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Summary

This thesis investigates the environmental implications of phosphate mining in
Morocco’s Khouribga region. Phosphate rock is essential for agriculture, industry,
and emerging technologies due to its high phosphorus content and the presence of
rare earth elements (REE) and uranium. However, the mining processes release
dust and tailings containing potentially toxic metals (PTMs), including cadmium
and chromium, which contaminate soil, water, and air, posing risks to ecosystems
and human health.

The study leverages remote sensing technologies, EMIT and ECOSTRESS
sensors, to evaluate mineral distributions and environmental impacts in Morocco’s
Khouribga phosphate mining region. EMIT’s hyperspectral imaging captures
unique spectral features of minerals, while ECOSTRESS, is repurposed here to
differentiate critical minerals like quartz and apatite. Together, these sensors
facilitate mineral detection in challenging conditions by addressing issues like
overlapping or featureless spectral responses in certain SWIR wavelengths, allowing
for a more detailed understanding of mineral presence and distribution across the
mining landscape.

Using the Modified Soil-Adjusted Vegetation Index (MSAVI) and Albedo indices,
a multi-temporal analysis spanning over 40 years reveals significant environmental
changes in the Khouribga phosphate mine area. This analysis highlights a marked
progression from mild to severe desertification, particularly in regions experiencing
intensive mining activities, characterized by a decline in vegetation cover and an
increase in barren land.

The study employs NDVI to monitor both seasonal and long-term dynamics
in response to mining. These indices indicate recurring patterns of vegetation
decline and recovery, emphasizing the environmental pressures exerted by mining
operations.

These findings highlight the importance of sustainable mining practices like
reforestation and erosion control to reduce environmental degradation and enhance
ecosystem resilience. This research provides a framework for using remote sensing to
monitor mining impacts, guiding land management strategies that balance resource
extraction with sustainability in semi-arid mining regions.
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Introduction

Phosphate rocks are the most significant phosphorus-bearing raw material in the
fertilizer industry. They serve as the primary source of phosphorus (P), an essential
element for agriculture and various industrial applications, including animal feed,
cosmetics, and electronic [1]. Phosphate rocks are also likely to contain significant
quantities of rare earth elements (REE), positioning them as a potential REE
resource due to their widespread production globally [2]. Similarly, phosphate
rocks are considered an unconventional source of uranium, particularly in certain
deposits where uranium concentrations can be high [2].
One of the biggest challenges humanity faces is ensuring a stable phosphate supply.
Proactive strategies are needed to address this, such as recycling waste from
phosphate mining, processing, and exploring new potential phosphate ore resources
[3]. Marine-origin sedimentary phosphorites are currently the main raw material for
the phosphate industry, making up about 90% of global phosphate rock production
[4]. Approximately 10% of phosphate rocks come from igneous sources, while the
remainder is sourced from residual and guano-type sedimentary deposits. Both
igneous and sedimentary rock sources have distinct advantages and drawbacks
related to their chemical composition, geographic distribution, and feasibility for
exploitation [1].
Morocco, situated in northwestern Africa, is a key player in global phosphate
production, holding over 70% of the world’s known phosphate reserves. The
sedimentary phosphate deposits here, spanning the upper Cretaceous to lower
Eocene period, are among the largest globally, with major deposits found in basins
like Ouled Abdoun, Ganntour, Meskala, and Oued Ed-Dahab [5]. Given Morocco’s
substantial reserve-to-production ratio, the country is positioned as a long-term
global phosphate supplier, with reserves estimated to last over 1,300 years at current
production rates [6]. Morocco’s phosphate production has seen a 43% increase
over the past decade, underscoring its growing role in the international phosphate
market[3].

Morocco’s climate, influenced by the Atlantic Ocean, the Mediterranean Sea,
and the Sahara Desert, varies from sub-humid and semi-arid conditions in the north
to arid and desert-like conditions in the south [7]. As one of the most climate-
vulnerable regions in North Africa and the Mediterranean, Morocco experiences
fluctuating precipitation patterns, significantly impacted by mid-latitude storms
and the North Atlantic Oscillation (NAO), which drive seasonal droughts and
occasional extreme rainfall events [8] [9]. Climate models project that Morocco, like
the broader Mediterranean region, will face increased temperatures and a decrease
in annual precipitation in the future, trends that amplify the risk of recurrent
droughts and create challenges for water resources and agriculture [10]. These
climate vulnerabilities, coupled with intensive land use from industries such as
phosphate mining, intensify the environmental challenges facing Morocco.
Phosphate mining, particularly in Morocco’s Khouribga region, produces dust and
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Figure 1.1: Khouribga mine Map

tailings laden with potentially toxic metals (PTMs) like cadmium, chromium, and
zinc, which pose significant risks to soil, water, and air quality [11]. These dust
emissions not only impact the health of nearby communities through inhalation
and ingestion but also lead to long-term ecological degradation by contaminat-
ing soils, polluting groundwater, and disrupting local flora and fauna. Effective
management of mining waste is crucial to mitigate these environmental risks and
safeguard human health, as exposure to PTMs from mine tailings may lead to both
carcinogenic and non-carcinogenic health effects [12] [13].
Phosphate mining operations impact the environment significantly, particularly
in regions like Morocco’s Khouribga Basin. Mining processes generate extensive
dust emissions, containing potentially toxic metals (PTMs) such as cadmium, zinc,
and chromium, which can harm local ecosystems and public health. This dust,
generated through mining processes like excavation, blasting, and beneficiation, can
be carried through air and water, impacting nearby communities and agriculture.
In Khouribga, contamination from PTMs has been detected in groundwater, raising
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health concerns for communities dependent on these water sources for drinking
and irrigation [11] [14]. Mining activities also degrade the soil, reducing its fertility
and increasing erosion rates, further exacerbating land degradation in affected
regions. These environmental impacts highlight the need for advanced monitoring
and mitigation strategies to reduce PTM exposure and to manage land degradation
sustainably.
Geospatial tools and remote sensing techniques have proven effective in monitoring
environmental changes associated with mining activities. By utilizing indices such as
the Normalized Difference Vegetation Index (NDVI) and the Modified Soil-Adjusted
Vegetation Index (MSAVI) alongside surface albedo measurements, remote sensing
enables comprehensive analysis of vegetation loss and soil degradation. These
indices are valuable for assessing desertification, especially in semi-arid regions
where climate stress and land use accelerate degradation. This thesis employs
these geospatial tools to evaluate the environmental impacts of phosphate mining,
focusing on multitemporal and desertification analyses. Through remote sensing, a
systematic approach to assessing vegetation dynamics and soil health is developed,
offering insights into the environmental changes driven by both mining activities
and regional climate patterns. Such an approach provides a robust framework
for sustainable mining management, supporting environmental conservation in
Morocco’s phosphate-rich regions.
Recent advancements in spaceborne imaging, with satellites like the Earth Surface
Mineral Dust Source Investigation (EMIT) and the ECOsystem Spaceborne Ther-
mal Radiometer Experiment on Space Station (ECOSTRESS), have significantly
enhanced our capabilities for mineral and environmental analysis. EMIT, operating
in visible to shortwave infrared (SWIR) wavelengths, is adept at identifying miner-
als through their unique spectral absorption features. In contrast, ECOSTRESS,
capturing thermal infrared (TIR) wavelengths, provides detailed thermal data,
supporting analyses of surface temperature and water stress. Together, EMIT
and ECOSTRESS offer a synergistic approach to detecting mineral dust sources
and emissions, especially in remote or arid regions where ground-based monitoring
is limited. These advanced platforms facilitate comprehensive mineral and envi-
ronmental assessments, particularly in mining-intensive landscapes like those in
Morocco.
This thesis employs Band Math for Single Feature Extraction, a method designed to
detect specific spectral features that identify unique mineral signatures. By isolat-
ing characteristic absorption bands through calculated band ratios, this technique
facilitates precise and efficient mineral detection. Initially developed for airborne
sensors, Band Math has been adapted for spaceborne platforms such as EMIT
and ECOSTRESS, enabling large-scale mineral mapping without the need for
extensive fieldwork. The integration of EMIT’s spectral data with ECOSTRESS’s
high-resolution thermal imagery provides an innovative framework for mineral
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distribution analysis.
The primary objective of this research is to detect and map mineral distributions
in Morocco’s phosphate mining regions using advanced remote sensing techniques.
By establishing a remote, replicable methodology, this approach highlights the
potential for identifying spectral anomalies and regions of interest for further in-
vestigation, complementing and supporting field surveys. While remote sensing
provides valuable surface-level insights, fieldwork remains essential in geology for
comprehensive exploration and validation. The findings aim to simplify the prelim-
inary stages of mineral exploration, optimize resource management, and broaden
the applications of remote sensing technologies.
In addition to mineral detection, this thesis assesses the environmental impacts
of mining-related land degradation, with a specific focus on desertification. Using
multitemporal analyses of vegetation indices, such as NDVI and MSAVI, the study
evaluates changes in vegetation health and land cover over time. By combining
these indices with mineral mapping, the research highlights the interplay between
resource extraction, vegetation decline, and soil degradation. This approach offers
valuable insights into the environmental consequences of mining and supports the
development of strategies to mitigate its impact on arid and semi-arid ecosystems.
In the broader context of sustainable mining practices, this thesis forms part of an
extended research initiative. While this study focuses on environmental impacts
in the Khouribga phosphate region, it complements parallel work by a colleague
on Morocco’s Youssoufia phosphate mine. Together, these studies aim to build a
comprehensive assessment of Morocco’s phosphate mining sector, offering a nu-
anced understanding of mineral-associated environmental challenges across different
regional contexts. Thus, this research contributes not only to the scientific under-
standing of phosphate mining’s environmental footprint but also to the overarching
goal of sustainable resource management in climate-sensitive areas.
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2.0.1 Moroccan’s phosphate

Moroccan sedimentary phosphate deposits are globally notable due to their vast
extent and abundant resources, comprising over 70% of the world’s phosphate
reserves. This country is located in the northwestern corner of the African continent
and stretches from 21°N to 37°N. It borders the Mediterranean Sea to the north
and the Atlantic Ocean to the west. Moroccan’s phosphate rocks are predominantly
from the upper Cretaceous to lower Eocene stratigraphic period. They are found
across multiple sedimentary basins, varying in surface area and phosphate content.
[5]
Phosphorus in phosphate rocks is typically found combined with other elements as
phosphate minerals, with the apatite group being the most widespread type [15].
In addition to sedimentary phosphates, Morocco contains several carbonatite and
carbonatite-alkaline complexes that may harbor potential resources of igneous
phosphate and critical metals [16]. Marine sedimentary phosphates contain various
phosphate particles, called "phosclates," which include skeletal grains (such as
bioclasts, shark teeth, and bone fragments) and non-skeletal grains (like peloids,
coprolites, and aggregates). These particles are mixed with non-phosphate materi-
als like quartz, calcite, dolomite, and clay minerals [17].
Non-apatitic phosphate minerals are typically secondary ferrous and aluminous
minerals formed by the alteration of primary phosphates. The main phosphate
mineral is carbonate fluorapatite (CFA), previously known as francolite [18].
In Morocco, the most significant sedimentary phosphate deposits are primarily
located in four basins: Ouled Abdoun, Ganntour, Meskala, and Oued Ed-Dahab.
Smaller, less economically significant deposits are also found in areas like Middle
Atlas, Beni Mellal, High Atlas, Marrakesh High Atlas northern basins, Souss, and
Ouarzazate basins [5]. These deposits are part of the Mediterranean (Tethyan) phos-
phogenic province and were formed between the Upper Cretaceous and Paleogene
periods, specifically from the Maastrichtian to the Ypresian [19].

Data on Moroccan sedimentary phosphates indicate that, like other regional
phosphate rocks, they primarily consist of francolite and associated gangue minerals
such as calcite, dolomite, quartz, gypsum, and various clay minerals (smectite,
Illite, Palygorskite, sepiolite, kaolinite). Accessory minerals include glauconite,
sulfides (mainly pyrite), iron oxides (hematite and goethite), and feldspar [21].
Phosphate reserves are dynamic and can change over time due to factors such as
production rates, the discovery of new reserves, and the reclassification of resources
and reserves. The most comprehensive study on phosphate reserves and resources is
by Steven Van Kauwenbergh in 2010 [22], which compiles various previous studies
and indicates that reserve estimates range from 15,000 MMT to over 1,000,000
MMT, while resource estimates range from approximately 91,000 MMT to over
1,000,000 MMT. Currently, the USGS is the only major geological survey providing
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Figure 2.1: A simplified geological map of Morocco showing the distribution of
phosphate deposits across various structural regions of the country (modified based
on Piqué, 1994, [20]

up-to-date global phosphate rock reserves data, reporting that global resources
exceed 300,000 billion tons and reserves are about 71,000 MMT [23]. Morocco
has the largest phosphate reserves, holding 70-75% (around 50,000 MMT) of the
world’s known phosphate reserves [23].
Despite the increase in phosphate production since 2010, estimated reserves have
remained unchanged, highlighting the need to reevaluate Morocco’s phosphate
resources and reserves given their global significance.
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Morocco, with the largest reserves, is expected to see its share increase due to a
high reserve-to-production ratio. China leads global phosphate production with
40%, Morocco follows with 17%, and the USA contributes 11%. China surpassed
the USA in 2006, and Morocco overtook the USA in 2017 [6]. Morocco’s reserve-
to-production ratio is over 1300 years, much higher than other countries, but this
does not account for potential changes in reserve classification. Morocco’s phos-
phate production has risen by 43% from 25,000 MT in 2010 to 37,000 MT in 2020 [3].

graphicx

Figure 2.2: Photographs of the Moroccan apatite ores: (A) High Atlas Imilchil
apatite gems [16] (B) Dakhla Gleibat Lafhouda iron oxide–apatite ore associated
with carbonatite complex [24]

2.0.2 Moroccan’s climate
The Moroccan climate is characterized by the influences of the Atlantic, the Mediter-
ranean, and the Sahara [7]. Studies at global, regional, and national levels have
shown that Morocco is one of the most climatically vulnerable areas in the Mediter-
ranean and North Africa [8].
this results in a sub-humid to semi-arid climate in the north and an arid to desert-
like climate in the south. Storms in the mid-latitudes have a significant impact on
precipitation, especially in the wettest regions [7]. The large-scale North Atlantic
circulation (extratropical circulation modes) can lead to normal, dry, or wet condi-
tions in winter, depending on the specific weather regime [9].
In particular, weather patterns similar to the positive (negative) phase of the North
Atlantic Oscillation (NAO) are generally associated with dry (humid) conditions.
Very humid conditions in the northeastern part of the country can be caused by
blockages in the Mediterranean pressure systems (e.g. El Hoceima in November
2003). Tropical storms moving up the Atlantic coast have often resulted in extreme
precipitation events (e.g. Tantan in August 2003, Casablanca in November 2010),
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which is consistent with previous studies on tropical-extra-tropical interactions in
the region [25].
Driouech et al. [9] observed a trend towards warmer and drier conditions in numer-
ous regions, based on data from 17 meteorological stations from the period 1961 to
2008.
Donat et al. [26] identified positive trends in mean temperature and warm extremes,
along with decreasing trends in cold events, using data from 10 meteorological
stations. Filahi et al. [27] noted decreasing precipitation trends, particularly
in the country’s interior and at stations with long-term records (approximately
four decades). While these studies indicate an increase in persistent drought [28].
Changes in extreme precipitation events were found to be less [27].
Regarding future changes, most climate model projections concur that the Moroc-
can climate will align with trends observed across the entire Mediterranean region.
These projections indicate an increase in both mean and high temperatures, along
with a decrease in total annual precipitation [10].
Negative climate effects have already been observed. droughts are recurrent and
becoming more frequent and, perhaps, more severe. For example, the dry conditions
during 1982–1983 and 1994–1995, two of the most widespread droughts to affect
the country, resulted in a significant drop in water reserves. This impacted not only
irrigated agriculture but also drinking water supplies and electricity production [29].
Official drought declarations, triggering government emergency relief, were made
in 1992–95, 1998–2001, 2005, 2007, and 2015–2016 [29]. The most recent drought,
from November 2015 to spring 2016, caused a three percent decline in economic
growth due to decreased agricultural output, particularly in cereal production.
Mitigation actions, including crop insurance, were limited. The citrus and olive
value chains also saw output declines and increased sensitivity to water shortages
during the 2015–16 drought [29].
The Moroccan climate’s vulnerability to changing weather patterns, coupled with
the environmental challenges posed by phosphate mining, highlights the complex
interaction between natural and human-induced factors. Morocco’s semi-arid to
arid conditions, intensified by the North Atlantic Oscillation (NAO) and frequent
droughts, significantly impact water resources and agricultural output, as seen
during events like the 2015-2016 drought. While climate shifts pose their challenges,
human activities—such as phosphate mining—introduce additional environmental
pressures, notably in the form of dust pollution and resource depletion. So, a
literature review is dedicated to the environmental impact of dust on the area.
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2.0.3 Environmental Impacts of Mining Dust

Dust generation in phosphate mining arises from activities like vehicle traffic, blast-
ing, excavation, and beneficiation processes like crushing and drying [30]. Sediments
and tailings in phosphate mining areas often have higher concentrations of PTMs,
with fine particles accumulating more harmful metals, such as Cd, Zn, and Cr [11].
The environmental impact of dust generation in industries like mining is increas-
ingly studied due to stricter regulations on emissions, air quality, and pollution.
Public awareness has also grown regarding the environmental consequences of such
activities [30]
In recent decades, the mining industry’s legacy of environmental damage has
heightened public concern over the industry’s ability to manage its environmental
footprint. As mining operations expand, the demand for improved management of
environmental impacts grows. Governments have responded by imposing stricter
regulations to safeguard ecosystems and communities living near mining sites [30].
Phosphate mining, in particular, presents significant environmental challenges.
The extraction process can increase concentrations of toxic metals and radioactive
elements in water bodies and the surrounding environment. The following major
impacts are often observed:

1. Water Contamination: Phosphate mining can lead to large quantities of dust
and powder being transported by water, contaminating nearby aquatic ecosystems.
Acid mine drainage can also lead to groundwater contamination following rainfall
[31].
In regions like Morocco, groundwater is a vital resource, especially in rural areas.
However, the Khouribga phosphate mining region threatens groundwater quality.
Studies on 90 well samples from the region indicate that while most samples meet
standards for pH, conductivity, and various minerals, nitrate levels exceed safe
limits for consumption, posing a significant health risk for infants and pregnant
women [14].
The groundwater in Khouribga exhibits chemical heterogeneity, with dominant
facies being calcium sulfate-magnesium and calcium bicarbonate-magnesium. These
findings, supported by principal component analysis, highlight the ongoing need for
groundwater preservation and management in phosphate mining areas to safeguard
public health [14].
2. Soil Contamination: The disposal of mine tailings often leads to the accumu-
lation of hazardous trace metals like uranium (U), cadmium (Cd), and chromium
(Cr) in soils, which can pose risks to both the environment and human health [32].
3. Air Pollution: Mining operations release dust and emissions from blasting,
crushing, and ore transportation, negatively affecting air quality. Winds can carry
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this dust to nearby communities, impacting health and polluting homes and farm-
land [33].
4. Soil degradation: Phosphate mine wastes cover large areas, making soil
susceptible to erosion and metal contamination and reducing fertility [34].
5. Landscape degradation: The waste rock piles and tailing ponds associated
with phosphate mining alter the landscape and degrade natural aesthetics [35].
6. Fauna and flora impact: Phosphate extraction destroys habitats, harming
local ecosystems and species. Pollution from mining can also weaken plant and
animal health in affected areas [36].
7. Health and Environmental Risks of PTMs: The pollution generated by
phosphate mining poses significant health risks, particularly due to potentially
toxic metals (PTMs) like Cr, Ni, As, and Cd. These metals can cause both carcino-
genic and non-carcinogenic effects, especially when exposure exceeds acceptable
thresholds [12].
These metals do not degrade easily and can accumulate in soils and sediments,
where they can enter human systems through inhalation, ingestion, or dermal
contact. Over the past few decades, research has focused on understanding the
distribution and sources of PTM contamination in mining regions [13].
Phosphate mining, especially, generates dust and airborne particulate matter (PM)
that threatens both the environment and human health [11]. Exposure to PTM
fractions may not immediately lead to significant health risks, according to some
risk assessments. However, ingestion of contaminated soil or mine tailings can
significantly increase health risks, especially for children, who are more vulnerable
to the harmful effects of PTMs [11]. Effective management of contaminated soils
and mine tailings is crucial for reducing these risks [11].
8. Potential Human Health Risk: Health risk assessments for PTMs from
phosphate mining typically evaluate both non-carcinogenic and carcinogenic ef-
fects. The hazard quotient (HQ) and hazard index (HI) are used to measure
non-carcinogenic risks, while the cancer index assesses the likelihood of developing
cancer from exposure. Studies have shown that children are more susceptible to
PTM exposure than adults, particularly through ingestion. While non-carcinogenic
risks may remain under threshold values (HI < 1), carcinogenic risks—especially
for Cd—exceed acceptable levels for both children and adults [13].

2.0.4 Desertification Index
The dual pressures of climate change and human-induced land degradation, such
as through mining, intensify desertification processes in Morocco. As vegetation
is lost due to both natural and anthropogenic factors, surface albedo increases,
signaling a shift towards more degraded landscapes.
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Desertification ranks among the top global environmental challenges and is a sig-
nificant cause of degradation in semi-arid grasslands. Understanding the ecological
conditions of these regions and tracking their temporal and spatial changes is
essential for effective environmental protection and land management at both
regional and local scales. Remote sensing technology has become a widely used tool
in monitoring and assessing desertification due to its broad observational range,
extensive data collection, fast updates, and high accuracy [37].
In semi-arid grasslands, the traditional NDVI (Normalized Difference Vegetation
Index) is often less effective due to sparse vegetation cover and the influence of soil
and moisture on the index. MSAVI (Modified Soil Adjusted Vegetation Index), on
the other hand, adjusts for soil background effects, increasing the sensitivity of
vegetation detection in such environments. As desertification progresses, surface
vegetation decreases, leading to lower vegetation index values, making MSAVI an
ideal biophysical parameter for measuring the extent of desertification in these
areas [37].
Additionally, surface albedo is another key indicator of desertification. As vege-
tation cover declines, surface moisture and roughness decrease, increasing surface
albedo. Studies have shown that higher albedo values correspond to more severe
levels of desertification. This makes albedo a useful physical parameter for assessing
land degradation [37].
By combining MSAVI and albedo in a quantitative model, this study provides
a straightforward yet effective method for remote sensing-based desertification
monitoring in semi-arid grasslands. The model offers a valuable tool for under-
standing the impact of desertification on surface characteristics and can guide
future environmental management efforts [37].

2.0.5 Using Band Math for Mineral Detection: Integrating
EMIT and ECOSTRESS Satellites

The exploration of Earth’s mineral compositions from space has seen significant
advancements with the deployment of satellites like EMIT and ECOSTRESS.
Remote sensing methods, particularly the technique known as Band Math for
Single Feature Extraction, are critical in detecting and mapping minerals. This
article delves into the process of using band math for feature extraction and how it
is applied in conjunction with data from the EMIT and ECOSTRESS satellites
to enhance our understanding of mineral dust, climate effects, and environmental
changes.
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2.0.6 Band Math for Single Feature Extraction
Band Math for Single Feature Extraction is a remote sensing technique used to
highlight specific spectral features that are indicative of certain minerals. This
method involves identifying absorption features within a mineral’s spectral signature
by analyzing reflectance values at specific wavelengths.
Absorption band-depth images were pioneered by Brickey et al [38] and Crowley
et al [39] to map mineral distributions using radiometrically-corrected Airborne
Imaging Spectrometer data. This method involves analyzing specific wavelengths in
the shortwave infrared (SWIR) spectrum to define the depth of absorption features,
which are indicative of certain minerals. The process entails calculating ratios that
highlight these absorption features. To create an absorption band-depth image,
the sum of the reflectance values from several spectral bands positioned at the
shoulders of the absorption feature is divided by the sum of the reflectance values
from one or more bands located at the center of the absorption feature, where the
reflectance is at a minimum. This approach involves including as many bands as
possible to reduce the effects of noise, resulting in a one-band image where pixel
values correspond to the depth of the absorption feature at the wavelength of the
reflectance minimum.

Figure 2.3: True absorption band depth and relative absorption band depth
[39]
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2.0.7 EMIT Satellite and Mineral Dust Mapping

Each year, millions of tons of dust are lifted from the world’s driest and least
vegetated regions, carried by the wind, and dispersed across the globe. This dust
is made up of minerals and chemicals that reflect the composition of the rocks
and soil where it originates. The color of the dust varies depending on its mineral
content: for example, iron-rich dust appears dark red and absorbs more solar energy,
while clay-heavy dust is pale yellow or white and reflects more sunlight. This dust
influences Earth’s atmospheric temperatures through a process known as radiative
forcing. However, a lack of detailed data on dust from desert regions—where
it is most abundant—means that much of the information available comes from
agricultural areas, which are studied more often due to their relevance to farming.
As a result, climate models often rely on fewer than 5,000 dust samples, leading to
generalized assumptions about dust composition. These models tend to depict dust
as yellow, the average color found in global samples, which creates considerable
uncertainty about whether dust has a cooling or warming effect on the planet[40].
Airborne dust affects more than just our respiratory health, like causing nasal
congestion or lung irritation, and creating physical annoyances such as a layer of
grit on car windshields. Studies have found that dust can help fertilize rainforests
and trigger algae blooms, impact snowmelt speeds, and possibly even influence
weather and climate patterns. To better understand the climate-related effects of
dust, NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) mission is
working to deepen our knowledge of these impacts[40].
EMIT, positioned on the International Space Station (ISS), collects detailed data
on the color and composition of Earth’s dry, dust-prone regions, which generate
mineral dust that can travel long distances through the air. Darker dust absorbs
more sunlight, raising the surrounding air temperature, while lighter dust reflects
sunlight, contributing to cooling the air.
EMIT, operated by NASA’s Jet Propulsion Laboratory (JPL), provides much more
detailed information about the surface minerals in dust-generating areas. This
valuable data will assist scientists in improving climate models, which currently
account for the temperature effects of dust but often depend on assumptions re-
garding its color[40].
EMIT targets ten key minerals commonly found in dust sources, each of which
responds uniquely to light and heat. By determining the prevalence of these miner-
als in different regions, scientists can address knowledge gaps and gain a better
understanding of how atmospheric dust influences warming or cooling on both
global and regional scales, as well as the extent of these effects. These temperature
fluctuations can affect atmospheric conditions, ultimately influencing the timing
and distribution of precipitation. [40].
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EMIT’s Science Goals and Objectives:
1. To gather remote sensing data on the distribution of surface minerals—such as
hematite, goethite, illite, vermiculite, calcite, dolomite, montmorillonite, kaolinite,
chlorite, and gypsum—in arid regions between 50 degrees north and south latitudes
across Africa, Asia, North America, South America, and Australia.
2. To improve our understanding of how mineral dust affects heating and cooling
in Earth’s atmosphere.
3. To improve predictions regarding how future climate scenarios may influence
the amount and types of mineral dust released into the atmosphere [40].

Figure 2.4: Diagram of the EMIT instrument that was installed on the Interna-
tional Space Station on July 24, 2022 [40].

EMIT is the first experiment aboard the International Space Station (ISS)
dedicated specifically to studying mineral dust sources, making it the only instru-
ment of its kind on any spacecraft. While on the ISS, EMIT orbits Earth at a
speed of 8 kilometers per second, completing one full orbit approximately every
90 minutes and making about 16 orbits each day. It was launched on a SpaceX
resupply mission on July 14, 2022, and installed on the ExPRESS Logistics Carrier
1 (ELC1), an essential platform for external instruments on the ISS. Over the
next year, EMIT will map the surface composition of mineral dust sources in arid
regions, contributing to a deeper understanding of the mineral dust cycle [41].
EMIT employs an imaging spectrometer to capture the spectrum at each point in
an image. It gathers sunlight that is reflected from Earth’s surface minerals using
a telescope and spectrometer system, which directs the light onto a detector array
sensitive to visible and short-wavelength infrared light. Each mineral has a unique
spectral signature within this range. The detector records the spectrum from a
1,240-point cross-track sample of EMIT’s swath, while the ISS’s movement in orbit
provides the along-track data for the image. The collected image data is calibrated
for spectral radiance, corrected for atmospheric effects, and analyzed to determine
the mineral composition, enabling EMIT to meet its scientific goals [42].
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EMIT functions within a wavelength range of 380 to 2500 nm, utilizing a single
cryogenic Focal Plane Array (FPA) with channel spacing of approximately 7.5
nm. Its 74 km swath width and 60 m ground sampling resolution enable detailed
mineralogical analysis of fallow agricultural fields. However, certain spectral bands,
notably those between 1.320 to 1.439 nm and 1.766 to 1.967 nm, are considered
unsuitable due to interference from atmospheric conditions, particularly water
absorption [43].

F-number F/1.8
Cross-track FOV 11°

IFOV (cross-track x along-track) 155 x 71 rad
Focal length 193.5 mm

Entrance pupil aperture 110 mm
Spectral Range 381 – 2493 nm

Spectral Sampling 7.5 nm
Spectral Resolution 60 m
Number of Bands 285

Table 2.1: EMIT Imaging System: Optical and Spectral Parameters [42]
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2.0.8 ECOSTRESS Satellite and Thermal Infrared Detec-
tion

EMIT specializes in observing the visible to shortwave infrared (SWIR) spectrum,
while ECOSTRESS operates in the thermal infrared (TIR) range to study Earth’s
surface temperature and monitor water stress in ecosystems. The ECOSTRESS
mission, short for the ECOsystem Spaceborne Thermal Radiometer Experiment on
Space Station, focuses on tracking plant transpiration—the release of water vapor
from leaves—and overall evapotranspiration (ET), which combines evaporation
from soil and plant surfaces. By providing high-resolution TIR data, the mission
offers valuable insights into water usage and stress in plants [44].
Mounted on the International Space Station (ISS), ECOSTRESS addresses three
critical scientific objectives: understanding how terrestrial ecosystems react to
shifts in water availability, examining how daily vegetation water stress influences
the global carbon cycle, and improving agricultural sustainability by enhancing
water use monitoring and drought forecasting. To achieve these aims, ECOSTRESS
identifies water stress thresholds for vulnerable ecosystems, uncovers barriers to
plant water uptake, and analyzes agricultural water consumption across the U.S.,
contributing to more accurate drought predictions and better resource management
[44].
While ECOSTRESS primarily focuses on evaluating plant water stress and mea-

Description Value Unit Notes

Measured band centers

Band 1 – 8.29
Band 2 – 8.78
Band 3 – 9.20
Band 4 – 10.49
Band 5 – 12.09

µm

May 15 2019 – May 17, 2023, Three Band data

Transition April 28, 2023 – May 17, 2023, Three and Five Band data

May 18, 2023 – Present, Five Band data only mode

Measured FWHM per band

Band 1 – 0.345
Band 2 – 0.310
Band 3 – 0.396
Band 4 – 0.410
Band 5 – 0.611

µm

Pixel size at nadir 69x38 m 2 pixels in cross-track and 1 pixel in down track
Swath width 384 km

Scene size 5400x5632 pixels

Table 2.2: Spectral and Spatial Characteristics of ECOSTRESS Thermal Infrared
Bands [45]

suring evapotranspiration (ET), it also offers the unique capability to identify
surface minerals through its thermal infrared (TIR) observations. By analyzing
TIR data, researchers can generate mineralogical maps that leverage the distinct
thermal emission properties of various minerals. These thermal signatures, captured
with ECOSTRESS’s high-resolution capabilities, allow for precise identification of
surface compositions.
This added functionality proves particularly valuable in geological studies and
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natural resource exploration, where accurately locating mineral deposits is crucial.
The ability to detect minerals from orbit broadens ECOSTRESS’s scope, comple-
menting its primary role in monitoring water stress and ET dynamics in vegetation
while offering critical insights for Earth sciences.
The EMIT and ECOSTRESS satellites play a vital role in analyzing the spectral
properties of various minerals, including apatite, quartz, calcite, dolomite, gypsum,
sepiolite, palygorskite, kaolinite, illite, glauconite, and iron oxides like hematite and
goethite. Each mineral has unique spectral signatures in the visible to short-wave
infrared (SWIR) and thermal infrared (TIR) ranges, enabling precise identification
and mapping across the Earth’s surface. Understanding these properties is essential
for assessing the impact of mineral dust on climate dynamics and environmental
processes. In the following section, we will conduct a literature review on the
spectral characteristics of these minerals in the SWIR and TIR ranges.
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2.0.9 Spectral properties of minerals
2.0.10 Spectral properties of apatite

Figure 2.5: Reflectance Spectrum of Fluorapatite (Ca5(PO4)3F) from the USGS
Spectral Library

Apatite, the most prevalent phosphate mineral, is identified by key features
at 9160 nm and 9620 nm, both resulting from the asymmetric stretching of PO4.
Clavier et al. [46] provide information on the TIR-active vibrational modes of
other phosphates, such as monazite and xenotime. The PO3−

4 anion in apatite can
be easily substituted by AsO3−

4 and VO3−
4 , with Adler (1964) [47] summarizing

the corresponding absorption features. Adler also described how the major TIR
features shift to longer wavelengths when P5+, As5+, and V5+ occupy the X position
in XO3−

4 , correlating this shift with the increasing mass and ionic radius of the
substituting elements.
The reflectance spectrum of pure fluorapatite in the Short-Wave Infrared (SWIR)
range is typically featureless, as noted in the USGS Spectral Library [48]. How-
ever, the SWIR reflectance spectrum of this particular sample exhibits prominent
absorption bands indicative of ferroan dolomite, specifically at 2318 nm and 2499
nm after continuum removal [49]. Additionally, subtle and narrow absorption
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features appear within the broader Fe-related absorption around 1200 nm, likely
attributable to REE3+. The presence of ferroan dolomite signals is probably due to
microscopic inclusions within the fluorapatite crystal. Nonetheless, it is also possible
for carbonate to be a minor component in some fluorapatite and hydroxylapatite
samples, as suggested by Fleet and Liu [50].

2.0.11 Spectral properties of Quartz

Figure 2.6: Reflectance Spectrum of Quartz (SiO2) from the USGS Spectral
Library

Igisu et al. [51] identified four absorption features within the 4000 to 6000 nm
wavelength range in the transmission spectra, attributing them to "Si-O bonds."
Comparing these to the fundamental Si-O stretching vibrations (Si-O), they assigned
the absorptions at 4470 nm, 4670 nm, and 4920 nm to the first overtones (2νSiO
) of the primary quartz reststrahlen bands in the thermal infrared (TIR) region.
The fundamental stretching vibrations of silicates (SiO) produce the most intense
features observable in the TIR wavelength region in reflectance spectra. The
strongest group of reflection peaks, also known as reststrahlen bands [52], can
create a relatively simple M-shaped signature in the reflectance spectra of less
complex silicates like quartz. The primary reststrahlen bands of quartz are located
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at 8150 nm, 8600 nm, and 9330 nm [53]. Additionally, a group of less intense
fundamental stretching vibrations, referred to as secondary reststrahlen bands, are
found around 12,550 nm.
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2.0.12 Spectral properties of Dolomite

Figure 2.7: Reflectance Spectrum of Dolomite (CaMg(CO3)2) from the USGS
Spectral Library

Dolomite’s absorption features in the SWIR band have also been studied exten-
sively, showing distinct positions in different reports. Huang and Kerr [54] found
that dolomite has an absorption band centered at 3.95 µm. Hunt and Salisbury
[55] reported dolomite’s absorption band at 2.33 µm. Gaffey [56] indicated that
dolomite’s absorption band is located around 2.31-2.32 µm. Van der Meer [57]con-
cluded that dolomite has an absorption band at 3.3039 µm. In the TIR region,
Huang and Kerr [54] observed a strong absorption band for dolomite at 11.35 µm.
Clark [58] noted that the absorption band positions of dolomite can shift slightly
due to compositional differences.
Reig et al. [59] utilized FTIR spectroscopy to determine the absorption features of
dolomite at 881 cm−1 (11.35 µm) and 730 cm−1 (13.70 µm).
Calcite and dolomite, being part of a solid-solution series, exhibit characteristic
peak shifts in the 2330–2335 nm range. This behavior arises from the substitution
of magnesium (Mg) for calcium (Ca) within their crystal structures. As the Mg
content increases, the absorption peak shifts toward shorter wavelengths.
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2.0.13 Spectral properties of Calcite

Figure 2.8: Reflectance Spectrum of Calcite (CaCO3) from the USGS Spectral
Library

In the study of carbonate minerals’ absorption features in the SWIR band,
calcite shows significant variations in the precise position of its absorption bands
as reported by various researchers. Huang and Kerr [54] observed that calcite
has an absorption band centered at 3.92 µm. Hunt and Salisbury [55] found
calcite’s absorption band at 2.35 µm. Gaffey [56] reported that calcite’s absorption
is centered around 2.33-2.34 µm, while Van der Meer [57] concluded that the
absorption band is at 2.3465 µm. In the TIR region, Huang and Kerr [54] indicated
a strong absorption band for calcite at 11.40 µm. Clark [58] suggested that the
position of the absorption band can slightly shift due to different compositions of
calcite. Reig et al. [59] used FTIR spectroscopy to determine specific absorption
features of calcite at 875 cm−1 (11.43 µm) and 712 cm−1 (14.04 µm).
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2.0.14 Spectral properties of gypsum

Figure 2.9: Reflectance Spectrum of Gypsum (CaSO4 · 2H2O) from the USGS
Spectral Library

Gypsum exhibits specific spectral absorption features due to vibrational processes
involving anion bonds [60]. In the VNIR and SWIR parts of the electromagnetic
spectrum, these features are primarily due to water molecules in the gypsum crystals
[55]. Key absorption characteristics include those near 1.2 microns, which result
from the combination of H–O–H bending and the first overtone of O–H stretching
[55] [60]. Between 1.38 to 1.61 microns, the first overtone of O–H stretching is
prominent. At 1.75 microns, there is a combination of H–O–H bending and O–H
stretching fundamentals, along with low-frequency vibrational modes of crystal
water. Around 1.91 microns, the absorption features are due to the combined
effect of O–H stretch and H–O–H bends. Finally, at approximately 2.21 microns,
the absorption characteristics result from the combined effect of O–H stretching
fundamental and the first overtone of water [61].
Applying and parameterizing spectral absorption features can be challenging due
to overlapping signals from various sources, such as other soil components and
atmospheric effects. Gypsum shows several characteristic absorption features, with
prominent ones around 1.5 m, 1.75 m, and 2.2 m in the VNIR-SWIR spectral region
[62]. However, the 1.5 m feature is unsuitable for remote sensing due to atmospheric
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water vapor absorption. The 2.2 m doublet absorption can be confused with clay,
making it problematic for spectral discrimination, especially in low-quality spectral
data. Consequently, the 1.75 m feature is the best discriminator for quantifying
gypsum absorption in common soil mixtures and conditions.
However, vegetation coverage and soil mixed with dry plant remains, such as starch,
cellulose, and other biochemicals, may overlap with gypsum features and limit
mapping capabilities. Dry plant pigments like cellulose and lignin absorb close to
the 1.75 m gypsum absorption feature [63]. Additionally, hydrocarbons like oil
and plastics, which have an absorption maximum of 1.73 m, can also overlap with
gypsum features, particularly in polluted soils [64].
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2.0.15 Spectral properties of Sepiolite

Figure 2.10: Reflectance Spectrum of Sepiolite (Mg4Si4O15(OH)2 · H2O) from the
USGS Spectral Library

Sepiolite exhibits absorption features in the infrared region around 2340 µm,
primarily due to the vibrational modes of the silicate structure and the hydroxyl
groups (OH) [62].
The VNIR spectra of sepiolite include features near 1.38, 1.42, 1.91, 2.18, and 2.31
µm due to both Al and Mg in their structure [65].
The VNIR-SWIR spectra effectively identify the samples as sepiolite, with dis-
tinguishing features in the IR region. Sepiolite samples are characterized by a
doublet of absorption bands at 1388 and 1415 nm, which originate from OH-group
vibrations, and an absorption band at 1910 nm, caused by water vibrations related
to their structure. Additionally, an absorption band at 2311 nm is observed due to
Mg-OH vibrations [66].
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2.0.16 Spectral properties of Kaolinite

Figure 2.11: Reflectance Spectrum of Kaolinite (Al2Si2O5(OH)4 ) From the USGS
Spectral Library

In kaolinite with high crystallinity, four bands are associated with the vibrational
O-H process. Specifically, absorption bands at 1379 nm, 1393 nm, and 1345 nm
are linked to inner-surface OH groups. In well-ordered kaolinite, near-infrared
bands resulting from the combination of stretching and bending vibration modes of
OH- groups form a doublet at 2180 nm and 2190 nm. Additionally, an absorption
band centered at 2208 nm is associated with the combined stretching and bending
modes of inner-surface hydroxyl groups. In disordered kaolinite, the shape of the
OH- group bands resembles that found in the O-H stretching region, reflecting the
degree of disorder. Localized absorption bands at 1340 nm, 1395 nm, and 1409 nm
are linked to stretching processes in disordered kaolinite [67].
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2.0.17 Spectral properties of Illite

Figure 2.12: Reflectance Spectrum of Illite ((Mg, Al)2Si4O10(OH) · 4H2O) From
the USGS Spectral Library

Illite has distinct absorption features at approximately 1410 nm, 1910 nm, and
2210 nm. Although these features are similar to those of illite-smectite and smectite,
their intensities differ. The spectral distinction of illite can generally be determined
by examining the ratio of the minima of the H2O absorption feature to the minima
of the AlOH absorption feature [68].
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2.0.18 Spectral properties of Palygorskite

Figure 2.13: Reflectance Spectrum of Palygorskite ((Mg, Al)2Si4O10(OH) · 4H2O)
From the USGS Spectral Library

For palygorskite samples, the VNIR-SWIR spectra reveal characteristic absorp-
tion bands at 1415 nm and 1910 nm, along with another band around 2207 nm
due to Al-OH vibrations. In intermediate compositions, such as Al-sepiolite and
Mg-palygorskite samples, the coexistence of features at 2207 and 2311 nm can be
observed. These features are more distinctly seen in the second derivative of the
spectra [66].
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2.0.19 Spectral properties of Glauconite

Figure 2.14: Reflectance Spectrum of Glauconite((K, Na(Fe3+, Al, Mg)2(Si, Al)4O10(OH)2)
From the USGS Spectral Library

Glauconite’s spectral signatures are characterized by distinct absorption features
in both the visible-short-wave infrared (SWIR) and mid-infrared (MIR) regions. In
the SWIR region, glauconite shows absorption bands at approximately 0.77, 1.08,
1.9, and 2.3 m, which vary with its potassium oxide (K2O) content. The maturity
of glauconite is indicated by the presence of metal-metal charge transfer (CT) and
Fe2+ absorption bands at 1.08 and 0.77 m, respectively. Additionally, H2O and
OH signatures in the near-infrared (NIR) region reflect differences in molecular
H2O content. In the MIR region, a shift of the Si-O stretch at 10 m towards lower
wavelengths suggests a dominance of smectite layers in the glauconite structure
[69].
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2.0.20 Spectral properties of Iron Oxides (Hematite and
Goethite)

Figure 2.15: Reflectance Spectrum
of Hematite Fe2O3 From the USGS
Spectral Library

Figure 2.16: Reflectance Spectrum
of Goethite FeO(OH) From the USGS
Spectral Library

Iron oxides have distinct visible reflectance spectra due to Fe3+ absorptions.
Hematite shows an absorption near 550 nm, 630, and 860 nm, giving it a red color,
while goethite absorbs near 480 nm, 650, and 920nm resulting in a yellow-brown
hue. When these two minerals mix, their absorption bands overlap, creating a peak
somewhere between the two original positions. The exact location of this peak
depends on the ratio of hematite to goethite and the strength of their absorption
bands [70].
It is important to note certain limitations when using satellite images for spectral
analysis. Due to atmospheric interference, particularly in regions around 1380 nm
and 1900 nm associated with water vapor absorption, some diagnostic features
cannot be used. As a result, only one or two robust features are selected for analysis.
Additionally, satellite-acquired spectra are more affected by noise compared to
laboratory or field spectra, requiring careful preprocessing and interpretation to
ensure reliable results.
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3.1 Methodology of Multi-Temporal NDVI Anal-
ysis

3.1.1 NDVI Analysis for year 2023
For this study, Landsat imagery was acquired for six months in 2023: February,
March, April, June, July, and August. The selection of these months was intentional,
aimed at capturing significant seasonal variations in vegetation dynamics. The time
frames represent critical phenological stages, including early spring growth, peak
summer vegetation, and late summer senescence. This targeted approach allows for
a detailed examination of changes in vegetation cover and health throughout the
year, providing insights into the seasonal response of vegetation to environmental
conditions.
February marks the beginning of early spring growth, indicating the awakening
of vegetation from dormancy. March continues this trend with increased activity
as temperatures rise. April often reflects peak growth rates, resulting in lush
landscapes. June captures the maximum biomass and health of plants during the
summer growing season. July may still show peak vegetation but starts to indicate
the onset of senescence in some species. Finally, August represents late summer,
revealing signs of stress or decline due to prolonged heat and reduced moisture.
The data sources utilized for this analysis include:

Time Number Type Resolution
2023-02-03 LC08_L2SP_201037_20230203_20230209_02_T1_MTL Landsat 8 30 m
2023-03-17 LC09_L2SP_201037_20230315_20230317_02_T1_MTL Landsat 9 30 m
2023-04-18 LC09_L2SP_201037_20230416_20230418_02_T1_MTL Landsat 9 30 m
2023-06-21 LC09_L2SP_201037_20230619_20230621_02_T1_MTL Landsat 9 30 m
2023-07-08 LC09_L2SP_201037_20230705_20230708_02_T1_MTL Landsat 9 30 m
2023-08-19 LC08_L2SP_201037_20230814_20230819_02_T1_MTL Landsat 8 30 m

Table 3.1: Data sources for NDVI analysis

The Normalized Difference Vegetation Index (NDVI) is employed as a key metric
in this analysis to assess vegetation health and density. NDVI leverages the unique
spectral properties of healthy vegetation, which absorbs red light and reflects near-
infrared (NIR) light. This relationship allows for effective differentiation between
healthy and stressed vegetation. NDVI values range from -1 to +1, where values
closer to +1 indicate dense, healthy vegetation, while lower values signify sparse or
stressed vegetation cover.
The NDVI is calculated using the following formula:

NDVI =
1

NIR−Red
NIR+Red

2
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This formula provides a quantitative measure of vegetation health and enables a
robust analysis of seasonal variations across the selected months.

3.1.2 Multi-Temporal NDVI Analysis for Land Cover Clas-
sification and Vegetation Dynamics

For a comprehensive assessment of land cover changes and vegetation dynamics,
NDVI analysis was conducted using Landsat imagery spanning from 1985 to 2023.
The selected dates prioritize periods of higher vegetation growth to capture seasonal
and long-term trends. The data sources utilized for this analysis include: The

Time Number Type Resolution
1985-03-14 LT05_L2SP_201037_19850314_20200918_02_T1_MTL Landsat 5 30 m
1991-02-27 LT05_L2SP_201037_19910227_20200915_02_T1_MTL Landsat 5 30 m
1999-03-21 LT05_L2SP_201037_19990321_20211203_02_T1_MTL Landsat 5 30 m
2004-03-18 LT05_L2SP_201037_20040318_20200903_02_T1_MTL Landsat 5 30 m
2009-01-27 LT05_L2SP_201037_20090127_20200828_02_T1_MTL Landsat 5 30 m
2014-03-30 LC08_L2SP_201037_20140330_20200911_02_T1_MTL Landsat 8 30 m
2017-04-07 LC08_L2SP_201037_20170407_20200904_02_T1_MTL Landsat 8 30 m
2023-03-15 LC09_L2SP_201037_20230315_20230317_02_T1_MTL Landsat 9 30 m

Table 3.2: Data sources for multi-temporal NDVI analysis

selection of March and April imagery for most years aims to capture peak vegetation
stages, as these months typically exhibit more favorable climatic conditions for
plant growth in the study area. The 2009 image, captured in January, was selected
to maintain temporal continuity, despite being outside the preferred range.
Land cover categories were classified based on NDVI values:
- Bare land/urban areas: NDVI values between -0.2 to 0.2
- Shrubland: NDVI values between 0.2 to 0.3
- Cultivated land: NDVI values between 0.3 to 0.6
- Forest: NDVI values >0.6
This classification allowed for a clear differentiation between various land cover
types. Bare land or urban areas, typically characterized by low to no vegetation,
exhibit low NDVI values due to minimal photosynthetic activity. Shrubland, which
consists of sparse vegetation, is identified by slightly higher NDVI values. Culti-
vated land shows moderate NDVI values, reflecting the seasonal presence of crops.
Finally, Forest, representing dense, year-round plant growth, is distinguished by
the highest NDVI values.
By selecting imagery from periods of higher vegetation cover (March-April), the
analysis is optimized to capture the peak growing seasons. This methodological
approach is particularly valuable for detecting phenological changes, which are
critical for understanding both short-term vegetation dynamics and long-term
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trends related to land use changes.

3.2 Methodology of Desertification Index
To assess the desertification trends in the Khouribga mine region, a multi-temporal
analysis was conducted using Landsat satellite imagery over a 40-year period. The
selected years include 1985, 1991, 1999, 2005, 2009, 2014, 2017, 2023 and 2024. The
focus on February, March, and April was chosen deliberately to capture periods
of higher vegetation growth, as these months represent the peak of the greener
season in the region. The analysis was designed to detect changes in land cover,
vegetation health, and desertification through the use of two key indices: the
Modified Soil-Adjusted Vegetation Index (MSAVI) and Albedo.[37]
The Landsat satellite data used for this analysis includes as following and once the
images were obtained, they were resized to focus on the area of interest:

Time Number Type Resolution
1985-03-14 LT05_L2SP_201037_19850314_20200918_02_T1_MTL Landsat 5 30 m
1991-02-27 LT05_L2SP_201037_19910227_20200915_02_T1_MTL Landsat 5 30 m
1999-03-21 LT05_L2SP_201037_19990321_20211203_02_T1_MTL Landsat 5 30 m
2005-03-21 LT05_L2SP_201037_20050321_20200902_02_T1_MTL Landsat 5 30 m
2009-01-27 LT05_L2SP_201037_20090127_20200828_02_T1_MTL Landsat 5 30 m
2014-03-30 LC08_L2SP_201037_20140330_20200911_02_T1_MTL Landsat 8 30 m
2017-04-07 LC08_L2SP_201037_20170407_20200904_02_T1_MTL Landsat 8 30 m
2023-03-15 LC09_L2SP_201037_20230315_20230317_02_T1_MTL Landsat 9 30 m
2024-03-17 LC09_L2SP_201037_20240317_20240318_02_T1_MTL Landsat 9 30 m

Table 3.3: Data sources for Desertification Index analysis

3.2.1 Indices for Desertification Assessment
Two indices were calculated to assess desertification and land cover changes: MSAVI
and Albedo.
1. MSAVI (Modified Soil Adjusted Vegetation Index)
MSAVI is an enhancement of the traditional NDVI. It reduces the soil reflectance
noise, making it more effective in regions with sparse vegetation, which are typically
prone to desertification. This makes MSAVI particularly suitable for arid and
semi-arid regions like Khouribga, where soil exposure and sparse vegetation are
common.
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The formula used to compute MSAVI is:

MSAVI =
2 · ρNIR + 1 −

ñ
(2 · ρNIR + 1)2 − 8 · (ρNIR − ρred)

2 (3.1)

where:
b4 is the Near-Infrared (NIR) band, which is sensitive to vegetation.
b3 is the red band, which plants absorb for photosynthesis.

MSAVI is ideal for quantifying vegetation health, particularly in desertification
studies where vegetation is sparse and the interaction between vegetation and soil
becomes critical.

2. Albedo (Surface Reflectance):
Albedo measures the Earth’s surface reflectivity. In the context of desertification,
higher Albedo values are indicative of bare or degraded land, while lower values are
typically associated with vegetated areas. By examining Albedo values over time,
one can infer changes in surface conditions—whether land is becoming more barren
or undergoing re-vegetation. The Albedo index is calculated using the following
formula:

Albedo = 0.356×b1 +0.130×b3 +0.373×b4 +0.085×b5 +0.072×b7 −0.0018 (3.2)

where:
b1 represents the blue band.
b3 represents the red band.
b4 represents the Near-Infrared (NIR) band.
b5 represents the Shortwave Infrared (SWIR1) band.
b7 represents the Shortwave Infrared (SWIR2) band.

3.2.2 Scatter Plot Analysis: Albedo vs. MSAVI
To better understand the relationship between vegetation cover and surface re-
flectance, a 2D scatter plot was generated, plotting MSAVI values on the x-axis and
Albedo values on the y-axis as in figure 3.1. This scatter plot revealed a distinct
linear correlation along the lower boundary of the Albedo-MSAVI feature space.
Through this scatter plot, a clear linear correlation was observed along the lower
boundary of the Albedo-MSAVI feature space. This trend was further examined by
mapping the spatial distribution of surface cover types over the years. It became
evident that the line connecting two key points, A and B, represented areas with
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Figure 3.1: Albedo-MSAVI spatial features [37]

high vegetation coverage. Specifically, Point A corresponded to a water-saturated
area, while Point B indicated a region with dense vegetation. The area surrounding
Point A was identified as wetland, whereas Point C represented dry, bare land with
high reflectance.
The scatter plot analysis revealed distinct ecological patterns: the A–B line, mark-
ing areas of high vegetation, exhibited the strongest correlation and was the most
ecologically significant. In contrast, the A–C line displayed a lower correlation and
represented a more chaotic ecological zone, with a mixture of desertification and
water surfaces.

3.2.3 Approach to Pixel Classification
1. Severe Desertification (Red Cluster):
- Pixels that fall within a higher range of Albedo and lower MSAVI values, corre-
sponding to the most degraded areas.
- These areas have the lowest vegetation coverage and the highest reflectance values
due to soil exposure or barren land.
2. Moderate Desertification (Blue Cluster):
- Pixels in this class exhibit moderate Albedo and slightly higher MSAVI compared
to severely desertified areas.
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- Vegetation exists but is sparse, indicating regions experiencing some level of
degradation, with partial vegetation loss.
3. Mild Desertification (Yellow Cluster):
- This class has low Albedo and moderate MSAVI, suggesting these areas still
maintain some level of vegetation cover.
- These are areas with vegetation that is either under stress or thinning, marking
the onset of land degradation.
4. Open Pits, Buildings, and Impervious Surfaces (Cyan Cluster):
- These areas have very high Albedo values and very low MSAVI, indicating man-
made structures such as open mining pits, roads, and urban areas.
- There is little to no vegetation cover, and the surface reflectance is dominated by
artificial structures.
5. Non-Desertification (Grey Cluster):
- This classification includes areas with low Albedo and high MSAVI, indicating
healthy vegetation with no signs of desertification.
- These regions reflect optimal vegetative conditions with robust vegetation cover
and low reflectance from soil or bare land.
The relationship between Albedo and MSAVI effectively highlighted changes in
land cover and surface conditions driven by various biophysical processes. By
analyzing the multi-temporal data through the Albedo-MSAVI feature space, shifts
in vegetation health and land degradation could be classified, offering a valuable
tool for studying land cover changes over time.

3.3 Methodology for Mineral Detection in Phos-
phate Mines Using Hyperspectral Analysis
(ECOSTRESS/EMIT)

3.3.1 Literature Review for Mineral Identification
The initial phase of the methodology involved conducting an in-depth literature
review to identify the key mineral compositions typically associated with phosphate
mines in Morocco. This review enabled the classification of minerals into three
primary categories:
- Main minerals: These are the economically significant minerals that are the
target of mining operations.
- Gangue minerals: Non-economic minerals that occur alongside the primary
minerals, often requiring separation during processing.
- Accessory minerals: Minor minerals that may not contribute directly to the
mine’s economic value but can provide valuable geological or geochemical insights
into the mining environment.
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This classification was crucial for selecting relevant spectral signatures in the
hyperspectral analysis. By focusing on these mineral groups, the subsequent steps
of the methodology were designed to target specific spectral features associated
with each category, ensuring accurate mineral detection.

3.3.2 Literature Review for Spectral Signatures in SWIR
and TIR

Following the mineral identification, the next step involved a thorough review of
the spectral signatures for the identified minerals within the Short-Wave Infrared
(SWIR) and Thermal Infrared (TIR) regions of the electromagnetic spectrum. This
review focused on the unique spectral absorption features and reflectance behaviors
that are characteristic of each mineral type.
Why focus on SWIR and TIR?
These regions of the spectrum are especially useful in mineral detection because
many minerals exhibit distinctive absorption features in these wavelengths. By
identifying these unique spectral “fingerprints,” presence of specific minerals from
hyperspectral data can be determined. SWIR, for instance, is known for capturing
important hydroxyl, carbonate, and sulfide absorption features, while TIR is essen-
tial for detecting silicate and oxide minerals.
The goal of this review was to map out the spectral behaviors of the identified
main, gangue, and accessory minerals. Each of these minerals has a unique way
of interacting with light in the SWIR and TIR regions, and understanding these
interactions would enable us to distinguish them in the hyperspectral data collected
by the ECOSTRESS and EMIT sensors.
For example, minerals like calcite and dolomite, which are common gangue minerals,
exhibit strong absorption features around 2.31–2.33 microns in the SWIR range.
This particular feature helped guide our selection of relevant bands for analysis.
Similarly, quartz, an accessory mineral, has distinctive reflectance peaks in the TIR
region, typically between 8 to 9 microns, which provided another key diagnostic
marker.
By thoroughly reviewing the spectral absorption characteristics of each mineral,
a kind of “spectral checklist” for the study was created. For each mineral, it was
documented as:
- Absorption band positions: These are the exact wavelengths where each mineral
absorbs light. For example, phosphate minerals often have absorption bands around
2.16 microns in SWIR.
- Reflectance behaviors: This refers to how the mineral reflects light, particularly
in the TIR range, where key minerals show unique patterns.
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This knowledge served as the foundation for selecting the bands from the hyper-
spectral data that were most likely to detect each type of mineral. By zeroing in on
these specific wavelengths, the presence and concentration of key minerals within
the phosphate mine environment could be better identified.
The literature review was an essential part of this process, acting as a bridge
between theoretical spectral knowledge and practical application in remote sensing.
By consulting a variety of academic studies, spectral libraries, and past research
on Moroccan phosphate mines, an understanding of how to approach the spectral
analysis for each mineral group was acquired. The result was a well-defined set of
spectral targets, which paved the way for the band math and mineral detection
steps that followed in our analysis.

3.3.3 ECOSTRESS Image Processing
To prepare the ECOSTRESS data for mineral detection, a series of key steps were
undertaken to ensure the accuracy and relevance of the data for hyperspectral
analysis. These steps were essential in transforming the raw thermal emission data
into actionable information for identifying surface minerals.
The ECOSTRESS images used in this study are Level 2 data, consisting of five
spectral bands that capture thermal emission from the Earth’s surface. In remote
sensing, Level 2 data refers to products that have been pre-processed to a certain
extent, including geo-correction, atmospheric correction, and calibration, making
them suitable for specific scientific analyses. The Level 2 processing ensures that
the data can provide accurate surface temperature and emissivity information,
which is crucial for detecting mineral characteristics.
To work with the Level 2 ECOSTRESS images, the conversion from HDF5 format
to GeoTIFF was accomplished using a script from NASA’s GitHub repository,
making the data suitable for GIS and remote sensing applications. For further
processing, the Python package rasterio was employed, which is an efficient tool for
handling geospatial raster data. Rasterio enables the reading, manipulation, and
transformation of raster files, such as the ECOSTRESS data in GeoTIFF format.
This package supports various operations, including resampling, reprojecting, and
spatial subsetting, which facilitated the preparation and analysis of the thermal
emission data for mineral detection in this study.
The ECOSTRESS images downloaded were captured during nighttime/early morn-
ing at (04:26:51 UTC) to minimize the impact of surface temperature fluctuations
on the emissivity data. This timing helps reduce temperature variability, allowing
for more accurate emissivity measurements, as surface temperature differences are
less pronounced during these hours. The specific datasets worked with were:

41



Methodology

ECOSTRESS-L2-LSTE-28137-005-20230623T042651-0601-01-Emis1-UTM.tif
ECOSTRESS-L2-LSTE-28137-005-20230623T042651-0601-01-Emis2-UTM.tif
ECOSTRESS-L2-LSTE-28137-005-20230623T042651-0601-01-Emis3-UTM.tif
ECOSTRESS-L2-LSTE-28137-005-20230623T042651-0601-01-Emis4-UTM.tif
ECOSTRESS-L2-LSTE-28137-005-20230623T042651-0601-01-Emis5-UTM.tif

Each of these files represents different wavelength bands in the thermal infrared
region, capturing the thermal energy emitted from the Earth’s surface. This infor-
mation, when processed and analyzed, is key to understanding surface materials,
including minerals in the phosphate mining region of study.
- The first step in processing the ECOSTRESS images was “georeferencing”. This
was a critical task to ensure that the spatial data was properly aligned with a
known geographic coordinate system (WGS 1984, UTM-zone-29N). Without proper
georeferencing, the images would not accurately reflect the real-world locations of
the mining areas under investigation.
- One of the key aspects of working with ECOSTRESS data is understanding that
it captures thermal emission rather than surface reflectance. However, since our
goal was to detect surface minerals, a conversion from the thermal emittance data
into reflectance values was needed. This transformation allows us to analyze how
much of the incoming light is reflected by surface materials, which is essential for
mineral identification.
-Reflectance Calculation from Emissivity:

To convert emissivity into reflectance, the following relationship derived from the
Kirchhoff’s law of thermal radiation was used:

R = 1 − ε (3.3)

- R is the reflectance of the surface.
- ε is the emissivity of the surface.

The formula reflects that a surface with high emissivity will have low reflectance
and vice versa. Using this band math, you can convert the emissivity data from
the ECOSTRESS images into reflectance values for mineral identification.
To perform this conversion, band math techniques were applied. Band math in-
volves applying mathematical operations to the pixel values in the spectral bands,
transforming them from thermal emission to surface reflectance values. By doing
this, the amount of light reflected from the surface was calculated, which enabled
us to detect the spectral signatures of minerals.
- Layer Stacking: The ECOSTRESS images consist of five spectral bands, each
capturing different wavelength data. These bands were integrated into a single
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multi-band image through layer stacking. This process involved loading each band
separately, combining them into a multi-dimensional array, and saving the array in
a format such as GeoTIFF, which supports multi-band data. This step enabled
comprehensive spectral analysis across all bands.
- Metadata Editing: To ensure that our spectral analysis was accurate, the meta-
data for the ECOSTRESS images was correctly configured. This included adding
essential information about the wavelengths captured by each band and their Full
Width at Half Maximum (FWHM) values, which represent the range of wavelengths
covered by each band.
Together, these steps formed a robust methodology for processing the ECOSTRESS
hyperspectral data, setting the stage for accurate mineral detection in the phos-
phate mining region. The combination of georeferencing, emittance-to-reflectance
conversion, layer stacking, and careful metadata editing ensured that the images
were properly prepared and ready for detailed spectral analysis.

3.3.4 EMIT Image Processing
The processing of EMIT hyperspectral data followed a structured approach. Each
step in this process was designed to extract as much valuable data as possible from
the EMIT images while tailoring it to the specific conditions of the phosphate mine
under study.

The EMIT dataset used in this analysis,
Dataset Name: EMIT-L2A-RFL-001-20220819T140214-2223109-001

was captured on August 19, 2022, and contains reflectance data across 244 spectral
bands with spectral range between 381 to 2493 nm. Each pixel in the image covers
approximately 87.5 x 94.5 meters, which is detailed enough to detect the spatial
variations of minerals across the phosphate mine. The image dimensions were 590
x 489 pixels, providing a comprehensive view of the area.

The key characteristics of the dataset included:
- Sensor: EMIT (Earth Surface Mineral Dust Source Investigation)
- Product Level: L2A
- Projection: UTM, Zone 32 North, using the WGS-84 datum

Reprojection and Resizing: The EMIT images were first reprojected to UTM, Zone
32 North to align with the study area’s spatial reference system. The images were
then resized to focus on the specific area of interest within the phosphate mine.
Vegetation Suppression: Vegetation in the image was suppressed using the algorithm
of vegetation suppression in ENVI to isolate the mineral reflectance data. This

43



Methodology

step was crucial for ensuring that the mineral signals were not masked or confused
by vegetation cover, thus improving the accuracy of the mineral detection process.

3.3.5 Spectral Library Resampling
Once the images were prepared, the next step involved selecting the spectral
signatures of the target minerals from the ENVI spectral library:
- SWIR and TIR Signatures: Minerals with SWIR spectral features were identified
using Perkin and Beckman spectral analyzers, while those with TIR features were
examined using Nicolet spectral analyzers. Data was sourced from the ASTER
spectral library embedded within ENVI, which contains reference spectral data for
a wide range of minerals.
- Resampling: The spectral signatures were resampled to match the spectral
resolution and band configuration of the ECOSTRESS and EMIT sensors. This
resampling ensured that the reference spectral data could be accurately compared
with the hyperspectral data from the sensors, preserving the integrity of the mineral
absorption features.

3.3.6 Development of Band Math Equations for Mineral
Feature Detection

With the resampled spectral data, band math equations were developed to highlight
the specific absorption features of the target minerals:
- Relative Absorption Band Depth (RBD): The RBD technique was used to enhance
mineral absorption features in the hyperspectral images. This method involves
calculating the ratio between the spectral channels at the absorption band shoulders
and the band minimum, creating a diagnostic image for the target mineral.[46]
- Feature Detection and Stretching: Reflectance values from the band math equa-
tions were used to determine the absorption feature, applying a stretch value range
of ±5 percent to account for natural variations in reflectance. This fine-tuning
ensured that the mineral features were detectable despite environmental variability.

3.3.7 Raster Color Slice for Mineral Visualization
To visualize the spatial distribution of the detected minerals, a raster color slice
was applied to the processed images:
- Color Coding: The raster color slice assigned different colors to regions where the
spectral features, as defined by the band math equations, fell within the calculated
stretch value range. This technique provided an intuitive visual representation of
the mineral occurrences within the phosphate mine.
- Mineral Mapping: By applying this color coding, areas with high concentrations
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of specific minerals were easily identifiable, facilitating a clearer understanding
of the mineral distribution patterns. This visualization was particularly useful
for identifying regions of interest for further geological analysis or mining operations.

3.3.8 Validation
To ensure the reliability of the mineral detection process, a validation step was
included. This involved comparing spectral profiles from randomly selected pixels
in color-sliced regions against reference spectra from the ENVI spectral library.
These comparisons focused on key diagnostic wavelengths associated with the target
minerals. A close spectral match between the field data and reference spectra, espe-
cially at critical absorption features, verified the accuracy of the detected mineral
signatures. This validation provided additional confidence in the methodology by
confirming the consistency between the extracted spectral features and established
mineral characteristics.
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4.1 Results of NDVI Analysis
4.1.1 NDVI for the year 2023
The black-and-white NDVI analysis for 2023 provides a valuable grayscale portrayal
of vegetation health across the Khouribga region, highlighting seasonal changes
and environmental stress patterns. Through this monochromatic representation,
monthly shifts in vegetation density and health become visually distinct, with
lighter shades indicating areas of denser, healthier vegetation and darker shades
reflecting sparser or more stressed plant cover. This chronological progression
reveals the impact of seasonal dynamics on vegetation growth and decline, reflect-
ing the cyclical patterns that influence vegetation health in response to varying
temperatures and moisture availability throughout the year. By examining these
trends, the analysis underscores the annual vegetation cycle within a semi-arid,
mining-impacted landscape, where peak growth and subsequent seasonal decline are
evident. This nuanced, month-by-month view sets the foundation for understanding
how environmental factors shape vegetation resilience and degradation within the
study area.

February2023

In February, the landscape appears mostly dark gray to medium gray, suggesting
moderate vegetation health and coverage. This aligns with early spring, as vegeta-
tion is just beginning to emerge from dormancy, but the growth is still in its early
stages.

March2023

March shows an increase in lighter areas, particularly in the central and southern
regions, indicating a significant improvement in vegetation health. Compared to
February, there is much lighter gray and white, suggesting that vegetation density
has increased, likely due to early spring growth. March stands out as the month
with the largest spread of healthy vegetation in the black-and-white series, showing
a peak in plant coverage and health.

April2023

While April still shows a considerable amount of light gray and white areas, there
is a slight decrease in vegetation density compared to March. This indicates that
the vegetation has not grown much further or may have started to stabilize. The
reduction in lighter areas suggests that April does not surpass the early surge seen
in March.
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May2023

By May, there is a visible reduction in lighter areas, with the landscape appearing
predominantly medium gray. This suggests that vegetation is starting to experience
stress or decline, likely due to the increasing temperatures and reduced moisture
levels as summer approaches.

June2023

June shows a further landscape darkening, with fewer light gray areas and more
dark gray regions. This suggests a continued decline in vegetation health, as the
summer heat and drier conditions affect plant cover. Vegetation is sparser and less
healthy compared to the previous months.

July2023

July presents the darkest imagery in the sequence, with most of the landscape
showing dark gray to black areas. This indicates that vegetation has significantly
declined, with the plants experiencing stress, senescence, or even die-off. The health
of the vegetation is at its lowest point, corresponding to the height of the summer
season.

Figure 4.1: NDVI result for different months of 2023
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4.1.2 Color-Sliced NDVI (Detailed Vegetation Health Clas-
sification)

The color-sliced NDVI analysis for 2023 offers a detailed classification of vegetation
health, with each color representing specific NDVI value ranges that correlate with
varying levels of vegetation density and health. By segmenting the landscape into
distinct color-coded categories—ranging from dense, flourishing vegetation (yellow)
to sparsely vegetated or stressed areas (black and blue)—this analysis allows for
a clearer, more nuanced visualization of the vegetative landscape across different
months. This method highlights seasonal patterns in vegetation health, illustrating
how plant density and condition respond to environmental factors like temperature
and moisture availability. Through this month-by-month assessment, significant
trends emerge, with peak growth observed in early spring (March) followed by a
gradual decline as summer progresses.
The color table breaks down the NDVI values into distinct categories:

Figure 4.2: Classification table for raster color slice of 2023

Red (-0.105 to 0.0): Represents non-vegetative surfaces like bare soil or water
bodies.
Black (0.0 to 0.17): Indicates sparsely vegetated areas or stressed vegetation.
Blue (0.17 to 0.25): It shows low vegetation health but still has some coverage.
Purple (0.25 to 0.35): Represents moderately healthy vegetation.
Yellow (0.35 to 0.85): Indicates dense, healthy, and flourishing vegetation.

The yellow areas represent the highest NDVI values (0.35 to 0.85), indicating the
densest and healthiest vegetation, while black and blue areas indicate sparser or
stressed vegetation.

February 2023

The NDVI values are distributed mostly across the lower range, with a lot of blue
and purple areas. This suggests that vegetation is just starting to grow, as February
marks the beginning of the early spring growth phase. There is a very limited
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spread of yellow areas, which indicates that the vegetation health is not at its peak
yet.

March 2023

In March, there was a notable increase in yellow areas, which represented dense and
healthy vegetation. March seems to show the largest spread of healthy vegetation
for the year, with the greatest extent of high NDVI values (0.35 to 0.85). The early
growth surge in March suggests very favorable conditions for vegetation growth,
perhaps due to sufficient rainfall or optimal temperatures.

April 2023

April shows a slight reduction in the extent of yellow areas compared to March.
While the month is still characterized by healthy vegetation, with a fair amount
of yellow and purple, it does not surpass March in terms of vegetation density.
This may suggest that the vegetation reached an early peak in March and began
stabilizing or declining slightly in April.

May 2023

May shows a substantial reduction in yellow areas, with blue and purple becoming
more dominant. This indicates that vegetation health is beginning to decline as
the summer months approach, likely due to heat stress and reduced moisture
availability. The overall plant density and health are lower than in the previous
months.

June 2023

June exhibits mostly blue and purple, with very limited yellow areas. This suggests
a further decline in vegetation health, likely due to continued summer stress. The
peak summer heat is affecting the vegetation, and the landscape shows signs of
senescence or stress.

July 2023

July continues the trend of declining vegetation health, with even more blue areas
and a minimal presence of yellow. The vegetation is under significant stress due to
the prolonged summer heat and lower moisture availability, leading to widespread
senescence.
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4.1.3 Multi temporal Time Series of NDVI for 40-year
period

The multi-temporal NDVI analysis conducted from 1985 to 2023 offers a detailed
understanding of land cover transformations, supported by both the classification
results and the summarized data in the table and graph.
The histograms next to each NDVI map display the distribution of NDVI values
across the study area for the corresponding year. In 1985 and 1991, the peak
of the histogram leans towards higher NDVI values (indicating more vegetation).
However, from 1999 onwards, the peak shifts toward lower values, showing a trend
toward reduced vegetation cover and increased land degradation. In 2023, there is
a slight rebound, with the histogram peak moving slightly higher again, reflecting
some vegetation recovery.

Color Classification

Green (High NDVI Values, >0.6)

Green areas represent dense, healthy vegetation, typically forests or regions with
strong plant growth. In the earlier years (especially 1985, 1991, and 1999), significant
patches of green are visible, indicating extensive forest cover. However, this green
diminishes in later years, reflecting the loss of dense vegetation.

Yellow (Moderate NDVI Values, 0.3–0.6

Yellow areas indicate cultivated lands or shrublands. These areas are still pho-
tosynthetically active but are less dense than forests. Yellow dominates much of
the landscape throughout all the years, showing areas where crops or less dense
vegetation persist. In 2023, yellow occupies large sections, signaling the continued
presence of cultivated lands.

Brown (Low NDVI Values, 0.2–0.3)

These colors correspond to sparse or degraded vegetation, typically found in
shrublands or semi-arid regions. In the maps from later years (2004 onwards),
the brown color becomes more prevalent, particularly in areas that were once
more vegetated. This shift suggests land degradation and the decline of healthier
vegetation over time.

Black (Very Low NDVI Values, <0.2)

Black areas signify bare land or urban areas with minimal to no vegetation. These
areas experience little to no photosynthetic activity, often corresponding to regions
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affected by human activities, like mining or construction. In 1985, black regions
were relatively sparse, but by 2009 and later, black regions increased, showing an
expansion of barren areas.

Figure 4.3: Color sliced NDVI trend for the year 1985

Figure 4.4: Color sliced NDVI trend for the year 1991

52



Results and Discussion

Figure 4.5: Color sliced NDVI trend for the year 1999

Figure 4.6: Color sliced NDVI trend for the year 2004
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Figure 4.7: Color sliced NDVI trend for the year 2009

Figure 4.8: Color sliced NDVI trend for the year 2014
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Figure 4.9: Color sliced NDVI trend for the year 2017

Figure 4.10: Color sliced NDVI trend for the year 2024
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The table presents the areas (in square kilometers) for each of the four main
vegetation types: bare land, shrubland, cultivated land, and forest over the selected
years. The graph visually represents the fluctuations in these land cover types over
the study period.

Year Bare land area (Km2) Shrub area (Km2) Cultivation area (Km2) Forest area (Km2)
1985 58.16 228.5 1233.7 316.1
1991 75.57 350 1179 231.9
1999 76.3 254.3 1096.2 409.7
2004 56.87 382.1 1319.8 77.69
2009 36.69 63.35 1337.7 554.3
2014 58.34 344.96 1238.3 194.8
2017 63.25 415.07 1258.9 99.24
2023 81.68 324.26 1135 277.6

Table 4.1: Land Cover and Vegetation Area Classification (Km2) from 1985 to
2023

Figure 4.11: Trends in Vegetation Classification Areas (1985-2023): Bare Land,
Shrub, Cultivation, and Forest

1. Bare Land Area Expansion

According to the table and graph, bare land areas increased significantly from 1985
(58.16 km2) to 2023 (81.68 km2). This expansion is most prominent between 1991
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and 1999, correlating with intensive mining activities and urban development in
the region. The temporary decrease in 2009 (36.69 km2) is unusual but may be
related to specific seasonal variations or re-vegetation efforts that later reverted.
Overall, the progressive expansion of bare land reflects ongoing land degradation
caused by anthropogenic factors such as mining, infrastructure development, and
urban activities.

2. Shrubland Trends

Shrubland, generally more resilient in semi-arid environments, fluctuated over the
study period. In 1985, the area covered by shrubland was 228.5 km2, and it increased
consistently, peaking in 2017 at 415.07 km2. However, it showed a slight decrease
in 2023 to 324.26 km2. This dynamic indicates that shrublands are a transitional
land cover that responds to land degradation but can also benefit from regrowth
in degraded areas, depending on environmental management and land use practices.

3. Cultivated Land Decline

Cultivated land exhibited significant changes, with its highest value in 2004 (1,319.8
km2) and a notable decline by 2023 (1,135 km2). The drop in cultivated area
from its initial 1,233.7 km2 in 1985 mirrors both the environmental impact of land
degradation and possible shifts in agricultural practices. Increased urbanization
and land being repurposed for mining operations likely contributed to the decline
in cultivation. This reduction suggests a long-term shift away from agricultural
sustainability in the region, further emphasizing the environmental stress imposed
by mining.

4. Forest Area Degradation

Forest areas were dramatically reduced from 316.1 km2 in 1985 to 99.24 km2 in 2017.
This sharp decrease corresponds to widespread deforestation and land conversion
for mining and urban development. However, by 2023, forested areas showed a
promising recovery to 277.6 km2, suggesting that environmental policies or refor-
estation efforts may have been implemented to reverse some of the earlier damage.
The fluctuating forest coverage in the graph demonstrates both the vulnerability
of forest ecosystems to human activities and the potential for restoration under
favorable conditions.
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4.2 Results of Desertification Index
The multi-temporal desertification analysis for the Khouribga mine region, spanning
from 1985 to 2024, provides a comprehensive assessment of ecological changes over
nearly four decades. For each selected year, the analysis begins with Albedo and
MSAVI imagery, which together capture critical information on surface reflectance
and vegetation density. The Albedo images reveal patterns in soil and surface
reflectivity, indicating areas with exposed soil and degradation, while the MSAVI
images highlight vegetation density, offering insight into the health and spread of
plant cover.

To further enhance understanding, a scatter plot classification is provided for each
year, allowing for a detailed examination of land cover types based on the combined
influence of MSAVI and Albedo values. This classification categorizes regions by
land cover type and vegetation health, effectively distinguishing between barren
areas, sparse vegetation, and densely vegetated zones. Finally, a classified map
presents the spatial distribution of desertification intensity, identifying zones of
severe, moderate, and mild land degradation within and around the mining area.

Figure 4.12: The classification of desertification for Khouribga region

Figure 4.13 categorizes desertification intensity within the Khouribga region into
severe, moderate, and mild classifications, based on the calculated desertification
index. Using color-coded zones, the map illustrates areas most affected by degrada-
tion, with severe desertification regions located in proximity to mining operations
and other heavily impacted zones.
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Figure 4.13: Desertification Index Assessment of the Khouribga Region: A
Landsat-Based Temporal Study (1985–2024)

Figure 4.12 displays Landsat images for selected years, illustrating visible changes
in land cover and vegetation around the Khouribga region over time.
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1. 1985

Figure 4.16 illustrates that the land cover predominantly consists of areas experi-
encing moderate to severe desertification, particularly concentrated in the northern
and central parts of the mining region. These areas are highlighted by fragmented
red and blue patches, which indicate early signs of land degradation near mining
activities. In contrast, the southwestern section is primarily characterized by yellow
patches, representing mild desertification. This indicates a less degraded but still
vulnerable landscape.

Figure 4.14: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 1985

Figure 4.15: Albedo vs MSAVI scatter plot: 1985
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Figure 4.16: Spatial Distribution and Classification of Desertification: 1985
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2. 1991

Figure 4.19 shows a slight expansion of red and blue areas compared to 1985,
particularly in the central and northern parts of the map. The desertification
process seems to advance in regions near active mining, reflecting increasing land
degradation. Mild desertification (yellow) continues to spread towards the east.

Figure 4.17: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 1991

Figure 4.18: Albedo vs MSAVI scatter plot: 1991
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Figure 4.19: Spatial Distribution and Classification of Desertification: 1991
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3. 1999

This year as in Figure 4.22 marks a continuation of desertification expansion, with
severe and moderate areas (red and blue) becoming more prominent. The central
region, where mining activities are likely more intensive, shows larger clusters of
severe desertification. The yellow (mild desertification) areas also start covering
more ground.

Figure 4.20: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 1999

Figure 4.21: Albedo vs MSAVI scatter plot: 1999
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Figure 4.22: Spatial Distribution and Classification of Desertification: 1999
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4. 2005

A notable reduction in severe desertification patches is observed as in Figure 4.25.
Severe areas (red) shrink, potentially due to land restoration efforts or a temporary
reduction in mining activities. However, blue and yellow areas expand further,
indicating that while extreme degradation slowed, moderate and mild desertification
continues to spread.

Figure 4.23: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 2005

Figure 4.24: Albedo vs MSAVI scatter plot: 2005
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Figure 4.25: Spatial Distribution and Classification of Desertification: 2005
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5. 2009

Figure 4.28 shows moderate desertification (blue) appears to stabilize, but yellow
areas (mild desertification) expand considerably, especially in the central and
western regions. The progression toward land degradation is evident, but the
transition is gradual compared to previous years.

Figure 4.26: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 2009

Figure 4.27: Albedo vs MSAVI scatter plot: 2009
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Figure 4.28: Spatial Distribution and Classification of Desertification: 2009
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6. 2014

By this year, Figure 4.31, we see a resurgence of severe desertification (red) in
the northern and central regions. The yellow and blue areas also become more
pronounced, showing widespread mild and moderate desertification. The expansion
of cyan regions suggests an increase in impervious surfaces and open pits, indicating
more intense mining activities or infrastructure development.

Figure 4.29: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 2014

Figure 4.30: Albedo vs MSAVI scatter plot: 2014
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Figure 4.31: Spatial Distribution and Classification of Desertification: 2014
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7. 2017

The trend of desertification continues, with an increase in severe (red) and moderate
(blue) desertification patches as in Figure 4.34. Open pits (cyan) also expand, hint-
ing at further mining infrastructure development. Mild desertification (yellow) now
dominates much of the region, suggesting a high vulnerability to land degradation.

Figure 4.32: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 2017

Figure 4.33: Albedo vs MSAVI scatter plot: 2017
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Figure 4.34: Spatial Distribution and Classification of Desertification: 2017
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8. 2023

Figure 4.35 shows that Severe desertification (red) now dominates several areas,
especially along central mining corridors, indicating significant land degradation.
The cyan areas (open pits and impervious surfaces) continue to expand, correlating
with ongoing mining. Mild desertification (yellow) is widespread, while moderate
desertification (blue) persists in the northern regions.

Figure 4.35: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 2023

Figure 4.36: Albedo vs MSAVI scatter plot: 2023
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Figure 4.37: Spatial Distribution and Classification of Desertification: 2023
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9. 2024

Figure 4.40, The most recent data shows the highest levels of severe desertifica-
tion (red), with extensive patches spreading across the landscape. The northern
and central parts of the region exhibit the most intense degradation. Moderate
desertification (blue) has slightly expanded, while the cyan regions (impervious
surfaces) have also grown. Mild desertification (yellow) remains the dominant
feature, covering most of the region, indicating that the desertification process is
pervasive but varies in intensity across different areas.

Figure 4.38: Albedo and MSAVI for Desertification Assessment in the Khouribga
Region: 2024

Figure 4.39: Albedo vs MSAVI scatter plot: 2024
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Figure 4.40: Spatial Distribution and Classification of Desertification: 2024

Severe Desertification (red) has steadily increased over time, especially in areas
directly impacted by mining operations. This suggests that mining activities sig-
nificantly contribute to land degradation, transforming once-vegetated areas into
severely degraded zones.
Moderate Desertification (blue) shows a relatively stable but growing presence,
particularly in areas adjacent to severe desertification zones. These regions are
likely in transition, with vegetation gradually declining.
Mild Desertification (yellow) dominates large portions of the region, indicating
widespread vulnerability to desertification. While not severely degraded, these areas
are highly susceptible to future degradation if proper land management practices
are not employed.
open pits and impervious surfaces (cyan) expand significantly over time, highlight-
ing the increasing footprint of mining infrastructure. This is particularly evident
in later years (2014, 2017, 2023, and 2024).
Non-desertification areas (gray) have shrunk significantly over the 40 years, es-
pecially in regions surrounding the mining zones. This indicates a reduction in
healthy vegetated areas, particularly in regions where human activities (e.g., mining,
infrastructure development) are concentrated.
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4.3 Result of Mineral Detection in Phosphate
Mines Using EMIT satellite

In hyperspectral remote sensing, the identification of mineralogical compositions
relies heavily on the unique spectral signatures that minerals exhibit across specific
wavelengths. These spectral features, such as absorption troughs and reflectance
peaks, enable the differentiation and mapping of minerals in various geological
environments. By utilizing hyperspectral data from advanced sensors like EMIT
(Earth Surface Mineral Dust Source Investigation), it is possible to perform detailed
spectral analysis, identifying key minerals based on their distinct spectral charac-
teristics This section presents the spectral signatures and reflectance value ratios of
various minerals, focusing on their unique absorption features in the SWIR (Short-
Wave Infrared) and TIR (Thermal Infrared) regions. Minerals such as Dolomite,
Calcite, Gypsum, Sepiolite, Kaolinite, Illite, and Hematite exhibit troughs or peaks
at specific wavelengths, which can be detected using band ratios derived from the
EMIT sensor’s hyperspectral data. The use of band math, including combinations
of reflectance values from different bands, allows for the quantification of these
minerals in the study area. The Khouribga Phosphate Mine serves as the key case
study, where these mineralogical analyses are conducted to map the distribution of
economically significant and associated minerals.
The following table outlines the spectral signature wavelengths and type of feature
for each mineral, highlighting the troughs and peaks that are instrumental in their
identification using EMIT’s bands.
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Mineral Wavelength
(nm)

Type of
Feature Citation

Apatite 8400
9160
9620

Trough
Peak

[46]

Quartz 8150
8600
9330

Trough [53]

Calcite
2340
1140
11430
14040

Trough
[55]
[54]
[59]

Dolomite 2330
11350
13700

Trough
[55]
[59]
[54]

Gypsum 1500
1750
2210

Trough [55]

Sepiolite 2340 Trough [55]

Kaolinite 1900
2190

Trough [67]

Palygorskite 1415
1910
2207

Trough [66]

Illite 1410
1910
2210

Trough [68]

Glauconite
770
1080
1900
2300

Trough [69]

Hematite 550
630
860

Trough [70]

Goethite 480
650
920

Trough [70]

Table 4.2: Spectral Features and Wavelength Characteristics of Minerals at
Khouribga Phosphate Mine
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This study targets key minerals at the Khouribga Phosphate Mine, including
Dolomite, Calcite, Gypsum, Sepiolite, and Kaolinite, using spectral characteristics
like absorption (troughs) and reflection (peaks) for identification. Band ratios are
applied to highlight these features, enhancing detection by contrasting specific
wavelengths. The following table presents the spectral signatures, corresponding
EMIT bands, feature types (troughs or peaks), and associated band and reflectance
value ratios for the minerals studied. Certain wavelengths have been excluded from
the analysis due to atmospheric effects, as they are not visible in the satellite data.

Mineral
Wavelength of

Spectral
Signature (µm)

Equivalent
Band in EMIT

Type of
Feature

Band Ratio &
Reflectance Value

Ratio

Dolomite 2.31 Band 260 Trough B246+B268/B260
R2204+R2367/R2310

Calcite 2.33 Band 263 Trough B244+B271/B263
R2182+R2389/R2330

Gypsum
1.20 Band 111 Trough B100+B123/B111

R1111+R1275/R1200

1.66 Band 173 Peak B173/B156+B184
R1660/R1153+R1744

2.21 Band 247 Trough B226+B260/B247
R2056+R2308/R2210

Sepiolite 2.137 Band 237 Peak B237/B214+B260
R2137/R1967+R2308

2.330 Band 263 Trough B260+B268/B263
R2308+R2367/R2330

Kaolinite 2.204 Band 246 Trough B238+B251/B246
R2145+R2241/R246

2.234 Band 250 Peak B250/B246+B261
R2234/R2204+R2315

Illite 2.211 Band 247 Trough B236+B256/B247
R2130+R2278/R2211

Palygorskite 2.211 Band 247 Trough B238+B253/B247
R2145+R2256/R2211

Glauconite 2.308 Band 260 Trough B255+B264/B260
R2271+R2337/R2308

Hematite 0.551 Band 24 Trough B18+B29/B24
R507+R589/R551

0.860 Band 43 Trough B48+B88/B43
R730+R1029/R860

Table 4.3: Spectral Signatures, Reflectance Value Ratios, and Band Ratios of
Minerals Using EMIT Data
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4.3.1 Dolomite in EMIT
A relative band math analysis was conducted on the EMIT image using the spectral
signature of dolomite at 2308 nm, corresponding to EMIT Band 260. Dolomite’s
absorption features in the shortwave infrared (SWIR) band have been extensively
studied, with significant absorption bands identified at 2.31 µm (Gaffey, 1986) and
2.33 µm (Hunt and Salisbury, 1971). The band math formula B246+B268/B260
was employed, utilizing spectral features from 2.204 m (B246), 2.31 m (B260), and
2.367 m (B268). This approach leverages dolomite’s diagnostic absorption feature
at 2.31 m in the SWIR range, serving as a key indicator of its presence.

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Dolomite 2.31 µm Band 260 Trough
B246+B268/B260

R2204+R2367/R2310

Table 4.4: spectral signature of Dolomite observed in the SWIR range at a
wavelength of 2308 nm corresponding to EMIT band 260.

A detailed summary of the reflectance values for Dolomite at three key feature
wavelengths—2204 nm, 2310 nm, and 2367 nm—is provided. The reflectance data,
which was obtained from the resampled Spectral Reflectance of Dolomite shown
in Figure 4.41, is categorized by grain size—fine, medium, and coarse—and was
measured using two spectral analyzers, Beckman and Perkin. For fine-grained
Dolomite, the reflectance values are notably high, recorded at 74.67 (Beckman)
and 77.53 (Perkin) at 2204 nm. In contrast, medium and coarse grains show lower
reflectance, with values of 64.25 and 67.26 for medium grain, and 52.17 and 56.87
for coarse grain, respectively, at the same wavelength. The table also includes the
stretch value range for each grain size, which is crucial for subsequent band math
calculations.

Feature Wavelengths from Resampled Spectra (nm) 2204 nm 2310 nm 2367 nm B246 + B268 / B260

Equivalent Band in EMIT B246 B260 B268

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Dolomite (Fine Grain) 74.67 77.53 71.13 72.31 74.68 76.87 2.099 - 2.135

Reflectance for Dolomite (Medium Grain) 64.25 67.26 54.25 54.86 63.49 66.24 2.3 - 2.43

Reflectance for Dolomite (Coarse Grain) 52.17 56.87 40.95 43.10 51.27 55.78 2.52 - 2.61

Table 4.5: Reflectance Values and Band Math Calculation for Dolomite at Spectral
Signature of 2310 nm. This table presents the reflectance values and band math
calculations for Dolomite with fine, medium, and coarse grain sizes, calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.
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Figure 4.41: Resampled Spectral Reflectance of Dolomite for fine, medium, and
coarse grain size, adjusted to the EMIT sensor resolution.

Figure 4.42: EMIT image of dolomite after application of relative band math at
2308 nm wavelength.
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Figure 4.43: results of relative band math after applying raster color slice: The
red color represents the range between 2.09 to 2.136, corresponding to the presence
of the fine grain dolomite.

After conducting the EMIT image analysis of dolomite using the relative band
math at the 2308 nm wavelength, the results were processed using raster color
slicing. The red color on the map represents the range between 2.09 to 2.136,
corresponding to the presence of fine-grained dolomite. In contrast, no color was
associated with the medium and coarse grain sizes of dolomite, indicating that these
sizes did not exhibit the specific spectral characteristics needed for identification in
the selected ranges.
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Figure 4.44: A comparison of the selected dolomite spectra from the ENVI
spectral library (in red) with spectral profiles collected from multiple locations
within the study area (in black)

The comparison of the spectral profiles from the selected pixels with the dolomite
spectra from the ENVI spectral library demonstrates a notable similarity at 2.31
micrometers, validating the presence of dolomite in the spectral data. However, a
slight shift in the peak center is observed, which is expected, as the spectra may
represent a mixture of dolomite and calcite. To achieve this analysis, random pixels
were selected within the areas highlighted in red through raster color slicing. The
spectral profiles of these selected pixels were then compared with the spectra of
dolomite, the main mineral under study. This analysis confirms that the spectral
characteristics of the identified pixels closely align with those of dolomite, providing
further evidence of its presence in the area.
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4.3.2 Calcite in EMIT
Using EMIT’s spectral data, we analyzed the absorption features of calcite at 2330
nm (corresponding to Band 263 in EMIT). Calcite’s prominent absorption band at
this wavelength falls within the shortwave infrared (SWIR) range, enabling us to
distinguish it using specific band math techniques. The formula B244+B271/B263
was applied, utilizing spectral features from 2.182 m (B244), 2.33 m (B263), and
2.389 m (B271), effectively highlighting calcite’s spectral response in this range.

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Calcite 2.33 µm Band 263 Trough
B244+B271/B263

R2182+R2389/R2330

Table 4.6: spectral signature of Calcite observed in the SWIR range at a wavelength
of 2330 nm corresponding to EMIT band 263.

Feature Wavelengths from Resampled Spectra (nm) 2182 nm 2330 nm 2389 nm B244 + B271 / B263

Equivalent Band in EMIT B244 B263 B271

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Calcite (Fine Grain) 82.86 86.82 73.24 75.00 80.63 83.34 2.23 - 2.26

Reflectance for Calcite (Medium Grain) 77.32 81.61 57.78 58.54 72.07 75.37 2.58 - 2.68

Reflectance for Calcite (Coarse Grain) 73.60 77.93 45.17 45.28 64.92 68.21 3.06 - 3.22

Table 4.7: Reflectance Values and Band Math Calculation for Calcite at Spectral
Signature of 2330 nm. This table presents the reflectance values and band math
calculations for Calcite with fine, medium, and coarse grain sizes, calculated using
Perkin and Beckman spectral analyzers, with data sourced from the ASTER library
embedded in ENVI.
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Figure 4.45: Resampled Spectral Reflectance of Calcite for fine, medium, and
coarse grain size, adjusted to the EMIT sensor resolution.

Figure 4.46: EMIT image of calcite after application of relative band math at
2330 nm wavelength.
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Figure 4.47: results of relative band math after applying raster color slice: The
red color represents the range between 2.220 to 2.270, corresponding to the presence
of the fine grain calcite.

Following the band math analysis on EMIT imagery, raster color slicing was
performed. Areas corresponding to fine-grain calcite are highlighted in red within
the reflectance range of 2.220 to 2.270. This visual representation aids in isolating
regions with a higher likelihood of containing fine-grain calcite.
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Figure 4.48: A comparison of the selected calcite spectra from the ENVI spectral
library (in red) with spectral profiles collected from multiple locations within the
study area (in black)

For validation, we compared random pixel profiles from the color-sliced regions
with known calcite spectra from the ENVI library. The close match, especially at
the diagnostic 2.33 m wavelength, confirms the identified calcite in the spectral
data. This validation step strengthens our analysis by demonstrating consistency
between field spectra and the spectral library.
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4.3.3 Gypsum in EMIT
Gypsum is identifiable in the Shortwave Infrared (SWIR) range by distinct absorp-
tion features around three main wavelengths: 1200 nm, 1660 nm, and 2210 nm.

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Gypsum
1.20 µm Band 111 Trough

B100+B123/B111

R1111+R1275/R1200

1.66 µm Band 173 Peak
B173/B156+B184

R1660/R1153+R1744

2.21 µm Band 247 Trough
B226+B260/B247

R2056+R2308/2210

Table 4.8: spectral signature of Gypsum observed in the SWIR range at a
wavelength of 1200 nm, 1660 nm, and 2210 nm corresponding to EMIT band 111,
173, and 247 respectively.

At 1200 nm, gypsum shows a pronounced absorption trough, best represented
in EMIT’s Band 111. This characteristic trough can be further quantified by the
band math ratio (B100+B123)/B111 or alternatively by the reflectance value ratio
(R1111+R1275)/R1200, offering an effective method for distinguishing gypsum
from other minerals in the spectral dataset.

Feature Wavelengths from Resampled Spectra (nm) 1126 nm 1200 nm 1290 nm
B101+B123/B111

Equivalent Band in EMIT B101 B111 B123

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Gypsum Fine Grain 94.5 92.48 89.90 87.52 91.94 89.86 2.00 - 2.10

Reflectance for Gypsum Medium Grain 88.98 85.86 79.87 78.07 84.01 81.95 2.05 - 2.20

Reflectance for Gypsum Coarse Grain 89.01 88.31 74.08 74.32 80.47 80.45 2.20 - 2.30

Table 4.9: Reflectance Values and Band Math Calculation for Gypsum at Spectral
Signature of 1200 nm. This table presents the reflectance values and band math
calculations for Gypsum with fine, medium, and coarse grain sizes, calculated using
Perkin and Beckman spectral analyzers, with data sourced from the ASTER library
embedded in ENVI.

The second key spectral feature of gypsum is observed around 1660 nm, repre-
sented by a peak in EMIT’s Band 173. This peak can be highlighted through the
band ratio B173/(B156+B184).

At 2210 nm, gypsum exhibits a third distinct trough, represented in EMIT by
Band 247. Here, the band math expression (B226+B260)/B247 or the reflectance
ratio (R2056+R2308)/2210 provides a precise means of identifying gypsum within
this wavelength range.
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Feature Wavelengths from Resampled Spectra (nm) 1153 nm 1660 nm 1744 nm
B173/B156 + B184

Equivalent Band in EMIT B156 B173 B184

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Gypsum Fine Grain 76.09 72.43 88.67 86.64 75.96 72.57 0.5 - 0.6

Reflectance for Gypsum Medium Grain 56.89 57.76 78.28 77.10 56.87 55.17 0.6 - 0.7

Reflectance for Gypsum Coarse Grain 44.11 44.72 71.86 72.63 44.10 45.02 0.8 - 0.85

Table 4.10: Reflectance Values and Band Math Calculation for Gypsum at
Spectral Signature of 1660 nm. This table presents the reflectance values and band
math calculations for Gypsum with fine, medium, and coarse grain sizes, calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.

Feature Wavelengths from Resampled Spectra (nm) 2056 nm 2210 nm 2308 nm
(B226 + B260) / B247

Equivalent Band in EMIT B226 B247 B260

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Gypsum Fine Grain 71.68 67.68 59.68 54.91 64.21 60.12 2.2 – 2.35

Reflectance for Gypsum Medium Grain 51.08 49.27 36.27 34.04 41.79 40.13 2.5 – 2.6

Reflectance for Gypsum Coarse Grain 37.69 38.70 23.50 23.70 28.06 28.97 2.7 – 2.9

Table 4.11: Reflectance Values and Band Math Calculation for Gypsum at
Spectral Signature of 2210 nm. This table presents the reflectance values and band
math calculations for Gypsum with fine, medium, and coarse grain sizes, calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.

Figure 4.49: Resampled Spectral Reflectance of Gypsum for fine, medium, and
coarse grain size, adjusted to the EMIT sensor resolution.
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Figure 4.50: EMIT image of gypsum after application of relative band math at
1200 nm wavelength.

Figure 4.51: results of relative band math after applying raster color slice: The
red color represents the range between 2.05 to 2.09 and 2.24 to 2.3 corresponding
to the presence of the fine grain gypsum.
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Figure 4.52: EMIT image of gypsum after application of relative band math at
1660 nm wavelength.

Figure 4.53: results of relative band math after applying raster color slice: The
red color represents the range between 0.540 to 0.8, corresponding to the presence
of the fine grain gypsum.
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Figure 4.54: EMIT image of gypsum after application of relative band math at
2210 nm wavelength.

Figure 4.55: results of relative band math after applying raster color slice: The
red color represents the range between 2.25 to 2.35, corresponding to the presence
of the fine grain gypsum.
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To support this analysis, Figures 4.50 through 4.56 illustrate the spatial distri-
bution of gypsum in the EMIT images following band math applications at each of
these characteristic wavelengths. Color slicing techniques are applied to highlight
ranges specific to fine, medium, and coarse gypsum grains, with red hues denoting
higher concentrations of fine-grain gypsum. For instance, the 1200 nm imagery
reveals concentrations in the range of 2.05 to 2.09 and 2.24 to 2.3, while the 1660 nm
wavelength shows values from 0.54 to 0.8, and 2210 nm highlights gypsum within
the range of 2.25 to 2.35. This approach effectively delineates gypsum deposits,
enabling researchers to assess both their spatial distribution and abundance across
the study area. Finally, a comparison of selected gypsum spectra from the ENVI

Figure 4.56: A comparison of the selected gypsum spectra from the ENVI spectral
library (in red) with spectral profiles collected from multiple locations within the
study area (in black) indicates notable similarities in 2210 nm.

spectral library with the spectral profiles gathered across various points in the
study area reveals significant similarities around the absorption feature between
1600 and 1750 nm. This feature is the most diagnostic for gypsum in satellite data.
However, the absorption feature at 2210 nm, while present, shows a widespread
distribution likely attributed to the presence of clay minerals, such as illite or
smectite, rather than gypsum.
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4.3.4 Sepiolite in EMIT
Sepiolite, exhibits two distinct spectral features in the Shortwave Infrared (SWIR)
range that make it identifiable through hyperspectral remote sensing. In EMIT
data, sepiolite shows a prominent peak at around 2137 nm and a characteristic
trough at 2330 nm, both of which help to distinguish it from other minerals in
spectral analysis. The first key feature appears as a peak at 2137 nm, represented

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Sepiolite 2.137 µm Band 237 Peak
B237/B214+B260

R2137/R1967+R2308

2.330 µm Band 263 Trough
B260+B268/b263

R2308+R2367/R2330

Table 4.12: spectral signature of Sepiolite observed in the SWIR range at a
wavelength of 2137 nm and 2330 nm corresponding to EMIT band 237 and 263
respectively.

in EMIT by Band 237. This peak is quantified using the band ratio formula
B237/(B214+B260) or the reflectance value ratio R2137/(R1967+R2308). These
ratios capture the enhanced reflectance at 2137 nm, a unique spectral signature
of sepiolite, allowing for differentiation based on grain size. Fine-grain sepiolite
reflects light at this peak within a range of 0.6 to 0.7, while medium-grain sepiolite
has a higher reflectance, around 0.7 to 0.75. Coarse-grain sepiolite, exhibiting a
stronger reflectance, ranges from 0.8 to 0.85, marking a notable progression as
grain size increases.

Feature Wavelengths from Resampled Spectra (nm) 1967 nm 2137 nm 2308 nm
B237/B214 + B260

Equivalent Band in EMIT B214 B237 B260

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Sepiolite Fine Grain 46.9 46.16 61.66 60.64 48.85 46.81 0.6 - 0.7

Reflectance for Sepiolite Medium Grain 41.46 40.68 59 58.46 41.66 39.72 0.7 - 0.75

Reflectance for Sepiolite Coarse Grain 28.02 30.23 45.54 49.02 28.69 30.11 0.8 - 0.85

Table 4.13: Reflectance Values and Band Math Calculation for Sepiolite at
Spectral Signature of 2137 nm. This table presents the reflectance values and band
math calculations for Sepiolite with fine, medium, and coarse grain sizes, calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.

The second spectral feature, a trough at 2330 nm, is represented by EMIT’s Band
263. This trough is analyzed through the band math ratio (B260+B268)/B263
or reflectance value ratio (R2308+R2367)/R2330, which emphasizes sepiolite’s
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characteristic low reflectance in this range. The spectral behavior at this trough
varies with the grain size of sepiolite: fine-grain sepiolite reflects within a stretch
value range of 1.8 to 1.95, while medium-grain sepiolite spans from 1.7 to 1.9, and
coarse-grain sepiolite maintains a range of 1.7 to 1.9.

Feature Wavelengths from Resampled Spectra (nm) 2308 nm 2330 nm 2367 nm
B260 + B268/B263

Equivalent Band in EMIT B260 B263 B268

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Sepiolite Fine Grain 48.85 46.81 50.50 49.34 48.60 44.91 1.8 - 1.95

Reflectance for Sepiolite Medium Grain 41.66 39.72 44.01 43.49 41.81 38 1.7 - 1.9

Reflectance for Sepiolite Coarse Grain 28.69 30.11 30.77 33.58 28.68 28.17 1.7 - 1.9

Table 4.14: Reflectance Values and Band Math Calculation for Sepiolite at
Spectral Signature of 2330 nm. This table presents the reflectance values and band
math calculations for Sepiolite with fine, medium, and coarse grain sizes, calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.

Figure 4.57: Resampled Spectral Reflectance of Sepiolite for fine, medium, and
coarse grain size, adjusted to the EMIT sensor resolution.
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Figure 4.58: EMIT image of Sepiolite after application of relative band math at
2137 nm wavelength.

Figure 4.59: results of relative band math after applying raster color slice: The
red color represents the range between 0.55 to 0.7, corresponding to the presence
of the fine grain sepiolite.
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Figure 4.60: EMIT image of sepiolite after application of relative band math at
2330 nm wavelength.

Figure 4.61: results of relative band math after applying raster color slice: The
red color represents the range between 1.7 to 1.8, corresponding to the presence of
the medium and coarse grain sepiolite.
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Figures 4.57 to 4.61 illustrate these spectral patterns visually. For instance,
Figure 4.58 showcases the EMIT image of sepiolite at 2137 nm. A raster color slice
has been applied in Figure 4.59. Here, red hues highlight areas with reflectance
values between 0.55 to 0.7, indicating the presence of fine-grain sepiolite in the
study area. Similarly, Figure 4.60 presents the results of the 2330 nm band math,
where shades of red pinpoint concentrations of medium and coarse-grain sepiolite,
mapped between values of 1.7 to 1.8 in Figure 4.61. Finally, a comparison of

Figure 4.62: A comparison of the selected sepiolite spectra from the ENVI spectral
library (in red) with spectral profiles collected from multiple locations within the
study area (in black) indicates weak similarities in 2137 nm and good similarities
in 2330 nm.

selected sepiolite spectra from the ENVI spectral library with spectral profiles
collected across multiple locations within the study area, as shown in Figure 4.62,
reveals a nuanced agreement. While a weak similarity is observed at 2137 nm, the
feature at 2330 nm exhibits better alignment with the observed data. However,
this feature is not a unique diagnostic marker for sepiolite, as it is also shared with
dolomite. This overlap highlights the challenges in distinguishing sepiolite from
carbonates using this spectral region alone.
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4.3.5 Kaolinite in EMIT
Kaolinite, a clay mineral commonly formed through the weathering of aluminosili-
cates, reveals distinct spectral features in the SWIR range, which make it identifiable
through EMIT’s high-resolution spectral bands. This mineral’s diagnostic spectral
behavior is marked by a deep trough at 2204 nm and a characteristic peak at 2234
nm, offering a reliable approach for detecting and analyzing kaolinite in remote
sensing data.

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Kaolinite 2.204 µm Band 246 Trough
B238+B251/B246

R2145+R2241/R246

2.234 µm Band 250 Peak
B250/B246+B261

R2234/R2204+2315

Table 4.15: spectral signature of Kaolinite observed in the SWIR range at a
wavelength of 2204 nm and 2334 nm corresponding to EMIT band 246 and 250
respectively.

The first significant spectral feature of kaolinite is the trough at 2204 nm, captured
by EMIT Band 246. This trough is represented using the band ratio formula
B238+B251/B246 or the reflectance value ratio R2145+R2241/R2204, which high-
lights the low reflectance typical of kaolinite at this wavelength. For fine-grained
kaolinite, reflectance values range from 2.5 to 2.7, which helps distinguish it from
other minerals with overlapping SWIR spectra.

Feature Wavelengths from Resampled Spectra (nm) 2145 nm 2204 nm 2241 nm
B238 + B251/B246

Equivalent Band in EMIT B238 B246 B251

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Kaolinite Fine Grain 66.59 55.19 52.83 42.01 66.99 57.08 2.5 - 2.7

Table 4.16: Reflectance Values and Band Math Calculation for Kaolinite at
Spectral Signature of 2204 nm. This table presents the reflectance values and band
math calculation for Kaolinite with fine grain size, calculated using Perkin and
Beckman spectral analyzers, with data sourced from the ASTER library embedded
in ENVI.
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The second spectral feature of kaolinite, a peak at 2234 nm, is captured by
EMIT Band 250 and analyzed through the band math ratio B250/(B246+B261)
or reflectance value ratio R2234/(R2204+R2315). This peak highlights kaolinite’s
increased reflectance in this spectral region, setting it apart from surrounding
minerals. Fine-grain kaolinite shows a moderate reflectance range between 0.5 and
0.65

Feature Wavelengths from Resampled Spectra (nm) 2204 nm 2234 nm 2315 nm
B250/B246 + B261

Equivalent Band in EMIT B246 B250 B261

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Kaolinite Fine Grain 57.97 40.59 71.14 57.13 63 48.27 0.5 - 0.65

Table 4.17: Reflectance Values and Band Math Calculation for Kaolinite at
Spectral Signature of 2234 nm. This table presents the reflectance values and band
math calculations for Kaolinite with fine grain size. The values were calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.

Figure 4.63: Resampled Spectral Reflectance of Kaolinite for fine, medium, and
coarse grain size, adjusted to the EMIT sensor resolution.
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Figure 4.64: EMIT image of Kaolinite after application of relative band math at
2204 nm wavelength.

Figure 4.65: results of relative band math after applying raster color slice: The
red color represents the range between 2.34 to 2.78, corresponding to the presence
of the fine grain Kaolinite.
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Figure 4.66: EMIT image of Kaolinite after application of relative band math at
2234 nm wavelength.

Figure 4.67: results of relative band math after applying raster color slice: The
red color represents the range between 0.54 to 0.65, corresponding to the presence
of the fine grain Kaolinite.
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Figures 4.65 and 4.67 demonstrate the spatial distribution of kaolinite through
color slicing, with red hues marking the presence of fine-grain kaolinite, supporting
the reliability of the 2204 nm trough and 2234 nm peak as diagnostic features. These

Figure 4.68: A comparison of the selected kaolinite spectra from the ENVI
spectral library (in red) with spectral profiles collected from multiple locations
within the study area (in black) indicates moderate similarities in 2200 nm and
2234 nm.

spectral characteristics are further validated in Figure 4.68, where a comparison
of selected kaolinite spectra from ENVI’s spectral library (in red) with real-world
data (in black) reveals moderate agreement at both 2204 nm and 2234 nm. This
confirms that kaolinite’s distinct spectral response can be consistently detected
across multiple locations.
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4.3.6 Illite in EMIT
Illite, a mica-like clay mineral often found in sedimentary environments, displays
unique spectral features in the SWIR range that make it readily identifiable
through EMIT’s high-resolution spectral bands. This mineral is characterized by a
pronounced spectral trough at 2211 nm, a signature captured by EMIT Band 247,
which serves as a distinguishing marker when analyzing remotely sensed imagery.

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Illite 2.211 µm Band 247 Trough
B236+B256/B247

R2130+R2278/R2211

Table 4.18: spectral signature of Illite observed in the SWIR range at a wavelength
of 2211 nm corresponding to EMIT band 247.

The trough at 2211 nm, a key spectral feature of illite, is highlighted using a band
ratio of B236+B256/B247 or a reflectance value ratio of R2130+R2278/R2211.
This band math calculation effectively enhances illite’s lower reflectance at this
specific wavelength, marking it as a spectral trough. When measured through
Beckman and Perkin spectral analyzers and sourced from the ASTER library in
ENVI, reflectance values for fine-grained illite exhibit a stretch range from 2.10 to
2.24, emphasizing the mineral’s distinctive reflectance dip.

Feature Wavelengths from Resampled Spectra (nm) 2130 nm 2211 nm 2278 nm
B236 + B256 / B247

Equivalent Band in EMIT B236 B247 B256

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Illite Fine Grain 75.52 73.67 65.85 68.11 72.22 69.92 2.24 - 2.10

Table 4.19: Reflectance Values and Band Math Calculation for Illite at Spectral
Signature of 2211 nm. This table presents the reflectance values and band math
calculations for Illite with fine grain size. The values were calculated using Perkin
and Beckman spectral analyzers, with data sourced from the ASTER library
embedded in ENVI.
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Figure 4.69: Resampled Spectral Reflectance of Illite for fine grain size, adjusted
to the EMIT sensor resolution.

Figure 4.70: EMIT image of Illite after application of relative band math at 2211
nm wavelength.
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The mapped reflectance values for illite provide insights into its distribution
patterns within the study area, as visualized in Figures 4.70 and 4.71. Here, a
relative band math approach highlights areas of fine-grained illite, with color slicing
applied to raster data to enhance spatial detection. The resulting EMIT images use
a red color range to indicate the presence of fine-grain illite in the 2.1 to 2.25 stretch
range, offering a clear visual indicator of illite-rich zones across the landscape.

Figure 4.71: results of relative band math after applying raster color slice: The
red color represents the range between 2.1 to 2.25, corresponding to the presence
of the fine grain Illite.
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Figure 4.72: A comparison of the selected illite spectra from the ENVI spectral
library (in red) with spectral profiles collected from multiple locations within the
study area (in black) indicates notable similarities in 2211 nm.

The comparison presented in Figure 4.72 further confirms the reliability of the
2211 nm trough as an identifying feature for illite. The ENVI spectral library’s
signature (in red) is overlaid with actual spectral profiles collected from various study
area locations (in black), revealing strong alignment at the 2211 nm wavelength.
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4.3.7 Palygorskite in EMIT
Palygorskite, a fibrous clay mineral commonly associated with arid and semi-arid
soils, shows distinct spectral characteristics in the shortwave infrared (SWIR)
range, making it identifiable within EMIT’s bands. Notably, Palygorskite displays
a spectral trough at 2211 nm, captured by EMIT Band 247, a feature that provides
a reliable marker for detecting this mineral in complex geological environments.

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Palygorskite 2.211 µm Band 247 Trough
B238+B253/B247

R2145+R2256/R2211

Table 4.20: spectral signature of Palygorskite observed in the SWIR range at a
wavelength of 2211 nm corresponding to EMIT band 247.

The 2211 nm trough is emphasized through a band ratio of B238+B253/B247
and a reflectance value ratio of R2145+R2256/R2211. This band math approach
underlines Palygorskite’s absorption feature by enhancing the spectral dip at 2211
nm, a unique property of this mineral. Fine-grained Palygorskite samples analyzed
with Beckman and Perkin instruments show a stretch range of 2.1 to 2.2, based on
reflectance values from the ASTER library in ENVI.

Feature Wavelengths from Resampled Spectra (nm) 2145 nm 2211 nm 2256 nm B238 + B253 / B247

Equivalent Band in EMIT B238 B247 B253

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Palygorskite Fine Grain 66.34 64.13 59.87 56.22 62.03 59.08 2.1 – 2.2

Table 4.21: Reflectance Values and Band Math Calculation for Palygorskite at
Spectral Signature of 2211 nm. This table presents the reflectance values and band
math calculations for Palygorskite with fine grain size. The values were calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.
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Figure 4.73: Resampled Spectral Reflectance of Palygorskite for fine grain size,
adjusted to the EMIT sensor resolution.

Figure 4.74: EMIT image of Palygorskite after application of relative band math
at 2211 nm wavelength.
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Figure 4.75: results of relative band math after applying raster color slice: The
red color represents the range between 2.1 to 2.2, corresponding to the presence of
the fine grain Palygorskite.

In Figures 4.74 and 4.75, the EMIT imagery reveals the spatial distribution of
Palygorskite, highlighting areas where fine-grained particles are prevalent. The
color-sliced raster data vividly represents Palygorskite in red, corresponding to the
reflectance stretch range of 2.1 to 2.2.
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Figure 4.76: A comparison of the selected Palygorskite spectra from the ENVI
spectral library (in red) with spectral profiles collected from multiple locations
within the study area (in black) indicates notable similarities in 2211 nm.

The comparison of the Palygorskite spectral profile from the ENVI spectral
library (in red) against collected spectra from multiple locations (in black) in
Figure 4.76 further substantiates the mineral’s spectral consistency, particularly at
the 2211 nm marker. The alignment of these profiles confirms the characteristic
absorption feature of Palygorskite, supporting the reliability of remote detection
methods for this clay mineral.
The spectral analysis conducted for palygorskite and illite highlights that these
minerals share similar absorption features, which makes differentiation challenging
using the current technique. While the analyses were performed separately, the
resulting mineral maps display comparable spatial distributions due to these shared
spectral characteristics. As a result, the maps represent the combined distribution
of illite and palygorskite in the study area.
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4.3.8 Glauconite in EMIT
Glauconite, a greenish clay mineral often associated with marine environments,
displays a signature trough at 2308 nm that provides a distinct spectral fingerprint
in EMIT’s SWIR bands. The subtle depth of this trough, observed in Band 260,
is essential for pinpointing glauconite in environments where clay minerals are
abundant and visually similar. This absorption feature, captured by the band ratio
B255+B264/B260 and the reflectance value ratio R2271+R2337/R2308, reveals
glauconite’s unique spectral behavior across different grain sizes.

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Glauconite 2.308 µm Band 260 Trough
B255+B264/B260

R2271+R2337/R2308

Table 4.22: spectral signature of Glauconite observed in the SWIR range at a
wavelength of 2308 nm corresponding to EMIT band 250 respectively.

Feature Wavelengths from Resampled Spectra (nm) 2271 nm 2308 nm 2337 nm B255 + B264 / B260

Equivalent Band in EMIT B255 B260 B264

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Glauconite Fine Grain 54.87 52.94 50.97 48.81 52.73 50.91 2.05 - 2.25

Reflectance for Glauconite Medium Grain 24.50 24.40 20.25 19.49 21.88 21.75 2.25 - 2.35

Reflectance for Glauconite Coarse Grain 11.04 11.40 8.23 8.15 9.19 9.53 2.40 - 2.60

Table 4.23: Reflectance Values and Band Math Calculation for Glauconite at
Spectral Signature of 2308 nm. This table presents the reflectance values and band
math calculations for Glauconite with fine, medium, and coarse grain sizes. The
values were calculated using Perkin and Beckman spectral analyzers, with data
sourced from the ASTER library embedded in ENVI.

Reflectance values for glauconite show clear differentiation among fine, medium,
and coarse grains, with values stretching from 2.05–2.25 for fine grain sizes, increas-
ing to 2.40–2.60 for coarser samples. The reflectance data, sourced from Beckman
and Perkin measurements in the ASTER library within ENVI, demonstrates how
glauconite’s grain size affects its spectral profile, with finer grains reflecting higher
values due to their smoother surfaces.
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Figure 4.77: Resampled Spectral Reflectance of glauconite for fine, grain size,
adjusted to the EMIT sensor resolution.

Figure 4.78: EMIT image of Glauconite after application of relative band math
at 2308 nm wavelength.
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Figure 4.79: results of relative band math after applying raster color slice: The
red color represents the range between 2.05 to 2.25, corresponding to the presence
of the fine grain glauconite.

Figures 4.78 and 4.79 illustrate the spatial distribution of glauconite within
EMIT imagery, where color-slicing emphasizes fine-grained glauconite with a red
hue in areas with values ranging from 2.05 to 2.25. This color-sliced visualization
provides an intuitive look at glauconite’s occurrence, mapping its spatial extent in
regions.
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Figure 4.80: A comparison of the selected Glauconite spectra from the ENVI
spectral library (in red) with spectral profiles collected from multiple locations
within the study area (in black) indicates notable similarities in 2203 nm.

A comparison between glauconite’s standard spectral profile from the ENVI
library (in red) and on-site spectral readings (in black) from various study locations,
as shown in Figure 4.80, underscores its characteristic absorption at 2308 nm.
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4.3.9 Hematite in EMIT
Hematite, an iron oxide mineral recognized for its distinctive red-brown color,
presents spectral signatures at 551 nm and 860 nm, corresponding to EMIT Bands
24 and 43, respectively. These troughs capture hematite’s reflective properties
at both visible and near-infrared wavelengths, where its strong absorption serves
as a key identifier for this mineral in natural landscapes. By employing band
ratios, such as B18+B29/B24 for the 551 nm signature and B48+B88/B43 for
the 860 nm range, along with the reflectance ratios R0.507+R0.589/R0.551 and
R0.730+R1.029/R0.860, the spectral characteristics of hematite can be enhanced,
aiding in distinguishing it from similar iron oxides.

Mineral Wavelength of spectral signature Equivalent Band in EMIT Type of Feature
Band ratio &

Reflectance value ratio

Hematite 0.551 µm Band 24 Trough
B18+B29/B24

R0.507+R0.589/R0.551

0.860 µm Band 43 Trough
B48+B88/B43

R0.730+R1.029/R0.860

Table 4.24: spectral signature of Hematite observed in the SWIR range at a
wavelength of 551 nm and 860 nm corresponding to EMIT band 24 and band 43.

Feature Wavelengths from Resampled Spectra (nm) 507 nm 551 nm 589 nm
B18 + B29 / B24

Equivalent Band in EMIT B18 B24 B29

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Hematite (Fine Grain) 4.57 2.99 5.59 3.64 12.31 8.1 2.7 - 3.6

Reflectance for Hematite (Medium Grain) 6.32 6.48 6.95 7.14 8.57 9.48 2.1 - 2.35

Reflectance for Hematite (Coarse Grain) 6.59 6.63 7.12 7.24 8.45 9.3 2.11 - 2.2

Table 4.25: Reflectance Values and Band Math Calculation for Hematite at
Spectral Signature of 551 nm. This table presents the reflectance values and band
math calculations for Hematite with fine, medium, and coarse grain sizes, calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.
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Feature Wavelengths from Resampled Spectra (nm) 730 nm 860 nm 1029 nm
B48 + B88 / B43

Equivalent Band in EMIT B48 B43 B88

Beckman Perkin Beckman Perkin Beckman Perkin Stretch Value Range

Reflectance for Hematite (Fine Grain) 24.3 18.02 21.29 15.28 30.49 23.62 2.4 – 2.6

Reflectance for Hematite (Medium Grain) 11.2 11.95 9.63 9.83 11.89 12.17 2.2 – 2.4

Reflectance for Hematite (Coarse Grain) 10.52 11.11 8.89 8.93 10.41 10.76 2.2 – 2.4

Table 4.26: Reflectance Values and Band Math Calculation for Hematite at
Spectral Signature of 860 nm. This table presents the reflectance values and band
math calculations for Hematite with fine, medium, and coarse grain sizes, calculated
using Perkin and Beckman spectral analyzers, with data sourced from the ASTER
library embedded in ENVI.

Reflectance measurements for hematite reveal substantial variations across fine,
medium, and coarse grain sizes. For example, fine-grained hematite exhibits a
higher reflectance, ranging from 2.7 to 3.6 for the 551 nm band and from 2.4 to
2.6 at 860 nm, as derived from ASTER library data using Perkin and Beckman
spectral analyzers. Medium and coarse grains show a more constrained reflectance
range, indicative of their reduced surface reflectivity compared to fine grains. These
reflectance values, depicted in Tables 4.25 and 4.26, provide insight into hematite’s
physical grain structure and how it interacts with light, making it possible to map
hematite-rich regions in different geological settings accurately.

Figure 4.81: Resampled Spectral Reflectance of Hematite for fine, medium, and
coarse grain size, adjusted to the EMIT sensor resolution.
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Figure 4.82: EMIT image of Hematite after application of relative band math at
551 nm wavelength.

Figure 4.83: results of relative band math after applying raster color slice: The
red color represents the range between 2.7 to 3.6, corresponding to the presence of
the fine grain Hematite.
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Figure 4.84: EMIT image of Hematite after application of relative band math at
860 nm wavelength.

Figure 4.85: results of relative band math after applying raster color slice: The
red color represents the range between 2.4 to 2.5, corresponding to the presence of
the fine grain Hematite.
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In Figures 4.82 and 4.84, EMIT imagery displays hematite using band math
applications at 551 nm and 860 nm, respectively. Color slicing within these
images, as shown in Figures 4.83 and 4.85, highlights fine-grained hematite in red,
emphasizing reflectance values within the 2.7 to 3.6 and 2.4 to 2.5 ranges, which
are indicative of high-purity hematite deposits. The spectral comparison illustrated

Figure 4.86: A comparison of the selected hematite spectra from the ENVI
spectral library (in red) with spectral profiles collected from multiple locations
within the study area (in black) indicates notable similarities in 551 nm and 860
nm.

in Figure 4.86, showing ENVI library data (in red) alongside field-collected spectra
(in black), underscores the consistent spectral behavior of hematite at 551 nm and
860 nm.
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4.4 Result of Mineral Detection in Phosphate
Mines Using ECOSTRESS satellite

In this section, the application of ECOSTRESS satellite data for mineral detection
within phosphate mines was studied, examining how the instrument’s spectral
bands capture distinct mineral signatures crucial for identifying key components
like apatite, quartz, calcite, and dolomite. By analyzing specific absorption features
and leveraging tailored band and reflectance value ratios, ECOSTRESS enables a
detailed differentiation of these minerals across the phosphate mining landscape.
The ECOSTRESS sensor operates in the thermal infrared (TIR) range, making
it particularly effective for detecting minerals with distinct spectral signatures in
this part of the spectrum. Minerals like apatite, quartz, calcite, and dolomite
were selected for this analysis due to their well-defined absorption features in the
TIR region. Apatite, for example, shows prominent absorption at 8400, 9160,
and 9620 nm, whereas quartz and dolomite have distinct spectral responses at
alternative wavelengths. Specific band math techniques are applied to enhance
mineral discrimination.
The following subsections discuss the findings in detail, revealing how ECOSTRESS
data supports high-resolution mineral identification, informs resource management
strategies, and highlights areas of geological interest within the mining context.
Through this analysis, we demonstrate how ECOSTRESS’s capacity to detect sub-
tle spectral variations plays an instrumental role in the remote sensing of mineral
deposits.

Mineral Wavelength of Spectral Signature (nm) Type of Feature
Band Ratio

and

Reflectance Value Ratio

Apatite
8400

9160

9620

Absorption
(B2 + B4) / B3

R8780 + R10490 / R9200

Quartz
8150

8600

9330

Absorption
(B2 - B4) / (B2 + B4)

R8780 - R10490 / R8780 + R10490

Calcite
11430

14040
Absorption

B3 / B5

R9200 / R12090

Dolomite
11350

13700
Absorption

(B5 + B4) / B3

R12090 + R10490 / R9200

Table 4.27: Spectral Signatures, Reflectance Value Ratio, and Band Ratios of
Minerals Using ECOSTRESS Data.
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4.4.1 Apatite In ECOSTRESS

Feature Wavelengths from Resampled Spectra (µm) 8.29 µm 8.78 µm 9.20 µm 10.49 µm 12.09 µm
Band Math for

Apatite

(B2 + B4) / B3

Equivalent Band in ECOSTRESS B1 B2 B3 B4 B5 -

Reflectance Value for Apatite (Fine Grain) 5.95 11.82 15.94 10.64 20.39 1.4

Reflectance Value for Apatite (Medium Grain) 1.88 14.32 31.83 6.31 7.29 0.64

Reflectance Value for Apatite (Coarse Grain) 1.12 14.63 35.04 6.08 3.52 0.59

Table 4.28: Reflectance Values and Band Math Calculation for Apatite at a
Spectral Signature of 9620 nm. This table presents the reflectance values and
band math calculations for Apatite with fine, medium, and coarse grain sizes. The
values were calculated using Nicolet spectral analyzers, with data sourced from the
ASTER library embedded in ENVI.

Apatite, a key mineral in phosphate deposits, exhibits distinctive spectral fea-
tures in the TIR range, particularly around 9.16 m and 9.62 m, as captured by the
ECOSTRESS sensor.
Given the spectral characteristics of apatite, the following band math expression
can be used to detect apatite:

B2 + B4
B3

The band math calculations in Table 4.28 show variations in reflectance across
fine, medium, and coarse grains, with fine-grained apatite demonstrating reflectance
values of 5.95 at 8.29 m and reaching a peak of 20.39 at 12.09 m. These values con-
trast significantly with medium and coarse grains, further validating the mineral’s
spectral distinctiveness and aiding in its identification within the phosphate mine.
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Figure 4.87: (a) Spectral Reflectance and (b) Resampled Spectral Reflectance
of Apatite for fine, medium, and coarse grain size, adjusted to the ECOSTRESS
sensor resolution.

Figure 4.88: Spectral Reflectance and Resampled Spectral Reflectance of Apatite
for fine, medium, and coarse grain size in one frame.
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Figure 4.89: ECOSTRESS image of Apatite after application of relative band
math at 9160 nm wavelength.

Figure 4.90: results of relative band math after applying raster color slice: The
red color represents the range between 1.3 to 1.6, corresponding to the presence of
the fine grain Apatite.
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The grayscale image in Figure 4.89 presents the ECOSTRESS data of apatite
after applying a specific band math formula at the 9160 nm wavelength. This
wavelength is particularly significant due to its strong absorption feature for apatite
in the thermal infrared (TIR) spectrum, as captured by the ECOSTRESS sensor.
The variations in grayscale intensity likely represent different levels of reflectance
corresponding to apatite concentrations across the surface. Areas with darker tones
might indicate regions with lower reflectance or possibly lower apatite concentra-
tion, whereas lighter tones could signify higher reflectance, suggesting potential
apatite-rich zones.
In Figure 4.90, the application of raster color slicing highlights areas with re-
flectance values corresponding to fine-grained apatite. The red color, representing
a reflectance range of 0.3 to 0.6, indicates the potential presence of fine-grained
apatite within the defined mine boundary. The outlined red area thus serves as
a spatial reference, helping to visually locate the mine within the ECOSTRESS
dataset. Although the mine’s physical boundaries are not visible in the original
grayscale image, the color-slicing technique isolates apatite concentrations within
the mining area. In Figure 4.91, The close alignment of these spectra, particularly
around the 9160 nm absorption feature, suggests a strong similarity between the
field samples and the reference apatite, confirming the mineral’s presence within
the study area.

Figure 4.91: A comparison of the selected apatite spectra from the ENVI spectral
library (in red) with spectral profiles collected from multiple locations within the
study area (in black).
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4.4.2 Quartz In ECOSTRESS

Feature Wavelengths from Resampled Spectra (µm) 8.29 µm 8.78 µm 9.20 µm 10.49 µm 12.09 µm
Band Math for

Quartz

(B2 - B4) / (B2 + B4)

Equivalent Band in ECOSTRESS B1 B2 B3 B4 B5 -

Reflectance Value for Quartz (Fine Grain) 20.82 21.34 22.61 14.77 7.13 0.18

Reflectance Value for Quartz (Medium Grain) 42.05 48.65 48.89 7.61 3.88 0.72

Reflectance Value for Quartz (Coarse Grain) 48.02 58.38 54.82 7.73 3.74 0.76

Table 4.29: Reflectance Values and Band Math Calculation for Quartz at a
Spectral Signature of 9330 nm. This table presents the reflectance values and
band math calculations for Quartz with fine, medium, and coarse grain sizes. The
values were calculated using Nicolet spectral analyzers, with data sourced from the
ASTER library embedded in ENVI.

Quartz, a highly abundant and resilient mineral, is distinguishable by its unique
spectral characteristics, especially in the thermal infrared (TIR) region. Its rest-
strahlen bands create a signature "M-shaped" reflectance pattern that peaks at
specific wavelengths, particularly around 8.78 m and 10.49 m. Given the spectral
characteristics of quartz, the following band math expression can be used to detect
quartz:

B2 − B4
B2 + B4

(B2 - B4) highlights the drop in reflectance as the wavelength shifts from B2
(8.78 µm) to B4 (10.49 µm). Quartz is expected to show a higher reflectance at B2
due to its strong reststrahlen bands and a notable decrease in reflectance by B4.
(B2 + B4) normalizes the difference, making the index more robust across varying
illumination conditions and ensuring the output is within a consistent range.
This band math expression effectively captures the M-shaped reststrahlen bands
of quartz by emphasizing the spectral decrease from B2 to B4, characteristic of
quartz in the TIR region.
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Figure 4.92: (a) Spectral Reflectance and (b) Resampled Spectral Reflectance
of Quartz for fine, medium, and coarse grain size, adjusted to the ECOSTRESS
sensor resolution.

Figure 4.93: Spectral Reflectance and Resampled Spectral Reflectance of Quartz
for fine, medium, and coarse grain size in one frame.
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Figure 4.94: ECOSTRESS image of Quartz after application of relative band
math at 9330 nm wavelength.

Figure 4.95: results of relative band math after applying raster color slice: The
red color represents the range between 0.03 to 0.25, corresponding to the presence
of the fine grain Quartz.
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The results presented in Figures 4.94 and 4.95 highlight the effectiveness of using
relative band math to isolate fine-grain quartz with ECOSTRESS data, specifically
at the 9330 nm wavelength. In Figure 4.94, the grayscale image shows the initial
output of the band math calculation, highlighting areas with spectral characteristics
that suggest quartz. The texture and contrast of the image reveal variations in
reflectance across the region, providing a foundation for further classification.
Figure 4.95 builds on this by applying a raster color slice to the initial result, with
red areas indicating where fine-grain quartz is present. The color slice was set
to emphasize values between 0.03 and 0.25, capturing subtle spectral differences
within the mining area. This visualization helps clarify the spatial distribution
of quartz, highlighting regions with higher concentrations of fine-grain particles.
This approach is particularly useful for mineral mapping and assessing resources.
Figure 4.96 compares quartz spectra from the ENVI spectral library with spectral
profiles collected from various locations in the study area, showing an apparent
match. However, the slight discrepancies between the observed spectral signatures
and the reference spectra are likely due to the presence of mixed pixels, indicating
that the signal may include contributions from other minerals besides quartz.

Figure 4.96: A comparison of the selected quartz spectra from the ENVI spectral
library (in red) with spectral profiles collected from multiple locations within the
study area (in black) indicates notable similarities in 9330 nm.
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4.4.3 Dolomite In ECOSTRESS

Feature Wavelengths from Resampled Spectra (µm) 8.29 µm 8.78 µm 9.20 µm 10.49 µm 12.09 µm
Band Math for

Dolomite

(B5 + B4) / B3

Equivalent Band in ECOSTRESS B1 B2 B3 B4 B5 -

Reflectance Value for Dolomite (Fine Grain) 21.94 16.28 14.48 25.58 26.27 3.6

Reflectance Value for Dolomite (Medium Grain) 7.78 6.69 6.06 12.09 12.29 4

Reflectance Value for Dolomite (Coarse Grain) 5.8 5.0 4.88 5.96 4.59 2.16

Table 4.30: Reflectance Values and Band Math Calculation for Dolomite at a
Spectral Signature of 11350 nm. This table presents the reflectance values and
band math calculations for Dolomite with fine, medium, and coarse grain sizes.
The values were calculated using Nicolet spectral analyzers, with data sourced from
the ASTER library embedded in ENVI.

Given the specific absorption features of dolomite, especially around 11.35 µm,
as indicated by multiple studies, the following band math expression can be used
to detect dolomite:

B5 + B4
B3

(B5 - B4) captures the difference between the reflectance at 12.09 µm (B5) and
10.49 µm (B4). Since dolomite has a strong absorption around 11.35 µm, we expect
a notable decrease in reflectance from B5 to B4. This difference highlights the
dolomite signature. (B3) as a normalizing factor ensures that the index is relative
to the general reflectance behavior in the mid-infrared range, making the index
more robust against other factors like surface conditions or overall brightness.

Dolomite, known for its distinctive spectral signature in the Thermal Infrared
Region (TIR), exhibits notable absorption features, particularly around 11.35 m.
However, after resampling the spectral data to the five bands of ECOSTRESS, as
shown in Figure 4.98, the expected absorption features of dolomite become less
pronounced. Specifically, the reflectance values are relatively flat between 11 and
12 micrometers, masking the distinctive dolomite signature. This lack of resolution
in ECOSTRESS between Band 4 and Band 5 makes it difficult to effectively
capture the characteristic absorption of dolomite, highlighting a limitation in using
ECOSTRESS for detecting this mineral in its purest form.
Given the limitations of ECOSTRESS in capturing dolomite’s spectral signature
in the TIR range, we turn to EMIT images for more effective detection. Dolomite
also has distinct signatures in the Shortwave Infrared (SWIR) range, which EMIT
can capture more clearly. However, even after applying color slicing to the EMIT
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Figure 4.97: (a) Spectral Reflectance and (b) Resampled Spectral Reflectance of
Dolomite for fine, medium, and coarse grain size, adjusted to the ECOSTRESS
sensor resolution.

Figure 4.98: ECOSTRESS image of Dolomite after application of relative band
math at 11350 nm wavelength.

data, the distribution of red colors remains constant and does not reveal significant
geological patterns associated with dolomite.
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Figure 4.99: ECOSTRESS image of Dolomite after application of relative band
math at 11430 nm wavelength.

Figure 4.100: results of relative band math after applying raster color slice: The
red color represents the range between 3.4 - 3.78 corresponding to the presence of
the fine grain Calcite.
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4.4.4 Calcite In ECOSTRESS

Feature Wavelengths from Resampled Spectra (µm) 8.29 µm 8.78 µm 9.20 µm 10.49 µm 12.09 µm
Band Math for

Calcite

B3 / B5

Equivalent Band in ECOSTRESS B1 B2 B3 B4 B5 -

Reflectance Value for Calcite (Fine Grain) 22.70 18.91 30.83 38.26 37.62 0.82

Reflectance Value for Calcite (Medium Grain) 7.62 6.31 12.59 18.52 17.37 0.72

Reflectance Value for Calcite (Coarse Grain) 4.94 3.97 6.50 10.44 7.29 0.89

Table 4.31: Reflectance Values and Band Math Calculation for Calcite at a
Spectral Signature of 11430 nm. This table presents the reflectance values and
band math calculations for Calcite with fine, medium, and coarse grain sizes. The
values were calculated using Nicolet spectral analyzers, with data sourced from the
ASTER library embedded in ENVI.

Given the specific absorption features of calcite, especially around 11.40 µm as in-
dicated by studies, the following band math expression can be used to detect calcite:

B3
B5

B3 (9.20 µm) represents a wavelength where calcite has relatively high reflectance
before the significant absorption feature kicks in around 11.40 µm. B5 (12.09 µm) is
closer to the 11.40 µm absorption feature. In regions with strong calcite absorption,
reflectance here should be lower.
The ratio (B3 / B5) should help distinguish calcite by showing higher values where
calcite’s reflectance is higher at B3 than B5, highlighting areas where the absorption
feature reduces reflectance at longer wavelengths.
However, similar to dolomite, after resampling the spectral data to ECOSTRESS’s
five available bands, as shown in Figure 4.102, the spectral signature of calcite is
not fully captured. Specifically, there is a relatively flat response between 11 and
12 m, which prevents the bands from revealing the expected drop in reflectance
associated with calcite’s absorption feature. As a result, the characteristic signature
of calcite is not as prominent, making detection via ECOSTRESS challenging.
When applying a raster color slice to the ECOSTRESS image (Figure 4.104), the
red color distribution (representing values between 0.1 to 0.3 and 0.75 to 0.95)
remains constant across the region, failing to highlight the geological variations that
should correspond to calcite. This suggests that while ECOSTRESS can provide
some insight into calcite’s presence, its spectral resolution and sensitivity in the
TIR and SWIR regions are not sufficient for effectively distinguishing calcite across
the study area. Just as with dolomite, further refinement of processing techniques
or the use of additional sensors may be required to improve the detection accuracy
for calcite.
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Figure 4.101: (a) Spectral Reflectance and (b) Resampled Spectral Reflectance
of Calcite for fine, medium, and coarse grain size, adjusted to the ECOSTRESS
sensor resolution.

Figure 4.102: ECOSTRESS image of Calcite after application of relative band
math at 11430 nm wavelength.
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Figure 4.103: ECOSTRESS image of Calcite after application of relative band
math at 11430 nm wavelength

Figure 4.104: results of relative band math after applying raster color slice: The
red color represents the range between 0.1 to 0.3 and 0.75 to 0.95 corresponding to
the presence of the fine grain Calcite.
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5.0.1 Multitemporal and Vegetation Analysis
This study reveals significant environmental changes in the Khouribga region,
emphasizing mining’s impact on vegetation and the importance of sustainable
solutions.
The 2023 NDVI analysis offers a detailed examination of seasonal vegetation dynam-
ics, highlighting significant fluctuations throughout the year. In the black-and-white
NDVI sequence, March 2023 emerges as the month with the highest vegetation
density, as indicated by the large extent of light gray and white areas. April still
shows healthy vegetation, though not as dense as March. From May onward, the
landscape progressively darkens, reflecting a steady decline in vegetation health
due to the summer season’s heat and dryness, with July showing the most stressed
and sparse vegetation.
In colored sliced NDVI, March 2023 stands out as the month with the healthiest
and most extensive vegetation, evidenced by the large spread of yellow areas. April,
while still showing healthy vegetation, does not reach the same extent of high NDVI
values as March. As the months progress, vegetation health declines, with July
showing the most stressed and sparse vegetation. This early peak in vegetation
in March may be attributed to favorable early spring conditions that promoted
strong early growth.
By integrating the NDVI multi-temporal analysis it is evident that the Khouribga
phosphate mine area has undergone substantial environmental changes over the
past 40 years. The seasonal selection of imagery as in Figure 5.1 to capture peak
vegetation stages proved effective in detecting phenological trends. The recur-
ring declines and recoveries of various vegetation types highlight the significant
environmental pressures exerted by human activities, particularly mining, on the
natural ecosystem. The 2009 image, taken in January, provided a useful temporal
continuity despite being outside the preferred peak season and still aligned with
general vegetation trends observed in the March-April imagery. The marked in-
crease in bare land, along with the sharp decline in forest and cultivated areas,
highlights the extensive impact of human activities, particularly mining. Although
some vegetation recovery is visible in the more recent years, continued efforts in
environmental management and sustainable land-use practices will be essential to
maintain long-term ecosystem health. The results suggest that without significant
intervention, the balance between development and environmental preservation will
continue to be a challenge for the region.
The multi-temporal analysis of the Khouribga mine region over the past four decades
provides clear evidence of escalating desertification processes, predominantly driven
by intensive mining activities.
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Figure 5.1: Multi-temporal NDVI of the Khouribga mine region from 1985 to
2023, showing vegetation and land cover changes

5.0.2 Desertification and Land Degradation
The use of MSAVI and Albedo indices allowed for a detailed assessment of vegeta-
tion health and surface reflectance, revealing a progressive transition from mild
to moderate and severe desertification, particularly in areas of active mining and
infrastructure expansion. These findings highlight the critical environmental impact
of land use changes associated with resource extraction.

The spatial distribution of desertification, as mapped through the analysis in Figure
5.2, demonstrates a marked increase in severely degraded zones, with significant
vegetation loss, as evidenced by the decline in MSAVI values, coupled with rising
Albedo values indicative of barren and reflective surfaces. This pattern under-
scores the vulnerability of semi-arid ecosystems to anthropogenic pressures, leading
to a degradation trajectory that threatens the ecological sustainability of the region.
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Figure 5.2: multi-temporal desertification trend of the Khouribga mine region
over the past four decades
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Given the observed trends, it is imperative to implement targeted land management
strategies aimed at mitigating the environmental degradation caused by mining
activities. These strategies should include reforestation efforts, erosion control
measures, and the adoption of more sustainable mining practices that minimize
land disturbance and promote vegetation recovery. Furthermore, continuous moni-
toring of desertification dynamics through remote sensing techniques is essential
for tracking land cover changes and guiding restoration efforts.
The scatter plots of MSAVI versus Albedo for each selected year highlight changes

Figure 5.3: Scatter plot of multi-temporal desertification trend of Khouribga
mine
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in land cover and reflectance, which are influenced by both mining expansion and
environmental degradation.

1985-1991: In the early years, the scatter plot shows a concentrated cluster in
the lower to mid-albedo and MSAVI range, suggesting relatively undisturbed land
with natural vegetation cover. The compact spread may indicate that vegetation
cover and soil were more uniform.

1999-2005: During this period, the distribution begins to spread, particularly
with points stretching towards higher albedo values. This spread reflects an increase
in bare soil and mined areas, which have higher reflectance (albedo) due to reduced
vegetation cover. The thinning of the MSAVI values suggests a decline in vegetation
health and coverage, likely due to the expansion of mining activities.

2009-2014: The scatter further expands toward higher albedo and shows an
even more dispersed range of MSAVI values. This change indicates a mix of de-
graded land and areas with low vegetation health, consistent with intensive mining
expansion. The spread towards higher albedo values reflects exposed bare soil and
disturbed areas.

2017-2024: The most recent years show a marked shift, with clusters shifting
towards both high albedo and low MSAVI. This indicates significant land degrada-
tion and vegetation loss, with fewer areas showing signs of healthy vegetation. The
distribution reflects large expanses of mined land and bare soil, highlighting the
intensifying impact of phosphate mining on the environment.

From 1985 to 2024, the scatter plot has a clear progression from clustered, low-
albedo, high-vegetation areas toward higher albedo and lower vegetation indices.
This trend aligns with mining expansion in the Khouribga region, increasing bare
land and reducing vegetation. The increase in albedo and MSAVI reduction over
time reflects not only the physical footprint of mining but also the associated
impacts on land degradation and vegetation health.

5.0.3 Key Findings of NDVI and Desertification Analysis
The study employed NDVI (Normalized Difference Vegetation Index) and MSAVI
(Modified Soil Adjusted Vegetation Index) to monitor vegetation health and assess
desertification trends in the Khouribga phosphate mine region. A multi-temporal
analysis spanning nearly four decades (1985–2023) revealed significant environmen-
tal changes attributed to mining activities.
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1. Seasonal NDVI Dynamics (2023):
- March emerged as the peak vegetation month, showing the highest NDVI values
and dense vegetation coverage, indicating favorable early spring conditions.
- As the months progressed, vegetation health declined sharply due to the summer
season’s heat and dryness, with July reflecting the most stressed and sparse vegeta-
tion.
- The color-sliced NDVI maps highlighted the spatial extent of vegetation, showing
progressive reductions in healthy vegetation across seasons.

2. Long-Term Vegetation Changes:
- Over 40 years, the study revealed recurring cycles of vegetation decline and
recovery, with significant losses in forest and cultivated land near mining zones.
- By 2023, areas of bare land and urbanization had expanded considerably, empha-
sizing the ecological strain from mining activities.

3. Desertification Patterns (MSAVI and Albedo):
- MSAVI analysis indicated declining vegetation health, while rising Albedo values
highlighted the expansion of barren and reflective surfaces, signaling desertification.
- Scatter plots of MSAVI versus Albedo revealed a clear progression from vegetated
areas with low Albedo and high MSAVI values in 1985 to barren, degraded land-
scapes with high Albedo and low MSAVI in 2023.

4. Spatial Desertification Trends:
- Maps showed a marked increase in severely degraded zones, particularly in areas
of active mining and infrastructure development.
- These trends underscore the vulnerability of semi-arid ecosystems to anthropogenic
pressures, with significant vegetation loss and land degradation over time.

5. Implications for Land Management:
- The results highlight the urgent need for targeted land management strategies,
such as reforestation, erosion control, and sustainable mining practices, to mitigate
the environmental impacts of mining.
- Continued remote sensing monitoring is essential for tracking desertification dy-
namics and guiding restoration efforts.
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5.0.4 Limitations of NDVI and Desertification Analysis
1. Data and Temporal Constraints:
- Limited availability of historical and recent ground truth data hindered the vali-
dation of remote sensing findings.
- Temporal gaps in available imagery affected the continuity of multi-decadal analy-
sis, potentially leaving critical events or trends unrecorded.

2. Indices’ Sensitivity to Environmental Factors:
- NDVI and MSAVI are susceptible to interference from factors like soil brightness,
cloud cover, and seasonal variations, which can affect the accuracy of vegetation
health assessments.
- Albedo changes, while indicative of desertification, may also result from other
surface modifications, such as urbanization or infrastructure development.

3. Exclusion of Ground Validation:
- The lack of field-based measurements and calibration limited the ability to directly
validate desertification trends, reducing the certainty of observed patterns.

4. Limited Spatial and Spectral Resolution:
- While Landsat data provided valuable insights, its spatial and spectral resolution
may overlook finer-scale vegetation dynamics or subtle land cover changes.

The analysis emphasizes the critical role of remote sensing tools like NDVI and
MSAVI in assessing environmental impacts but underscores the need for integrated
approaches combining satellite observations with field data for more robust and
accurate monitoring of desertification processes.
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5.0.5 Mineral Grouping and Shapefile Layout
Organizing shapefiles by mineral family or spectral similarity is essential to stream-
line the conclusion of the interpretation of mineral distributions and spectral
responses across the study area.

Carbonates: Calcite and Dolomite
Clays/Phyllosilicates: Kaolinite, Illite, Sepiolite, Palygorskite, and Glauconite
Iron Oxides: Hematite and Goethite
Sulfates: Gypsum
Phosphates: Apatite
Silicates: Quartz

Carbonates Group

Minerals Included: Calcite and Dolomite
Spectral Characteristics:
Calcite: Shows a prominent absorption feature around 2330 nm (EMIT Band
263), which is utilized to identify its presence.
Dolomite: Exhibits significant absorption around 2308 nm (EMIT Band 260),
making it identifiable in similar SWIR wavelengths.
Both minerals can be identified using SWIR-based band math, like the formulas
B244+B271/B263 for calcite and B246+B268/B260 for dolomite.
Consistent Mapping: Since calcite and dolomite are both carbonates, this approach
ensures that mapping is consistent across similar geological formations where both
minerals may co-occur.
Spectral Overlap: Even within the carbonate group, there may be overlapping
spectral responses, especially in areas with mixed mineral compositions, which
could complicate precise identification.

This study performs a comparative analysis between images from ECOSTRESS
and EMIT data to assess their effectiveness in detecting calcite and dolomite.
EMIT’s shortwave infrared (SWIR) data captured the spectral signatures of calcite
effectively, with clear distinctions in the spatial distribution of calcite-rich areas
after applying spectral feature extraction techniques Figure 5.4 (in red). The EMIT
images highlight calcite accurately using its unique spectral features, which makes
it valuable for precise mineral mapping.
However, ECOSTRESS, which operates primarily in the thermal infrared (TIR)
region and has only five spectral bands, shows limitations in detecting calcite.
Specifically, calcite’s distinctive TIR spectral feature occurs around 11430 nm,
but after resampling, ECOSTRESS’s spectral response is flat in this part of the
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spectrum. This lack of resolution and sensitivity in the key calcite spectral region
results in a homogeneous appearance after color slicing, without the distinct calcite
differentiation seen in EMIT data.
On the other hand, dolomite shows more promising results. In the EMIT image,
dolomite features (in blue) exhibit a spatial distribution similar to what is partially
captured in the ECOSTRESS TIR data. This similarity suggests that EMIT’s
SWIR data can provide useful complementary insights, especially when used
alongside TIR data from ECOSTRESS, for better mapping of dolomite in the
target region.
It is important to note that the interpretation of these images was significantly
complicated by the presence of artifacts, which affected the overall quality of the
data in ECOSTRESS. Nevertheless, despite these challenges, it was still possible
to recover useful information regarding the distribution of calcite and dolomite.
These findings underscore the potential of integrating TIR and SWIR spectral data
from different satellite sources to enhance mineral detection. The limited calcite
detection, combined with the challenges posed by data artifacts, highlights the
need for further refinement, possibly through the integration of additional datasets
or ground-truth verification.

Figure 5.4: Calcite (in red) and dolomite (in blue) shapefile layout in EMIT.
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Figure 5.5: Shapefile (in green) represents the presence of Calcite in ECOSTRESS.

Figure 5.6: Shapefile (in green) represents the presence of dolomite in
ECOSTRESS.
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Clay Minerals Group

Minerals Included: Sepiolite, Kaolinite, Illite, Palygorskite Spectral Char-
acteristics:
Sepiolite: Exhibits a strong absorption feature around 2345 nm (EMIT Band
265), which is essential for identifying its presence in the SWIR range. Can be
identified using the band math formula B244+B271/B263, where the absorption
feature around 2345 nm is emphasized. This absorption band is particularly useful
for distinguishing Sepiolite from other clays.
Kaolinite: Displays a characteristic absorption feature around 2200 nm (EMIT
Band 248), which is prominent in SWIR data and helps isolate Kaolinite from other
clay minerals. Identification is enhanced by the band math formula B245+B260/B248,
which highlights the absorption at 2200 nm.
Illite: Has a significant absorption trough around 2211 nm (EMIT Band 247),
making it easily identifiable. The trough at this wavelength is a key spectral marker
for illite in complex geological environments. The 2211 nm absorption trough is
highlighted using the formula B236+B256/B247, allowing for precise identification
of illite in the imagery.
Palygorskite: Shows a distinctive absorption feature around 2211 nm (EMIT
Band 247), similar to illite but can be separated using additional band math
techniques. This feature is crucial for detecting Palygorskite in arid and semi-arid
regions. The 2211 nm trough is also emphasized with the band math formula
B238+B253/B247, isolating Palygorskite effectively from other minerals in the area.

Consistent Mapping: Since Sepiolite, Kaolinite, Illite, and Palygorskite are
all clay minerals, this approach ensures that mapping is consistent across similar
geological formations where these minerals may co-occur. Their unique absorption
features in the SWIR range allow for accurate mapping and separation of these
minerals in remote sensing data.

Spectral Overlap: Despite their distinct absorption features, these minerals may
exhibit spectral overlap, particularly in regions with mixed mineral compositions.
This could complicate the precise identification of individual clay minerals, requiring
careful application of band math techniques and, in some cases, additional spectral
data or ground truthing for validation.
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Figure 5.7: sepiolite (in blue), kaolinite dolomite (in purple), illite (in red) and
palygorskite (in green) shapefile layout in EMIT.

Iron Oxides Group

Mineral Included: Hematite and goethite
Spectral Characteristics:
Hematite: Displays distinct absorption features at 551 nm and 860 nm, corre-
sponding to EMIT Bands 24 and 43. These absorption troughs reflect hematite’s
unique spectral behavior in the visible and near-infrared regions, enabling effective
differentiation from other minerals in natural landscapes.
Identification Using Band Math:
To enhance the identification of hematite, specific band math ratios B18 + B29 /
B24 and B48 + B88 / B43 were written to focus on its spectral characteristics.

Consistent Mapping: The band math and reflectance ratios applied to hematite
ensure consistent mapping of iron oxide-rich regions, capturing spatial distributions
with a focus on variations in grain size and composition.

The stability analysis of iron-bearing minerals, particularly hematite and goethite,
supports our findings from EMIT-based spectral analysis. According to the stability

149



Conclusion

Figure 5.8: Shapefile (in red) represents the presence of hematite in EMIT.

diagram, hematite is resilient across a wide temperature range and maintains stabil-
ity at elevated temperatures, making it well-suited to hot climates like Morocco’s.
In contrast, goethite is stable only within lower temperatures and narrower pH
ranges, and it becomes unstable under high-temperature conditions.
In Morocco’s warm environment, goethite likely transforms into hematite over

time due to prolonged exposure to high temperatures, which limits the presence
of goethite in the region. Consequently, our spectral analysis detected hematite
prominently, whereas goethite was notably absent. This outcome aligns with the
mineral stability characteristics depicted in the diagram, further emphasizing the
influence of climatic factors on mineral composition in phosphate mining areas.
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Figure 5.9: Stability of hematite, goethite, ferric hydroxide, and hydroxyl salts
depending on temperature and pH

Sulfates group

Mineral Included: Gypsum

Spectral Characteristics:
Gypsum: The spectral analysis of gypsum using EMIT data confirms the presence
of distinct absorption features in the Shortwave Infrared (SWIR) range, notably
at approximately 1200 nm, 1660 nm, and 2210 nm. Each of these wavelengths
corresponds to specific bands in EMIT: Band 111 (1200 nm), Band 173 (1660 nm),
and Band 247 (2210 nm), and they serve as key indicators for gypsum detection in
the study area.

At 1200 nm, gypsum exhibits a pronounced absorption trough in EMIT Band
111, quantified through the band math ratio (B100+B123)/B111 or the reflectance
value ratio (R1111+R1275)/R1200. These calculations allow for effective differenti-
ation of gypsum-based on this absorption feature, highlighting its potential as a
distinguishing spectral signature.

The 1660 nm wavelength, represented by EMIT Band 173, shows a peak in gyp-
sum’s spectral profile. This feature is effectively captured by the band ratio
B173/(B156+B184), distinguishing it from surrounding materials.
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Spectral Overlap: The third characteristic feature of gypsum, observed at 2210
nm, is represented by a trough in EMIT Band 247. The band math expression
(B226+B260)/B247 or the reflectance value ratio (R2056+R2308)/2210 further
enhances gypsum’s detection, enabling accurate mapping in the study region.
The application of band math and color-slicing techniques across these key wave-

Figure 5.10: Shapefile (in red) represents the presence of gypsum in EMIT

lengths allowed for the visualization of gypsum’s spatial distribution by grain size.
For instance, fine-grain gypsum is highlighted by specific reflectance ranges at each
wavelength: 2.05 to 2.09 and 2.24 to 2.3 at 1200 nm, 0.54 to 0.8 at 1660 nm, and
2.25 to 2.35 at 2210 nm. This stratification by grain size offers insights into both
the concentration and extent of gypsum deposits in the area.

Phosphates and Silicates group

Minerals Included: Apatite and Quartz
Spectral Characteristics:

Apatite: Apatite, a primary mineral in phosphate deposits, exhibits a key
absorption feature around 9160 nm, corresponding to ECOSTRESS Band 3. This
feature is essential for detecting Apatite’s fine-grain structure in phosphate mining
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Figure 5.11: Apatite (in green) and quartz (in red) in ECOSTRESS

areas. The band math formula (B2 + B4)/B3 highlights this absorption, with
grain-size-dependent reflectance variations further refining identification. This
spectral signature is particularly effective for distinguishing Apatite in mineral-rich
regions.
Quartz: Quartz, an abundant and geologically significant mineral, shows a distinct
"M-shaped" spectral pattern in the TIR range, with absorption features around
8.78 m and 10.49 m (ECOSTRESS Bands 2 and 4). These reststrahlen bands are
emphasized using the formula (B2 − B4)/(B2 + B4), capturing Quartz’s unique
reflectance profile. Variations in peak reflectance with grain size allow for precise
differentiation, making Quartz identifiable even in complex geological settings.
Consistent Mapping: The application of ECOSTRESS TIR bands to both
Apatite and Quartz provides a consistent mapping framework across mineral-rich
areas. Their distinctive absorption features allow for reliable separation in regions
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where they may co-occur with other TIR-sensitive minerals, ensuring targeted
identification of these specific minerals.
Spectral Overlap: Though Apatite and Quartz possess unique spectral features,
spectral overlap can occur, particularly in fine-grain regions with mixed mineral
compositions. Careful application of band math and reflectance analysis across
grain sizes helps isolate each mineral with precision.
Conclusion: The spectral analysis of Apatite and Quartz using TIR data from
ECOSTRESS offers a robust methodology for mineral detection in mining envi-
ronments. The distinctive absorption features captured through tailored band
math formulas facilitate accurate mapping of these minerals, supporting resource
management and sustainable mining. This approach, applicable to both phosphate
mining and broader mineral exploration, provides insights into mineral distribution
and enables informed environmental impact studies.

5.0.6 Key Findings of mineral detection
This study demonstrates the innovative application of ECOSTRESS and EMIT
sensors, originally designed for environmental monitoring, in mineral detection
and environmental impact assessment in the Khouribga phosphate mining region.
Despite their design intent, the sensors proved effective in capturing spectral
features crucial for identifying and characterizing both ore and host minerals. Key
minerals detected included dolomite, calcite, gypsum, sepiolite, kaolinite, illite,
palygorskite, glauconite, and hematite.

Figure 5.12: The capability of various satellites to detect different minerals.
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- ECOSTRESS: Its thermal infrared (TIR) capabilities allowed for the detection of
minerals with distinct thermal emissivity properties. ECOSTRESS proved effective
for detecting Apatite and Quartz, as these minerals lack spectral signatures in
the shortwave infrared (SWIR) range but can be identified through their thermal
emissivity. However, ECOSTRESS was less effective in detecting Calcite and
Dolomite, which have clearer spectral features in SWIR.
- EMIT: Its hyperspectral coverage in the shortwave infrared (SWIR) range en-
abled detailed mineral characterization, effectively detecting minerals such as
Calcite, Dolomite, Gypsum, Sepiolite, Kaolinite, Illite, Palygorskite, Glauconite,
and Hematite. However, EMIT was unable to detect Apatite and Quartz because
these minerals do not exhibit distinct spectral features in the SWIR range.
The detection capabilities of EMIT and ECOSTRESS complement one another,
offering unique strengths in identifying different minerals. While ECOSTRESS
excels in detecting minerals with strong thermal emissivity properties, such as
Apatite and Quartz, EMIT provides detailed discrimination of minerals with SWIR
spectral signatures, such as Calcite and Dolomite.
Furthermore, integrating these satellite data with spectral libraries and band
math techniques allowed the mapping of mineral distribution and their association
with phosphate deposits. This study also revealed significant environmental im-
pacts, including substantial vegetation loss and land degradation over four decades,
driven by mining activities. NDVI, MSAVI, and Albedo analyses highlighted a
clear progression toward desertification, emphasizing the vulnerability of semi-arid
ecosystems.

5.0.7 Limitations of mineral detection
Despite the promising results, the study faced several challenges:
1. Data Validation:
- A lack of publicly available mineralogical and geological data for the Khouribga
region restricted the direct validation of findings.
- The absence of ground truthing, such as field sampling and on-site spectral mea-
surements, limited the ability to cross-reference remote sensing results with actual
mineral distributions.

2. Sensor Limitations:
- ECOSTRESS: While effective in detecting thermal signatures, its limited spectral
resolution reduced the ability to capture finer mineral distinctions, particularly in
the thermal infrared range.
- EMIT: Despite its hyperspectral capabilities, differentiating minerals with over-
lapping spectral features in the SWIR range, such as kaolinite and illite, proved
challenging. Atmospheric interference and the complexity of spectral responses
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further complicated mineral separation.

3. Temporal and Spatial Constraints:
- Data gaps due to sensor acquisition constraints hindered continuous monitoring
of the region, affecting the comprehensiveness of the analysis.
- Variability in spectral signatures due to environmental factors, such as soil mois-
ture and atmospheric conditions, introduced potential inaccuracies.

Recommendations
Future research should prioritize ground truth validation to strengthen the reliabil-
ity of remote sensing data. While incorporating additional sensors like Landsat
and Sentinel could provide complementary spectral and temporal capabilities, their
low spectral resolution does not offer significant advantages over the EMIT sen-
sor. A possible direction for further development could be to explore techniques
that are more sensitive to the shape of spectral features, rather than just their
relative depth. Methods such as Gaussian fitting or polynomial fitting could be
tested to improve mineral detection and land degradation assessments. Moreover,
integrating field studies with advanced machine learning models could help address
spectral ambiguities and enhance the overall accuracy of mineral classification and
environmental monitoring.
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