) for each overlap percentage (50%, 75%, 
90%, 95%, and 99%) for both Network 1 and Network 2. 

Overlap (%) 50 75 90 95 99 

Network 1 1.30 ms 1.11 ms 0.84 ms 0.86 ms 1.18 ms 

Network 2 1.24 ms 0.99 ms 0.87 ms 0.88 ms 1.22 ms 

 

It is evident that both networks perform very well, with inference Ɵmes for a single 

window on the order of a millisecond. AddiƟonally, the differences between the two 

networks are confirmed: Network 2 is faster at 50% and 75% overlap, while Network 1 

outperforms Network 2 at 90%, 95%, and 99% overlap. 
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The Ɵme analysis confirms the selecƟon of Network 1 for the next phase of the study, as 

it is faster in condiƟons approaching the real-Ɵme. 

3.2 Real-Time RecogniƟon of Abrupt Movements 

3.2.1 Performance analysis 

This phase of the study involves the real-Ɵme recogniƟon of abrupt movements as the 

subject performs various movements, including abrupt ones. Five new parƟcipants 

completed the test outlined in SecƟon 2.2.2. The task required each subject to perform 30 

movements of 3 seconds each across three configuraƟons (Trial FR_r, Trial FR_l, and Trial 

LA_l). In total, the network analysed 450 movements, including 60 abrupt movements. It 

is important to note the conƟnued class imbalance, with the posiƟve class (abrupt 

movements) being the minority.  

AŌer comparing the network predicƟons with LED acƟvaƟons, which indicate the 

movements executed by the subject, a confusion matrix was constructed and displayed in 

Figure 3.29. It is evident that the network performs well with few errors. Out of 60 abrupt 

movements, only 9 are misclassified as normal, while the false posiƟves amount to just 

12. 

 

For performance metrics, the same set of metrics as in previous analyses were calculated. 

Table 3.5 presents the values for all six metrics. 

Figure 3.29. Confusion matrix showing the classificaƟon results of the real-Ɵme system for detecƟng abrupt 
movements. 
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Table 3.5. Performance metrics for the classificaƟon of abrupt movements, including balanced accuracy, precision 
(posiƟve), recall (posiƟve), F1-score (posiƟve), macro F1-score, and specificity. 

Balanced 
accuracy 

Precision 
(posiƟve) 

Recall 
(posiƟve) 

F1-score 
(posiƟve) 

Macro F1-
score Specificity 

90.96 80.95 85.0 82.93 90.11 96.92 
  

The network demonstrates a high level of balanced accuracy at 90.96%, indicaƟng its 

effecƟveness in correctly classifying both abrupt and normal movements. In parƟcular, the 

specificity value highlights the network's strong ability to correctly idenƟfy the negaƟve 

class, reaching 96.92%. For the posiƟve class, the network also shows strong performance, 

with precision and recall values of 80.95% and 85%, respecƟvely. While the network 

exhibits a slightly higher rate of false posiƟves than false negaƟves, this does not impact 

the primary objecƟve of our study. The F1-score for the posiƟve class further confirms the 

network’s strong performance, reaching nearly 83%. Overall, the Macro F1-score slightly 

exceeds 90%, underscoring the network's robustness in recognizing both classes and 

ensuring a minimal error rate. 

The network thus confirms its ability to effecƟvely recognize abrupt movements even 

under real-Ɵme condiƟons, with all performance metrics considerably exceeding 80%. 

3.2.2 Time analysis 

In the context of human-robot collaboraƟon safety, the acƟvaƟon Ɵming of safety systems 

is crucial. For this reason, in real-Ɵme condiƟons, a Ɵming analysis is essenƟal. As outlined 

in SecƟon 2.2.4, the mean and standard deviaƟon for the three steps required to achieve 

classificaƟon were calculated (Table 3.6). 

Table 3.6. Streaming Ɵme (s), preprocessing Ɵme (ms), and inference Ɵme (ms) for each subject and across all subjects. 
Values represent mean ± standard deviaƟon. 

Subjects 01 02 03 04 05 Inter-
subject 

Streaming Ɵme (s) 3.12 ± 
0.05 

3.12 ± 
0.13 

3.11 ± 
0.11 

3.11 ± 
0.05 

3.12 ± 
0.18 

3.12 ± 
0.11 

Preprocessing Ɵme 
(ms) 

8.90 ± 
1.87 

9.12 ± 
2.14 

9.13 ± 
2.45 

8.83 ± 
2.26 

9.04 ± 
2.49 

9.00 ± 
2.26 

Inference Ɵme 
(ms) 

263.8 ± 
65.2 

265.1 ± 
95.6 

251.3 ± 
67.9 

253.7 ± 
70.6 

264.7 ± 
70.2 

259.7 ± 
74.9 

 



 

72 
 

Once the movement begins, the data is typically ready for the analysis aŌer an average of 

3.13 seconds, which includes both streaming and preprocessing Ɵmes. Finally, the 

network takes approximately 260 milliseconds to analyse the movement. 

In terms of efficiency, the network performs excepƟonally well, achieving recogniƟon few 

milliseconds aŌer the movement’s compleƟon. The network’s analysis operates in parallel 

with data streaming, storage, and preprocessing. As a result, the Ɵme required for 

recogniƟon does not interfere with the data flow from the sensors. Consequently, the 

temporal performance of the network is highly acceptable, ensuring rapid movement 

recogniƟon. 

However, it is noteworthy that the Ɵme required to obtain the data (3.13 s) slightly exceeds 

the duraƟon of a single movement, which is precisely 3 seconds. This delay could result in 

the network lagging in recognizing the movement or potenƟally missing criƟcal samples 

necessary for accurate classificaƟon. In this case, the network demonstrates extremely 

high performance, so this Ɵme lag does not significantly compromise its capabiliƟes, 

although it may sƟll lead to occasional errors. 

To determine whether these errors are caused by the real-Ɵme system rather than the 

network itself, an analysis of error distribuƟon across the sequence of movements was 

conducted. Table 3.7 summarises the 15 trials (three per each of the five subjects), 

including the abrupt movements correctly recognized, not detected, and normal 

movements misclassified as abrupt. Observing the error distribuƟon reveals that the 

system’s efficiency is excellent at the beginning of the test, with few errors. However, 

toward the end of the test, there is a noƟceable increase in the number of errors. 

When dividing the movements into three intervals (1–10, 11–20, 21–30), it becomes 

evident that errors increase significantly in the last interval, as shown in Figure 3.30. The 

difference in error distribuƟon across these intervals is staƟsƟcally significant. Specifically, 

there is a staƟsƟcally significant difference between the first and third intervals, as well as 

the second and third intervals, with a p-value < 0.001 for both. 
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Figure 3.30. Comparison of error distribuƟon across three different movement intervals: 1 – 10, 11 – 20, and 21 – 30. 
StaƟsƟcal significance was determined using a chi-square test. ***p<0.001 

 

The combined streaming and preprocessing Ɵme exceed the movement duraƟon by few 

milliseconds. Over Ɵme, these extra milliseconds may lead to a misalignment between the 

system and the movements dictated by the LEDs, making the system more prone to errors 

as the test progresses.   
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Table 3.7. For each trial performed by all five subjects, abrupt movements correctly classified are highlighted in green, missed (not detected) abrupt movements are highlighted in red, and 
normal movements incorrectly classified as abrupt are highlighted in orange. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
01_FR_r                               
01_FR_l                               
01_LA_l                               
02_FR_r                               
02_FR_l                               
02_LA_l                               
03_FR_r                               
03_FR_l                               
03_LA_l                               
04_FR_r                               
04_FR_l                               
04_LA_l                               
05_FR_r                               
05_FR_l                               
05_LA_l                               

 

LEGEND: 

 Correctly detected abrupt movements. 
 Missed (not detected) abrupt movements. 
 Normal movements incorrectly detected as abrupt



 

76 
 

 

  



 

77 
 

4. CONCLUSIONS AND FUTURE WORK 
This experimental thesis demonstrates the effecƟveness of an LSTM network trained with 

wrist acceleraƟon data acquired via MIMUs in recognizing abrupt movements in 

condiƟons approaching the real-Ɵme. The aim of the study is to idenƟfy the abrupt 

movements performed by an operator in industry, guaranteeing both efficiency and safety 

for a scenario of human-robot collaboraƟon. Indeed, ensuring an accurate real-Ɵme 

movement detecƟon enables the development of effecƟve safety systems, enhancing 

collaboraƟon and making the workplace a safer environment for workers. 

IniƟally, two networks were considered: one trained solely with acceleraƟon data 

(Network 1) and the other trained with both acceleraƟon and angular velocity data 

(Network 2). Their performance was compared using a sliding windows approach for signal 

segmentaƟon. In terms of metrics and processing Ɵmes, Network 1 showed slightly beƩer 

performance, making it the preferred choice for the second phase of the study. 

Subsequently, the LSTM network was integrated into a real-Ɵme system for abrupt 

movement recogniƟon. A pick-and-place tack was performed by five parƟcipants across 

three different configuraƟons. Results demonstrated the network’s ability to recognize 

abrupt movements with high accuracy (balanced accuracy, macro F1-score, and specificity 

> 90%) within a few hundred milliseconds (259.7 ± 74.9 ms). 

Despite some limitaƟons, such as data streaming and preprocessing Ɵmes that may slow 

the system and increase the likelihood of errors, these findings highlight the network’s 

capability to recognise abrupt movements moving towards real-Ɵme condiƟons. 

Future studies could focus on improving the real-Ɵme signal acquisiƟon system to reduce 

streaming delays. AddiƟonally, the current system processes signals only aŌer the enƟre 

movement sequence is collected. A more advanced approach would involve a system 

capable of analysing incoming data in real-Ɵme, enabling the network to start processing 

parƟal movement data even before the movement is completed. 
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