
 Analysis of High-Resolution Land Cover Classification Methods and 

Evaluation of Vegetation's Role in Temperature Mitigation: A Case 

Study in Ouagadougou 

 

Author 

Farnoosh Noroozi 

(289884) 

 

Supervisor 

Prof. Dr. E. Belcore 

Co supervisor 

Prof. Dr. P. Dabove 

 

The Department of ENVIRONMENT, LAND AND INFRASTRUCTURE ENGINEERING 
(DIATI)  

The POLYTECHNIC UNIVERSITY OF TURIN 

October 2024 

  



Abstract 

Monitoring and analyzing land cover in urban areas like Ouagadougou, Burkina Faso, is essential for 

effective urban planning and environmental management. This study aimed to generate a high-

resolution land cover map of Ouagadougou using PlanetScope satellite imagery from May 10, 2023. 

The classification system focused on distinguishing key land cover types, including vegetation, water, 

bare soil, and built-up areas. NDVI (Normalized Difference Vegetation Index) was computed using 

RGB and NIR bands to assist in the classification process. 

In this study, several methods were compared to classify Ouagadougou’s land cover. First, NDVI 

thresholds were defined in QGIS to classify the land cover types. These thresholds were then applied 

in eCognition through Object-Based Image Analysis (OBIA) as a second method, focusing on rule-

based classification. To refine the classification, GLCM (Gray Level Co-occurrence Matrix) texture 

analysis was incorporated as an additional condition. As a final method, supervised classification 

using machine learning (Random Forest) was performed with manually defined training samples. 

This method, also using OBIA, provided a comparative approach. Upon comparing the accuracy of 

these methods, the supervised classification achieved the highest overall accuracy at 75%.  

In addition, we analyzed the relationship between vegetation coverage and surface temperature in the 

area. By correlating vegetation percentage with surface temperature, we observed an inverse 

relationship, where areas with lower vegetation coverage exhibited higher surface temperatures. This 

finding highlights the role of green spaces in moderating urban temperatures. 

These results demonstrate the effectiveness of combining multiple techniques for urban land cover 

mapping, providing a methodological framework adaptable for similar studies in other regions. 
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1. Introduction 

1.1. Background 

Accurate land cover classification is essential for understanding environmental dynamics and 

supporting sustainable development, particularly in rapidly urbanizing areas. Land cover refers to the 

physical materials present on the Earth's surface, including vegetation, urban infrastructure, water 

bodies, and bare soil. The classification of these features is crucial for urban planning, natural resource 

management, biodiversity conservation, and climate change monitoring. 

Advancements in remote sensing technology have significantly enhanced our ability to capture high-

resolution imagery and derive meaningful insights into land cover dynamics. Remote sensing serves 

as a vital tool in environmental monitoring, offering detailed and up-to-date information on land cover 

patterns. This is particularly important in urban environments, where land cover classification 

supports effective urban planning and environmental management. 

1.2. Objectives of the Study 

This project aims to improve how land cover is classified in Ouagadougou, the capital city of Burkina 

Faso, which is expanding quickly. The research uses high-resolution satellite images from May 10, 

2023, and combines several analysis techniques to identify different types of land cover within the 

city’s urban environment. 

The study starts by using the Normalized Difference Vegetation Index (NDVI) to create initial maps 

of vegetation cover. These maps are then processed using Object-Based Image Analysis (OBIA) in 

the eCognition software, with added detail from Gray Level Co-occurrence Matrix (GLCM) texture 

analysis, to enhance classification accuracy. Additionally, a supervised classification test utilizing the 

random forest algorithm is conducted to evaluate its effectiveness of machine learning against other 

OBIA-based methods. 

As a final step, the study correlates vegetation percentage with surface temperature across the area to 

explore the relationship between Vegetation Cover and urban Heat Distribution. This analysis 
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provides insights into the impact of vegetation on urban temperature, which can inform future urban 

planning and environmental management strategies. 

A key part of this research is to check the accuracy of each method by comparing it to actual ground 

data. This will help determine the most reliable approach for mapping different land covers in 

Ouagadougou’s complex urban area. The analysis is carried out using QGIS and eCognition software, 

giving insights into how well each method performs in urban settings. 

1.3. Research Questions 

In this study, we aim to address several key questions that will guide the analysis and classification 

of Ouagadougou's land cover. The following questions will help assess the effectiveness of different 

classification techniques and their impact on the overall accuracy: 

• Which classification method proves most effective at distinguishing between different types 

of urban land cover? 

• To what extent does incorporating NDVI thresholding improve the accuracy of land cover 

classification in urban environments? 

• Does NDVI thresholding provide a reliable preliminary layer for further analysis in OBIA 

workflows? 

• How does the integration of Gray Level Co-occurrence Matrix (GLCM) texture analysis 

influence the precision of land cover classifications obtained from OBIA? 

• How does the use of a machine learning approach, specifically the random forest algorithm, 

compare with traditional supervised classification methods in terms of classifying urban land 

cover? 

• What are the benefits and limitations of employing machine learning algorithms like random 

forest in urban land cover analysis? 

• What are the synergistic effects, if any, of combining NDVI thresholding, GLCM texture 

analysis, and machine learning techniques on the overall accuracy of land cover classification? 
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• What is the relationship between vegetation cover percentage and surface temperature in the 

study area, and how does this correlation inform our understanding of urban heat distribution? 

1.4. Structure of the Thesis 

This thesis is organized into several key sections. The Introduction gives an overview of 

Ouagadougou's urbanization trends, explains the importance of land cover classification, and outlines 

the research objectives. The Literature Review looks at past studies on remote sensing, land cover 

classification methods, urban heat islands, and the effects of climate change. The Methodology 

chapter describes how the data was collected, processed, and analyzed, including the use of OBIA, 

supervised classification, GLCM texture analysis, and NDVI thresholding to classify land cover 

types. It also explains the steps taken to calculate vegetation percentage and surface temperature for 

each grid in the study area. 

The Results section shows the findings from the classification process, describing the land cover 

types in Ouagadougou. It also looks at the relationship between vegetation percentage and surface 

temperature, showing how areas with less vegetation tend to have higher temperatures. 

The Discussion explains these results in the context of urban development and environmental 

impacts, focusing on how vegetation can help reduce surface temperatures in urban areas. The 

Conclusion summarizes the key findings, explains their importance for urban planning and 

environmental management, and suggests ideas for future research. Finally, the References section 

lists all the sources used in the thesis, and the Appendices include extra technical details and 

supporting information. 

This structured approach ensures a comprehensive examination of the study area and the 

methodologies used, contributing valuable insights into the environmental challenges and 

opportunities in rapidly urbanizing regions like Ouagadougou. 
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2. Literature Review 

2.1. Land Use and Land Cover (LULC) 

Land cover refers to the physical and visible features on the Earth's surface, such as forests, 

grasslands, water bodies, urban infrastructure, and bare soil. It describes what is physically present in 

a given area, whether natural or human-made, and is commonly identified through satellite imagery 

and remote sensing technologies. In contrast, land use refers to how these physical areas are utilized 

by humans for various purposes, such as agriculture, urban development, industry, or recreation. 

While land cover can be easily observed through visual data, land use involves a deeper understanding 

of human activities and their impact on the landscape[1]. 

The distinction between land cover and land use is important for environmental planning and resource 

management. Land cover provides insight into the natural environment, whereas land use reveals the 

influence of human activities. Understanding both helps in effective planning for urban development, 

agriculture, and environmental conservation, making them critical components in geographical and 

environmental studies. 

2.2. Geographic Information System (GIS)  

A Geographic Information System (GIS) is a computer-based tool that analyzes and visualizes spatial 

and geographic data to understand complex relationships between data layers, enabling the mapping 

and study of changes on Earth. GIS facilitates the integration of geospatial data from sources like 

satellite imagery, GPS data, and descriptive attributes tied to specific locations. By overlaying and 

analyzing this data, GIS helps uncover spatial patterns, trends, and relationships, making it essential 

for tasks such as land use and land cover (LULC) analysis, resource management, and public 

health[2]. 

GIS is composed of several key components that work together for effective spatial data analysis. 

Hardware includes the physical devices like computers and GPS units used for data collection and 

processing. Software, such as ArcGIS and QGIS, offers tools for spatial analysis, map production, 

and data management.  
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GIS handles two main types of spatial data: Raster and Vector. Raster data consists of grid-based 

pixels and is typically used for continuous data such as satellite imagery, digital elevation models, 

and vegetation indices. This data is particularly useful for representing phenomena like temperature, 

land cover, and elevation. On the other hand, Vector data represents geographic features through 

points, lines, and polygons, making it ideal for mapping discrete elements like locations (e.g., cities), 

linear features (e.g., roads), and areas (e.g., land parcels). Both Raster and Vector data are 

fundamental in capturing and analyzing spatial information in GIS applications, each serving distinct 

purposes depending on the nature of the analysis. 

 

Figure 1. Vector and Raster data representation[3] 

GIS’s core functionalities include data capture and integration from various sources, efficient data 

storage and management, spatial analysis operations like buffer and overlay analysis, and 

visualization techniques like thematic maps and 3D models to communicate geographic information 

effectively. It is widely applied across fields, including urban planning for infrastructure 

development, environmental monitoring to track changes and manage resources, disaster 

management for risk mapping and recovery, and public health for disease tracking and healthcare 

planning. 

Moreover, GIS is often integrated with remote sensing to enhance analysis of Earth’s surface changes. 

Remote sensing provides critical data like vegetation indices and land cover maps, which GIS 

combines with socio-economic information for complex analyses, such as assessing the impact of 
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urban expansion on biodiversity. The integration of technologies like GPS and IoT further enhances 

GIS’s capabilities in dynamic spatial decision-making across diverse sectors. 

2.3. Remote Sensing  

Remote sensing is an innovative technology that allows the collection of information about the 

Earth’s surface from a distance, without any physical interaction. By using sensors on satellites or 

aircraft, electromagnetic radiation—either reflected or emitted by objects on the ground—is detected 

and recorded. This technique is highly versatile and plays a key role in many fields, such as 

environmental monitoring, land use and land cover mapping, agriculture, and urban planning. The 

remotely captured data offers valuable insights into surface conditions, contributing to better 

decision-making and resource management. 

The data gathered from these platforms, whether from satellites or drones, can be processed and 

analyzed to reveal meaningful patterns and trends in the landscape. This makes remote sensing 

particularly useful in understanding geographical changes, monitoring vegetation health, assessing 

urban expansion, and tracking natural phenomena. By applying these insights, governments, 

researchers, and planners can take informed actions to protect the environment, improve urban 

development, and manage resources efficiently[4]. 

2.4. Observing with the Electromagnetic Spectrum 

Electromagnetic energy, generated by the movement of charged particles, travels in wave form 

through both the atmosphere and the vacuum of space. These waves vary in wavelength (the distance 

between consecutive wave crests) and frequency, with shorter wavelengths corresponding to higher 

frequencies. Waves like radio, microwave, and infrared have longer wavelengths, while ultraviolet, 

x-rays, and gamma rays possess much shorter wavelengths. Visible light, which lies in the middle of 

this spectrum, is the only type of electromagnetic energy that the human eye can perceive. All other 

forms of electromagnetic energy require specialized instruments for detection[5]. 
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Figure 2. Diagram of the Electromagnetic Spectrum[6] 

Some waves are either absorbed or reflected by atmospheric components such as water vapor and 

carbon dioxide, while others pass through the atmosphere without obstruction; visible light falls into 

the latter category, allowing it to be transmitted through the atmosphere. Microwave energy also has 

the ability to penetrate clouds, making it valuable for weather and communication satellites. 

The Sun is the primary source of the energy observed by satellites. The amount of sunlight reflected 

by a surface is influenced by its texture and albedo (a measure of how well a surface reflects light 

instead of absorbing it). For instance, snow has a very high albedo, reflecting up to 90% of incoming 

solar radiation, whereas the ocean reflects only about 6%, absorbing the remainder. Absorbed energy 

is often re-emitted at longer wavelengths; for example, the energy absorbed by the ocean is re-emitted 

as infrared radiation. 

Every object on Earth reflects, absorbs, or transmits energy differently, creating unique spectral 

signatures that can be identified by remote sensing instruments. These spectral signatures, including 

those captured by RGB and NIR bands, allow researchers to distinguish between different Earth 

features, rock types, and vegetation states. The ability to differentiate materials is dependent on an 
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instrument’s spectral resolution, which is determined by the number of spectral bands it can detect. 

This makes RGB and NIR data essential tools in environmental monitoring, land use studies, and 

climate change research. 

 

 

 

 

 

 

 

 

Figure 3. Spectral signatures of different Earth features within the visible light spectrum[7]. 

2.5. Spectral Bands Classification 

Satellite imagery refers to systematically captured photographs of specific areas of the Earth's surface. 

These images are taken by satellite sensors using various bands of the electromagnetic spectrum. 

These images possess distinct characteristics based on the spectral bands used. Spectral bands are 

groups of wavelengths. For example, ultraviolet, visible, near-infrared, thermal infrared, and 

microwave are spectral bands. We categorize each spectral region based on its frequency (v) or 

wavelength.  

Panchromatic Imaging Systems utilize a single channel sensor sensitive to a broad wavelength 

range, often within the visible spectrum, producing black-and-white images resembling photographs. 

These systems capture brightness but lose spectral (color) information.  
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Multispectral Imaging Systems feature multiple spectral bands, each capturing specific wavelength 

ranges in different bands of electromagnetic spectrum e.g. infrared, visible, Ultraviolet etc. These 

systems produce multilayer images containing both brightness and spectral information, making them 

versatile for applications like land use analysis. Multi-spectral imagery uses 3-10 bands for capturing 

a single imagery. 

 

Figure 4. Multispectral Imaging Systems[8] 

Hyperspectral Imaging Systems, or imaging spectrometers, capture images in hundreds of 

contiguous spectral bands, providing detailed spectral information that allows precise 

characterization and identification of targets. These systems are invaluable in fields like precision 

agriculture and coastal management.  

 

Figure 5. Hyperspectral Imaging Systems 

The main difference between multispectral and hyperspectral is the number of bands and how narrow 

the bands are. Hyperspectral images have hundreds of narrow bands, multispectral images consist of 

3-10 wider bands. 

 

Figure 6. Definition of different imaging approaches based on spectral resolution[9]. 

https://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/
https://gisgeography.com/hyperspectral-imaging/
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2.6. Types of Resolution 

Remote sensing systems are characterized by their spatial, spectral, temporal, and radiometric 

resolutions. These resolutions determine the level of detail, the range of wavelengths, the frequency 

of data acquisition, and the sensitivity of the sensor, respectively. High-resolution imagery provides 

detailed information, while lower resolution data covers larger areas. 

Radiometric resolution is the amount of information in each pixel, that is, the number of bits 

representing the energy recorded. Thus, the higher the radiometric resolution, the more values are 

available to store information, providing better discrimination between even the slightest differences 

in energy. For example, when assessing water quality, radiometric resolution is necessary to 

distinguish between subtle differences in ocean color. 

Spatial resolution is the area represented by a pixel. It describes how much detail in an image is visible 

to the human eye. Spatial resolution is the ability of the sensor to differentiate between various objects 

and features. The clarity of features on earth’s surface depends on the size of the pixel and the number 

of pixels in a given imagery. A single pixel can only represent one color. Therefore, if a pixel in an 

image corresponds to a large area of land, it may obscure smaller details within that area[10]. 

 

Figure 7. Spatial Resolution[11]. 

Spectral resolution is the ability of a sensor to detect finer wavelengths, that is, having more and 

narrower bands. The more wavelengths a sensor can capture, the more detailed the land-use and land-

cover information it provides.  Many sensors are considered to be multispectral, meaning they have 

3-10 bands. Some sensors have hundreds to even thousands of bands and are considered to 

be hyperspectral. The narrower the range of wavelengths for a given band, the finer the spectral 

https://www.bing.com/ck/a?!&&p=db8961c833ea94c4JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0yMjAyNjRmMC1hMWQzLTY5MGMtMzcxNS03NjA4YTBmMTY4YjcmaW5zaWQ9NTgxNg&ptn=3&ver=2&hsh=3&fclid=220264f0-a1d3-690c-3715-7608a0f168b7&psq=spatial+resolution+in+remote+sensing&u=a1aHR0cHM6Ly9wYW5nZW9ncmFwaHkuY29tL3R5cGVzLW9mLXJlc29sdXRpb24taW4tcmVtb3RlLXNlbnNpbmcv&ntb=1
https://www.bing.com/ck/a?!&&p=db8961c833ea94c4JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0yMjAyNjRmMC1hMWQzLTY5MGMtMzcxNS03NjA4YTBmMTY4YjcmaW5zaWQ9NTgxNg&ptn=3&ver=2&hsh=3&fclid=220264f0-a1d3-690c-3715-7608a0f168b7&psq=spatial+resolution+in+remote+sensing&u=a1aHR0cHM6Ly9wYW5nZW9ncmFwaHkuY29tL3R5cGVzLW9mLXJlc29sdXRpb24taW4tcmVtb3RlLXNlbnNpbmcv&ntb=1
https://www.bing.com/ck/a?!&&p=db8961c833ea94c4JmltdHM9MTcyNDI4NDgwMCZpZ3VpZD0yMjAyNjRmMC1hMWQzLTY5MGMtMzcxNS03NjA4YTBmMTY4YjcmaW5zaWQ9NTgxNg&ptn=3&ver=2&hsh=3&fclid=220264f0-a1d3-690c-3715-7608a0f168b7&psq=spatial+resolution+in+remote+sensing&u=a1aHR0cHM6Ly9wYW5nZW9ncmFwaHkuY29tL3R5cGVzLW9mLXJlc29sdXRpb24taW4tcmVtb3RlLXNlbnNpbmcv&ntb=1
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resolution. For instance, using only the visible spectrum limits us to features detectable by the human 

eye, such as iron ore presence. However, utilizing additional spectra like gamma rays enables the 

detection of elements like potassium, uranium, and thorium. Similarly, the infrared spectrum is 

essential for analyzing heat signatures. Essentially, the more spectral bands a satellite sensor captures, 

the higher its spectral resolution, leading to more detailed imagery[12]. 

 

Figure 8. Spectral Resolution[13] 

Temporal resolution refers to the frequency with which a satellite captures images of a specific area 

over a given time period. It is determined by how often a satellite revisits and photographs the same 

location. The amount of temporal data available depends on the satellite's orbit and its speed around 

Earth. Essentially, higher temporal resolution means more frequent updates of imagery for a particular 

region[14]. 

 

Figure 9. Temporal Resolution 
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2.7. Type of Sensors 

Instruments or sensors on satellites and aircraft either utilize the Sun as a source of light or generate 

their own illumination, measuring the energy that is reflected back. Sensors that rely on sunlight are 

known as passive sensors, while those that emit their own energy are referred to as active sensors. 

Passive sensors encompass various radiometers, which quantitatively measure the intensity of 

electromagnetic radiation in specific bands, and spectrometers, which detect, measure, and analyze 

the spectral content of reflected electromagnetic radiation. These sensors primarily operate within the 

visible, infrared, thermal infrared, and microwave regions of the electromagnetic spectrum. They are 

widely used to measure attributes such as land and sea surface temperature, vegetation characteristics, 

cloud and aerosol properties, and other physical features. However, most passive sensors are unable 

to penetrate dense cloud cover, limiting their effectiveness in regions like the tropics, where such 

conditions are frequent. For example, Landsat and Sentinel are passive sensors. They capture images 

by sensing reflected sunlight in the electromagnetic spectrum[15]. 

 

Figure 10.passive sensors (measuring reflected energy emitted from the sun)[16]  

Active sensors, on the other hand, include radar sensors, altimeters, and scatterometers. These 

typically operate in the microwave band of the electromagnetic spectrum, enabling them to penetrate 

the atmosphere under most conditions. Such sensors are particularly useful for assessing vertical 

profiles of aerosols, forest structures, precipitation and winds, sea surface topography, and ice, among 

other features[17]. 

https://gisgeography.com/landsat/
https://gisgeography.com/sentinel-satellites-copernicus-programme/
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Figure 11. Active sensors (illuminating its target and measuring its backscatter)[18] 

2.8. Overview of Sensors and Platforms 

Satellites play a crucial role in various scientific and technological applications, classified primarily 

into four main types based on their functions: communication satellites, Earth observation satellites, 

navigation satellites, and astronomical satellites. Each type serves distinct purposes, from enabling 

global communications and broadcasting to providing weather forecasts, navigational data, and deep 

space exploration. 

Different types of satellites are designed and built to fulfill these specific functions, with varying 

sizes, orbits, frequencies, and technology. The diversity of satellite types allows for better coverage, 

higher efficiency, and more accurate results in their respective domains.   

Among these, Earth observation satellites are particularly vital for monitoring and studying our 

planet. They are designed to acquire data about the earth’s surface and atmosphere. including 

vegetation cover, buildings, water surfaces, air temperatures, ground elevations, and many other 

characteristics. Earth observation satellites can be further categorized based on their specific 

functions, such as weather satellites for monitoring atmospheric conditions and remote sensing 

satellites for mapping and environmental analysis.Specific examples include weather satellites in 

geostationary orbits for consistent cloud pattern tracking, and remote sensing satellites like Sentinel, 

Landsat, and PlanetScope, which provide valuable data for various environmental and geographic 

applications[19]. 

The type of sensor on Earth observation satellites determines the kind of data they collect. These 

sensors are generally classified into two categories: optical sensors and radar (or microwave) sensors.  
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2.8.1. Optical Platforms 

Optical remote sensing uses visible, near-infrared, and short-wave infrared sensors to capture images 

of the Earth's surface by detecting solar radiation reflected from objects on the ground, a process 

known as passive remote sensing. These platforms are crucial for applications requiring detailed 

imagery, such as land cover classification, vegetation health monitoring, and environmental change 

detection. Different materials reflect and absorb light uniquely at various wavelengths, allowing for 

the identification and differentiation of objects based on their spectral reflectance signatures. 

Depending on their spectral and spatial resolutions, optical platforms like Sentinel-2, Landsat, and 

PlanetScope offer versatile data suitable for a wide range of analyses, from large-scale environmental 

monitoring to high-resolution agricultural assessments. 

 Sentinel-2 (ESA): Sentinel-2, operated by the European Space Agency (ESA), is equipped with 

multispectral sensors that capture data across 13 spectral bands, making it highly versatile for 

environmental monitoring. These bands include the visible (RGB), near-infrared (NIR), and 

shortwave infrared (SWIR) regions, allowing for detailed analysis of various land surface 

characteristics. 

The visible bands (2, 3, 4) cover the blue, green, and red wavelengths, which are commonly used in 

creating true-color images. The near-infrared band (Band 8) is particularly useful for vegetation 

analysis, as healthy plants reflect more NIR light, making it effective for calculating indices like 

NDVI. The shortwave infrared bands (11, 12) help assess moisture content in soil and vegetation, and 

they are valuable for detecting water stress, drought conditions, and fires. Sentinel-2’s high spatial 

resolution, with bands ranging from 10 to 60 meters, makes it suitable for detailed land cover 

classification, monitoring agricultural productivity, and managing natural disasters such as floods and 

fires. 

This combination of bands, especially the NIR, allows Sentinel-2 to be a powerful tool for vegetation 

analysis, urban monitoring, and natural resource management. It plays a critical role in understanding 

changes in land use and environmental conditions[20]. 
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Figure 12. Sentinel-2 Satellite 

 Landsat (NASA/USGS): Landsat satellites have been providing valuable Earth observation data 

since the 1970s, offering consistent, long-term datasets for studying environmental changes, land use, 

and resource management. The Landsat series, including Landsat 8 and Landsat 9, has been 

instrumental in capturing data in various spectral bands, each designed to monitor specific aspects of 

the Earth's surface. 

Landsat 8, launched in 2013, includes two primary sensors: the Operational Land Imager (OLI) and 

the Thermal Infrared Sensor (TIRS). The OLI captures data in visible, near-infrared (NIR), and 

shortwave infrared (SWIR) bands, useful for applications such as land cover classification, vegetation 

analysis, and water resource management. These spectral bands allow scientists to monitor natural 

phenomena like deforestation, urban growth, and coastal changes. The TIRS, specifically designed 

for thermal infrared data collection, measures the heat emitted from the Earth's surface, providing 

data on land surface temperature (LST). This sensor includes two thermal infrared bands: Band 10 

and Band 11, which detect longwave radiation emitted by the Earth's surface. Band 10 is particularly 

essential for surface temperature analysis, helping in applications like monitoring urban heat islands, 

agricultural water stress, and fire detection. 

Landsat 9, launched in 2021, continues the legacy of its predecessors by enhancing the resolution, 

accuracy, and consistency of Earth observation data. Like Landsat 8, Landsat 9 is equipped with OLI-

2 and TIRS-2 sensors. The OLI-2 sensor offers improved radiometric resolution for visible, NIR, and 

SWIR bands, providing detailed imagery for monitoring land use and vegetation. TIRS-2 further 

advances thermal data collection, refining the accuracy of land surface temperature measurements by 

improving stray light correction and calibration processes. This ensures high-quality data for 

analyzing environmental phenomena, including urban heat islands and vegetation stress[21]. 
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Figure 13. Landsat Satellite 

 PlanetScope (Planet Labs): PlanetScope, developed by Planet, is a satellite constellation designed 

to capture high-resolution, daily imagery of the Earth. The constellation comprises numerous small, 

low-cost, and lightweight satellites, known as "Doves," that operate in low Earth orbit. Each satellite 

captures images at a spatial resolution of approximately 3 meters per pixel, making PlanetScope ideal 

for monitoring rapid changes in various applications such as agriculture, urban development, and 

natural resource management. 

With its ability to provide daily revisits over the same area, PlanetScope offers valuable data for 

tracking short-term events and assessing changes in the landscape. The satellites capture imagery 

across four spectral bands: red, green, blue, and near-infrared (NIR), making them well-suited for 

vegetation analysis, land cover classification, and environmental monitoring. The data provided by 

PlanetScope is often used to complement other satellite systems, offering a cost-effective solution for 

high-frequency, high-resolution Earth observation. 

This accessibility and frequency make PlanetScope especially useful in sectors like precision 

agriculture, disaster response, and infrastructure monitoring, where timely data is critical[22]. 

 

Figure 14. PlanetScope satellite 
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2.8.2. Radar Platforms 

Radar platforms, particularly those equipped with Synthetic Aperture Radar (SAR), use active sensors 

that emit microwave signals and measure the reflected energy. This capability allows radar systems 

to capture high-resolution imagery regardless of weather conditions or daylight, making them 

invaluable for monitoring surface changes, such as land deformation, flood mapping, and vegetation 

analysis. Unlike optical sensors, radar sensors can penetrate clouds and even vegetation, providing 

consistent data in challenging environments. Notable SAR platforms include Sentinel-1 (ESA) for 

wide-area monitoring and RADARSAT (Canada) for disaster management and agricultural 

applications. 

Sentinel-1 (ESA): Sentinel-1 is a radar satellite equipped with Synthetic Aperture Radar (SAR) 

technology, providing crucial all-weather, day-and-night Earth observation capabilities. Unlike 

optical sensors, SAR can penetrate through clouds and work in complete darkness, making it 

invaluable for regions frequently covered by clouds. This makes Sentinel-1 highly effective in 

monitoring surface deformation (such as land subsidence and earthquake impacts), flood mapping, 

and assessing forest cover changes. 

Sentinel-1’s radar imaging is especially useful for detecting surface changes over time, including 

movements related to natural hazards like landslides and glacial shifts, or human activities like mining 

and urban expansion. Its ability to monitor large areas with consistent and frequent revisits is essential 

for applications like disaster response, environmental monitoring, and infrastructure 

management[23]. 

 

 

Figure 15. Sentinel-1 (ESA) Satellite 
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RADARSAT (Canada): RADARSAT is a powerful Synthetic Aperture Radar (SAR) platform 

designed primarily for all-weather, day-and-night monitoring. Developed by the Canadian Space 

Agency, RADARSAT specializes in capturing high-resolution radar imagery, which is instrumental 

in applications such as natural disaster response, ice monitoring, and agricultural management. Its 

ability to penetrate through clouds and operate in diverse weather conditions makes it particularly 

useful in regions with frequent cloud cover or for tracking changes in environments such as the Arctic, 

where it can monitor sea ice dynamics. RADARSAT’s C-band radar offers precise surface 

measurements, which are vital for flood mapping, monitoring deforestation, and tracking soil 

moisture in agricultural lands. 

Like Sentinel-1, RADARSAT’s radar capabilities are key to observing surface deformation, flood-

prone areas, and changes in forest cover, enabling timely data acquisition even in remote or cloud-

covered regions. These features make SAR platforms like RADARSAT crucial for continuous 

monitoring and managing environmental hazards across the globe[24]. 

 

Figure 16. RADASAT Satellite 

2.8.3. LiDAR Platforms 

LiDAR (Light Detection and Ranging) platforms utilize laser pulses to measure distances and 

generate highly accurate 3D models of the Earth’s surface. As an active sensor system, LiDAR is 

effective in capturing precise elevation data, making it essential for applications like topographic 

mapping, forest structure analysis, and urban planning. LiDAR’s ability to measure both ground and 

canopy heights offers unique insights into terrain and vegetation structure. Prominent example 

include ICESat-2 (NASA) for ice sheet elevation and forest canopy measurements. 



19 

 

ICESat-2 (NASA): Using LiDAR technology, ICESat-2 is designed to measure ice sheet elevations, 

forest canopy heights, and land topography with remarkable precision. LiDAR's ability to generate 

detailed 3D maps makes it especially effective for accurately mapping elevation and analyzing 

vegetation structures, offering valuable data for studies on ice loss, deforestation, and terrain 

modeling. 

 

Figure 17. ICESat-2 (NASA) Satellite[25] 

Combining data from optical, radar, and LiDAR platforms offers a comprehensive approach to Earth 

observation. Platforms like Sentinel, Landsat, PlanetScope, and ICESat-2 each have unique strengths 

that, when integrated, provide a more detailed and accurate understanding of environmental 

processes, land use changes, and disaster impacts. These technologies together empower better 

decision-making across sectors like agriculture, forestry, urban planning, and natural resource 

management. 

2.9. Feature Extraction 

Feature extraction in remote sensing refers to the process of transforming raw data from satellite 

images into meaningful information by identifying key characteristics (features) that help 

differentiate between various land cover types. Instead of using the raw pixel values alone, feature 

extraction allows the classification process to focus on the most relevant aspects of the data, such as 

color, texture, or patterns, which help in distinguishing one land cover type from another. 
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2.9.1. Spectral Features 

In remote sensing, bands represent specific portions of the electromagnetic spectrum, such as visible 

light, near-infrared, or thermal infrared. These bands, often referred to as layers when imported into 

GIS, can be processed individually or combined to enhance analysis through various band 

combinations. Common bands include red, green, blue, near-infrared, and thermal infrared, which 

can be selectively combined depending on the feature of interest in the image. For example, to mimic 

what the human eye sees, bands in the visible spectrum (red, green, and blue) are combined to create 

a “true” or “natural” color image[26]. 

However, to highlight specific surface features, bands outside the visible range can be combined to 

produce “false” color images. These images are essential for emphasizing characteristics such as 

healthy vegetation, soil moisture, and heat anomalies. For instance, healthy vegetation reflects 

strongly in the near-infrared band, while water absorbs most NIR radiation, making these 

combinations highly effective for identifying vegetation health and differentiating between water 

bodies and other surfaces. This band combination technique is crucial for analyzing various 

environmental conditions, leveraging the unique reflectance properties of different materials across 

the electromagnetic spectrum[27]. 

 

Figure 18. Band Combination 

2.9.1.1. Normalized Difference Vegetation Index (NDVI) 

To increase the precision of data interpretation, mathematical algorithms are used to create indices, 

such as NDVI (Normalized Difference Vegetation Index), which are calculated from these bands to 

highlight specific land cover types, particularly vegetation.  
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The Normalized Difference Vegetation Index (NDVI) is a widely used index in remote sensing for 

monitoring and assessing vegetation health and coverage. It leverages the unique spectral reflectance 

properties of vegetation in the red (RED) and near-infrared (NIR) bands. Vegetation strongly absorbs 

visible light (RED) for photosynthesis and reflects near-infrared light (NIR). The NDVI uses this 

difference to quantify vegetation density and health. 

The NDVI is calculated using the following formula: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
    2.1 

Values of NDVI range from -1 to +1. Higher values indicate healthier and denser vegetation, while 

lower values may indicate sparse vegetation, bare soil, or non-vegetated surfaces. 

While the human eye can only perceive wavelengths within the visible spectrum (390-700 nm), 

sensors in remote sensing are designed to capture a broader range, including near-infrared (700-1400 

nm), where vegetation reflects strongly. This capability allows for more detailed analysis of features 

like vegetation, where band combinations incorporating near-infrared wavelengths, such as NDVI, 

are commonly used to assess plant health and classify land cover. The continuous development of 

new indices expands our understanding of environmental features and processes[28]. 

2.9.2. Spatial Features 

 These are derived from the spatial relationships between pixels. For example, built-up areas or urban 

infrastructure often form regular shapes, while natural landscapes (e.g., forests, rivers) might follow 

more irregular patterns. The size, shape, and arrangement of pixel groups can give valuable 

information about land cover types. 

2.9.3. Textural Features 

Texture describes the variation of pixel intensities in an image, giving information about surface 

roughness, smoothness, and structure. Texture features are particularly helpful when spectral features 

alone cannot clearly differentiate between land cover types. The Gray Level Co-occurrence Matrix 

(GLCM) is a popular technique for texture analysis.  
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2.9.3.1. Gray Level Co-occurrence Matrix (GLCM) 

The Gray-Level Co-Occurrence Matrix (GLCM) is a powerful technique in remote sensing used for 

texture analysis, particularly in land cover classification.The GLCM is a statistical method that 

examines the spatial relationship between pixels in an image. It analyzes how often pairs of pixels 

with specific values (gray levels) occur in a specified spatial relationship, such as adjacent pixels in 

a given direction (e.g., horizontal, vertical, diagonal). By calculating these relationships, GLCM 

generates a matrix that describes the texture of the image. 

GLCM computes several statistical features from the matrix to describe the texture of an image. Key 

GLCM features include contrast, which measures the intensity difference between a pixel and its 

neighbor; correlation, which assesses the predictability of texture based on pixel relationships; energy 

(or angular second moment), representing the uniformity or smoothness of the texture; and 

homogeneity, which evaluates how closely the distribution of elements in the matrix aligns with the 

diagonal, indicating texture consistency.  

Haralick et al. (1973) introduced GLCM as a method for extracting second-order statistical texture 

features from images. These features have been extensively used in remote sensing applications to 

differentiate between various land cover types[29]. Hall-Beyer (2017) offers a practical tutorial on 

implementing GLCM, detailing the computation of texture measures and their application in image 

classification[30]. This resource is valuable for understanding how to extract and utilize GLCM 

features in eCognition software. 

These features are essential in distinguishing land cover types with similar spectral responses but 

different textures, such as differentiating between dense forests and sparse vegetation or separating 

urban areas from bare soil. 

2.10. Land Cover Classification 

Land cover classification is a fundamental process in remote sensing and GIS, enabling the 

identification and mapping of various land cover and land use types, such as forests, urban areas, 

water bodies, and agricultural lands, based on spectral and spatial data captured by sensors. This 

classification has been a key area of research due to its significance in applications like urban 
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planning, agricultural monitoring, and environmental conservation. Techniques like Supervised 

Classification, Object-Based Image Analysis (OBIA), and texture analysis using Gray Level Co-

occurrence Matrix (GLCM) have been widely employed to improve classification accuracy, 

particularly in complex environments like urban areas. These methods allow for more precise 

differentiation of land cover types by integrating spectral information with spatial context and 

texture[31]. 

Accurate land cover classification plays a crucial role in understanding and managing global 

environmental changes. Vitousek [32] in 1994 highlighted that land cover change is a significant 

driver of ecological system alterations, comparable to climate change. Reliable classification data, 

combined with advanced techniques, is essential for assessing and mitigating these impacts. By 

integrating these approaches with climate data, researchers can better analyze the relationship 

between land cover changes and environmental factors, providing insights critical for sustainable 

development and conservation. 

In land cover classification, two main approaches are used: pixel-based and object-based 

classification. These can be further divided into supervised and unsupervised methods. The following 

sections will explain both approaches and their variants.Each approach has distinct methodologies 

and applications depending on the nature of the data and the specific goals of the analysis.  

2.10.1. Pixel-Based And Object-Based Classification 

Pixel-based classification focuses on analyzing individual pixels based solely on their spectral 

characteristics. While this approach has been widely used, it faces limitations when dealing with high-

resolution data such as imagery from Unmanned Aerial Vehicles (UAVs) or high-resolution satellites. 

UAVs, which are remotely controlled or autonomous aerial devices, provide high spatial resolution 

data and allow for flexible flight planning and data acquisition, even in hard-to-reach or hazardous 

areas. However, pixel-based techniques struggle to handle the rich details available in this high-

resolution imagery, often leading to inconsistent classification results and difficulty in extracting 

complex objects of interest. 

In contrast, Object-Based Image Analysis (OBIA) is more effective for classifying high-resolution 

data. OBIA considers not only spectral characteristics but also the spatial and textural properties of 
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pixels. Instead of classifying individual pixels, OBIA begins with a segmentation process that groups 

neighboring pixels into meaningful objects based on their shapes, textures, and spectral information. 

This method enables the classification of homogeneous image objects rather than individual pixels, 

which significantly improves accuracy, especially in environments where detailed information is 

critical. OBIA is particularly beneficial when working with high-resolution data, making it a superior 

approach compared to pixel-based classification for extracting detailed features[33]. 

2.10.2. Supervised And Unsupervised Classification 

Supervised classification involves the use of sample data provided by an analyst to guide the 

classification algorithm. The user selects sample pixels representing various land cover types, which 

are then used to "train" the algorithm. The algorithm identifies similar pixels across the entire image, 

categorizing them into specific land cover classes. Supervised classification requires initial input from 

the analyst and offers control over the classification process, ensuring that the results align with 

known land cover types. This method is commonly used for detailed classifications, as it can 

incorporate both spectral and ancillary data to improve accuracy, making it highly effective for well-

defined categories. 

Unsupervised classification, on the other hand, does not require input from the analyst prior to running 

the algorithm. Instead, the algorithm groups similar pixels into clusters, and the analyst labels these 

clusters afterward. This method allows the computer to autonomously create initial classifications, 

making it useful when the land cover types are unknown or when the goal is to identify natural 

groupings in the data. Unsupervised classification can be more exploratory, but it requires post-

classification interpretation to label the clusters correctly. Both methods are widely used in remote 

sensing, with supervised classification offering more precision and control, while unsupervised 

classification is useful for discovering natural groupings without prior knowledge[34]. 

2.11. Classification algorithem  

Classification algorithms in remote sensing can be broadly divided into parametric and non-

parametric methods, many of which fall within the realm of machine learning. Machine learning is 

an advanced field of artificial intelligence that focuses on developing algorithms that can learn from 

and make predictions based on data. In remote sensing, machine learning has revolutionized land 
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cover classification by improving accuracy and efficiency. It includes a variety of algorithms, from 

simpler approaches to more complex ones, such as Decision Trees, Random Forests, Support Vector 

Machines (SVM), and K-Nearest Neighbors (KNN)[35]. 

Parametric algorithms, like Maximum Likelihood Classification (MLC), rely on the assumption that 

data follows a particular statistical distribution, such as the normal distribution. While effective in 

simpler, controlled environments, they struggle with complex or heterogeneous datasets, making 

them less suitable for diverse land cover types. On the other hand, non-parametric algorithms, 

commonly used in machine learning, do not assume any specific distribution and thus offer greater 

flexibility. This makes them highly effective in handling complex and diverse datasets found in 

remote sensing applications. 

Machine learning methods, particularly non-parametric algorithms, offer powerful solutions for land 

cover classification. Decision Trees, for example, split data based on feature thresholds to classify 

different land cover types. Random Forest improves upon this by building multiple decision trees and 

combining their results, which enhances accuracy and reduces overfitting. Support Vector Machines 

(SVM) excel in high-dimensional spaces, identifying the optimal hyperplane to separate land cover 

classes. Similarly, K-Nearest Neighbors (KNN) classifies pixels based on their proximity to other 

classified data points. 

Machine learning methods, particularly non-parametric algorithms, offer powerful solutions for land 

cover classification. Decision Trees, for example, split data based on feature thresholds to classify 

different land cover types. Random Forest improves upon this by building multiple decision trees and 

combining their results, which enhances accuracy and reduces overfitting. Support Vector Machines 

(SVM) excel in high-dimensional spaces, identifying the optimal hyperplane to separate land cover 

classes. Similarly, K-Nearest Neighbors (KNN) classifies pixels based on their proximity to other 

classified data points[36]. 

Among the various algorithms, the Random Forest (RF) classifier has gained popularity for its 

robustness and accuracy. Breiman (2012) introduced RF as an ensemble learning method that 

constructs multiple decision trees and aggregates their predictions. This method has been applied 

successfully in remote sensing for land cover classification due to its resilience to overfitting and 

capacity to process high-dimensional data efficiently[37]. 
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Ultimately, these algorithms—whether Decision Trees, Random Forest, SVM, or KNN—are integral 

parts of the machine learning toolkit. Machine learning includes both basic and complex models that 

can handle intricate patterns in remote sensing data, offering versatile and robust solutions for land 

cover classification. The adaptability and precision of these methods make them essential in modern 

remote sensing, where the ability to process and classify data with high accuracy is increasingly vital. 

2.12. Accuracy Assessment 

Accuracy assessment is a critical step in evaluating the effectiveness of land cover classification, 

ensuring that the results are both reliable and valid. This process involves the use of metrics like 

precision, recall, F1 score, and overall accuracy to measure how well the classification has performed. 

Confusion matrices are often generated to provide a detailed analysis, highlighting the model’s ability 

to correctly classify different land cover types while identifying potential errors. These metrics, 

combined with others like the kappa coefficient, offer a comprehensive overview of the 

classification’s performance and allow for meaningful comparisons across different approaches. 

 The emphasis on accuracy assessment in land cover classification highlights its importance in 

producing reliable maps that can be confidently used for various applications, from urban planning 

to environmental management. 

Foody (2010) reviews various accuracy assessment methodologies, emphasizing the importance of 

ground truth data in validating remote sensing classifications[38]. This is particularly relevant for the 

thesis, as ground truth data will be necessary to assess the accuracy of classifications using OBIA, 

GLCM, and spectral data. 

2.12.1. Confusion Matrix 

A confusion matrix is a useful tool for evaluating the performance of a classification algorithm by 

providing a clear summary of its predictions compared to the actual reference data. The matrix 

displays the number of correct and incorrect classifications made by the model. It is structured to 

show four key outcomes: true positives (TP), where positive observations are correctly classified; 

true negatives (TN), where negative observations are correctly identified; false positives (FP), where 

negative observations are incorrectly classified as positive; and false negatives (FN), where positive 
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observations are incorrectly labeled as negative. These outcomes give a comprehensive overview of 

how well the model is performing across all possible scenarios. Congalton and Green (2009) 

emphasize the importance of the confusion matrix in evaluating the performance of classification 

algorithms. The overall accuracy is calculated as the ratio of correctly classified instances to the total 

number of instances, providing a straightforward measure of classification effectiveness[39]. 

By analyzing the confusion matrix, various accuracy metrics can be derived, such as precision, recall, 

F1 score, and overall accuracy. These metrics help in assessing not only how often the model is 

correct but also how it handles specific types of errors, such as false positives or false negatives. The 

insights gained from the confusion matrix are crucial for understanding the strengths and weaknesses 

of the classification model, guiding further refinement and improvement. 

2.12.2. Precision 

Precision, also known as the positive predictive value, measures the accuracy of the positive 

predictions made by the model. It is defined as the ratio of true positive predictions to the total number 

of positive predictions (both true positives and false positives). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positives (TP)

True Positives (TP) + False Positives (FP)
 

2.2 

A high precision score indicates that the model has a low false positive rate, meaning it rarely 

misclassifies non-vegetation areas as vegetation, while a low precision score suggests that the model 

frequently misclassifies non-vegetation areas as vegetation. 

2.12.3. Recall 

Recall, also known as sensitivity or the true positive rate, measures the model's ability to identify all 

relevant positive cases. It is defined as the ratio of true positive predictions to the total number of 

actual positive instances (both true positives and false negatives). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
 

2.3 
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A high recall score indicates that the model successfully identifies most vegetation areas, resulting in 

few missed detections (false negatives), whereas a low recall score suggests that the model frequently 

misses actual vegetation areas, leading to a higher number of false negatives. 

2.12.4. F1 score 

The F1 score is the harmonic mean of precision and recall. It provides a single metric that balances 

both precision and recall, especially useful when the class distribution is imbalanced. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
precision ∗ Recall

precision + Recall
 

2.4 

2.12.5. kappa statistic 

The kappa statistic, often referred to as Cohen’s kappa, is a valuable metric used in classification 

studies to assess the accuracy of a model or method. Unlike simple overall accuracy, which only 

measures the proportion of correctly classified instances, kappa provides a more nuanced evaluation 

by considering the agreement between the predicted classifications and the reference data (often 

called "ground truth") while also accounting for the possibility of chance agreement. 

Kappa is a measure of the degree of agreement between two raters (or between a classification method 

and reference data in remote sensing) beyond what would be expected by random chance. The kappa 

value ranges from -1 to 1, with 1 indicating perfect agreement, 0 suggesting agreement no better than 

chance, and negative values indicating worse-than-chance agreement, suggesting systematic 

disagreement. 

The kappa statistic is particularly useful in scenarios where the data is imbalanced, meaning some 

classes are more prevalent than others, which can lead to misleading accuracy measures. By 

correcting for these imbalances, kappa offers a more reliable indication of classification performance. 

Precision and recall are essential metrics derived from the confusion matrix that provide insights into 

the performance of individual classes. Precision, also known as positive predictive value, measures 

the proportion of true positive predictions among all positive predictions made by the model. Recall, 

or sensitivity, assesses the proportion of true positives correctly identified by the model. The F1 score, 
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which is the harmonic mean of precision and recall, offers a balanced measure, especially useful in 

imbalanced datasets. 

Recent advancements in accuracy assessment techniques have focused on improving the reliability 

and interpretability of the results. Pontius and Millones [40] in 2011 introduced the concept of 

Quantity Disagreement and Allocation Disagreement as complementary metrics to the confusion 

matrix, providing a more detailed analysis of classification errors. These metrics help to distinguish 

between errors due to quantity differences and spatial misallocations, offering deeper insights into 

the classification performance. 

2.13. Land Surface Temperature (LST) 

Surface temperature, a critical metric derived from remote sensing data, represents the thermal 

characteristics of the Earth's surface. It plays a significant role in understanding environmental 

changes, urban heat islands, and land-use dynamics. Land Surface Temperature (LST) is commonly 

extracted from satellite imagery, such as Landsat data, which records thermal emissions in specific 

spectral bands. However, these thermal bands do not directly provide temperature values; instead, 

they measure the intensity of radiation emitted from the surface as digital numbers (DN). 

To convert these digital numbers into meaningful surface temperature values (in Kelvin), a series of 

mathematical transformations is required. The process typically involves: 

1. Converting DN to Radiance: 

The digital numbers from the satellite sensor are converted into Top-of-Atmosphere (TOA) radiance 

using the formula: 

L = M ∗ Q + A 2.5 

Where: 

• L is the TOA radiance (in Watts/meter2/steradian/μm) 
• M is the radiance multiplier (gain), a scaling factor available in the satellite metadata. 
• Q is the digital number (DN) for a given pixel. 
• A is the radiance add (offset), also provided in the metadata. 
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The radiance multiplier (M) and radiance add (A) can be found in the Landsat image metadata file. 

This step transforms the raw digital numbers into physical radiance values that correspond to the 

energy emitted from the Earth's surface. 

2. Radiance to Temperature in Kelvin: 

The derived TOA radiance is then converted to temperature using Planck’s radiation law: 

T =
K2

ln (
K1

L + 1)
 2.6 

Where: 

• T is the temperature in Kelvin. 
• K1 and K2 are calibration constants specific to the Landsat sensor, provided in the metadata. 
• L is the TOA radiance (calculated in the previous step). 

Using these equations, the LST for each pixel can be calculated, providing a spatial representation of 

surface temperature across the area of interest. 

Guha and Govil (2020) explored the relationship between LST and the Normalized Difference 

Vegetation Index (NDVI) in a tropical city. Their study showed a consistent inverse relationship, 

where areas with higher vegetation density (indicated by higher NDVI values) exhibited lower surface 

temperatures. This correlation underscores the role of vegetation in mitigating surface heating, 

particularly in urban settings where impervious surfaces dominate[41]. 

Their findings, derived from analyzing satellite data across different seasons, revealed the importance 

of vegetation in regulating urban thermal environments. In dry seasons, sparse vegetation amplified 

surface temperatures, while in wetter seasons, increased vegetation coverage moderated thermal 

extremes. 

In conclusion, the literature review highlights the diverse approaches and advancements in satellite 

sensors, data types, and classification methods used in land cover analysis. From optical and radar 

technologies to techniques like supervised classification, OBIA, and GLCM, these tools and methods 

provide a comprehensive framework for accurate and reliable land cover mapping. The integration of 
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various data sources and classification strategies plays a crucial role in understanding and monitoring 

complex landscapes. 

With this foundation, the next chapter will introduce the study area, Tools and the data utilized for 

the analysis, setting the stage for the application of these methods in a real-world context. 
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3.  Study Area,Tools and Data 

The following chapter provides the specifics of the study area, the data characteristics, and the tools 

that facilitated the classification and analysis process. 

3.1. Description of Study Area 

Ouagadougou, the capital city of Burkina Faso, is situated in the central part of the country. It lies 

approximately between latitudes 12.36°N and longitudes 1.53°W(Figure 19). The city covers an area 

of about 219.3 square kilometers, making it one of the largest urban centers in Burkina Faso. 

Ouagadougou is a pivotal hub for political, cultural, and economic activities in the country. 

The city is located in a relatively flat region, characterized by its low-lying topography with an 

average elevation of around 305 meters above sea level. This geographical setting places 

Ouagadougou within the Sudanian savanna zone, which transitions between the Sahelian and more 

humid savanna regions to the south. The terrain is predominantly composed of sandy and clayey soils, 

which influence both the urban infrastructure and the natural vegetation of the area. 

 

Figure 19. Ouagadougou, the capital city of Burkina Faso 

Ouagadougou experiences a tropical wet and dry climate, classified as Aw under the Köppen-Geiger 

climate classification system. This climate is characterized by a distinct wet season and a dry season, 

each contributing uniquely to the environmental conditions of the city. 
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The wet season typically spans from June to September, with August being the peak month for 

rainfall. During this period, Ouagadougou receives an average annual precipitation of about 800-900 

millimeters. These rains are essential for agricultural activities and contribute to the replenishment of 

local water resources. 

Conversely, the dry season extends from October to May, with the Harmattan winds significantly 

influencing the climate from December to February. These winds, originating from the Sahara Desert, 

bring dry and dusty conditions, reducing humidity levels and sometimes causing visibility issues. 

Temperatures during the dry season can be quite extreme, often ranging from 25°C to 40°C, with the 

hottest months being March and April. 

The climate of Ouagadougou plays a critical role in shaping the city's environment and influencing 

land cover patterns. The seasonal variability in rainfall and temperature affects vegetation growth, 

water availability, and urban development, making it a key factor to consider in land cover 

classification studies. 

 

Figure 20. different part of the city 
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3.2. Tools 

This section introduces the key tools used for data processing, classification, and analysis in this 

study. 

3.2.1. QGIS 

QGIS is an open-source Geographic Information System (GIS) software that provides tools for 

viewing, editing, and analyzing geospatial data. It supports a wide range of data formats and offers 

numerous plugins for specialized analyses. In this study, QGIS was used to compute NDVI values, 

create histograms, reclassify data, and assess classification accuracy. The integration of QGIS with 

various remote sensing and analysis tools made it possible to efficiently process and classify land 

cover data in Ouagadougou. 

3.2.1.1. Raster Calculator 

The Raster Calculator in QGIS is an essential tool for performing mathematical operations on raster 

datasets. In this study, it was used to calculate both vegetation indices and surface temperature from 

satellite imagery. 

For vegetation analysis, the Raster Calculator was applied to compute the Normalized Difference 

Vegetation Index (NDVI), which is derived from the red and near-infrared (NIR) bands according to 

Formula 2.1 as described in Chapter 2. NDVI helps identify vegetation density, with higher values 

representing dense vegetation and lower values indicating bare soil or other non-vegetated surfaces. 

In addition to NDVI, the Raster Calculator was also used to process thermal band data to calculate 

Land Surface Temperature (LST). This involved converting the Digital Number (DN) values to TOA 

Radiance and then using the appropriate formulas to derive the surface temperature, as outlined in 

Chapter 2 (Formula 2.5 & 2.6). These steps were key in preparing the data for analyzing the 

relationship between vegetation cover and surface temperature. 

By using the Raster Calculator for these calculations, this study was able to extract meaningful 

insights about vegetation and temperature patterns in the study area. 
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3.2.1.2. Raster Histogram 

Histograms are graphical representations of the distribution of pixel values in a raster image. In this 

study, the histogram was utilized to understand the distribution of NDVI values across the study area. 

By examining the peaks and ranges in the histogram, thresholds for different land cover classes were 

determined. The histogram revealed the frequencies of specific NDVI values, which corresponded to 

different land cover types, such as water, bare soil, vegetation, and buildings. 

The histogram tool was used to visualize the NDVI layer and identify the spread of pixel values. The 

peaks and breaks in the graph were analyzed to define threshold values that separate different classes, 

such as vegetation, water, and bare soil. This allowed for a more informed choice of classification 

ranges, as pixel value frequency could indicate where significant land cover transitions occurred. 

3.2.1.3. Reclassify by Table 

The Reclassify by Table tool in QGIS allows the user to categorize raster data by assigning new 

values to specific ranges of pixel values. This tool was used to classify NDVI values into distinct land 

cover categories, such as water, bare soil, vegetation, and buildings, based on predefined thresholds 

derived from the histogram. 

These thresholds are input into the Reclassify by Table tool, where specific ranges of NDVI values 

were assigned to different classes (e.g., water, vegetation, bare soil). This created a reclassified raster 

map, where each pixel was categorized into one of the six land cover classes. 

3.2.1.4. Semi-Automatic Classification Plugin (SCP) 

The Semi-Automatic Classification Plugin (SCP) for QGIS is an advanced tool designed to facilitate 

both supervised and unsupervised classifications of remote sensing imagery. It streamlines many 

steps in the classification process, making it easier to handle large datasets and perform various 

analyses, including accuracy assessments. SCP’s user-friendly interface and automated workflows 

make it a valuable tool for researchers dealing with complex classification tasks. 

Several key features were utilized in this study. One of the primary functions was accuracy 

assessment, where SCP was used to compute classification accuracy by comparing the reclassified 

map to reference data. This involved generating confusion matrices, which provided metrics such as 
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overall accuracy, precision, recall, and the kappa coefficient. Additionally, for supervised 

classifications, SCP allowed for the manual selection of training samples to represent different land 

cover types. These samples served as the basis for classifying the imagery, ensuring a more targeted 

and reliable classification process. 

3.2.1.5. Zonal Statistics 

The Zonal Statistics tool in QGIS is a useful feature for analyzing raster data within the boundaries 

of a vector layer. It provides summary statistics such as sum, count, and mean values for raster data, 

calculated for each defined zone in the vector layer. These zones can include administrative 

boundaries, land use polygons, or sampling grids. 

In this study, the Zonal Statistics tool was used to calculate vegetation percentages by summing and 

counting NDVI values and to determine mean surface temperature for the defined zones. These results 

were instrumental in analyzing the correlation between vegetation density and surface temperature 

across the study area. 

3.2.2. eCognition 

eCognition is a powerful software platform primarily designed for Object-Based Image Analysis 

(OBIA). It allows for the segmentation and classification of high-resolution satellite imagery by 

combining spectral, spatial, and contextual information. This advanced tool is particularly effective 

in environments where pixel-based methods struggle, providing a more detailed and context-aware 

approach to image analysis and making it suitable for handling complex remote sensing datasets. 

The software’s ability to integrate machine learning, rule-based approaches, and object-based 

segmentation provides flexibility and precision in classifying complex areas like urban environments, 

vegetation, and water bodies. 

In eCognition, various tools and workflows are used to manage the classification process efficiently. 

3.2.2.1. Process Tree 

The process tree is a central feature of eCognition where users can define and manage the sequence 

of algorithms applied to the dataset. It allows for building workflows in a structured and logical 
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manner. Each step in the classification process, from segmentation to feature extraction, 

classification, and accuracy assessment, is included in the process tree, providing an overview of the 

entire workflow. Users can easily adjust parameters and test different methods by modifying the 

process tree. 

3.2.2.2. Class Hierarchy 

The class hierarchy defines the different land cover or land use types that will be classified in the 

image. This can include water, bare soil, buildings, roads, vegetation, and sparse vegetation. Each 

class is assigned a specific label and color, making it easier to organize and visualize the results. The 

hierarchy helps in structuring the classification process and understanding the relationships between 

different classes. 

3.2.2.3. View Features 

The "View Features" tool in eCognition allows users to apply specific features such as NDVI or 

GLCM (Gray-Level Co-Occurrence Matrix) to improve classification accuracy. For example, NDVI 

helps to distinguish between vegetation and non-vegetation areas, while GLCM provides textural 

information that can help differentiate between objects with similar spectral properties, such as bare 

soil and buildings. By applying these features, users can refine their classification and improve 

accuracy. 

3.2.2.4. Image Object Information 

This tool provides detailed numerical information on the segmented objects and the features applied 

to them. For instance, after applying NDVI or GLCM features, users can examine the values of those 

features for specific objects in the image. This helps to verify that the features are working as expected 

and provides insight into how the features are influencing classification. 

Each of these components plays a crucial role in the object-based image analysis workflow within 

eCognition, allowing for the integration of spectral, spatial, and textural information to produce more 

accurate land cover classifications. In this study, eCognition was used to perform classifications based 

on NDVI thresholds, GLCM, and supervised classification with Random Tree. 
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3.3. Data Collection 

The dataset used in this project was sourced from PlanetScope, a high-resolution satellite imagery 

platform operated by Planet Labs. The PlanetScope imagery offers a spatial resolution of 3 meters 

per pixel, which is ideal for detailed land cover classification, particularly in urban environments and 

areas with complex land use patterns. The imagery was captured on the 10th of May, ensuring that 

the data reflects the conditions during the late dry season, which is crucial for identifying distinct land 

cover features. The PlanetScope data consists of three spectral bands within the visible spectrum, 

specific wavelengths correspond to the colors red, green, and blue (RGB). 

Table 1. Vegetation and Land Cover Data from PlanetScope Imagery 

Attribute Description PlanetScope Data 

File Name The name of the .tif file ouagadougou_image_2024.tif 

Satellite Name The name of the satellite or sensor PlanetScope 

Acquisition Date The date when the image was captured 10/05/2024 

Spatial Resolution The ground sampling distance, or pixel size 3 meters per pixel 

Number of Bands The number of spectral bands included in the image 4 bands: Red, Green, Blue, 
NIR 

Coordinate Reference 
System (CRS) 

The projection system used for the image EPSG:32630 

 (WGS 84 / UTM zone 30N) 

File Format The format of the data file .tif 

Sensor Type The type of sensor used (if specified) Optical 

Data Provider The organization or company that provided the data Planet Labs 
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This high-quality dataset allowed for precise differentiation between land cover classes such as water, 

bare soil, buildings, roads, sparse vegetation, and dense vegetation, which are key to understanding 

the study area’s spatial composition. The choice of this dataset aligns with the previously discussed 

concepts of high-resolution, multi-spectral imagery highlighted in the literature review, offering a 

solid foundation for the classification and analysis performed in this project. 

 

Figure 21.True color visualization of Ouagadougou city in 4 bands of RGB and NIR 

In addition to the PlanetScope dataset used for vegetation analysis, this project also utilized Landsat 

9 Level-2 Surface Reflectance (LC09_L2SP_195051_20230524_20230601_02_T1) data for 

calculating surface temperature. While the PlanetScope imagery was acquired on the 10th of May 

2024, the Landsat 9 image was selected from 24th of May 2023, as it was the closest available imagery 

with minimal cloud cover (0.67%) to ensure clear and reliable data. The time gap between the datasets 

is acceptable for this analysis, as it allows for a meaningful comparison of vegetation percentages 

derived from the PlanetScope image with surface temperature data from the Landsat 9 image. 

Landsat 9 provides medium-resolution multispectral imagery with a spatial resolution of 30 meters 

per pixel, suitable for analyzing broader environmental patterns such as surface temperature 

variability. For LST analysis, Band 10, corresponding to the thermal infrared (TIRS) range, was used. 

This band's radiometric calibration coefficients, specifically the Radiance Multiplier (ML) and 
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Radiance Add (AL), were extracted from the metadata file to convert raw digital number (DN) values 

into Top of Atmosphere (TOA) Radiance. Subsequently, the TOA Radiance was converted to 

temperature in Kelvin using pre-defined thermal constants K1 and K2, also provided in the metadata. 

Both datasets share the same Coordinate Reference System (CRS): WGS 84 / UTM Zone 30N 

(EPSG:32630), ensuring spatial consistency and enabling comparative analysis. The integration of 

high-resolution PlanetScope imagery with Landsat 9 thermal data facilitated the study of vegetation 

and temperature correlation. 

Table 2. Surface Temperature Data from Landsat 9 Imagery 

Attribute Description Landsat 9 Data 

File Name The name of the .tif file LC09_L2SP_195051_20230524_20
230601_02_T1.tif 

Satellite 
Name The name of the satellite or sensor Landsat 9 

Acquisition 
Date 

The date when the image was 
captured 24/05/2023 

Spatial 
Resolution 

The ground sampling distance, or 
pixel size 30 meters per pixel 

Cloud Cover The percentage of cloud cover in the 
scene 0.67% 

Number of 
Bands 

The number of spectral bands 
included in the image 

11 bands total (Band 10 used for 
surface temperature) 

Coordinate 
Reference 
System 

The projection system used for the 
image (CRS) 

EPSG:32630 (WGS 84 / UTM Zone 
30N) 

File Format The format of the data file .tif 

Sensor Type The type of sensor used Thermal Infrared (TIRS) for Band 
10 

Radiance 
Multiplier 
(ML) 

Calibration coefficient for converting 
DN to TOA Radiance 3.8 *10^-4 

Radiance 
Add (AL) 

Offset value for TOA Radiance 
calculation 0.1 

K1 Constant Thermal constant for converting 
radiance to temperature in Kelvin 799.0284 

K2 Constant Thermal constant for converting 
radiance to temperature in Kelvin 1329.2405 
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Figure 22. Raw Surface Temperature (Colorized) 

 

In this study, RGB and NIR data were used to classify and assess the accuracy of various land cover 

types. By analyzing the spectral signatures and using specific algorithms, we can better understand 

vegetation health and other environmental factors. Additionally, surface temperature data were 

incorporated to explore its relationship with vegetation cover, providing deeper insights into the 

thermal and ecological dynamics of the study area. 
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4. Methodology 

This chapter outlines the tests conducted for land cover classification in Ouagadougou, using both 

QGIS and eCognition as shown in the table 3. The process began in QGIS by creating NDVI 

thresholds, which were then applied in eCognition for further analysis through Object-Based Image 

Analysis (OBIA). The chapter details different testing scenarios that were explored using both 

software platforms. 

Various tests used initial and refined NDVI thresholds. In eCognition, these thresholds were 

combined with texture analysis techniques, such as the Gray Level Co-occurrence Matrix (GLCM), 

to better distinguish between similar-looking areas. Additionally, a machine learning approach using 

the Random Forest algorithm was applied to enhance land cover classification based on manually 

selected training samples. 

Each method's accuracy was evaluated by comparing results using confusion matrices in QGIS, to 

determine the most effective classification technique. This overview introduces the diverse tests 

performed, setting the stage for a detailed discussion on each method's application and results. 

In addition to classification, surface temperature data was analyzed to explore its relationship with 

vegetation density. By using NDVI and thermal bands from satellite imagery, correlations between 

vegetation percentages and surface temperature were examined. This analysis aimed to provide 

insights into how vegetation impacts local temperature patterns, particularly in urbanized and sparsely 

vegetated areas. 
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Table 3. Classification Tests Overview in QGIS and eCognition 

Software Method Test Name of Test Descriotion 

Q
G

IS
 

C
om

pu
tin

g 

N
D

V
I 

Test 1 First NDVI Thresholds 
Used 'Reclassify by Table' for initial NDVI 

thresholds to differentiate land covers. 

Test 2 Second NDVI Thresholds 
Used 'Reclassify by Table' for Refined 
NDVI thresholds to differentiate land 

covers. 

eC
og

ni
tio

n 

O
bj

ec
t B

as
ed

 Im
ag

e 
A

na
ly

si
s 

(Im
ag

e 
se

gm
en

ta
tio

n)
 

 

Test 3 First OBIA Classification 
Implements first NDVI thresholds using 

OBIA 

Test 4 First OBIA Classification _GLCM 
Combines second NDVI thresholds with 
GLCM contrast in all directions for green 

layer 

Test 5 Second OBIA Classification 
Implements Second NDVI thresholds using 

OBIA 

Test 6 Second OBIA 
Classification_GLCM 

Combines second NDVI thresholds with 
GLCM contrast in all directions for green 

layer 

Test 7 Supervised Classification 
Training sample selection, Executes 

supervised classification using machine 
learning, Random Forest 'classifier' 
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4.1. QGIS Software (TEST 1 & 2) 

4.1.1. Computing NDVI  

After loading the TIFF data file, high-resolution satellite imagery with RGB and NIR bands in QGIS, 

the NDVI was computed using the Raster Calculator tool. This allowed for the combination of the 

red and NIR bands according to the NDVI formula previously outlined in the literature review 

(Formula 2.1). The resulting NDVI values ranged from -1 to 1, where higher values indicated denser 

vegetation, and lower values represented non-vegetation features like water or urban infrastructure. 

Once the NDVI layer was generated, the Properties option was accessed to view detailed metadata 

and other relevant information, such as pixel values and statistics, providing further insights into the 

distribution and characteristics of NDVI values across the study area.  

4.1.2. calculate NDVI thresholds 

In the process of calculating NDVI Thresholds for land cover classification, six main land cover 

classes were considered: water, bare soil, buildings, roads, sparse vegetation, and dense vegetation. 

two different methods were used to calculate NDVI thresholds. The first method (Test1) relied on 

the manual selection of threshold values by using the "Identify Feature" tool and involved trial and 

error to distinguish between the six classes. The second method (Test2), however, utilized the 

histogram tool in QGIS, which allowed for a more systematic approach in identifying the threshold 

values, particularly for water and vegetation classes. The results of these different threshold 

approaches will be discussed in more detail in the next chapter. 
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4.2. eCognition Software Preparation (Common Steps for Tests 3 to 7) 

4.2.1. Loading the Data 

To perform Object-Based Image Analysis (OBIA) using eCognition, the process begins by importing 

the high-resolution imagery and adding the computed NDVI as a new layer. Once the data is loaded, 

the NDVI layer is integrated as part of the feature space, allowing it to be used in the classification 

process. To do this, NDVI is calculated in QGIS and then imported into eCognition.  

4.2.2. Object-Based Image Analysis (OBIA) Segmentation 

The first step is to segment the image using the "multiresolution segmentation" algorithm available 

in the "Process Tree" of eCognition. This algorithm groups pixels into meaningful objects based on 

both spectral and spatial characteristics, such as color, shape, and texture. For this project, specific 

parameters were set to optimize the segmentation process: the shape factor was set to 0.1 and 

compactness to 0.9. These values were chosen to prioritize compact, well-defined segments with 

minimal emphasis on shape, allowing the algorithm to focus more on the spectral homogeneity of the 

objects rather than their geometric properties.  

This approach helps in accurately reflecting the various land cover types, particularly in areas where 

the spectral characteristics are more important than the shape, such as in the classification of 

vegetation.  

To ensure a consistent basis for comparison across all five classification methods, the same image 

segmentation process was used. 

 

Figure 23. Example of segmentations 
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4.2.3. Class Hierarchy 

After segmentation, one of the essential steps in eCognition is defining the "Class Hierarchy". This 

step is crucial because it provides a structure that organizes the different land cover classes into 

categories. In this study, the "Class Hierarchy" was created to define six land cover classes: water, 

bare soil, buildings, roads, sparse vegetation, and dense vegetation. 

By defining the hierarchy, it ensures that the software can classify each object (created during 

segmentation) into one of these predefined classes. The "Class Hierarchy" acts as a framework where 

all subsequent classifications, whether based on NDVI thresholds or texture analysis using GLCM, 

are aligned with the defined classes. 

4.3. eCognition Software Specific Analyses 

4.3.1. Assigning Classes (For TEST 3-6) 

After segmentation and defining the Classes, the classification process proceeds by utilizing the 

"Assign Class" algorithm in the "Process Tree" of eCognition. The segmented objects are classified 

based on the NDVI thresholds that were previously determined in QGIS. Given that two sets of NDVI 

thresholds were developed during the study, this classification process was carried out twice—once 

for each set of thresholds (Test 3 & 5). The classes defined for both classifications include water, 

bare soil, buildings, roads, sparse vegetation, and dense vegetation. 

In addition to NDVI-based classification, GLCM contrast was used to further refine the classification 

results. To incorporate GLCM, texture analysis was applied through the Feature View and Texture 

tools in eCognition. GLCM contrast was calculated for all directions and applied to the green layer. 

The choice of the green layer was due to its ability to capture more fine details of texture, while the 

use of all directions in the GLCM analysis helped ensure that the classification accounted for textural 

variations from different orientations, enhancing accuracy in complex urban environments. 

For each class, the NDVI thresholds were entered into the "Condition" icon within the "Assign Class" 

algorithm. Additionally, for classes where textural information was relevant, a second "Assign Class" 

algorithm was added, incorporating the defined GLCM thresholds as an extra condition (Test 4 & 6). 
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The GLCM thresholds were established based on an analysis of different regions in the image, 

observing texture variations that best corresponded to each land cover class. 

This combined approach of applying NDVI and GLCM thresholds produced two sets of classification 

results. These will be compared in the results chapter to assess the impact of incorporating textural 

data into the classification process. 

To improve the classification results, the "Merge" algorithm is used to combine adjacent segments of 

the same class. This step is particularly useful for reducing the number of small, fragmented segments 

that can occur during segmentation, thereby enhancing both the visual clarity and analytical accuracy 

of the final classified map. 

4.3.2. Training Samples (Test 7) 

supervised classification is an essential technique in remote sensing, where known samples of specific 

land cover Classes are used to train the classifier to categorize the entire image based on spectral 

signatures. In this study, supervised classification is performed, utilizing manual sampling to ensure 

accurate land cover identification. After performing image segmentation and defining the Class 

Hierarchy as previously explained, the following steps was applied in a new eCognition window for 

the supervised classification process is Training samples which were manually selected for each land 

cover class, including water, bare soil, soil and sand, sparse vegetation, and dense vegetation. Careful 

attention was given to select representative objects that capture the variability within each class to 

improve the classifier’s accuracy. table 4 shows the number of objects which selected as samples for 

each land cover class. 

Table 4. Number of samples and classified objects in eCognition 

 

Class Water Sparse Vegetation Vegetation Baresoil Building Road total

The number of Training samples 86 3992 86 8301 6664 539 19668
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Figure 24. Manually Selected Training Samples for Supervised Classification.( This map highlights the locations of the 

manually selected training samples used in the supervised classification process, representing various land cover types 

including water       , bare soil       , buildings       , roads        , sparse vegetation        , and dense vegetation       ) 

4.3.3. Classifier Algorithm(Test 7): 

 eCognition offers a variety of supervised classification algorithms. To classify the map using 

machine learning, the "Random Forest" is implemented from the "Classifier" algorithm within the 

process tree. the process tree. Here, the classifier utilizes the training samples previously defined, 

analyzing their spectral properties to model classification rules. The Random Forest setup in 

eCognition includes parameters such as a depth of 150 trees, a minimum sample count of 10, and a 

maximum tree count of 50, which are configured to enhance the classifier’s ability to accurately 

segment and classify the landscape into the designated land cover classes. The features used for 

classification included mean spectral values from the Red, Green, Blue (RGB), and Near-Infrared 

(NIR) bands. These bands provide key information about vegetation, water, and built-up areas. This 

setup helps to optimize performance by balancing the model’s complexity with the need to avoid 

overfitting. 
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After training, the classifier was applied to the entire image to categorize each object based on the 

learned spectral signatures. The "Classifier" algorithm was used to execute this process, resulting in 

a thematic map that clearly delineates the different land cover types. 

4.4. Accuracy Assessment 

To perform the accuracy assessment and calculate metrics such as F1 score, recall, and precision, the 

classified images from each method used in eCognition and QGIS were first exported as raster files 

and then loaded as layers in QGIS. These classified images represented the results from the different 

classification methods employed in the study. The manually created samples from eCognition were 

used as the reference layer (Figure 25). These samples have been carefully chosen to reflect the true 

characteristics of each class, ensuring that they accurately depict the various land cover categories in 

the study area. 

 

Figure 25. Manually Selected forGround truth data from eCognition including water       , bare soil       , buildings       , 

roads        , sparse vegetation        , and dense vegetation       ) 
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When it comes to assessing the accuracy of the classification, these samples provide a reliable 

"ground truth" against which the classified image can be compared. The process involves comparing 

the classified image to the reference layer to calculate key metrics such as precision, recall, and the 

F1 score. These metrics provide insights into the accuracy of the classification, identifying where the 

model has performed well and where it may have made errors. 

Unlike the training samples used for supervised classification, this ground truth dataset was smaller 

in size, containing fewer samples. While these samples were fewer in number, they were carefully 

selected to represent the true characteristics of each land cover class within the study area. 

In QGIS, the Semi-Automatic Classification Plugin (SCP) was utilized to conduct the accuracy 

assessment. Within the accuracy section of SCP, the reference data and the classified images from 

each method were entered for comparison. This process generated a confusion matrix for each 

classification method, which served as the basis for calculating the recall, precision, and F1 score. By 

comparing these metrics across the different methods, a comprehensive evaluation of the 

classification performance was achieved, highlighting the strengths and weaknesses of each 

approach. 

Table 5.The number of samples for each class for Ground truth data 

 

4.4.1. Challenges in Computing Accuracy in QGIS 

During the process of computing accuracy in QGIS, several challenges were encountered that 

required specific steps to address. These issues were critical to ensuring the validity and reliability of 

the accuracy assessment and are detailed below: 

1. Unclassified Pixels and NoData Values: A significant challenge was the presence of 

unclassified pixels, and marked as NoData. These pixels were influencing the accuracy results 

negatively, as they were not part of the intended classification but were still being included in 

the calculations. To mitigate this, the NoData value was specified in the accuracy assessment 

tool, effectively excluding these pixels from the analysis. This step was crucial in improving 

the overall accuracy by focusing only on the relevant, classified data. 

Class Water Sparse Vegetation Vegetation Baresoil Building Road total

The number of samples 14 123 158 232 240 87 854
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2. Non-Matching Values in Attribute Tables: The final issue involved discrepancies in the 

attribute tables of the reference and classified layers, where the class values did not match. 

This mismatch required reclassification of the raster data to align the class values between 

layers. Using the Raster Calculator in QGIS, a formula, that multiplies or adds values in the 

raster to adjust them to the desired class values, was applied to adjust the class values, ensuring 

that the reference classes matched the predicted classes in the attribute table. This alignment 

was essential for generating a valid confusion matrix and for accurately assessing the 

classification performance. 

Here’s a general formula that adapted for reclassifying values in a raster layer using the QGIS 

Raster Calculator: 

(("layer_name"= original_value_1) * new_value_1) + (("layer_name" = original_value_2) *new_value_2) + ... 

(("layer_name"=original_value_n)*new_value_n)+(("layer_name"!=original_value_1)*("layer_name"!=origin

al_value_2)*...*("layer_name"!= original_value_n) *"layer_name") 

Table 6. formula guide 

Word Description 

Original value The class number identified in the Classified Layer properties 

Layer_name The Classified layer 

 

After addressing these challenges—extracting the correct thematic raster file, ensuring consistent 

CRS across all layers, excluding unclassified pixels, and aligning attribute table values—the accuracy 

assessment could be successfully performed. The resulting confusion matrix provided a reliable 

comparison between the reference classes and the predicted classes, forming the basis for evaluating 

the classification's effectiveness. 
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4.5. Surface Temperature and Vegetation Percentage Calculation 

To calculate the vegetation percentage and analyze the surface temperature, the following steps were 

performed using QGIS and its associated tools: 

4.5.1. Vegetation Percentage Calculation 

To begin, a vegetation mask was generated from the NDVI (Normalized Difference Vegetation 

Index) layer, using a threshold value of 0.3. This threshold was selected to classify areas with 

vegetation, as NDVI values greater than 0.3 typically correspond to vegetation cover. Any pixels with 

an NDVI value above this threshold were considered vegetation, while those below were categorized 

as non-vegetation. 

 

Figure 26. vegetation mask (threshold value of 0.3) 

Next, an area boundary was created in vector format, which defined the extent of the study area. A 

500 m x 500 m grid was then overlaid on the vector boundary to divide the study area into smaller 

sections for analysis. The grid was created using polygon type features, ensuring that each grid cell 

represented a spatial unit of 500 meters by 500 meters. 
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Figure 27. Creating study area and Grid over the area 

The vegetation percentage within each grid cell was calculated using the Zonal Statistics tool in 

QGIS. This tool computes summary statistics for each grid zone. For vegetation percentage, the sum 

and count values were calculated: 

• Sum refers to the total number of pixels within each grid zone that meet the vegetation criteria 

(NDVI > 0.3). 

• Count refers to the total number of pixels in each grid cell. 

To calculate the vegetation percentage for each grid, the sum of vegetation pixels is divided by the 

total count of pixels in the grid cell and then multiplied by 100. This provides the percentage of the 

grid cell area covered by vegetation. 

𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = (
𝑠𝑢𝑚 𝑜𝑓 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑖𝑥𝑒𝑙𝑠

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
) × 100 

4.1 

4.5.2. Surface Temperature Calculation 

For surface temperature, the digital numbers (DN) from the Landsat thermal band were first converted 

to radiance using the formula provided in Chapter 2 (2.5,2.6). This conversion is essential to translate 

raw satellite data into physical values, such as temperature, that are meaningful for analysis. 

Afterward, the surface temperature raster layer was clipped to match the extent of the area defined by 
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the vector boundary, ensuring that only relevant data within the study area was included in the 

analysis. 

The mean surface temperature for each grid cell was then calculated using the Zonal Statistics tool in 

QGIS. This tool provided the average (mean) surface temperature for each grid, which was used for 

further analysis. 
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5. Results 

5.1.  NDVI-Based Classification Results in QGIS 

The NDVI classification maps for Ouagadougou, produced using two different sets of thresholds, 

reveal significant variations in land cover classification. 

The analysis of NDVI classification based on two different sets of thresholds reveals key insights into 

the performance of each land cover class in terms of precision, recall, and F1-score. These metrics 

provide a comprehensive evaluation of the accuracy and effectiveness of the classification process 

for both the initial and refined NDVI threshold sets which is based on histogram Tool. 

The NDVI map generated for Ouagadougou offers a comprehensive analysis of the city's land cover, 

categorizing it into these six distinct classes> 

Water bodies, such as rivers, lakes, and ponds, are identified by their negative NDVI values, which 

result from the low reflectance of water in the near-infrared spectrum. These areas are clearly 

delineated on the NDVI map, reflecting both natural and artificial water sources within the city. 

Bare soil areas, which encompass urban infrastructure like construction sites and exposed soil 

surfaces, are prominent in the urbanized regions of Ouagadougou. The classification of bare soil was 

particularly challenging due to the spectral similarities between bare soil, buildings, and roads, 

especially in areas where local materials like clay are used in construction. These similarities led to 

some overlap in classification, making it difficult to distinctly separate these classes. 

Buildings and roads are classified as separate entities on the NDVI map, reflecting the extensive 

urban development across Ouagadougou. These classes are critical in understanding the city's 

infrastructure and built environment, though their close spectral characteristics to bare soil required 

careful threshold adjustments to achieve the most accurate classification. 

Sparse vegetation, identified by low to moderate NDVI values, is primarily found in suburban areas 

where vegetation cover is present but not densely packed. These regions may include grasslands, 

shrublands, and areas with scattered trees, contributing to the overall greenery of the city without 

forming dense vegetation clusters. 
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In contrast, dense vegetation areas, which exhibit high NDVI values, are concentrated in parks, 

agricultural lands, and other green spaces that are vital for the city's ecological balance. These areas 

are clearly distinguishable on the NDVI map, highlighting the importance of vegetation in 

maintaining environmental health within the urban landscape. 

5.1.1. Test 1: First NDVI Thresholds 

the initial NDVI thresholds were applied to classify the study area into six distinct land cover classes: 

water, bare soil, buildings, roads, sparse vegetation, and dense vegetation. The NDVI values 

calculated from the satellite imagery were used to define threshold ranges for each class, as outlined 

in Table 7. These thresholds were manually selected through trial and error using the "Identify 

Feature" tool in QGIS to distinguish between the different land cover types. 

Table 7. the first data of  NDVI-Based Land Cover Classification Thresholds 

classes Min NDVI value Max NDVI value Color 

Water -1 0.09 1 

Building 0.09 0.12 2 

Road 0.12 0.14 3 

Bare Soil 0.14 0.34 4 

Sparse Vegetation 0.34 0.65 5 

Dense Vegetation 0.65 1 6 

 

The results of the initial NDVI classification can be seen in Figure 28, which visually represents the 

distribution of the six land cover classes across the study area based on the applied thresholds. 
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Figure 28. The Classification Of Test 1 (the first NDVI Classification Result in QGIS based on (table 7)) 

Table 8 shows the confusion matrix for the initial NDVI classification using the first set of thresholds. 

It provides the counts of pixels classified into each land cover category compared to the reference 

data. 

Table 8. Confusion Matrix for Test 1 

 

The confusion matrix reveals key patterns in classification accuracy and areas of significant 

misclassification. Water and sparse vegetation stand out as the most accurately classified categories, 

water sparse vegetation baresoil building road

1 2 3 4 5 6

Water 1 45530 0 0 378 4278 944 51130

Sparse Vegetation 2 6 62732 381 35990 77 249 99435

Dense Vegetation 3 2928 61517 16221 9287 1452 1082 92487

Baresoil 4 47571 3380 0 78982 58792 31405 220130

Building 5 48625 57 0 33122 36420 18316 136540

Road 6 40941 398 0 21294 29076 14084 105793

185601 128084 16602 179053 130095 66080 705515

Reference       

Classified

Total

Total
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with minimal errors in distinguishing them from other classes. Water, in particular, was well-

identified, though there is some overlap with sparse vegetation and roads, reflecting minor confusion. 

Sparse vegetation performed well but exhibited limited misclassification with baresoil, likely due to 

similarities in spectral reflectance. In contrast, baresoil and buildings showed notable 

misclassification, with baresoil often confused with sparse vegetation and buildings, while roads 

struggled the most, frequently being misclassified as baresoil or buildings. These results emphasize 

the challenges of differentiating urban features, particularly in environments with overlapping 

spectral characteristics. 

Table 9 shows the TP, FP, FN, and TN values for each land cover class based on the initial NDVI 

classification using the first set of thresholds. 

Table 9. True Positive, False Positive, False Negative, and True Negative Values for Test 1 

 

The true positive (TP), false positive (FP), false negative (FN), and true negative (TN) values confirm 

these patterns, providing a detailed breakdown of classification errors. Water showed a strong true 

positive count, reflecting accurate identification, but had some false positives, indicating minor 

confusion with non-water classes. Sparse vegetation demonstrated a high TP and relatively low FP 

and FN, confirming its reliable classification. Dense vegetation had moderate performance, with some 

areas missed (FN) or misclassified into sparse vegetation or baresoil. Baresoil and buildings faced 

challenges with overlapping features, resulting in higher FP and FN values. Roads had the lowest TP 

count and the highest FP, indicating significant difficulty in correctly classifying road surfaces. 

Table 10 presents the precision, recall, and F1-score metrics for each land cover class based on the 

initial NDVI classification. 

Classes TP FP FN TN

Water 45530 140071 5600 120586454

Sparse Vegetation 62732 65352 36703 120612868

Dense Vegetation 16221 381 76266 120684787

Baresoil 78982 100071 141148 120457454

Building 36420 93675 100120 120547440

Road 14084 51996 91709 120619866
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Table 10. Precision, Recall, and F1-Score for Test 1 

 

For the performance metrics, water exhibited excellent recall and strong precision, leading to a high 

F1-score, showcasing its overall classification reliability. Sparse vegetation had a good balance 

between precision and recall, resulting in a robust F1-score, indicating consistent identification of this 

class. Dense vegetation showed moderate precision but a lower recall, reflecting its susceptibility to 

being misclassified, which impacted its F1-score. Baresoil had balanced but moderate precision and 

recall, suggesting that while classification was reasonable, there was still noticeable confusion with 

other classes. Buildings struggled significantly, with both precision and recall being low, leading to 

a poor F1-score and highlighting the difficulty in separating buildings from urban and baresoil areas. 

Roads had the weakest performance, with extremely low precision, recall, and F1-score, reflecting 

substantial misclassification and difficulty in distinguishing linear or narrow features from 

surrounding surfaces. 

 

  

Classes Precision Recall f1score

Water 0.25 0.9 0.39

Sparse Vegetation 0.49 0.64 0.56

Dense Vegetation 0.98 0.18 0.3

Baresoil 0.45 0.36 0.4

Building 0.28 0.27 0.28

Road 0.22 0.14 0.17



60 

 

5.1.2. Test 2: Second NDVI Thresholds 

To explain the second set of NDVI thresholds for land cover classification, we used the raster 

histogram (Figure 29) to visualize the distribution of NDVI pixel values across the study area. This 

histogram shows the frequency of pixel values ranging from -0.3 to approximately 0.8, which 

represent various land cover types. 

 

Figure 29. Raster Histogram for Second NDVI Classification (Refined Thresholds) 

The selection of NDVI threshold values for the six classes in Table 11 was based on both the shape 

of the histogram and the interpretation of the land cover types from the NDVI values: 
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Table 11. the second data of  NDVI-Based Land Cover Classification Thresholds 

classes Min NDVI value Max NDVI value Color 

Water -1 -0.06 1 

Road -0.06 0.05 2 

Building 0.05 0.15 3 

Baresoil 0.15 0.26 4 

Sparse Vegetation 0.26 0.58 5 

Dense Vegetation 0.58 1 6 

 

Water  

The NDVI values for water typically fall below 0 due to the low reflectance of water in the near-

infrared spectrum. Therefore, we set the water class with a minimum NDVI value of -1 and a 

maximum value of -0.06. This range captures the negative NDVI values associated with water bodies, 

which are evident in the lower left section of the histogram. 

Buildings 

Buildings often show NDVI values slightly above zero, as they reflect some visible light but not near-

infrared radiation. Based on the histogram curve and testing, the range for buildings was set between 

0.05 and 0.15, representing the flatter region on the histogram that corresponds to built-up areas. 

Roads 

Roads typically have reflectance properties similar to buildings but often fall within a lower NDVI 

range. We set the NDVI values for roads between -0.06 and 0.05. This range captures areas that are 

not vegetated and have relatively low reflectance, likely representing paved or bare road surfaces. 
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Bare Soil 

Bare soil exhibits NDVI values that are generally higher than built-up areas but lower than vegetated 

surfaces. From the histogram, bare soil can be seen in the section between 0.15 and 0.26. This range 

represents exposed soil surfaces, which are commonly found in both urban and rural areas, 

particularly in the dry season. 

Sparse Vegetation 

Sparse vegetation appears in the mid-range of NDVI values, reflecting the presence of low-density 

plant cover such as grasslands or shrubs. Based on the histogram, the NDVI range for sparse 

vegetation was set between 0.26 and 0.58, capturing the rise and fall of the histogram in the middle 

section where less dense vegetation is present. 

Dense Vegetation 

Dense vegetation, such as forests and agricultural lands, is characterized by high NDVI values due to 

the strong reflectance of near-infrared radiation by healthy vegetation. We defined dense vegetation 

as having NDVI values between 0.58 and 1.0, representing the peak and rightmost section of the 

histogram, where the highest NDVI values are found. 

The histogram was essential for identifying these thresholds, as it provided a visual representation of 

the NDVI distribution and helped refine the boundaries between classes, particularly for complex 

land cover types like buildings, roads, and bare soil. 

The second set of thresholds (Figure30) was developed to refine the classification. This new set of 

thresholds aimed to better distinguish between the various land cover types by adjusting the NDVI 

values used to define each class. 
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Figure 30. The Classification of Test 2 (the second NDVI Classification Result in QGIS based on (table 11)) 

Table 12 displays the confusion matrix for the refined NDVI classification using the second set of 

thresholds. It compares the classification results against the reference data. 

Table 12. Confusion Matrix for Test 2 

 

The confusion matrix highlights the performance of the classification in terms of correctly and 

incorrectly classified land cover types. Water was well-classified with minimal misclassification, 

though there were slight confusions with roads and sparse vegetation, likely due to spectral 

similarities near water bodies. Sparse vegetation was another strong performer, with most pixels 

correctly classified, but some overlap with baresoil reflects challenges in distinguishing vegetation in 

water sparse vegetation baresoil building road

1 2 3 4 5 6

Water 1 25069 0 0 173 16519 9369 51130

Sparse Vegetation 2 0 83648 3480 11742 564 1 99435

Dense Vegetation 3 4 56711 25793 3922 4995 1062 92487

Baresoil 4 4 21262 0 50559 143371 4934 220130

Building 5 3 1453 0 24850 101118 9116 136540

Road 6 0 1055 0 15602 83230 5906 105793

25080 164129 29273 106848 349797 30388 705515Total

Total
Reference       

Classified
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arid or semi-arid conditions. Misclassification was most pronounced in urban categories, such as 

buildings and roads, which were frequently confused with baresoil due to similar spectral reflectance. 

Roads, in particular, showed significant errors, being incorrectly labeled as baresoil or buildings, 

underscoring the difficulty of distinguishing narrow, linear features in a mixed urban landscape. 

Table 13 provides the TP, FP, FN, and TN values for each land cover class based on the refined NDVI 

classification using the second set of thresholds. 

Table 13. True Positive, False Positive, False Negative, and True Negative Values for Test 2 

 

The TP, FP, FN, and TN values shed light on specific classification patterns. Water achieved a strong 

TP value, confirming accurate identification, but the presence of some FP indicates occasional 

misclassification with non-water classes. Sparse vegetation also had high TP values and relatively 

low FN and FP, reinforcing its reliable classification. Dense vegetation, while moderately classified, 

had noticeable FN, indicating many areas were missed and instead classified as sparse vegetation or 

baresoil. Misclassification challenges were most evident for buildings and roads, with low TP and 

high FP/FN values. Baresoil, despite moderate TP values, exhibited frequent confusion with buildings 

and roads, showing overlap in urban areas. Roads had the lowest TP and highest FP values, reflecting 

the most significant classification difficulty. 

Table 14 provides the precision, recall, and F1-score metrics for each land cover class based on the 

refined NDVI classification. 

Classes TP FP FN TN

Water 25069 11 26061 120726514

Sparse Vegetation 83648 80481 15787 120597739

Dense Vegetation 25793 3480 66694 120681688

Baresoil 50559 56289 169571 120501236

Building 101118 248679 35422 120392436

Road 5906 24482 99887 120647380
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Table 14. Precision, Recall, and F1-Score for Test 2 

 

The precision, recall, and F1-scores reveal performance nuances for each class.Water achieved 

excellent recall and strong precision, resulting in a high F1-score, confirming its consistent 

identification. Sparse vegetation also had high precision and recall, producing a robust F1-score, 

highlighting its reliable classification. Dense vegetation, however, had moderate precision and low 

recall, leading to a lower F1-score due to misclassification as sparse vegetation or baresoil. Baresoil 

had balanced but moderate precision and recall, with confusion mainly arising from urban features. 

Buildings performed poorly, with both precision and recall being low, and the resulting F1-score 

underscored the difficulty in distinguishing buildings from surrounding surfaces. Finally, roads 

showed the weakest performance, with extremely low precision, recall, and F1-scores, highlighting 

their frequent misclassification as baresoil or buildings.  

Classes Precision Recall f1score

Water 1 0.5 0.66

Sparse Vegetation 0.51 0.85 0.64

Dense Vegetation 0.89 0.28 0.43

Baresoil 0.48 0.23 0.31

Building 0.29 0.75 0.42

Road 0.2 0.06 0.09
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5.2. OBIA Classification Results in eCognition 

To effectively assess the land cover classification of Ouagadougou, two different sets of NDVI 

thresholds were defined in QGIS, each representing distinct approaches to classify the land cover 

types within the study area. These thresholds were used as the foundation for subsequent analysis in 

eCognition, where Object-Based Image Analysis (OBIA) was employed. To enhance the accuracy of 

these classifications, GLCM (Gray Level Co-occurrence Matrix) contrast was applied specifically to 

the green layer across all directions. The integration of GLCM texture analysis aimed to refine the 

differentiation between similar land cover classes, such as bare soil, roads, and buildings, which often 

exhibit overlapping spectral characteristics. The results demonstrate that incorporating GLCM 

contrast into the classification process significantly improved the overall accuracy, providing a more 

reliable representation of the diverse land cover types in Ouagadougou. The following sections detail 

the outcomes of these classifications, comparing the results before and after the application of GLCM, 

and highlight the improvements in accuracy achieved through this advanced analytical approach. 

5.2.1. Test 3: First OBIA classification (based on initial NDVI threshold): 

The figure 31 illustrates the OBIA classification map of Ouagadougou, created using the initial NDVI 

threshold (Table 7). The map displays the spatial distribution of various land cover types, including 

water, sparse vegetation, dense vegetation, bare soil, buildings, and roads, across the study area. The 

classification provides a visual representation of the land cover categories and their respective extents 

within the city. 
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Figure 31. The Classification of Test 3(based on initial NDVI threshold) 

Table 15 presents the confusion matrix for the OBIA classification based on the initial NDVI 

threshold. It shows the number of correctly and incorrectly classified pixels for each land cover type, 

providing insights into the classification accuracy and the distribution of classification errors across 

different classes. 

Table 15. Confusion Matrix for Test 3 (based on initial NDVI threshold) 

 

The confusion matrix reveals significant patterns in classification performance and areas of 

misclassification. Water and sparse vegetation emerge as the most accurately classified categories, 

with minimal errors. Water, in particular, shows a strong correct classification rate, though there is 

water sparse vegetation baresoil building road

1 2 3 4 5 6

Water 1 50630 0 0 0 500 0 51130

Sparse Vegetation 2 0 62879 0 36556 0 0 99435

Dense Vegetation 3 1707 60746 18185 7850 3999 0 92487

Baresoil 4 21887 3807 0 69288 87991 37157 220130

Building 5 24511 0 0 29089 71130 11810 136540

Road 6 6927 431 0 14238 65385 18812 105793

105662 127863 18185 157021 229005 67779 705515

Reference       

Classified

Total

Total
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minor confusion with sparse vegetation and roads, likely due to spectral overlap. Sparse vegetation 

also performs well but exhibits notable misclassification into baresoil, which may be attributed to 

similarities in spectral reflectance. On the other hand, dense vegetation shows moderate classification 

accuracy, with significant misclassification into sparse vegetation and baresoil. Urban classes, such 

as baresoil and buildings, face more considerable challenges, with baresoil frequently misclassified 

into buildings and roads, highlighting issues in distinguishing these overlapping features. Roads 

struggle the most, with significant misclassification into buildings and baresoil, reflecting difficulty 

in identifying linear features. 

The table 16 provides a breakdown of the true positives (TP), false positives (FP), false negatives 

(FN), and true negatives (TN) for each land cover class in the OBIA classification based on the first 

NDVI threshold.  

Table 16. True Positive, False Positive, False Negative, and True Negative Values For Test 3 (based on initial NDVI 

threshold) 

 

The true positive (TP), false positive (FP), false negative (FN), and true negative (TN) values 

reinforce these findings. Water demonstrates a high TP value, indicating reliable classification, 

though its moderate FP count suggests occasional confusion with non-water classes. Sparse 

vegetation maintains strong TP and TN values, confirming its robust classification, while its moderate 

FP and FN highlight limited misclassification. Dense vegetation, however, shows lower TP and high 

FN values, revealing that a significant portion of dense vegetation is either missed or misclassified 

into other classes. Urban features like baresoil and buildings face considerable challenges, with high 

FP and FN counts reflecting frequent misclassification into overlapping classes. Roads, with the 

lowest TP and highest FP values, confirm the difficulty in accurately classifying narrow and linear 

surfaces. 

Classes TP FP FN TN

Water 50630 55032 500 120671493

Sparse Vegetation 62879 64984 36556 120613236

Dense Vegetation 18185 0 74302 120685168

Baresoil 69288 87733 150842 120469792

Building 71130 157875 65410 120483240

Road 18812 48967 86981 120622895
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Table 17 summarizes the precision, recall, and F1 score for each land cover class in the OBIA 

classification using the first NDVI threshold.  

Table 17. Precision, Recall, and F1-Score for Test 3 (based on initial NDVI threshold) 

 

The precision, recall, and F1-score metrics provide a deeper understanding of classification reliability. 

Water exhibits excellent recall and moderate precision, leading to a high F1-score, reflecting its 

overall robust classification.Sparse vegetation balances precision and recall effectively, resulting in a 

strong F1-score and demonstrating consistent classification performance. Dense vegetation, despite 

high precision, suffers from low recall, indicating susceptibility to being missed, which reduces its 

F1-score. Urban features like baresoil and buildings show moderate performance, with balanced but 

lower precision and recall scores, reflecting ongoing challenges in separating these classes. Roads 

have the weakest performance, with very low precision, recall, and F1-scores, underscoring the 

significant difficulty in accurately distinguishing road surfaces from surrounding features.  

Classes Precision Recall f1score

Water 0.48 1 0.65

Sparse Vegetation 0.5 0.64 0.56

Dense Vegetation 1 0.2 0.33

Baresoil 0.45 0.32 0.37

Building 0.32 0.53 0.39

Road 0.28 0.18 0.22
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5.2.2. Test 4: First OBIA classification (based on initial NDVI threshold) With GLCM 

The integration of the GLCM (Gray Level Co-occurrence Matrix) contrast as an additional threshold 

in the Object-Based Image Analysis (OBIA) process was aimed at refining the classification results 

obtained from the initial NDVI thresholding. The GLCM feature was used to enhance the 

differentiation between classes that were challenging to separate using NDVI alone, particularly in 

urban environments where bare soil, buildings, and roads often share similar spectral characteristics. 

As shown in Table 18, these thresholds reflect the unique textural characteristics of each land cover 

type. For example, water bodies, which exhibit low variability in texture, were classified using a 

GLCM contrast range of 0 to 9.4, while buildings, with their complex structures, were categorized 

within a higher contrast range of 70 and above. By incorporating these GLCM thresholds alongside 

the NDVI values already established, the OBIA classification became more precise. 

Table 18.GLCM thresholds 

 

The figure 32 shows the OBIA classification map of Ouagadougou after applying the initial NDVI 

threshold and integrating GLCM contrast. The map illustrates the distribution of the six land cover 

classes, with improved differentiation due to the added texture information. 

Classes GLCM Contrast Min GLCM Contrast Max

Water 0 9.4

Vegetation 9.4 13

Sparse Vegetation 13 17

Bare Soil 17 40

Road 40 70

Building 70 100+
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Figure 32. The Classification of Test 4 (based on initial NDVI threshold and considering GLCM) 

This table provides the confusion matrix, detailing the number of correctly and incorrectly classified 

pixels for each class. The inclusion of GLCM improved the classification performance for bare soil 

and buildings but still showed challenges for roads. 

Table 19. Confusion Matrix for Test 4 (based on initial NDVI threshold and considering GLCM) 

 

In the confusion matrix table for Test 4, water remains a relatively well-classified category, but its 

accuracy is lower compared to previous tests, with increased confusion with dense vegetation. Sparse 

vegetation shows moderate performance but struggles with notable misclassification into baresoil, 

likely due to the added complexity introduced by texture-based features. Dense vegetation faces 

water sparse vegetation baresoil building road

1 2 3 4 5 6

Water 1 38093 0 13037 0 0 0 51130

Sparse Vegetation 2 0 57667 17634 24134 0 0 99435

Dense Vegetation 3 0 53337 29670 5822 3658 0 92487

Baresoil 4 5087 47803 22864 110138 9225 25013 220130

Building 5 28285 0 0 29089 63118 16048 136540

Road 6 2133 9890 947 82121 5072 5630 105793

73598 168697 84152 251304 81073 46691 705515

Reference       

Classified

Total

Total
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substantial misclassification, particularly into sparse vegetation and baresoil, emphasizing the 

challenges in distinguishing vegetation types. Urban features, such as baresoil and buildings, show 

significant overlap, with baresoil often confused with sparse vegetation and roads, while buildings 

are frequently misclassified into baresoil. Roads remain the most challenging category to classify, 

with significant errors and frequent misclassification into urban features like buildings and baresoil. 

Table 20 shows the True Positives (TP), False Positives (FP), False Negatives (FN), and True 

Negatives (TN) for each land cover class. These values are crucial for calculating Precision, Recall, 

and F1 scores, which measure the performance of the classification: 

Table 20. True Positive, False Positive, False Negative, and True Negative Values for Test 4 (based on initial NDVI 

threshold and considering GLCM) 

 

The true positive, false positive, false negative, and true negative values illustrate these trends. Water 

demonstrates strong recall but reduced precision due to misclassification into non-water classes. 

Sparse vegetation maintains reasonable classification performance but sees increased overlap with 

baresoil. Dense vegetation struggles the most, with many instances misclassified or missed, reflecting 

difficulties in identifying this class amidst spectral and textural overlaps. Baresoil and buildings face 

notable challenges, with baresoil often confused with vegetation classes and buildings overlapping 

with baresoil. Roads perform the weakest, with widespread misclassification and minimal true 

positive identification. 

Table 21 presents the Precision, Recall, and F1 score for each land cover class. The results highlight 

the benefits and limitations of integrating GLCM into the classification process, with some classes 

showing significant improvement in accuracy and others still facing challenges. 

Classes TP FP FN TN

Water 38093 35505 13037 120691020

Sparse Vegetation 57667 111030 41768 120567190

Dense Vegetation 29670 54482 62817 120630686

Baresoil 110138 141166 109992 120416359

Building 63118 17955 73422 120623160

Road 5630 41061 100163 120630801
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Table 21. Precision, Recall, and F1-Score  for Test 4 (based on initial NDVI threshold and considering GLCM) 

 

Performance metrics highlight the overall impacts of the GLCM-based approach. Water retains good 

recall, reflecting its ability to correctly identify most water instances, though its precision is reduced 

due to increased overlap with other classes. Sparse vegetation shows a moderate drop in precision 

and recall, indicating challenges in distinguishing it from baresoil. Dense vegetation has low precision 

and recall, reflecting its susceptibility to misclassification and reducing its overall reliability. Baresoil 

shows balanced but moderate precision and recall, revealing confusion with vegetation and urban 

features. Buildings perform better in precision than recall, indicating frequent correct identification 

but also significant misclassification. Roads, with very low precision, recall, and F1-score, underscore 

the difficulty in identifying linear features with this classification method. 

  

Classes Precision Recall f1score

Water 0.52 0.75 0.62

Sparse Vegetation 0.35 0.58 0.44

Dense Vegetation 0.36 0.33 0.34

Baresoil 0.44 0.51 0.47

Building 0.78 0.47 0.59

Road 0.13 0.06 0.08
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5.2.3. Test 5: Second OBIA classification (based on Refined NDVI threshold): 

The figure 33 represents the land cover classification of Ouagadougou based on the refined NDVI 

thresholds (Table 11). The classification categories include water, sparse vegetation, dense 

vegetation, bare soil, building, and road. The refined NDVI thresholds provide a more accurate 

distinction between these classes compared to the initial thresholds. 

 

 

Figure 33. The Classification of Test 5 (based on refined NDVI threshold) 

The table 22 shows the confusion matrix for the second OBIA classification based on the refined 

NDVI threshold. The rows represent the reference data, while the columns represent the classified 

data. The matrix provides detailed insights into how accurately each land cover type was classified, 

with numbers indicating the count of pixels for each class comparison. 
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Table 22. Confusion Matrix for Test 5 (based on refined NDVI threshold) 

 

In the confusion matrix table for Test 5, water shows excellent classification accuracy, with almost 

no confusion into other classes, highlighting its distinct spectral characteristics and the effectiveness 

of the refined NDVI threshold. Sparse vegetation also performs well but shows notable 

misclassification into baresoil, which continues to be a recurring challenge. Dense vegetation exhibits 

significant overlap with sparse vegetation and baresoil, showing ongoing difficulty in distinguishing 

between these vegetative classes. Urban features such as baresoil and buildings demonstrate 

substantial confusion, with baresoil misclassified into buildings and sparse vegetation, while 

buildings are often mistaken for baresoil. Roads remain a problematic category, with almost no 

correct classifications and widespread errors across all other classes. 

The table 23 presents the True Positive (TP), False Positive (FP), False Negative (FN), and True 

Negative (TN) values for each land cover class in the refined NDVI classification. 

Table 23.True Positive, False Positive, False Negative, and True Negative Values for Test 5 (based on refined NDVI 

threshold) 

 

The true positive, false positive, false negative, and true negative values highlight these results. Water 

stands out as a reliably classified category with minimal false positives and negatives. Sparse 

vegetation maintains relatively strong performance but faces challenges with significant false 

water sparse vegetation baresoil building road

1 2 3 4 5 6

Water 1 50630 0 0 0 500 0 51130

Sparse Vegetation 2 0 62879 0 36556 0 0 99435

Dense Vegetation 3 1121 60952 18185 7644 4585 0 92487

Baresoil 4 0 6868 0 66227 147035 0 220130

Building 5 0 0 0 28352 107430 758 136540

Road 6 0 431 0 14238 91124 0 105793

51751 131130 18185 153017 350674 758 705515Total

Total
Reference       

Classified

Classes TP FP FN TN

Water 50630 1121 500 120725404

Sparse Vegetation 62879 68251 36556 120609969

Dense Vegetation 18185 0 74302 120685168

Baresoil 66227 86790 153903 120470735

Building 107430 243244 29110 120397871

Road 0 758 105793 120671104
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negatives, indicating areas where the model failed to identify sparse vegetation correctly. Dense 

vegetation continues to struggle, with a high number of false negatives, reflecting a large portion of 

missed dense vegetation pixels. Baresoil shows moderate classification performance but suffers from 

substantial false positives and negatives, indicating confusion with both vegetation and urban 

features. Buildings, despite having one of the highest true positive counts, still experience 

considerable false negatives, reflecting difficulties in separating them from baresoil. Roads have the 

weakest performance, with no meaningful correct classifications and widespread misclassification 

into other categories. 

The Table 24 summarizes the precision, recall, and F1 score for each land cover class in the second 

OBIA classification. Precision represents the accuracy of the class predictions, recall indicates how 

well the model identifies all the pixels of a given class, and the F1 score provides a balanced metric 

of precision and recall. 

Table 24. Precision, Recall, and F1-Score for Test 5 (based on refined NDVI threshold) 

 

Performance metrics underline these observations. Water achieves near-perfect precision, recall, and 

F1-score, showcasing its clear separability and effective identification. Sparse vegetation 

demonstrates a balanced precision and recall, resulting in a strong F1-score, though misclassification 

into baresoil remains a concern. Dense vegetation, while achieving perfect precision, has low recall, 

indicating that although it is rarely confused with other classes, many of its instances are missed, 

leading to a low F1-score. Baresoil shows moderate but balanced precision and recall, reflecting 

ongoing confusion with urban and vegetative classes. Buildings, while achieving high recall, suffer 

from lower precision, indicating frequent misclassification into baresoil. Roads are the weakest 

category, with no measurable performance, highlighting the continued challenge in identifying linear 

features with this classification approach. 

  

Classes Precision Recall f1score

Water 0.98 1 0.99

Sparse Vegetation 0.48 0.64 0.55

Dense Vegetation 1 0.2 0.33

Baresoil 0.44 0.31 0.36

Building 0.31 0.79 0.45

Road 0 0 NAN
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5.2.4. Test 6: Second OBIA classification (based on Refined NDVI threshold) with GLCM  

The figure 34 illustrates the OBIA classification results based on the refined NDVI thresholds, 

incorporating GLCM texture analysis (Table 14) to enhance accuracy. The map visually represents 

the distribution of the six land cover classes: water, sparse vegetation, dense vegetation, bare soil, 

buildings, and roads. 

 

Figure 34. The Classification of Test 6 (based on refined NDVI threshold and considering GLCM) 

This confusion matrix details the classification outcomes by comparing the predicted classes against 

the actual reference classes.  

Table 25. Confusion Matrix for Test 6 (based on refined NDVI threshold and considering GLCM) 

 

water sparse vegetation baresoil building road

1 2 3 4 5 6

Water 1 25163 0 13037 0 12930 0 51130

Sparse Vegetation 2 0 72485 19261 7689 0 0 99435

Dense Vegetation 3 0 53142 32991 2696 3658 0 92487

Baresoil 4 0 50931 22864 104264 24776 17295 220130

Building 5 0 393 0 18179 113846 4122 136540

Road 6 0 9890 947 82121 7841 4994 105793

25163 186841 89100 214949 163051 26411 705515

Reference       

Classified

Total

Total
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In the confusion matrix table for Test 6, water shows a decline in classification accuracy compared 

to previous tests, with increased misclassification into dense vegetation and buildings. Sparse 

vegetation performs well in terms of identification but struggles with notable misclassification into 

baresoil and dense vegetation, highlighting the challenges introduced by the integration of GLCM 

features. Dense vegetation continues to face significant overlap with sparse vegetation and baresoil, 

suggesting difficulty in distinguishing these categories based on texture. Urban features such as 

baresoil and buildings display considerable misclassification, with baresoil often confused with 

buildings and roads, while buildings are frequently misclassified into baresoil. Roads remain the most 

problematic class, with very few correct classifications and high rates of misclassification into 

buildings and baresoil. 

The table 26 provides a detailed breakdown of the True Positives (TP), False Positives (FP), False 

Negatives (FN), and True Negatives (TN) for each class 

Table 26. True Positive, False Positive, False Negative, and True Negative Values for Test 6 (based on refined NDVI 

threshold and considering GLCM) 

 

The true positive, false positive, false negative, and true negative values reveal these issues in greater 

detail. Water demonstrates strong precision, as it is rarely confused with other classes, but its recall 

is limited due to many missed instances. Sparse vegetation maintains high recall, indicating that most 

sparse vegetation is correctly identified, but its precision is reduced due to confusion with baresoil. 

Dense vegetation shows low recall and precision, reflecting widespread misclassification and missed 

instances. Baresoil achieves moderate recall and precision but struggles with substantial overlap into 

buildings and roads. Buildings exhibit the best balance among the urban categories, with relatively 

high precision and recall, though misclassification into baresoil remains a challenge. Roads, once 

again, exhibit the weakest performance, with minimal correct identification and substantial overlap 

with other urban classes. 

Classes TP FP FN TN

Water 25163 0 25967 120726525

Sparse Vegetation 72485 114356 26950 120563864

Dense Vegetation 32991 56109 59496 120629059

Baresoil 104264 110685 115866 120446840

Building 113846 49205 22694 120591910

Road 4994 21417 100799 120650445
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This table summarizes the precision, recall, and F1 scores, providing insight into the effectiveness of 

the classification for each class 

Table 27. Precision, Recall, and F1-Score for Test 6 (based on refined NDVI threshold and considering GLCM) 

 

Performance metrics reinforce these observations. Water retains perfect precision, underscoring its 

separability from other classes, but its moderate recall lowers the F1-score. Sparse vegetation 

demonstrates a reasonable balance of precision and recall, resulting in a moderate F1-score, though 

misclassification into baresoil and vegetation reduces its effectiveness. Dense vegetation has poor 

precision and recall, leading to a low F1-score, reflecting its susceptibility to misclassification. 

Baresoil achieves a balanced performance with moderate precision and recall, but its F1-score is 

impacted by confusion with other urban features. Buildings perform strongly, with the highest F1-

score among urban features, showcasing improved classification reliability. Roads remain the 

weakest class, with the lowest precision, recall, and F1-score, highlighting ongoing difficulties in 

accurately identifying linear features in this classification scenario. 

These results indicate that while the introduction of GLCM texture analysis has improved the 

classification in some areas, particularly in distinguishing vegetation and bare soil, challenges remain, 

especially in accurately classifying water, dense vegetation, and roads. The overall accuracy shows 

that while improvements were made, certain classes still suffer from significant misclassification. 

  

Classes Precision Recall f1score

Water 1 0.5 0.66

Sparse Vegetation 0.39 0.73 0.51

Dense Vegetation 0.38 0.36 0.37

Baresoil 0.49 0.48 0.48

Building 0.7 0.84 0.77

Road 0.19 0.05 0.08
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5.2.5. Test 7: Supervised Classification Results 

The supervised classification of Ouagadougou was performed using manually selected training 

samples to represent distinct land cover types within the study area. The training samples included 

categories such as water, bare soil, buildings, roads, sparse vegetation, and dense vegetation. 

Figure 35, illustrates the output of the supervised classification process. The map displays a detailed 

land cover classification segmented into the predefined categories based on the spectral and spatial 

characteristics of the image data. The classification map highlights the following: 

The manually selected training samples, as shown in Figure 26, played a crucial role in guiding the 

classification process. Each sample provided a reference point for the algorithm, enabling it to 

accurately classify similar pixels across the entire image. The samples were distributed across 

different land cover types to ensure a representative training dataset. 

 

 

Figure 35. The Classification of Test 7( This map displays the results of the supervised classification using manually 

selected training samples. The classification differentiates between water, bare soil, buildings, roads, sparse vegetation, 

and dense vegetation, reflecting the land cover distribution in Ouagadougou.) 
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The supervised classification results for the NDVI-based land cover mapping in Ouagadougou show 

significantly improved accuracy and precision compared to previous classifications. The following 

analysis outlines the precision, recall, and F1-score for each land cover class based on the provided 

confusion matrix. 

The table 28 presents the confusion matrix for the supervised NDVI classification. It shows the 

number of pixels correctly and incorrectly classified into each land cover category compared to the 

reference data. It provides a detailed breakdown of how well the classification algorithm performed 

across different land cover types. 

 

Table 28. Confusion matrix for the supervised classification of land cover(Test7) 

 

In the confusion matrix table for Test 7, water demonstrates strong classification performance with 

minimal misclassification into vegetation, highlighting its distinct spectral characteristics. Sparse 

vegetation also shows significant accuracy but faces notable misclassification into dense vegetation 

and baresoil, likely due to overlapping spectral properties. Dense vegetation, while showing 

improvement, still has instances being classified as sparse vegetation, indicating ongoing challenges 

in differentiation. Baresoil achieves excellent classification, with minimal misclassification into 

buildings, reflecting its distinct features. Buildings also perform well, though some overlap with 

baresoil is evident. Roads show considerable improvement, with reduced misclassification into other 

classes. 

water sparse vegetation baresoil building road

1 2 3 4 5 6

Water 1 45630 0 3686 0 0 5000 54316

Sparse Vegetation 2 5500 85185 30647 2441 10722 19769 154264

Dense Vegetation 3 0 3894 58013 0 0 0 61907

Baresoil 4 0 7145 141 215623 7862 1019 231790

Building 5 0 0 0 2066 114050 814 116930

Road 6 0 3211 0 0 3906 79191 86308

51130 99435 92487 220130 136540 105793 705515

Reference       

Classified
Total

Total
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Table 29. True positives, true negatives, false positives, and false negatives for each land cover class in the supervised 

classification of Ouagadougou. 

 

The true positive, false positive, false negative, and true negative values provide further clarity. Water 

has a high true positive count, with very few false positives, indicating its reliable identification. 

Sparse vegetation, while achieving a high number of true positives, experiences significant false 

negatives due to overlap with dense vegetation. Dense vegetation has improved true positive rates but 

still faces challenges with false negatives and misclassification. Baresoil and buildings show robust 

classification, with high true positives and minimal false positives. Roads, despite showing 

improvement, still have room for enhancement, with some false negatives and overlap with baresoil. 

Overall, while supervised classification shows good performance, particularly for water and sparse 

vegetation, challenges remain in distinguishing between classes like bare soil, roads, and buildings 

due to their spectral similarities. The overall accuracy would benefit from refining the thresholds and 

introducing additional data layers like texture analysis (e.g., GLCM) to improve the classification of 

complex urban environments. 

The table 30 lists the True Positive (TP), False Positive (FP), False Negative (FN), and True Negative 

(TN) values for each land cover class. These values are crucial for calculating the precision, recall, 

and F1-scores, helping to understand the classification accuracy and potential areas of confusion 

between classes.  

Classes TP FP FN TN

Water 45630 5500 8686 11742313

Sparse Vegetation 85185 14250 69079 11633615

Vegetation 58013 34474 3894 11705748

Bare soil 215623 4507 16167 11565832

Building 114050 22490 2880 11662709

Road 79191 26602 7117 11689219
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Table 30. Precision, recall, and F1 score for each land cover class in the supervised classification of Ouagadougou. 

 

Performance metrics indicate water’s excellent precision and recall, leading to a high F1-score. Sparse 

vegetation demonstrates good precision but lower recall, resulting in a moderate F1-score, indicating 

its susceptibility to confusion with dense vegetation. Dense vegetation achieves strong recall but 

lower precision, reflecting its challenges with misclassification. Baresoil achieves one of the highest 

F1-scores, showcasing its reliable classification. Buildings also achieve high precision and recall, 

resulting in a strong F1-score. Roads demonstrate substantial improvement in both precision and 

recall, achieving a respectable F1-score, underscoring significant progress in its classification 

accuracy. 

The supervised classification results demonstrate a high level of accuracy across all land cover 

classes, with precision, recall, and F1-scores significantly better than the previous NDVI 

classifications using thresholds. This method provides a robust and reliable classification, particularly 

excelling in distinguishing between challenging classes such as bare soil, buildings, and roads. The 

overall performance underscores the effectiveness of supervised classification in capturing the diverse 

land cover types within the urban environment of Ouagadougou. 

  

Classes precision recall f1score

Water 0.9 0.85 0.87

Sparse Vegetation 0.86 0.56 0.68

Vegetation 0.63 0.94 0.76

Bare soil 0.98 0.94 0.96

Building 0.84 0.98 0.9

Road 0.75 0.92 0.83
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5.3. Vegetation Percentage and Surface Temperature  calculation 

In the following section, the results of surface temperature and vegetation percentage calculations are 

presented and analyzed. These findings provide insights into the spatial patterns and their implications 

for the study area. 

5.3.1. Vegetation Percentage 

The vegetation percentage map (Figure 36) represents the spatial distribution of vegetation across the 

study area. Areas with high vegetation percentages, shown in darker green (79–99%), are mainly 

located in regions with dense vegetation cover, such as parks, green spaces, or agricultural areas. 

Conversely, zones with low vegetation percentages, depicted in lighter shades, correspond to built-

up areas, roads, or barren lands. This map provides critical insight into the uneven distribution of 

vegetation within the study area and highlights the urbanized sections where vegetation is sparse. 

 

Figure 36. Vegetation Percentage 
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5.3.2. Surface Temperature 

The surface temperature map (Figure 37) shows the spatial distribution of land surface temperature 

across the study site. Higher temperatures, represented in red (357.4–359.6 K), are predominantly 

found in areas with little to no vegetation, such as urban centers, industrial zones, or bare soil. 

Conversely, cooler regions, shown in lighter colors, are associated with vegetated areas. The stark 

contrast between vegetated and non-vegetated regions reflects the significant role of vegetation in 

regulating land surface temperatures through processes like evapotranspiration and shading. 

 

Figure 37. Surface temperature (Kelvin) 
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5.3.3. Correlation Analysis 

Finally, the mean surface temperature and vegetation percentage for each grid cell were extracted and 

recorded. A correlation analysis was performed using Excel to identify any potential relationships 

between vegetation percentage and surface temperature across the study area. 

 

Figure 38. The scatterplot of the relationship between vegetation percentage and mean surface temperature 

The scatterplot (Figure 38) presents the relationship between vegetation percentage and mean surface 

temperature, revealing a clear inverse correlation. The linear regression equation, 

y=−0.0381x+356.97, indicates that for every 1% increase in vegetation coverage, the surface 

temperature decreases by approximately 0.038 Kelvin. This relationship is consistent with the 

understanding that vegetation mitigates land surface temperatures through evapotranspiration and 

shading effects. 

  

y = -0.0381x + 356.97
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6. Discussion 

Based on the results from various classification methods and accuracy assessments, the following 

conclusions can be drawn regarding the effectiveness of the different approaches used in this study 

for land cover classification in Ouagadougou: 

Table 31.comparing Overall Accuracy between different methods of classification 

 

The table 31 comparing overall accuracy across different classification methods shows a progressive 

improvement in classification performance. Test 1 begins with the lowest overall accuracy, indicating 

significant challenges in accurately identifying land cover classes. Tests 2 and 3 demonstrate marginal 

improvements, reflecting adjustments in the classification approach but still showing limitations in 

handling misclassifications. 

By Test 4 and Test 5, a further increase in accuracy is observed, attributed to the refinement of 

methods, including the incorporation of more sophisticated features like GLCM and improved 

thresholds. Test 6 marks a substantial improvement, achieving 0.50 overall accuracy, indicating better 

handling of spectral overlaps and class distinctions. Finally, Test 7 achieves the highest overall 

accuracy of 0.84, demonstrating the success of the supervised classification method in resolving 

previous challenges and distinguishing land cover classes with a high degree of reliability. This 

progression underscores the effectiveness of refining methodologies and incorporating advanced 

features to enhance classification performance. 

Overall, the data supports a trend where more complex classification approaches, particularly those 

incorporating advanced machine learning models, significantly outshine simpler methods. Future 

research could benefit from focusing on refining these advanced techniques, potentially applying 

them to broader urban areas to further validate their effectiveness and adaptability. 

Methods overall Accuracy

Test 1 0.36

Test 2 0.41

Test 3 0.41

Test 4 0.43

Test 5 0.43

Test 6 0.5

Test 7 0.84
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Table 32. Comparing  F1 Score of all method for each class 

 

The table shows how the F1-scores for each land cover class improved across the tests. Water starts 

with low accuracy but improves steadily, reaching its best in Test 5 with nearly perfect classification. 

Sparse vegetation also gets better over time, with its best performance in Test 7, although it still faces 

some challenges. 

Dense vegetation has struggled in most tests, showing only a small improvement in later tests, but it 

performs much better in Test 7. Baresoil improves steadily, with a big jump in Test 7, where it is 

classified very accurately. Buildings show good progress, especially in Tests 6 and 7, with much 

better accuracy as the tests refine the method. Roads, which performed poorly in earlier tests, show 

major improvement in Test 7, proving that the advanced methods worked well for identifying them. 

This table makes it clear that improvements in methods led to better classification for almost all 

classes. 

Moreover, this study explores the inverse correlation between vegetation coverage and surface 

temperature, a relationship supported by previous research. Vegetation is instrumental in mitigating 

urban heat island effects, primarily through mechanisms like evapotranspiration and shading. These 

findings underscore the significant role that dense vegetation plays in regulating surface temperatures, 

particularly in rapidly urbanizing tropical regions such as Ouagadougou. 

  

methods Water Sparse Vegetation Dense Vegetation Bare Soil Building Road

Test1 0.39 0.56 0.3 0.4 0.28 0.17

Test 2 0.66 0.64 0.43 0.31 0.42 0.09

Test3 0.65 0.56 0.33 0.37 0.39 0.22

Test4 0.62 0.44 0.34 0.47 0.59 0.08

Test5 0.99 0.55 0.33 0.36 0.45 NAN

Test6 0.66 0.51 0.37 0.48 0.77 0.08

Test7 0.87 0.68 0.76 0.96 0.9 0.83
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7. Conclusion 

7.1. Challenges and Limitations 

Despite the advancements made through various classification techniques, several challenges were 

encountered. The spectral similarity between urban features such as Bare Soil, Roads, and Buildings 

was a persistent issue across all methods, leading to misclassification and reduced accuracy.  

classifying these classes proved challenging due to their similar spectral properties. In Ouagadougou, 

many buildings and roads are constructed from locally sourced materials like clay, which have similar 

reflectance values to bare soil. This similarity, coupled with the effects of the dry season, which 

increases the reflectance of bare soil and alters the spectral signatures of sparse vegetation, made it 

difficult to distinguish these classes accurately using NDVI alone (figure 39). Despite careful 

threshold adjustments through tools like the "Reclassify by Table" tool in QGIS, accurately separating 

bare soil from built-up areas was a persistent challenge.  

 

Figure 39. Example of local architecture 

Moreover, while the satellite data used in this project is high-resolution, it still faces limitations 

in capturing the subtle differences between these surfaces. As a result, NDVI, which is typically 
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effective at differentiating vegetation from non-vegetation, struggles to accurately distinguish 

bare soil from built-up areas like buildings and roads. This overlap causes the NDVI threshold 

for bare soil to be less precise, leading to potential misclassifications in the land cover mapping.  

 

 

Figure 40. Example of Satellite Data 

 

7.2. Implications and Future Directions 

This study highlights important insights for improving land cover classification in urban areas. The 

use of GLCM texture analysis with OBIA proved effective for handling complex urban landscapes, 

while supervised classification, supported by quality training data, remains the most accurate method. 

These findings emphasize the value of combining traditional and advanced techniques for better 

results. 
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Future research could explore machine learning methods like random forests or support vector 

machines to automate the classification process without losing accuracy. Refining texture metrics and 

integrating them with spectral indices, such as NDVI, may further enhance the ability to classify 

diverse land cover types. 

The relationship between vegetation density and surface temperature found in this study shows the 

importance of vegetation in regulating urban heat. Expanding future studies to include factors like 

soil moisture, building materials, and seasonal changes could offer a deeper understanding of what 

influences surface temperature in cities. 

In summary, combining NDVI with advanced methods like OBIA and GLCM analysis offers a 

practical way to improve land cover mapping and understand environmental challenges in urban 

areas. These findings can guide urban planning and environmental management in Ouagadougou and 

similar regions. 
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8. Recommendations 

8.1. Summary of Findings 

This study on urban land cover classification in Ouagadougou utilized high-resolution PlanetScope 

satellite imagery to explore various classification techniques. NDVI thresholding, Object-Based 

Image Analysis (OBIA), and machine learning approaches including Random Forest were employed 

to distinguish between land cover types such as water, vegetation, bare soil, and urban structures. The 

integration of these techniques aimed to harness the strengths of each method to improve the accuracy 

of urban land cover mapping. 

The findings revealed that the machine learning approach, specifically the Random Forest algorithm, 

achieved the highest overall accuracy and reliability. This method outperformed simpler methods like 

NDVI thresholding and traditional OBIA, highlighting its efficacy in handling complex urban 

environments. Additionally, the use of Gray Level Co-occurrence Matrix (GLCM) texture analysis 

alongside NDVI thresholds enhanced the differentiation of land covers that are spectrally similar, 

thus refining the classification outcomes. 

Furthermore, the analysis extended to the correlation between vegetation cover percentages and land 

surface temperature (LST). Using Landsat 9 thermal data, the study confirmed an inverse relationship, 

demonstrating the cooling effect of vegetation in urban areas. This highlights the critical role of 

vegetation in mitigating urban heat islands and supports the integration of thermal data into urban 

planning and environmental monitoring. 

In conclusion, the study underscores the importance of selecting appropriate classification techniques 

based on specific project needs and the characteristics of the data. Advanced methods like machine 

learning proved superior in complex settings, offering robust and accurate classifications. These 

insights suggest that future research could focus on further refining these advanced techniques and 

exploring their applicability to other challenging environments. 
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8.2. Answering Research Questions or Hypotheses 

Q 1:Which classification method proves most effective at distinguishing between different types of 

urban land cover? 

Test 7, utilizing supervised classification with the Random Forest algorithm, demonstrates the highest 

F1 scores across nearly all land cover classes, including water, dense vegetation, buildings, and roads. 

This suggests that this method is most effective at distinguishing between different types of urban 

land cover 

Q 2: To what extent does incorporating NDVI thresholding improve the accuracy of land cover 

classification in urban environments? 

The improved performance in Tests 3, 4, 5, and 6, which incorporated NDVI thresholding into the 

OBIA framework, indicates that NDVI thresholding enhances the accuracy of land cover 

classification in urban environments by providing a solid preliminary layer for further detailed 

analysis. 

Q 3: Does NDVI thresholding provide a reliable preliminary layer for further analysis in OBIA 

workflows? 

NDVI thresholding proved to be a reliable preliminary layer for further analysis in OBIA workflows, 

as evidenced by its repeated use in multiple tests to enhance the segmentation and initial classification 

phases. 

Q 4: How does the integration of Gray Level Co-occurrence Matrix (GLCM) texture analysis 

influence the precision of land cover classifications obtained from OBIA? 

The integration of Gray Level Co-occurrence Matrix (GLCM) texture analysis, particularly in Tests 

4 and 6, enhanced the precision of land cover classifications. This improvement is particularly 

noticeable in the classification of sparse and dense vegetation, where texture features help 

differentiate between similar spectral signatures. 

Q 5: How does the use of a machine learning approach, specifically the random forest algorithm, 

compare with traditional supervised classification methods in terms of classifying urban land cover? 
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Test 7, which employed the Random Forest machine learning algorithm, outperformed traditional 

supervised methods (as seen in the direct comparisons in Tests 1 and 2). This suggests that machine 

learning approaches can offer superior accuracy and robustness in classifying complex urban land 

cover. 

Q 6: What are the benefits and limitations of employing machine learning algorithms like random 

forest in urban land cover analysis? 

Benefits: Machine learning algorithms, like Random Forest, provide robust classification results, 

handle large datasets effectively, and are less prone to overfitting. 

Limitations: These methods require significant training data to perform optimally and can be 

computationally intensive, which might be a limitation in resource-constrained settings. 

Q 7: What are the synergistic effects, if any, of combining NDVI thresholding, GLCM texture 

analysis, and machine learning techniques on the overall accuracy of land cover classification? 

The project's results suggest synergistic effects from combining NDVI thresholding, GLCM texture 

analysis, and machine learning techniques. This combination led to enhanced overall accuracy in land 

cover classification by leveraging the strengths of each method to address different aspects of the 

classification process. 

Q 8: What is the relationship between vegetation cover percentage and surface temperature in the 

study area, and how does this correlation inform our understanding of urban heat distribution? 

The study shows an inverse relationship between vegetation cover and surface temperature, with 

higher vegetation reducing heat. This highlights the role of green spaces in managing urban heat 

distribution 
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8.3. Recommendations for Future Research 

the following recommendations for future research are proposed to enhance our understanding of 

urban land cover classification and improve methodological approaches: 

 

• Investigate the use of other advanced machine learning models like deep learning neural 

networks which might provide improved classification accuracies over Random Forest for 

certain types of land cover, especially in highly urbanized areas with complex features. 

• Consider using multi-temporal satellite data to monitor changes over time. This could help in 

understanding the dynamics of urban land cover changes and improve the predictive accuracy 

of classification models by incorporating temporal variations. 

• Apply the developed methodologies to different geographic regions with diverse ecological 

and urban characteristics to validate the robustness of the classification methods across 

different environments. 

• Utilize higher resolution data or integrate multiple data sources, such as LiDAR and SAR 

data, to enhance the classification framework. This can help in better distinguishing between 

land cover classes that are spectrally similar but structurally different. 

• Develop methods for automatic tuning of classification parameters, such as the thresholds for 

NDVI and parameters for GLCM and machine learning algorithms. This could reduce the 

manual effort needed and potentially increase the objectivity of the classifications. 

• Include socio-economic factors which could influence land cover, such as population density 

or land usage regulations, to provide a more comprehensive analysis of urban land cover 

changes. 

• Examine the impact of urban planning policies on land cover changes by integrating policy 

data into the classification process. This could provide insights into how urban planning 

decisions influence land cover dynamics. 

• Enhance the validation process by increasing the amount and diversity of ground truth data 

used. This could involve collaborations with local authorities or the use of crowd-sourced data 

verification techniques to improve the accuracy assessments. 
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• Investigate the incorporation of additional environmental parameters, such as soil moisture or 

urban material composition, to better understand their combined influence on surface 

temperature variations. 

• Explore seasonal or diurnal variations in LST data to gain insights into how temporal patterns 

affect the relationship between vegetation and urban heat. 

• Integrate thermal data from multiple sensors or platforms to improve spatial and temporal 

resolution for more detailed urban heat mapping. 

• Develop models that link vegetation percentage directly with LST to predict urban heat 

scenarios under different greening strategies, aiding climate-resilient urban planning efforts. 

These recommendations aim to build on the current project’s successes and address potential areas 

for improvement, paving the way for more detailed and accurate land cover classification studies in 

the future. 
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