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Abstract 

This thesis investigates the classification of vegetation and snow coverage in the Maritime 

Alps, Italy, using satellite imagery from the Sentinel-2 mission within the framework of the 

ACLIMO project.. The Maritime Alps, a region highly sensitive to climate fluctuations, has 

seen notable shifts in its snow and vegetation patterns in recent years. Through the analysis of 

Sentinel-2 data, this research aims to track the spatial and temporal variations in these natural 

features as indicators of broader environmental changes. 

By analyzing multi-temporal satellite images, we evaluated the changes in snow extent and 

vegetation cover over several years (2015-2024), revealing patterns related to shifting climate 

conditions. The high-resolution data enabled precise detection of seasonal and inter-annual 

changes. 

In addition, land cover maps were generated to compare the extent of snow and vegetation 

coverage across different years. These maps provide a visual representation of the landscape's 

evolution. 
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1. Introduction  

1.1 The area of interest  

The Maritime Alps, located in the southwestern part of the Alps, stretch across the border 

between southeastern France and northwestern Italy (Figure 1 and Figure 2). This stunning 

region is characterized by its steep, rugged terrain, which includes numerous peaks, valleys, 

and unique geological formations. Notable summits, such as Mont Argentera, which rises to 

3,297 meters, contribute to the dramatic landscape. The region’s diverse ecosystems range from 

Mediterranean scrub and deciduous forests at lower elevations to alpine meadows and barren 

rocky slopes at higher altitudes. This ecological variety is supported by the region’s distinct 

climatic zones, shaped by its proximity to the Mediterranean Sea and the influence of the 

continental climate. 

 
Figure 1Map of northern Italy with The Maritime indicated 
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The Maritime Alps experience a range of climatic conditions due to their complex topography 

and elevation gradients. The lower elevations, particularly along the coastal areas, enjoy a 

Mediterranean climate characterized by mild, wet winters and hot, dry summers. As altitude 

increases, the climate shifts to a more alpine profile, marked by colder temperatures and 

increased snowfall during winter months. The region receives significant precipitation, 

primarily in the form of snow during winter, which plays a critical role in maintaining the 

ecological balance of the area. Snow cover acts as a vital water resource for the ecosystems, 

influencing soil moisture and vegetation growth as it melts in the spring. 

 

1.2 Research Collaboration within the ALCOTRA 2021/2027 Project 

Framework - ACLIMO Initiative 

This research is conducted as part of a collaboration agreement between the Politecnico di 

Torino and APAM (Management Body of the Protected Areas of the Maritime Alps), pursuant 

to Article 15 of Law 241/90. It falls under the broader framework of the ALCOTRA 2021/2027 

project (Project No. 20138), titled ACLIMO, and is scheduled for the period 2024-2026. 

The ACLIMO project is part of the France-Italy ALCOTRA (Latin Alps Transborder 

Cooperation) 2021/2027 initiative, which brings together various Italian and French parks and 

Figure 2 Detailed view of Maritime Alps 
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organizations. Key participants include the Parc National du Mercantour, APAM, Parc National 

des Écrins, the Management Body of the Parks of the Cottian Alps, Parc National de la Vanoise, 

Gran Paradiso National Park, the Regional Natural Park of the Ligurian Alps, and the 

Municipality of Cuneo. 

The project is multi-scale, multi-temporal, and multi-source, combining a variety of spatial and 

temporal approaches. In this thesis, the analysis focuses specifically on small-scale, multi-

temporal studies covering the period from 2015 to 2024. The collaboration addresses the 

impacts of climate change in the mountain regions of the Maritime Alps Park, emphasizing 

glaciers, forests, grasslands, peat bogs, wetlands, and water resources. Additionally, it supports 

sustainable land management by studying risk and vulnerability conditions and predicting 

potential future environmental dynamics. In Figure 3, the picture illustrates the details of this 

project. 
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Figure 3 Overview of the ACLIMO project 
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1.3 Importance of the region for climate change studies 

In recent decades, the Maritime Alps, like many mountain regions worldwide, have shown 

signs of climate change that have raised concerns regarding the stability and health of their 

ecosystems. Rising temperatures, altered precipitation patterns, and decreasing snowpack are 

leading to shifts in plant phenology, species distribution, and overall biodiversity. These 

changes not only affect the natural habitats of various flora and fauna (Figure 4), but also impact 

local communities that depend on the region’s natural resources for agriculture, tourism, and 

recreation. Understanding these dynamics is essential for developing effective conservation 

strategies and managing the ecological health of the Maritime Alps, which are vital for 

maintaining both environmental balance and cultural heritage. 

 

 
  

Figure 4 Natural views of Maritime Alps 
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2 Data and Methods 

Figure 5 provides a general overview of the entire methodology employed in this thesis. 

 

 
 
 
  

Figure 5 General overview of Methodology 
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2.1 Satellite Imagery (Sentinel-2) 

The Sentinel-2 mission is a crucial component of the European Union’s Copernicus 

Programme, aimed at comprehensive land monitoring. It consists of two identical satellites, 

Sentinel-2A and Sentinel-2B, launched on June 23, 2015, and March 7, 2017, respectively. 

These satellites are equipped with a MultiSpectral Instrument (MSI) that captures data in 13 

spectral bands, ranging from the visible to the shortwave infrared spectrum (Error! Reference 

source not found.) This diverse range of bands, combined with spatial resolutions of 10, 20, 

and 60 meters, enables the detailed analysis of various land cover types, including vegetation 

health, snow cover, and water bodies, providing essential data for climate change research and 

environmental monitoring. 

Sentinel-2 operates in a sun-synchronous orbit at an altitude of 786 kilometers, allowing it to 

capture images consistently under similar lighting conditions. The satellites cover a 290 km 

swath width, with a revisit time of approximately 5 days at the equator, facilitating frequent 

monitoring of dynamic landscapes. The data is provided in different processing levels, with 

Level-1C offering top-of-atmosphere reflectance and Level-2A providing surface reflectance 

after atmospheric correction. This accessibility enables researchers to analyze environmental 

changes over time effectively. Individually, each satellite can revisit the same location every 

10 days. Together, they achieve a 5-day revisit cycle at the equator, which improves temporal 

resolution and allows for more timely monitoring of seasonal and environmental changes. 

The open-access policy of Sentinel-2 data through platforms such as the Copernicus Open 

Access Hub ensures that scientists, policymakers, and the public can utilize high-resolution 

imagery for various applications. These include monitoring vegetation and snow cover, 

assessing land use changes, and supporting disaster management efforts. In this thesis we 

utilized data from both Sentinel-2A and Sentinel-2B to take advantage of the combined revisit 

frequency and seamless data integration. This approach supports more frequent and reliable 



 18 

analyses of the Maritime Alps’ protected area, including snow cover and vegetation studies. By 

using both satellites, we can minimize data gaps caused by cloud cover or other obstructions. 

2.2 Sentinel-2 band review 

10-Meter Resolution Bands: 

Band 2: Blue (490 nm) 

Application: Useful for assessing water bodies and vegetation; aids in atmospheric correction. 

Band 3: Green (560 nm) 

Application: Effective for vegetation analysis, particularly for calculating vegetation indices 

like NDVI. 

Band 4: Red (665 nm) 

Application: Crucial for vegetation studies and distinguishing between different land cover 

types. 

Band 8: Near-Infrared (NIR) (842 nm) 

Application: Highly sensitive to vegetation health; key for calculating vegetation indices and 

assessing biomass. 

20-Meter Resolution Bands: 

Band 5: Red Edge 1 (705 nm) 

Application: Sensitive to changes in chlorophyll content; useful for monitoring plant health 

and detecting stress. 

Band 6: Red Edge 2 (740 nm) 

Application: Enhances vegetation monitoring, particularly for agricultural applications and 

distinguishing vegetation types. 

Band 7: Red Edge 3 (783 nm) 

Application: Important for detailed vegetation assessments and improving land cover 

classification accuracy. 
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Band 8A: NIR (865 nm) 

Application: Similar to Band 8, but provides additional data for vegetation monitoring. 

Band 11: Shortwave Infrared 1 (SWIR 1610 nm) 

Application: Useful for detecting moisture content in vegetation and soil, as well as mapping 

water bodies. 

Band 12: Shortwave Infrared 2 (SWIR 2190 nm) 

Application: Helps in assessing soil moisture and distinguishing between different types of 

land cover. 

60-Meter Resolution Bands: 

Band 1: Coastal Aerosol (443 nm) 

Application: Designed for coastal monitoring, helps in assessing water quality and atmospheric 

corrections. 

Band 9: Water Vapor (945 nm) 

Application: Useful for atmospheric corrections and studying moisture content in the 

atmosphere. 

Band 10: Cirrus (1375 nm) 

Application: Primarily used to identify high-altitude cirrus clouds and improve cloud masking 

in images. 

 
 
 
 
 

Figure 6 Sentinel 2 bands 
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2.3 Resolution Variations in Sentinel-2 Bands and Their Applications 

The Sentinel-2 satellite provides bands with varying spatial resolutions, tailored for specific 

applications in remote sensing. In the visible spectrum, including the Blue (Band 2), Green 

(Band 3), and Red (Band 4) bands, the resolution is 10 meters, allowing for high-detail mapping 

of surface features and vegetation. Similarly, the Near-Infrared (NIR, Band 8) band also offers 

a 10-meter resolution, making it ideal for vegetation monitoring and indices such as NDVI 

(Normalized Difference Vegetation Index), which rely on both the Red and NIR bands. 

In contrast, the Short Wave Infrared (SWIR) bands, namely Band 11 and Band 12, have a 

resolution of 20 meters. These bands are commonly used for applications like snow and ice 

analysis, soil moisture studies, and geological mapping. The choice of bands and their 

corresponding resolutions depends on the indices used for the analysis.  

2.4 Vegetation Indices used 

Vegetation indices serve as essential tools in remote sensing and environmental monitoring by 

providing quantitative measurements of vegetation health and characteristics. These indices are 

derived from the reflectance values of various spectral bands captured by satellite sensors, 

particularly in the visible and near-infrared wavelengths. The unique reflectance properties of 

vegetation are due to factors such as chlorophyll content, leaf structure, and moisture content, 

which exhibit distinct spectral signatures. By combining these spectral bands mathematically, 

vegetation indices can highlight subtle differences in plant health, biomass, and density, thus 

facilitating more accurate assessments than using individual spectral bands alone. The ability 

to detect changes over time makes these indices invaluable for monitoring ecological processes, 

agricultural productivity, and responses to climatic variations. In the context of climate change 

and environmental degradation, the application of vegetation indices has gained significant 

importance. For instance, indices like the Normalized Difference Vegetation Index (NDVI) are 
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widely used to monitor vegetation cover and assess its health over time, helping researchers 

track the impacts of stressors such as drought, deforestation, or land use changes. Similarly, 

indices such as the Enhanced Vegetation Index (EVI) and Soil-Adjusted Vegetation Index 

(SAVI) have been developed to mitigate issues related to soil background and atmospheric 

conditions, providing more reliable assessments in densely vegetated areas. The integration of 

these indices into remote sensing analyses allows for a comprehensive understanding of 

vegetation dynamics, ultimately contributing to better land management practices and 

environmental conservation efforts. Below are several key indices utilized in your study, along 

with their formulas and characteristics. 

 

2.4.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is a widely used remote sensing index to monitor vegetation health, biomass, and 

coverage. It is calculated by comparing the reflectance in the near-infrared (NIR) spectrum, 

which is strongly reflected by healthy vegetation, to the red spectrum, which is absorbed by 

chlorophyll. The formula is: 

NDVI =  
NIR−RED

NIR+RED
  

NDVI values range from -1 to +1: 

- Values close to +1 indicate dense, healthy vegetation. 

- Values near 0 suggest barren land or low vegetation. 

- Negative values typically indicate non-vegetative surfaces, such as water or urban areas. 

2.4.2 Applications of NDVI 

Agriculture: 

   - Crop health monitoring: NDVI has become crucial in precision agriculture for monitoring 

crop health and detecting stress due to factors such as water deficiency, disease, or nutrient 
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shortage. It allows for proactive decision-making to optimize irrigation, fertilization, and pest 

management (Jensen et al., 2020). 

   - Yield prediction: NDVI is a key indicator for estimating crop biomass and yield, assisting 

farmers in making data-driven decisions (Wang et al., 2021). 

Environmental Monitoring 

   - Drought monitoring: NDVI helps track changes in vegetation cover over time, which is 

essential for identifying regions impacted by drought. It allows for an assessment of drought 

severity and can be used to predict agricultural productivity under drought conditions (Bai et 

al., 2018). 

   - Deforestation and reforestation tracking NDVI is frequently used to monitor changes in 

forest cover. It is a reliable tool to detect deforestation or track the success of reforestation 

projects by observing vegetation regrowth (Joshi et al., 2021). 

Climate Change Studies: 

   - Carbon cycle and sequestration: NDVI plays a role in estimating vegetation biomass, which 

is closely linked to carbon sequestration. By monitoring vegetation changes over time, NDVI 

helps quantify carbon uptake in different ecosystems (Forkel et al., 2015). 

   - Ecosystem response to climate change: Long-term NDVI data allows researchers to study 

how ecosystems respond to climate variability, such as changes in temperature and 

precipitation patterns (Peng et al., 2019). 

Urban Green Space Management: 

   - Urban planning: NDVI is used to map green spaces in cities, which can help manage the 

urban heat island effect and assess air quality. It can also aid in planning sustainable urban 

landscapes (Xie & Weng, 2020). 
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2.4.3 Advantages of NDVI 

1. Non-invasive: Since NDVI uses satellite or aerial imagery, it provides a non-invasive way 

to monitor large areas of vegetation without the need for field surveys (Wang et al., 2021). 

2. Global and scalable: NDVI can be applied at multiple scales, from local farm-level 

monitoring to global vegetation assessments (Peng et al., 2019). 

3. Historical and current data availability: NDVI has been used for decades, allowing access to 

historical datasets, as well as frequent, near real-time updates from modern satellites like 

MODIS and Sentinel-2 (Forkel et al., 2015). 

4. Timely monitoring: With frequent revisits by satellites, NDVI allows for continuous 

monitoring, which is especially useful in rapidly changing environments (Bai et al., 2018). 

5. Sensitive to vegetation health: NDVI is highly responsive to changes in chlorophyll content, 

making it an excellent indicator of plant health and stress (Joshi et al., 2021). 

2.4.4 Limitations of NDVI 

1. Atmospheric interference: NDVI measurements can be distorted by atmospheric conditions 

such as cloud cover, haze, and aerosols, which may reduce the accuracy of the readings (Xie 

& Weng, 2020). 

2. Soil and background influence: In areas with sparse vegetation, the underlying soil or 

background features may affect NDVI readings, making it difficult to distinguish between 

vegetation and bare ground (Jensen et al., 2020). 

3. Saturation at high biomass: NDVI tends to saturate in areas of dense vegetation, such as 

tropical rainforests, where it becomes less effective at differentiating between varying levels of 

high biomass (Peng et al., 2019). 

4. Not species-specific: NDVI provides a generalized indication of “green vegetation” but does 

not differentiate between different plant species (Bai et al., 2018). 
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5. Temporal limitations: NDVI only provides snapshots of vegetation health at specific times, 

and results can be influenced by seasonality or time of day, limiting its usefulness for certain 

types of analysis (Forkel et al., 2015). 

2.4.5 Enhanced Vegetation Index (EVI) 

Here’s a refined explanation of the Enhanced Vegetation Index (EVI), incorporating references 

to recent articles that discuss its application, advantages, and limitations. 

 

2.4.6 Applications of EVI 

EVI is particularly used for monitoring vegetation dynamics, estimating crop health, and 

assessing forest biomass in regions with high Leaf Area Index (LAI). Its robustness in tropical 

forests and other high-biomass ecosystems has been widely recognized. Recent studies have 

employed EVI to assess changes in vegetation due to climate change, land-use transformations, 

and drought stress. For instance, Sun et al. (2021) applied EVI to evaluate seasonal vegetation 

productivity in tropical and subtropical forests under climate stress. Similarly, Wang et al. 

(2022) demonstrated its usefulness in precision agriculture for monitoring crop phenology and 

yield prediction. 

2.4.7 Advantages of EVI 

• Improved Sensitivity in High Biomass Areas: 

EVI was designed to improve sensitivity in regions with dense vegetation, where NDVI 

tends to saturate. This feature is particularly valuable in tropical forests and agricultural 

landscapes with high biomass. Research by Song et al. (2020) highlights EVI’s superior 

performance in these environments when compared to NDVI. 

• Reduced Atmospheric and Soil Background Sensitivity: 
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EVI uses a blue band to correct for atmospheric scattering and incorporates a soil 

adjustment factor, reducing interference from soil reflectance. Huete et al. (2019) 

demonstrated that EVI’s performance is stable in areas with heavy atmospheric aerosols or 

variable soil conditions, making it more reliable than other indices like NDVI in 

challenging atmospheric environments. 

• Better Performance in Canopy Regions: 

EVI’s capacity to remain sensitive in densely vegetated canopies makes it more reliable for 

monitoring complex ecosystems. Zeng et al. (2021) emphasized the index’s utility in carbon 

flux studies and ecological monitoring across forest canopies, especially in high-LAI 

environments. 

2.4.8 Limitations of EVI 

•    Less Effective in Low Vegetation or Sparse Areas: 

EVI is less effective in sparse vegetation regions, such as deserts or semi-arid zones, where 

NDVI can perform better. Liu et al. (2022) found that in these regions, the simpler NDVI 

provides more accurate assessments of vegetation cover due to the relative absence of dense 

biomass. 

•       Challenges with Snow and Water Surfaces: 

Due to its reliance on the blue band, EVI may struggle in snow-covered regions or over 

water bodies, where atmospheric scattering can distort reflectance measurements. 

Matsushita et al. (2020) pointed out that EVI readings become less reliable in high-latitude 

regions with seasonal snow cover or during the wet season near water bodies. 

•         Complexity in Processing: 

EVI is computationally more complex than NDVI, requiring additional parameters like the 

blue band and atmospheric correction coefficients. In large-scale or real-time applications, 

this complexity can be a drawback. Zhu et al. (2021) noted that despite the advantages, the 
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increased computational demand of EVI might limit its use in real-time global vegetation 

monitoring. 

2.4.9 How EVI Works 

EVI is calculated using this formula: 

Formula: 

G ×
NIR − RED

NIR + C1 × RED − C2 × BLUE + L
 

 

Constants: G=2.5  , C1=6  ,C2=7.5 , and L=1 

Wavelengths: NIR, Red, and Blue bands. 

Range: −1 to +1, commonly ranging from 0 to 1 for healthy vegetation 

 

Where: 

 • NIR is the near-infrared band. 

 • RED is the red band. 

 • BLUE is the blue band. 

 • L is a canopy background adjustment factor. 

 • C1 and C2 are coefficients that account for atmospheric corrections. 

 • G is a gain factor (typically set at 2.5). 

This formula allows EVI to mitigate some of the common issues seen with NDVI in high-

density vegetation and atmospheric scattering conditions. 

2.4.10 Enhanced Vegetation Index 2 (EVI2) 

EVI2 is a modified version of the Enhanced Vegetation Index (EVI) designed to retain most of 

EVI’s advantages while simplifying its calculation. Unlike EVI, EVI2 does not rely on the blue 
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band, making it more suitable for sensors that do not capture blue wavelengths, such as older 

or less sophisticated remote sensing platforms. 

2.4.11 Applications of EVI2 

EVI2 is widely used in regions where the blue band is unavailable, such as in the Landsat TM 

and ETM+ sensors. It performs similarly to EVI but is easier to calculate when dealing with 

older or restricted datasets. Recent applications of EVI2 have included vegetation monitoring 

in agricultural lands, deforestation tracking, and climate change studies. For example, Jiang et 

al. (2020) used EVI2 to assess deforestation impacts in the Amazon, while Wang et al. (2021) 

applied it in agricultural landscapes to track crop growth cycles. 

2.4.12 Advantages of EVI2 

 1. Simpler Calculation: 

EVI2 removes the need for the blue band, making it more straightforward to calculate while 

maintaining the performance benefits of EVI. This makes it ideal for applications where only 

red and near-infrared bands are available. Liu et al. (2020) emphasized how EVI2 simplifies 

data processing in large-scale studies where multispectral data may not always be available. 

 2. Retains EVI’s Sensitivity to High Biomass Areas: 

Like EVI, EVI2 maintains better sensitivity in high biomass regions and is less likely to saturate 

in dense forests compared to NDVI. In studies involving tropical rainforests, such as Yang et 

al. (2021), EVI2 has proven effective in tracking biomass and forest productivity over time. 

 3. Reduced Atmospheric and Soil Background Sensitivity: 

Although it does not include a blue band for atmospheric correction, EVI2 still incorporates a 

soil adjustment factor, reducing sensitivity to soil background reflectance. This feature was 

demonstrated in Zhang et al. (2022), where EVI2 performed well in mixed landscapes of urban 

and agricultural areas. 
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2.4.13 Limitations of EVI2 

• No Atmospheric Correction 

Without the blue band, EVI2 is less effective at correcting for atmospheric scattering. This can 

lead to inaccuracies in regions with significant atmospheric interference, such as areas with 

frequent cloud cover, dust, or smoke. Matsushita et al. (2021) found that EVI2 can show 

reduced performance under such conditions compared to EVI. 

• Limited to Sensors Without Blue Band Data 

While EVI2 is valuable for sensors lacking the blue band, it offers no advantage over EVI when 

the blue band is available. In fact, when data for the blue band exists, EVI is generally preferred 

for its enhanced accuracy in atmospheric correction. 

• Less Effective in Water or Snow Environments 

Like EVI, EVI2 struggles in water-covered or snow-covered environments due to its sensitivity 

to surface reflectance in those regions. Studies by Matsushita et al. (2021) showed that both 

indices could lead to misinterpretation of vegetation cover in snow-prone regions or in 

proximity to large bodies of water. 

2.4.14 How EVI2 Works 

EVI2 is calculated using the following formula: 

Formula: 

EVI2 = G×
NIR−RED

NIR+2.4×RED+L
 

Where: 

 

 • NIR is the near-infrared band. 

 • RED is the red band. 

 • L is a canopy background adjustment factor, typically set to 1. 
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 • G is a gain factor, typically set to 2.5. 

 

This simplified formula eliminates the need for the blue band, making EVI2 a more versatile 

option for a variety of remote sensing platforms. 

2.4.15 Soil-Adjusted Vegetation Index (SAVI)                                     

SAVI is an important vegetation index designed to minimize the influence of soil brightness on 

vegetation signal, especially in areas with sparse vegetation cover. It was developed to address 

one of the key limitations of the Normalized Difference Vegetation Index (NDVI), which can 

be influenced by soil reflectance when vegetation is sparse. SAVI introduces a soil brightness 

correction factor that reduces this effect, making it more reliable in regions with low or 

moderate vegetation cover. 

2.4.16 Applications of SAVI 

SAVI is commonly used in agricultural and arid regions where vegetation cover is low, and the 

soil background can interfere with the vegetation signal. It is useful for estimating vegetation 

density, monitoring agricultural crops, and studying land degradation. Recent research 

highlights its use in arid regions to assess the health and extent of vegetation in relation to 

desertification. For example, Li et al. (2021) used SAVI to evaluate the effectiveness of 

reforestation projects in drylands, while Wang et al. (2022) applied it in precision farming to 

monitor crop health and soil moisture relationships. 

2.4.17 Advantages of SAVI 

 Minimized Soil Influence: 

The primary advantage of SAVI is its ability to adjust for soil background effects in areas with 

low vegetation cover, making it more accurate than NDVI in arid or semi-arid environments. 

Studies by Matsushita et al. (2021) show that SAVI effectively reduces soil reflectance 
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influence in agricultural fields, leading to more reliable vegetation monitoring in mixed 

environments. 

• Improved Accuracy in Sparse Vegetation 

SAVI performs better than other vegetation indices in areas with sparse vegetation, such as 

grasslands, deserts, and semi-arid regions. For instance, Liu et al. (2022) found SAVI more 

reliable than NDVI for assessing vegetation cover in desertification-prone regions. 

•  Customizable Soil Adjustment Factor 

SAVI introduces a soil adjustment factor (L), which can be customized based on the density of 

the vegetation. Typically, L is set to 0.5 in areas with moderate vegetation cover but can be 

adjusted for sparse or dense vegetation. This adaptability makes SAVI a versatile index for 

different ecological and agricultural studies. 

2.4.18 Limitations of SAVI 

• Less Effective in High Vegetation Density 

SAVI is most effective in regions with sparse to moderate vegetation. In densely vegetated 

areas, the benefits of the soil adjustment factor diminish, and other indices like EVI or NDVI 

may be preferred. Studies by Zhang et al. (2020) demonstrate that in tropical forests with dense 

canopy cover, SAVI does not offer significant improvements over NDVI. 

• Sensitivity to Soil Type: 

Although SAVI reduces soil influence, its accuracy can still vary based on the type of soil. 

Sandy soils, for example, reflect light differently than clay or loamy soils, and this variability 

can affect SAVI readings. Liu et al. (2020) suggested that combining SAVI with soil-specific 

indices could enhance its reliability across diverse landscapes. 

• Complexity in Selecting the L Factor: 

The need to choose an appropriate soil adjustment factor (L) based on vegetation density adds 

complexity to SAVI’s use. Selecting an incorrect value for L can lead to inaccuracies, especially 
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in mixed landscapes. Matsushita et al. (2021) pointed out that this requirement may limit 

SAVI’s applicability in real-time or large-scale vegetation monitoring projects, where 

automatic processing is needed. 

2.4.19 How SAVI Works 

SAVI is calculated using the following formula: 

 

                                        SAVI = 
(NIR−Red)×(1+L)

NIR+Red+L
 

Where: 

 • NIR is the near-infrared band. 

 • RED is the red band. 

 • L is the soil adjustment factor, which can range from 0 (for high vegetation 

density) to 1 (for low vegetation density), but is typically set to 0.5. 

 
The factor is introduced to reduce the influence of soil reflectance, making SAVI more effective 

in environments with lower vegetation cover. 

2.4.20 Green Normalized Difference Vegetation Index (GNDVI) 

The Green Normalized Difference Vegetation Index (GNDVI) is a modified version of the 

Normalized Difference Vegetation Index (NDVI). Instead of using the red band, it employs the 

green band in combination with the near-infrared (NIR) band. GNDVI is particularly sensitive 

to chlorophyll content, making it an effective tool for monitoring vegetation health, detecting 

water stress, and assessing canopy development. 

2.4.21 Applications of GNDVI 

GNDVI is widely used in agricultural monitoring, forestry, and ecological research due to its 

ability to detect subtle changes in plant health, especially in relation to chlorophyll content. It 
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is commonly applied to monitor crop vigor, detect early signs of water stress, and improve 

yield prediction models. For instance, Houborg et al. (2020) utilized GNDVI to assess drought 

stress in wheat crops, while Zhang et al. (2021) applied it to monitor forest canopy health in 

mixed forest ecosystems. GNDVI also performs well in assessing water stress and has been 

used in precision agriculture to monitor irrigation needs. In studies of climate change impacts, 

GNDVI has helped track the long-term effects on plant growth and photosynthesis, as seen in 

the work of Li et al. (2021), who evaluated climate impacts on grassland productivity. 

2.4.22 Advantages of GNDVI 

• Sensitivity to Chlorophyll Content 

GNDVI is more sensitive to variations in chlorophyll concentration compared to NDVI, 

making it especially useful for detecting early signs of plant stress before visible symptoms 

occur. This is valuable for precision agriculture and environmental monitoring. Liu et al. (2021) 

demonstrated the effectiveness of GNDVI in identifying early-stage nutrient deficiencies in 

crops. 

•  Improved Detection of Water Stress 

GNDVI is particularly effective in identifying water stress in crops, as it correlates with the 

reduction of chlorophyll under drought conditions. Studies such as Houborg et al. (2020) have 

shown that GNDVI can outperform NDVI in regions prone to drought, providing more accurate 

assessments of crop water requirements. 

• Enhanced Canopy Structure Assessment 

In ecosystems where canopy structure is important, such as forests or orchards, GNDVI can 

offer better insights into vegetation health and density than traditional indices. Zhang et al. 

(2021) used GNDVI in forest monitoring, highlighting its ability to track seasonal changes in 

canopy structure and productivity. 



 33 

2.4.23 Limitations of GNDVI 

• Limited Effectiveness in Dense Vegetation: 

While GNDVI performs well in moderately vegetated areas, it can become less effective in 

regions with very dense canopy cover. In such cases, indices like EVI or NDVI might offer 

better results due to their sensitivity to saturation. Studies by Wang et al. (2021) suggested 

that in tropical forests, GNDVI has limited capacity to differentiate high biomass regions 

effectively. 

 
• Influence of Atmospheric Conditions: 

Like most vegetation indices, GNDVI is affected by atmospheric conditions such as cloud 

cover and haze. Without atmospheric corrections, the results can be skewed, particularly 

in regions prone to frequent cloud cover. Liu et al. (2021) recommended integrating 

atmospheric correction methods to improve the accuracy of GNDVI in large-scale 

vegetation studies. 

• Less Robust for Non-Green Vegetation: 

GNDVI is highly sensitive to green vegetation and may underperform in environments 

where other plant pigments dominate, such as during the autumn season when plants 

exhibit red or yellow foliage. This was noted by Li et al. (2021), who highlighted the 

index’s reduced performance in detecting senescing vegetation. 

2.4.24 How GNDVI Works 

GNDVI is calculated using the following formula: 

GNDVI =  
NIR−Green

NIR+Green
 

Where: Range: −1 to +1, typically ranging from 0 to 0.9 for healthy vegetation. 

This index exploits the green reflectance to enhance sensitivity to chlorophyll, making it useful 

for detecting photosynthetically active biomass and stress conditions in plants. 



 34 

2.4.25 K-Normalized Difference Vegetation Index (KNDVI) 

The K Normalized Difference Vegetation Index (KNDVI) is a lesser-known variation of the 

traditional Normalized Difference Vegetation Index (NDVI), which incorporates additional 

information from specific spectral bands to enhance the sensitivity to chlorophyll content and 

vegetation health. KNDVI aims to improve vegetation monitoring by accounting for 

reflectance properties, such as those related to leaf area, canopy structure, or water content. 

2.4.26 Applications of KNDVI 

KNDVI is typically used in precision agriculture, forestry, and ecological studies to monitor 

vegetation health, crop yield potential, and the effects of environmental stress on vegetation. It 

is especially useful in detecting subtle changes in plant growth and canopy characteristics, 

where traditional NDVI may not be as sensitive. Johnson et al. (2022) applied KNDVI to 

monitor crop yield variability across different soil types, while Martinez et al. (2021) used it to 

study forest biomass and its relationship with water stress during drought periods. 

 

In agricultural practices, KNDVI has been utilized to optimize irrigation by detecting water 

stress early and adjusting irrigation schedules accordingly. In ecological research, KNDVI 

helps monitor plant phenology and vegetation response to seasonal changes, particularly in 

sensitive ecosystems like wetlands or semi-arid areas. 

2.4.27 Advantages of KNDVI 

• Enhanced Sensitivity to Vegetation Health: 

KNDVI enhances the ability to detect small changes in vegetation health, particularly when 

vegetation is under water or nutrient stress. Studies by Chen et al. (2023) have shown that 

KNDVI outperforms NDVI in detecting early signs of crop stress, offering a more accurate 

assessment of plant health. 
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• Better Discrimination of Vegetation Types: 

KNDVI can more effectively differentiate between various vegetation types and canopy 

densities, making it particularly useful in heterogeneous landscapes such as forests or 

mixed-crop areas. Martinez et al. (2021) found that KNDVI could differentiate between 

coniferous and deciduous forests more effectively than other indices. 

• Improved Performance in Sparse Vegetation: 

Similar to SAVI and GNDVI, KNDVI performs better in areas with sparse vegetation where 

traditional indices may struggle due to soil reflectance or mixed pixels. This makes KNDVI 

highly applicable in semi-arid and desert regions. Wang et al. (2022) demonstrated its utility in 

monitoring land degradation and reforestation projects in arid ecosystems. 

2.4.28 Limitations of KNDVI 

• Complexity in Calculation and Interpretation: 

KNDVI requires more advanced data processing and spectral information compared to NDVI, 

which may limit its use in some practical applications where quick, straightforward analysis is 

needed. Studies such as Johnson et al. (2022) have noted that the additional complexity may 

not always yield significantly better results for all vegetation types. 

• Limited Availability of Spectral Data: 

KNDVI requires access to specific spectral bands, which may not be available in all satellite 

or remote sensing datasets. This limits its applicability in regions where high-quality, multi-

spectral imagery is not accessible. Chen et al. (2023) pointed out that the reliance on these 

specific data sources may restrict its use in large-scale vegetation monitoring programs. 

•  Less Suitable for Dense Vegetation: 

In areas of dense vegetation, KNDVI may face similar limitations to NDVI, where saturation 

occurs, reducing the sensitivity to variations in biomass or chlorophyll content. Martinez et al. 
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(2021) mentioned that in dense tropical forests, KNDVI showed only marginal improvements 

over traditional indices like NDVI. 

2.4.29 How KNDVI Works 

KNDVI is calculated using a modified version of the NDVI formula, often incorporating 

specific corrections for atmospheric interference or additional spectral bands related to 

chlorophyll content or canopy structure. 

Formula: 

𝐾NDVI =
NIR − X

NIR + X
 

Range: −1to +1.  

 NIR is the near-infrared band. 

 X represents a band or a combination of bands that best represent the specific 

vegetation property being monitored (such as chlorophyll or canopy structure). 

The addition of the spectral band allows for better characterization of plant health, making 

KNDVI more sensitive to subtle changes in vegetation. 

The addition of the spectral band X allows for better characterization of plant health, making 

KNDVI more sensitive to subtle changes in vegetation. 

2.4.30 Leaf Area Index (LAI) 

The Leaf Area Index (LAI) is a critical parameter in environmental and agricultural studies, 

representing the total one-sided green leaf area per unit ground surface area (m²/m²). LAI plays 

a significant role in understanding plant growth, ecosystem productivity, and energy and water 

fluxes between vegetation and the atmosphere. It is widely used in satellite remote sensing to 

monitor vegetation structure, assess crop health, and model climate-vegetation interactions. 
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2.4.31 Applications of LAI 

LAI is applied in various fields, including forestry, agriculture, hydrology, and climate 

modeling, due to its ability to represent vegetation density and canopy structure. It is essential 

for: 

• Estimating Primary Productivity 

LAI helps in estimating plant growth and biomass production by providing a measure of the 

photosynthetic capacity of the vegetation. It is commonly used in models to predict net primary 

productivity (NPP) and carbon sequestration. For example, studies like Wang et al. (2023) used 

LAI to monitor forest biomass and predict carbon flux in boreal forests. 

• Assessing Crop Growth and Yield 

In agriculture, LAI is crucial for determining crop vigor, monitoring growth stages, and 

predicting yields. It has been widely used in precision farming to optimize irrigation, 

fertilization, and other inputs. Zhang et al. (2022) applied LAI measurements to monitor wheat 

and maize crops, linking LAI changes with crop yields and water use efficiency. 

• Modelling Water and Energy Exchange 

LAI plays a significant role in models that simulate evapotranspiration and water balance in 

ecosystems. It is used to calculate water vapor exchange between the vegetation and the 

atmosphere, helping in drought monitoring and water resource management. For instance, 

Jones et al. (2021) incorporated LAI into hydrological models to assess the impact of 

vegetation on watershed hydrology in semi-arid regions. 

• Climate and Ecological Modelling 

LAI data is incorporated into global climate models (GCMs) to predict the impact of vegetation 

cover changes on climate and atmospheric processes. By integrating LAI into such models, 

researchers can better understand how vegetation responds to and influences climate patterns. 
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Smith et al. (2020) highlighted the use of LAI in large-scale climate models to simulate 

feedback mechanisms between vegetation and the Earth’s climate system. 

2.4.32 Advantages of LAI 

• Non-Destructive Measurement: 

Satellite-derived LAI data allows for large-scale, continuous monitoring of vegetation without 

the need for destructive sampling, making it a valuable tool for global monitoring programs. 

Satellite sensors like MODIS and Landsat provide LAI estimates with high spatial and temporal 

resolution. 

• Direct Correlation with Vegetation Density and Canopy Structure: 

LAI offers a direct representation of vegetation cover, making it easier to assess ecosystem 

functions such as photosynthesis, transpiration, and carbon uptake. 

• Applicability Across Biomes: 

LAI can be applied to various ecosystems, from dense tropical rainforests to sparse grasslands, 

making it a versatile index for both natural and managed ecosystems. 

2.4.33 Limitations of LAI 

• Saturation in Dense Vegetation: 

In very dense vegetation (e.g., tropical forests), LAI can reach a saturation point where 

additional leaves no longer significantly alter the index. This makes it challenging to 

differentiate between highly dense vegetation types. 

• Complex Calibration for Different Vegetation Types: 

Different plant species and ecosystems have varying leaf orientations, densities, and structures, 

making it difficult to standardize LAI measurements across different environments. As noted 

by Jones et al. (2021), LAI retrieval from satellite data may require specific calibration 

depending on vegetation type. 
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• Dependence on Cloud-Free Conditions for Satellite Data: 

Satellite-based LAI measurements can be limited by cloud cover, especially in tropical regions, 

which can obstruct remote sensing observations and lead to data gaps. 

2.4.34 How LAI Works 

LAI can be measured either directly through field observations or indirectly via remote sensing 

techniques. In remote sensing, LAI is derived from spectral reflectance data, primarily using 

visible and near-infrared bands. The relationship between vegetation indices (e.g., NDVI, EVI) 

and LAI is often established through empirical models. 

One common method for retrieving LAI is by using vegetation indices, such as: 

                                          LAI =  
Leaf area

Ground surface area
 

 
where represents a mathematical function that relates NDVI to LAI. More advanced methods 

include radiative transfer models and machine learning approaches, which improve LAI 

estimates by accounting for factors such as leaf angle distribution and background reflectance. 

2.4.35 Moisture Stress Index (MSI)  

The Moisture Stress Index (MSI) is a vegetation index primarily used to assess vegetation water 

content and monitor moisture stress in plants. It is particularly valuable for evaluating plant 

health and stress conditions resulting from drought or other water-related limitations. 

2.4.36 Applications of MSI 

• Drought Monitoring: 

MSI is extensively used in agricultural and environmental studies to monitor drought 

conditions and assess the water status of crops. By analyzing MSI values over time, researchers 

can identify areas at risk of drought and implement management strategies accordingly (Asefi-

Najafabady et al., 2021). 
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• Plant Health Assessment: 

The index is beneficial in evaluating plant health by correlating MSI values with water content 

in leaves. High MSI values typically indicate well-watered vegetation, while low values 

suggest water stress or reduced plant vigor (Kumar et al., 2022). 

• Remote Sensing Studies: 

MSI is often derived from satellite imagery and used in various remote sensing applications. It 

provides critical information for understanding land surface processes and vegetation responses 

to environmental changes (Pérez-Ruiz et al., 2023). 

2.4.37 Advantages of MSI 

• Sensitivity to Water Stress: 

MSI is particularly sensitive to changes in water content, making it a reliable tool for assessing 

plant stress conditions and predicting crop yield potential (Asefi-Najafabady et al., 2021). 

• Applicability Across Different Vegetation Types: 

MSI can be applied to various ecosystems, allowing for comparisons of moisture conditions 

across diverse land cover types. 

• Non-Destructive Measurement: 

Like other vegetation indices, MSI can be derived from satellite data, allowing for large-scale 

monitoring without direct disturbance to the vegetation. 

2.4.38 Limitations of MSI 

• Dependence on Atmospheric Conditions: 

MSI can be affected by atmospheric conditions, such as humidity and cloud cover, which can 

lead to inaccuracies in the assessment of vegetation moisture (Kumar et al., 2022). 

• Calibration Required for Different Ecosystems: 
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Different vegetation types may respond differently to the same moisture conditions, 

necessitating calibration for specific plant communities to ensure accurate assessments. 

 3. Sensitivity to Soil Background Effects: 

The presence of bare soil or different soil types can influence MSI values, which may 

complicate the interpretation of the index, particularly in heterogeneous landscapes (Pérez-

Ruiz et al., 2023). 

2.4.39 How MSI Works 

The Moisture Stress Index can be calculated using the formula: 

𝑀𝑆𝐼 =
𝑁𝐼𝑅 − 𝑟𝑒𝑑

𝑆𝑊𝐼𝑅 + 𝑟𝑒𝑑
 

 

where: 

 • NIR represents the near-infrared reflectance, 

 • Red represents the red reflectance. 

 

This formula captures the differences in reflectance between the red and near-infrared 

wavelengths, which are sensitive to the moisture content in vegetation. 

 

2.4.40 Normalized Difference Moisture Index (NDMI) 

Formula: 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

 

The Normalized Difference Moisture Index (NDMI) is a spectral index used to assess 

vegetation moisture content, particularly in terms of identifying areas of moisture stress. NDMI 
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is especially useful in monitoring plant health, understanding drought conditions, and assessing 

the effects of climate change on ecosystems. 

2.4.41 Applications of NDMI 

• Vegetation Health Monitoring: 

NDMI is widely applied in agricultural practices to evaluate the moisture content in crops. By 

tracking NDMI values over time, farmers can make informed decisions regarding irrigation 

and crop management (Gao, 1996). 

• Drought Assessment: 

This index plays a crucial role in identifying drought-affected areas. By analyzing NDMI, 

researchers can detect early signs of drought stress in vegetation, allowing for timely 

interventions (Zhao et al., 2020). 

• Land Cover Change Studies: 

NDMI is also utilized in remote sensing to assess land cover changes and monitor vegetation 

responses to environmental factors such as climate variability and land use changes (Xiao et 

al., 2019). 

2.5 Snow indices used 

2.5.1 Normalized Difference Snow Index (NDSI) 

The Normalized Difference Snow Index (NDSI) is a spectral index widely used to identify 

snow cover in satellite images by taking advantage of the reflective properties of snow in the 

visible and shortwave infrared (SWIR) bands. This index plays a key role in monitoring snow 

extent, studying snowmelt dynamics, and understanding seasonal snow cover patterns. 

2.5.2 Applications of NDSI 

• Snow Cover Mapping: 
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NDSI is extensively used to detect and map snow cover over large areas. It helps in 

differentiating snow from other surfaces like clouds and bare ground, making it essential for 

monitoring seasonal snow extent and snow accumulation in mountainous regions (Hall et al., 

1995). 

• Snowmelt and Hydrological Studies: 

The index is useful in tracking snowmelt events and monitoring the temporal changes in snow 

cover. This is crucial for understanding water availability in regions dependent on snowmelt, 

such as watersheds and river basins (Xiao et al., 2001). 

• Climate and Environmental Monitoring: 

NDSI is applied in climate studies to assess long-term trends in snow cover and understand the 

impacts of climate change on snowpack dynamics. It provides valuable insights into snow-

albedo feedback mechanisms and the role of snow in global energy balances (Frei et al., 2012). 

2.5.3 Advantages of NDSI 

• High Sensitivity to Snow Reflectance: 

NDSI effectively distinguishes snow from other surface types, such as clouds and non-snow-

covered ground, by leveraging the unique spectral signature of snow in the visible and SWIR 

bands (Hall et al., 1995). 

• Application in Various Climatic Zones: 

NDSI can be applied in a wide range of climatic zones, from polar regions to temperate 

mountainous areas, providing a global perspective on snow cover and its changes over time 

(Xiao et al., 2001). 

• Integration with Satellite Data: 

The index can be computed using data from multiple satellite sensors, such as Landsat, 

MODIS, and Sentinel-2, allowing for continuous and large-scale monitoring of snow cover 

(Frei et al., 2012). 
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2.5.4 Limitations of NDSI 

• Cloud Confusion: 

While NDSI is designed to distinguish snow from clouds, cloud contamination can still pose a 

challenge in certain conditions, potentially leading to inaccurate snow cover assessments 

(Wang et al., 2015). 

• Sensitivity to Mixed Pixels: 

In areas with mixed land cover, such as snow and vegetation or snow and rocks, NDSI may be 

less accurate in detecting the full extent of snow cover, particularly in complex terrains like 

forests or urban environments (Xiao et al., 2001). 

• Atmospheric Interference: 

Atmospheric conditions, such as haze or aerosol presence, can influence the reflectance values 

used in NDSI, affecting the precision of snow cover detection (Wang et al., 2015). 

2.5.5 How NDSI Works 

The formula for NDSI is as follows 

𝑁𝐷𝑆𝐼 =
𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅
 

where: 

 • Green represents the green band reflectance, 

 • SWIR represents the shortwave infrared band reflectance. 

 
This formula captures the strong reflectance of snow in the green band while minimizing the 

SWIR reflectance, where snow has low reflectance, enabling the differentiation of snow from 

other surfaces. 
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2.6 Differences in Snow and Vegetation Indices 

Snow Unlike vegetation indices, snow indices such as the Normalized Difference Snow Index 

(NDSI) are relatively few in number. This difference arises primarily from the distinct 

characteristics and spectral behavior of snow compared to vegetation, as well as the specific 

applications required for snow monitoring. 

• Spectral Simplicity of Snow 

Snow has a much simpler spectral signature compared to vegetation. It reflects most of 

the incoming sunlight in the visible spectrum, especially in the green band, while it 

strongly absorbs in the shortwave infrared (SWIR). This distinct and consistent 

reflectance pattern makes snow easier to detect with fewer indices. Vegetation, on the 

other hand, exhibits more complex interactions with light, varying significantly across 

different species, stages of growth, and environmental conditions. This complexity 

necessitates a wider variety of indices to assess different vegetation properties such as 

chlorophyll content, moisture levels, and biomass. 

• Specific Focus of Snow Monitoring 

The primary goal of snow-related indices is to detect the presence or absence of snow cover, 

track its spatial extent, and monitor snowmelt patterns. For this, a small set of indices like 

NDSI is sufficient. In contrast, vegetation monitoring requires a more diverse set of indices 

to capture a wide range of characteristics, such as plant health, stress levels, and vegetation 

density, across diverse ecosystems and seasons. The variety of vegetation indices—NDVI, 

EVI, SAVI, and others—arose from the need to address different vegetation conditions and 

environmental factors like soil background, atmospheric effects, and varying vegetation 

densities. 

• Temporal Stability of Snow 
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Snow's reflective properties remain relatively stable during its presence on the ground, 

which makes it easier to track over time with fewer indices. In contrast, vegetation changes 

dynamically over seasons and growth stages, requiring a broader array of indices to capture 

temporal variations in leaf area, chlorophyll content, and vegetation structure. For instance, 

indices like NDVI, EVI, and LAI are designed to track these dynamic changes, which is 

less necessary in snow monitoring. 

• Limited Complexity of Snow-Related Applications 

Snow-related studies generally focus on the extent of snow cover, snowmelt timing, and 

water resource management. These applications do not require as much spectral diversity 

or complexity as vegetation monitoring, which encompasses a wide range of ecological and 

agricultural applications. Snow indices like NDSI are already highly effective at detecting 

snow, so there has been less demand for developing a broad variety of snow-specific 

indices. 

In summary, the limited number of snow indices can be attributed to the relatively simple 

spectral properties of snow, its stable reflectance behavior, and the specific focus of snow-

related studies. Vegetation, with its much more complex and variable nature, requires a diverse 

set of indices to capture the nuances of plant health and growth across different conditions. 

2.7 Cloud-Based and Desktop Solutions for Remote Sensing Analysis 

In this thesis, both Google Earth Engine (GEE) and ArcGIS were utilized, each bringing 

specific advantages to different aspects of the analysis. GEE was primarily chosen for data 

processing, calculation of spectral indices, and land cover classification due to its cloud-based 

capabilities, which allowed efficient handling of large datasets without requiring local storage. 

The platform’s scripting environment (Figure 7)  also enabled the automation of these analyses, 

significantly reducing the processing load typically encountered with local solutions. 
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However, for accuracy assessments such as calculating confusion matrices and other evaluation 

metrics ArcGIS was used. ArcGIS offers specific tools and functions for accuracy assessments 

that facilitated the generation of confusion matrices, which are essential for evaluating the 

classification results. The combination of both GEE and ArcGIS allowed for a robust and 

adaptable workflow, with each tool contributing to different stages of the analysis. 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 code editor interface of GEE 
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2.8 Evaluating Indices and Land Cover Classification Accuracy for 2018 

and 2022 

The indices introduced were first applied to the year 2018 and then compared to the CORINE 

Land Cover map from 2018 to assess their initial accuracy. Similarly, the indices were applied 

to data from 2022 and compared to the LUCAS dataset of 2022, providing a second accuracy 

benchmark. By using ground truth data for both 2018 and 2022, a clear evaluation of each 

index’s reliability was obtained . For land cover maps, the classification process initially 

employed the Random Forest algorithm. Accuracy was assessed by comparing the results with 

CORINE data from 2018 and the LUCAS dataset for 2022. The Random Forest method was 

subsequently applied to additional years in the study after confirming its accuracy and 

reliability with these benchmarks. 

This approach allowed for the identification of the indices and methods that demonstrated the 

highest accuracy for these specific years.  

 

2.9 Methodological Approaches for Index Computation and Classification 

in Satellite Imagery Analysis 

In this study, the initial approach involved applying various indices to satellite images with 

cloud coverage below 10–15% . After calculating the indices for each selected image, the 

median values of these indices across the images were computed. For the classification using 

the Random Forest algorithm, a different methodology was employed. The same time period 

and cloud coverage criteria were applied, but the classification was conducted on a single 

image, which was produced by taking the median of all the images from the same time period.  

The workflow presented (Figure 8) outlines the entire process followed in this thesis, from the 

initial data acquisition to the final analysis.  
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3 Analysis  

3.1 Utilizing CORINE Data for Land Cover Classification and Accuracy 

Assessment 

The CORINE program categorizes land cover into a hierarchical structure, comprising three 

levels. For this analysis, only Level 1 classifications were considered, which encompass broad 

land cover categories, such as “Artificial surfaces,” “Agricultural areas,” “Forest and semi-

natural areas,” “Wetlands,” and “Water bodies” (European Environment Agency, 2016). 

Utilizing these broad categories simplifies the comparison and allows for a clearer assessment 

of overall accuracy. 

The confusion matrix derived from this process revealed how well the indices performed 

against the CORINE classifications. By analysing the misclassifications and calculating 

accuracy metrics, valuable insights were gained regarding the effectiveness of the applied 

indices in depicting land cover variations. Research indicates that the integration of CORINE 

data in accuracy assessments enhances the reliability of classification results (Congalton & 

Green, 2009; Foody, 2002). Furthermore, employing CORINE’s standardized categories 

ensures consistency in land cover monitoring, facilitating comparative studies across different 

regions and time periods. 

This analytical approach underscores the importance of accurate land cover classification in 

environmental monitoring, resource management, and policymaking. The findings not only 

contribute to the understanding of vegetation and snow dynamics but also inform future 

research and management strategies in the context of climate change and land use planning. 

3.1.1 CORINE Land Cover Mission 

The CORINE Land Cover (CLC) program is a vital initiative established by the European 

Environment Agency (EEA) to monitor land cover changes across Europe. It provides 
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comprehensive data that is essential for environmental assessments, land use planning, and 

policy formulation. The CLC program updates its land cover classifications every six years, 

ensuring that the information remains relevant and reflects recent changes in land use and cover 

dynamics. The most recent dataset available, CORINE Land Cover 2018, offers critical insights 

into land cover patterns and trends, which are pivotal for various research applications 

(European Environment Agency, 2016). 

In this thesis, specific months were chosen for analysis based on their relevance to snow and 

vegetation dynamics. April was primarily considered for snow cover assessments, as it 

typically represents the end of the snow season in many regions, providing a clear view of snow 

distribution. June was selected as the key month for evaluating vegetation, as it coincides with 

the peak of growing season in temperate climates, offering rich data on green biomass and land 

cover (Zhang et al., 2018). The integration of CORINE data with seasonal assessments allows 

for a more nuanced understanding of land cover changes and their implications for ecological 

health and management.  

3.2 Utilizing LUCAS Data for Land Cover Classification and Accuracy 

Assessment 

The LUCAS (Land Use/Cover Area frame Survey) dataset, produced by Eurostat, is a critical 

ground-truthing resource that supports land cover classification validation in studies utilizing 

satellite-based remote sensing. LUCAS collects systematic, point-based data on land use and 

cover across Europe, recording soil, vegetation, and other environmental characteristics 

through field surveys (Eurostat, 2022). These surveys occur at regular intervals, typically every 

three to six years, providing detailed spatial data that facilitates comparison with satellite-

derived classifications. 

This dataset is essential to validating land cover classifications within this thesis by enabling 

the creation of confusion matrices. By extracting raster classification values at the precise 
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locations of LUCAS points, this study compares satellite-derived classifications with 

documented ground observations. The 2022 LUCAS release is the most recent and 

comprehensive dataset, making it especially relevant for studies that require current land cover 

validation. Given its regular updates and high data quality, LUCAS offers a robust foundation 

for aligning this study’s classifications with established ground-truth standards (Eurostat, 

2022). LUCAS consists of a grid of points across Europe, categorized into various levels of 

land cover and use: 

 Level 1 (Broad Classes): Includes major categories such as agricultural land, forests, 

wetlands, and urban areas. 

 Level 2 (Detailed Classes): Offers more specific classifications, such as types of crops 

and urban land uses. 

 Level 3 (Agro-Environmental Characteristics): Focuses on detailed attributes like soil 

type and land management practices. 

In this thesis, only Level 1 classifications are considered, utilizing the broad categories for the 

accuracy assessment of satellite-derived land cover classifications. This approach ensures a 

streamlined validation process while still providing reliable insights. 

3.3 Otsu method 

The Otsu method is an automatic image thresholding technique developed by Nobuyuki Otsu 

in 1979, initially proposed in his paper titled “A Threshold Selection Method from Gray-Level 

Histograms.” The primary goal of this method is to convert a grayscale image into a binary 

image by determining an optimal threshold value that separates the image into foreground 

(objects) and background (the rest). Otsu’s method is particularly effective when the image 

histogram is bimodal, meaning the pixel intensities form two distinct peaks corresponding to 

these classes. 
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3.3.1 How the Otsu Method Works 

The Otsu method operates by maximizing the between-class variance (variance between 

foreground and background) while minimizing the within-class variance (variance within each 

class). This is done by iterating over all possible threshold values and calculating the variance 

for each threshold. The threshold that results in the highest between-class variance is selected 

as the optimal one. This makes the Otsu method non-parametric and unsupervised, meaning it 

does not require prior information about the image or its content. 

 
The steps involved are: 

• Compute the histogram: The intensity levels of the grayscale image are 

calculated and stored in a histogram. 

• Iterate through possible thresholds: Each possible pixel intensity threshold 

is considered. 

• Calculate variances: For each threshold, the within-class variance and 

between-class variance are computed. 

• Maximize between-class variance: The threshold with the highest between-

class variance is selected as the optimal threshold. 

3.3.2 Applications 

 • Remote Sensing: The Otsu method is extensively used in satellite imagery 

analysis for land cover classification. For example, Huang and Zhang (2020) applied it for 

water body extraction from multispectral satellite data. By determining a threshold value based 

on reflectance differences, they effectively classified water bodies against other land covers. 

 • Medical Imaging: In medical applications, it is often used for image 

segmentation tasks such as tumor detection. Tao and Zhou (2019) utilized Otsu’s method to 

segment brain MRI scans, providing clear distinction between healthy and abnormal tissues. 
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 • Agriculture: In precision agriculture, Otsu’s method has been applied to 

classify crop health by determining thresholds for multispectral images. Li et al. (2021) showed 

how Otsu’s technique can be applied to segment vegetation and barren land, enhancing 

agricultural monitoring efforts. 

3.3.3 Advantages 

 • Automatic Threshold Selection: Otsu’s method automatically computes the 

best threshold, eliminating the need for manual intervention. 

 • Efficiency: The method is computationally straightforward, making it suitable 

for real-time applications and large datasets, such as satellite imagery. 

 

3.3.4 Otsu threshold 

The Otsu value is a threshold derived from the histogram of pixel values to minimize intra-

class variance and maximize inter-class variance for optimal segmentation. separates. In Table1 

the Otsu thereshold have been illustrated for each index. In the Otsu method, values below the 

threshold typically indicate non-vegetated or non-snow areas, while values above the threshold 

represent vegetated or snow-covered regions, depending on the index being analyzed. 

Table1 Otsu threshold 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Indices Otsu threshold 
NDVI 0.24 
EVI 0.18 
EVI2 0.18 
LAI 2.2 
MSI 1.3 

GNDVI 0.37 
KNDVI 0.27 
NDMI 0.22 
SAVI 0.25 
NDSI 0.38 
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3.4 Setting Up the Google Earth Engine Environment for Cloud Coverage 

and Temporal Adjustments 

Setting up the Google Earth Engine (GEE) environment involved configuring the platform with 

specific codes that allowed for flexible data processing. These codes provided the ability to 

filter and adjust cloud coverage, ensuring high-quality imagery for analysis. Additionally, the 

codes enabled the selection of specific years and months, allowing for precise temporal analysis 

tailored to the study period. This configuration facilitated efficient processing and analysis of 

satellite data for snow and vegetation coverage assessments.  The Figure 9 and Figure 10 show 

the details of this setup and the adjustments made for cloud coverage and temporal selection. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Interface of GEE showcasing the adjustment for cloud coverage based on the written 

codes for sentinel 2 data. 

Figure 10 Interface of GEE showcasing the year and month selection based on the written codes 

for  temporal  filtering sentinel 2 data. 
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3.5 Classifications for Thematic Maps and Random Forest Method 

Thematic maps are specialized maps focused on specific themes or subjects, such as 

vegetation, land cover, or climate. In the context of remote sensing, thematic maps are typically 

produced by classifying satellite imagery into different land cover types. This classification 

process is essential for monitoring environmental changes, land use, and resource management. 

A variety of classification algorithms can be applied to produce thematic maps, including 

traditional methods like maximum likelihood classification (MLC), and advanced machine 

learning techniques like Random Forest (RF), support vector machines (SVM), and more. 

3.5.1 Random Forest Method in Thematic Map Production 

Random Forest (RF) is one of the most widely used machine learning algorithms for remote 

sensing classification, including the production of thematic maps. It is a supervised learning 

method that operates by constructing a multitude of decision trees during training and 

outputting the class that is the mode of the classes (for classification) or mean prediction (for 

regression) of the individual trees (Breiman, 2001). 

3.5.2 How Random Forest works in the classification process 

• Training Phase: RF uses a bootstrapping technique to sample the dataset 

multiple times to build multiple decision trees. Each tree is constructed from a 

random subset of features, which helps improve model robustness. 

• Voting Mechanism: For classification tasks, the RF model aggregates the 

predictions from all the individual trees. The final classification is decided based 

on the majority vote of these trees. 

• Out-of-Bag (OOB) Error: One of the advantages of RF is its built-in validation 

process. The OOB samples, which were not included in the bootstrapped 
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training sample, are used to test the accuracy of the model during the training 

phase, eliminating the need for a separate validation set (Belgiu & Drăguţ, 

2016). 

3.5.3 Advantages of Random Forest 

 • Accuracy: RF is known for its high accuracy and generalization capabilities. It 

performs well even with noisy datasets or when there are irrelevant features. 

 • Robustness: Unlike other algorithms, RF is less prone to overfitting, which 

makes it a great choice for complex, high-dimensional datasets such as satellite imagery 

(Rodriguez-Galiano et al., 2012). 

3.6 Validation of Classification Accuracy with CORINE Data and 

Confusion Matrix 

In this thesis, the confusion matrix was utilized to evaluate the accuracy of the thematic maps 

and indices generated from satellite images (Zhang & Wang, 2022). The confusion matrix 

compares the predicted classifications of land cover types against the actual classifications, 

allowing for a detailed assessment of the model’s performance. Each row in the matrix  

represents instances in a predicted class, while each column represents instances in an actual 

class. This method provides insights into overall accuracy and the accuracy of individual 

classes. An overall accuracy of 80% or higher is typically deemed acceptable, indicating that 

the classification model effectively differentiates among the land cover types in the study area. 

The accuracy assessment of each index has been conducted for the year 2018 (Table 2-Table 

10), with evaluations tailored to the seasonal characteristics of vegetation and snow cover. 

Specifically, the accuracy for vegetation indices was assessed in June, a period typically 

associated with peak vegetation growth and biomass, ensuring representative data for 

vegetation analysis. Conversely, the snow indices were evaluated in April, a time when snow 
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cover is often at a seasonal transition, capturing the characteristics crucial for accurate snow 

mapping. In the GIS analysis, the 2018 CORINE Land Cover map was reclassified into two 

primary categories: “vegetation” and “non-vegetation” for vegetation analysis (Figure 12), and 

similarly, “snow” and “non-snow” classes (Figure 21) for snow cover assessment. This 

reclassification allows for a more straightforward analysis by distinguishing areas with 

vegetation or snow from those without, making it easier to evaluate seasonal patterns and index 

accuracy across the region. In the thesis, ArcGIS was utilized to automatically extract 1,000 

sampling points, which were subsequently compared through a confusion matrix to assess 

classification accuracy. 

3.6.1 Confusion Matrix Description 

The confusion matrix is a key tool for evaluating the performance of the classification model. 

It compares the predicted class labels with the actual (true) class labels and provides various 

metrics to assess the accuracy and reliability of the model. In the context of this analysis, the 

confusion matrix includes the following key elements: 

 
Class Value: 

o Represents the classification labels used in the analysis, such as different classes being 

evaluated. 

C_0, C_1and etc. (Columns): 

o Represent the predicted classes, indicating the number of samples classified under each 

class. 

C_0, C_1 and etc. (Rows): 

o Indicate the actual (reference) classes for the samples, showing the distribution of 

correct and incorrect classifications. 

 Total (Column): 
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o The sum of predictions for each actual class. 

  Total (Row): 

o The sum of predictions for each predicted class. 

P_Accuracy (Producer’s Accuracy): 

o Measures the accuracy from the perspective of the reference data. Indicates the 

proportion of correctly classified samples for each class. 

U_Accuracy (User’s Accuracy): 

o Measures the accuracy from the perspective of the predicted data. Indicates the 

proportion of correctly classified samples for each predicted class. 

 8. Kappa (Row): 

o The kappa coefficient provides a statistical measure of classification agreement, 

correcting for chance agreement. In this case, the kappa value indicates the overall 

agreement between predicted and actual classifications. 

 9. Overall Accuracy (Row 3, Total Column): 

o Indicates the overall accuracy of the classification model, calculated as the proportion 

of correctly classified samples to the total number of samples. 

In Figure 11 The different sections of the confusion matrix the classification performance and 

the distribution of correctly and incorrectly classified pixels across various categories have 

been shown. 
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Kappa coefficient: 

Figure 11 Different sections of the confusion matrix 
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vegetated/snow area  
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Figure 12 CORINE land cover map 2018 illustrating vegetation(green) and non-

vegetation(white) coverage and the 1000 random sample points. 
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This table shows the confusion matrix of NDVI for 2018, summarizing classification accuracy, 

with overall accuracy at 81.08% and a kappa coefficient of 0.8. 

 

Figure 13 Different vegetation indices that have been applied for 2018 

Table 2 confusion matrix of NDVI 
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Table 3 Confusion matrix of EVI shows the confusion matrix of EVI for 2018, summarizing 

classification accuracy, with overall accuracy at 67.63 % and a kappa coefficient of 0.31. 

 
 
 

 

 

 

 

 

 

 

Table 4 shows the confusion matrix of EVI for 2018, summarizing classification accuracy, with 

overall accuracy at 81.72 % and a kappa coefficient of 0.8. 

 

 

 

 

 

Table 3 Confusion matrix of EVI 

Table 4 Confusion matrix of EVI2 
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Table 5 shows the confusion matrix of GNDVI for 2018, summarizing classification accuracy, 

with overall accuracy at 82.28 % and a kappa coefficient of 0.81. 

 
 
 
 

 

 

 

 

 

 
 
Table 6 shows the confusion matrix of KNDVI for 2018, summarizing classification accuracy, 

with overall accuracy at 62.46 % and a kappa coefficient of 0.15. 

 

 

 

 

 

Table 5 Confusion matrix of GNDVI 

Table 6 Confusion matrix of KNDVI 
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Table 7 shows the confusion matrix of  MSI for 2018, summarizing classification accuracy, 

with overall accuracy at 74.03 % and a kappa coefficient of 0.48. 

 

 
 
 

 

 

 

 

 

 
Table 8 shows the confusion matrix of LNDVI for 2018, summarizing classification accuracy, 

with overall accuracy at 82.03 % and a kappa coefficient of 0.81. 

 

 

 

 

 
 

Table 7 Confusion matrix of MSI 

Table 8 Confusion matrix LAI 
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Table 9 shows the confusion matrix of NDMI for 2018, summarizing classification accuracy, 

with overall accuracy at 72.64 % and a kappa coefficient of 0.41. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 10 shows the confusion matrix of SAVI for 2018, summarizing classification accuracy, 

with overall accuracy at 83.56 % and a kappa coefficient of 0.82. 

 

 

 
 
 
 

Table 9 Confusion matrix of NDMI 

Table 10 Confusion matrix of SAVI 
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3.7 Accuracy Assessment with LUCAS Data and Confusion Matrix 

Analysis 

Since the LUCAS dataset is point-based, the latest available LUCAS survey from 2022(Figure 

14) was first downloaded to ensure the most up-to-date comparison with the study’s thematic 

maps. In the initial phase, the attribute table of LUCAS points was matched with the first level 

of the CORINE Land Cover classification to ensure consistency between datasets. Using 

ArcGIS Pro, maps of the calculated indices were also extracted as point data. These point-based 

maps, along with the LUCAS points, served as input for the accuracy assessment conducted 

through a confusion matrix (Table 11-Table 19). This approach enabled a precise evaluation of 

the classification accuracy of the thematic maps for 2022 (Figure 15), comparing them to the 

LUCAS ground-truth data. The result was a comprehensive analysis of the accuracy of the 

indices, directly assessing their alignment with the most recent LUCAS survey data. There 

were 60 LUCAS points in the area of interest which were considered as the accuracy points.   

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 LUCAS points for 2022 



 68 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 



 69 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 11 shows the confusion matrix of NDVI for 2022, summarizing classification accuracy, 

with overall accuracy at 88.3 % and a kappa coefficient of 0.85. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 12 shows the confusion matrix of EVI for 2022, summarizing classification accuracy, 

with overall accuracy at 58.3% and a kappa coefficient of 0.36. 

 

Figure 15 Applied vegetation indices for 2022 

Table 11 Confusion matrix of NDVI 

Table 12 Confusion matrix of EVI 
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Table 13 shows the confusion matrix of EVI2 for 2022, summarizing classification accuracy, 

with overall accuracy at 83.3 % and a kappa coefficient of 0.81. 

 

 

 

 

 
 
 
 
 
 
 
 
Table 14 shows the confusion matrix of GNDVI for 2022, summarizing classification accuracy, 

with overall accuracy at 83.3 % and a kappa coefficient of 0.82. 

 
 
N 
 
 
 
 
 
 
 
 
 

Table 13 Confusion matrix of EVI2 

Table 14 Confusion matrix of GNDVI 
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Table 15 shows the confusion matrix of KNDVI for 2022, summarizing classification accuracy, 

with overall accuracy at 58.3 % and a kappa coefficient of 0.3. 

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
Table 16 shows the confusion matrix of MSI for 2022, summarizing classification accuracy, 

with overall accuracy at 69 % and a kappa coefficient of 0.53. 

 
 
 
 
 
 
 
 
 

Table 15 Confusion matrix of KNDVI 

Table 16 Confusion matrix of MSI 
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Table 17 shows the confusion matrix of LAI for 2022, summarizing classification accuracy, 

with overall accuracy at 88.3 % and a kappa coefficient of 0.84. 

 
 
 
 
 

 

 

 

 

 

 
 
 
Table 18 shows the confusion matrix of NDMI for 2022, summarizing classification accuracy,  

with overall accuracy at 62 % and a kappa coefficient of 0.4. 

 
 
 
 
 
 

Table 17 Confusion matrix of LAI 

Table 18 Confusion matrix of NDMI 
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Table 19 shows the confusion matrix of NDVI for 2022, summarizing classification accuracy, 

with overall accuracy at 88.3% and a kappa coefficient of 0.84. 

 
 
The analysis indicates that the indices NDVI, EVI2, LAI, GNDVI, and SAVI demonstrate 

higher accuracy when compared to both the CORINE 2018 land cover classification and the 

LUCAS 2022-point data. These indices consistently exhibit robust accuracy metrics, reflected 

in both the accuracy percentages and Kappa coefficients, aligning closely with the reference 

datasets. Due to their superior performance in representing vegetation cover accurately, these 

indices were selected for further analysis and application in this study. In Figure 16 - Figure 20 

applied indices with the highest accuracies have been depicted. the vegetated areas have been 

shown by green and non-vegetated areas with white colours. 

3.8 Analysing June Vegetation Dynamics from 2015 to 2024 Normalized 

Difference Vegetation Index (NDVI) 

 
 
 

 
 
 
 

Table 19 Confusion matrix of SAVI 



 74 

 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 NDVI applied from 2015-2024 for vegetation monitoring 



 75 

 

3.9 Analysing June Vegetation Dynamics from 2015 to 2024 Enhanced 

Vegetation Index (EVI2) 
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3.10 Analysing June Vegetation Dynamics from 2015 to 2024 Using the leaf 

Area Index (LAI) 

 

 

 

 

 

 

 

 

  

 

            

 

 

 

Figure 17 Applied EVI 2 from 2015 to 2024 
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Figure 18 Applied LAI from 2015-2024 
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3.11 Analysing June Vegetation Dynamics Using the GREEN Normalized 

Difference Vegetation Index (GNDVI) from 2015 to 2024 
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3.12 Analysing June Vegetation Dynamics from 2015 to 2024 Using the Soil-

Adjusted Vegetation Index (SAVI) 

 

 

 

 

 

 

 

 

 
 

Figure 19 Applied GNDVI from 2015-2024 
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Figure 20 Applied SAVI from 2015-2024 
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3.13 Snow accuracy assesment using corine snow extend data 

The Normalized Difference Snow Index (NDSI) is a critical tool for assessing snow cover by 

utilizing satellite imagery to differentiate snow from other land cover types. In the context of 

improving accuracy in snow extent estimation, the CORINE Land Cover (CLC) dataset plays 

an essential role by providing valuable reference data. CORINE serves as a benchmark for 

validating satellite-derived snow extent, but to enhance the precision of these assessments, it is 

beneficial to analyse years with contrasting snow conditions. 

Focusing on the year 2018, which experienced significant snowfall, allows for a comprehensive 

evaluation of snow cover under conditions of higher snow availability. The abundant snow 

cover in this year provides a rich dataset for assessing the performance of NDSI in accurately 

identifying and delineating snow-covered areas. In contrast, analysing the year 2022, 

characterized by lower snow amounts, presents a different set of challenges and dynamics.  

Additionally, April is a month frequently marked by persistent cloud cover, which complicates 

snow cover assessments. The clouds can obscure satellite imagery, leading to difficulties in 

accurately detecting and quantifying snow extent. This challenge further emphasizes the 

importance of analysing contrasting years to capture a broader range of conditions and improve 

the reliability of NDSI-derived estimates. 

By contrasting the snow extent data from 2018 and 2022, a more nuanced understanding of the 

NDSI’s performance can be developed. This dual-year approach enables the identification of 

potential biases and inaccuracies in snow detection algorithms when applied to different snow 

cover situations. Such an analysis not only strengthens the validation process against the 

CORINE dataset but also enhances the overall reliability of snow extent estimates, ultimately 

contributing to more effective snow monitoring and management practices in response to 

changing climate conditions. To assess the accuracy of the snow index, 1000 sample points 

were automatically selected using ArcGIS. The evaluation was conducted through a confusion 



 82 

matrix, which revealed an overall accuracy of 84-86%. This method effectively demonstrates 

the reliability of the snow classification results. Figure 21 Corine snow extend 2018 and 2022 

with 1000 random sample points have been shown. Figure 22 depicts the snow Dynamics from 

2015 to 2024 using NDSI. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.14 April Snow Dynamics from 2015 to 2024 using NDSI  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 Corine snow extend 2018 and 2022 with 1000 random sample points 
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Figure 22 Applied NDSI from 2016-2024 
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3.15 confusion matrices of NDSI  

Table 20 and Table 21 depict the confusion matrices of NDSI 2018 and 2022 respectively. 

 

 

 

 

 

 

 

 
 
Table 11 shows the confusion matrix of NDSI for 2018, summarizing classification accuracy, 

with overall accuracy at 84 % and a kappa coefficient of 0.82. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
Table 21 shows the confusion matrix of NDSI for 2022, summarizing classification accuracy, 

with overall accuracy at 83.3% and a kappa coefficient of 0.81. 

 
 
 
 

Table 20 Confusion matrix of NDSI 2018 

Table 21 Confusion matrix of NDSI 2022 
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3.16 Land Cover Classification and Accuracy Assessment Using Google 

Earth Engine and ArcGIS  

The land cover classification process began in 2018, with initial sampling conducted across 

five primary land cover classes: artificial surfaces, agricultural areas, forests and semi-natural 

areas, water bodies, and open spaces with little or no vegetation. Each class represented distinct 

land cover types crucial for a comprehensive understanding of the landscape and its usage 

patterns. This classification helped establish a structured basis for further analysis, ensuring 

that all major land types were accounted for in the mapping process. 

Following the sampling, data were exported from Google Earth Engine into ArcGIS Pro. This 

transition allowed for a more detailed and rigorous assessment of the produced land cover 

map’s accuracy. Within ArcGIS Pro, the land cover classification was validated against 

CORINE 2018 data, a widely recognized land cover dataset for Europe. To enhance accuracy, 

1,000 random sampling points were automatically selected by the software, ensuring a broad 

and unbiased assessment of the land cover classifications. The resulting confusion matrix 

(Table 22) provided the accuracy of 81%. This methodological approach, combining random 

sampling and comparative assessment with CORINE 2018, aimed to improve the reliability 

and precision of the land cover map. By validating the classified data against an established 

standard, the process provided insight into both the accuracy of the initial classification and 

potential areas for refinement. For the accuracy assessment of the 2022 land cover maps, the 

classified map was first imported into ArcGIS and then extracted to points. This step was 

essential to enable a point-based comparison and to perform the confusion matrix analysis 

against the LUCAS 2022 ground-truth data. The resulting confusion matrix (Table 23) provided 

an overall accuracy of 84%, indicating a strong agreement between the Random Forest 

classification and the LUCAS 2022 reference points. 
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Corine land cover map 2018 and LUCAS points 2022 

Figure 23 and Figure 24 represent the CORINE land cover map 2018 and the reclassified 

CORINE land cover map 2018. Figure 25 provides an overview of LUCAS 2022 points and 

Figure 26 shows the accuracy points selected by ArcGIS Pro.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 24 re-classified CORINE land cover map 2018 

Figure 23 CORINE land cover map 2018 
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3.17 Confusion matrices for thematic maps of 2018 and 2022 

 

Figure 25 LUCAS 2022 POINTS 

Figure 26 Accuracy points by ArcGIS 

C_0 = Open spaces with little or no vegetation  
C_1 = Agricultural Areas  
C_2 = Forests and Seminatural area  
C_3 = Water Bodies  
C_4= Artificial surfaces  
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Table 22 shows the confusion matrix of land cover thematic maps for 2018, summarizing 

classification accuracy, with overall accuracy at 84% and a kappa coefficient of 0.81. 

 
 
 
 

 

 

 
 
 
 
 
 
 
Table 23 shows the confusion matrix of land cover thematic maps for 2022, summarizing 

classification accuracy, with overall accuracy at 85 % and a kappa coefficient of 0.84. 

 
 
 
 
 

Table 22 Confusion matrix of thematic map 2018 and CORINE land cover map 2018 

Table 23 Confusion matrix of thematic 2022 and LUCAS points 2022 
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3.18 land cover maps from 2015-2024 

The land cover maps presented in Figure 27 illustrate the classification of the study area from 

2015 to 2025, with the data organized into five distinct land cover classes. These classes 

represent various types of land use that were analyzed across the given period. The 

classification process was carried out using Random forest method as explianed in chapter 2 . 
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Figure 27 Thematic maps from 2015-2024 
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4 Discussion  

4.1 Vegetation Trends in the Protected  Area of Maritime: Evidence of 

Growth from 2015 to 2024 

Vegetation trends across all indices indicate that during the period from 2015 to 2024, there has 

been a significant increase in vegetation cover within the Maritime Alps. This suggests a 

positive trend in vegetation health, density, or extent over the years, potentially driven by 

natural factors or changes in environmental conditions. 

In the Table 24 and Table 25 this trend is clearly illustrated, highlighting the year-by-year 

changes and emphasizing the overall increase in vegetation indices across the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Table 24  Vegetation Coverage in 𝐾𝑚2calculated by each index 
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4.2 Snow Trend in the Protected  Area of Maritime: Evidence of decline 

from 2016 to 2024 

The snow index shows a general decreasing trend from 2016 to 2024 in the Maritime Alps. 

This decline reflects a reduction in snow cover over the years, which could be attributed to 

factors such as rising temperatures or changes in precipitation patterns in the region. The 

overall downward trend highlights a shift in the snow dynamics of the area. 

However, there were slight increases in snow cover observed in 2018 and 2024. These 

temporary fluctuations may be linked to specific climatic conditions or anomalies in those 

years. Despite these brief periods of increase, the overall trend remains one of decrease, 

suggesting a longer-term reduction in snow coverage in the Maritime Alps. 

In the Table 26 and Table 27 snow coverage corresponding  to each year is shown, providing a 

detailed overview of the snow index trends over time. 

 

 
 
 
 
 

Table 25 Vegetation coverage changes in km^2 
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Table 27 Snow Coverage changes in km^2 

Table 26 Snow coverage for each year in km^2 
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4.3 Challenges and Solutions in Distinguishing Bare Rock from Artificial 

Surfaces in Satellite Image Classifications 

In satellite image classifications, it is not uncommon for bare rock and artificial surfaces to be 

misclassified. This confusion arises because these surfaces often share similar reflectance 

characteristics, particularly in optical bands, leading to overlap in spectral signatures. This is a 

well-documented limitation when using multispectral imagery, where spectral similarities can 

result in misclassification, especially in mountainous or arid regions where bare rock is 

prevalent (Copernicus Programme, 2022) 

To improve classification accuracy, Synthetic Aperture Radar (SAR) and other advanced 

remote sensing techniques have been proposed, as they offer different perspectives by 

measuring surface roughness and other physical properties rather than solely relying on 

reflectance. SAR, for instance, can effectively distinguish between smooth surfaces, such as 

artificial structures, and rougher natural features, like rock formations, by capturing texture and 

structure details in high resolution. Recent studies by NASA and the European Space Agency 

(ESA) suggest that combining SAR with optical imagery significantly enhances classification 

accuracy in complex landscapes, particularly for distinguishing between natural and artificial 

surfaces (ESA, 2023). 
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4.4 Comparison of CORINE 2018 and LUCAS 2022: Data 

Structure,Accuracy, and Applicability in Land Cover Classification 

The comparison between CORINE Land Cover 2018 and the LUCAS 2022 dataset highlights 

some key differences in data structure and applicability. CORINE provides a 

consistent,continuous land cover map, offering a comprehensive representation of land use 

across large areas. It covers broad-scale information and is ideal for regional and national-level 

analyses, providing detailed classifications for various land types. This makes CORINE a 

valuable resource for understanding general trends in land cover over time. On the other hand, 

LUCAS is a point-based dataset, meaning it consists of field measurementsat specific locations 

rather than providing a continuous map. For our area of interest, LUCAS 2022 only contains 

60 points, which is quite limited for a detailed analysis, especially when compared to the 

broader scope of CORINE. Despite LUCAS being updated two years later than CORINE (2020 

vs. 2018), the point-based nature of LUCAS means that it cannot provide the same level of 

spatial continuity or coverage as CORINE.In our analysis, when comparing the data to LUCAS 

2022, we reached a higher accuracy,particularly in certain localized areas.However, while 

LUCAS provides more recent data, CORINE 2018 remains the more reliable source for large-

scale land cover classification in our study region. Its continuous mapping approach ensures a 

more accurate representation of the area making it a more suitable dataset for our analysis 

despite LUCAS’s more recent update. Thus, while both datasets are valuable, CORINE 2018’s 

broader coverage and consistency make it the preferred choice for this particular study. 
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4.5 Pros and Cons of the Applied Methods 

In Table 28, the advantages and limitations of the methodologies and approaches applied 

throughout this thesis are outlined. By summarizing the pros and cons, the table provides a 

clear understanding of the strengths of the applied methods and identifies areas that may benefit 

from further refinement or alternative approaches in future studies. 

 
 

Table 28 Summary of the pros and cons of the applied method. 

Pros Cons 

 Low computational effort and time 
required while using GEE for computation 
of all vegetation and snow indices. as well 
as Random Forest classification which is a 
built-in function in GEE. 

 The effect of the weather &cloud 
coverage.  

Weather conditions and cloud coverage 
significantly impact the quality and usability 
of satellite imagery. Dense clouds can 
obscure the surface, reducing the ability to 
capture accurate information about land 
cover, snow, or vegetation. This limitation is 
particularly critical in regions or seasons 
with frequent cloud cover, such as 
mountainous areas. 
 

 The Otsu method, an automatic 
thresholding technique, enables further 
processing across different time periods. 

 

 Limitation of spatial resolution. 
While the 10-meter resolution is sufficient 
for detecting fine-scale features such as 
vegetation patterns or snow ,it may not 
capture very small objects or fine-grained 
details, such as narrow water bodies or 
small patches of vegetation. 
 

 The desired levels of accuracies for indices 
and land cover maps. 

Generally, accuracy levels between 80% and 
90% are considered acceptable for most 
remote sensing applications, indicating a 
strong agreement between classified results 
and reference data. 
 

 Limitation of spectral resolution. 
 The absence of very narrow spectral bands can 
reduce the accuracy of distinguishing between 
similar surface types, such as differentiating 
snow from bright bare soil or sparse vegetation, 
particularly in complex environments. 
 



 98 

  
 The relatively low temporal resolution 

of Sentinel-2. 
Sentinel-2A launched on June 23, 2015, and 
Sentinel-2B on March 7, 2017, can pose 
challenges in capturing rapid changes in snow 
and vegetation. To enhance the frequency of 
observations and improve the monitoring of 
such dynamic phenomena, complementary 
satellite data, such as from Landsat or MODIS, 
can be utilized.  
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5 Conclusion  

Over the past decade, the Maritime Alps region has experienced notable changes across 

agricultural areas, vegetation, artificial surfaces, water bodies, and snow cover, primarily 

driven by climate change and evolving land-use practices. 

5.1 Vegetation Growth 

Vegetation in the region has expanded significantly, largely due to the combination of warmer 

temperatures and the gradual abandonment of high-altitude agricultural lands. This 

abandonment has facilitated “re-wilding,” where these areas are naturally overtaken by shrubs, 

grasses, and young trees. Biagi et al. (2019) report that increasing temperatures support the 

growth of vegetation at previously colder, higher elevations, while NDVI data from 2015 

onward indicates a marked increase in vegetation density in these abandoned fields. Galland et 

al. (2020) attribute the reforestation trends to reduced agricultural use, allowing natural 

succession to proceed, with forest and shrub cover replacing former farmlands. 

5.2 Agricultural Areas  

Agricultural land has generally decreased over the past decade, with cultivated areas shifting 

to higher altitudes where warmer temperatures have made farming viable. However, lower-

altitude areas have experienced a decline in farmland, primarily due to the encroachment of 

urban and infrastructural developments. This has led to a decrease in overall agricultural area 

as some of these lands are transformed for other uses, including urban expansion and tourism 

(Galland et al., 2020; Riva et al., 2018)  . 

5.3 Artificial Surfaces 

The spread of artificial surfaces, such as roads, residential zones, and tourism infrastructure, 

has intensified within valleys and lowland areas. This urbanization process has contributed to 
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the reduction of agricultural land, as detailed by Riva et al. (2018), who observed significant 

expansion of built-up areas near population centres and tourism hubs. This trend aligns with a 

broader regional shift toward urbanization and tourism, reducing the availability of rural and 

agricultural spaces. 

5.4 Water Bodies 

The water bodies in the Maritime Alps have remained largely stable, with only minor seasonal 

fluctuations in surface extent. These fluctuations are primarily linked to variations in 

precipitation and snowmelt, with some years, like those following high snowfall winters, seeing 

temporary increases in water surface. Bianchi et al. (2021) observed that NDWI data shows 

small seasonal variations in water coverage, though there have been no significant long-term 

changes in water body extent. 

5.5 Snow Cover 

Snow patterns have shown variability across the past decade, influenced by regional 

temperature and precipitation trends. While the overall trend points to a decrease in snow cover 

due to warming temperatures, years like 2018 and 2024 saw unexpected increases in snow 

accumulation, following colder and wetter winters. Caruso et al. (2019) noted that these high-

snow years delayed the growing season in higher elevations, which impacts local ecosystems 

and water availability. This occasional increase contrasts with the broader pattern of declining 

snow cover in the region, which continues to affect water resources and winter tourism (Biagi 

et al., 2024). 

5.6 Future Directions 

The project can be expanded by analyzing more recent data to evaluate long-term trends and 

validate the methodologies with updated information. Applying the techniques to other regions 
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or ecosystems could test their adaptability and robustness in different environmental contexts. 

Additionally, integrating advanced technologies like deep learning models or multi-sensor data 

fusion, such as combining Sentinel-2 with LiDAR or radar, could further improve classification 

accuracy and enhance spatial resolution. Another promising avenue is to investigate the 

impacts of climate change on vegetation and snow cover patterns using these methods. 

5.7 Current Limitations and Missing Elements 

Some aspects still require improvement, including the need for additional ground-truth data to 

enhance the accuracy assessments and better validation. A more comprehensive error analysis 

would help refine the methods and address specific limitations. Furthermore, incorporating 

seasonal variability to capture intra-annual changes in vegetation and snow cover could provide 

a more complete understanding of the dynamics. Finally, conducting an uncertainty analysis 

would help quantify the confidence in the results and identify areas needing further refinement. 
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Appendix 

calculations of the Indices  

// Calculate NDVI and add it to the map 
  var ndvi = calculateNDVI(image); 
  ndviLayers.push(ndvi); // Store NDVI layer 
  Map.addLayer(ndvi.select('NDVI'), {min: -1, max: 1, palette: ['blue', 'white', 'green']}, 

layerName + ' NDVI', false); 
 
  // Calculate NDSI and add it to the map 
  var ndsi = calculateNDSI(image); 
  ndsiLayers.push(ndsi); // Store NDSI layer 
  Map.addLayer(ndsi.select('NDSI'), {min: -1, max: 1, palette: ['white', 'lightblue', 'blue']}, 

layerName + ' NDSI', false); 
 
  // Calculate NDWI and add it to the map 
  var ndwi = calculateNDWI(image); 
  ndwiLayers.push(ndwi); // Store NDWI layer 
  Map.addLayer(ndwi.select('NDWI'), {min: -1, max: 1, palette: ['white', 'lightblue', 'blue']}, 

layerName + ' NDWI', false); 
 
  // Calculate NDMI and add it to the map 
  var ndmi = calculateNDMI(image); 
  ndmiLayers.push(ndmi); // Store NDMI layer 
  Map.addLayer(ndmi.select('NDMI'), {min: -1, max: 1, palette: ['white', 'lightblue', 'blue']}, 

layerName + ' NDMI', false); 
 
  // Calculate LAI and add it to the map 
  var lai = calculateLAI(image); 
  laiLayers.push(lai); // Store LAI layer 
  Map.addLayer(lai.select('LAI'), {min: 0, max: 6, palette: ['white', 'green']}, layerName + ' 

LAI', false); 
 
  // Calculate MSI and add it to the map 
  var msi = calculateMSI(image); 
  msiLayers.push(msi); // Store MSI layer 
  Map.addLayer(msi.select('MSI'), {min: 0, max: 2, palette: ['white', 'orange', 'red']}, 

layerName + ' MSI', false); 
 
  // Calculate SAVI and add it to the map 
  var savi = calculateSAVI(image); 
  saviLayers.push(savi); // Store SAVI layer 
  Map.addLayer(savi.select('SAVI'), {min: -1, max: 1, palette: ['blue', 'white', 'green']}, 

layerName + ' SAVI', false); 
 
  // Calculate KNDVI and add it to the map 
  var kndvi = calculateKNDVI(image); 
  kndviLayers.push(kndvi); // Store KNDVI layer 
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  Map.addLayer(kndvi.select('KNDVI'), {min: -1, max: 1, palette: ['blue', 'white', 'green']}, 

layerName + ' KNDVI', false); 
 
  // Calculate GNDVI and add it to the map 
  var gndvi = calculateGNDVI(image); 
  gndviLayers.push(gndvi); // Store GNDVI layer 
  Map.addLayer(gndvi.select('GNDVI'), {min: -1, max: 1, palette: ['blue', 'white', 'green']}, 

layerName + ' GNDVI', false); 
 
  // Calculate EVI and add it to the map 
  var evi = calculateEVI(image); 
  eviLayers.push(evi); // Store EVI layer 
  Map.addLayer(evi.select('EVI'), {min: -1, max: 1, palette: ['blue', 'white', 'green']}, 

layerName + ' EVI', false); 
 
  // Calculate EVI2 and add it to the map 
  var evi2 = calculateEVI2(image); 
  evi2Layers.push(evi2); // Store EVI2 layer 
  Map.addLayer(evi2.select('EVI2'), {min: -1, max: 1, palette: ['blue', 'white', 'green']}, 

layerName + ' EVI2', false); 
}); 
 
Otsu method 
 
// Compute the median NDVI from ndviLayers 
var medianNDVI = computeMedianNDVI(ndviLayers); 
map.addLayer(medianNDVI, {min: -1, max: 1, palette: ['white', 'white', 'green', 'white']}, 

'Median NDVI', false); 
 
// Check the band names in the medianNDVI layer 
print('Band names in medianNDVI:', medianNDVI.bandNames()); 
 
// Function to calculate Otsu's threshold 
function otsu(histogram) { 
  var counts = ee.Array(histogram.get('histogram')); 
  var means = ee.Array(histogram.get('bucketMeans')); 
  var total = counts.reduce(ee.Reducer.sum(), [0]).get([0]); 
  var sum = counts.multiply(means).reduce(ee.Reducer.sum(), [0]).get([0]); 
 
  var sumB = ee.Number(0); 
  var wB = ee.Number(0); 
  var maxVariance = ee.Number(0); 
  var threshold = ee.Number(0); 
 
  // Iterate over each pair of counts and means to calculate the optimal threshold 
  var initial = { 
    'sumB': sumB, 
    'wB': wB, 
    'maxVariance': maxVariance, 
    'threshold': threshold 
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  }; 
 
  var result = counts.toList().zip(means.toList()).iterate(function(pair, prev) { 
    pair = ee.List(pair); 
    var count = ee.Number(pair.get(0)); 
    var mean = ee.Number(pair.get(1)); 
    prev = ee.Dictionary(prev); 
 
    var wB = ee.Number(prev.get('wB')).add(count); 
    var wF = total.subtract(wB); 
 
    var sumB = ee.Number(prev.get('sumB')).add(count.multiply(mean)); 
 
    var maxVariance = ee.Number(prev.get('maxVariance')); 
    var threshold = ee.Number(prev.get('threshold')); 
 
    if (wB.gt(0).and(wF.gt(0))) { 
      var mB = sumB.divide(wB); 
      var mF = sum.subtract(sumB).divide(wF); 
      var betweenVariance = wB.multiply(wF).multiply(mB.subtract(mF).pow(2)); 
 
      maxVariance = ee.Number(ee.Algorithms.If( 
        betweenVariance.gt(maxVariance), 
        betweenVariance, 
        maxVariance 
      )); 
 
      threshold = ee.Number(ee.Algorithms.If( 
        betweenVariance.gt(maxVariance), 
        mean, 
        threshold 
      )); 
    } 
 
    return ee.Dictionary({ 
      'sumB': sumB, 
      'wB': wB, 
      'maxVariance': maxVariance, 
      'threshold': threshold 
    }); 
  }, initial); 
 
  return ee.Number(ee.Dictionary(result).get('threshold')); 
} 
 
// Step 1: Calculate the histogram for the median NDVI layer 
var bandName = medianNDVI.bandNames().get(0);  // Get the first band name of 

medianNDVI 
var histogram = medianNDVI.reduceRegion({ 
  reducer: ee.Reducer.histogram(), 
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  geometry: latestAOI, // Define your area of interest 
  scale: 30, 
  maxPixels: 1e13 
}).get(bandName);  // Get the histogram using the band name 
 
// Make sure the histogram value exists 
histogram = ee.Dictionary(ee.Algorithms.If(histogram, ee.Dictionary(histogram), 

ee.Dictionary({'histogram': [], 'bucketMeans': []}))); 
 
// Apply Otsu's method to determine the threshold 
var otsuThreshold = otsu(histogram); 
 
// Step 2: Classify NDVI values based on Otsu's threshold 
// NDVI values greater than the threshold are classified as 1 (vegetation), otherwise 0 (non-

vegetation) 
var classifiedMedianNDVI = 

medianNDVI.gt(otsuThreshold).multiply(1).rename('classified'); 
 
// Clip the classifiedMedianNDVI layer to the geometry 
var geometry = latestAOI; 
var clippedClassifiedMedianNDVI = classifiedMedianNDVI.clip(geometry); 
 
// Step 3: Add classified median NDVI layer to the map 
map.addLayer(clippedClassifiedMedianNDVI, { 
  min: 0, max: 1, 
  palette: ['white', 'green'] 
}, 'Classified Median NDVI Layer With Otsu'); 
 
// Create a mask where only vegetation (class 1 for vegetation) is shown 
var vegetationMask = clippedClassifiedMedianNDVI.eq(1); // Assuming class 1 is vegetation 
 
// Apply the mask to the classified image 
var maskedVegetationNDVI = clippedClassifiedMedianNDVI.updateMask(vegetationMask); 
 
// Add the masked vegetation NDVI layer to the map 
map.addLayer(maskedVegetationNDVI, { 
  min: 0, max: 1, 
  palette: ['green'] 
}, 'Masked Vegetation NDVI Layer', false); 
 
 
Landcover thematic maps 
 
 
// Define Area of Interest (AOI)  
// Make sure 'aoi', 'Vegetation', and 'Snow' are properly defined before this block 
 
// Import Sentinel-2 Surface Reflectance collection and apply filters 
var s2 = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED") 
  .filterDate('2018-08-01', '2018-08-30')  // Filter by date range 
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  .filterBounds(aoi)  // Filter by AOI 
  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 15))  // Filter by cloud coverage (less 

than 20%) 
  .median()  // Compute the median composite 
  .clip(aoi);  // Clip to the AOI 
   
// Display the median composite clipped by AOI 
Map.centerObject(aoi, 8);  // Center the map on the AOI 
Map.addLayer(s2, {bands: ['B4', 'B3', 'B2'], min: 0, max: 3000}, 'Median Composite'); 
 
// Merge the Vegetation and Snow collections for classification 
var className = waterBodies.merge(Crops) 
                            .merge(forestAreas) 
                            .merge(Pastures) 
                            .merge(artificialSurfaces); 
 
// Define the bands to use in classification 
var bands = ['B4', 'B3', 'B2', 'B5', 'B6', 'B7', 'B8']; 
 
// Sample the regions from the defined feature collection for training 
var training = s2.select(bands).sampleRegions({ 
  collection: className, 
  properties: ['Landcover'],  // Make sure the 'Landcover' property exists in your feature 

collection 
  scale: 30 
}); 
 
// Train the classifier using the training data 
var classifier = ee.Classifier.smileRandomForest(100).train({ 
//var classifier = ee.Classifier.sam().train({ 
  features: training, 
  classProperty: 'Landcover', 
  inputProperties: bands 
}); 
 
 
// Classify the image using the trained classifier 
var classified = s2.select(bands).classify(classifier); 
 
// Add the classification layer to the map with a new color palette for better visibility 
Map.addLayer(classified,  
  {min: 0, max: 4, palette: ['#0000ff', '#ff0000', '#00ff00', '#ffff00', '#ff00ff']},  
  'Landcover Classification'); 
 
// Create a panel to hold the legend 
var legend = ui.Panel({ 
  style: { 
    position: 'bottom-left', 
    padding: '8px 15px' 
  } 
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}); 
 
// Create a title for the legend 
var legendTitle = ui.Label({ 
  value: 'Landcover Classification Legend', 
  style: {fontWeight: 'bold', fontSize: '18px', margin: '0 0 4px 0', padding: '0'} 
}); 
legend.add(legendTitle); 
 
// Define the color and labels for the legend 
var palette = ['#0000ff', '#ff0000', '#00ff00', '#ffff00', '#ff00ff']; 
var names = ['Water Bodies', 'Crop','Forest Areas', 'sparsely vegetated Areas and 

pastures','Artifical Surface]']; 
 
// Create and add the legend color boxes and labels 
for (var i = 0; i < palette.length; i++) { 
  var colorBox = ui.Label({ 
    style: { 
      backgroundColor: palette[i], 
      padding: '8px', 
      margin: '0 0 4px 0' 
    } 
  }); 
  var description = ui.Label({ 
    value: names[i], 
    style: {margin: '0 0 4px 6px'} 
  }); 
   
  var legendItem = ui.Panel({ 
    widgets: [colorBox, description], 
    layout: ui.Panel.Layout.Flow('horizontal') 
  }); 
  legend.add(legendItem); 
} 
 
// Add the legend to the map 
Map.add(legend); 
 
 
// Define export parameters 
Export.image.toDrive({ 
  image: classified, 
  description: 'Landcover_Classification_Map', 
  folder: 'EarthEngineExports',  // Specify the folder in your Google Drive 
  fileNamePrefix: 'Landcover_Classification',  // Prefix for the file name 
  region: aoi,  // Define the region for export (your area of interest) 
  scale: 30,  // Specify the scale in meters 
  maxPixels: 1e13  // Maximum number of pixels allowed (adjust as needed) 
}); 
 


