
1

Politecnico di Torino

Master of Science Degree in Engineering and Management
A.y. 2023/2024

Graduation Session: December 2024

A Deep Q-Network Approach to Job Shop Scheduling

with Transport Resources

Academic Supervisor: Candidate:
Prof: Arianna Alfieri Julian Mateo Puerto Cortes
Prof: Erica Pastore
Prof: Claudio Castiglione

Academic Co-supervisor:
Prof: Gabriel Mauricio Zambrano Rey

2

Abstract

The Job Shop Scheduling Problem (JSSP) is a fundamental challenge in operations

management, characterized by its NP-hard nature and the complexity of coordinating job

sequences across multiple machines. This thesis addresses integrating transport resources,

such as Automated Guided Vehicles (AGVs) and conveyor systems, into traditional JSSP,

which adds a significant layer of complexity by introducing additional variables like transport

times and availability constraints. A Deep Q-network (DQN) based methodology is

developed to tackle these challenges, leveraging a neural network to approximate Q-values

and guide decision-making in complex, stochastic environments. This approach is

complemented by a Mixed Integer Linear Programming (MILP) formulation to establish

foundational scheduling constraints. Through extensive simulation and benchmarking, this

study demonstrates the effectiveness of DQN in optimizing scheduling in JSSP settings

involving transport resources, contributing to both the theoretical understanding and practical

implementation of machine learning-driven scheduling solutions in manufacturing contexts.

3

Contents

Abstract .. 2

1. Introduction ... 5

2. Literature review ... 6

2.1. Introduction ... 6

2.2. Historical Context and Evolution of JSSP... 8
2.2.1. Early approaches to JSSP ... 9
2.2.2. Development of flexible job shop scheduling (FJSP) ... 10
2.2.3. Introduction of transport resources in scheduling ... 10

2.3. Traditional Algorithms for JSSP ... 11

2.4. Machine Learning Techniques in JSSP ... 12

2.5. Conclusion .. 15

3. Objective .. 17

4. Methodology .. 18

4.1. Problem Setup and Formulation .. 18
4.1.1. Decision Variables .. 19
4.1.2. Objective Function .. 19
4.1.3. Constraints .. 20

4.2. Deep Q-Network (DQN) Implementation ... 20

4.3. Performance Evaluation ... 23

5. MILP Model .. 24

5.1. Sets and indices .. 25

5.2. Parameters ... 25

5.3. Decision variables .. 25

5.4. Auxiliary variables .. 26

5.5. Objective Function .. 26

5.6. Constraints ... 26

5.7. Development of the model ... 27

6. Deep Q-Network (DQN).. 28

6.1. Job Shop Scheduling Environment: Structural Setup and Data Organization 29

6.2. Key Functions and Methods ... 29

6.3. Neural Network Architecture and Training Methodology .. 31

6.4. Experience Replay and Prioritization .. 32

6.5. Training the Model and Epsilon-Greedy Policy ... 32
6.5.1. Epsilon Decay greedy policy .. 33

7. Results.. 37

8. Analysis.. 45

9. Conclusions ... 53

4

10. Future Work .. 55

11. References ... 56

12. Annexes ... 64

5

1. Introduction

The Job Shop Scheduling Problem (JSSP) is a core challenge in operations

management. It is characterized by its NP-hard nature and the complexity of coordinating job

sequences across multiple machines. JSSP involves allocating a set of jobs, each with specific

processing requirements and sequences, to a limited set of machines. The goal is often to

optimize performance metrics, such as makespan, machine utilization, and job tardiness. This

problem is seen in manufacturing and production systems, where efficient scheduling directly

impacts operational efficiency, productivity, and cost-effectiveness.

Introducing transport resources, such as Automated Guided Vehicles (AGVs)

(Jungbluth et al., 2022; Amirteimoori et al., 2023; Fontes et al., 2023; Dehnavi-Arani et al.,

2019) or mobile robots (Homayouni & Fontes, 2021; Yao et al., 2023; Li et al., 2020), adds

complexity to traditional JSSP. These resources are essential for transferring jobs between

machines, further complicating the scheduling process by introducing additional variables

like transport times and availability constraints (Homayouni & Fontes, 2021). Integrating

transport resources into scheduling models necessitates a dual optimization approach:

minimizing machine idle times while ensuring timely material movement within the

production line. This hybrid focus on machine processing and transport logistics reflects the

complexity of modern job shop environments, where production efficiency is contingent

upon effective material handling strategies (Fontes et al., 2022).

To address these challenges, recent research has turned to advanced machine learning

techniques, particularly Reinforcement Learning (RL), which offers a dynamic and adaptive

approach to scheduling. The Deep Q-Network (DQN) algorithm presents a promising

solution among RL methods. DQN leverages a neural network to approximate Q-values,

guiding decision-making in complex, stochastic environments. In this thesis, a DQN-based

methodology is developed to optimize scheduling in JSSP settings involving transport

6

resources. This model allows the system to dynamically learn optimal policies for job

sequencing and transport assignment, aiming to minimize makespan and streamline

workflow.

This thesis integrates a structured Mixed Integer Linear Programming (MILP)

formulation to establish foundational scheduling constraints, which serve as a baseline for the

DQN environment—combining MILP and DQN bridges' exact and heuristic methods,

balancing computational efficiency with solution quality. Through extensive simulation and

benchmarking against traditional models, this study seeks to demonstrate the effectiveness of

DQN in handling the intricacies of transport-integrated JSSP. This work thus contributes to

both the theoretical understanding and practical implementation of machine learning-driven

scheduling solutions in manufacturing contexts, laying the groundwork for scalable and

adaptive job shop optimization strategies.

2. Literature review

2.1. Introduction

The Job Shop Scheduling Problem (JSSP) is a critical issue in operations management

due to its significant impact on manufacturing efficiency and productivity (Muthiah et al.,

2016). In a manufacturing environment, JSSP involves allocating jobs to machines where

each job consists of a sequence of operations that must be processed on specific machines.

The objective is to determine the optimal sequence in which these jobs should be executed to

minimize various performance metrics such as makespan (Yao et al., 2023), total completion

time (Li et al., 2020), and tardiness (Zambrano-Rey et al., 2023). The complexity of JSSP

arises from the requirement that each job must be processed in a predetermined order and that

each machine can handle only one operation at a time, leading to intricate interactions and

dependencies among jobs. Classified as NP-hard, finding an optimal solution becomes

computationally infeasible as the size of the problem increases, necessitating the development

7

of heuristic and metaheuristic approaches to find satisfactory solutions within a reasonable

timeframe (Zhang et al., 2021).

The significance of JSSP in manufacturing and production systems cannot be

overstated, as it directly influences operational efficiency, resource utilization, and overall

productivity. Effective scheduling allows manufacturers to optimize production processes,

reduce lead times, and enhance responsiveness to customer demands. In today's competitive

manufacturing landscape, where customization and rapid delivery are paramount, efficient

job scheduling is critical in aligning production schedules with market requirements.

Moreover, it can lead to significant cost savings by minimizing idle time, reducing work-in-

progress inventory, and maximizing machine utilization. As manufacturing systems evolve

toward more flexible and dynamic operations, the importance of JSSP continues to grow,

necessitating ongoing research and innovation in scheduling techniques (Zhang & Zheng,

2023; Momenikorbekandi & Abbod, 2023).

Transport resources are integral to effectively executing job shop scheduling, as they

facilitate the movement of materials and components between different machines and

workstations. These resources may include automated guided vehicles (AGVs) and manual

handling equipment, all of which are essential for ensuring that jobs are processed promptly

(Li et al., 2023). Integrating transport resources into JSSP introduces additional complexity,

as scheduling must account not only for the processing times on machines but also for the

travel times associated with moving materials. This necessitates the development of hybrid

scheduling models that optimize both machine operations and transport logistics. By

effectively managing transport resources, manufacturers can enhance workflow efficiency,

reduce bottlenecks, apply defined scheduling rules, and improve overall production

throughput (Han, 2023; Song et al., 2022).

8

Advancements in computational technology over recent years have significantly

enhanced the ability to address complex scheduling problems. Observations such as Moore's

Law, which notes the doubling of computational capacity approximately every two years,

have facilitated developing and applying sophisticated algorithms and machine learning

techniques to JSSP. This technological progress, particularly in the past five years, has

accelerated research into new methodologies that leverage increased computational power to

achieve more efficient and effective scheduling solutions.

This literature review aims to synthesize recent advancements in the field of job shop

scheduling, focusing on the integration of transport resources and the application of various

algorithmic techniques. By examining the evolution of scheduling methods over the past

eight years—with an emphasis on the technological advancements in the most recent five

years—we provide a comprehensive overview of the current state of research, highlighting

the strengths and limitations of existing approaches. Furthermore, we explore the role of

machine learning and reinforcement learning techniques in addressing the complexities of job

shop scheduling, particularly their potential to enhance decision-making processes in

dynamic and uncertain environments. Ultimately, this review seeks to identify gaps in the

current body of knowledge and propose directions for future research that could lead to more

effective and efficient scheduling solutions in manufacturing systems (Alabajee et al., 2020;

Zhang et al., 2022; Awad & Abd-Elaziz, 2021; Zhao et al., 2021; Bozzi, 2023;

Latthawanichphan et al., 2019).

2.2. Historical Context and Evolution of JSSP

The historical context of the Job Shop Scheduling Problem (JSSP) reveals a rich

evolution of research and methodologies aimed at addressing its inherent complexities.

Initially conceptualized in the 1950s, the JSSP has undergone significant transformations as

manufacturing practices have evolved. Early studies primarily focused on deterministic

9

scheduling models, where job arrival times and processing durations were known in advance.

However, as manufacturing environments became more dynamic and unpredictable,

researchers began to explore flexible job-shop scheduling (FJSP) models that accommodate

variations in job characteristics and machine capabilities. The introduction of metaheuristic

approaches, such as genetic algorithms and simulated annealing, marked a pivotal shift in the

field, enabling practitioners to tackle more extensive and more complex scheduling instances.

Recent advancements have further integrated machine learning techniques, particularly

reinforcement learning, into scheduling frameworks, allowing real-time adaptation to

changing production conditions. This historical trajectory underscores the ongoing relevance

of JSSP research in the context of modern manufacturing challenges as scholars continue to

innovate and refine scheduling methodologies to meet the demands of increasingly complex

production systems (Zeng & Wang, 2018; Zhang et al., 2021; Yu et al., 2020).

2.2.1. Early approaches to JSSP

Early approaches to the Job Shop Scheduling Problem (JSSP) laid the groundwork for

understanding the complexities of scheduling jobs within manufacturing environments.

Initially, researchers focused on deterministic models that assumed fixed processing times

and machine availability, which allowed for the development of straightforward heuristic

methods. One of the pioneering contributions was Johnson's algorithm, which provided

optimal solutions for two-machine flow shop scheduling, setting a precedent for subsequent

research in JSSP. However, as the complexity of manufacturing systems grew, these early

methods proved inadequate for addressing the intricacies of real-world scheduling scenarios.

The limitations of deterministic models prompted researchers to explore more sophisticated

techniques, such as branch-and-bound algorithms and dynamic programming, which aimed to

provide exact solutions for smaller instances of JSSP. Despite their effectiveness, these exact

methods faced scalability challenges, leading to the exploration of heuristic and metaheuristic

10

approaches that could yield satisfactory solutions for larger and more complex job-shop

scenarios. The evolution of these early approaches significantly impacted the development of

more advanced scheduling methodologies, highlighting the need for flexibility and

adaptability in modern manufacturing systems (Kirilov & Guliashki, 2017).

2.2.2. Development of flexible job shop scheduling (FJSP)

The development of Flexible Job Shop Scheduling (FJSP) marked a significant

advancement in scheduling methodologies, addressing the limitations of traditional JSSP by

allowing for greater flexibility in machine assignments and job processing sequences.

Introduced in the early 1990s, FJSP acknowledges that modern manufacturing systems often

require jobs to be processed on multiple machines, enabling manufacturers to optimize

resource utilization and respond more effectively to changes in production requirements. This

flexibility is particularly beneficial in environments where machine breakdowns or varying

job priorities occur, as it allows for dynamic reallocation of resources. The FJSP problem is

inherently more complex than the classic JSSP, as it introduces additional decision variables

related to machine selection and job routing. Researchers have employed various

optimization techniques, including genetic algorithms, simulated annealing, and tabu search,

to tackle the complexities of FJSP. The growing interest in FJSP has led to a plethora of

studies that explore hybrid approaches, combining traditional optimization methods with

machine learning techniques to enhance scheduling performance in dynamic environments.

This evolution has improved scheduling efficiency and contributed to the development of

more resilient manufacturing systems capable of adapting to fluctuating market demands (Xia

& Wu, 2005; Ba et al., 2016).

2.2.3. Introduction of transport resources in scheduling

Introducing transport resources in scheduling has become a critical consideration in

optimizing job shop environments, as it directly impacts the efficiency of material handling

11

and job processing. Transport resources, such as automated guided vehicles (AGVs) and

conveyor systems, facilitate the movement of materials between machines and workstations,

influencing overall workflow and production throughput.

As manufacturing systems have evolved towards more integrated and automated

operations, the need to incorporate transport logistics into scheduling models has gained

prominence. Researchers have begun to develop hybrid scheduling frameworks that

simultaneously optimize machine operations and transport logistics, recognizing that delays

in material handling can lead to significant bottlenecks in production.

The integration of transport resources into scheduling algorithms not only enhances the

efficiency of job processing but also improves responsiveness to changes in production

schedules and resource availability. This shift towards a more holistic approach to scheduling

reflects the complexities of modern manufacturing systems, where effective coordination

between processing and transport resources is crucial for achieving operational excellence.

The impact of incorporating transport resources into scheduling has been profound, leading to

improved production efficiency and reduced lead times in various manufacturing contexts

(Kumar et al., 2003; Ren et al., 2020).

2.3. Traditional Algorithms for JSSP

Traditional approaches to solving the Job Shop Scheduling Problem (JSSP) are divided

into exact algorithms, heuristic methods, and metaheuristic approaches, each balancing

solution quality and computational efficiency. Exact algorithms, such as branch-and-bound

and integer programming, guarantee optimal solutions by exhaustively exploring the solution

space. These methods are particularly useful in small-scale scenarios but face challenges in

scalability due to the NP-hard nature of JSSP. For instance, branch-and-bound uses tree

structures to evaluate and prune suboptimal solutions systematically, while integer

programming formulates the problem as an optimization model to minimize performance

12

metrics under defined constraints (Muthiah et al., 2015; Lu et al., 2012). While effective for

more minor problems, the exponential growth of the solution space in larger instances

necessitates hybridization with heuristic methods to improve computational feasibility.

Heuristic methods prioritize speed and adaptability, making them particularly suitable for

dynamic environments. Priority dispatching rules, such as Shortest Processing Time (SPT)

and Earliest Due Date (EDD), are widely used to guide scheduling decisions based on

specific criteria, enabling quick and practical solutions. Although these methods do not

guarantee optimality, their simplicity and flexibility make them a strong foundation for more

advanced algorithms (Amjad et al., 2018; Azzouz et al., 2017; Parveen & Ullah, 2011).

Metaheuristic approaches, including simulated annealing and ant colony optimization, extend

this flexibility by employing adaptive search strategies that balance exploration and

exploitation of the solution space. Simulated annealing uses probabilistic acceptance criteria

to escape local optima, while ant colony optimization leverages pheromone-based

reinforcement learning to improve solutions iteratively. Both methods have proven effective

in dynamic and complex scheduling contexts, with enhancements and hybridizations further

boosting their performance (Xing et al., 2010; Fan & Su, 2022; Kumar et al., 2018; Sun et al.,

2010).

These approaches collectively offer versatile solutions for JSSP, with exact algorithms

excelling in precision, heuristics providing practicality, and metaheuristics achieving a

balance between quality and scalability. Continued advancements in hybrid techniques and

computational strategies are driving improvements in efficiency, adaptability, and the ability

to address the diverse constraints of modern scheduling challenges.

2.4. Machine Learning Techniques in JSSP

Applying machine learning (ML) to the Job Shop Scheduling Problem (JSSP) has

revolutionized scheduling processes, enabling adaptive and data-driven approaches to

13

optimize real-time decision-making. ML techniques such as supervised learning,

unsupervised learning, and reinforcement learning (RL) allow systems to learn from

historical data, adapt to dynamic conditions, and address the complexities of modern

manufacturing environments. These methods significantly reduce computational complexity

while enhancing the quality and responsiveness of scheduling solutions. RL has emerged as a

potent tool, offering the ability to develop adaptive strategies through interactions with

dynamic environments and enabling continuous improvement over time (Liu et al., 2020;

Wang et al., 2019).

Supervised learning in JSSP involves training models on historically labeled data to

predict optimal job assignments and sequences. Supervised learning effectively models the

relationships between job characteristics and scheduling outcomes by using algorithms such

as decision trees, neural networks, and support vector machines. These approaches can

significantly improve efficiency and accuracy, though their success depends on the quality of

the training data and their ability to generalize to unseen scenarios (Song et al., 2022; Chen et

al., 2022). On the other hand, unsupervised learning identifies patterns and relationships

within data without requiring labeled outputs. Techniques such as k-means clustering and

Principal Component Analysis (PCA) are beneficial for grouping jobs with similar

characteristics or reducing the dimensionality of complex scheduling data, which helps

inform better scheduling decisions (Han & Yang, 2020; Tassel et al., 2022).

Reinforcement learning (RL) has proven exceptionally effective in addressing dynamic

scheduling environments where job arrivals and machine availability fluctuate unpredictably.

Unlike supervised or unsupervised learning, RL enables agents to interact with their

environment, learning optimal strategies through cumulative rewards based on their actions.

The development of deep reinforcement learning (DRL), which integrates neural networks

with RL, has further expanded its capabilities, allowing for the modeling of complex state

14

spaces and the discovery of high-quality scheduling policies. DRL has been successfully

applied to dynamic job shop scenarios, demonstrating its ability to adapt to changing

conditions and optimize performance metrics like makespan and tardiness (Han & Yang,

2021; Zhao & Zhang, 2021). Additionally, attention mechanisms in DRL enhance scheduling

models by focusing on critical features of the environment, improving interpretability and

solution quality (Xu et al., 2022).

Recent advancements in multi-agent reinforcement learning (MARL) have addressed the

challenges of coordinating multiple agents in complex scheduling scenarios. By enabling

agents to share knowledge and learn cooperative strategies, MARL improves resource

allocation and minimizes makespan in dynamic environments. For example, agents in MARL

systems can effectively manage competing priorities in job-shop settings, optimizing their

decisions based on collective experiences (Wu et al., 2021; Chen et al., 2022). Hybrid

approaches combining RL with traditional optimization techniques, such as genetic

algorithms or simulated annealing, further enhance scheduling outcomes by leveraging the

complementary strengths of each method. These models allow for thoroughly exploring the

solution space and refined decision-making processes, resulting in superior scheduling

performance in complex job shop environments (Kim et al., 2022; Canese et al., 2021).

Despite these advancements, challenges remain in scaling ML techniques for large job

shops, managing uncertainty in dynamic environments, and integrating transport resources

into scheduling frameworks. As the number of jobs and machines increases, traditional

algorithms often need help with the exponential growth of solution spaces, necessitating more

scalable approaches (Ramasubbareddy et al., 2021; Zhou, 2024). Dynamic job shop settings

introduce additional complexities, as job arrivals, processing times, and machine availability

frequently fluctuate. Addressing these uncertainties requires algorithms capable of adapting

to real-time changes while maintaining efficiency (Zhou et al., 2023; Lv, 2024). Furthermore,

15

integrating transport resources, such as automated guided vehicles (AGVs), into scheduling

frameworks is critical for addressing bottlenecks and improving overall operational

efficiency. Research has shown that optimizing production and transport processes together

can significantly enhance scheduling performance (Li et al., 2022; Zhou et al., 2022).

2.5. Conclusion

The Job Shop Scheduling Problem (JSSP) remains a critical and intricate issue in

operations management, significantly affecting manufacturing efficiency and productivity.

Initially, research on JSSP concentrated on deterministic models, providing structured

scheduling solutions suitable for controlled settings. However, as production requirements

evolved, more dynamic scheduling models like Flexible Job Shop Scheduling (FJSP)

emerged, allowing greater adaptability through the application of metaheuristic algorithms

such as genetic algorithms, simulated annealing, and newer techniques like ant colony

optimization (Zhang & Zheng, 2023; Kirilov & Guliashki, 2017).

Recent studies have emphasized integrating transport resources, such as automated guided

vehicles (AGVs), into scheduling processes. While this integration adds complexity, it is

essential for reducing lead times and avoiding bottlenecks, ultimately enhancing overall

production efficiency (Kumar et al., 2003; Song et al., 2022).

Machine learning, especially reinforcement learning (RL), has emerged as a

transformative approach to overcoming the limitations of traditional scheduling algorithms in

JSSP. Techniques such as deep reinforcement learning (DRL) and hybrid RL models enable

adaptive and responsive scheduling, particularly valuable in dynamic and uncertain

conditions. These advancements demonstrate that RL-based methods can surpass traditional

scheduling approaches by utilizing real-time data and learning from past scheduling patterns

(Chang et al., 2022; Zhao & Zhang, 2021). By addressing scalability, adaptability, and

resource integration challenges, machine learning techniques are driving significant

16

improvements in the efficiency and applicability of scheduling solutions in modern

manufacturing systems.

Table 1.

Approaches taken to address the JSSP problem.

Technique Description Strength Limitations Applications /
Focus Areas

Heuristic
Methods

Use rule-based
scheduling
decisions, like
priority dispatching
(e.g., SPT, EDD).

Fast, low
computational
cost; suitable for
quick, feasible
solutions.

It may not reach
the global
optimum; it is
sensitive to rule
choice.

Real-time
scheduling with
quick decision
needs.

Metaheuristic
Approaches

Techniques that
explore solution
space adaptively,
such as Genetic
Algorithms and
Simulated
Annealing.

It can escape
local optima and
is effective in
large-scale,
complex
scheduling.

Computationally
intensive;
requires tuning
for optimal
performance.

Large-scale
JSSP with
complex
transport needs
and resource
constraints.

Exact
Algorithms

Optimization
methods like Integer
Programming,
Branch, and Bound
guaranteed
optimality.

Global
optimality is
useful in small-
medium-sized
problems with
high precision
needs.

Computationally
infeasible for
significant
problems due to
high
complexity.

Suitable for
small JSSPs or
scenarios where
optimality is
critical.

Hybrid
Models

Combine
techniques, e.g.,
Genetic Algorithms
with Simulated
Annealing or RL
with heuristics.

The balance
between solution
accuracy and
computational
efficiency is
adaptable to
different
complexities.

Complex to
design;
performance
depends on
chosen
combination and
settings.

Flexible
scheduling with
complex
constraints and
dynamic
resources.

Reinforcement
Learning (RL)

Machine learning
approach where an
agent learns optimal
scheduling policies
via trial-and-error.

Learns adaptive
policies over
time; handles
dynamic, real-
time changes.

It requires
extensive
data/training
and is
challenging to
model complex
states and
reward
structures.

Dynamic JSSP
where job or
transport
conditions
change
frequently.

Deep
Reinforcement
Learning
(DRL)

RL enhanced with
deep learning for
handling high-
dimensional state

Scalability and
adaptability in
complex, large
JSSP instances;

High
computational
requirements;
prone to

Large-scale
JSSPs with
complex
transport and

17

spaces (e.g., DQN,
PPO).

effective in
dynamic
environments.

overfitting with
limited data.

processing
requirements.

Multi-Agent
Systems
(MAS)

Systems of agents
representing
resources
(machines, vehicles)
that cooperate in
scheduling.

Flexibility in
distributed
decision-
making;
supports
decentralized
scheduling.

Coordination
complexities
may yield
suboptimal
global
outcomes.

Distributed
manufacturing
systems with
decentralized
job and
transport
management.

Hybrid DRL
& MAS

DRL combined with
MAS for agent-
based learning in
complex scheduling
environments.

It balances
learning
efficiency with
decentralized
decision-making
and is suitable
for distributed
systems.

High
computational
cost: complex
implementation
and tuning
required.

Distributed
systems with
multiple job and
transport
resources;
adaptable
scheduling.

3. Objective

This thesis aims to develop a comprehensive model for the Job Shop Scheduling Problem

(JSSP) that optimizes both machine and transport resource allocation. The primary objectives

are to minimize the makespan and enhance resource utilization, addressing the unique

challenges posed by dynamic manufacturing environments. This research builds upon the

frameworks established by Fontes et al. (2023), Ren et al. (2020), and Jungbluth et al. (2022),

which approached similar problems using diverse algorithmic techniques and evaluated

performance through makespan as the critical metric. Makespan, widely recognized as a

benchmark for scheduling efficiency, serves not only as a measure of total completion time

across all jobs but also as a foundation for deriving additional metrics such as lateness, which

combines expected due dates with job completion times (Zambrano-Rey et al., 2023).

A critical component of this study is exploring the intrinsic relationship between resource

utilization and makespan. Resource utilization, which measures the efficiency of deploying

machines and transport resources, directly impacts the makespan by reducing idle times and

mitigating bottlenecks. By ensuring optimal resource usage, this research hypothesizes that

scheduling models can achieve significant reductions in makespan, thereby enabling faster

18

production cycles and improved operational performance. Through this integrated approach,

the proposed model aims to enhance system efficiency and ensure its practical applicability in

real-world, high-variability manufacturing contexts.

4. Methodology

After defining the aim of this thesis, the methodology will focus on using a hybrid

approach to solve the JSSP with transport resources. This approach combines a mixed integer

linear programming (MILP) model for core constraints with a Deep Q-network (DQN)- based

Reinforcement Learning (RL) method to optimize dynamic scheduling. This integrated

technique evaluates both static and dynamic problem aspects. The MILP model rigorously

defines constraints and decision variables, providing a clear foundation for the RL

environment. This model precisely structures job sequencing, machine availability, and

Automated Guided Vehicle (AGV) transport operations as the defined transport resource

based on literature and other benchmark instances as mentioned in the Literature Review.

The DQN-based RL solution is designed to minimize makespan and dynamically adjust

to changes in job assignments and transport logistics. We benchmark our hybrid model’s

makespan, scalability, and resource efficiency through extensive experiments and

simulations. The results indicate improvements in performance and adaptability compared to

traditional methods, enhancing better results each time. Overall, the combination of MILP

and DQN-based RL offers a robust framework for addressing the complexities of JSSP with

transport resources, demonstrating the potential for enhanced efficiency and reduced

operational costs.

4.1. Problem Setup and Formulation

The JSSP with transport resources involves assigning multiple jobs with specific machine

sequences, transporting needs to machines (e.g., M1 to M4), and a Loading/Unloading (LU)

area. Each machine handles only one job at a time, while AGVs move jobs between machines

19

based on a predefined layout. The main objective is to minimize the makespan, which

requires coordinating job scheduling, machine availability, and transport logistics under

dynamic conditions. The MILP model was designed to formalize the core logic and

constraints that ensure job sequencing, machine availability, and AGV transport operations.

The model includes the following core components.

4.1.1. Decision Variables

Binary and continuous variables representing job assignments, machine and AGV

allocations, and start/end times for each operation were defined to capture time costs

associated with transport and machine operations (Azadeh et al., 2020).

Figure 1.

Transport times exposed by Bilge & Ulusoy (1995).

Note. Figure reproduced from A multi-agent system simulation-based approach for collision

avoidance in integrated job-shop scheduling problems with transportation tasks

(Abderrahim, 2023, p. 215). Reproduced under fair use.

https://doi.org/10.1016/j.jmsy.2023.03.011

4.1.2. Objective Function

The model’s objective function minimizes makespan by calculating the time needed to

complete all job sequences while reducing downtime and transport times. The makespan is

https://doi.org/10.1016/j.jmsy.2023.03.011

20

typically minimized alongside energy consumption to provide a multi-objective optimization

model, where energy costs include the energy needed for AGV transport as well as for

machine operations (Meng et al., 2023).

4.1.3. Constraints

- Job Sequencing: Constraints enforce that each job follows its predefined sequence,

only starting subsequent operations after preceding operations are completed.

- Machine and AGV Constraints: Each machine can only process one job at a time, and

each AGV can transport only one job between machines, echoing constraints often

used in MILP models for transport-dependent scheduling (Azadeh et al., 2020; Meng

et al., 2023).

- Transport Path Constraints: Transport between machines is scheduled based on

layout-specific transport times, ensuring AGVs are managed efficiently and comply

with machine location constraints.

These constraints were structured to guide the DQN environment, ensuring that the model

respects essential scheduling principles and dynamically optimizes job completion within

real-time constraints. While the MILP model was not executed due to computational

requirements, it is the logical basis for implementing a constrained RL environment.

4.2. Deep Q-Network (DQN) Implementation

Following the MILP formulation, the RL-based approach is implemented using a DQN

model, which is well-suited to real-time decision-making under the JSSP’s complex state and

action spaces. The DQN-based environment (JobShopEnv) simulates real-time scheduling

with the following state components:

• Machine Statuses: Each machine’s availability, tracking when it is free or occupied.

• AGV Statuses and Locations: Each AGV’s availability, along with its current

position, is updated as it moves between jobs.

21

• Job-Machine Assignments: Tracks the next required machine for each job based on

its sequence.

• Time Management: The model tracks current time and machine availability times,

facilitating state transitions based on progress updates.

Each element is dynamically updated, allowing the DQN model to learn and optimize

scheduling through state-action pairs while minimizing the overall makespan.

The design and iterative refinement of the Deep Q-Network (DQN) model for the Job

Shop Scheduling Problem (JSSP) reflects a systematic approach to addressing complex

scheduling tasks with transport resources. Each model development phase contributed

specific enhancements to the network architecture, data handling, and learning mechanisms,

leading to a robust final model.

The DQN model began with a foundational setup: a two-layer neural network designed to

approximate Q-values in an essential scheduling environment. This version aimed to establish

a baseline architecture to evaluate machine-job assignments, utilizing a simple replay buffer

and standard stochastic gradient descent (SGD) for optimization. Although effective for

initial experimentation, this architecture was limited by its:

• Simple Network Structure: Consisting of only two hidden layers (128 and 64

neurons), the initial version was unable to generalize well across varying job

sequences and transport requirements.

• Single Layout Constraint: Focused on a single layout configuration, this model had

limited adaptability, which restricted its utility in diverse operational scenarios.

The initial version proved invaluable in identifying essential requirements for a more

sophisticated network, explicitly highlighting the need for enhanced flexibility, improved

state representation, and a scalable data-loading mechanism. Based on insights from this

22

model, the second version introduced architectural and functional enhancements to address its

predecessor’s limitations.

• Expanded Network Architecture and RMSProp Optimization: A third hidden

layer was added to increase the model’s interpretive capacity for complex job

patterns, while the switch to RMSProp optimization provided better training stability,

particularly in high-dimensional action spaces. Ending on a four-layer architecture

able to handle more data robustness and identify optimal policies.

• Integration of Azure Blob Storage: The model now dynamically loads data for

multiple layouts from Azure Blob Storage to handle more complex scheduling

scenarios. This added adaptability allowed the model to support various

configurations for transport and machine assignments, broadening its application

scope and usability in real-world scenarios where data is not stored locally but on

cloud services.

These modifications resulted in substantial gains in performance and stability. However,

testing also revealed areas where the model’s learning process could be further optimized,

specifically by focusing on impactful transitions to improve decision-making. This insight led

to the addition of a prioritized learning approach in the final version. The final DQN model

stands as a culmination of iterative refinement, incorporating a sophisticated architecture and

advanced training techniques that enable effective decision-making across diverse scheduling

environments.

• Four-Layer Neural Network with Prioritized Replay Buffer: This final

architecture includes four layers (with neurons of 256, 128, and 64), enhancing the

model’s ability to process high-dimensional state representations and complex

scheduling patterns. Additionally, a prioritized replay buffer was implemented to

23

focus learning on significant transitions, which optimized the quality of the model’s

training and increased the precision of its scheduling decisions.

• Double DQN Implementation for Stability: By adopting Double DQN, the model

addresses the issue of Q-value overestimation and achieves more reliable Q-value

predictions. This enhancement proved particularly useful in dynamic environments

where machine and AGV availability fluctuate, allowing the model to make more

accurate decisions under varying conditions.

The development of this final model also incorporated an epsilon-decay strategy, which

adjusted the exploration rate dynamically during training, balancing exploration and

exploitation for optimal learning efficiency. Through these advancements, the final DQN

model effectively manages job sequencing, machine assignments, and AGV allocations,

demonstrating significant improvements in adaptability, stability, and overall performance.

The progression from a basic DQN framework to this sophisticated final model illustrates

the importance of iterative experimentation and targeted adjustments. Each phase of

development contributed to creating a DQN model equipped to meet the complex

requirements of job shop scheduling with transport resources, reinforcing the value of

adaptive, data-driven approaches in engineering scheduling solutions.

4.3. Performance Evaluation

The DQN’s effectiveness is evaluated by comparing its makespan results against optimal

values reported in previous studies, providing a basis for calculating the optimality gap. The

optimality gap is measured as the difference between the DQN’s makespan and the known

optimal from other MILP-based methods. This comparison allows us to gauge the DQN’s

scheduling effectiveness relative to established optimization methods while respecting the

scope and constraints initially laid out by the MILP model (Azadeh et al., 2020; Meng et al.,

2023).

24

In sum, this methodology utilizes a hybrid approach that combines the structured

constraint formulation of a MILP model with a flexible, real-time DQN-based RL solution.

By grounding the DQN environment in MILP-defined constraints and benchmarking its

results against established literature, this thesis provides a comprehensive framework for

tackling the JSSP with transport resources in a way that balances optimization with real-

world applicability.

5. MILP Model

In the following section, we analyze the Mixed Integer Linear Programming (MILP)

model proposed by Fontes et al. (2023) to address the Job Shop Scheduling with Transport

(JSPT) problem, known to be NP-hard. This model simultaneously tackles several

interrelated combinatorial optimization challenges, specifically machine scheduling, vehicle

assignment, and vehicle routing, effectively integrating them into a unified solution

framework (Fontes et al., 2022). The importance of the model is that among the ones

reviewed in the literature, the selected one includes the transportation times on the last

transport task – from the previous machine to the Loading/Unloading (LU) area. This

transport is vital because it allows for better calculation of the makespan. In the same way,

these results are the most recent respect to the previous model published addressing the

problem by the same authors.

The model’s objective is twofold: (i) to obtain an optimal solution for more minor

problem instances constrained by computational limits by minimizing expected job tardiness,

and (ii) to ensure jobs return to the LU area as the final step in the transport schedule. As a

result, each job operation requires a corresponding transport task to move the job to the

designated machine, with the exception of the last task, which returns the job to the LU. To

minimize exit time (makespan) for each job, a “dummy” operation with zero processing time

is introduced for the final transport task. Upon returning to the LU, this operation signals the

25

job’s completion. Thus, the completion time of this dummy operation represents the exit time

for each job, marking when all necessary operations and transport tasks are concluded. This

section details the specific notations, parameters, and decision variables used in this model, as

structured by Fontes et al. (2023).

5.1. Sets and indices

J: Set of jobs, indexed by j and l.

M: Set of machines, indexed by m.

f, t: First and last dummy jobs, each composed of as many operations as the number of

machines, respectively, the first and last operations of the machines that process them.

Jj: Set of nj operations of the job j ∈ J ∪ {𝑓, 𝑡}, indexed by i and k.

𝑛𝑗 + 1: Dummy last operation of the job j ∈ J processed at the LU (Loading unloading) with

0 processing time.

Jj
′: Set of job operations j ∈ J including the dummy operation, i.e., 𝐽𝑗

′ = Jj ∪ {nj + 1}.

5.2. Parameters

Oij: Operation i ∈ Jj
′ of job j ∈ J.

Mij: Machine that processes operation Oij, i ∈ Jj
′, j ∈ J, where M(nj+1)j, is by definition, the

LU.

Tij: Transport task to deliver job j to machine Mij, i ∈ JJ
′, j ∈ J.

Pij: Processing time of operation Oij, i ∈ Jj
′, j ∈ J with P(nj+1)j = 0 .

𝜏𝑖𝑗
𝑘𝑙: Travel time from the machine Mij to machine Mkl, i ∈ Jj

′, k ∈ Jl
′, j, l ∈ J.

A: Number of available vehicles.

LN: A sufficiently large positive integer.

5.3. Decision variables

wij
kl: Binary variable taking the value 1 if operation Okl is processed immediately after the

operation Oij on the same machine and 0 otherwise, k ∈ Jl, l ∈ J ∪ {t}, i ∈ Jj, j ∈ J ∪ {f}.

26

xij
kl: Binary variable taking the value 1 if transport task Tkl is done immediately after transport

task Tij by the exact vehicle and 0 otherwise, k ∈ J𝑙
′, l ∈ J, Tij, i ∈ J𝑗

′ , j ∈ J.

uij: Binary variable taking the value 1 if transport task Tij is the first task of a vehicle and 0

otherwise, i ∈ Jj
′ , j ∈ J

zij: Binary variable taking the value 1 if the transport task Tij is the last task of a vehicle and 0

otherwise, i ∈ Jj
′ , j ∈ J.

5.4. Auxiliary variables

TDj: Maximum tardiness expected for each job, j ∈ J.

cij: Completion time of operation Oij, i ∈ Jj
′, j ∈ J.

Vij: Vehicle arrival time at the machine Mij, i ∈ Jj
′, j ∈ J.

5.5. Objective Function

Minimize ET (1)

5.6. Constraints

Subject to:

𝐸𝑇 ≥ 𝑐(𝑛𝑙+1)𝑙, ∀𝑙 ∈ 𝐽 (2)

∑ 𝑤𝑖𝑙
𝑘𝑙

𝑖<𝑘∈𝐽𝑙
+ ∑ ∑ 𝑤𝑖𝑗

𝑘𝑙
𝑖∈𝐽𝑗𝑗∈𝐽\{𝑙} + ∑ 𝑤𝑖𝑓

𝑘𝑙
𝑖∈𝐽𝑓

= 1, ∀𝑙 ∈ 𝐽 ∪ {𝑡}, 𝑘 ∈ 𝐽𝑙 (3)

∑ 𝑤𝑘𝑙
𝑖𝑙

𝑖>𝑘∈𝐽𝑙
+ ∑ ∑ 𝑤𝑘𝑙

𝑖𝑗
𝑖∈𝐽𝑗𝑗∈𝐽\{𝑙} + ∑ 𝑤𝑘𝑙

𝑖𝑡
𝑖∈𝐽𝑡

= 1, ∀𝑙 ∈ 𝐽 ∪ {𝑓}, 𝑘 ∈ 𝐽𝑙 (4)

∑ ∑ 𝑧𝑖𝑗𝑖∈𝐽𝑗
′𝑗∈𝐽 = ∑ ∑ 𝑢𝑖𝑗𝑖∈𝐽𝑗

′𝑗∈𝐽 (5)

∑ ∑ 𝑢𝑖𝑗𝑖∈𝐽𝑗
′𝑗∈𝐽 ≤ 𝐴 (6)

𝑢𝑘𝑙 + ∑ 𝑥𝑖𝑙
𝑘𝑙

𝑖<𝑘∈𝐽𝑗
′ + ∑ ∑ 𝑥𝑖𝑗

𝑘𝑙
𝑖∈𝐽𝑗

′ = 1𝑗∈𝐽\{𝑙} , ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′ (7)

𝑧𝑘𝑙 + ∑ 𝑥𝑘𝑙
𝑖𝑙

𝑖>𝑘∈𝐽𝑗
′ + ∑ ∑ 𝑥𝑘𝑙

𝑖𝑗
𝑖∈𝐽𝑗

′ = 1𝑗∈𝐽\{𝑙} , ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′ (8)

𝑐𝑘𝑙 − 𝑣𝑘𝑙 − 𝑃𝑘𝑙 ≥ 0, ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′ (9)

𝑐𝑘𝑙 − 𝑐𝑖𝑗 − 𝑃𝑘𝑙 ≥ 𝐿𝑁(𝑤𝑖𝑗
𝑘𝑙 − 1), ∀𝑗, 𝑙 ∈ 𝐽, 𝑖 ∈ 𝐽𝑗 , 𝑘 ∈ 𝐽𝑙 (if 𝑗 = 𝑙 ∶ 𝑘 > 𝑖) (10)

27

𝑣𝑘𝑙 − 𝑐(𝑘−1)𝑙 − 𝜏(𝑘−1)𝑙
𝑘𝑙 ≥ 0, ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙

′ \ {1} (11)

𝑣1𝑙 − 𝜏𝐿𝑈
1𝑙 ≥ 0, ∀𝑙 ∈ 𝐽 (12)

𝑣𝑘𝑙 − 𝑣𝑖𝑗 − 𝜏𝑖𝑗
(𝑘−1)𝑙 − 𝜏(𝑘−1)𝑙

𝑘𝑙 ≥ 𝐿𝑁(𝑥𝑖𝑗
𝑘𝑙 − 1), ∀𝑗, 𝑙 ∈ 𝐽, 𝑖 ∈ 𝐽𝑙

′, 𝑘 ∈ 𝐽𝑙
′ \ {1}, (𝑖𝑓 𝑗 = 𝑙 ∶ 𝑘 > 𝑖)

 (13)

𝑣1𝑙 − 𝑣𝑖𝑗 − 𝜏𝑖𝑗
𝐿𝑈 𝑙 − 𝜏𝐿𝑈 𝑙

𝑘𝑙 ≥ 𝐿𝑁 (𝑥𝑖𝑗
1𝑙 − 1), ∀𝑗, 𝑙 ∈ 𝐽 ∶ 𝑗 ≠ 𝑙, 𝑖 ∈ 𝐽𝑗

′ (14)

𝑤𝑖𝑗
𝑘𝑙, 𝑥𝑖𝑗

𝑘𝑙 ∈ {0,1}, ∀ 𝑗, 𝑙 ∈ 𝐽 ∪ {𝑓, 𝑡}, 𝑖 ∈ 𝐽𝑗
′ , 𝑘 ∈ 𝐽𝑙

′ (15)

𝑇𝐷, 𝑐𝑘𝑙, 𝑣𝑘𝑙 ≥ 0, ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′ (16)

0 ≤ 𝑢𝑘𝑙 , 𝑧𝑘𝑙 ≤ 1, ∀𝑙 ∈ 𝐽, 𝑘 ∈ 𝐽𝑙
′ (17)

5.7. Development of the model

Based on the model presented by Fontes et al. (2023) and its way of elaborating on the

multiple constraints, below will be described each one of them and its interpretation. The

objective is to minimize the maximum exit time (ET), and its value is determined as the most

extensive completion time of the last (dummy) operation over all of the jobs, as in inequality

 (2). Constraints (3) and (4) Impose that each operation be immediately

followed and immediately preceded by precisely one other operation on the same machine.

Constraint (5) ensures the same number of first and last tasks for the vehicles, whereas

constraint (6) ensures it is at most the number of available vehicles simultaneously in

the system. Constraints (7) and (8) impose each task to be immediately

followed and immediately preceded by precisely one other task, respectively. Given that, a

set of determined tasks is set through constraints (5) to (8), vehicles are handled

implicitly. Hence, an additional index is not required.

For the completion time, two constraints must be satisfied. On the one hand, (9

) indicates that an operation can only be finished after the job arrives at the machine

processing it and its processing time has elapsed. On the other hand, (10) ensures that

the completion of an operation requires the completion of the previous operation on the same

28

machine in addition to its own processing time in the current one. Likewise, a job can only

arrive at a machine to have a specific operation processed after its previous operation has

been completed (c(k−1)l) . The job has already been transported from the machine of the

previous operation to the current one (𝜏(𝑘−1)𝑙
𝑘𝑙) as stated in constraint (11), except for being

the first job operation (k=1). In that case, constraint (12) ensures that the arrival time of the

vehicle to the first operation must have completed the whole travel to the first machine where

the job will be processed, as it will arrive as soon as the job has been transported from the

L/U area to the first processing machine.

Furthermore, if a vehicle has transported some other job (j ∈ J: j ≠ l)Immediately before

the current one, then it needs to (i) deliver such a job to the corresponding machine (𝑣𝑖𝑗); (ii)

pick up the current job from where the previous operation was processed (𝜏𝑖𝑗
(𝑘−1)𝑙) or the LU

if it is the first operation (𝜏𝑖𝑗
𝐿𝑈) and (iii) deliver it to the corresponding machine (𝜏(𝑘−1)𝑙

𝑖𝑗 or

𝜏𝐿𝑈
𝑘𝑙), enforced by constraints (13) and (14). Finally, from constraint (15) to (17) It

defines the nature of the variables.

6. Deep Q-Network (DQN)

The Job Shop Scheduling Problem (JSSP) is a classic optimization problem in operations

research, involving assigning jobs to resources (machines) over time, aiming to optimize

performance measures such as makespan, total tardiness, or throughput. When transport

resources, such as Automated Guided Vehicles (AGVs), are introduced to move jobs between

machines, the complexity of the problem increases significantly. This added complexity

necessitates advanced solution methods capable of handling the dynamic and stochastic

nature of the environment.

Deep Reinforcement Learning (DRL) has emerged as a promising approach for solving

complex scheduling problems due to its ability to learn optimal policies through interaction

with the environment. Specifically, the Deep Q-Network (DQN) algorithm, introduced by

29

Mnih et al. (2015), combines Q-learning with deep neural networks to approximate the

optimal action-value function.

The neural network-based job shop scheduling model evolved through three versions.

Each iteration has progressively optimized both the environmental setup and training

mechanisms to handle complex job scheduling scenarios involving multiple machines,

automated guided vehicles (AGVs), and transport times, which are essential for minimizing

makespan in dynamic scheduling environments.

6.1. Job Shop Scheduling Environment: Structural Setup and Data
Organization

The JobShopEnv class, which simulates the scheduling environment, was designed to

support 4 primary machines and a Loading-Unloading (LU) area, with multiple AGVs

facilitating transport between areas. The environment's state space captures various elements:

• Machine and AGV Statuses: Tracking machine availability and AGV locations.

• Job Sequences and Processing Times: Each job follows a defined sequence of

machines, with varying processing times and machine assignments.

• Transport Times: Each layout is defined by transport time matrices (df1, df2, df3,

and df4) representing the time between locations for each of the four layouts.

Each version of the code improves the efficiency and accessibility of this data. By the

final version, the t_times () function uses a dictionary to simplify the selection of transport

times based on layout input, reducing redundancy.

6.2. Key Functions and Methods

1. Environment Initialization and State Reset

The environment is initialized with critical variables:

o machine_status: A binary array where 0 indicates a free machine, and 1

indicates a busy machine.

30

o agv_status and agv_locations: Track AGV availability and location to manage

job transport.

o job_next_machine: Tracks each job’s sequence to manage its progression

through the job shop.

In each version, the reset () method reinitializes these variables at the beginning of an

episode, preparing the environment for each new cycle. Given the hardware constraints,

additional logging in later versions supports debugging and performance monitoring.

2. State Representation and Sequence Completion Check

o _get_state (): Concatenates data into a single state vector, including machine

and AGV statuses, job-machine times, AGV locations, and locations.

o _check_done (): Verifies whether all jobs have completed their assigned

machine sequences.

3. Step Function and Transition Dynamics

The step(action) method is central to the environment's dynamics. Each action is

represented by a tuple (job, machine, AGV) that assigns a job to a machine with a specific

AGV. The function validates machine and AGV availability, calculates transport and

processing times, and updates the state.

The evolution of step () across versions highlights vital improvements:

o Error Handling and Resource Checking: In NNCodeRMS.py and

NNCodeRMSV2.py, the method handles cases where resources are busy,

advancing the environment's time to the following available resource and

avoiding idle states.

o Transport and Processing Time Calculation:

▪ Transport Time (TT):

𝑇𝑇 = 𝑇𝑒𝑚𝑝𝑡𝑦 + 𝑇𝑙𝑜𝑎𝑑𝑒𝑑 (18)

31

▪ where:

▪ 𝑇𝑒𝑚𝑝𝑡𝑦: Transport time from the AGV’s location to the job’s

location.

▪ 𝑇𝑙𝑜𝑎𝑑𝑒𝑑: Transport time from the job’s location to the target

machine.

▪ Processing Time (PT): Specific to each job-machine pair, calculated

from data tables for each job’s processing requirements on each

machine.

These updates allow the model to track the dynamic scheduling scenario accurately,

responding to job and machine availability in real-time.

6.3. Neural Network Architecture and Training Methodology

The neural network, DQNScheduler, is structured as a Deep Q-network (DQN) to

approximate Q-values for each action-state pair. The DQN's architecture underwent

enhancements to accommodate the increasing complexity of scheduling scenarios:

1. Initial Model Utilized a three-layer architecture with 128 and 64 neurons in hidden

layers, optimized with the Adam optimizer.

2. Expanded Model: Increased hidden layer neurons to 256, 128, and 64, providing a

more detailed mapping of the complex scheduling landscape. RMSprop optimizer

replaced Adam to stabilize gradients, specifically under the sparse reward structure

inherent in job shop scheduling.

3. Final Model: Incorporated a Double DQN with a target network to address the

overestimation bias often present in Q-learning. By decoupling action selection from

target generation, Double DQN improved the model’s accuracy and convergence.

32

o Target Network Update: The target network’s parameters are periodically

synchronized with the leading DQN network, providing a stable target for Q-

value updates and reducing instability.

6.4. Experience Replay and Prioritization

A critical component of the model's improvement is the Replay Buffer:

1. Simple Replay Buffer (First and Second Versions): Stores recent experiences and

samples them randomly for batch updates. The train_dqn_batch function selects a

batch of experiences to compute the loss, defined as the mean squared error (MSE)

between the predicted Q-values and target Q-values:

loss =
1

N
∑ (Q(si, ai) − (ri + γ max

a′
Q′(si+!, a′)))

2

 N
i=1 (19)

where Q (s, a) is the predicted Q-value for state s and action a. 𝛾 is the discount factor,

and Q’ is the target network Q-value.

2. Prioritized Replay Buffer (Final Version): In this version, introduced prioritized

replay with adjustable prioritization (α) and importance sampling (β) to focus learning

on high-error experiences, which likely represent more impactful transitions. This

prioritization is managed by calculating the TD error for each experience:

priority = (|TD error| + ϵ)α (19)

where 𝛼 controls prioritization strength and 𝜖 avoids zero probability for any

experience. Importance weights, w, adjust the loss for bias introduced by prioritized

sampling:

wi = (
1

N
∗

1

P(i)
)

β

 (20)

where P(i) is the probability of sampling experience iii, and β\betaβ increases over

time to reduce sampling bias.

6.5. Training the Model and Epsilon-Greedy Policy

33

Training dynamics evolved to optimize exploration-exploitation balance, with different

epsilon decay strategies across versions:

1. Early Exploration (First Version): The initial model maintained a constant decay

rate to balance exploration and exploitation. The train_dqn_batch function updates

the model with the sampled experiences.

2. Adaptive Decay (Second and Final Versions): In these versions, decay rates adjust

based on the training phase:

o Higher Decay Rates in early episodes prioritize exploration.

o Reduced Decay Rates in later episodes shift focus to exploitation,

consolidating the learned policy.

The final version introduces the Double DQN structure, splitting Q-value

maximization and action selection across two networks to avoid Q-value overestimation:

𝑦 = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎` 𝑄(𝑠′, 𝑎′)𝑦) (21)

where Q is the policy network, and Q′ is the target network.

6.5.1. Epsilon Decay greedy policy

The epsilon-greedy policy is a fundamental strategy in reinforcement learning that

balances exploration (trying new actions) and exploitation (selecting the best-known actions

based on learned Q-values). This balance is particularly crucial in job shop scheduling, where

the model must efficiently search through a vast action space of job-machine-AGV

assignments while quickly adapting to high-value scheduling patterns that minimize

makespan.

1. Epsilon (ε) Parameter and Decay Strategy

The epsilon-greedy policy is controlled by an epsilon parameter (ε), representing the

probability that the model will select a random action rather than the action with the highest

Q-value. Initially, epsilon is set high (e.g., ε = 1.0) to encourage exploration across diverse

34

actions. As training progresses, epsilon is gradually decayed to a lower threshold (e.g.,

𝜖𝑚𝑖𝑛 = 0.1), shifting the focus toward exploitation. The epsilon-greedy policy balances

exploration and exploitation:

π(a|s) = {
random action, with probability ϵ

arg maxa Q(s, a), with probaility 1 − ϵ
 (22)

In this way, the epsilon value decays over time to reduce exploration as the agent learns.

2. Decaying Epsilon Across Episodes

Each version of the model implemented a different epsilon decay strategy to optimize

exploration-exploitation trade-offs:

o Constant Decay Rate (First Version): In this version, epsilon decayed

steadily, encouraging exploration in early episodes and moving to exploitation

in later ones. However, this fixed rate limited flexibility in training adaptation.

o Adaptive Decay Rate (Second and Final Versions): From the second

version onwards, adapted the decay rate dynamically, depending on the

training phase:

▪ Exploration Phase (First 90% of Episodes): As a primary basis, the

focus was on exploring the solution space to focus on exploitation

based on the possible solution at the end.

▪ Exploitation Phase (Last 10% of Episodes): Once the solution space

was explored, it was essential to improve the possible results obtained.

o Adaptive Decay Rate (Final Version): In this version, the decay rate was

expanded dynamically across the phases:

▪ Explorative Phase (First 30% of Episodes): A slow decay rate (e.g.,

0.999) maintained a high epsilon value to maximize exploration. This

phase ensured a thorough search through potential job-machine-AGV

configurations, helping the model learn the broader action space.

35

▪ Balanced Phase (30-50% of Episodes): A moderate decay rate (e.g.,

0.995) gradually reduced exploration, allowing the model to begin

exploiting known high-reward actions while still discovering

alternative strategies.

▪ Exploitation Phase (Final 50% of Episodes): A faster decay rate

(e.g., 0.990) minimized epsilon, steering the model toward

exploitation. This phase consolidated learning, prioritizing the

refinement of high-value strategies identified earlier.

3. Action Selection and Behavior Adjustment

At each decision step, the model generates a random number between 0 and 1:

o If the number is less than epsilon, the model performs exploration by

selecting a random action. This prevents the model from getting trapped in

suboptimal, repetitive schedules and helps it discover potential high-reward

actions.

o If the number is more significant than epsilon, the model performs

exploitation by selecting the action with the highest Q-value for the current

state. This Q-value is derived from the neural network’s predictions, reflecting

the cumulative expected reward for each action.

In the final version, the epsilon-greedy policy further benefited from prioritized

experience replay. The model reinforced learning in challenging or impactful states by re-

sampling experiences with high TD (temporal difference) errors, accelerating convergence to

optimal job scheduling strategies even as epsilon decreased.

4. Impact on Scheduling Performance

The epsilon-greedy policy, especially with adaptive decay, played a critical role in

balancing initial exploration with later exploitation. This approach improved the model’s

36

ability to identify effective job-machine-AGV combinations, minimizing makespan across

diverse layouts and job sets. By managing exploration strategically, the policy ensured that

the final model could generalize across various scheduling environments and specialize in

efficient, makespan-minimizing schedules as training progressed.

In summary, the epsilon-greedy policy’s adaptive decay facilitated a progressive

exploration-exploitation transition, critical to uncovering and solidifying high-quality

scheduling policies. This strategy contributed to the model’s robust learning curve, driving its

capacity to minimize makespan effectively within the job shop environment.

6.6. Performance and Results

The progressive refinement across code versions produced a neural network model

capable of:

• Efficient Makespan Minimization: Through dynamic action selection based on real-

time state representation.

• Scalable Action-Space Handling: By incorporating prioritized experience replay and

the Double DQN architecture, the model effectively learns optimal actions even in

large, sparse action spaces.

The final version demonstrates robustness in handling high-dimensional scheduling tasks

with real-time decision-making. The model achieved minimized makespan values, with

improved stability and convergence facilitated by the prioritized replay buffer and target

network architecture. Performance metrics were logged using TensorBoard, providing

detailed insights into reward trajectories across training episodes.

Finally, this neural network-based scheduling model integrates complex operations

research concepts within a deep learning framework, showcasing progressive improvements

that advance both model robustness and computational efficiency. Each enhancement in

neural network architecture and scheduling environment reinforces the model’s capacity to

37

handle dynamic and realistic job shop scenarios with high precision and minimal

computational overhead.

7. Results

Based on the model and results from various authors, this section will discuss the

findings, compute the optimal gap between this model and others addressing the same issue,

and detail the constraints encountered during development and testing. The reinforcement

learning model was created in VS Code and deployed on a MacBook Pro with an M1 chip

and 8GB of RAM. The optimal gap will be evaluated against the results in Table 3, using the

following formula for percentage calculation:

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑔𝑎𝑝 =
𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑜𝑛 𝐷𝑄𝑁 𝑀𝑜𝑑𝑒𝑙

𝑉𝑎𝑙𝑢𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑜𝑛 𝑀𝐼𝐿𝑃 𝑀𝑜𝑑𝑒𝑙
− 1 (23)

This measure will be applied as a math formula to contrast the results. For this purpose,

this will be evaluated on the benchmark instances created for the problem explained by Bilge

& Ulusoy (1995); in the Literature Review section, Table 1 enumerates some

solutions deployed across the multiple papers enunciated to compare with.

The table below presents three versions of the model. The first uses the Adam

optimizer and shows the best feasible time achieved. The second is a more advanced model

with the RMSprop optimizer, applying the same methodology to preserve the results. The

final version also uses the RMSprop optimizer but with bolder hyperparameters and a

modified environment to ensure the MILP Model's presentation. Later, these results will be

compared to those of the MILP Model and the times calculated from the following simplified

Lower Bound calculated out of the following formulas:

𝐶𝑗 = ∑ 𝑝𝑗𝑚𝑚∈𝑀𝑗
+ ∑ 𝑡𝑗,𝑚→𝑚′𝑚∈𝑀𝑗,𝑚′→𝑛𝑒𝑥𝑡 (𝑚) (24)

Where 𝐶𝑗 is the completion time of a job, 𝑝𝑗𝑚 is the processing time of a job in the

machines assigned to it, and 𝑡𝑗,𝑚→𝑚′ is the transport time associated to the job from a

38

machine to the following one. The calculation is made for all the jobs in order to be compared

against the following one:

𝑇𝑙𝑠 = max
𝑗∈𝐽

𝐶𝑗 (25)

Where 𝑇𝑙𝑠 is the optimal time to be reeached when all resources are available or

mostly commonly known as the Lower Bound (LB), indicating the minimum possible

feasible time. In this scenario, this time includes the transport times from Loading/Unloading

(LU) Area to the machines, and the last transport task to return the job to the LU Area.

Table 2.

Results for the BU instances to minimize the exit time (ET) for 2 AGVs.

Instance Set Layout MILP LB PSOSA ALS MA

EX11 1 1 114 82 114 114 114

EX12 1 2 90 76 90 90 90

EX13 1 3 98 78 98 98 98

EX14 1 4 140 97 140 140 140

EX21 2 1 116 92 116 116 116

EX22 2 2 82 80 82 82 82

EX23 2 3 89 84 89 89 89

EX24 2 4 134 98 134 134 134

EX31 3 1 121 90 121 121 121

EX32 3 2 89 79 89 89 89

EX33 3 3 96 79 96 96 96

EX34 3 4 148 102 148 148 148

EX41 4 1 136 95 136 136 138

EX42 4 2 100 73 100 100 100

EX43 4 3 102 70 102 102 102

EX44 4 4 163 114 163 163 163

EX51 5 1 110 77 110 110 110

EX52 5 2 81 67 81 81 81

EX53 5 3 89 67 89 89 89

EX54 5 4 134 97 134 134 134

EX61 6 1 129 102 129 130 129

EX62 6 2 102 92 102 102 102

EX63 6 3 105 92 105 105 105

EX64 6 4 151 104 151 151 151

EX71 7 1 146 94 134 133 134

EX72 7 2 86 80 86 87 86

39

EX73 7 3 93 80 93 95 93

EX74 7 4 169 114 161 161 161

EX81 8 1 167 154 167 167 167

EX82 8 2 155 146 155 155 155

EX83 8 3 155 146 155 155 155

EX84 8 4 178 160 178 178 178

EX91 9 1 127 99 127 127 127

EX92 9 2 106 95 106 106 106

EX93 9 3 107 95 107 107 107

EX94 9 4 149 105 149 149 149

EX101 10 1 153 130 153 153 153

EX102 10 2 139 118 139 139 139

EX103 10 3 139 118 139 139 139

EX104 10 4 183 134 183 183 183

Note. Adapted from "A hybrid particle swarm optimization and simulated annealing algorithm for the

job shop scheduling problem with transport resources" by Fontes et al. (2023), European Journal of

Operational Research, 306(3), 1155. https://doi.org/10.1016/j.ejor.2022.09.006.

The following images represent the possible combinations in which the models were

trained and the obtained makespan for each one of the scenarios:

Figure 2.

Makespan given AGVs ranges for each layout and its sets.

https://doi.org/10.1016/j.ejor.2022.09.006

40

Figure 3.

Makespan given AGVs ranges for each layout and its sets.

Figure 4.

Makespan given AGVs ranges for each layout and its sets.

41

Figure 5.

Makespan given AGVs ranges for each layout and its sets.

Figure 6.

Makespan given AGVs ranges for each layout and its sets.

42

Figure 7.

Makespan given AGVs ranges for each layout and its sets.

Figure 8.

Makespan given AGVs ranges for each layout and its sets.

43

Figure 9.

Makespan given AGVs ranges for each layout and its sets.

Figure 10.

Makespan given AGVs ranges for each layout and its sets.

44

Figure 11.

Makespan given AGVs ranges for each layout and its sets.

Figure 12.

Makespan given AGVs ranges for each layout and its sets.

45

Figure 13.

Makespan given AGVs ranges for each layout and its sets.

A common issue is that the availability of AGVs or other transport resources alone isn't

enough to run the model efficiently. Increasing model robustness led to longer execution

times: 20 hours for the first model, 26 for the second, and 46 for the final version under 200

scenarios. Per scenario, times rose from 6 to 8 to 14 minutes. Using multiple GPUs or faster

cores can improve these metrics. Additional calculations will assess diverse error metrics, and

a simplified Lower Bound will facilitate robust benchmark analysis where AGVs match the

number of simultaneous jobs.

8. Analysis

Once the results are obtained, the most important part is to evaluate the performance of

the algorithm employed to obtain the results. Therefore, the mean squared error (MSE) as an

error measurement performs a vital part in the improvements and measurement of the results,

the same as the difference obtained against other solutions and MILP Models implemented.

In this model, Spearman's rank correlation coefficient was chosen to analyze the

relationship between the number of jobs and the percentage difference in makespan obtained

46

in each configuration. Spearman's coefficient is particularly useful here because it measures

the strength and direction of a monotonic relationship between two variables, without

assuming a linear association or requiring normally distributed data, given that each set has a

different number of jobs and processing times. This makes it well-suited for our dataset,

where an increase in the number of jobs may correlate with changes in makespan differences

in a way that is not strictly linear but potentially consistently increasing or decreasing.

Limited resources like AGVs contribute to this difference when the number of jobs exceeds

the available AGVs, making scenario evaluation difficult. The table below shows Spearman’s

correlation coefficient values, and statistical measures against the optimal time to be reached

when all resources are available for four scenarios:

- Scenario 1: Second model with RMS optimizer

- Scenario 2: First model with Adam optimizer

- Scenario 3: Second model with RMS optimizer, excluding set 8 from all layouts

- Scenario 4: First model with Adam optimizer, excluding set 8 from all layouts

- Scenario 5: Third model with RMS optimizer

- Scenario 6: Third model with RMS optimizer, excluding set 8 from all layouts

Table 3.

Analysis of deployment against optimal calculated

Scenario Max Difference Min Difference Mean Difference
Spearman's Correlation

Coefficient
P-value

Scenario 1 115.38% 1.06% 36.42% 0.6202 0.000019663

Scenario 2 127.69% 0.00% 39.07% 0.6977 0.000000561

Scenario 3 96.08% 1.06% 31.74% 0.6165 0.000048505

Scenario 4 92.16% 0.00% 32.18% 0.7097 0.000001258

Scenario 5 123.77% 0.00% 36.42% 0.6145 0.000014992

Scenario 6 67.31% 0.00% 29.01% 0.6093 0.000049054

47

The formula for Spearman’s rank correlation, denoted as 𝜌, is based on ranking each

variable and computing the correlation of these ranks. It is calculated as:

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
 (26)

Where 𝑑𝑖 represents the difference between the ranks of each pair of observations,

and n is the total number of observations. By ranking both variables, Spearman's 𝜌 is less

sensitive to outliers than Pearson’s correlation coefficient, making it more robust for data that

may have irregular distributions or outlying values. The value of 𝜌 ranges from -1 to 1. A 𝜌

value close to 1 indicates a strong positive monotonic relationship (as one variable increases,

the other also increases), while a value close to -1 suggests a strong negative monotonic

relationship. A 𝜌 near zero implies little to no monotonic association. Thus, Spearman’s

coefficient enables us to interpret whether an increase in job numbers is associated with an

increase or decrease in the makespan difference percentage, providing insight into how

scaling the job count may affect the model’s deviation from optimal results. In this case, it

indicates that there is a moderate to strong positive relationship for both variables (number of

jobs and difference obtained from the optimal time with no resource limitation).

Once the difference against the LB proposed is calculated and its behavior has been

already identified, indicating a positive relationship between the number of jobs and the

difference obtained in percentage. The MSE must be evaluated on the different instances to

analyze whether the improvement was effectively implemented. As mentioned above, Table

1 shows the Exit Times (ET) obtained for different types of models in a 2 AGV scenario. The

following table resumes the error measurement and its impact on the performance:

48

Table 4.

MSE for 2 AGVs instances compared on benchmark

MSE Model 1 Model 2 Model 3

MILP 9013,425 8163,45 2903,525

LB 14506,475 13596,05 6295,775

PSOSA 9097,425 8258,45 2967,725

ALS 9080,35 8243,125 2956,8

MA 9084,925 8247,75 2964,225

Figure 14.

MSE across benchmark models with the final version

The Mean Squared Error (MSE) plays a critical role in model evaluation, especially

within neural networks. As shown in the previous table, MSE values offer a precise and

quantitative assessment of a model's accuracy. The following formula indicates how this error

metric is considered:

MSE =
1

n
∑ (yi − ŷi)

2n
i=1 (27)

Where n refers to the number of data points, yi is the actual point obtained on the

neural network developed for this case, and ŷi is the predicted or estimated value of the i-th

data point. For this instance, the data point to be reached based on different algorithms.

49

A lower MSE signifies that the predicted values are closely aligned with the actual

values, reflecting better model performance. There are several benefits to using MSE as an

error metric. Firstly, it disproportionately penalizes larger errors due to the squaring of

individual errors, prompting the model to minimize substantial deviations and thereby

enhance reliability. Secondly, MSE is differentiable, which is vital for optimization

algorithms employed in training neural networks. It provides a smooth gradient that aids

effective backpropagation and convergence to optimal solutions.

Furthermore, evaluating neural networks with MSE is essential for comparing

different models. Employing consistent and standardized error metrics like MSE allows for

fair comparisons across various models and datasets. In operations research and statistics, this

comparison is crucial for selecting the most suitable model for a specific task. It enables

researchers and practitioners to objectively assess performance enhancements and make data-

driven decisions. Table 4 illustrates the MSE for different models, demonstrating significant

improvements in model evolution. This progress highlights the importance of iterative

evaluation and refinement in achieving top-tier model performance. Continuous assessment

with metrics like MSE ensures that each iteration improves upon previous versions, reducing

errors and boosting accuracy.

In summary, MSE is indispensable in the statistical evaluation of neural networks. It

offers a robust framework for minimizing prediction errors, optimizing model training, and

facilitating objective comparisons. Focusing on MSE ensures that models are not only

accurate but also reliable and effective in real-world applications. These principles are

demonstrated by the results, which show a reduction in mean difference—a critical factor in

cost-impact decisions for practical applications.

50

Table 5.

Performance Metrics of Different Models against MILP Makespan

Model Mean Difference Standard Deviation

Model 1 90,625 28,654

Model 2 87,850 21,384

Model 3 49,325 21,969

Figure 15.

Performance Metrics of Different Models against MILP Makespan

As detailed in the Results section, the optimal Gap calculated based on (23) is

determined for each instance. The current model shows significant improvement, highlighted

by substantial reductions in the relevant metrics. This enhancement is attributed to the

increase in the number of episodes and the expansion of the buffer, which facilitates learning

from past experiences and developing effective policies to address the problem. Although the

average gap continues to decrease, it does not reach the optimal solution due to

computational time constraints associated with broader data sets. There is a trade-off between

optimality, generalization, and computational time; improving one of these aspects impacts

the others due to their interdependence. If greater optimality is sought, computational times

will rise, and generalization might be affected. Similarly, enhancing generalization could lead

to longer computation times and suboptimal optimization, potentially improving but not

51

guaranteeing a perfect result. Higher computational times support the exploration and

exploitation of the other two aspects, contingent on having appropriate resources.

Table 6.

Optimal Gap Metrics

Model Mean Optimal Gap Standard Deviation

Model 1 76,48% 0,27189

Model 2 74,78% 0,24720

Model 3 41,63% 0,21275

The improvement in results was attributed to dynamic hyperparameter tuning and

optimized data processing techniques within the neural network’s tensor, which included

modifications that significantly enhanced performance metrics. The alterations in

hyperparameters led to the discovery of more efficient scheduling policies, consequently

reducing the makespan and increasing the stability of training through larger batch sizes and

replay buffers. Moreover, adjusting the epsilon decay rate facilitated the agent's convergence

to superior policies by ensuring sustained exploration. However, these advancements

necessitated greater computational resources, as larger batch sizes and replay buffers

escalated memory consumption, posing a challenge to systems with limited RAM.

Additionally, the networks' complexity and the extended training duration demanded

meticulous resource management and patience.

52

Figure 16.

Makespan obtained for 2 AGVs comparing models vs MILP.

Moreover, evaluating finer-tuning options for each instance and scenario would

enhance the performance metrics and accuracy of the model, given the nature of a MILP

model and every optimization problem. The logic behind a MILP model, which serves as the

primary benchmark due to its hybrid approach, is to assess all possible combinations to

identify the optimal result. Dynamically modifying hyperparameters can help escape local

optima and identify global optima, thereby improving performance against benchmark

instances. Performance improvements should be proportionately increased across all

scenarios rather than focusing solely on the evaluated ones, considering this could result in

higher computational requirements such as increased GPU or CPU consumption and memory

usage. By dynamically and randomly evaluating the scenarios, some results exhibited

significant improvement. However, in extreme situations where resources are less critical, the

model's behavior varies depending on the encoding and decoding methods used.

Consequently, it could be adjusted to achieve consistent outcomes and allow for ongoing

modifications.

53

One notable benefit of training these models is their capacity to make predictions for

similar scenarios without starting from scratch, as well as their ability to personalize or

generalize based on the intended use. Additionally, the model can benefit from Transfer

Learning (TL), which facilitates generalization according to the desired application.

Evaluating results using different optimizers is essential due to their differing characteristics.

While both Adam and RMSProp are designed to adjust learning rates, Adam uses momentum

concepts, whereas RMSProp normalizes gradients using their root mean square (Ruder,

2016). This difference leads to varied performance depending on the specific application and

data structure. Therefore, dynamic fine-tuning and model selection are crucial to minimize

variability, enhance accuracy, and continually measure error metrics for ongoing

improvement.

9. Conclusions

This thesis presents a novel approach to the Job Shop Scheduling Problem (JSSP) with

transport resources, using a Deep Q-Network (DQN)-based methodology that integrates

complex machine scheduling and Automated Guided Vehicle (AGV) coordination within a

dynamic reinforcement learning framework. By simulating realistic conditions for job

scheduling and transportation within a flexible production environment, this model

significantly advances current research in operations management and optimization.

The development process included multiple iterations of the DQN model to enhance

robustness and computational efficiency. The model architecture, incorporating prioritized

experience replay and a Double DQN framework, enables it to learn high-quality scheduling

policies effectively. By balancing exploration and exploitation through an adaptive epsilon-

greedy policy, the model dynamically navigates the large action space of JSSP with transport,

identifying optimal job-machine-AGV combinations that minimize makespan across various

job sets and layouts. Key methodological steps, such as systematic hyperparameter tuning

54

and prioritized experience replay, allowed the model to handle high-dimensional state spaces

and complex scheduling scenarios. This iterative approach—starting from initial neural

network structures and progressing through refined architectures—ensures that the model is

computationally efficient, scalable, and adaptable to real-world manufacturing environments

with limited computational resources, like an 8 GB RAM MacBook M1.

The model was benchmarked against traditional MILP models, demonstrating its

capability to approximate optimal scheduling solutions with a smaller optimality gap in

shorter times, particularly in configurations with constrained transport resources.

Performance metrics, including mean squared error (MSE) and optimality gap, indicate that

the DQN model not only improves scheduling efficiency but also achieves results that align

with established optimization benchmarks. Moreover, Spearman's correlation analysis

illustrates the model's reliability across varying job counts, reinforcing its adaptability in

scaling scenarios.

Further refinement could involve extending the training on additional complex scenarios

or leveraging Transfer Learning (TL) to apply the model across different job shop

environments, ensuring broader applicability in real-world settings. Enhancing computational

capacity, such as through distributed systems or GPU utilization, may also yield further

improvements in model performance, particularly for larger datasets and more complex

scheduling configurations. This work lays a strong foundation for integrating machine

learning in production scheduling, with implications for practitioners aiming to streamline

operations through advanced scheduling models that incorporate transport resources. The

findings encourage ongoing exploration of reinforcement learning-based scheduling and

hybrid optimization methods to address the growing demands of agile manufacturing

environments through implementing fine-tuning policies and scenarios and measuring the

errors to outperform better.

55

10. Future Work

Potential areas for further research include leveraging cloud computing resources to

overcome hardware limitations by utilizing parallelization. This can be achieved by

distributing computations across multiple servers or using high-performance cloud-based

GPUs, which would enable the training of more complex models or enhance the efficiency of

existing ones.

Broadening the model to encompass multi-agent systems is another promising direction.

This would involve simulating multiple agents (such as various AGVs or scheduling

managers) coordinating within an environment, potentially resulting in more robust and

flexible scheduling solutions. Implementing this approach could incorporate algorithms

designed for multi-agent reinforcement learning, considering the interactions and shared

objectives of multiple agents.

Validating the developed methodology in real-world industrial scenarios using actual data

would demonstrate its practical utility. Collaborating with industry partners to access real

scheduling data and constraints could reveal additional insights and challenges that are not

present in simulated environments. Such real-world applications would also facilitate

evaluating the model's scalability and adaptability to different industrial contexts, providing

valuable feedback for further refinement.

Furthermore, integrating the proposed environment with other constraints unrelated to

scheduling, such as predictive maintenance, battery limitations, and dynamic routing without

fixed transport times, but with real-time decision-making by an AGV, could offer a more

comprehensive scenario (Dehnavi-Arani et al., 2019). These aspects are addressed in the

literature but are not yet unified.

56

11. References

Abderrahim, A. B. (2023). A multi-agent system simulation-based approach for

collision avoidance in integrated job-shop scheduling problem with transportation tasks.

Journal of Manufacturing Systems, 68, 209–226.

https://doi.org/10.1016/j.jmsy.2023.03.011

Alabajee, M., Fadhil, A., & Alsarraj, R. (2020). Job shop scheduling problem:

Literature review. Tikrit Journal of Pure Science, 25(4), 91–100.

https://doi.org/10.25130/tjps.v25i4.277

Amirteimoori, A., Tirkolaee, E. B., Simic, V., & Weber, G.-W. (2023). A parallel

heuristic for hybrid job shop scheduling problem considering conflict-free AGV routing.

Swarm and Evolutionary Computation, 79, 101312.

https://doi.org/10.1016/j.swevo.2023.101312

Amjad, M., Ahmad, A., Rehmani, M. H., & Umer, T. (2018). A review of EVs

charging: From the perspective of energy optimization, optimization approaches, and

charging techniques. Transportation Research Part D: Transport and Environment, 62,

386-417. https://doi.org/10.1016/j.trd.2018.03.006

Awad, M., & Abd-Elaziz, H. (2021). A new perspective for solving manufacturing

scheduling based problems respecting new data considerations. Processes, 9(10), 1700.

https://doi.org/10.3390/pr9101700

Azadeh, K., Roshanaei, V., Hatami, S., & Maleki, A. (2020). A MILP model for

energy-efficient job shop scheduling problem with transport resources. INRIA HAL

Science. https://inria.hal.science/hal-02992767

Azzouz, A., Ennigrou, M., & Ben Said, L. (2017). A self-adaptive hybrid algorithm

for solving flexible job-shop problem with sequence dependent setup time. Procedia

Computer Science, 112, 457-466. https://doi.org/10.1016/j.procs.2017.08.023

https://doi.org/10.1016/j.jmsy.2023.03.011
https://doi.org/10.25130/tjps.v25i4.277
https://doi.org/10.1016/j.swevo.2023.101312
https://doi.org/10.1016/j.trd.2018.03.006
https://doi.org/10.3390/pr9101700
https://inria.hal.science/hal-02992767
https://doi.org/10.1016/j.procs.2017.08.023

57

Ba, L., Li, Y., & Yang, M. (2016). Modelling and simulation of a multi-resource

flexible job-shop scheduling. International Journal of Simulation Modelling, 15(1),

157–169. https://doi.org/10.2507/ijsimm15(1)co3

Bilge, U., & Ulusoy, G. (1995). Time window approach to simultaneous scheduling

machines and material handling system in an FMS. Operations Research, 43(6), 1058–

1071. https://doi.org/10.1287/opre.43.6.1058

Bozzi, A. (2023). Dynamic MPC-based scheduling in a smart manufacturing system

problem. IEEE Access, 11, 141987–141996.

https://doi.org/10.1109/access.2023.3341504

Canese, L., Cardarilli, G. C., Di Nunzio, L., Fazzolari, R., Giardino, D., Re, M.,

& Spanò, S. (2021). Multi-agent reinforcement learning: A review of challenges and

applications. Applied Sciences, 11(11), 4948. https://doi.org/10.3390/app11114948

Chang, J., Yu, D., Hu, Y., He, W., & Yu, H. (2022). Deep reinforcement learning

for dynamic flexible job shop scheduling with random job arrival. Processes, 10(4), 760.

https://doi.org/10.3390/pr10040760

Chen, Z., Zhang, L., Wang, X., & Gu, P. (2022). Optimal design of flexible job

shop scheduling under resource preemption based on deep reinforcement learning.

Complex Systems Modeling and Simulation, 2(2), 174–185.

https://doi.org/10.23919/csms.2022.0007

Chen, T., Bu, S., Li, X., Kang, J., Yu, F., & Han, Z. (2022). Peer-to-peer energy

trading and energy conversion in interconnected multi-energy microgrids using multi-

agent deep reinforcement learning. IEEE Transactions on Smart Grid, 13(1), 715–727.

https://doi.org/10.1109/tsg.2021.3124465

Dehnavi-Arani, S., Sabaghian, A., & Fazli, M. (2019). A job shop scheduling and

location of battery charging storage for the automated guided vehicles (AGVs). Journal

https://doi.org/10.2507/ijsimm15(1)co3
https://doi.org/10.1287/opre.43.6.1058
https://doi.org/10.1109/access.2023.3341504
https://doi.org/10.3390/app11114948
https://doi.org/10.3390/pr10040760
https://doi.org/10.23919/csms.2022.0007
https://doi.org/10.1109/tsg.2021.3124465

58

of Optimization in Industrial Engineering, 12(2), 121-129.

https://doi.org/10.22094/JOIE.2018.543203.1511

Fan, H., & Su, R. (2022). Mathematical modelling and heuristic approaches to job-

shop scheduling problem with conveyor-based continuous flow transporters. Computers

& Operations Research, 148, 105998. https://doi.org/10.1016/j.cor.2022.105998

Fontes, D. B. M. M., Homayouni, S. M., & Gonçalves, J. F. (2023). A hybrid

particle swarm optimization and simulated annealing algorithm for the job shop

scheduling problem with transport resources. European Journal of Operational

Research, 306(3), 1140–1157. https://doi.org/10.1016/j.ejor.2022.09.006

Fontes, D. B. M. M., Homayouni, S. M., & Resende, M. G. C. (2022). Job-shop

scheduling—joint consideration of production, transport, and storage/retrieval systems.

Journal of Combinatorial Optimization, 44(2), 1284–1322.

https://doi.org/10.1007/s10878-022-00885-8

Han, B., & Yang, J. (2020). Research on adaptive job shop scheduling problems

based on dueling double DQN. IEEE Access, 8, 186474–186495.

https://doi.org/10.1109/access.2020.3029868

Han, B., & Yang, J. (2021). A deep reinforcement learning based solution for

flexible job shop scheduling problem. International Journal of Simulation Modelling,

20(2), 375–386. https://doi.org/10.2507/ijsimm20-2-co7

Homayouni, S. M., & Fontes, D. B. M. M. (2021). A MILP model for energy-

efficient job shop scheduling problem and transport resources. Advances in Production

Management Systems: Artificial Intelligence for Sustainable and Resilient Production

Systems. IFIP Advances in Information and Communication Technology, 630, 378-387.

https://doi.org/10.1007/978-3-030-85874-2_1

https://doi.org/10.22094/JOIE.2018.543203.1511
https://doi.org/10.1016/j.cor.2022.105998
https://doi.org/10.1016/j.ejor.2022.09.006
https://doi.org/10.1007/s10878-022-00885-8
https://doi.org/10.1109/access.2020.3029868
https://doi.org/10.2507/ijsimm20-2-co7
https://doi.org/10.1007/978-3-030-85874-2_1

59

Jungbluth, S., Gafur, N., Popper, J., Yfantis, V., & Ruskowski, M. (2022).

Reinforcement learning-based scheduling of a job-shop process with distributedly

controlled robotic manipulators for transport operations. IFAC PapersOnLine, 55(2),

156–162. https://doi.org/10.1016/j.ifacol.2022.04.186

Kim, S., Neale, V., Chowdhary, G., & Tran, H. (2022). Disentangling successor

features for coordination in multi-agent reinforcement learning.

https://doi.org/10.48550/arxiv.2202.07741

Kim, S., Neale, V., Chowdhary, G., & Tran, H. (2022). Disentangling successor

features for coordination in multi-agent reinforcement learning. arXiv preprint.

https://doi.org/10.48550/arxiv.2202.07741

Kirilov, L., & Guliashki, V. (2017). An algorithm for generating a dispersed

population of feasible schedules for flexible job shop problems. Information

Technologies and Control, 15(3), 16–19. https://doi.org/10.1515/itc-2017-0029

Kumar, R., Tiwari, M., & Shankar, R. (2003). Scheduling of flexible

manufacturing systems: An ant colony optimization approach. Proceedings of the

Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture,

217(10), 1443–1453. https://doi.org/10.1243/095440503322617216

Latthawanichphan, J., Songserm, W., & Wuttipornpun, T. (2019). An instance

generator for scheduling problems featuring options for unequal stages and unequal

parallel machines. International Journal of Technology and Engineering Studies, 5(4),

106–112. https://doi.org/10.20469/ijtes.5.10001-4

Li, H., Duan, J., & Zhang, Q. (2020). Multi-objective integrated scheduling

optimization of semi-combined marine crankshaft structure production workshop for

green manufacturing. Transactions of the Institute of Measurement and Control, 43(3),

579–596. https://doi.org/10.1177/0142331220945917

https://doi.org/10.1016/j.ifacol.2022.04.186
https://doi.org/10.48550/arxiv.2202.07741
https://doi.org/10.48550/arxiv.2202.07741
https://doi.org/10.1515/itc-2017-0029
https://doi.org/10.1243/095440503322617216
https://doi.org/10.20469/ijtes.5.10001-4
https://doi.org/10.1177/0142331220945917

60

Li, W., Han, D., Gao, L., Li, X., & Li, Y. (2022). Integrated production and

transportation scheduling method in hybrid flow shop. Chinese Journal of Mechanical

Engineering, 35(1). https://doi.org/10.1186/s10033-022-00683-7

Li, Y., Chen, X., An, Y., Zhao, Z., Cao, H., & Jiang, J. (2023). Integrating machine

layout, transporter allocation and worker assignment into job-shop scheduling solved by

an improved non-dominated sorting genetic algorithm. Computers & Industrial

Engineering, 179, 109169. https://doi.org/10.1016/j.cie.2023.109169

Lv, S. (2024). GABB: The plan-based job scheduling optimized by genetic algorithm

for HPC systems with shared burst buffers., 19, 109. https://doi.org/10.1117/12.3034965

Momenikorbekandi, A., & Abbod, M. F. (2023). A novel metaheuristic hybrid

parthenogenetic algorithm for job shop scheduling problems: Applying an optimization

model. IEEE Access, 11, 56027-56045. https://doi.org/10.1109/ACCESS.2023.3278372

Meng, L., Zhang, B., Gao, K., & Duan, P. (2023). An MILP model for energy-

conscious flexible job shop problem with transportation and sequence-dependent setup

times. Sustainability, 15(1), 776. https://doi.org/10.3390/su15010776

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., et al. (2015). Human-level

control through deep reinforcement learning. Nature, 518(7540), 529–533.

Moin, N., Sin, O., & Omar, M. (2015). Hybrid genetic algorithm with multiparents

crossover for job shop scheduling problems. Mathematical Problems in Engineering,

2015, 1–12. https://doi.org/10.1155/2015/210680

Muthiah, A., Rajkumar, A., & Rajkumar, R. (2016). Hybridization of Artificial

Bee Colony algorithm with Particle Swarm Optimization algorithm for flexible Job

Shop Scheduling. https://doi.org/10.1109/iceets.2016.7583875

https://doi.org/10.1186/s10033-022-00683-7
https://doi.org/10.1016/j.cie.2023.109169
https://doi.org/10.1117/12.3034965
https://doi.org/10.1109/ACCESS.2023.3278372
https://doi.org/10.3390/su15010776
https://doi.org/10.1155/2015/210680
https://doi.org/10.1109/iceets.2016.7583875

61

Parveen, S. and Ullah, H. (2011). Review on job-shop and flow-shop scheduling

using. Journal of Mechanical Engineering, 41(2), 130-146.

https://doi.org/10.3329/jme.v41i2.7508

Ren, J., Ye, C., & Li, Y. (2020). A two-stage optimization algorithm for multi-

objective job-shop scheduling problem considering job transport. Journal Européen des

Systèmes Automatisés, 53(6), 915-924. https://doi.org/10.18280/jesa.530617

Ramasubbareddy, S., Swetha, E., Luhach, A., & Srinivas, T. (2021). A multi-

objective genetic algorithm-based resource scheduling in mobile cloud computing.

International Journal of Cognitive Informatics and Natural Intelligence, 15(3), 58–73.

https://doi.org/10.4018/ijcini.20210701.oa5

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747. https://doi.org/10.48550/arXiv.1609.04747

Song, L., Liu, C., & Shi, H. (2022). Discrete particle swarm algorithm with Q-

learning for solving flexible job shop scheduling problem with parallel batch processing

machine. Journal of Physics Conference Series, 2303(1), 012022.

https://doi.org/10.1088/1742-6596/2303/1/012022

Song, L., Liu, C., Shi, H., & Zhu, J. (2022). An improved immune genetic algorithm

for solving the flexible job shop scheduling problem with batch processing. Wireless

Communications and Mobile Computing, 2022, 1–17.

https://doi.org/10.1155/2022/2856056

Tassel, P., Kovács, B., Gebser, M., Schekotihin, K., Kohlenbrein, W., & Schrott-

Kostwein, P. (2022). Reinforcement learning of dispatching strategies for large-scale

industrial scheduling. Proceedings of the International Conference on Automated

Planning and Scheduling, 32, 638–646. https://doi.org/10.1609/icaps.v32i1.19852

https://doi.org/10.3329/jme.v41i2.7508
https://doi.org/10.18280/jesa.530617
https://doi.org/10.4018/ijcini.20210701.oa5
https://doi.org/10.48550/arXiv.1609.04747
https://doi.org/10.1088/1742-6596/2303/1/012022
https://doi.org/10.1155/2022/2856056
https://doi.org/10.1609/icaps.v32i1.19852

62

Wang, Y., Liu, H., Zheng, W., Xia, Y., Li, Y., Chen, P., … & Xie, H. (2019).

Multi-objective workflow scheduling with Deep-Q-network-based multi-agent

reinforcement learning. IEEE Access, 7, 39974–39982.

https://doi.org/10.1109/access.2019.2902846

Wu, S., Wang, T., Li, C., & Zhang, C. (2021). Containerized distributed value-

based multi-agent reinforcement learning. https://doi.org/10.48550/arxiv.2110.08169

Xu, Z., Zhang, B., Li, D., Zhang, Z., Zhou, G., Chen, H., … & Fan, G. (2022).

Consensus learning for cooperative multi-agent reinforcement learning.

https://doi.org/10.48550/arxiv.2206.02583

Yao, Y., Liu, Q., Li, X., & Gao, L. (2023). A novel MILP model for job shop

scheduling problem with mobile robots. Robotics and Computer-Integrated

Manufacturing, 81, 102506. https://doi.org/10.1016/j.rcim.2022.102506

Yu, H., Gao, Y., Wang, L., & Meng, J. (2020). A hybrid particle swarm

optimization algorithm enhanced with nonlinear inertial weight and Gaussian mutation

for job shop scheduling problems. Mathematics, 8(8), 1355.

https://doi.org/10.3390/math8081355

Zambrano-Rey, G. M., González-Neira, E. M., Forero-Ortiz, G. F., Ocampo-

Monsalve, M. J., & Rivera-Torres, A. (2023). Minimizing the expected maximum

lateness for a job shop subject to stochastic machine breakdowns. Annals of Operations

Research. https://doi.org/10.1007/s10479-023-05592-z

Zeng, R., & Wang, Y. (2018). A chaotic simulated annealing and particle swarm

improved artificial immune algorithm for flexible job shop scheduling problem. Eurasip

Journal on Wireless Communications and Networking, 2018(1).

https://doi.org/10.1186/s13638-018-1109-2

https://doi.org/10.1109/access.2019.2902846
https://doi.org/10.48550/arxiv.2110.08169
https://doi.org/10.48550/arxiv.2206.02583
https://doi.org/10.1016/j.rcim.2022.102506
https://doi.org/10.3390/math8081355
https://doi.org/10.1007/s10479-023-05592-z
https://doi.org/10.1186/s13638-018-1109-2

63

Zhao, Y., Wang, Y., Tan, Y., Zhang, J., & Huang, Y. (2021). Dynamic jobshop

scheduling algorithm based on deep Q network. IEEE Access, 9, 122995–123011.

https://doi.org/10.1109/access.2021.3110242

Zhao, Y., & Zhang, H. (2021). Application of machine learning and rule scheduling

in a job-shop production control system. International Journal of Simulation Modelling,

20(2), 410–421. https://doi.org/10.2507/ijsimm20-2-co10

Zhou, W. (2024). Integrated scheduling algorithm with dynamic adjustment on

machine idle time. https://doi.org/10.21203/rs.3.rs-4302637/v1

Zhou, W., Zhou, P., Yang, D., Cao, W., Tan, Z., & Xie, Z. (2023). Symmetric two-

workshop heuristic integrated scheduling algorithm based on process tree cyclic

decomposition. Electronics, 12(7), 1553. https://doi.org/10.3390/electronics12071553

Zhou, W., Zhou, P., Zheng, Y., & Xie, Z. (2022). A heuristic integrated scheduling

algorithm via processing characteristics of various machines. Symmetry, 14(10), 2150.

https://doi.org/10.3390/sym14102150

Zhang, C., & Zheng, R. (2023). Event-driven dynamic job-shop scheduling method

with strong process constraints. Journal of Computing and Electronic Information

Management, 10(3), 72–79. https://doi.org/10.54097/jceim.v10i3.8705

Zhang, F., Mei, Y., Nguyen, S., Zhang, M., & Tan, K. (2021). Surrogate-assisted

evolutionary multitask genetic programming for dynamic flexible job shop scheduling.

IEEE Transactions on Evolutionary Computation, 25(4), 651–665.

https://doi.org/10.1109/tevc.2021.3065707

Zhang, M., Lü, Y., Hu, Y., Amaitik, N., & Xu, Y. (2022). Dynamic scheduling

method for job-shop manufacturing systems by deep reinforcement learning with

proximal policy optimization. Sustainability, 14(9), 5177.

https://doi.org/10.3390/su14095177

https://doi.org/10.1109/access.2021.3110242
https://doi.org/10.2507/ijsimm20-2-co10
https://doi.org/10.21203/rs.3.rs-4302637/v1
https://doi.org/10.3390/electronics12071553
https://doi.org/10.3390/sym14102150
https://doi.org/10.54097/jceim.v10i3.8705
https://doi.org/10.1109/tevc.2021.3065707
https://doi.org/10.3390/su14095177

64

12. Annexes

Code Repository on GitHub with three versions of the model developed:

https://github.com/jpuerto1604/JSSwTransport

https://github.com/jpuerto1604/JSSwTransport

