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Abstract 

Permafrost, a critical component of Earth's cryosphere, plays a significant role in global 

climate systems and geotechnical stability in cold regions. Understanding its dynamics is 

essential for environmental monitoring and infrastructure planning. This thesis explores the 

potential of machine learning (ML) and geophysical methods to predict the petrophysical 

properties of permafrost and improve resistivity inversion techniques, focusing on synthetic 

2D resistivity models and Convolutional Neural Network (CNN)-based inversion. 

A key part of this thesis involves development of synthetic models representing typical 

permafrost regions, incorporating layers such as the active layer, thaw layer, permafrost, and 

base layer. For this, several models were trained using experimental data from the literature, 

with a neural network achieving the highest accuracy—an R² score of 0.975—in predicting 

realistic resistivity values of frozen soil based on temperature, dry density, and water content 

as input. 

The thesis also evaluates ML models for predicting temperature and water content in 

permafrost body based on predicted resistivity value of permafrost from apparent resistivity 

which got an R² score of 0.588. Moderate and poor predictive performance was observed for 

predicting temperature and water content, respectively, with limitations attributed to the 

dependency on previously predicted resistivity values. 

To address limitations in conventional inversion techniques, a CNN model was developed to 

invert apparent resistivity data into true resistivity distributions. The CNN model 

outperformed traditional methods, effectively capturing complex discontinuities and 

providing high-resolution resistivity maps. However, signs of overfitting and dependency on 

fixed configurations highlighted the need for richer datasets and validation with real-world 

data. 

This research demonstrates the potential of ML and CNN-based inversion for advancing 

permafrost studies. It underscores the importance of comprehensive datasets and 

methodological refinement to improve model generalization and applicability in real-world 

scenarios. The findings contribute to geotechnical and environmental monitoring, offering a 

foundation for future research on permafrost dynamics and climate change mitigation. 
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Chapter 1: Introduction 
Permafrost, defined as ground that remains at or below 0°C for at least two consecutive years 

(Washburn, 1973), serves as a critical component in cold-region ecosystems, influencing landscapes, 

carbon storage, and infrastructure stability (Jin et al., 2021). As climate change accelerates, 

permafrost regions are increasingly at risk of thawing and degradation. These processes have 

profound implications, including the release of greenhouse gases such as carbon dioxide and 

methane, which amplify global warming. Furthermore, the destabilization of structures built on 

permafrost—such as buildings, roads, and pipelines—poses significant challenges to infrastructure 

integrity in Arctic and sub-Arctic regions. Therefore, continuous monitoring and assessment of 

permafrost are crucial for understanding its dynamics, mitigating associated risks, and informing 

climate change adaptation strategies (Hjort et al., 2022).  Permafrost refers to the thermal state of 

subsurface ground. Unlike sea ice, glaciers, and ice sheets, it cannot be directly observed through 

satellite remote sensing on local to global scales. Detecting changes in permafrost instead requires 

subsurface measurements and/or indirect assessments using remote sensing techniques. 

Consequently, our understanding of permafrost dynamics remains fragmented, even amidst record-

setting warming observed within the permafrost borehole monitoring network (Schuur et al., 2022). 

Electrical resistivity tomography (ERT) has been widely used to map the ice-containing permafrost 

by its resistivity contrast compared to the surrounding unfrozen medium (Buckel et al., 2023). These 

measurements could be effective in monitoring permafrost conditions by mapping subsurface 

resistivity, which varies with temperature, water content, and other properties (Oldenborger & 

LeBlanc, 2018). However, traditional resistivity inversion techniques often struggle to accurately 

image permafrost in regions with complex lateral variations, fractures, and voids, underscoring the 

need for innovative solutions (Liu et al., 2024). For instance, in laterally discontinuous permafrost, 

wider frozen bodies cause the boundary at the base of the frozen region to become less distinct. So, 

the boundaries between unfrozen and frozen regions in ERT images should be interpreted with 

caution, particularly in ice-rich, laterally continuous permafrost where sensitivity at depth is low 

(Herring & Lewkowicz, 2018). 

This research aims to bridge this gap by introducing a Machine Learning (ML)-based approach that 

leverages synthetic data to enhance the prediction and understanding of permafrost properties. The 

primary objective of this thesis is to develop and evaluate a multi-step ML framework to predict and 

analyze permafrost resistivity, temperature, and water content, as well as to explore the potential of 

Convolutional Neural Network (CNN)-based inversion for anomaly detection in permafrost regions. 

The research questions for this thesis are as follows: 

1. How effectively can ML models predict permafrost resistivity from apparent resistivity data? 

• This question explores the capability of various ML algorithms to estimate resistivity values 

accurately based on input features derived from apparent resistivity data. 

2. What are the most suitable ML algorithms for predicting temperature and water content in 

permafrost regions? 

• This question aims to identify the optimal ML models and preprocessing techniques for 

accurately predicting temperature and water content, crucial parameters for characterizing 

permafrost conditions. 

3. How well can a CNN model capture discontinuities in permafrost regions? 

• This question evaluates the ability of a CNN-based inversion technique to detect and map 
discontinuities and anomalies in permafrost regions, providing insights into the advantages 

and limitations of this pioneering approach in contrast to traditional methods. 
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This study focuses on synthetic data generation, model training, and evaluation using ML techniques. 

The research does not involve field data collection but relies on experimental data from the literature 

(Shan et al., 2015) to simulate realistic scenarios. The thesis explores predictive models for frozen soil, 

incorporating synthetic pseudo-sections that represent permafrost, thaw, and active layers. 

This research contributes to both academic knowledge and practical applications in environmental 

monitoring and geophysical analysis. By improving the predictive modeling of permafrost properties 

using ERT, this work supports better decision-making for climate change mitigation, risk 

management for infrastructure, and environmental planning in cold regions. The insights gained can 

also inform future research on the use of synthetic data and ML in geoscience. 

This thesis follows a structured approach as outlined below: 

1. Developing a Model to Predict the Resistivity of Frozen Soils: A neural network model was trained 

using experimental data from the literature to predict the resistivity of frozen soil. Key input 

features for this model included temperature, dry density, and water content extracted from 

experiments of Shan et al., (2015). The resulting model served as a foundation for creating 

synthetic datasets for further analysis. 

2. Simulating Synthetic 2D Resistivity Data: Synthetic pseudo-sections were generated to simulate 

realistic permafrost regions, capturing features such as discontinuities, thaw layers, and active 

layers. This step utilized forward modeling through the ResiPy library and resistivity inversion to 

produce comprehensive synthetic data. 

3. Evaluating ML Algorithms for Predicting Resistivity from Apparent Resistivity Data: Various ML 

models, including Gradient Boosting, Random Forest, Support Vector Regressor, and Neural 

Networks, were trained and tested to predict permafrost resistivity. These models utilized 

generated apparent resistivity data and electrode configurations as input features. 

4. Predicting Temperature and Water Content: ML models were employed to predict critical 

permafrost parameters, including temperature and water content. Features such as predicted 

resistivity and dry density were used to train and evaluate these models. 

5. Creating a CNN Model for Inversion: A CNN model was developed and tested for resistivity 

inversion, aiming to capture and highlight discontinuities and anomalies in permafrost regions. 

This pioneering technique complements the earlier stages, providing detailed resistivity mapping 

and advancing the understanding of permafrost characteristics. 

 

The thesis is structured into five main chapters, along with annexes to provide supplementary 

information:  

• Chapter 2: background studies on the Application of Electrical Resistivity and ML Models for 
Monitoring Permafrost: discusses the background studies on the application of Electrical 

Resistivity (ER) and ML models for monitoring permafrost. The objective is to review and 

synthesize existing research on the use of ER and ML techniques in assessing permafrost 

conditions. The chapter covers the fundamentals of permafrost monitoring and its significance, 

provides an overview of Electrical Resistivity methods and their applications and reviews ML 

models applied in geophysical ER studies. 

• Chapter 3: Prediction of Petrophysical Properties of Permafrost Using Electrical Resistivity: This 
chapter discusses the methodology for predicting the petrophysical properties of permafrost using 

electrical resistivity. It begins by emphasizing the importance of petrophysical properties in 

understanding permafrost dynamics and highlights the challenge of limited field data. The study 
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proposes generating synthetic 2D models based on established petrophysical characteristics, 

enabling the development of ML models for estimating permafrost properties. 

• Chapter 4: ERT and CNN Inversion: Chapter 4 explores the use of ERT and CNN for imaging and 
analyzing permafrost regions. It discusses the principles of ERT, its applications in mapping 

permafrost layers, and the limitations of conventional inversion techniques. The chapter 

introduces a CNN-based inversion model as a novel method to enhance the resolution and 

accuracy of resistivity mapping, particularly in identifying sharp resistivity contrasts and 

discontinuities within permafrost zones. 

• Chapter 5: Discussion and conclusion: concludes the thesis with a summary of key findings and 

their implications, while outlining recommendations for future research. It recaps the objectives 

and research questions, summarizes results and key insights from Chapters 3 and 4, and discusses 

the implications for environmental monitoring and geotechnical applications. The chapter also 

highlights limitations of the study and provides recommendations for future research, including 

model improvements and field applications. 

• Annex 1: provides detailed information on the experimental data used as the foundation for 
synthetic model generation, specifically referencing the work of Shan et al. (2015). It includes 

critical data points such as resistivity values, water content, and temperature, all gathered from 

the mentioned literature. The annex also features tables that summarize these key data points, 

providing a clear and concise overview of the experimental setup and findings that underpin the 

synthetic modeling process. 

• Annex 2: describes the ML models, evaluation metrics, and data normalization techniques utilized 

in this thesis. It provides an overview of models, including Random Forest and CNN, along with a 

justification for their selection based on the research objectives and data characteristics. It details 

the evaluation metrics employed, such as R², Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), and Mean Absolute Error (MAE), explaining their relevance in assessing model 

performance. Additionally, it discusses the normalization techniques applied, such as 

StandardScaler and MinMaxScaler, and their rationale for ensuring consistent scaling of features 

to enhance model accuracy and training stability. Figures and tables showcasing model 

architectures, configurations, and performance metrics are included to provide a comprehensive 

reference for the methodologies and results discussed in the thesis. 
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Chapter 2: background studies on the Application 

of Electrical Resistivity and ML Models for 

Monitoring Permafrost 

 

2.1 Permafrost Definition and Description 

The first mention of permanently frozen ground comes from Russia–Siberia from the Medieval Period 

but the first written mention dates back to 1598 and refers to its occurrence on Nova Ziemlya 

(Dobinski, 2011). The term "permanent frost" was originally used to describe ground that remains 

frozen indefinitely. However, this term was deemed scientifically inadequate, as it failed to account 

for the precise temporal and environmental conditions of frozen ground. To address this limitation, 

it was replaced by the term "perennially frozen" or "permafrost," which better encapsulates the 

concept of ground remaining frozen continuously over long periods. This refinement highlights the 

scientific effort to adopt terminology that more accurately represents the dynamic and time-

dependent nature of geological phenomena (Dobinski, 2011). 

In the glossary officially approved by the International Permafrost Association (IPA), definition 

number 390 defines permafrost as: "Ground (soil or rock, including ice and organic material) that 

remains at or below 0°C for at least two consecutive years" (van Everdingen, 1998). Permafrost is now 

defined in physical terms based on a temperature criterion, as the thermal state of the lithosphere and 

its contents, characterized by remaining at or below 0°C for at least two consecutive years. This 

definition carries two critical implications for understanding the nature of permafrost (Dobinski, 

2011): 

• Water Content in Permafrost: Permafrost may, but does not necessarily, contain water. When 
water is absent, the ground is referred to as dry permafrost (van Everdingen, 1998). This term 

describes frozen solid material that contains no water. However, this definition can be misleading, 

as ice itself is technically "dry." The term "wet" specifically refers to liquid water. 

• States of Water in Permafrost: Water within permafrost can exist in frozen, unfrozen, or partially 
frozen states. The permafrost concept relies on 0°C as the threshold temperature, but water does 

not necessarily freeze at this point. 

Permafrost forms when the extent of ground freezing during winter exceeds the extent of its thawing 

during summer. Initially, a thin layer of frozen or cryotic ground develops due to climatic cooling and 

persists through subsequent winters. If cooling continues, this layer thickens annually. Seasonal 

changes cause alternating penetration of cold and heat into the ground, resulting in wave-like thermal 

dynamics (Dobinski, 2011). 

• During winter, as temperatures drop significantly below 0°C, the frozen ground layer extends 

from the surface to the depth of maximum winter freezing. This depth is influenced by the 

duration and severity of winter; prolonged exposure to the lowest temperatures results in deeper 

freezing. The penetration of cold is affected by factors such as the thickness of snow cover, the 

type of ground cover, and the physical properties of the ground, including heat capacity, thermal 

conductivity, and geothermal gradient. 

• In summer, much of the frozen ground near the surface thaws, with some thawing occurring at 
the base of the frozen layer. The surface layer that thaws and refreezes seasonally is known as the 

active layer. The depth of thawing varies depending on summer warmth, with warmer summers 

causing deeper thawing, while cooler summers result in a shallower active layer. This dynamic 

interaction between freezing and thawing underscores the sensitivity of permafrost to seasonal 

and climatic variations. 
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Figure 3.1 illustrates the thermal structure of permafrost, highlighting the interactions between 

seasonally active layers, perennially frozen ground, and the geothermal gradient. The diagram 

identifies key elements such as the active layer, which undergoes seasonal freezing and thawing, the 

permafrost table, representing the upper boundary of permafrost, and the permafrost base, denoting 

its lower boundary. 

 

Figure 2.1 - Processes which may occur within permafrost body (shown as a process of degradation) (Dobinski, 2011). 

 

2.1.1 Active Layer 

An active layer is the ground or rock located above the permafrost table that undergoes seasonal 

freezing during the winter months. Although it is not part of the permafrost itself, the active layer 

plays a crucial role in the thermal dynamics of the permafrost system by transmitting heat (or cold) 

into the underlying lithosphere, thereby influencing the permafrost’s stability and interaction with 

the atmosphere. 

The thickness of the active layer is determined by several factors, with key influences being the 

temperature of the ground surface, the thermal properties of the soil and its cover, soil moisture levels, 

and the presence and thickness of snow cover (French, 2017). In mountainous environments, 

additional factors such as altitude, slope exposure, solar radiation, topographic conditions, and 

localized air circulation patterns also play a significant role in shaping permafrost occurrence and 

active layer dynamics. These factors can create microclimates that encourage the retention of cold in 

certain landforms (Delaloye and Lambiel, 2005). 
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2.1.2 Thawing 

Thawing in permafrost occurs when the ground temperature rises above 0°C, leading to the phase 

change of ice into liquid water. This process has significant implications for both ecological and 

geotechnical systems. Thawing alters the physical and thermal properties of the soil, often resulting 

in subsidence and destabilization of infrastructure, particularly in areas where ice-rich permafrost 

dominates (Shur et al., 2005). Furthermore, thaw can lead to the release of previously trapped 

greenhouse gases, such as methane and carbon dioxide, from organic material stored in permafrost, 

contributing to global warming (Schuur et al., 2015). 

The thawing process often begins in the active layer, which undergoes seasonal freezing and thawing. 

As warming intensifies, the thaw can extend deeper into the permafrost table, leading to the 

degradation of permafrost. This deepening of the thaw layer not only accelerates carbon release but 

also disrupts hydrological systems, affecting water flow and storage in cold-region ecosystems 

(Jorgenson et al., 2010). 

The rate and extent of thawing depend on factors such as soil composition, ice content, vegetation 

cover, and climate conditions. Regions with higher organic content and ice-rich permafrost are 

particularly susceptible to rapid thawing, which exacerbates the impacts on both local and global 

scales (Romanovsky et al., 2010). 

 

2.2 Overview of Permafrost Monitoring and Significance 

Permafrost, an integral component of polar and subpolar regions, represents ground that remains 

frozen for at least two consecutive years. It plays a pivotal role in global ecological systems, influencing 

carbon cycling, hydrological processes, and ecosystem stability (Loranty et al., 2018). Permafrost 

regions act as vast carbon reservoirs, storing nearly twice as much carbon as the atmosphere, 

predominantly in the form of frozen organic matter (Schuur et al., 2015). As climate change 

accelerates, the thawing of permafrost poses significant risks, including the release of greenhouse 

gases such as carbon dioxide and methane, which further amplify global warming through positive 

feedback mechanisms (Biskaborn et al., 2019; Natali et al., 2021). 

Monitoring permafrost is crucial for understanding these climate feedback processes and mitigating 

associated risks. Thawing permafrost can lead to widespread ground subsidence, known as 

thermokarst, which destabilizes natural landscapes and built infrastructure in cold regions. This has 

profound implications for communities and industries reliant on stable ground conditions, such as 

mining, oil extraction, and transportation (Shiklomanov et al., 2013; Romanovsky et al., 2010). 

Additionally, thawed permafrost alters local hydrology by changing soil water content, drainage 

patterns, and surface water availability, impacting ecosystems and water resources in these regions 

(Jorgenson et al., 2015; Walvoord & Kurylyk, 2016). 

Effective monitoring of permafrost dynamics is challenging due to its subsurface nature. Unlike 

surface features such as glaciers, permafrost cannot be directly observed using traditional remote 

sensing techniques, making indirect methods like ERT and ground-penetrating radar (GPR) essential 

tools for its assessment (Kneisel et al., 2008). ERT, in particular, has proven effective for delineating 

permafrost boundaries and detecting thawing zones by mapping the electrical resistivity variations 

associated with changes in soil temperature and water content (Kneisel et al., 2014; Hilbich et al., 

2008). 

As climate-induced permafrost degradation progresses, the need for precise and efficient monitoring 

techniques has become increasingly evident. Advanced methods, such as combining geophysical 

techniques with ML models, offer the potential to enhance our understanding of permafrost stability 

and long-term dynamics. These approaches enable the analysis of large, complex datasets, improving 
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prediction accuracy and identifying critical changes in permafrost regions (Ran et al., 2022; McKenzie 

et al., 2021). 

 

2.3 ERT for Permafrost Assessment and its limitations 

ERT has become an important geophysical tool for subsurface exploration and environmental 

monitoring. Its non-invasive methodology and capability to delineate resistivity contrasts make it 

particularly effective for mapping permafrost, a key component of cold-region ecosystems. By 

measuring electrical resistivity, ERT provides detailed images of subsurface conditions, enabling 

researchers to identify permafrost boundaries, detect seasonal changes, and monitor degradation 

caused by climate warming (Herring et al., 2019; Kneisel et al., 2008). 

ERT has been successfully utilized to track the distribution and seasonal dynamics of permafrost 

across diverse environments, from Arctic tundra to alpine permafrost regions. For instance, ERT has 

enabled the identification of thawing fronts in active layers and the vertical extent of frozen soils 

during warming events (Hilbich et al., 2008; Krautblatter et al., 2010). These studies underscore 

ERT's value in capturing the transition between frozen and thawed soil, providing critical insights into 

permafrost behavior under changing climatic conditions. 

A significant advantage of ERT lies in its ability to highlight resistivity contrasts, which are closely 

associated with temperature, water content, and soil composition. Frozen soils exhibit high resistivity 

due to the presence of ice, while thawed soils show much lower resistivity, influenced by liquid water 

content and salinity (Kneisel et al., 2014). These properties make ERT particularly suited for 

monitoring permafrost in regions where ground conditions vary significantly over time. 

However, ERT also faces limitations. Conventional inversion techniques often struggle with imaging 

in areas with significant lateral variations or complex subsurface structures. These challenges can 

result in smoothed resistivity maps that fail to capture sharp transitions or discontinuities, such as 

fractures, voids, or rapid changes in soil properties (Liu et al., 2024; Auken et al., 2015). Additionally, 

noise from environmental factors or instrumentation can further complicate data interpretation, 

reducing the accuracy of the inversion results (Schmidt et al., 2020). 

To address these challenges, recent advancements in inversion algorithms and data processing 

techniques have been developed. Sophisticated approaches, such as regularized inversion, joint 

inversion with complementary datasets, and ML-based interpretation, have demonstrated the 

potential to enhance the resolution and reliability of ERT imaging (Zhong et al., 2020; Liu et al., 

2020). These innovations improve the ability of ERT to resolve fine-scale features, such as 

discontinuities in lateral layers or localized anomaly zones, which are critical for understanding 

permafrost dynamics and their implications. 

Moreover, integrating ERT with other geophysical methods, such as seismic refraction or ground-

penetrating radar (GPR), has shown promise in overcoming some of these limitations. Multi-method 

approaches leverage the strengths of each technique, providing a more comprehensive understanding 

of subsurface conditions and reducing ambiguities in interpretation (Buckel et al., 2021; Hauck, 

2013). 

 

2.4 ML Applications in Permafrost Studies and ERT 

The integration of ML techniques into permafrost research and ERT has significantly advanced the 

field by offering tools to analyze complex geophysical data and improve predictive accuracy (Liu et al., 

2024). ML models such as neural networks, random forests, and support vector machines have been 
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instrumental in identifying and mapping permafrost regions, particularly in areas with heterogeneous 

subsurface structures where traditional methods face limitations (Baral & Haq, 2020). 

ML algorithms have been employed to extract meaningful patterns from extensive datasets, enabling 

the prediction of permafrost extent and stability. For example, studies have demonstrated the ability 

of ensemble learning methods, such as random forests and gradient boosting, to enhance the 

interpretation of resistivity data by reducing noise and improving the detection of discontinuities in 

frozen ground layers (Baral & Haq, 2020). Neural networks, on the other hand, excel in capturing 

non-linear relationships between environmental variables, offering high-resolution mapping 

capabilities for permafrost regions (Liu et al., 2022). 

ERT, a widely used geophysical method, benefits greatly from ML integration. ML models trained on 

ERT data can predict subsurface resistivity profiles more effectively than traditional inversion 

methods, especially in regions with significant lateral variations or complex geological structures 

(Zhuo et al., 2023). These models improve the resolution of resistivity maps, making them particularly 

valuable for studying seasonal freeze-thaw cycles and long-term permafrost degradation (Melo & Li, 

2021; Xixi et al., 2023) 

Despite its promise, the application of ML in permafrost studies has challenges, including the need 

for large, diverse datasets and the risk of model overfitting. Future research should focus on 

integrating multi-source datasets, optimizing model architectures, and exploring unsupervised 

learning techniques to further advance the field. Additionally, combining ML with improved ERT 

inversion techniques could provide a more comprehensive understanding of permafrost dynamics 

(Liu et al., 2024). 
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Chapter 3: Prediction of petrophysical properties of 

permafrost using electrical resistivity 
 

Summary: Chapter 3 focuses on predicting the petrophysical properties of permafrost using 

electrical resistivity. It begins by highlighting the importance of these properties in understanding 

permafrost dynamics. Due to the scarcity of high-resolution field data, the study proposes generating 

synthetic 2D models based on established petrophysical characteristics. This approach enables the 

development of ML models to estimate properties of permafrost body. Figure 3.1 represents the 

overall flowchart of the methodology used in this chapter. 

 

Figure 3.1 - The workflow of predicting petrophysical properties of permafrost body 
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3.1 Petrophysical Properties of Permafrost 

Petrophysical properties encompass the physical and chemical characteristics of soil and rock that 

influence their interactions with thermal, hydraulic, and mechanical processes. In permafrost regions, 

these properties are essential for understanding subsurface dynamics, stability, and responses to 

environmental changes. Key properties include thermal conductivity, electrical resistivity, 

permeability, porosity, mineral composition, and temperature, all of which contribute to the behavior 

of frozen ground (Williams & Smith, 1989). 

A major challenge in permafrost research is the lack of comprehensive and high-resolution field data 

on its petrophysical properties. Collecting such data across vast, remote, and climatically extreme 

regions is both logistically challenging and costly. Additionally, the significant spatial and temporal 

variability of permafrost makes it difficult to establish detailed subsurface profiles that account for 

local heterogeneities, such as fractures, voids, and mixed soil compositions. 

This scarcity of reliable datasets limits the ability to develop predictive models for permafrost 

dynamics and hinders the effectiveness of geophysical monitoring techniques. 

To address the data gap, this study emphasizes the generation of synthetic 2D models that represent 

various permafrost conditions. These models are designed based on established petrophysical 

characteristics for typical sedimented permafrost regions, allowing for the simulation of realistic 

subsurface scenarios. 

 

3.2 Selecting Petrophysical Properties 

A critical question in this study was determining how to model or develop an equation capable of 

predicting the resistivity of frozen soils based on their petrophysical properties. Shan et al. (2015) 

provided significant insights into this challenge through their seminal research on the electrical 

resistivity of frozen soils. The study emphasized the distinct differences in resistivity between frozen 

and unfrozen soils, primarily driven by phase changes in pore water during freezing. 

Shan et al.'s model incorporates various soil properties, including unfrozen water content, 

temperature, initial water content, and dry density, to establish a comprehensive framework for 

resistivity prediction. This integrative approach builds upon earlier foundational studies, such as 

Archie (1942) and Waxman and Smits (1968), which introduced methodologies for understanding soil 

resistivity under diverse conditions. These models laid the groundwork for predicting electrical 

resistivity, providing a theoretical basis for understanding how soil properties interact in frozen 

environments. 

 

The resistivity model proposed by Shan et al. (2015) is mathematically expressed as follows: 

𝜌 = [𝐴 ×
𝑎𝜃−𝑏

𝑊
+ 𝜌𝑑 (𝐵 ×

𝑎𝜃−𝑏

𝑊
+ 𝐶) + 𝐷]

−1

 (Equation 3.1) 

 

where A, B, C, and D are coefficients linked to the structural characteristics and electrical resistivity 

of the soil components; W is the water content; aθ−b represents the unfrozen water content; θ is the 

absolute temperature; and ρd is the dry density of the soil. 

They Performed Experiments on silty clay samples to measure electrical resistivity under different 

conditions of temperature, water content, and dry density. The experimental results supported the 

model’s predictions, aligning with theoretical expectations. 
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Given the challenges and time-intensive process of determining the experimental coefficients in the 

model proposed by Shan et al. (2015), this study sought to develop predictive ML models to estimate 

the resistivity of frozen soil. Experimental data from Shan et al. were digitized from their published 

figures (figure 3.2) using the online tool Plot Digitizer. This method enabled the extraction of key data 

points, including resistivity, temperature, dry density, and water content, which were then utilized as 

input features for the ML models. 

The resulting dataset, consisting of 156 data points, is detailed in Annex 1 and was employed as input 

features for training and testing the ML models. This approach provided a scalable and efficient 

alternative for resistivity prediction while validating the potential of ML in modeling complex soil 

behavior. 

 

Figure 3.2 - Curves of the relationship between the electrical resistivity of the frozen soil and water content under 
different dry density conditions, a at t = -17°c, b at t = -3°c, c at t = 3°c and d at t = 17°c (reproduced from Shan et al. 

2015) 

3.3 Predicting Resistivity of frozen soil based on selected properties 

The extracted dataset was utilized to train and test several ML models, including Neural Networks, 

Random Forest, Gradient Boosting, Support Vector Regressor, and k-Nearest Neighbors. The 

performance of these models was evaluated to determine how well their predictions aligned with the 

results of Shan et al. (2015). In Annex 2, a comprehensive overview of the ML algorithms utilized in 

this thesis is presented, offering a general description of each algorithm's functionality, strengths, and 

applicability. 

Below, each model is described in detail. 

• The Neural Network model was designed as a deep learning framework to capture complex, 
nonlinear relationships within the data. It was structured with four dense layers to progressively 

learn features from the input data. The network had 250 neurons in the first layer, 150 in the 

second, and 40 in the third, all employing the Rectified Linear Unit (ReLU) activation function to 
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introduce nonlinearity and enable the model to learn intricate patterns. The output layer consisted 

of a single neuron with a linear activation function, suitable for regression tasks, producing 

continuous resistivity predictions. To mitigate overfitting, dropout layers were added after each 

dense layer, randomly deactivating 20% of neurons during training. The network was optimized 

using the Adam optimizer, a popular choice for its adaptive learning rate capabilities, and trained 

to minimize the MSE loss function, ensuring that predictions closely matched actual resistivity 

values. 

• The Random Forest algorithm, an ensemble method, was employed for its robustness and ability 
to handle nonlinear relationships. This model constructs multiple decision trees, each trained on 

different subsets of the data, and averages their outputs for final predictions. This ensemble 

approach reduces overfitting and enhances generalization. A grid search optimization identified 

the best parameters for the model, including an unlimited maximum depth for trees, a minimum 

sample split of 2, and 100 estimators. These parameters enabled the Random Forest model to 

balance predictive accuracy with computational efficiency. 

• The Support Vector Regressor (SVR) was applied to fit a hyperplane that best represents the data 
while maintaining a specified margin of tolerance. SVR is particularly effective for datasets with 

fewer samples, as it minimizes overfitting by maximizing the margin between the hyperplane and 

the nearest data points. For this study, the optimal parameters were a regularization parameter 

(C) of 10, a linear kernel to simplify the relationship between inputs and outputs, and the 'scale' 

gamma setting to adapt to feature variability. These settings allowed the SVR to provide stable 

predictions while accommodating the complexities of the dataset. 

• Gradient Boosting was used as a sequential ensemble method where trees are built iteratively. 
Each subsequent tree focuses on correcting the errors made by the previous ones. This iterative 

refinement minimizes a loss function, leading to progressively better predictions. The best 

parameters, identified through grid search, included a learning rate of 0.2 to balance convergence 

speed and precision, a maximum tree depth of 3 to prevent overfitting, and 200 estimators to 

ensure sufficient model complexity. Gradient Boosting is well-suited for this task due to its ability 

to model complex relationships with high accuracy. 

• Finally, the k-Nearest Neighbors (k-NN) algorithm was employed as a non-parametric method. It 
predicts the output for a given data point by averaging the outputs of its nearest neighbors in the 

feature space. The proximity of neighbors is determined using a distance metric, ensuring that 

predictions reflect local data patterns. The best parameters included using 3 neighbors and 

assigning distance-based weights to prioritize closer neighbors in the predictions. This approach 

made k-NN particularly effective in capturing localized patterns in the resistivity data. 

Together, these models provided a diverse set of approaches for predicting frozen soil resistivity, with 

each leveraging its unique strengths to address the challenges of the dataset. 

3.3.1 Data Preprocessing 

To ensure consistency and enhance the performance of ML models, a careful normalization strategy 

was implemented for the input data. Different normalization techniques were chosen based on the 

characteristics of each feature and their expected impact on model performance: 

• Temperature and Density (MinMaxScaler): The MinMaxScaler was used for scaling temperature 
and dry density features, as these variables have a finite and well-defined range. MinMaxScaler 

normalizes data by rescaling each feature to lie within a specified range, typically [0, 1]. This 

method preserves the relationships among data points without distorting their distribution, which 

is crucial for features like temperature and density that directly influence the resistivity of 

permafrost. 

• Water Content (StandardScaler): The StandardScaler was applied to water content because this 

feature has a more variable distribution and may include values that deviate significantly from the 
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mean. StandardScaler transforms data to have a mean of 0 and a standard deviation of 1, making 

it ideal for features that do not have strict bounds or follow a normal-like distribution. 

 

3.3.2 Model Evaluation and Comparison 

Summary of the results and comparison between different ML algorithms performances represented 

below: 

Table 3.1 – results and comparison between models’ performance for predicting resistivity (ρ) of frozen soil 

Model MSE MAE MAPE R2 score 
Neural Network 1320.31 26.22 18.68 0.975 
Random Forest 1435.29 27.15 17.65 0.973 
Gradient Boosting 1719.55 27.15 18.26 0.967 
Support Vector Regressor 21529.49 124.310 116.3 0.597 
K-Nearest Neighbors 1729.68 30.49 23.32 0.967 

 

All models, except the Support Vector Regressor, demonstrated strong performance. The neural 

network achieved the highest R² score (0.975) and the lowest MSE, MAE, and MAPE, indicating that 

it was the most accurate in predicting resistivity. The Random Forest model followed closely, with a 

comparable R² score of 0.973 and similar MAE. 

The low MSE and high R² score indicate that the neural network captured 97.5% of the variance in 

the target variable, achieving high accuracy in resistivity predictions. Additionally, the low MAE and 

MAPE values confirm that the neural network model’s predictions closely approximate actual 

resistivity values, demonstrating minimal average error. 

In contrast, the SVR exhibited significantly higher error rates and a much lower R² score of 0.597, 

indicating a poor fit with the data. This lower performance suggests that SVR is less suitable for 

resistivity prediction in this context compared to the neural network and other tree-based models. 
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3.3.3 fit the proposed model prediction on experimental data 

 This section evaluates the proposed Neural Network (NN) model by comparing its predictions with 

experimental data from Shan et al. (2015). Shan et al.'s model, grounded in theoretical principles, 

incorporates key soil properties such as unfrozen water content, temperature, initial water content, 

and dry density to estimate resistivity. While their model (Equation 3.1) is highly accurate in 

describing frozen soil resistivity, it requires the determination of experimental coefficients, which is 

labour-intensive and time-consuming. 

In contrast, the model presented in this study offers a streamlined approach to resistivity prediction, 

bypassing the need for coefficient calibration. Figures 3.3 to 3.6 illustrate this comparison for 

temperatures of -17°C, -3°C, 3°C, and 17°C, respectively. Each figure includes plots for varying dry 

densities (ρ = 1.8, 1.7, 1.61, 1.51, and 1.42 g/cm³), labeled as a to e, and highlights the relationship 

between resistivity and water content. 

 

Key Observations: 

• Actual Resistivity (Blue Line): The experimental data from Shan et al. (2015) show that 

resistivity generally decreases with increasing water content up to a threshold, beyond which 

it stabilizes or slightly increases. This reflects the intricate interplay between water content 

and resistivity in frozen soils. 

• Predicted Resistivity (Red Dashed Line): The NN model effectively captures the main 

resistivity trends observed in the experimental data. Although minor deviations exist, 

particularly at lower water content levels, the predicted values align closely with the 

experimental results. 

The figures underscore the ML model's ability to replicate resistivity patterns across different soil 

conditions and temperatures, particularly under sub-zero conditions. This suggests that the ML 

approach is a viable and efficient alternative to traditional models, offering comparable accuracy 

without the need for exhaustive parameter calibration. 
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a)

 

b)

 
c)

 

d)

 
e) 

 
Figure 3.3 - Comparison between experimental data and the proposed model for different dry densities at a constant 

temperature = -17°c, a) for ρ = 1.8 g/cm³, b) for ρ = 1.7 g/cm³, c) for ρ = 1.61 g/cm³, d) for ρ = 1.51 g/cm³ and e) for ρ = 
1.42 g/cm³ 

Figures 3.3 compare the resistivity predicted by the NN model (red dashed line) with experimental 

data from Shan et al. (2015) (blue line) across varying water content levels at -17°C for different dry 

densities. The model captures the general trend of decreasing resistivity with increasing water 

content, reaching a minimum before slightly rising at higher levels. While the predicted values align 

well with experimental data at moderate and high water content, some deviations occur at lower water 

content values, particularly for higher dry densities. Overall, the model demonstrates a strong ability 

to approximate resistivity trends, with minor refinements needed for enhanced precision in specific 

regions. 
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a)

 

b)

 
c)

 

d)

 
e) 

 
Figure 3.4 - Comparison between experimental data and the proposed model for different dry densities at a constant 

temperature = -3°c, a) for ρ = 1.8 g/cm³, b) for ρ = 1.7 g/cm³, c) for ρ = 1.61 g/cm³, d) for ρ = 1.51 g/cm³ and e) for ρ = 
1.42 g/cm³ 

 

In comparison to the resistivity trends at -17°C, the figures for -3°C show lower overall resistivity 

values due to the higher temperatures, which reduce ice content and increase water mobility within 

the soil. While the predicted resistivity (red dashed lines) still aligns closely with the experimental 

data (blue solid lines), the deviation is more pronounced at lower water contents and lighter densities, 

such as 1.42 g/cm³. This highlights the challenge of accurately modeling resistivity at transitional 

temperatures where ice content diminishes. Unlike the -17°C case, the resistivity minima at -3°C occur 

at slightly higher water content levels, reflecting the temperature's impact on phase behavior and soil 

conductivity. These observations underscore the sensitivity of resistivity predictions to both 

temperature and soil density. 
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a)

 

b)

 
c)

 

d)

 
e) 

 
Figure 3.5 - Comparison between experimental data and the proposed model for different dry densities at a constant 
temperature = 3°c, a) for ρ = 1.8 g/cm³, b) for ρ = 1.7 g/cm³, c) for ρ = 1.61 g/cm³, d) for ρ = 1.51 g/cm³ and e) for ρ = 

1.42 g/cm³ 

Figure 3.5 showcases the resistivity predictions at 3°C, a temperature above freezing, compared to the 

two previous figures at sub-zero temperatures (-17°C and -3°C). In this warmer phase, the resistivity 

exhibits a more pronounced decline with increasing water content, reflecting the dominant influence 

of liquid water on resistivity. Unlike the previous figures where phase change (ice to liquid) played a 

key role, here the resistivity variations are primarily dictated by the liquid water's conductivity. The 

predicted values align closely with experimental data at lower water content levels, but as water 

content increases, the model slightly overestimates resistivity in certain cases, especially at lower 

densities. This behavior suggests that at temperatures above freezing, the model's ability to capture 

resistivity influenced by purely liquid-phase water could still be refined. 
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a)

 

b)

 
c)

 

d)

 
e) 

 
Figure 3.6 - Comparison between experimental data and the proposed model for different dry densities at a constant 

temperature = 17°c, a) for ρ = 1.8 g/cm³, b) for ρ = 1.7 g/cm³, c) for ρ = 1.61 g/cm³, d) for ρ = 1.51 g/cm³ and e) for ρ = 
1.42 g/cm³ 

 

Figure 3.6 illustrates the resistivity trends of permafrost at a temperature of 17°C across different dry 

densities (1.8, 1.7, 1.61, 1.51, and 1.42 g/cm³) as a function of water content. Compared to the colder 

temperatures in the previous figures, the resistivity values are significantly lower. The predicted 

resistivity (red dashed lines) follows the general decreasing trend with increasing water content seen 

in the actual data (blue lines), but with a noticeable deviation at lower densities. This comparison 

highlights how the model adapts to temperature changes, capturing the reduced resistivity 

characteristic of higher temperatures, albeit with some limitations in accurately representing low-

density conditions. 
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3.3.4 Training and Validation Loss 

Figure 3.7 shows the training and validation loss curves over the 160 training epochs for the NN 

model. The loss decreases steadily for both training and validation sets, indicating effective learning 

and convergence. By the end of training, the model achieves stable, low loss values for both sets, 

suggesting minimal overfitting and good generalization capability. 

 

Figure 3.7 - Training and validation loss curves over the 160 training epochs 

 

3.3.5 Evaluation of Model Predictions: Actual vs. Predicted Resistivity 

This section presents a comparison between the actual and predicted resistivity values for each model, 

illustrating the accuracy and reliability of each approach in predicting permafrost resistivity. The 

figure 3.8 provide a visual assessment of how closely each model's predictions align with the actual 

values, with the red line representing the perfect prediction line (where predicted values would exactly 

match actual values). 

1. Neural Network (NN): The neural network model shows a strong alignment with the perfect 

prediction line, with most points clustering closely along it. This indicates that the neural network 

accurately captured the resistivity values, achieving high predictive performance with a minimal 

average error. The high R² score (0.975) and low error metrics (MSE, MAE, MAPE) further 

confirm its effectiveness. 

2. Random Forest: Similar to the neural network, the Random Forest model's predictions closely 

follow the perfect prediction line, especially at lower resistivity values. Although there is a slight 

deviation at higher values, the Random Forest model achieved a comparable R² score (0.973), 

making it a strong alternative for resistivity prediction. 

3. SVR: The SVR model demonstrates significant deviation from the perfect prediction line, with 

scattered points indicating large prediction errors, especially for higher resistivity values. This is 

reflected in its low R² score (0.597) and high error metrics, suggesting that SVR is not well-suited 

for this prediction task. 

4. Gradient Boosting: The Gradient Boosting model generally aligns with the perfect prediction line, 

although there is some deviation at higher resistivity values. This model achieved a reasonable R² 

score (0.967) and moderate error metrics, indicating it can effectively predict resistivity, though 

with slightly less precision compared to the neural network and Random Forest. 
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5. k-NN: The k-NN model's predictions align with the perfect prediction line at lower resistivity 

values, with some spread observed at higher values. Its R² score of 0.967 suggests that it performs 

reasonably well, though not as accurately as the neural network for this task. 

a)

 

b)

 
c)

 

d)

 
e) 

 
Figure 3.8 - Comparison between the actual and predicted resistivity values for each model, a) for NN, b) for Random 

Forest, c) for SVR, d) for gradient boosting and e) for k-NN. 
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3.4 Generating dataset of representative 2D models of permafrost regions 

In a ML-based approach for monitoring permafrost regions, the first critical step is to establish a 

dataset that simulates a wide range of conditions and configurations of frozen and thawed soils. The 

primary objective is to represent sedimented permafrost regions and capture their discontinuities in 

a realistic manner. By assigning reliable and scientifically validated properties which is selected earlier 

to each region, numerous models were generated to emulate a variety of scenarios, allowing for robust 

training and evaluation of predictive algorithms. 

Each model consisted of four primary layers, designed to reflect key characteristics of permafrost 

environments: 

• Active Layer: This surface layer undergoes seasonal freeze-thaw cycles, significantly influencing 

the resistivity profile. The active layer was modeled with a thickness ranging from 1.5 to 2 meters, 

higher temperatures, and relatively lower resistivity compared to the underlying frozen layers. 

This layer was crucial in simulating dynamic changes in subsurface resistivity due to 

environmental factors such as temperature and moisture variations. 

• Thaw Layer: Located below the active layer, the thaw layer represented regions where ice has 

melted. It was characterized by lower resistivity than the permafrost layer, temperatures ranging 

between -4°C and 1°C, and densities similar to the permafrost. This layer also featured higher 

water content, highlighting transitional zones that are vital for understanding permafrost 

degradation. 

• Permafrost Layer: The permafrost layer simulated stable, frozen ground typical of permafrost 

regions. It was characterized by high resistivity, low temperatures (ranging from -15°C to -4°C), 

moderate density (1.2 to 1.8 g/cm³), and variable water content (0.10 to 0.40). This layer played 

a central role in monitoring permafrost stability and detecting potential degradation. 

• Base Layer: This foundational layer represented stable, fully thawed soil beneath the permafrost. 

It featured relatively lower resistivity varied from 200 to 400 ohm-m, providing a stable reference 

for deeper, unfrozen ground. 

To enhance realism, discontinuities in permafrost and thaw regions were introduced through the 

random assignment of ellipsoidal shapes. By superimposing multiple ellipsoids, complex geometries 

resembling natural subsurface structures were generated. This approach allowed for the creation of 

realistic models that captured the spatial heterogeneity and intricate patterns typical of permafrost 

environments. These models serve as essential tools for training ML algorithms to identify and predict 

permafrost conditions and their discontinuities under diverse scenarios. 

A total of 500 representative models were generated to simulate diverse conditions and configurations 

of permafrost regions with varying degrees of discontinuity. Figure 3.9 provides examples of these 

models, where distinct regions are color-coded for clarity: 

• Orange Areas: Represent the active layer, simulating seasonal freeze-thaw cycles. 

• Light Purple Areas: Correspond to the thaw layer, illustrating transitional zones with melted ice 
and higher water content. 

• Light Gray Areas: Denote permafrost regions, characterized by high resistivity and stable frozen 

conditions. 

The generated models clearly showcase exaggerated discontinuities within the permafrost regions, 

highlighting their potential to simulate complex and realistic subsurface structures. These models 

provide a valuable foundation for training ML algorithms to detect and predict permafrost 

characteristics and discontinuities under varied scenarios. 
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Figure 3.9 – Some examples of generated representative models 

 

3.4.1 Assigning Resistivity of Each Region Using the Best Performing ML Model 

Following a comprehensive evaluation of multiple ML models, the best-performing model was 

selected based on its accuracy and reliability in predicting resistivity. This model was then employed 

to assign resistivity values to each region in the generated synthetic models based on their assumed 

properties: Temperature (θ), Dry Density (ρd), and Water Content (W). 

The process involved the following steps: 

1. Input Feature Preparation: For each region (active layer, thaw layer, permafrost, and base layer), 

the input features were derived based on the assumed temperature, dry density, and water content 

ranges. These input features were pre-processed using the scaling techniques specified in the data 

preprocessing step to ensure compatibility with the trained ML model. 

2. Model Prediction: The best-performing model, determined during the evaluation phase, was 

deployed to predict resistivity for each set of input features. This ensured that the resistivity 

assigned to each region reflected the realistic variations in permafrost and surrounding layers. 

3. Integration into Synthetic Models: The predicted resistivity values were assigned to their 

respective regions within the synthetic models. This process resulted in realistic resistivity 

distributions across the models, accurately representing the physical and thermal properties of 

each layer. 

The generated 2D models capture the complex spatial resistivity distributions found in permafrost 

regions. Each layer in these models is characterized by specific resistivity values, temperatures, 

densities, and water content levels that reflect natural permafrost environments. 

Figure 3.10 illustrates examples of these generated 2D models, showing the distinct properties of each 

layer. The visualizations highlight how the synthetic models replicate the layered structure commonly 

found in permafrost regions, with discontinuities and transitions between layers clearly visible. These 

2D models are valuable tools for simulating and analyzing permafrost characteristics and can be used 

for further inversion studies to improve our understanding of subsurface conditions in cold regions. 
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Region T°c density Water content Resistivity 

Active 5 1.61 0.13 765 

Thaw -3 1.37 0.15 1163 

Permafrost -13 1.36 0.14 1580 
 

 

Region T°c density Water content Resistivity 

Active 2 1.49 0.25 919 

Thaw -3 1.78 0.12 752 

Permafrost -9 1.58 0.25 1154 
 

 

Region T°c density Water content Resistivity 

Active 5 1.37 0.14 1003 

Thaw -4 1.5 0.34 1058 

Permafrost -13 1.29 0.27 1631 
 

 

 

Figure 3.10 – Some generated 2D models samples with properties for each region 

 

3.4.2 Forward Modeling 

Forward modeling was conducted using ResiPy (Blanchy et al., 2020) to simulate apparent resistivity 

values for each of the 500 runs. This process involved setting up an electrode array and defining a 

measurement sequence to create synthetic data for modeling permafrost and other soil layers. 

• Electrode Configuration: The model utilized a 48-electrode linear array configuration, with 
electrodes spaced 4 meters apart along a predefined path. The generate_electrode_coordinates() 

function was employed to calculate precise positions for each electrode, ensuring a consistent and 

accurate setup for all simulations. 

• Sequence: The measurement sequence was defined using Wenner-Schlumberger array 

configuration, with a fixed spacing between potential electrodes of 4 meters and a maximum 

expansion n=16 (as shown in Figure 3.11). The apparent Resistivity of each point could be 

calculated as follows: 

𝑘 = 𝜋𝑛(𝑛 + 1)𝑎 (Equation 3.2) 

𝜌 =
∆𝑉

𝐼
𝑘 (Equation 3.3) 

• Forward Modeling: Once the electrode configuration and measurement sequence were 

established, ResiPy was used to generate synthetic apparent resistivity data for each simulated 

run. This step involved creating a forward model that simulated electrical current flow through 

the subsurface, producing resistivity measurements that represented realistic field data. The 

resulting synthetic data served as input for subsequent inversion processes and predictive 

modeling.  
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Figure 3.11 - Schematic representation of the Wenner–Schlumberger array with electrode locations and datum points. 

 

Using these configurations, 480 apparent resistivity data points were generated for each 

representative model, capturing detailed spatial variations in subsurface resistivity. To enhance 

realism, the forward modeling process incorporated 5% noise, simulating the measurement 

inaccuracies typically encountered in field surveys. 

The Wenner-Schlumberger array, with its consistent spacing and systematic measurement approach, 

enables detailed imaging of resistivity distributions across permafrost regions. By varying the n value, 

the array configuration enhances the model’s ability to detect resistivity variations within different 

soil layers, such as the active, thaw and permafrost layers. 

Figure 3.12 showcases examples of the generated 2D resistivity models alongside their corresponding 

pseudo-sections. These visualizations underline the detailed resistivity distributions within each 

representative model and the capability of the ResiPy-generated pseudo-sections to mimic realistic 

subsurface structures. By accurately reflecting the resistivity characteristics of layered permafrost 

regions, the pseudo-sections provide essential insights for further analysis. 
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Figure 3.12 - Examples of generated 2D models alongside their corresponding pseudo-sections 

 

3.4.3 Data management and storage  

The data generated from each iteration, including detailed specifications of the modeled regions, was 

systematically stored for further analysis. This process involved storing the data in structured formats 

to ensure accessibility and compatibility with subsequent modeling and evaluation steps. Key 

information saved included: 

• Region Specifications: Properties such as temperature, dry density, water content, and assigned 

resistivity values for each layer. 

• Model Geometry: The spatial configuration of each synthetic model, including the dimensions and 

relationships between layers. 

• Generated Resistivity Data: Apparent resistivity values derived from forward modeling, organized 

for use in inversion and ML tasks. 

The stored dataset serve as the foundation for validating the models, comparing ML predictions, and 

conducting inversion analysis in later stages of the study. 
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3.5 Permafrost Resistivity Prediction 

This section details the methodology for predicting permafrost resistivity using ML models, 

emphasizing the models utilized, their configurations, and the evaluation metrics applied to measure 

performance. In this context, the resistivity of permafrost in each simulated model was designated as 

the ground truth, while apparent resistivity data and electrode distances for each measurement 

sequence were employed as input features for training the models. 

The ground truth resistivity values were derived from the predefined properties of each synthetic 

model, representing the true resistivity characteristics of the permafrost. Apparent resistivity, on the 

other hand, reflects the observed electrical resistivity influenced by subsurface heterogeneities and 

was computed for each pseudo-section. Additionally, spatial distances between electrodes within each 

measurement sequence were included as input features to capture critical spatial relationships 

affecting resistivity patterns. 

By leveraging apparent resistivity and electrode distance data, the ML models were trained to 

understand the intricate relationships between these features and the actual resistivity values. This 

training enabled the models to predict permafrost resistivity with a high degree of accuracy. Given 

that resistivity is a crucial parameter for monitoring permafrost conditions, the ability of ML models 

to reliably predict it based on pseudo-section data demonstrates their potential as effective tools for 

permafrost assessment and monitoring. 

 

3.5.1 Data Preparation 

To ensure accurate and reliable training of ML models, the data underwent a systematic preprocessing 

procedure encompassing the following steps: 

1. Loading Apparent Resistivity and Electrode Data: Apparent resistivity values and their 

corresponding electrode configurations were extracted from the ".dat" files produced during the 

pseudo-section modeling process. These files provided the foundational data required for feature 

generation and model training. 

2. Feature Engineering: Spatial relationships within each electrode configuration were incorporated 

by calculating distances between electrode pairs. These distances, when combined with apparent 

resistivity values, formed a comprehensive feature set that encapsulated the spatial and electrical 

characteristics of the pseudo-sections. 

3. Target Variable: Permafrost resistivity, calculated based on the predefined properties of each 

region in the simulated runs, was established as the target variable. This ground truth value served 

as the basis for training and evaluating the performance of the ML models. 

Through this rigorous data preparation process, the input features and target variable were 

standardized, ensuring consistency and reliability for model training and evaluation. 

 

3.5.2 Models and Comparison Indicators 

To evaluate the ability of ML models to predict permafrost resistivity, five algorithms were tested: 

Linear Regression, Random Forest, Gradient Boosting, SVR, and Neural Networks. Each model was 

meticulously configured and trained on an 80-20 split of the dataset. The configurations for each 

model are detailed below: 

• Gradient Boosting was configured with a learning rate of 0.1, which balanced the contribution of 
each decision tree to the final model. The number of estimators was set to 100, ensuring sufficient 
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complexity to learn patterns without overfitting, while the depth of each tree was limited to avoid 

overly complex models that might struggle to generalize. 

• Random Forest, another ensemble method, was set up with a maximum tree depth of 10 to prevent 
overfitting while retaining its ability to capture essential patterns. The trees split when at least two 

samples were available, ensuring flexibility during the growth phase. A total of 200 trees were 

used to provide a robust ensemble capable of achieving high predictive accuracy without excessive 

computational cost. 

• SVR was included to explore its potential for capturing linear relationships within the data. A 
regularization parameter of 10 was chosen to balance training accuracy and model simplicity. The 

kernel type was linear, which effectively modeled the relationships in this dataset, and the gamma 

parameter was automatically scaled based on the feature space, ensuring optimal kernel 

operation. 

• The Neural Network model incorporated a deep learning approach with four dense layers. The 

first layer consisted of 250 neurons, followed by 150 neurons in the second, 40 neurons in the 

third, and a single output neuron. Each hidden layer utilized the ReLU activation function to 

capture nonlinear relationships, while the output layer had a linear activation for continuous 

predictions. Dropout layers were included after each hidden layer, applying a 20% dropout rate to 

mitigate overfitting by reducing dependencies among neurons. The network was trained with the 

Adam optimizer, known for its adaptive learning rate capabilities, and MSE was used as the loss 

function to minimize prediction errors. 

• Lastly, k-NN relied on local patterns within the data to make predictions. The model considered 

the three nearest neighbors for each data point, with weights inversely proportional to their 

distances. This configuration allowed the model to prioritize closer points in the feature space, 

ensuring predictions were influenced more by the most relevant data points. 

Each model was trained and tested on an 80-20 split of the dataset, ensuring that enough data was 

available for robust learning while reserving a portion for evaluating generalization. 

 

3.5.3 Model Evaluation and Comparison 

The table 3.2 presents a comparison of all models evaluated for permafrost resistivity prediction: 

Table 3. 2 – comparison between ML models’ performance for predicting resistivity (ρ) of Permafrost body 

Model MSE MAE MAPE R2 score 
Gradient Boosting 23697.09 123.81 153.93 0.5501 
Linear Regression 1291499.88 882.32 1136.44 -23.52 
Random Forest 21687.18 117.59 147.26 0.5882 
Support Vector Regressor 48964.5 183.31 221.27 0.0703 
Neural Network 50165.12 178.83 223.97 0.0475 

 

• Random Forest and Gradient Boosting achieved the lowest MSE, MAE, and RMSE values among 
the tested models, with R² scores of 0.5882 and 0.5501, respectively. This suggests that these two 

models provided the most accurate predictions among the options tested, although their R² values 

indicate only moderate predictive power. 

• Linear Regression performed very poorly, with a highly negative R² score (-23.52), indicating that 

it was unable to capture the relationship between features and the target variable effectively. The 

high error values further emphasize its unsuitability for this task. 

• Support Vector Regressor and Neural Network models also underperformed, with low R² scores 
(0.0703 and 0.0475, respectively) and relatively high error values, indicating limited predictive 

capability for this application. 
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Overall, the results suggest that tree-based models, particularly Random Forest and Gradient 

Boosting, were the most effective ML approaches for predicting permafrost resistivity in this dataset. 

These models showed better accuracy and predictive reliability compared to the other tested methods. 

 

3.5.4 Evaluation of Model Predictions: Actual vs. Predicted Resistivity 

This section provides a visual evaluation of the resistivity prediction accuracy for each ML model, 

comparing predicted resistivity values against actual values. The following scatter plots illustrate how 

closely each model's predictions align with the actual resistivity measurements, with the red dashed 

line representing a perfect prediction where predicted values would equal actual values (figure 4.12). 

• Neural Network: The scatter plot for the neural network model shows a moderate alignment with 
the perfect prediction line, with predictions somewhat dispersed around it. While the neural 

network captures general trends, the spread indicates variability in predictive accuracy, 

contributing to its relatively low R² score. 

• SVR: The SVR model exhibits a significant deviation from the perfect prediction line. The 
predicted values are mostly clustered around a narrow range, failing to capture the full variability 

of actual resistivity values. This reflects the SVR model’s limited predictive performance, as 

indicated by its low R² score and high error metrics. 

• Gradient Boosting: The Gradient Boosting model shows better alignment with the perfect 

prediction line compared to SVR, with predictions scattered closely around it. This indicates a 

reasonable predictive capability, capturing the general resistivity patterns, though some variance 

remains. The model’s R² score and error metrics reflect this balanced performance. 

• Random Forest: The Random Forest model also displays a close alignment with the perfect 

prediction line, with points clustered around it. This indicates that Random Forest performs well 

in capturing resistivity variations, and its relatively high R² score confirms its effectiveness in this 

prediction task. 

• Linear Regression: The Linear Regression model shows a poor alignment with the perfect 
prediction line, with significant scattering of points. The predicted values diverge considerably 

from the actual values, resulting in a highly negative R² score and high error metrics. This plot 

clearly illustrates the unsuitability of Linear Regression for this dataset. 

 

3.5.5 Summary of Findings 

The findings indicate that Random Forest and Gradient Boosting are the preferred models for 

predicting permafrost resistivity, offering a balance between accuracy and interpretability. The 

limitations observed in SVR and Linear Regression underscore the need for models that can handle 

non-linear, complex relationships within environmental datasets. These results provide a foundation 

for further refinement and application of ML approaches in predicting soil resistivity, particularly in 

cold regions where permafrost characteristics are critical to geotechnical and environmental 

assessments. 
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Figure 3.13 - Comparison between the actual and predicted resistivity values of permafrost for each model , a) for NN, b) 

for Random Forest, c) for SVR, d) for gradient boosting and e) for Linear Regression.  
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3.6 Water Content and Temperature Prediction Models 

The subsequent stage of the methodology involved developing ML models to predict water content 

and temperature in permafrost regions. These predictions leveraged resistivity values obtained from 

earlier models, combined with additional features such as dry density, to estimate these critical 

environmental variables. By doing so, this step sought to extend the utility of the models beyond 

resistivity, offering insights into the physical and thermal characteristics of permafrost. 

ML algorithms were employed for both prediction tasks, including Random Forest, Gradient 

Boosting, Support Vector Regressor, Neural Networks, and Linear Regression. The aim was to 

evaluate each model's performance across a variety of scaling techniques, including StandardScaler, 

MinMaxScaler, and MaxAbsScaler, to determine the most suitable model and preprocessing approach 

for each prediction target. 

Water content prediction focused on understanding the distribution and dynamics of moisture within 

the permafrost layers, a crucial factor influencing permafrost stability and thermal conductivity. 

Similarly, temperature prediction was critical for assessing the thermal state and potential thawing of 

permafrost. 

 

3.6.1 Data Preparation and Feature Engineering 

For predicting water content and temperature in permafrost regions, data preparation involved 

utilizing key variables extracted from the generated pseudo-sections, including predicted resistivity, 

temperature, and dry density. These variables served as input features to develop robust ML models 

tailored to these specific prediction tasks. 

Key features—predicted resistivity, temperature, dry density, and water content—were identified as 

the most relevant input variables. These features were scaled using various preprocessing techniques 

to evaluate the impact of normalization on model performance. The scaling methods applied included 

StandardScaler, MinMaxScaler, and MaxAbsScaler, along with a baseline scenario where no scaling 

was applied. This approach ensured that models were assessed under consistent conditions and 

allowed for identifying the most effective scaling method for each prediction task. 

For water content prediction, the target variable was directly extracted from the dataset, representing 

the moisture content within permafrost layers. Similarly, for temperature prediction, temperature 

values were structured as the target variable, ensuring alignment with the prepared feature sets to 

maintain data integrity across tasks. 
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3.6.2 Temperature prediction model evaluation and comparison 

The following table summarizes the performance of different ML models for temperature prediction 

in permafrost regions, evaluated under various scaling methods. The performance metrics include 

MAE, RMSE, and R² score. 

Table 3.3 – comparison between ML models’ performance for predicting temperature (θ) of Permafrost body with 
various scaling methods 

Scaler Model MAE RMSE R² 

No Scaling 

Linear Regression 1.6504 2.2727 0.4767 
Random Forest 1.6525 2.2926 0.4675 
Gradient Boosting 1.7014 2.3179 0.4557 
Support Vector Regressor 2.113 2.5172 0.358 
Neural Network 2.2207 2.683 0.2707 

StandardScaler 

Linear Regression 1.651 2.2727 0.4767 
Random Forest 1.645 2.2912 0.4681 
Gradient Boosting 1.7014 2.3179 0.4557 
Support Vector Regressor 1.6287 2.256 0.4843 
Neural Network 1.6981 2.2982 0.4649 

MinMaxScaler 

Linear Regression 1.651 2.2727 0.4767 
Random Forest 1.6463 2.2938 0.4669 
Gradient Boosting 1.7014 2.3179 0.4557 
Support Vector Regressor 1.6447 2.2607 0.4822 
Neural Network 1.7568 2.3362 0.447 

MaxAbsScaler 

Linear Regression 1.6526 2.2742 0.476 
Random Forest 1.6519 2.2969 0.4655 
Gradient Boosting 1.7014 2.3179 0.4557 
Support Vector Regressor 1.6412 2.2056 0.5071 
Neural Network 1.6365 2.266 0.4797 

 

• SVR with MaxAbsScaler achieved the highest R² score (0.5071) with relatively low MAE and 

RMSE values, making it the most effective model-scaling combination for temperature prediction. 

• Gradient Boosting showed consistent performance across all scaling methods, with a stable R² 

score around 0.4767, indicating robustness to different scaling techniques. 

• Random Forest performed reasonably well, especially with StandardScaler and MinMaxScaler, 

with R² scores close to Gradient Boosting, but slightly lower. 

• Neural Network performance varied with scaling methods, with MaxAbsScaler yielding the 

highest R² score of 0.4797, which was close to other models but still slightly below SVR. 

• Linear Regression showed the lowest performance across all scaling methods, with R² scores 
consistently around 0.4557, indicating limited suitability for temperature prediction in 

permafrost regions. 
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3.6.3 Water Content prediction model evaluation and comparison 

The table below presents the performance metrics (MAE, MSE, R²) for different models under various 

scaling methods for predicting water content. 

Table 3.4 – comparison between ML models’ performance for predicting Water Content (W) of Permafrost body with 
various scaling methods 

Scaler Model MAE MSE R² 

No Scaling 

Linear Regression 0.0691 0.0068 -0.0658 
Random Forest 0.0735 0.0078 -0.2189 
Gradient Boosting 0.0748 0.0083 -0.2881 
Support Vector Regressor 0.0684 0.0065 -0.0101 
Neural Network 0.0799 0.0094 -0.4605 

StandardScaler 

Linear Regression 0.0691 0.0068 -0.0658 
Random Forest 0.0731 0.0078 -0.2114 
Gradient Boosting 0.0748 0.0083 -0.2881 
Support Vector Regressor 0.0749 0.0082 -0.281 
Neural Network 0.0815 0.0096 -0.4936 

MinMaxScaler 

Linear Regression 0.0691 0.0068 -0.0658 
Random Forest 0.0729 0.0077 -0.2022 
Gradient Boosting 0.0748 0.0083 -0.2881 
Support Vector Regressor 0.0743 0.008 -0.2489 
Neural Network 0.0706 0.0069 -0.0787 

MaxAbsScaler 

Linear Regression 0.0691 0.0068 -0.0658 
Random Forest 0.0732 0.0078 -0.2133 
Gradient Boosting 0.0748 0.0083 -0.2881 
Support Vector Regressor 0.0705 0.0069 -0.0687 
Neural Network 0.0684 0.0065 -0.0182 

 

The Support Vector Regressor with MaxAbsScaler achieved relatively better performance, though 

overall R² values indicate that none of the models fully captured the relationships needed for reliable 

water content prediction. The reliance on previously predicted resistivity values as an input feature 

likely introduced biases, inflating performance metrics on seen data but reducing real-world 

applicability. 

 

3.6.4 Summary of Findings 

The results from temperature and water content prediction models indicate moderate performance 

across various ML approaches, highlighting several limitations. The moderate R² scores suggest that 

these models only partially capture the underlying relationships in the data, and their ability to 

generalize to unseen, real-world scenarios is limited. 

A key factor influencing these results is the dependency on previously predicted resistivity values as 

input features, which introduces potential biases. This reliance, especially given that much of the 

dataset contains "seen" data, likely inflates model performance metrics, reducing their applicability 

in more variable, real-world settings. 

Figures 3.14 and 3.15 illustrate the alignment between each model’s predictions using MaxAbsScaler 

and the actual measurements for temperature. These visualizations provide a comparative insight into 

each model’s effectiveness, underscoring the need for further refinement, unseen test data, and 

advanced feature engineering to improve the generalization capabilities of these models.  
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Figure 3.14 - Comparison between the actual and predicted temperature values of permafrost for each model using 
maximum absolute scaler method, a) for NN, b) for Random Forest, c) for SVR, d) for gradient boosting and e) for 

Linear Regression. 
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Figure 3.15 - Comparison between the actual and predicted water content values of permafrost for each model using 
maximum absolute scaler method, a) for NN, b) for Random Forest, c) for SVR, d) for gradient boosting and e) for 

Linear Regression. 
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Chapter 4: ERT and CNN Inversion 
Summary: Chapter 4 explores the use of ERT and CNN for imaging permafrost regions. ERT is 

presented as a method that measures subsurface resistivity to distinguish between frozen (high 

resistivity) and thawed (low resistivity) ground. The chapter highlights the limitations of conventional 

inversion techniques in capturing sharp resistivity contrasts and introduces a CNN-based inversion 

model. This CNN model demonstrates improved accuracy in reconstructing detailed subsurface 

resistivity distributions, effectively identifying complex discontinuities within permafrost regions. 

Figure 4.1 represents the overall workflow of this chapter. 

 

Figure 4.1 – The workflow of CNN inversion 
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4.1 ERT definition and application 

ERT is a is a powerful geophysical method for monitoring permafrost conditions, providing insights 

into the physical properties of the subsurface by measuring the resistance of soil or rock to the flow of 

electrical current. This technique is particularly useful for characterizing permafrost because frozen 

ground, which contains ice, has significantly higher resistivity compared to thawed ground, where 

water serves as a conductor (Hilbich et al., 2008). 

It involves injecting electrical current into the ground through a pair of electrodes and measuring the 

resulting potential differences at other electrode pairs. By systematically varying the positions of the 

current and potential electrodes, a dataset of apparent resistivity measurements is obtained, which 

can be inverted to produce a two-dimensional (2D) or three-dimensional (3D) model of the subsurface 

resistivity (Loke et al., 2013). 

ERT involves three main stages: 

1. Data Acquisition: Involves collecting resistivity data in the field using specific electrode arrays. 

2. Data Preprocessing and Inversion: Converts raw measurements into resistivity models through 

computational algorithms. 

3. Interpretation: Identifies geological or hydrological features from the resistivity models. 

In permafrost regions: 

• Frozen ground: Exhibits high resistivity due to the low conductivity of ice. 

• Thawed ground: Shows lower resistivity because liquid water increases the conductivity. 

• Mixed phases: Areas with partially frozen ground have intermediate resistivity values. 

This contrast enables the delineation of permafrost boundaries, the active layer, and transitions 

between frozen and unfrozen zones. 

 

4.1.1 Data Acquisition for ERT 

Collecting electrical resistivity (ER) data involves a systematic approach to ensure accurate 

measurements and reliable subsurface interpretations. The process begins with equipment setup, 

which includes deploying a resistivity meter, power supply, and electrodes in the field. Proper 

electrode spacing and alignment are essential to achieve the desired depth of investigation and 

resolution (Loke et al., 2021). 

Survey design is critical and involves selecting an appropriate electrode configuration, such as Wenner 

or Schlumberger arrays, based on the specific objectives and geological conditions of the study area. 

Data acquisition is performed by injecting electrical current into the ground through current 

electrodes and measuring the resulting potential difference at receiving electrodes, which is then used 

to calculate apparent resistivity (Dahlin, 2001). 

 

4.1.2 Different inversion techniques 

ERT involves transforming apparent resistivity data collected in the field into meaningful subsurface 

models. This transformation is achieved through inversion techniques, which convert raw resistivity 

measurements into a distribution of resistivity values that represent the electrical properties of the 

subsurface. These models help identify variations in lithology, moisture content, or ice presence, 

making them particularly valuable for permafrost studies (Loke et al., 2013). 

Conventional inversion methods, such as deterministic inversion employs a systematic approach to 

find the best-fitting resistivity distribution by solving the inverse problem with predefined 
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mathematical constraints. It typically relies on optimization techniques, such as least-squares or 

Occam's inversion, which iteratively minimize the objective function representing the misfit between 

observed and calculated resistivity values. However, they often struggle to capture sharp boundaries 

or lateral heterogeneities, such as those found in discontinuous permafrost zones (Dahlin & Zhou, 

2004; Zhong et al., 2021). 

Also, robust inversion focuses on minimizing the influence of outliers and emphasizes capturing sharp 

resistivity contrasts, making it better suited for complex geological settings like discontinuous 

permafrost zones. Unlike deterministic inversion, which assumes smoothness, robust inversion uses 

L1-norm or hybrid L1-L2-norm regularization techniques to achieve more distinct boundaries in 

resistivity models. 

Advanced inversion techniques, including 2D and 3D resistivity inversion, have improved subsurface 

imaging by accounting for spatial complexities. Additionally, time-lapse inversion methods enable 

monitoring temporal changes in resistivity, which is critical for studying seasonal freeze-thaw cycles 

in permafrost (Kneisel et al., 2008). Hybrid approaches, such as joint inversion, combine resistivity 

data with other geophysical datasets, such as seismic, to improve model accuracy and resolution 

(Buckel et al., 2021). 

ML-based inversion techniques are emerging as a promising alternative to traditional methods. These 

approaches leverage the power of neural networks and ensemble algorithms to predict resistivity 

distributions more accurately, particularly in areas with complex geological structures. Such methods 

have demonstrated the ability to detect anomalies and discontinuities in permafrost regions, offering 

enhanced sensitivity and precision compared to conventional techniques (Thaler et al., 2023; Liu et 

al., 2024). 

 

4.2 Conventional deterministic inversion using ResiPy 

Following the generation of apparent resistivity through forward modeling for the dataset generated 

in section 3.4, ResiPy was used for the inversion process. This step converted the synthetic apparent 

resistivity data into detailed ERTs. These visualized maps of the resistivity distribution within the soil, 

capturing the distinct characteristics of each layer and facilitating further analysis of the soil's 

properties. 

 

4.2.1 Mesh Configuration 

ResiPy employs triangular meshes for resistivity inversion, with a default configuration of three 

elements between each electrode and a growth factor of 20% to 50% for deeper regions. However, for 

direct comparison with the CNN inversion results, a fine mesh configuration with 1x1 meter elements 

and growth factor equal to 20% was used. This ensured consistency in resolution across both methods, 

allowing for meaningful evaluations of their respective performances. 

 

4.2.2 Regularization and inversion configuration 

ResiPy utilizes a smoothness-constrained least-squares inversion technique, commonly referred to as 

Tikhonov regularization. This method aims to stabilize the inversion process by balancing the trade-

off between fitting the observed data and maintaining a smooth resistivity model. The following 

features characterize ResiPy's inversion methodology: 
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• Misfit Threshold: The inversion process iteratively minimizes the difference between observed 

and modeled data, halting when the misfit falls below a predefined threshold. This ensures that 

the final model adequately represents the input data without excessive computation. 

• Iteration Limits: To prevent overfitting and manage computational demands, the inversion 

typically runs for 10–20 iterations by default. 

• Sensitivity Matrix Normalization: ResiPy normalizes the sensitivity matrices to account for 

variations in electrode spacing and subsurface coverage, ensuring consistent results across 

different configurations. 

• Smoothing Factor: A regularization parameter (lambda) is applied to balance data misfit and 
model smoothness, optimizing the trade-off between capturing fine details and avoiding noise 

amplification. 

Figures 4.2 to 4.4 illustrate examples of generated 2D models alongside their corresponding ERT 

results obtained through the conventional inversion technique. These figures highlight the strengths 

and limitations of traditional inversion methods: 

• While the conventional inversion technique is generally effective at mapping large-scale resistivity 

patterns, it struggles to accurately capture discontinuities within the permafrost regions. 

• This limitation may be partly due to the Wenner-Schlumberger array configuration, which, while 

useful for producing general resistivity profiles, has some weaknesses in detecting sharp 

transitions and discontinuities within the subsurface. 

These observations underscore the potential need for enhanced modeling and inversion techniques 

to better resolve fine-scale features within permafrost regions, especially where discontinuities play a 

critical role in understanding subsurface dynamics. 

 

 

 

 
Figure 4.2 – First example of generated 2D models alongside their corresponding ERT  
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Figure 4.3 – Second example of generated 2D models alongside their corresponding ERT 

 

 

 

 
Figure 4.4 – Third example of generated 2D models alongside their corresponding ERT 

 

4.3 CNN Model for Resistivity Inversion 

The concluding stage of this study focused on leveraging a CNN model for resistivity inversion, 

targeting the transformation of synthetic apparent resistivity data into true resistivity distributions. 

Using the generated 2D apparent resistivity dataset, which represented permafrost regions with 

discontinuities as outlined in Section 3.4, the CNN model was designed to address the challenges 

posed by conventional inversion methods. 

The CNN-based inversion methodology aimed to provide a more automated and precise approach to 

inversion in permafrost environments. By capturing complex spatial resistivity variations, the model 

sought to overcome limitations such as the inability of traditional methods to resolve sharp lateral 

heterogeneities or intricate subsurface features. This approach was particularly valuable for imaging 

the resistivity distributions of frozen and thawed soil configurations, providing insights into the 

permafrost's structural characteristics. 

The use of a CNN for resistivity inversion represents a pioneering step towards improving inversion 

accuracy in geophysical studies. The model's ability to learn from diverse synthetic datasets and 

predict detailed resistivity maps underscores its potential for real-time imaging applications in 

permafrost research and monitoring. This innovative approach demonstrates the applicability of deep 
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learning techniques in geophysical inversions, paving the way for future advancements in this 

domain. 

4.3.1 Mesh Creation and Data Preparation 

To prepare for training the CNN model, a fine spatial mesh was created to represent the resistivity 

distribution across each permafrost model. The preparation process involved the following steps: 

• Mesh Creation: The Gmsh library was employed to generate a fine, rectangular mesh with a 

resolution of 1 x 1 meter. This high-resolution mesh was designed to accurately capture the spatial 

variations in resistivity across the permafrost models, ensuring a realistic representation of 

subsurface configurations. 

• Resistivity Assignment: Resistivity values, previously saved for each model, were assigned to 

individual mesh elements based on the region type (e.g., permafrost, thaw, base, or active layers). 

The properties of these regions, such as temperature, water content, and density, were used to 

determine the corresponding resistivity values, ensuring consistency with the predefined 

characteristics of each generated model. 

This structured approach to mesh creation and resistivity assignment facilitated the preparation of 

high-quality datasets for CNN training, enabling the model to learn the spatial and resistivity patterns 

critical for accurate inversion. 

 

4.3.2 CNN Model Architecture 

The CNN model was designed to interpret apparent resistivity data and predict a detailed resistivity 

distribution across the mesh, accurately reflecting the complex spatial patterns present in permafrost 

regions. The architecture of the CNN model included the following components: 

• Input Layer: Configured to accept input data as a flattened array of apparent resistivity values, 

shaped to (480, 1, 1). This format ensured compatibility with the model's convolutional layers and 

allowed it to process the data effectively. 

• Convolutional Layers: 

o First Layer: Implemented with 32 filters, a kernel size of (5, 1), and ReLU activation. This layer 

was followed by Batch Normalization to stabilize learning and a 10% dropout rate to prevent 

overfitting. 

o Second Layer: Used 64 filters, a kernel size of (3, 1), and ReLU activation, again followed by 

Batch Normalization and a 10% dropout rate. 

o Third Layer: Incorporated 128 filters with a kernel size of (3, 1) and ReLU activation to capture 

finer spatial features in the resistivity data. 

• Flattening Layer: Transformed the 3D feature maps generated by the convolutional layers into a 

1D array, making the data suitable for processing by the fully connected layers. 

• Fully Connected Layers: 

o Dense Layer: Consisted of 256 neurons with ReLU activation, enabling the model to learn 

complex, nonlinear relationships in the data. 

o Output Layer: A dense layer reshaped to output a 2D resistivity matrix that matched the 

dimensions of the input mesh, providing the final predicted resistivity distribution. 
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The CNN model was compiled using the Adam optimizer, chosen for its adaptive learning rate and 

efficiency in training deep networks. The loss function was set to MSE to minimize the squared 

differences between predicted and actual resistivity values. Additionally, MAE was included as a 

supplementary evaluation metric to provide further insights into model performance. 

This architecture was designed to leverage the spatial dependencies in the apparent resistivity data 

and produce highly detailed resistivity maps, advancing the capability to monitor and analyze 

permafrost regions. 

 

4.3.3 Training and Evaluation 

The training process for the CNN model used to predict resistivity distributions from apparent 

resistivity data was conducted as follows: 

• Data Split: The dataset was divided into training and testing subsets, with 80% of the data 

allocated for training and 20% for testing. This split ensured that the model was evaluated on data 

it had not encountered during training, providing a realistic measure of its generalization 

capability. 

• Training Parameters: 

o Epochs: The model was trained over 100 epochs, allowing sufficient iterations to learn patterns 

in the data while monitoring for signs of overfitting. 

o Batch Size: A batch size of 16 was used, balancing computational efficiency and model 

performance. 

• Monitoring and Regularization: 

o Loss Monitoring: Both training and validation losses were tracked during the training process. 

This step was crucial to ensuring that the model converged effectively and did not overfit the 

training data. 

o Validation: Periodic evaluation on the validation set during training provided insights into the 

model's performance on unseen data, guiding potential adjustments to hyperparameters or 

early stopping criteria. 

• Evaluation Metrics: 

o Loss: The MSE was calculated on the test set to evaluate how well the model minimized 

prediction errors. 

o MAE: As an additional evaluation metric, MAE was used to measure the average magnitude of 

errors in the predictions, providing a complementary view of model accuracy. 

The test set evaluation confirmed the model's ability to predict detailed resistivity distributions, 

leveraging the spatial dependencies in the apparent resistivity data. These metrics provided a 

quantitative assessment of the model's performance and highlighted areas for further optimization or 

refinement. 

 

4.3.4 Model Training and Evaluation 

The CNN model was trained for resistivity inversion over 100 epochs with a batch size of 16. The final 

training metrics indicated a training loss of 46,064.20 and a MAE of 156.71, while the validation 

metrics showed a significantly higher validation loss of 165,696.27 and validation MAE of 296.05. 
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These results suggest potential overfitting, as the model performed better on the training set than on 

the validation set. 

An additional evaluation on a separate test dataset yielded a test loss of 164,884.58 and a test MAE of 

295.24. These test results confirm that the CNN model has some capacity for resistivity inversion but 

struggles to accurately predict resistivity distributions, especially in regions with complex patterns or 

discontinuities. 

To improve the model’s performance, expanding the dataset to include a wider variety of resistivity 

scenarios could be beneficial. A larger, more diverse dataset might help the CNN model learn more 

robust patterns and enhance its ability to generalize, thereby improving inversion accuracy in complex 

permafrost regions. 

The training and validation loss curves (figure 4.5) and MAE curves (figure 4.6) display a divergence 

between training and validation results, supporting the hypothesis of overfitting. 

 

Figure 4.5 - Training and validation loss curves over the 100 training epochs 
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Figure 4.6 - Training and validation MAE curves over the 100 training epochs 

 

4.3.5 Model Inversion Examples on Unseen Data 

Despite some overfitting observed during training, the proposed CNN inversion model demonstrates 

promising performance on unseen data. Figures 4.7 to 4.16 present examples of actual resistivity 

models of permafrost, alongside results obtained from both the conventional inversion technique and 

the proposed CNN inversion model. 

The comparison illustrates the CNN model’s potential in capturing complex resistivity discontinuities, 

which are often challenging for traditional inversion methods to resolve accurately. The CNN model’s 

ability to detect these discontinuities highlights its applicability in real-time imaging, offering a more 

detailed representation of subsurface structures in permafrost regions. This capability could be 

particularly valuable in applications where rapid, reliable imaging is essential for geotechnical and 

environmental assessments. 
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Figure 4.7 - Comparison between the CNN inversion and conventional inversion methods 1st example 

 

In Figure 4.7, the comparison between the real resistivity model, conventional inversion method, and 

CNN inversion method highlights the performance of both approaches in reconstructing subsurface 

resistivity distributions. The conventional inversion method (middle) provides a smoother resistivity 

distribution but struggles to accurately capture sharp boundaries and smaller-scale resistivity 

variations. This results in a loss of detail and potential underrepresentation of localized resistivity 

anomalies. 

On the other hand, the CNN inversion method (bottom) demonstrates a significant improvement in 

detecting fine details and capturing the true resistivity patterns, including sharp transitions and 

localized anomalies. Although some artifacts are present, the CNN inversion aligns more closely with 

the real resistivity model than the conventional method. 



45 
 

 

Figure 4.8 - Comparison between the CNN inversion and conventional inversion methods 2nd example 

In Figure 4.8, the conventional inversion method (middle panel) provides a smoothed representation 

of these regions, where resistivity transitions are more gradual, and some high-resistivity zones are 

either underestimated or blended with surrounding areas. This smoothing effect is consistent with 

the conventional inversion's tendency to regularize the solution, sacrificing localized details for 

broader continuity. 

Compared to the conventional method, the CNN inversion (bottom panel) offers a sharper depiction 

of resistivity variations, successfully reconstructing the spatial characteristics and preserving 

boundary transitions. While the CNN approach shows enhanced localization of resistivity zones 

compared to the traditional method, the results here exhibit slightly less precision in capturing some 

finer variations compared to Figure 4.7. This difference may indicate how the CNN adapts differently 

depending on the complexity or overlap of resistivity features in unseen datasets. 

Relative to Figure 4.7, this example emphasizes how the CNN excels in identifying multiple 

overlapping or closely spaced resistive regions, demonstrating its adaptability across various 

conditions. However, it also reflects that its performance may vary slightly depending on the density 

and distribution of resistivity anomalies, offering a trade-off between preserving resolution and 

managing noise. The conventional approach, on the other hand, continues to struggle with resolving 

finer resistivity patterns, showing similar limitations as in the prior example. Together, these results 

highlight the CNN's superior potential for reconstructing complex resistivity distributions over 

traditional methods, though both approaches require careful interpretation depending on application 

context. 
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Figure 4.9 - Comparison between the CNN inversion and conventional inversion methods 3rd example 

In Figure 4.9, the real resistivity model (top panel) represents a configuration with distinct high-

resistivity regions characterized by sharper boundaries and varied spatial distribution. The 

conventional inversion method (middle panel) again exhibits its limitation in resolving abrupt 

transitions, as the sharp resistive boundaries appear blurred, and resistive zones are over-smoothed, 

blending with adjacent regions. This smoothing tendency persists across the examples, highlighting 

the limitations of conventional inversion in capturing localized features. 

The CNN inversion (bottom panel) shows a notable improvement in reconstructing the resistivity 

profile, with sharper delineation of resistive regions and a better match to the real resistivity model. 

However, in this example, there are slight inaccuracies in reconstructing the geometry of smaller 

resistive zones compared to the earlier cases (Figures 4.7 and 4.8), suggesting that the CNN may face 

challenges when dealing with irregular or compact resistive features. 

Compared to the previous examples, this figure illustrates how the CNN inversion remains consistent 

in capturing the primary resistive regions while showing some variability in resolving smaller or 

overlapping anomalies. Unlike the conventional method, which remains prone to over-smoothing, the 

CNN demonstrates adaptability across various scenarios. However, it also reveals the need for further 

refinement in handling cases with more intricate geometries or closely spaced anomalies. 
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Figure 4.10 - Comparison between the CNN inversion and conventional inversion methods 4th example 

In figure 4.10, the CNN inversion method (bottom panel) continues to show superior performance in 

identifying and reconstructing the resistive zones with greater precision and clarity. While minor 

discrepancies exist in capturing the exact shape and edges of some resistive regions, the CNN 

generally retains the spatial layout and intensity closer to the real model compared to the conventional 

approach. Notably, the CNN inversion captures smaller resistive features, which are almost entirely 

absent in the conventional inversion output. 

Compared to the previous examples, Figure 4.10 demonstrates the CNN's consistent ability to adapt 

to different configurations, providing more accurate and detailed reconstructions. The conventional 

method's results remain largely unchanged in their smoothing tendency, further emphasizing the 

CNN's advantage in handling more intricate resistivity distributions. 

The CNN's difficulty in detecting the uppermost features in these figures can be attributed to the size 

and composition of the dataset used for training. The dataset likely contains a higher density of data 

points from deeper regions of the models, as these are typically more abundant in synthetic datasets 

generated for geophysical studies. This imbalance in data representation causes the model to become 

more sensitive to patterns and features associated with deeper regions, while it struggles to adequately 

learn the characteristics of shallow, near-surface structures. 

Furthermore, the lack of sufficient data for the uppermost regions may limit the model's ability to 

generalize to these features, especially when the training process prioritizes minimizing overall error. 

Since deeper regions contribute more significantly to the total resistivity profile in most cases, the 

model inherently focuses on learning these patterns at the expense of shallower details. 
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Figure 4.11 - Comparison between the CNN inversion and conventional inversion methods 5th example 

 

 

Figure 4.12 - Comparison between the CNN inversion and conventional inversion methods 6th example 
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Figure 4.13 - Comparison between the CNN inversion and conventional inversion methods 7th example 

 

 

Figure 4.14 - Comparison between the CNN inversion and conventional inversion methods 8th example 



50 
 

 

Figure 4.15 - Comparison between the CNN inversion and conventional inversion methods 9th example 

 

 

Figure 4.16 - Comparison between the CNN inversion and conventional inversion methods 10th example 
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The illustrations reveal that the conventional inversion method tends to produce a smoother 

resistivity map, capturing general resistivity zones but often failing to resolve finer discontinuities 

or intricate resistivity details. This results in a blurred or averaged interpretation, especially in 

areas where the permafrost layer is interspersed with thawed zones. 

In contrast, the CNN model demonstrates a strong capability to capture more localized resistivity 

variations, providing a closer approximation to the actual resistivity model and highlighting 

discontinuities more effectively. The CNN method yields finer spatial details, showing potential for 

real-time imaging of resistivity structures. However, challenges remain, as the CNN output can 

sometimes include artifacts or show less precise boundaries compared to the ground truth. 

The CNN-based inversion method thus shows considerable promise for identifying discontinuities 

and complex resistivity structures, which are crucial in permafrost mapping applications. While the 

CNN model's performance is promising, further improvements—such as additional data and 

optimized training—could enhance boundary precision and reduce artifacts. Meanwhile, the 

conventional method, although stable, lacks the spatial resolution required for high-detail mapping. 

This comparison underscores the CNN model's advantage in scenarios that demand rapid and 

detailed resistivity mapping, highlighting its value in capturing the intricate heterogeneity 

characteristic of permafrost regions. 
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Chapter 5: Discussion and conclusion 
Summary: This chapter outlines the critical discussions and limitations observed throughout the 

study, focusing on the challenges in predicting the petrophysical properties of permafrost, limitations 

in the temperature and water content prediction models, and the constraints of the CNN-based 

inversion methodology. It also provides directions for future work to address these limitations. 

5.1 Discussion 

This study explored the application of ML and geophysical methods to monitor permafrost regions, 

focusing on predicting the resistivity of frozen soil, modeling permafrost characteristics, and 

improving resistivity inversion techniques. The key findings are as follows: 

1. Resistivity Prediction Models: The Neural Network model demonstrated superior performance in 

predicting the resistivity of frozen soil, achieving the highest R² score (0.975) and the lowest error 

metrics among all tested models. The model effectively captured the complex relationships 

between soil properties (temperature, dry density, water content) and resistivity, closely aligning 

with experimental data from Shan et al. (2015). Random Forest and Gradient Boosting models 

also showed strong predictive capabilities but were slightly less accurate than the Neural Network. 

2. Generation and Inversion of 2D Permafrost Models: Synthetic 2D models representing 

permafrost regions with discontinuities were successfully generated, incorporating layers like the 

active layer, thaw layer, permafrost, and base layer with realistic properties. Conventional 

inversion methods, using the Wenner-Schlumberger array configuration, were able to map large-

scale resistivity patterns but struggled to resolve finer discontinuities within permafrost regions. 

3. Permafrost Resistivity Prediction: Tree-based models, particularly Random Forest and Gradient 

Boosting, were most effective in predicting permafrost resistivity from synthetic data, achieving 

moderate R² scores (0.5882 and 0.5501, respectively). Linear Regression and SVR models 

underperformed, indicating their limitations in handling the non-linear relationships present in 

the data. 

4. Temperature and Water Content Prediction: ML models showed moderate performance in 

predicting temperature within permafrost regions, with the Support Vector Regressor using 

MaxAbsScaler achieving the highest R² score (0.5071). Models struggled to accurately predict 

water content, with negative R² scores suggesting poor model fit and reliability. The dependency 

on previously predicted resistivity values introduced biases, highlighting a methodological 

limitation. 

5. CNN Model for Resistivity Inversion: A CNN model was developed for resistivity inversion, 

transforming apparent resistivity data into true resistivity distributions with enhanced accuracy. 

The CNN outperformed conventional inversion methods, effectively capturing complex resistivity 

discontinuities and providing detailed subsurface imaging. While overfitting was observed, the 

model showed promise in resolving sharp boundaries and localized anomalies within permafrost 

regions. 
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5.2 Limitation 

• Predicting resistivity of frozen soil and feature selection: 

A significant limitation in predicting the resistivity of frozen soil lies in the difficulty of determining 

appropriate petrophysical properties. The current methodology relies on a limited dataset, primarily 

digitized from published experimental results. While this provides a foundational framework, 

predicting resistivity based on such constrained properties may not capture the full complexity of 

frozen soil behavior. 

Key factors, such as porosity, grain size distribution, and mineral composition, were excluded from 

the model due to the unavailability of data. Including these properties could lead to a more robust and 

comprehensive model. However, achieving this would require extensive experimental efforts across 

diverse permafrost regions to quantify these additional parameters under varying environmental 

conditions. Such efforts are critical to developing a universally applicable and precise model for 

predicting frozen soil resistivity. 

 

• Temperature and Water Content Prediction Models 

The methodology for predicting temperature and water content using ML models demonstrated 

moderate accuracy but revealed inherent limitations. A critical issue is the reliance on predicted 

resistivity values as input features for these models. These resistivity values were derived using the 

best-performing model trained on 80% of the dataset, resulting in a significant proportion of "seen" 

data being used for subsequent predictions. This introduces potential biases, inflating the model's 

performance metrics and reducing its generalizability to real-world scenarios. 

Moreover, the absence of additional critical features such as porosity, grain size distribution, and 

thermal conductivity further limits the accuracy of temperature and water content predictions. Future 

efforts should focus on incorporating such features, supported by field data, to develop more reliable 

and generalizable models. 

 

• CNN Inversion Models 

The CNN-based inversion model exhibited promising results in reconstructing resistivity 

distributions with fine spatial details and capturing complex discontinuities within permafrost 

regions. However, several limitations must be addressed: 

1. Overfitting: The training process indicated signs of overfitting, as the model performed better on 

the training data than on the validation or test sets. This suggests the need for a richer and more 

diverse dataset to improve the model's generalization capabilities. 

2. Dependency on Fixed Configurations: The CNN inversion model was trained on data generated 

with fixed configurations, such as specific electrode sequences, spacing, and mesh sizes. Any 

changes to these configurations significantly influenced the model's performance, highlighting its 

limited adaptability compared to conventional inversion techniques, which can be adjusted 

dynamically. 

3. Lack of Real Data Validation: While the CNN model was tested on synthetic data, the absence of 

real electrical resistivity data corresponding to the assumed configurations represents a critical 

limitation. The inability to validate the model with real-world data restricts its applicability and 

reliability in practical scenarios. Future studies should prioritize applying CNN inversion 

techniques to real datasets to assess their robustness and performance under real-world 

conditions. 
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5.3 Implications and Future Directions 

The initial goal of this thesis was to predict the petrophysical properties of permafrost using electrical 

resistivity models and ML techniques. While the study achieved significant progress, the following 

areas require further exploration: 

• Expanded Experimental Datasets: Developing a robust predictive model for frozen soil resistivity 

necessitates broader experimental data, including additional properties such as porosity, grain 

size distribution, and mineral composition. 

• Generalization of CNN Models: Addressing overfitting in CNN inversion models through the 

development of richer, more varied datasets is essential. Incorporating multiple configurations 

for electrode spacing, sequences, and mesh sizes could enhance the adaptability and 

generalizability of these models. 

• Integration of Real Data: Future studies should focus on acquiring real electrical resistivity 

datasets corresponding to the assumed configurations. This would enable a direct evaluation of 

the CNN inversion model's performance in real-world scenarios, bridging the gap between 

synthetic and field data. 

• Refinement of Temperature and Water Content Models: Incorporating additional features, such 

as porosity and thermal conductivity, into the temperature and water content prediction models 

could improve their accuracy. A move towards more advanced feature engineering and validation 

on unseen datasets is necessary. 

 

5.4 Conclusion 

This study highlights the potential of ML and CNN-based inversion techniques for modeling the 

complex properties of permafrost. However, the limitations identified underscore the need for 

extensive data collection, methodological refinement, and validation on real-world datasets. 

Addressing these challenges is crucial for advancing the application of ML in permafrost research, 

enabling more accurate predictions and effective monitoring of these critical environments. 
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Annex 1: Experimental Data Extracted from Shan et al. (2015) 

This annex presents the experimental data extracted from Shan et al. (2015), which served as the basis 

for generating synthetic datasets and training ML models in this study. Tables A1.1 to A1.4 summarize 

the key data points, including resistivity values, water content, dry density, and temperature ranges. 

Table A1.1 - Resistivity Values at -17°C 

Temperature (°C) Dry Density (g/cm³) Water Content % Resistivity (ohm-m) 

-17 

1.8 

3.4 960.7 
4.5 647.9 
5.2 471.1 
6.3 412.2 
7.6 422.3 
8.9 497.5 
9.7 519.9 

1.7 

3.5 1007.5 
4.7 670.2 
5.4 513.8 
6.7 458.9 
8.0 458.9 
9.4 523.9 
10.2 544.2 
11.8 615.4 

1.61 

3.8 1072.5 
5.0 719.0 
5.7 560.5 
7.1 519.9 
8.5 513.8 
9.9 554.4 

10.8 574.7 
12.5 633.6 

1.51 

4.0 1125.3 
5.3 790.1 
6.1 615.4 
7.6 546.3 
9.0 517.8 
10.6 586.9 
11.5 605.2 
13.3 662.1 

1.42 

4.2 1186.2 
5.7 867.3 
6.5 680.4 
8.0 595.0 
9.6 552.4 
11.3 611.3 
12.2 637.7 
14.2 684.4 

 

 

Table A1.2 - Resistivity Values at -3°C 

Temperature (°C) Dry Density (g/cm³) Water Content % Resistivity (ohm-m) 
-3 1.8 3.4 303.2 



60 
 

4.5 170.4 
5.2 69.6 
6.3 42.6 
7.6 43.5 
8.9 46.4 
9.7 65.3 

1.7 

3.5 336.1 
4.7 180.4 
5.4 78.6 
6.7 49.6 
8.0 48.5 
9.4 50.4 
10.2 71.3 
11.8 79.1 

1.61 

3.8 362.1 
5.0 188.4 
5.8 92.5 
7.1 57.5 
8.5 58.4 

10.0 59.3 
10.8 76.2 
12.5 90.0 

1.51 

4.0 386.0 
5.3 203.3 
6.1 108.5 
7.6 66.5 
9.0 66.4 
10.6 70.2 
11.5 91.1 
13.3 98.0 

1.42 

4.3 408.9 
5.7 218.3 
6.5 127.4 
8.0 91.4 
9.7 79.3 
11.3 84.1 
12.3 99.0 
14.2 111.9 
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Table A1.3 - Resistivity Values at 3°C 

Temperature (°C) Dry Density (g/cm³) Water Content % Resistivity (ohm-m) 

3 

1.8 

3.3 212.5 
4.5 96.9 
5.2 69.5 
6.3 50.8 
7.7 42.2 
8.9 33.6 
9.7 28.1 

1.7 

3.6 243.0 
4.7 107.8 
5.4 82.0 
6.7 54.7 
8.1 46.1 
9.4 39.1 
10.2 33.6 
11.8 22.7 

1.61 

3.7 268.8 
5.0 123.4 
5.7 93.0 
7.1 60.2 
8.5 50.0 

10.0 43.0 
10.8 37.5 
12.5 28.9 

1.51 

4.0 297.7 
5.3 139.1 
6.1 104.7 
7.5 66.4 
9.0 54.7 
10.6 46.9 
11.5 42.2 
13.3 33.6 

1.42 

4.2 321.1 
5.6 168.8 
6.5 115.6 
8.0 73.4 
9.6 57.8 
11.3 52.3 
12.3 47.7 
14.2 41.4 
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Table A1.4 - Resistivity Values at 17°C 

Temperature (°C) Dry Density (g/cm³) Water Content % Resistivity (ohm-m) 

17 

1.8 

3.3 142.3 
4.5 95.5 
5.6 53.5 
6.7 30.1 
7.8 25.3 
8.8 20.6 
9.9 16.7 

1.7 

3.5 165.6 
4.8 104.1 
5.9 65.9 
7.1 33.2 
8.3 27.7 
9.3 23.7 
10.5 19.0 
11.7 18.1 

1.61 

3.4 194.4 
4.6 109.5 
5.6 72.9 
6.7 37.8 
7.8 30.8 
8.8 26.8 
9.9 22.1 
11.1 21.3 

1.51 

3.8 227.0 
5.1 128.2 
6.3 79.1 
7.5 40.9 
8.8 33.1 
9.8 31.5 
11.1 27.5 
12.5 25.1 

1.42 

4.2 288.4 
5.8 160.8 
7.1 99.3 
8.6 50.2 
9.9 36.9 
11.1 32.9 
12.6 32.9 
14.1 26.6 
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Annex 2: ML Models and Data Normalization Methods 

This annex provides detailed explanations of the ML models and data normalization techniques used 

in this study. It outlines the strengths, limitations, and justifications for each approach, alongside the 

equations and metrics that guided model evaluation. 

 

A2.1 ML Regression Models 

➢ Random Forest 

Figure A2.1 illustrates the architecture of the Random Forest algorithm. The dataset is used to create 

multiple decision trees, each trained on a different subset of the data. For regression tasks, the 

individual results (Result-1, Result-2, ..., Result-N) from each decision tree are averaged to produce 

the final output. This ensemble approach helps reduce overfitting and increases the model’s ability to 

generalize, resulting in a more accurate and stable prediction. The process of averaging the results 

from each tree improves the model's robustness, especially in handling complex, non-linear 

relationships within the data. 

• Justification: Random Forest was chosen for its robustness in handling complex, non-linear 

relationships and its ability to reduce overfitting through ensemble learning. Given the variability 

in permafrost data, Random Forest’s capability to generalize by averaging predictions from 

multiple decision trees made it an ideal choice. 

• Strengths: Random Forest is highly interpretable, relatively resistant to overfitting, and can 
handle large datasets with high dimensionality. 

• Limitations: Random Forest can be computationally intensive with large datasets, and it may 
struggle with datasets where relationships are highly linear, as it inherently Favors non-linear 

patterns. 

 

Figure A2.1- Structure of random forest regressor algorithm (Sathiparan et al. 2024) 

 

➢ Support Vector Regressor (SVR) 

The SVR model attempts to fit a hyperplane (solid line) through the data points in such a way that 

most data points are within a margin of tolerance (ε). Figure A2.2 illustrates the concept of Support 

Vector Regression (SVR). The dashed lines represent the boundary of this margin, where points 

outside the margin contribute to the error. The left graph shows a non-linear relationship, with SVR 

using kernel functions to transform the input into a higher-dimensional space, while the right graph 
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depicts a linear relationship. This tolerance zone enables SVR to generalize well, even with complex 

or noisy data. 

• Justification: SVR was selected due to its ability to handle both linear and non-linear relationships 

by applying kernel functions, making it suitable for complex geophysical data that may contain 

mixed relationships. 

• Strengths: SVR provides flexibility in model complexity through kernel functions and is effective 
with high-dimensional data. 

• Limitations: SVR can be sensitive to outliers, and it may not perform as well as other models with 
very large datasets due to its computational demands. Additionally, tuning kernel parameters can 

be complex. 

 

Figure A2.2 - Support Vector Regressor (SVR) Approach (Christensen, 2019) 

 

➢ Gradient Boosting 

Gradient Boosting is an ensemble learning method that builds a series of weak learners, typically 

decision trees, in a sequential manner. The key idea is that each new model attempts to correct the 

errors made by the previous models, ultimately improving the overall predictive accuracy. This 

process is known as "boosting," where each subsequent model is "boosted" to perform better on the 

mistakes of the previous ones. 

This iterative approach allows Gradient Boosting to build a powerful predictive model by sequentially 

focusing on the hardest-to-predict cases. However, it is essential to tune the number of iterations, 

learning rate, and tree depth, as an overly complex model can lead to overfitting, while an insufficient 

number of iterations can result in underfitting. 

• Justification: Gradient Boosting was chosen for its iterative learning process, where each model 

in the ensemble corrects the errors of the previous models. This approach is valuable in capturing 

intricate patterns and reducing error sequentially, which aligns well with the layered nature of 

permafrost data. 

• Strengths: Gradient Boosting is powerful for non-linear data and can achieve high predictive 
accuracy by refining model predictions iteratively. 

• Limitations: Gradient Boosting is prone to overfitting, particularly with noisy data. It is also 
computationally intensive, and its performance is highly sensitive to parameter tuning, which 

requires careful validation. 
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➢ k-Nearest Neighbors (k-NN) 

k-NN is a simple, non-parametric ML algorithm used for both classification and regression tasks. It 

operates based on the principle that data points with similar features are likely to have similar 

outcomes. In regression tasks, k-NN predicts the output for a data point by taking the average (or 

sometimes a weighted average) of the outputs of its closest neighbors. 

• Justification: The k-NN algorithm was included as a simple yet effective non-parametric model 

that can capture localized relationships in the data, which is important for detecting variations 

within permafrost regions. 

• Strengths: k-NN is straightforward, interpretable, and does not make assumptions about data 
distribution, making it flexible for diverse data types. 

• Limitations: k-NN can become computationally expensive with large datasets and may struggle 
with high-dimensional data. Its performance is sensitive to the choice of k, and it may perform 

poorly with imbalanced datasets. 

 

➢ Neural Network 

In a regression task, Neural Networks (NNs) work by mapping input features to a continuous output 

value through a series of interconnected layers and transformations. Here’s a step-by-step outline of 

how NN models work for regression: 

1. Input Layer: The input layer takes in the feature data, with each neuron representing one feature 

of the input dataset. This layer simply forwards the data to the next layer without any 

transformations. 

2. Hidden Layers: The input data is then passed through one or more hidden layers. Each hidden 

layer consists of neurons, which apply weights to the incoming data and apply an activation 

function to introduce non-linearity. Common activation functions include ReLU (Rectified Linear 

Unit), sigmoid, or tanh, which help the network capture complex patterns in the data by 

transforming the inputs in non-linear ways. During the training process, the weights of the 

connections between neurons are adjusted to minimize the error in the model's predictions. 

3. Forward Propagation: In forward propagation, data flows from the input layer, through each 

hidden layer, to the output layer. The inputs are multiplied by weights, and biases are added before 

applying the activation function. This process is repeated layer by layer, with each layer 

transforming the data according to its learned weights and biases. 

4. Output Layer: In a regression NN, the output layer typically has a single neuron that outputs a 

continuous value, representing the predicted target variable. Unlike classification tasks where an 

activation function like softmax is used in the output layer, regression tasks may use a linear 

activation function or no activation function at all, as the goal is to produce a continuous output. 

5. Loss Calculation: After the model generates its predictions, it calculates the loss (error) by 

comparing the predicted values to the actual target values from the training data. A common loss 

function for regression tasks is the MSE, which computes the average squared difference between 

the predicted and actual values. 

6. Backpropagation and Optimization: To minimize the loss, the NN adjusts its weights and biases 

through a process called backpropagation. In backpropagation, the model calculates the gradient 

of the loss function with respect to each weight and bias. Using an optimization algorithm such as 

Gradient Descent or Adam, the network updates the weights in the direction that reduces the loss, 

thereby improving its predictions in future iterations. 

7. Training Iterations: The NN repeats forward propagation, loss calculation, and backpropagation 

over many iterations (epochs), gradually minimizing the loss and improving its predictive 

accuracy on the training data. 
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8. Generalization: After training, the model’s performance is evaluated on unseen test data to assess 

its generalization ability. The goal is for the NN to learn patterns in the training data that allow it 

to make accurate predictions on new data without overfitting (memorizing) specific data points. 

Neural networks are particularly effective for complex regression tasks because they can model non-

linear relationships between input features and the target variable, capturing intricate patterns that 

simpler models like linear regression may miss. However, they require a large amount of data and 

computational resources to train effectively, and careful tuning is often needed to avoid overfitting or 

underfitting. 

• Justification: Neural Networks were selected for their capability to model highly complex, non-
linear relationships, which are often present in environmental and geophysical data. The flexibility 

of neural networks makes them well-suited for capturing subtle patterns and dependencies in 

permafrost data. 

• Strengths: Neural Networks can learn complex representations and relationships, especially with 

enough data, and are highly adaptable for various tasks. 

• Limitations: Neural Networks require large datasets and significant computational resources. 

They can overfit easily if not managed with techniques such as regularization. Additionally, they 

are often viewed as "black boxes," lacking interpretability. 

 

 

Figure A2.3 – A simple 2 hidden layer neural network structure (Afan et al. 2021) 

➢ Linear Regression 

Linear regression is one of the simplest and most widely used methods for predicting a continuous 

target variable based on one or more predictor (independent) variables. The core idea of linear 

regression is to find the best-fit line that represents the relationship between the predictors and the 

target variable. 

 

In simple linear regression, we assume a linear relationship between a single predictor x and the target 

y, represented by the equation: 

𝑦 = 𝑚𝑥 + 𝑏 (Equation A2.1) 
 

Where m is the slope of the line (indicating how much y changes for a unit change in x), b is the y-

intercept (the value of y when x is zero). 
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In multiple linear regression, which involves multiple predictors x1, x2, …, xn, the relationship is 

extended to: 

𝑦 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 + 𝑏 (Equation A2.2) 
 

where w1, w2, …, wn, are the weights or coefficients associated with each predictor, and b is the 

intercept. 

How It Works: 

1. Model Fitting: Linear regression finds the values of w and b (for simple regression, m and b) that 

minimize the error between the predicted and actual values of y. This error is often measured 

using the MSE, which calculates the average of squared differences between actual and predicted 

values. 

2. Optimization: The process of minimizing the MSE to find the best-fitting line is usually done using 

a method called Ordinary Least Squares (OLS). OLS adjusts w and b iteratively to minimize the 

total squared errors, finding the optimal line that fits the data. 

3. Interpretation: The coefficients w provide insight into the relationship between each predictor and 

the target variable. A positive coefficient indicates a positive correlation (as the predictor 

increases, so does the target), while a negative coefficient suggests an inverse relationship. 

 

• Justification: Linear Regression was included as a baseline model to assess how well the 
relationships in the data could be captured through linear patterns. It is also straightforward to 

interpret, offering insights into the influence of each predictor. 

• Strengths: Linear Regression is simple, easy to interpret, and computationally efficient, making it 
ideal for benchmarking and exploratory analysis. 

• Limitations: Linear Regression assumes a linear relationship, which may not hold for complex 
permafrost data. It is also sensitive to outliers and can perform poorly if relationships between 

features and the target variable are non-linear. 

 

A2.2 CNN Model 

A CNN is a deep learning model widely used for tasks involving spatial data, such as image processing, 

but it can also be adapted for structured data in regression tasks. CNN are particularly effective when 

the input data has spatial relationships, making them suitable for resistivity inversion tasks where 

capturing spatial patterns and local variations is essential. 

A CNN is a deep learning model widely used for tasks involving spatial data, such as image processing, 

but it can also be adapted for structured data in regression tasks. CNN are particularly effective when 

the input data has spatial relationships, making them suitable for resistivity inversion tasks where 

capturing spatial patterns and local variations is essential. 

The CNN architecture typically consists of three main types of layers: convolutional layers, pooling 

layers, and fully connected layers. For regression tasks, CNN can be modified to output continuous 

values in the final layer, allowing them to predict target variables like resistivity. 

1. Convolutional Layers: 

o The convolutional layer is the core building block of a CNN. In this layer, small filters (or 

kernels) slide over the input data, performing an element-wise multiplication and summing the 
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results. This process, called convolution, extracts features from the input data, such as edges, 

textures, or spatial patterns. 

o For resistivity data, the convolutional layers can capture spatial variations and discontinuities 

within permafrost, identifying patterns that might correlate with underlying resistivity 

structures. 

2. Pooling Layers: 

o Pooling layers are used to reduce the spatial dimensions of the data, which helps to decrease 

computation and control overfitting. Typically, max pooling or average pooling is applied. Max 

pooling, for example, takes the maximum value in each region of the feature map, preserving 

the most prominent features while discarding less important information. 

o Pooling layers help the model generalize by focusing on the most significant patterns, which 

can improve its robustness and prevent overfitting to specific details in the training data. 

3. Fully Connected Layers: 

o After several convolutional and pooling layers, the extracted features are flattened and passed 

through fully connected layers. These layers combine the features detected by previous layers 

to learn higher-level patterns and relationships. 

o In regression tasks, the final fully connected layer typically has a single neuron with a linear 

activation function, producing a continuous output value that represents the model’s 

prediction. 

4. Output Layer: 

o In this study, the output layer has a single neuron with a linear activation function, as the goal 

is to produce a continuous output that represents the predicted resistivity. Unlike classification 

tasks, which use activation functions like softmax, regression tasks often use a linear output. 

• Justification for Using CNN in Resistivity Inversion: CNN are well-suited to this study due to their 

ability to capture spatial relationships within data. Resistivity data from permafrost regions 

typically exhibit complex spatial patterns and discontinuities that are difficult to capture using 

traditional methods. CNN, with their layer-by-layer feature extraction approach, can identify 

subtle spatial variations that may correspond to different resistivity zones, making them ideal for 

inversion tasks that require a detailed and accurate spatial representation. 

o Handling Complex Spatial Patterns: Conventional resistivity inversion techniques often 

smooth out details and may miss finer discontinuities in resistivity distribution. CNN, however, 

can capture these intricate spatial patterns through convolutional filters, allowing the model to 

detect sharp boundaries and regions with abrupt resistivity changes, which are common in 

permafrost structures. 

o Feature Hierarchies: CNN create feature hierarchies, allowing the model to recognize both local 

and global patterns. This is particularly important in resistivity inversion, as it enables the 

model to detect both small-scale variations within a single layer and larger structural patterns 

across different layers. 

o Efficiency in Large Datasets: CNN are designed to handle large datasets efficiently, which is 

advantageous when working with spatial data across multiple pseudo-sections or resistivity 

models. This scalability is essential for real-time imaging, where rapid and detailed analysis is 

required for environmental and geotechnical assessments. 
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• Strengths: CNN are well-suited to tasks where spatial relationships are important, as they can 

capture both local and global patterns effectively. They can identify intricate structures in 

resistivity data, potentially providing more accurate and detailed inversion results compared to 

traditional methods. 

• Limitations: CNN require large amounts of labelled data for training to generalize effectively. They 

are also computationally intensive and can be prone to overfitting if the dataset is not diverse 

enough. For resistivity inversion, increasing the dataset size or incorporating more varied patterns 

can help improve the model's robustness. 

In summary, the CNN model offers a promising approach for resistivity inversion by capturing 

spatially complex structures within permafrost regions. Its ability to detect discontinuities and subtle 

resistivity variations provides a valuable tool for real-time imaging, though it requires sufficient data 

and careful tuning to achieve reliable results. The choice of CNN in this study is justified by its capacity 

to capture and process the spatial dependencies in resistivity data, making it more suitable than 

traditional inversion methods for accurate permafrost mapping. 

 

A2.3 Model Evaluation Metrics 

To assess the performance and accuracy of the ML regression models used in this study, various 

evaluation metrics were employed. These metrics provide insights into the predictive power of the 

models and their ability to generalize across unseen data. The following key metrics were used: 

➢ R² (Coefficient of Determination) 

R² is a statistical measure that indicates the proportion of the variance in the dependent variable that 

is predictable from the independent variables. It ranges from 0 to 1, where an R² value of 1 indicates 

that the model perfectly explains the variance in the data, while an R² value close to 0 implies that the 

model fails to capture the variability. Equation: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (Equation A2.3) 

 

where yi represents the actual value, ŷi is the predicted value, and ȳ  is the mean of the actual values. 

Justification: R² is a fundamental metric for understanding the model's overall fit. In the context of 

permafrost resistivity, temperature, and water content prediction, a high R² value would suggest that 

the model captures the essential relationships between input features and target variables, making it 

a good indicator of predictive strength. However, R² alone does not indicate the magnitude of errors, 

which is why other metrics are also necessary. 

 

 

➢ RMSE (Root Mean Squared Error) 

RMSE is a measure of the average magnitude of the error between the actual and predicted values. It 

provides an indication of how well the model performs by giving more weight to larger errors. 

Equation: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (Equation A2.4) 
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Justification: RMSE is valuable in this study because it penalizes large errors more heavily, which is 

crucial in applications like resistivity and temperature prediction, where large deviations can 

significantly impact the interpretation of subsurface properties. A high RMSE might indicate that the 

model struggles with certain extreme values or specific regions in the data. However, because it 

amplifies larger errors, RMSE might be less desirable when outliers heavily influence the data. 

 

➢ MSE (Mean Squared Error) 

MSE is the mean of the squared differences between the actual and predicted values. It is a commonly 

used metric that penalizes larger errors more than smaller ones, making it suitable for identifying 

models that perform well across all data points.  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (Equation A2.5) 

 

Justification: MSE is often preferred when evaluating overall performance because it provides a 

measure that reflects both the bias and variance of the model. In the context of this study, a low MSE 

would suggest that the model generally performs well across all data points, while a high MSE would 

indicate consistent prediction errors. However, MSE’s sensitivity to outliers may sometimes 

exaggerate errors due to occasional large deviations. 

 

➢ MAE (Mean Absolute Error) 

MAE represents the average absolute difference between the actual and predicted values. Unlike 

RMSE and MSE, MAE does not square the errors, which means it provides a more direct measure of 

prediction error that is less sensitive to outliers. Equation: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 (Equation A2.6) 

 

Justification: MAE provides a straightforward and interpretable measure of average prediction error, 

which is beneficial for understanding the typical error magnitude in model predictions. In this study, 

MAE is especially useful for examining the consistency of predictions across permafrost properties 

without allowing a few large errors to disproportionately influence the overall assessment. 

 

 

➢ MAPE (Mean Absolute Percentage Error) 

MAPE expresses the prediction error as a percentage, allowing for easy interpretation of the model’s 

performance in terms of relative accuracy. It is particularly useful when comparing models on datasets 

with varying scales. Equation: 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

𝑦𝑖 − 𝑦�̂�
𝑦𝑖

|

𝑛

𝑖=1

 (Equation A2.7) 
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Justification: MAPE allows for an intuitive understanding of model accuracy in percentage terms. For 

this study, MAPE is helpful for interpreting how closely the predicted values align with actual 

measurements relative to their magnitudes. However, MAPE can be misleading when actual values 

are near zero, as it may produce extremely high values that skew the interpretation of accuracy. 

By combining these metrics, this study can gain a comprehensive understanding of each model's 

strengths and limitations. High RMSE or MSE values would indicate a need for further refinement to 

reduce large errors, while high MAE or MAPE values might suggest broader issues with model 

generalization. In essence, using a mix of these metrics allows for a balanced assessment, ensuring 

that the models perform well across various dimensions of prediction accuracy and reliability. 

 

A2.4 Data Normalization Methods 

Data normalization is an essential preprocessing step in ML, especially for algorithms sensitive to 

feature scaling. Normalization ensures that features contribute equally to the model’s performance 

and can lead to faster convergence and improved accuracy. This section outlines the different 

normalization methods employed in this study: 

 

➢ StandardScaler 

The StandardScaler standardizes the features by removing the mean and scaling them to unit 

variance. This results in a distribution with a mean of 0 and a standard deviation of 1. Equation: 

𝑋′ =
𝑋 − 𝜇

𝜎
 (Equation A2.8) 

 

where X represents the original feature, μ is the mean of the feature, and σ is the standard deviation. 

Characteristics: 

• Ensures that each feature contributes equally, which can be beneficial for algorithms that rely 

on distance metrics, such as Support Vector Regressors and k-Nearest Neighbors. 

• Works well when the data follows a Gaussian distribution. 

• Can improve the numerical stability of the models and speed up training. 

 

➢ MinMaxScaler 

The MinMaxScaler scales and translates each feature individually so that it lies within a given range, 

typically [0, 1]. It is useful when the distribution of the data does not follow a normal distribution. 

Equation: 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (Equation A2.9) 

 

where Xmin and Xmax  are the minimum and maximum values of the feature, respectively. 

Characteristics: 

• Preserves the relationships among data points and does not change the shape of the 

distribution. 
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• Suitable for algorithms where small-scale differences need to be preserved. 

• Works best when the minimum and maximum values are known and consistent across 

datasets. 

 

➢ MaxAbsScaler 

The MaxAbsScaler scales the data by dividing each feature by its maximum absolute value, ensuring 

that all features are in the range [-1, 1] for both positive and negative values. Equation: 

𝑋′ =
𝑋

|𝑋𝑚𝑎𝑥|
 (Equation A2.10) 

 

where ∣Xmax∣ is the maximum absolute value of the feature. 

Characteristics: 

• Maintains sparsity in the dataset, making it useful for models with sparse data 

representations, such as text data or one-hot encoded features. 

• Does not shift or center the data, which can be beneficial when preserving the original feature 

distribution is essential. 

• Effective when features have different scales but need to be normalized without altering their 

zero-centered properties. 

 

 


