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Abstract  

Metal Additive Manufacturing (AM) has revolutionized the production of complex metal 
components by enabling the fabrication of intricate geometries with high precision. This 
technology's potential can be significantly enhanced through the integration of artificial 
intelligence (AI) methods, particularly Machine Learning (ML), which offers advanced 
capabilities in establishing complex interrelationships and improving system and product 
quality control. ML algorithms present a transformative opportunity to address manufacturing 
challenges, optimize resource consumption, and enhance process efficiency by exploring the 
intricate linkages between process parameters, material properties, microstructural 
characteristics, and their resultant properties. This thesis aims to determine the most precise 
ML algorithm for achieving the process parameters defect detection relationship of AI316L 
stainless steel alloy components containing 2.5% copper fabricated via the Laser Powder Bed 
Fusion (L-PBF) method. Recognizing these relationships enables the optimization of process 
parameters to attain specific objectives. This optimization method facilitates applications that 
balance productivity and quality, allowing the selection of parameters that satisfy both criteria. 
By defining these parameter relationships, ML models can be created to predict optimal process 
parameters based on desired outcomes, such as low defect content, high productivity, and low 
surface roughness, thus facilitating more efficient and customized AM processes. Following 
the assessment of multiple models with varying training and testing sizes for the relative 
density of samples, the Support Vector Regression (SVR) model has been identified as the 
most effective model. Moreover, the effect of adding Cu has been delineated by equiaxed and 
columnar grains and cells observed in SEM images. Melt pool dimensions have been analyzed 
across components with differing process parameters to assess their relationships qualitatively. 
Finally, printed samples underwent tensile testing to examine the relationship between porosity 
and mechanical properties. The SEM images of the fractured surfaces reveal both brittle and 
ductile fractures, with the brittle fracture displaying a quasi-cleavage plane, possibly indicating 
the melt pool boundary. The microscale analysis reveals ductile fracture characteristics with 
extensive dimple networks. 

Key words: Additive Manufacturing, Machine learning, Laser-Powder Bed Fusion, Process 
Parameter Optimisation 
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1. Introduction 
 
Additive manufacturing (AM) is an innovative approach that constructs materials layer by 
layer, allowing for the creation of complex geometries from CAD designs [1]. AM enhances 
design flexibility and allows the processing of various materials, including polymers, metals, 
ceramics, and composites [2]. In contrast to traditional manufacturing methods, AM offers 
significant benefits, including enhanced material utilization efficiency and the ability to 
produce structures that closely approximate their final shapes[3]. Selective Laser Melting 
(SLM) is one of the advanced powder bed fusion (PBF) additive manufacturing techniques. 
SLM, also known as Laser Powder Bed Fusion (L-PBF), utilizes high-power lasers to melt 
powder layer by layer selectively. This technique can yield exceptional mechanical properties 
when process parameters are carefully optimized [4–6]. Although the L-PBF process has 
demonstrated effectiveness in the rapid manufacturing of complex components, the potential 
applications of printed components can be limited because of some problems, such as the small 
value of densification [7], elevated surface roughness[8], tensile residual stresses[9], and 
anisotropic structures [10–12]. However, these problems can be resolved by optimizing process 
parameters to achieve the desired quality of LPBF-produced parts [11]. Achieving this goal 
requires an in-depth investigation of all critical parameters and their influence on the 
mechanical and microstructural properties of the fabricated components. Even though more 
than 130 distinct process parameters can influence the LPBF process[13], factors such as laser 
power, scanning speed, hatch spacing, and layer thickness are recognized as the most effective 
hyperparameters impacting the characteristics of the printed structures [14,15]. Despite AM’s 
advantages, Metal AM has a notable constraint which is a limited number of compatible 
materials [16]. This restricts its applicability across various fields, especially in specialized 
industries requiring specific material properties, such as the biomedical sector. A considerable 
effort has been dedicated to developing novel alloys with customizable properties to address 
this issue. This thesis focuses on a 316L stainless steel alloy with a 2.5% copper addition. This 
alloy was engineered to possess antibacterial properties, making it appropriate for applications 
within the biotechnology field. 
 
This work investigates the accuracy of seven supervised machine learning algorithms in 
predicting the process parameter defect content relationship of AISI316L-Cu stainless steel 
specimens manufactured by L-PBF using different combinations of process parameters, such 
as laser power, scanning speed, and hatch distance. The models' performance is evaluated using 
R², MAE, MAPE, and IM error estimators. This thesis aims to demonstrate the capability of 
Machine Learning to generate precise predictions of process parameter defect detection relation 
especially with different priorities, such as productivity or surface quality. This predictive 
ability allows for accurately customizing the additive manufacturing processparameters to meet 
specific requirements, thereby improving the optimization process. This emphasis is directly 
associated with enhancing efficiency in additive manufacturing and seeks to make substantial 
contributions to progress in this domain. Developing optimum process parameters for new 
materials is often time-consuming, costly, and environmentally unsustainable. Traditional 
parameter optimization methods frequently require extensive trial-and-error experimentation, 
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significantly investing time and resources. Due to these challenges, machine learning (ML) 
techniques, which offer a data-driven methodology for optimizing AM process parameters, 
have been the focus of this study. This thesis aims to improve parameter development using 
machine learning to attain desired features, such as enhanced build rates, increased 
productivity, optimized surface quality, and reduced defect content. 
 
Chapter 2, titled "State of the Art," thoroughly examines current additive manufacturing 
technologies and machine learning. This study initially examines two significant additive 
manufacturing technologies including powder bed fusion (PBF) and directed energy deposition 
(DED). These technologies possess distinctive characteristics and are affected by multiple 
factors. This chapter investigates the different categories of machine learning techniques, such 
as supervised, unsupervised, semi-supervised, and reinforcement learning, and their 
application in prior research to enhance AM processes. It emphasizes explicitly recent 
advancements wherein researchers have employed machine learning models to forecast and 
regulate results. These advancements encompass the optimization of parameters for enhanced 
mechanical properties, the regulation of geometric deviations, and the real-time detection of 
defects. Comprehensive descriptions of the methodologies employed in this research are 
available in Chapter 3, Materials and Methods. This chapter outlines the procedures 
implemented in sample modeling, including the experimental design framework established to 
modify the process parameters consistently. A discussion follows regarding the diverse sample 
fabrication methods, concentrating primarily on how different process conditions affect the 
material's properties. This section of the chapter examines the characterization techniques 
employed to assess the samples' physical, mechanical, and microstructural properties. An 
example is X-ray computed tomography, which provides a non-destructive method for 
analyzing internal porosity. Archimedes' density measurements, conversely, offer insights into 
the material's overall density. Moreover, metallographic techniques are employed to prepare 
and analyze samples for microstructural assessment. Comprehensive parameter optimization 
can be reached by using these characterization techniques in conjunction, as they provide the 
necessary data for training and evaluating machine learning models. Chapter four, "Results and 
Discussion," presents the findings from the experiments and the assessments of the machine 
learning models. The initial section of the chapter outlines the procedures for data acquisition 
and preprocessing, along with an outline of the data partitioning for training and testing 
purposes. The parameter tuning method is clarified, wherein several machine learning models 
were employed to examine the relationship between the process parameters and the sample 
outcomes. Visualizing and interpreting the effects of various parameters were achieved using 
techniques such as heat map correlation plots, 3D surfaces plots, and 2D plots derived from 
hyperparameter optimization. The chapter also addresses selecting the final model based on 
evaluation metrics to achieve an optimized parameter set that fulfills the desired objectives. 
This chapter includes a comprehensive analysis of the material's mechanical properties and 
microstructural characteristics, alongside the optimization of parameters. It examines how 
variations in process parameters influence grain size, melt pool geometry, and porosity 
distribution within the samples. The mechanical testing results, encompassing tensile 
strength measurements, provide further insights into the material's performance across various 
conditions.The concluding chapter, entitled "Conclusion and Future Perspective," provides a 
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summary of the thesis's key contributions and discusses potential avenues for future research. 
This chapter underscores the significance of employing machine learning to enhance additive 
manufacturing technologies. The chapter also emphasizes the potential for additive 
manufacturing to enhance sustainability and resource efficiency as machine learning 
techniques advance. The advancement of sensors for real-time monitoring and regulation is the 
emphasis of future outlooks. These sensors possess the capacity to enhance the adaptability 
and reliability of additive manufacturing. This chapter additionally addresses the growing 
importance of data volume, velocity, and variety in additive manufacturing. The integration of 
larger, more complex datasets may yield models that are significantly more accurate and 
predictive. The results presented herein emphasize the capacity of machine learning and 
additive manufacturing to transform material development, enabling the production of 
customized, high-performance components across various industries. 

2. State of the art 
 
AM has offered a substantial revolution in the manufacturing process of metal components. 
This technology facilitates the production of complex geometries with great precision. It also 
provides the capability to generate localized alterations in microstructure and properties 
through targeted adjustments in the manufacturing process. The persistent issue of achieving 
consistent and high-quality outcomes for varied applications persists despite the considerable 
efforts made by individuals over the years that have resulted in the commercialization of metal 
AM technologies [17]. Direct metal AM processes can primarily be classified into two major 
technological categories: PBF and Directed Energy Deposition (DED). These two direct AM 
processes have gained substantial prominence in academic research and industrial applications, 
making them the primary focus of interest. In DED, material is supplied through a moving 
nozzle, while PBF adds thin layers of powder after each fusion step. Both methods involve 
melting the material with a heat source like a laser or electron beam [10,18].In recent years, 
extensive research has been conducted to enhance the efficiency of AM processes. One of the 
most effective tools for improving AM performance is using artificial intelligence (AI). AI 
technologies, such as machine learning (ML), automation, robotics, machine vision, data 
mining, extensive data analysis, and expert systems, have presented their efficacy in 
manufacturing [19]. ML proves to be a potent tool for enhancing the quality and efficiency of 
metal AM [20]. It can also play an important role in enhancing the quality of printed 
components, particularly when basic physical principles are not well known but data on process 
variables, alloy properties, and product characteristics are accessible [21]. Integrating ML with 
AM can detect defects early, reduce waste, optimize input and output characteristics, and 
improve speed and accuracy, ultimately enhancing the quality [22]. 
ML methods have gained considerable interest for their exceptional performance in various 
data-related tasks, including regression, classification, and clustering. These approaches can be 
classified into supervised, unsupervised, semi-supervised, and reinforcement learning based on 
the extent and nature of supervision needed during the training process [23]. Integrating these 
powerful ML techniques presents an exciting opportunity to revolutionize manufacturing 
processes, tackle challenges, and optimize resource utilization. By considering the parameters 
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of the AM process and the material properties, part geometry, and microstructural 
characteristics as inputs for ML algorithms, it becomes possible to establish a relationship 
known as Process-Structure-Property (PSP). Various linkages and correlations may be 
observed among data, including optimizing processing parameters and property prediction, 
cost estimation, defect identification, in-situ monitoring, and controlling geometric deviations. 
[24].  
Consequently, this thesis will comprehensively analyze the applications of ML in two laser-
based AM technologies, L-PBF and DED. The papers under discussion within the context of 
this thesis text provide an overarching view of ML applications in AM. They have investigated 
ML applications in AM either comprehensively or independently, focusing on specific 
processes such as L-PBF or DED in their respective publications. However, it is worth noting 
that the number of papers with a focus on ML general applications in AM [17,24,25] is notably 
higher than those that specifically address L-PBF [26–28] or DED [29–31], which tend to be 
less frequent in the literature. The reason for the selective analysis approach in this thesis is 
twofold. Firstly, a deeper and more comprehensive understanding of the practical applications 
of ML in L-PBF and DED is facilitated by focusing on them. The unique difficulties and 
challenges associated with L-PBF and DED, which may be overlooked in broader studies, can 
be explored by this approach.  Secondly, generalization problems can be avoided by 
concentrating on these two processes. By emphasizing L-PBF and DED, more actionable 
insights can be provided into how ML can be effectively applied in these specialized areas. 
This approach enables real-world challenges to be addressed and innovative solutions to be 
offered. 
Table 1, extracted from the Scopus database using the keywords listed in Table 1, shows a 
significant increase in the number of articles on integrating ML in AM. This surge can be 
attributed to the growing importance of the subject. The chart generally demonstrates the broad 
application of ML in AM.  

Table 1. Keywords used to search and obtain data from the Scopus database 

Application of ML in AM Application of ML in L-PBF Application of ML in DED 

(TITLE-ABS-KEY (machine 
AND learning AND in AND 
additive AND manufacturing) 

AND ( LIMIT-TO 
(SUBJAREA, "ENGI" )) 

AND  ( LIMIT-TO 
(DOCTYPE, "ar") OR LIMIT-

TO (DOCTYPE, "cp") OR 
LIMIT-TO (DOCTYPE, "re" 

)) AND (LIMIT-TO 
(LANGUAGE, "English"))) 

(TITLE-ABS-KEY (machine 
AND learning AND in AND 
laser AND powder AND bed 
AND fusion) AND (LIMIT-
TO (SUBJAREA, "ENGI")) 

AND ( LIMIT-TO 
(DOCTYPE, "ar") OR LIMIT-

TO (DOCTYPE, "cp") OR 
LIMIT-TO (DOCTYPE, "re")) 

AND (LIMIT-TO 
(LANGUAGE, "English"))) 

TITLE-ABS-KEY (machine 
AND learning AND in AND 
directed AND energy AND 

deposition) AND (LIMIT-TO 
(SUBJAREA, "ENGI" )) 

AND  ( LIMIT-TO 
(DOCTYPE, "ar") OR LIMIT-

TO (DOCTYPE, "cp") OR 
LIMIT-TO (DOCTYPE, "re") 

) AND (LIMIT-TO 
(LANGUAGE, "English"))). 

 
Furthermore, it is worth noting that the number of articles studied for DED is significantly 
lower than L-PBF. Despite this, both processes are the focus of the current paper. This approach 
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is motivated by the desire to provide a more detailed and specialized analysis of these AM 
techniques, recognizing their unique requirements and challenges.  

 

 
 

Fig. 1. The number of published papers on the application of ML in various AM methods as a function of 
publication year. The data was extracted according to the keywords tabulated in Table 1. 

 

2.1. Additive Manufacturing 
Metallic components can be produced via direct metal AM immediately after being designed 
in a single processing step [32]. During the AM process, complex shape components are built 
layer upon layer following a digital layout. This distinct characteristic enables the production 
of intricate or tailor-made components directly from the design, eliminating the need for costly 
tooling or shaping tools like punches, dies, or casting molds and diminishing the number of 
traditional processing stages [10]. Manufactured metallic parts are utilized in various 
industries, including aerospace, healthcare, energy, automotive, marine, and consumer 
products [33]. Examples of these components include metal implants designed for specific 
patients [34], turbine blades with cooling channels [35], manifolds for engines and turbines, 
and lattice structures and truss networks optimized for a better strength-to-weight ratio [36]. 
According to ASTM F42, AM processes can be broadly categorized into seven classes: Vat 
photopolymerization (VP), Material Extrusion (ME), Material Jetting (MJ), Binder Jetting 
(BJ), PBF, DED, and Sheet Lamination (SL) [37]. PBF and DED methods differ based on the 
feedstock (powder or wire) and the heat source, which can be a laser, electron beam, plasma 
arc, or gas metal arc. Electron beam processes are conducted in a vacuum or low-pressure inert 
gas environment, allowing the use of reactive metals. In contrast, some heat sources require 
the parts to be shielded using an inert gas [18]. Certain AM processes, known as indirect metal 
AM processes, can consolidate metallic materials in the form of thin sheets and ribbons using 
ultrasonic methods without melting the feedstock material. Additionally, Alloy powders can 
be fused by jetting a binder onto a powder bed and then sintering it in a high-temperature 
furnace [10]. 
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2.1.1. DED 
 
DED is becoming increasingly popular since its mechanical properties are comparable 
to typical manufacturing techniques. DED is an AM method that uses concentrated thermal 
energy, such as a laser, electron beam, or plasma arc, to liquefy and place materials, forming 
solid three-dimensional (3D) structures layer-on-layer [38]. This manufacturing method is 
faster and more cost-effective than subtractive manufacturing. It can produce intricate parts 
with minimal material waste. Furthermore, DED exhibits exceptional efficacy when utilized 
for repair and remanufacturing purpose [39]. DED can be classified into two categories based 
on the feedstock used: wire feed DED and powder feed DED, as depicted in Fig. 2. In the 
powder feed system, the material undergoes melting during the deposition process, but in the 
wire feed system, a laser or arc is used to fuse the wire on the substrate. The energy source is 
concentrated in a particular location, where it deposits the feedstock onto the previous layer (or 
the substrate for the first layer) simultaneously. This procedure involves the creation of a 
melt pool by melting both the raw material and the layer before it. The resulting deposition 
bead is formed as the substance cools down [40]. 
 

         
                                                     

Fig. 2. Schematic illustration of DED system [41]. (a) Powder feed DED system; (b) Wire feed DED system. 

In contrast to wire feed DED, powder feed DED provides higher printing accuracy, although 
at a comparatively reduced printing speed. Despite its considerable advantages compared to 
other metal additive manufacturing technologies, DED still has difficulties in attaining 
satisfactory surface finishes and minimizing porosity and cracks in the produced componen 
[42]. Microstructural defects can arise from several reasons, including trapped gas, insufficient 
fusion, fast solidification, and inadequate powder melting [43]. An important obstacle faced by 
the expanding DED sector is the considerable variation in the quality of produced components. 
This variability is controlled by several aspects, such as process parameters, laser-material 
interactions, and defect creation. Although large-scale experimentation or simulation can 
enhance print quality, these approaches are frequently characterized by their time-consuming 
and costly nature. Insitu-monitoring is an alternative method for optimizing the quality of DED 
parts. However, this approach is highly challenging because of the enclosed chambers and the 
elevated temperatures of the melt pool, which can reach up to 2000-3000 °C. Despite 
generating substantial real-time process data, in-situ process monitoring offers a promising 
option [29]. Wire-based DED is a process similar to traditional welding that uses high power 
to create thick layers at high deposition rates, allowing for the economical production of large 
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parts. However, parts produced using GMA-DED, PA-DED, and L-DED usually require 
machining due to significant surface waviness caused by the formation of large molten pools 
[18]. 
 

2.1.2. PBF 
 
PBF is widely recognized as the primary AM method due to its advanced ability to manufacture 
metallic and non-metallic components with remarkable precision. Moreover, PBF may produce 
homogenous alloy components with remarkable strength and facilitate free-form 
manufacturing, therefore offering various advantages. The utilization of lightweight 
construction and design flexibility facilitates the achievement of decreased local manufacture 
of components [44].	In PBF, thin layers of powder are added after melting the last one. Instead, 
in DED, a laser, electron beam, or arc heat source is used to melt the feedstock, which can be 
in the form of a powder or wire, and it is supplied from above the object. DED involves melting 
the feedstock, which can be powder or wire, using a laser, electron beam, or arc heat source. In 
contrast to PBF, most DED processes do not have limitations in terms of bed or box size, 
making it possible to produce large components [10,18,45]. L-PBF, as a subset of PBF, 
specifically employs laser technology for AM. The critical distinction between L-PBF and 
other AM techniques is the use of laser, which provides high precision and control during the 
process. This review paper investigates L-PBF and EB-PBF methods within this context, as 
they have unique operational principles that significantly differentiate them. Solid components 
are formed from powdered material through heating, direct liquefaction, and subsequent 
solidification, particularly in L-PBF. Laser and electron beams serve as the primary heat 
sources to ensure high precision in producing these parts. The procedure proceeds by 
overlaying the preceding layer with the subsequent layer of powder from a pre-deposited 
powder mixture using a re-coater blade or roller(Fig. 3.) 
 

 
Fig. 3. Schematic of the L-PBF process [43]. 

The unmelted particles in the powder bed serve as structural supports for the printed 
components. Following the melting and solidification of a layer of powder, the build platform 
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descends, allowing a fresh layer to be applied and melted on top of the preceding one. Thermal 
rates in laser powder bed fusion can range from 10³ to 10⁃ Kelvin per second [46]. This method 
is very efficient for printing intricate Geometries, capable of handling a diverse array of 
materials, and necessitates little support structures. In the realm of large-scale production of 
gradient-structured metals and alloys, 3D printing emerges as a highly effective technique for 
fabricating gradient structures characterized by intricate architectures. Nevertheless, there are 
still obstacles to overcome, such as the presence of flaws during the printing process and the 
inclination for gradient structures to exhibit considerably greater grain sizes, frequently 
surpassing 100 nm. To address these challenges, it is essential to optimize parameters such as 
power density, powder flow rate, scanning speed, and hatch spacing for each alloy [47]. 
 
Identifying the suitable process frame to manufacture 3D components with exceptional 
microstructural and mechanical qualities is the main obstacle in employing metallic powders 
in L-PBF. Therefore, some research has concentrated on maximizing the optimization of LPBF 
process parameters. These investigations can be classified into three primary groups: laser-
related, powder-related, and powder-bed-related characteristics [48]. 
 

2.1.2.1. Powder-related parameters 
 
In manufacturing, powder-related factors such as chemical composition, surface morphology, 
and particle size distribution are assumed to be relatively constant [49]. The chemical makeup 
of the powder is essential in determining the LPBF process and its related parameters. The 
results suggest that minimal alterations in the chemical composition have little effect on the 
densification behavior. However, the powder's chemical makeup does impact its 
microstructure, which subsequently affects its mechanical characteristics. Kempen et al[49]. 
discovered that augmenting the silicon (Si) concentration in the AlSi10Mg alloy leads to 
improved laser energy absorption in the powder bed, thereby enhancing overall processability. 
The shape of the starting powder significantly dictates the ultimate quality and density of parts 
produced by LPBF processing. The powder morphology is a determining factor in the degree 
of compactness of powder particles when a new layer is deposited on top of an existing metal 
layer. Thus, morphology plays a vital role in determining the thickness of the layers and the 
roughness of the surface of the manufactured SLM component. Additionally, it determines the 
dimensions and morphology of the powder particles, which are significantly affected by 
manufacturing techniques like as gas-atomization and mechanical alloying/milling. Chang et 
al. [49] examined how particle size affects the microstructural characteristics, constitutional 
phases, and mechanical qualities of parts produced by LPBF processing. Their findings 
demonstrated that decreasing the size of powder particles enhances the uniformity of the 
microstructure of the resulting product. Erika Lannunziata Chang et al[50]. focused on 
investigating the impact of the powder atomization method on the densification, roughness, 
and mechanical characteristics of AISI316L samples manufactured using the L-PBF technique. 
Their results illustrated that when density statistics were considered, gas-atomized samples 
frequently exhibited higher density due to their decreased oxygen concentration and enhanced 
flowability. 
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2.1.2.2. Laser-related parameters 
The dimensions of the laser system, including its type (pulsed or continuous wave), spot size, 
and laser power, as well as scanning parameters such as scanning strategy, speed, and hatch 
spacing, greatly influence the properties of the constructed component [49]. These parameters 
significantly impact the characteristics and excellence of components produced by LPBF and 
are essential for defining the energy density or energy input. The term "energy density" denotes 
the extent to which a unit volume of powder absorbs energy during the process of melting. 
Enhancing the laser energy density can optimise the density of manufactured components, even 
when subjected to various atmospheres like argon, nitrogen, or helium, as illustrated in Fig. 4. 
Yet, in the case of Al–12Si components, there exists a critical energy level of 30 J/mm³, below 
which the energy is inadequate to completely liquefy the powder, resulting in reduced density 
and heightened porosity [49], as seen in Fig. 4. Moreover, over this limit might have a negative 
impact on the surface quality by causing the development of balling [46]. 
 

 
Fig. 4. Analysis of the relationship between relative density and incident laser energy for Al–12Si components 

treated using LPBF. The result evidences a positive correlation between laser energy density and relative 
density. At energy densities below 30 J/mm³, the energy is insufficient to completely melt the powder, leading 

to a reduced relative density. Once this threshold is surpassed, the relative density stabilizes at [46]. 
 
The increasing general acceptance of LPBF technology is hindered by the substantial hurdles 
presented by residual stresses and deformation in LPBF-built parts. During Laser Powder Bed 
Fusion Fusion (LPBF), the application of localized heat generates significant temperature 
gradients, resulting in stress inside the manufactured components. Plastic deformation happens 
when the thermomechanical stress exceeds the yield strength of the material. Repetitive thermal 
cycles from consecutive layers can lead to the buildup of stress and deformation, which may 
ultimately lead to failure and significant distortion of the LPBF components, including cracking 
and layer delamination. As a result of its impact on local heat distribution, the scanning 
technique significantly affects these deformations and residual stresses [46]. 
 
Complex parts with fine and closely spaced features can be printed using tiny diameter beams 
and small metal powders. These metal printing processes differ in their heat source power, 
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scanning speed, deposition rate, surface roughness, and other essential features, as depicted in 
Fig. 5 [10]. 

 
Fig. 5. Process parameters for various AM methods upon consulting Refs [10,18,33,51–56]. The surface 

roughness represents the average deviation of the surface from its mean height. 
 

These parameter differences can cause a 10,000-fold variation in cooling rates and notable 
differences in temperature gradient and heat input among various AM methods. As a result, the 
microstructure and properties of components are affected by the cooling rate and heat input, 
which is why the parameters shown in Fig. 5 must be controlled with more effective approaches 
than in conventional processes to ensure the production of high-quality and dependable parts 
[44,57–60]. 
Achieving precise control over the microstructure, defects, and properties in AM processes is 
still a challenge due to the need for extensive experimentation to explore a wide range of 
process parameters. Printing conditions are often selected based on the machine manufacturer's 
recommendations or through trial and error [61]. Trial and error methods are not ideal for 
improving part quality in AM due to the expensive nature of the feedstock and machines [51], 
as well as the fast-evolving economic culture that leads to the creation of new products at a 
rapid rate. Instead, mechanistic models can predict various physical attributes of AM parts, 
such as temperature fields, solidification characteristics, microstructure, and defect formation. 
These models rely on a phenomenological understanding of the process variables and 
thermophysical properties of alloys [62]. 
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2.1.3. AI in AM 
The use of AI methods in digital manufacturing is becoming increasingly prevalent due to 
advancements in data acquisition technologies, robotic systems, and computer science [63]. 
These methods, including ML, automation, robotics, machine vision, data mining, big data 
analytics, and expert systems, have all demonstrated their effectiveness in enhancing control 
over systems and product quality [19]. ML can assist in various stages of the AM process by 
analyzing data on process variables, alloy properties, and product attributes. This analysis can 
help reduce defects, achieve superior microstructures and properties, and accelerate product 
qualification. Additionally, using ML and developing mechanistic models can create 
opportunities for producing novel alloys [51]. The combined use of mechanistic models and 
ML is crucial for various aspects of AM, including designing, planning, producing, 
characterizing, and evaluating the performance of printed parts (see Fig. 6) 

 
Fig. 6. Application of mechanistic models and ML in the various steps of metal AM. Both mechanistic models 

and ML offer a quantitative framework for understanding the characteristics of components. This figure 
illustrates the respective roles of ML and mechanistic models at different stages in manufacturing and analyzing 

elements. 
The integration of ML with AM processes presents an opportunity to effectively address 
defects during the early stages and stop the production of defective components as soon as a 
defect is detected. ML can optimize input and output characteristics and predict the properties 
of a component, while also enhancing AM process speed, accuracy, and efficiency, ultimately 
influencing quality outcomes [22,64]. 
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2.2. Machine Learning 
Machine learning methods have gained considerable interest due to their exceptional 
performance in various data-related tasks, including regression, classification, and clustering. 
As seen in Fig. 7, these approaches can be classified into supervised, unsupervised, semi-
supervised, and reinforcement learning, based on the extent and nature of supervision required 
during the training process [23]. Supervised learning involves labeled data that is divided into 
training and testing sets. The primary objective is to develop models that establish links 
between predictors (features) and the response (target) within the dataset [65]. In contrast, 
unsupervised learning does not require labeled data or a training set to create the model. In the 
case of semi-supervised learning, a small portion of the dataset is labeled, enabling the system 
to learn from these labeled samples and classify a larger volume of data. Reinforcement 
learning differs from other machine learning methodologies by using a reward-and-penalty 
framework for algorithm training [32]. 

 
Fig. 7. Three different approaches for the classification of ML. 

ML models can also be classified as batch/offline learning or online learning. In the case of 
offline learning, the model cannot learn incrementally and must be trained using all available 
data, which demands substantial time and computing resources. Online learning enables the 
model to learn dynamically, and incrementally as new data is presented without the need to 
retrain the entire model. This methodology is particularly appropriate for working with large 
and continuously expanding datasets [23]. Likewise, ML approaches can be categorized as 
instance-based or model-based learning. Instance-based models use a similarity measure to 
identify new cases, while model-based learning involves constructing and using a model for 
predictions. In the field of AM, ML approaches are typically offline instance-based or model-
based, incorporating supervised or unsupervised learning models [23]. As depicted in Fig. 8, 



 23 

each method in machine learning uses multiple algorithms, which are elucidated in the 
accompanying table. 

 

 
Fig. 8. Some of the most essential ML algorithms with their description. 

 

2.2.1. Supervised Learning 
Supervised learning is the most frequently employed method among machine learning 
techniques [66]. In this method, a model can be developed by training the dataset to accurately 
classify labeled data within the test set [67]. However, acquiring labeled data for training 
supervised learning models can be challenging and costly, especially for large datasets. 
Additionally, the manual labeling process is susceptible to human bias, which can further 
degrade the accuracy of the model [23]. Supervised machine learning is divided into two main 
categories: classification and regression methods. Classification methods contain SVMs, DTs, 
Naïve Bayes, k-NNs, and ANNs. These methods rely on the "pattern recognition" principle to 
categorize data. Conversely, regression involves predicting continuous values by analyzing a 
dependent variable concerning one or multiple independent variables. This procedure provides 
the optimal pattern that best fits the given data [68]. In supervised learning, the ML model 
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adjusts the weights assigned to input variables iteratively until it achieves an optimal data fit. 
This process involves an algorithm that identifies patterns within a training dataset. As shown 
in Fig. 9, some specific considerations and preliminary measures must be undertaken to execute 
this task [66,69]: 
1. Acquiring a dataset and data processing 

2. Feature selection (target variable) 

3. Splitting the dataset (training, cross-validation, testing) 

4. Hyperparameter tuning and prediction.  

 
Fig. 9. The steps required for developing ML models based on supervised learning algorithms. 

 
Supervised learning algorithms can address various numerical engineering problems. Each 
input data point is associated with a corresponding output variable Y, and the training dataset 
comprises multiple input-output pairs [70]: 
 

𝒀 = #

𝒚𝟏
𝒚𝟐
⋮
𝒚𝒏

& (1) 

Meanwhile, various mathematical techniques can be employed to represent scalar values in the 
context of observations. These observations are typically organized in rows, with each column 
representing a specific feature. This arrangement of statements leads to the formation of a 
matrix structure [71]: 
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𝑿 = #

𝒙𝟏,𝟏 𝒙𝟏,𝟐 ⋯ 𝒙𝟏,𝒏
𝒙𝟐,𝟏 𝒙𝟐,𝟐 … 𝒙𝟐,𝒏
⋮ ⋮ ⋱ ⋮

𝒙𝒏,𝟏 𝒙𝒏,𝟐 ⋯ 𝒙𝒏,𝒏

& (2) 

 
In this method, datasets can take various forms, including photos, audio samples, and text. The 
error between the predicted and actual output values is calculated using an objective function 
known as the cost function. To provide an unbiased assessment of the model's accuracy, a trial 
phase is conducted using a test set consisting of previously unseen additional information [70]. 

 

2.2.1.1. Regression Learning for AM Applications 
 

Regression analysis is a valuable tool for predicting and optimizing various process parameters 
for AM applications. Several studies have explored the applications of this technology, 
providing valuable insights into how it can enhance manufacturing processes and product 
quality. For instance, Eshkabilov et al. [72] implemented an SVR algorithm to establish the 
relationship between process parameters and the relative density, hardness, yield strength, and 
tensile strength of samples produced by L-PBF. Similarly, a random forest regression (RFR) 
model was developed by Peng et al. [73] to determine the correlation between the fatigue 
behavior of AlSi10Mg alloy and the defects of parts manufactured by L-PBF. In another work, 
Caiazzo et al. [74] applied an NN model to correlate laser power, scan speed, and powder 
feeding rate with geometrical parameters of the deposited track, highlighting the significant 
impact of regression analysis in optimizing AM processes. 
 

2.2.1.2. Classification Learning for AM Applications 
 

Classification analysis has also proven to be a valuable tool in various fields of AM for 
categorizing and optimizing diverse process parameters through different algorithms. 
Khanzadeh et al. [75] used multiple ML algorithms, including KNN, SVM, DT, and DA, to 
detect defects. Fig. 10 illustrates a procedure that uses images as input for defect detection in 
the L-PBF process of Ti-6Al-4V. For each thermal image labeled as porous or non-porous, 
geometric features are extracted and used to train the ML models. 
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Fig. 10. Illustration of the process for predicting porosity through supervised machine learning [75]. 

SVM is another well-known ML tool that efficiently handles classification and regression 
tasks. This algorithm has garnered significant attention from researchers, especially in defect 
detection. The SVM algorithm relies on hinge loss for its operation. The exponential loss is 
associated with the classic boosting method, while the logistic loss function is linked to logistic 
regression. The logistic loss function is significant as it serves classification purposes and is 
prominent in ML problems [76,77]. The mathematical expression for logistic regression is 
articulated as follows: 
 
 

Log	Loss = 	1 −y log(ý) − (1 − y) log(1 − ý)
(&,')∈*

 (3) 

In the context of logistic regression, the dataset (x, y) ∈ D consists of a significant amount of 
data with various labels. In this classification task, the variable y denotes the chosen label 
applied to a particular instance. It is essential to acknowledge that logistic regression commonly 
deals with binary classification, wherein the dependent variable y assumes either 1 or 0 values. 
However, the variable (y') represents the estimated value, which falls within the continuous 
range of 0 to 1 [78]. 
In classification problems, NNs stand out as one of the most widely adopted algorithms. 
Traditional NNs are typically employed when dealing with inputs consisting of parameters and 
class labels. However, for tasks involving images, handwritten digits (see Fig. 11), and 
autoencoders, a specialized form of NN algorithm known as CNN is specifically designed to 
provide practical solutions [79]. This model initially dissects image characteristics such as 
curves, edges, and lines in the early layers. Subsequent layers then organize and synthesize 
these features, while the final layers are responsible for reconstructing the image from scratch 
[79,80]. In another task, Yuan et al. [26] investigated the application of CNN to predict the 
continuity of L-PBF tracks. The ML model was fed with melt pool images captured at various 
printing positions. Variances in melt track width resulted from adjustments to L-PBF process 



 27 

parameters. The algorithm primary task for each track was to evaluate the mean and standard 
deviation of track width and achieve a 93% precision rate in classifying track continuity. 

 
Fig. 11. Schematic of CNN algorithm for classifying handwriting digits [66,81]. 

 

2.2.2. Unsupervised Learning 
 

Unsupervised learning is a machine learning method that aims to identify previously unknown 
patterns within a dataset without predefined targets or labels. Unlike supervised learning, which 
relies on labeled training data, unsupervised learning, also known as self-organization, can 
construct probability density models using input data with minimal human supervision [82]. 
Unsupervised learning is employed to explore algorithmic approaches that can effectively 
organize complicated inputs and detect elemental patterns with limited human guidance to 
create improved predictive systems [68]. For instance, UTL has been used as a promising 
approach for anomaly detection in industrial applications. It is a specific type of unsupervised 
ML that can train abnormal detectors adapted to changing operating situations [83]. 
Additionally, unsupervised learning models are typically less accurate than supervised learning 
models, and the user should still explain the results of the algorithm [23]. There are five main 
categories for unsupervised learning: outlier detection, data clustering, dimensionality 
reduction, hierarchical learning, and latent variable models [68]. The primary task in 
unsupervised learning involves analyzing data clusters formed based on their similarity. 
However, in AM, dataset sizes are often limited, restricting the application of the clustering 
analysis [24]. Wang et al. [25] used conventional optical images as input data for the 
autoencoder in an AM process. They implemented a clustering algorithm to identify the data 
group that yielded optimal results. The subsequent evaluation using a scoring system showed 
that the ML-based clustering method aligned effectively with conventional parameter 
optimization techniques, such as laser point distance, powder layer thickness, and laser 
scanning speed. Furthermore, an unsupervised ML model inherently possesses the ability to 
differentiate extraneous inputs within models and develop strategies to ensure uniform material 
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production under consistent conditions and quality benchmarks [66]. Likewise, unsupervised 
learning is useful for identifying cyber-physical attacks in AM processes [84]. 
 

2.2.2.1. K-means Clustering 
 

The K-means clustering algorithm is a widely used unsupervised learning method for clustering 
challenges due to its simplicity and effectiveness. The algorithm involves setting up k centers 
that are assigned to a particular cluster [85]. While k-means operates as an unsupervised 
technique, selecting the number of clusters requires careful consideration to minimize the 
probability of generating inaccurate results. Furthermore, k-means encounter challenges when 
dealing with non-spherically dense data clusters [86]. Snell et al. [87] introduced a pore 
classification methodology that relied on k-means clustering for distinguishing gas pores, 
keyholes, and lack of fusion for L-PBF specimens. In that study, X-ray Computed Tomography 
(XCT) was employed to gather 3D pore data from L-PBF Ti-6Al-4V specimens. The CT-
obtained radiographs were used to reconstruct 3D volumes with specific voxel sizes. The 
datasets were processed, segmented, and quantified using image processing methods, where 
the length, sphericity, and aspect ratio were employed as parameters for clustering 2664 pores. 
Optical Microscopy was applied to gather 2D pore data from 81 L-PBF Inconel 718 specimens 
through micrographs, utilizing the roundness and length measurements from a total of 21,955 
pores as inputs for k-means clustering. Optical microscopy is a quick and cost-effective method 
for collecting data across numerous samples, making it an ideal choice for optimizing metal 
AM parameters. The results, partially illustrated in Fig. 12, indicate that the clustering of 3D 
pore data is more effective than the traditional limits-based approaches in classifying the pore 
types [87]. 

 
Fig. 12. Pore classification based on k-means clustering for L-PBF Ti-6Al-4V specimens. (a) pore length and 

sphericity. (b) Sphericity and vertical aspect ratio [87]. 

2.2.3. Semi-Supervised Learning 
 

Semi-supervised models are used to overcome the limitations of both supervised and 
unsupervised ML models  [88]. Semi-supervised learning is an ML approach that combines 
labeled and unlabeled data to train a model. By integrating the advantages of both 
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methodologies, semi-supervised models can achieve higher levels of accuracy and 
interpretability compared to supervised and unsupervised learning methods. Semi-supervised 
models can also be used to learn from unlabeled data, which is valuable when labeled data is 
scarce [89]. 
Labeled data from supervised learning methods can be used to initialize a model for unlabeled 
inputs, which may or may not have been previously labeled. Semi-supervised learning methods 
can be divided into two categories: transactive graph-based methods and inductive methods.  
Inductive methods use three subcategories to define how they use unlabeled data: Wrapper 
methods, unsupervised processing methods, and semi-supervised methods. Wrapper methods, 
such as self-training, co-training, and boosting, use unlabeled data to improve the performance 
of a supervised learning model. Unsupervised processing methods, such as feature extraction, 
cluster-then-label, and pre-training, use unlabeled data to extract features or learn a 
representation of the data that can be used to improve the performance of a supervised learning 
model. Semi-supervised methods, such as maximum-margin, perturbation-based, manifolds, 
and generative models, use unlabeled data to learn a model that is resistant to noise and outliers 
[90].  
 
Although semi-supervised ML models have great practical value, they have been used less 
frequently in the AM field than in other fields. Okaro et al. [89] developed a Gaussian mixture 
model to automatically detect defects in AM products. They used a large photodiode dataset to 
extract key features and set up a monitoring system that included both in-situ and ex-situ 
labeling methods. The ex-situ data was labeled using ultimate tensile strength tests. A receiver 
operating characteristic (ROC) curve was calculated as the classification algorithm provides 
the probability of each data point association with a specific class. The analysis entailed 
evaluating the effectiveness of the classification algorithm by varying the ‘threshold 
probability.’ The semi-supervised model developed in the study was found to capture the 
benchmark results more closely than the supervised approach, as shown in Fig. 13. 
 

 
Fig. 13. The ROC curve of the machine learning models, along with the histogram of algorithm success rates for 

the (b) semi-supervised and (c) supervised [89]. 
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2.2.4. Reinforcement Learning 
 

Reinforcement learning is defined as "the process of acquiring a mapping from a given situation 
to corresponding actions to maximize a scalar reward or reinforcement signal" [91]. When the 
primary goal is to generate a prediction-based system, reinforcement learning is the best 
approach compared to other ML methods. The most crucial characteristic of this approach is 
its ability to acquire ways to lead to desired results using encouragement. The rewards motivate 
the learning process and influence the behavior of the algorithm [92,93]. This approach is 
occasionally referred to as the "environment-centric approach", which is an effective technique 
for enhancing automation and refining the efficiency of complex systems [94].  
Wasmer et al. [95] established a quality monitoring system for L-PBF by incorporating 
reinforcement learning with acoustic data acquired from acoustic emission during printing. 
Their evaluation of classification accuracy for AISI 316L samples indicated the potential of 
their reinforcement learning-based approach for in-situ, real-time quality monitoring within L-
PBF. In another study, Knaak et al. [96] introduced the application of reinforcement learning 
for predicting surface roughness in the L-PBF process, illustrated in Fig. 14. They implemented 
an advanced optical imaging system with an extended dynamic range combined with 
convolutional neural networks. The main benefit of this approach is its capacity to be 
incorporated into a control system for real-time surface optimization [96]. 

 
Fig. 14.Layer-wise Monitoring and Optimization Framework for L-PBF Processes Based on Reinforcement 

Learning Models[96]. 
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2.3. Application of Machine learning in Additive Manufacturing 
 

The interplay between process-structure-property relationships has been thoroughly examined 
and documented in multiple review articles [16,24,49,97]. The processing phase in the 
commonly used process-structure-property relationships has two distinct components: 
"processing parameters" and "processing resultant data". This division aims to differentiate 
between data existing before the manufacturing process and data created during the process 
[98]. These data types are employed for ML purposes in various AM aspects, including 
processing parameters optimization and property prediction, cost estimation, geometric 
deviation control, defect detection, and in-situ monitoring [24]. In the subsequent sections, each 
of these applications and their associated relationships will be explored. 
Table 2 lists recent literature on metal AM that applies data-driven approaches, categorized 
based on the data acquisition method. This classification allows readers to become familiar 
with potential data sources, their applicability, and the features that can be detected or predicted 
by applying them. It can be seen in the table that the in-situ monitoring techniques, such as 
optical, thermal, X-ray imaging, and acoustic methods, are the most utilized data acquisition 
techniques. The techniques mentioned are used to observe general anomalies during the process 
[99] or specific phenomena like the detection of plume and spatter phenomena [100] and 
keyhole porosity [101,102]. This finding highlights the need for standardized protocols and 
robust quality assurance systems, including a closed-loop control system that comprehensively 
monitors and dynamically executes real-time modifications to the end product. This approach 
has the potential to broaden the application domain for additive manufacturing methods. For 
this purpose, researchers have utilized statistical techniques to examine different forms of in-
situ data acquisition to identify process signatures and process windows. The analyzed data has 
been utilized to develop ML models to predict or identify the desired features.  
 

Table 2. Literature on metal AM works applying data-driven approaches 

Data acquisition 
method 

AM 
technology Data source Alloy Application References 

In-situ 
monitoring L-PBF 

High-speed 
thermal imaging 

17-4 PH stainless steel 
[99], 304L stainless 

steel  [103] 

Anomaly quality prediction 
[99], detection of micropores 

[103] 
– 

High-speed 
optical imaging 316L stainless steel  

Prediction of plume and 
spatter phenomena [100], 

identification of local defects 
related to overheating [104] 

– 

Synchrotron X-
ray imaging 

Ti6Al4V [101,102], 
AlSi10Mg, Inconel 625, 

CP1, 316L stainless 
steel, Aluminium [102] 

Keyhole porosity detection 
[101,102] – 

Optical 
tomography 

image 
AlSi10Mg Detection of local hot spots  [105] 

Thermographic 
imaging H13 tool steel 

Detection of geometrical 
shape, delamination, and 

splatter 
[106] 
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Data acquisition 
method 

AM 
technology Data source Alloy Application References 

Acoustic signal 
Ti6Al4V, CM247- LC 
[107], 304L Stainless 

steel  [108] 

Prediction of porosity and 
surface imperfections [107], 

single track defects [108] 
– 

High-resolution 
sensor imagery GP-1 stainless steel  

Detection of discontinuities, 
such as incomplete fusion, 

porosity, cracks, or inclusions 
[109] 

Optical imaging 

17–4 PH stainless steel 
[85,110], Ti6Al4V 
[85,111–114], 316L 

stainless steel 
[26,85,115], bronze 

alloy [85] 

Defect prediction [110], 
prediction of porosity 
[112,114], powder bed 

anomalies  [111], detection of 
single track width and 
continuity [26,115], 

identification of edge 
smoothness [113], process 

anomaly detection [85] 

– 

Photodiode  Inconel 718 [116,117], 
AlSi10Mg [103] 

Porosity detection [117], 
Fault detection, quality 

classification [116], detection 
of overhang defects [103] 

– 

L-DED 

Pyrometry Ti6Al4V  layer-wise quality prediction 
[118], Porosity [119],  – 

Synchrotron X-
ray imaging Inconel 718 

Prediction of track height, 
roughness, and melt pool 

geometry 
[102] 

Acoustic signal A mixture of Ti6Al4V 
with H13 tool steel 

Detection of porosity and 
crack [120] 

Melt pool thermal 
image 

Ti6Al4V 
[75,119,121,122] [123], 

Sponge Ti powder 
[124], 316L stainless 

steel [125]  

Porosity prediction 
[75,119,121,122,124], 

dilution estimation [125], 
surface distortion prediction 

[123] 

– 

Point cloud 
processing 316L stainless steel  

 
 Identification of surface 

defects 
 

[126] 

Post-process 
characterization L-PBF 

High-speed 
camera 316L stainless steel   Determination of build 

quality [127] 

Archimedes test 
      17-4 PH stainless 
steel [128], AlSi10Mg 

[129] 

 
Prediction of porosity 

 
 

[128,129] 

XCT experiment, 
2D micrograph 

 

Ti6Al4V [87,130], 
Inconel 718, 

 Ti5553, Haynes 282 
[87] 

Identification of different 
pores [87,130]  

Archimedes test, 
and surface 
roughness 

Stainless steel 316L-Cu 
Predicting part density and 
surface roughness in multi-

material region 
[131] 

Optical 
micrograph, first-

principles 
TiZrNbTa RHEA Prediction of defects during 

in-situ alloying [130] 
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Data acquisition 
method 

AM 
technology Data source Alloy Application References 

calculations, and 
compression tests 

Optical 
micrograph 

316 L stainless steel, 
AlSi10Mg, 

Fe60Co15Ni15Cr10 
MEA 

Prediction of porosity [132] 

L-DED 

Optical 
micrograph 

Al-5083 [133], 316L 
stainless steel [134], 
ER70S-6 mild steel 

[135], 1.5130 [136], Ti-
10Fe [130] 

Macro and micropores 
analysis [133], track 

depositing height [134], track 
geometry prediction 

[135], prediction of welding 
distortion [136], build height 

and grain size [130] 

– 

Fatigue and XCT 
experiments Ti6Al4V Fatigue life prediction [137] 

 

2.3.1. Processing Parameters Optimization and Property Prediction 
 
Ensuring part quality with specific processing parameters can be costly and time-consuming 
for designers. More specifically, the biggest challenge in the L-PBF process is the 
determination of the optimal process parameters that will results in a high-density and well-
processes component. While experiments and simulations are helpful, they may not always be 
practical in cases with various input parameters. However, ML models efficiently establish the 
link between the process parameters and part quality, reducing costs and speeding up the 
optimization process [138]. Process parameter optimization is usually carried out when either 
innovative materials or a new approach needs to be processed by AM methods [139]. Process 
parameters can also be set as input features in ML methods to optimize the geometric variations 
for L-PBF components [20]. Several instances exist in the literature [140–144] where 
researchers have utilized various ML models and algorithms for optimizing process 
parameters. Among the ML models, ANNs have demonstrated superior efficacy for process 
parameter optimization [145]. Reddy et al. [97] developed an ANN model to predict the volume 
fraction of α phase for various Ti alloys produced via the DED method followed by different 
heat treatments. The ANN model used in this study had two hidden layers, each consisting of 
six neurons representing Al, V, Fe, O, N, and heat treatment temperature for the input layer, 
and two neurons representing a and β phase volume fractions for the output layer. The model 
was trained over 18,000 iterations with hyperparameters set at a learning rate of 0.7. The 
comparison between experimental and model prediction results can be observed in Fig. 15. 
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Fig. 15.Comparison between experimental data and ANN predictions for the quenching process of a Ti–6.3Al–
4.1V–0.21Fe–0.17–0.005N alloy at four different temperatures: (a) 700 °C, (b) 815 °C, (c) 900 °C, and (d) for a 

Ti–6.85Al–1.6V–0.13Fe–0.17–0.001N alloy quenching[146]. 

Silbernagel et al. [147] used ML techniques to optimize process parameters for L-PBF of pure 
copper using optical imagery. Data in the form of images was gathered and subsequently fine-
tuned through ML methodologies. In this case, as shown in Fig. 16, the results indicate that the 
most favourable track outcomes were achieved across all layer thickness variations using a 
point distance of 50 µm and laser scan speeds of 250 mm/s or higher. 
 

 
Fig. 16. The procedure of ML methodology adopted by Silbernagel et al. [147]. (a) Pairs of 18 mm long full 

scan track images of thin walls [147]. (b) Using the CNN algorithm with an AE [148] for decreasing the high-
dimensional image data into a simplified reconstructed output, (c) selection of the top 20 images from clusters 



 35 

which were evaluated and scored between 0 (clusters which showed signs of balling or an unstable melt pool) 
and 100 (clusters where the images demonstrated high-quality weld tracks), and (d) ML track quality for 

different laser scan speeds [147]. 

ML methods have also been used to predict the mechanical behaviour of AM products, 
including tensile properties [149–152], fatigue behaviour [153–156], and microhardness [157–
160]. In a research by Maleki et al. [149], the process parameters were optimized, and the 
mechanical properties of Ti6Al4V were improved using a Neural Network model (see Fig. 17). 
The research indicated that scanning speed, laser power, and hatch spacing have the most 
notable effect on the tensile strength, as shown in Fig. 18.  

 
Fig. 17.The flowchart of the procedure of the research done by Maleki et al[149]. 

 
Fig. 18. Effects of the various tensile process parameters on the properties of L-PBF fabricated Ti-6Al-4V [149]. 

Moon et al. employed a drop-out neural network (DONN) [155] to predict the fatigue behavior 
of Ti–6Al–4V L-PBF-produced samples. The model features consisted of stress, surface 
roughness (Ra, Rt, Riso, r̅), pore density, diameter, compactness, sphericity, and projected YZ 
area for 41, 35, and 76 data points, with the predicted target being log cycles to failure. Due to 
the limited amount of data, the leave-one-out cross-validation method was employed. One data 
point was reserved for testing, while the remaining data was used for training. This process 
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was iterated through for all the data. Predictions and the experimental values can be observed 
in pair plots depicted in Fig. 19, where M and AB refer to two samples with different surface 
features.  

 
Fig. 19 Comparing DONN predictions with experimental high-cycle fatigue (HCF) in logN for (a) AB, (b) M, 

and (c) combined AB+M samples. The uncertainties are displayed in different colours [155]. 

The fatigue behavior of metallic materials is mainly influenced by their surface characteristics, 
such as roughness, porosity, and defects, thus necessitating their consideration in metal AM 
products for cyclic loading applications. Therefore, the surface quality of the metal AM 
components needs to be enhanced so the products are widely adopted in delicate applications 
like medical components. Zhang et al. [161] presented an ANN algorithm to model and 
interpolate the complex, nonlinear relationship between different parameters and the targeted 
surface roughness and porosity of L-PBF Ti-6Al-4V samples. The training dataset, which 
consists of 35 samples, was obtained from DEM simulations (refer to Fig. 20). This approach 
enabled the creation of a process map, which helped to determine the optimal process 
parameters to achieve the desired surface roughness with a prediction accuracy of over 97%. 
Consequently, this method led to time savings during the printing process and reductions in the 
overall manufacturing cost. Additionally, Kumar et al. [162] worked on predicting the surface 
roughness of components produced by DED using KNN modeling. The predictive model 
demonstrated a prediction error of 2.8% for powder-based DED and 2.3% for wire-based DED.  
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Fig. 20. The collaborative integration of experimental work, physics-based DEM simulations, and ML 

techniques [161]. 

Aside from the surface features, microstructure has also been of interest to the researchers. Cao 
et al. [163] used the Generative Adversarial Network (GAN) model to quantitatively predict 
alpha phase morphology in additively manufactured Ti-6Al-4V specimens. Due to its efficient 
handling of image datasets, the GAN model is a promising option for exploring the 
relationships between microstructure and manufacturing processes. Fig. 21 shows that the 
GAN model is trained to analyze and learn the complex details of the needle's physical 
structure, including its shape and size. Once the model has gathered sufficient data, it can 
reconstruct the predicted microstructure morphology in a visually understandable form, as 
depicted in Fig. 21.  

 
Fig. 21. XOY cross-sections of L-PBF fabricated Ti-6Al-4V; (a) real micrographs and (b) micrographs 

produced by GAN [163]. 

Yao et al. [115] conducted a study using an ML-based processing parameter optimization 
approach to identify the proper sets of processing parameters, resulting in a superior synergy 
of strength and ductility in L-PBF. As shown in Fig. 22, the formation and morphology of α’ 
phases and the resultant properties (Fig. 22c) were investigated by considering the influence of 
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L-PBF process parameters and heat treatment influence (Fig. 22a) as the ML model features. 
Moreover, the researchers used the partial dependence plots generated by the ML models (see 
Fig. 22b) to determine that the maximum ductility may be achieved at P/V=0.1 (J/mm), and 
the hatching distance was determined through experimentations. 

 
Fig. 22. (a) The relative importance of different features that affect ductility in L-PBF-produced Ti64 alloys, as 
calculated using machine learning. (b) The 3D contour map, and (c) a schematic illustrating the design concept 

for simultaneously enhancing both strength and ductility in the studied sample [115]. 

2.3.2. Geometric Deviation Control 
 

Frequently encountered issues with AM components include low geometric precision and 
suboptimal surface quality [164]. These challenges hinder the widespread adoption of AM in 
different industries, such as the aerospace and medical sectors [165]. To address this issue, ML 
models can identify geometric imperfections, quantify the degree of deviation, and suggest 
solutions to improve these issues. For example, Francis et al. [123] developed a framework that 
compensates for geometric errors in the L-PBF process using a CNN model. The ML model, 
after being trained, could predict distortions by considering thermal data and a set of process 
variables. This ultimately generated an error detection and correction outcome within the CAD 
model. According to reports, this method improved the geometric precision of objects produced 
with the adjusted CAD model. In this case study, the authors utilized the CAMP-BD approach, 
which is a combination of a CNN and ANN, designed to predict results by analyzing extensive 
datasets. As shown in Fig. 23, the input information comprises the tensor structure of the 
thermal history and the processing/designing parameters. At the same time, the deep learning 
model predicts which set of data corresponds to the output data, specifically distortion. 



 39 

 
Fig. 23. Illustration of the procedure of geometric error compensation proposed for Ti-6Al-

4V in L-PBF using CAMP-BD [123]. 
 

Zhu et al. [166] used the CNN method in the L-PBF Process to predict geometric deviation in 
AM parts. They employed Ansys Additive as an AM simulation software to generate the 
deviation data. Three processing parameters, part size, and a multi-channel model were used 
to predict deviation profiles on a 2D layer with a deviation field consisting of three channels 
as input. The convolution and pooling operations were performed at two stages, forming the 
suggested network. To overcome the problem of the limited dataset, they used Statistical Shape 
Analysis to increase the data and generate new samples. 
 

 
Fig. 24. Comparative analysis of the original deviation profile and the CNN prediction for (A) cylindrical shape and (B) 

square shape [166]. 
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2.3.3. Defect Detection and In-situ Moniotoring 
 
The accuracy of human visual inspection is subject to errors and irregularities; nonetheless, the 
accurate detection of errors is highly prioritised in the AM process. Regarding defect detection 
issues, a crucial first step towards achieving in-process quality assurance is establishing a 
correlation between process conditions and defects [71,167]. Table 2 lists some case studies 
that focus on the application of ML in AM for defect detection. For instance, Gobert et al. [168] 
captured layer-wise images of the AM process during L-PBF. The images illustrated in Fig. 25 
were subsequently utilized as input data for computed tomography scans to identify defects. 
The input data consisted of layer-wise images captured under varying lighting conditions. The 
main objective of the ML algorithm was to accurately classify whether each layer displayed 
any anomalies or not.  

 
Fig. 25. Schematic of the procedure proposed by Gobert et al. [168]. The left side of the illustration depicts 
anomaly extraction from CT scans, while In-situ sensor imagery is shown at the center. Feature extraction, 

supervised machine learning, and performance assessment are also depicted on the right. 

In a previous study, Ye et al. [169] presented a layer-wise monitoring framework for quality 
control of AM using in-situ point cloud fusion (Fig. 26). Their approach maximized the 
advantages of 3D scanning for direct monitoring, resulting in a more accurate assessment of 
morphological changes. The results showed an improved ability to identify small changes that 
can impact the overall quality of the component.   
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Fig. 26. The schematic of the framework of the selected methodology in the study by Ye et al. [169]. 

 
Early detection of defect formation can be facilitated by integrating in-situ monitoring with 
unsupervised learning techniques. Scime et al. [85] applied unsupervised learning techniques 
for anomaly detection within the powder layer of the L-PBF process. As illustrated in Fig. 27, 
they used images of powder beds as input for their ML model, intending to classify various 
anomalies that could lead to irregularities in powder spreading. Filters generate different 
responses depending on the distribution of images. Pixel responses are recorded as vectors and 
clustered using the k-means algorithm. Each cluster is defined by an average response vector 
known as "visual words". Filter response vectors are compared to the closest visual word in the 
dictionary. The fingerprint of each training image patch is recorded in a tabular format. Results 
from the three patch-type analyses, along with CAD data, are integrated using context-driven 
heuristics to classify anomalies for individual pixels in the powder bed image.  
 

 
Fig. 27. Schematic of ML procedure applied in the case study proposed by Scime et al. [85] for in-situ 

monitoring and analysis of powder bed images. 
 

Surface anomaly identification has gained significant interest in minimizing the need for 
expensive post-processing work due to the uneven and rough surface finish characteristic of 
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DED-printed components. Kaji et al. [170] employed DBSCAN (Density-based spatial 
clustering of applications with noise) and RAND-LA net to detect surface anomalies in a 
powder feed DED system, achieving a prediction accuracy of 93%. A laser line scanner was 
used to acquire 2D surface profiles from the DED-built part surface to create a 3D point cloud. 
The validation results, shown in Fig. 28, indicate the model struggles to recognize concave 
surfaces. This is because these surfaces are global features, that are difficult to detect using the 
DBSCAN clustering algorithm and the RandLA-Net model. 
 

 
Fig. 28 Comparison of RandLA-Net prediction with Ground Truth (GT). The colors depict different surface 

types: red for convex, blue for concave, and green for normal surfaces [170]. 

Gaikwad et al. [171] used the L-PBF process to create a ML model that examines the quality 
of a single track printed with Stainless Steel 316L powder. The Sequential Decision Analysis 
Neural Network (SeDANN) algorithm was used for this purpose. The input data was gathered 
by pyrometer and high-speed video camera. The model analyzed the effects of printing 
parameters, such as laser power and velocity, on the quality of the single track. The study found 
that the SeDANN algorithm had higher accuracy than other ML models in detecting balling, 
lack of fusion, conduction, and keyhole during the process monitoring. 
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Du Plessis [172], examined the effect of process parameters on the formation of defects in L-
PBF Ti6Al4V. The results showed that while higher scanning speeds offered a safer processing 
window for avoiding pore formation, the possibility of keyhole formation increased with 
increasing laser power. Understanding the interactions between lasers and materials as well as 
the dynamics of melt pools, is crucial in reducing the formation of defects such as keyhole 
pores. Laser absorption as a result of keyhole formation was investigated by Jiang et al. [173] 
using a deep learning method, while Synchrotron X-ray imaging was used to generate input 
data for the ML models. The authors reported a mean absolute error of less than 3.3% [173]. 
Similarly, Gorgannejad et al. [174] used X-ray imaging to train data fusion machine learning 
models for predicting the localized evolution behavior of keyhole pores. The authors also 
utilized thermally induced optical emission measured using both off-axis and coaxial 
photodiode sensors, as well as acoustic emission. According to heavily featured models, it was 
observed that the prediction results depended largely on the acoustic monitoring signal, with a 
secondary contribution from the optical emission sensors. 
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3. Materials and methods 
 

3.1. Sample Modeling 
 
The samples were manufactured using the Prima Additive 250, 3D printer. The Computer-
Aided Design (CAD) files were created, and the construction process was carried out in the 
IAM Center of Politecnico. The operations commenced with the production of the CAD file, 
resulting in the creation of 64 cubes for each task. Fig. 29 displays the exact measurements of 
the samples. 
 

 
Fig. 29. Nominal dimension of the cubic samples. 

 
The software Materialise Magics was used to input the pre-selected process parameter settings 
for each component. It is crucial to acknowledge that every component was allocated a specific 
laser speed, laser power, and hatch distance, leading to unique features for each component 
once it was printed.  
 

3.1.1. Design of experiment 
 
The Design of Experiment (DoE) includes all the factors used at this experience. Before starting 
a work in the PBF process, several parameters can be modified. These parameters are the 
necessary machine settings needed to manufacture a component using powders. To simplify 
matters, these process parameters are divided into four groups inculding laser-related, scan-
related, powder-related, and temperature-related parameters.The laser-related characteristics 
encompass laser power, wavelength, spot size, pulse duration, and pulse frequency. Scan-
related characteristics encompass the velocity at which scanning occurs, the interval between 
each scan (also known as hatching distance), and the specific pattern used for scanning. The 
factors connected to powder include particle size and distribution, particle shape, powder bed 
density, layer thickness, and material qualities. The temperature-related characteristics include 
the temperature of the powder bed, the temperature of the powder feeder, and the uniformity 
of temperature [175]. 
 

8mm

8m
m

8m
m
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The selection of appropriate process parameters is crucial as the ultimate quality of the product 
depend on them. It is crucial to emphasize the interplay between these characteristics, as 
altering one parameter can sometimes yield the same outcome as altering other characteristics 
of the end product. In general, it is necessary to maintain a balance between all criteria. Indeed, 
achieving this objective is the ultimate goal of this thesis research. While all process parameters 
influence the final product, their impact varies depending on specific material characteristics.. 
The layers that have been demonstrated to have greater influence are parameters like thickness, 
laser power, laser spot size, scanning speed, and hatching distance are important factors to 
consider. The concept of Volumetric Energy Density (VED) was first established in references 
[176,177] to Attain substantial significance by comparing the different sets of parameters. 
 
 

         VED = 
!

	#.%.&
 

( 1 ) 

Where: 
 

VED= Volumetric energy density [ +
,,!] 

 
P= Laser power [+

-
] 

 
v=Scanning speed [,,

-
] 

 
h= Hatching distance [mm] 

 
l= Layer thickness [mm] 

 
VED stands for Volumetric Energy Density, which quantifies the energy that impacts a volume 
of 1 cubic millimeter in the powder bed. Subsequently, it will be utilized as a benchmark to 
enhance the efficiency of the procedure. 
 
The EP Hatch Prima Industrie's program program was used to provide these process 
parameters, resulting in the generation of a CAM file. Table 3 displays the calculated VED and 
the process parameters that were given to the software to generate the CAM file. Each sample 
has its particular process parameters. Subsequently, using Prima Industrie's program, the STL 
file was sliced. Subsequently, this file serves as the input for the PrintSharp 250 machine. Fig. 
30 illustrates the design of 64 components, with their respective CAM files being visible. 
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Fig. 30.Illustrartion of he CAM model depicts the positioning of the 64 components on the platform. 

Table 3. Process parameters for each of 64 samples.  

s. 
ID 

Power 
   [w] 
 

Scanspeed 
  [mm/s] 

Hatch 
Distance

[mm] 

VED 
[J/mm3] 

 s. 
ID 

Power 
[w] 

Scanspeed
[mm/s] 

Hatch 
Distance

[mm] 

VED 
[J/mm3] 

1 190 400 0.1 158  33 190 400 0.12 132 
2 190 600 0.1 106  34 190 600 0.12 88 
3 190 800 0.1 79  35 190 800 0.12 66 
4 190 1000 0.1 63  36 190 1000 0.12 53 
5 200 400 0.1 167  37 200 400 0.12 139 
6 200 600 0.1 111  38 200 600 0.12 93 
7 200 800 0.1 83  39 200 800 0.12 69 
8 200 1000 0.1 67  40 200 1000 0.12 56 
9 270 400 0.1 225  41 270 400 0.12 188 
10 270 600 0.1 150  42 270 600 0.12 125 
11 270 800 0.1 113  43 270 800 0.12 94 
12 270 1000 0.1 90  44 270 1000 0.12 75 
13 340 400 01 283  45 340 400 0.12 236 
14 340 600 0.1 189  46 340 600 0.12 157 
15 340 800 0.1 142  47 340 800 0.12 118 
16 340 1000 0.1 113  48 340 1000 0.12 94 
17 190 400 0.11 144  49 190 400 0.13 122 
18 190 600 0.11 96  50 190 600 0.13 81 
19 190 800 0.11 72  51 190 800 0.13 61 
20 190 1000 0.11 58  52 190 1000 0.13 49 
21 200 400 0.11 152  53 200 400 0.13 128 
22 200 600 0.11 101  54 200 600 0.13 85 
23 200 800 0.11 76  55 200 800 0.13 64 
24 200 1000 0.11 205  56 200 1000 0.13 51 
25 270 400 0.11 136  57 270 400 0.13 173 
26 270 600 0.11 102  58 270 600 0.13 115 
27 270 800 0.11 82  59 270 800 0.13 87 
28 270 1000 0.11 258  60 270 1000 0.13 69 
29 340 400 0.11 172  61 340 400 0.13 218 
30 340 600 0.11 129  62 340 600 0.13 145 
31 340 800 0.11 103  63 340 800 0.13 109 
32 340 1000 0.11 158  64 340 1000 0.13 87 
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After producing the 64 cubic samples for a more thorough examination of VED, process 
parameters, and porosity formation, seven additional components were sourced from other 
studies [178] to explore the relationship between porosity and mechanical properties, as 
detailed in Table 4. 
 

Table 4. process parameters of the seven extra samples collected from other studies[178]. 

s. ID Power 
[W] 

 

Scan 
speed 

[mm/s] 

Hatch 
Distance 

[mm] 

VED 
[J/mm3] 

1 100 1000 0,1 33 
2 200 1000 0,2 33 
3 100 800 0,1 42 
4 150 1000 0,12 42 
5 200 800 0,2 42 
6 270 1000 0,2 45 
7 190 1000 0,13 49 

 

3.2. Samples Building 
 
The samples were produced using the PrintSharp 250 (Fig. 31), which is a Powder Bed Fusion 
machine designed for medium-volume applications. It is specifically intended for the industrial 
manufacture of intricate components. This machine is well-suited for companies providing 
Additive Manufacturing services and prototype purposes. It offers a great level of flexibility 
when it comes to managing parts. The technical features of the machine are documented in 
Table 5. 
 
 

 
Fig. 31. Prima Additive Print Sharp 250 
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Table 5. The technical parameters of the PrintSharp 250  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Originally, the 3D printer was loaded with the prepared CAM file, followed by the preparation 
of the corresponding powder. The feedstock material consisted of AISI316L stainless steel gas 
atomized powder, provided by Oerlikon, and gas atomized copper powder from Sandvik 
Osprey Ltd. A mixture of copper and stainless steel particles was blended in a ball mill with 
minimal energy input for a duration of 16 hours, without the use of any balls. The concentration 
of copper in the combination powder was 2.5 weight percent. Fig. 32 displays the morphology 
and related Energy Dispersive X-ray Spectroscopy (EDS) elemental maps of the initial powder 
mixture. The powder distribution analysis reveals that the average particle diameter of the 
blended AISI316 and Cu is 27 μm, with specific values of 13 μm for d10, 23 μm for d50, and 
40 μm for d90. Similarly, the average particle diameter of Cu is 6.3 μm, with specific values 
of 3.1 μm for d10, 5.3 μm for d50, and 13.1 μm for d90. Table 6. displays the chemical 
composition of the Cu-containing AISI316L stainless steel powder utilized in this study, as 
determined by EDS. 
 

Category Specification 
Dimensions (LxWxH) 3500 (L)- 1100 (W)- 2450 (H) mm 

Weight 2000 kg 
Power Supply 380 V/50 Hz/8kW 
Type of laser Yb (Ytterbium) Fiber Glass 
Laser Power 200 W/ 500 W (Optional) 

Laser Focus Diameter 70 – 100 µm 
Beam Wavelength 1060 – 1080 nm 
Building Volume 250 x 250 x 300 mm 

Beam Deflection Speed 8 m/s 
Positioning Speed 10 m/s 

Build rate 12 – 30 cm³/h 
Layer Thickness 0.02 – 0.1 mm 

Layer Width 0.1 mm (single line width) 
Recoater Specs Travel: 650 mm 

Building Platform z-axis Travel: 300 mm/Speed max : 6 
mm/s/Res: 0.01 mm 

Heating Platform Up to 200°C 
Monitoring of O₂ Level Below 100 ppm 

Permissible Room Temperature 15 – 30°C 
Gas (Consumption – 

running/filling) 
7 l/min (running) 

System Fill Consumption 20 l/min (up to filling) 
Cam Software Materialise Magics 

Control & Other Software Eplus control software (EPC) 
Industrial Interfaces Ethernet 
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Fig. 32. Scanning electron microscope (SEM) image of a mixture of powders. It is accompanied by elemental 
maps obtained using EDS [179]. 

Before commencing the printing process, the build chamber was thoroughly emptied to a 
residual oxygen level of less than 0.1%. High-purity Argon was used to preserve an inert 
atmosphere within the construction chamber and minimize the likelihood of oxidation. A 
scanning approach was employed using a bidirectional stripe scanning pattern with a 67° 
rotation between each succeeding layer. The height of each layer was 30 μm. Subsequently, 
the components were cut from the construction platform [179]. 

Table 6. The chemical composition of the combined AISI316L-Cu powder was determined both nominally and 
by analysis. 

 

In Fig. 33, the highlighted section illustrates the laser in operation during the LPBF process. 
The laser accurately melts a small layer of metal powder to create the desired shape. The 
process of melting is fundamental to LPBF, as it enables the fabrication of intricate and highly 
accurate metal parts through the sequential deposition of layers. Fig. 33 illustrates the samples 
positioned on the building platform after the completion of the building process. After 
completing the construction, every job was removed from the workspace and cleaned. 
Subsequently, a focus assessment was carried out. Ultimately, the samples were obtained from 
the plate employing Wire Electrical Discharge Machine (EDM). Furthermore, the samples 
were labeled with a numerical value to signify their distinct process parameters. The x-axis 
corresponds to the recoater's orientation, while the z-direction aligns with the building 
direction. 

                                                                          

Elements Cr Ni Mo C Mn Cu P 
Nominal (wt%) 17-19 13-15 2.25-3 0.03 2.0 2.5 25 
Analysed (wt%) 17.02 13.5 2.04 0.02 2.11 2.92 22 



 50 

  
(a)                                                               (b) 

Fig. 33. (a)The platform during job running (b) Result after completion of 3D printing. 

 

3.3. Sample characterization 
 
During this stage, activities involved using a wire-cutting machine to separate the pieces from 
the platform. Subsequently, the density of the components was determined utilizing the 
Archimedes method. After conducting density measurements, certain components were chosen 
for tomography analysis, which was then performed on them. Furthermore, following the 
tomography procedure, some samples were selected for metallography. Subsequently, the 
microstructure of these samples was analyzed using an optical microscope (OM). The 
experiments took place in the IAM laboratory. 
 

3.3.1. Cutting Machine 
 
The wire-cutting machine functions by employing a slender wire that is electrically charged to 
meticulously sever metal with the highest accuracy. The method operates by generating 
electrical discharges between the wire and the workpiece, resulting in the gradual removal of 
material along the cutting trajectory. The sparks as can be seen in Fig. 34 are produced rapidly 
and efficiently, resulting in the removal of small quantities of metal and the desired shape of 
the workpiece. Throughout the cutting procedure, a constant flow of deionized water is 
employed to cool both the wire and the workpiece, thereby preventing excessive heat and 
removing the eroded particles. This water also functions as a dielectric medium, a crucial 
requirement for the occurrence of the electrical discharge process. The words "time on" and 
"time off" relate to the length of the electrical pulses (on-time) and the gaps between them (off-
time), respectively. The parameter "ton" regulates the energy and length of each spark, which 
directly impacts the cutting speed and surface quality. On the other hand, "toff" enables a brief 
cooling period, minimizing the potential for thermal damage and enhancing the accuracy of the 
cutting process. These parameters are essential for maximizing the cutting efficiency and 
ensuring the high quality of the end product [180]. 
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Fig. 34.Illustration of electrical sparks and the movement of water during the wire-cutting procedure. 

The G.cut WEDM machine was utilized to cut the samples at this particular stage. This machine 
is shown in Fig. 35. Section 1 corresponds to the software of the cutting machine, where the 
settings for wire movement, the auto process, and the start and stop buttons for cutting are 
managed. Section 2 displays the X, Y, and Z coordinate directions, which assist in ensuring the 
cutting is performed in the correct direction. Section 3 is the main part of the machine, where 
the workpiece is placed, and the cutting operation is carried out. At first, the platform was 
attached to the wire-cutting machine using clamps. Next, in the software that deals with 
locating the wire in the cutting machine, the wire was placed on the platform to establish the 
reference point for both the x and y coordinates. Subsequently, the wire's location was adjusted 
according to the platform's parameters, and the appropriate dimensions and correct orientation 
were loaded into the machine to commence the cutting operation. Following the conclusion of 
this stage, the severed components were separated and prepared for further procedures, which 
was determining their density by the utilization of the Archimedes approach. 
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Fig. 35.Key components of the WEDM machine: Section 1 (software controls), Section 2 (coordinate display), 

and Section 3 (cutting area). 

3.3.2. Archimedes density 
 

The Archimedes approach is employed to determine the relative densities of components 
produced by SLM [181]. This method involves weighing a single sample in two distinct fluids 
Typically, the fluid used for reference is air. The second fluid consists of distilled water, 
acetone, or ethanol. While distilled water is frequently utilized [182], it may only sometimes be 
appropriate due to the potential formation of air bubbles on the surface of the sample. This 
phenomenon occurs in lattice systems, such as when air bubbles hinder the complete 
penetration of water into the interior of the mesh due to the high surface tension of the 
water[183]. 
 
The Archimedes density measuring method, according to the ASTM F3637-23 [184], enables 
the calculation of total porosity. Firstly, the measurement chamber is prepared, and the beaker 
is filled with distilled water, with a density of 0.997 .

/,!. Subsequently, the device underwent 
calibration, and the dry weight (w01') of the sample was measured, as depicted in Figure 6(part 
1). The dry weight was determined in part 1 of  Fig. 36 , and noted from the digital measurement 
shown in part 3. Upon finishing this procedure, the device was reset to a value of zero, and the 
sample was positioned in slot 2 to be fully immersed in distilled water. All the bubbles that had 
formed were eliminated, and the sample was completely submerged in the water. The weight 
at this point was documented as w233415267. Subsequently, the sample was extracted from the 
water and promptly reweighed at position 1 in Fig. 36 to determine the amount of water that 
had been absorbed during immersion. This phase resulted in obtaining the wet weight, indicated 
as 	w849 . Furthermore, the theoretical density of the powder was determined to be 7.985 
.

/,!	
	using the relative technique. This method considers that the powder consists of 2.5% 

copper and 97.5% AISI316. Subsequently, the total porosity percentage and relative density 
percentage for all samples were computed utilizing the given formulas. 
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Where: : 
 
 

𝜌!"#$%&'(') = Archimedes density (apparent density) [ 4
#&,] 

 
𝜌0'1&'2"%#3* = Geometrical density (bulk density) [	 4

#&,] 
 
 

 

 
 

Fig. 36. The measurement setup for Archimedes’ density is 1) a position for measuring the dry and wet weight, 
2) a place for measuring the immersion weight, and 3) a digital display for showing the weight values. 

3.3.3. X-ray computed tomography 
X-ray computed tomography employs algorithms to construct 3-D representations by 
combining many X-ray images taken around a rotational axis. Over time, three primary 
XCT techniques have been developed, each enhancing the speed of data collection. The 
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initial XCT method acquires density data along each pencil beam of X-rays that is linearly 
displaced in the opposite direction of an X-ray detector. A small increment rotates the 
scanner, and this process is repeated until a full 360° of data is acquired. The second 
technique employs a two-dimensional array of X-rays that covers the entire object's width, 
along with a one-dimensional array of detectors positioned at the edges of the X-ray fan 
beam. The third approach employs a two-dimensional detector with a complete three-
dimensional X-ray cone. The x-ray source and detector of the pencil beam scanner move 
in a straight line to scan a slice of the xy plane. The source and detector undergo slight 
movements in the z-axis for the item being measured, and this process is repeated. The fan 
beam scanner exposes an entire slice of the object simultaneously, whereas the cone beam 
scanner exposes the entire thing. To capture the entirety of the item, each scanning method 
undergoes a full rotation of 360°[186]. Fig. 37. shows each XCT approach. XCT 
evaluations focus on image quality, notably resolution and contrast. The maximum 
magnification of XCT images decreases with object size due to X-ray penetration, reducing 
resolution. Reducing magnification increases scan voxels and reduces image clarity. Low 
X-ray penetration makes measuring high-density materials difficult, limiting object size. 
This is because reliable contrast requires more prolonged exposures. Instead of scanning 
the whole object, XCT scanners measure a particular section or use a reference coupon with 
similar features. This improves image quality. This technique may increase scan quality 
but not capture the object of interest, which may skew the results. 

 
 

 
 

Fig. 37. Pencil, fan, and cone beam XCT schematics. The fan beam image shows a curved detector, whereas the 
cone beam image shows a flat panel detector. Both can be employed in each case[6]. 

 
Eleven samples were chosen for XCT analysis using specific range of veds.The samples 
underwent tomographic analysis to ascertain their porosity, which would be compared with 
alternative methodologies. In addition, comprehensive data were obtained on porosity 
distribution, the geometries of porosities, their diameters, and other relevant features, which 
will be further elaborated in the findings section. The sample was initially positioned on 
the holder, as depicted in Fig. 38(a). In section (b) of Fig. 38, a copper filter was positioned 
in front of the X-ray gun. The monitor detector is depicted in section (c). The sample's 
position was verified and corrected using the device's related software, as shown in Fig. 39, 
to guarantee that the sample stayed within the X-ray imaging frame. Once the correct 
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placement was confirmed, the tomography process began. Before introducing a new sample 
for tomography, it is imperative to eliminate any remaining residue by uniformly resetting 
the detector using X-rays. 

 

 
Fig. 38. (a) sample holder for tomography analysis,(b) X-ray beam gun, and (c) Detector configuration for 

accurate tomography analysis. 

 

 
 

Fig. 39. The software checks and alters the sample's position during tomography analysis to keep it in the X-ray 
imaging frame. 

3.3.4. Metallography (Grinding, polishing, and etching) 
 
Following the completion of tomography on many samples, some of them were determined 
using the acquired data, and these particular samples were then selected for metallography. 
Given the small size of the samples, it was necessary to mount them to assist in the subsequent 
grinding and polishing procedures. For the initial mounting stage, acrylic resin KMU and 
methyl methacrylate hardener were employed, as depicted in Fig. 40(a). The samples were 
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placed in the mount frame in the specified orientation. A mixture consisting of a 2:1 ratio of 
resin to hardener was made by thoroughly mixing for a duration of one minute. Subsequently, 
the mixture was put into the mounting mold. After 15 minutes, the mounted samples were 
extracted from the mold, as depicted in Fig. 40(b). At this point, the samples underwent 
preparation for the processes of grinding and polishing. 
 

  
(a)                                                                     (b) 

Fig. 40. (a)The acrylic resin and methyl methacrylate hardener were used for mounting the samples before the 
grinding and polishing process. (b) Mounted samples were removed from the mold, ready for the grinding and 

polishing process. 

 
The process of grinding and polishing was conducted using a Presi machine, as seen in Fig. 
41(a).At first, abrasive papers with grit sizes of P480, P600, P800, P1200, and P2400 were 
chosen for grinding as can be seen in Fig. 41 (b). The grinding process commenced using the 
most abrasive paper, and the chosen paper was dampened before being placed on the machine. 
Then, the machine was activated and a rotational speed of 150 rpm was established for this 
step. For the procedure to be successful, water is necessary to carry away the particles that are 
being abraded and to maintain a low temperature throughout the operation. Thus, the water 
flow was located in the center which is controlled via a dial. At this step, it became feasible to 
commence the procedure. Subsequently, the sample can be positioned on the abrasive paper is 
used to grind the surface in a manner that achieves the necessary level of abrasion. Following 
each grinding repetition, the material was scrutinized under a microscope to verify the visibility 
of the grinding lines. Assuming that the lines were distinct, the sample was rotated by 90 
degrees, and a more refined abrasive paper was employed to eliminate the existing lines and 
generate new ones. The process was repeated until the final grinding stage using the P2400 
paper was finished. 
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(a)                                                                          (b) 
 
Fig. 41. (a)The Presi machine was used for the grinding and polishing of the samples.(b)The selection of 
abrasive papers (P480, P600, P800, P1200, and P2400) used for grinding the samples. 

 
After the grinding stage, the samples underwent polishing to eliminate the scratches caused by 
the preceding procedures. Polishing pads with grit sizes of 1 microns and 3 microns were 
utilized, as depicted in Fig. 42. A 1-micron pink pad was positioned on the device, and diamond 
suspension, together with a lubricant, as depicted in Fig. 43 (a), was utilized to attain a polished 
surface. Subsequently, the surface was further refined using the 3-micron blue polishing pad 
and a 0.3-micron aluminum oxide solution, as shown in Fig. 43(b).  
 

 
 

Fig. 42. Polishing pads with 1-micron (pink) and 3-micron (blue) grit sizes were used for polishing the samples. 
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(a)                                                         (b) 

Fig. 43. (a) Diamond suspension and lubricant used during the polishing process with the 1-micron pink pad. (b) 
0.3-micron aluminum oxide solution used during the polishing process with the 3-micron blue pad during the 

polishing process. 

 
After finishing this stage, it was anticipated that the sample surfaces would exhibit a high 
degree of smoothness and reflectivity, resembling a mirror, as depicted in Fig. 44. At this point, 
the samples were prepared for the subsequent phase, where the microstructure was investigated 
using an OM. 
 

 
 

Fig. 44. The final appearance of the samples after grinding and polishing, with a smooth, mirror-like surface, 
ready for microstructural examination under OM. 

 
To investigate the austenite microstructure of the samples and examine the melt pools created 
under different process parameters, the mounted and polished samples, depicted In Fig. 44, 
underwent etching. The etching procedure employed 100 mL of Kalling’s No. 2 solution, as 
demonstrated in Fig. 45 Initially, the samples were submerged in the solution for 20 seconds 
and carefully rotated. They were then rinsed with water to eliminate any residual etchant, and 
the surfaces were dried. The samples were subsequently analyzed using an optical microscope 
to observe the melt pools. 
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Fig. 45. Kalling’s No. 2 solution (100 mL) was used to etch the samples to reveal melt pool structures. 
 

3.3.5. Optical Microscope  
 
The surface of the samples were studied using an optical microscope after being polished. The 
investigation utilized a "LEICA" optical microscope (Fig. 46 (a)) with a manual x-y stage and 
objectives that offered magnification options ranging from 5x to 100x. Imaging was conducted 
using a black-and-white camera that was calibrated. In addition, the microscope is equipped 
with software that offers sophisticated image processing capabilities. The samples were placed 
on a specialized plane with the surface to be examined facing downward (Fig. 46 (b)). The 
surface study was performed using an optical microscope set at a magnification of 5x and 10x. 
The sample was manipulated using the adjustment knobs in order to acquire comprehensive 
photos of the complete surface of each sample. The microscope's focus was meticulously 
calibrated for each photograph to guarantee optimal sharpness and of the surface pores. The 
photos depict black dots on the background, which symbolize the porosities found within the 
material's section. Images of every section of the sample are captured in a matrix format. The 
optical microscope enables the acquisition of pictures at different levels of detail.  
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(a)                                             (b) 
Fig. 46. An optical microscope was used to take high-resolution images of metallographically prepared and 

numbered samples. (b)The sample is placed in a down position for analysis using an optical microscope. 

 
 

 

3.3.6. Image Analysis 
 
Following the acquisition of the photos, they engaged in post-processing with the software 
known as ImageJ. ImageJ is a Java-based software that was developed by the National 
Institutes of Health in the United States for processing and analyzing images. The porosity 
percentage of the samples was examined using the ImageJ software, as demonstrated in Table 
7 as an example of one of the samples that has a porosity percentage of 2.329%. To do a 
porosity analysis, ImageJ requires an image that contains 8 bits. Consequently, the first step 
consisted of converting the image into an 8-bit format, which ultimately led to the creation of 
a grayscale representation in which the color of each pixel is determined by the intensity of the 
greyscale. The software made it easier to quantify the proportion of pores on the surfaces as 
well as the diameters of the pores. By adjusting the threshold to get rid of any distortions that 
were caused by polishing and any scratches that were still present, it became possible to exactly 
measure the percentage of darkened regions that corresponded to the pores in the samples (Fig. 
47).  
 
Table 7.Analysis of sample porosity using ImageJ software, demonstrating the quantification process of porosity 

within the sample. 
 

Area Mean StdDev Mode Min Max Median %Area MinThr MaxThr 

1 16708.651 255 0 255 255 255 255 2.329 255 255 
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Fig. 47. The grayscale image was processed in ImageJ using thresholding to enhance and measure the pores 
(shown in red), while excluding any polishing errors and scratches. 

 

3.3.7. Mechanical tests 
 
After the initial 3D printing of cubic samples and the analysis of the correlation between their 
process parameters and porosity, an additional nine components were manufactured further to 
investigate the influence of porosity on mechanical properties. The nine components were 
meticulously chosen according to prior process parameters to exemplify high, medium, and 
low porosity levels. Tensile test specimens were fabricated from these printed components, 
featuring exact gauge dimensions of 10 mm in length, 2.5 mm in width, and 3 mm in thickness. 
Tensile testing was conducted using a universal Instron-5982 testing system at ambient 
temperature, employing a strain rate of 1 × 10⁻³ s⁻¹. Each sample underwent triplicate testing 
to guarantee consistency and repeatability of results. 
 
Following the tensile tests, the fracture surfaces of the specimens were carefully analyzed 
utilizing scanning electron microscopy (SEM) in secondary electron imaging mode. This 
analysis offered insights into fracture behavior, facilitating a detailed examination of ductile 
and brittle fracture characteristics at various porosity levels. The study correlates porosity with 
fracture morphology, providing essential data on how different porosity levels affect 
mechanical performance, which is vital for optimizing process parameters in AM. 
 
 

3.4. Evaluation of ML algorithms 
 
Applying a regression model typically requires multiple metrics for a comprehensive 
evaluation [187]. The accuracy of the chosen models is assessed using three statistical metrics: 
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the coefficient of determination (R²), the mean absolute error (MAE), mean square error 
(MSE). 
The MAE represents the average absolute deviation for each statistic which is an indication of 
prediction accuracy[188]. MAE provides a more accurate representation of the actual amount 
of the prediction error, in contrast to other error metrics, by properly addressing the issue of 
error cancellation[189]. It should be noted that the MAE value is expressed in the same units 
as the original target variable. This feature facilitates comparisons among multiple machine 
learning models, specifically for the target data, rather than across different prediction 
tasks[187]. 
The Mean Square Error (MSE) denotes the sample standard deviation of the discrepancies 
between predicted and actual values, used as a metric that calculates the ratio between the 
squared differences of predicted and actual values, and the total number of data points. It is 
worth noting that the MSE is more sensitive to outliers compared to the MAE [189,190].  
The coefficient of determination, often denoted as R2, measures the strength of the relationship 
between two variables. It assesses the accuracy of the regression equation in fitting the 
observed data and capturing the variability in the dependent variable. Specifically, R2 
quantifies the level of the variation in the target variable that can be assigned to the changes in 
independent input variables in a regression model. Essentially, it signifies the degree of 
correlation between the input and target variables[72]. It is essential to note that assessing 
prediction accuracy by using only R2, especially in non-linear regression, is inadequate. 
Therefore, in this study, R2 is not the exclusive statistic for assessing model performance. 
Additionally, R2 has certain limitations. Although, the increase of independent variables results 
in a rise in R2, especially in large datasets, a very high value of R2 may indicate an overfitted 
model, while an accurate model may have a reduced R2. Negative R2 values also indicate that 
predictions are worse than the mean target value[187]. MAE, MSE, and R2 can be calculated 
by equations below. 
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Where 𝑦=, 𝑦>=, 𝑦? represent actual, predicted, and mean values, respectively, and n is total number 
of data points. The high R2 value and the low MAE and MSE values suggest that the analysis 
and statistical model are accurately representative[191]. 
To address the above-mentioned limitations and have a comprehensive analysis of algorithms 
accuracy, the Index of Merit (IM) is introduced in this study. As shown in equation (9) IM 
integrates the three statistical measures (MAE, MSE, and R²) into a single metric that provides 
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a more holistic view of model accuracy. A value closer to zero indicates optimal predictive 
performance, whereas values further from zero suggest decreasing accuracy [192,193]. 
 

																																																			IM = 	:(𝑀𝐴𝐸)8 +𝑀𝑆𝐸 + (1 − 𝑅8)8                   (9) 
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4. Result and Discussion 

4.1. Overview 
This section highlights the outcomes derived from the measurement methods outlined in the 
preceding chapter. Fig. 48 presents a comprehensive illustration of the complete workflow, 
illustrating the utilization of ML models to analyze the data and optimize the process 
parameters by finding a relation between them and defect content. In the final stages, the 
influence of process parameters on the microstructure was thoroughly analyzed. Subsequently, 
mechanical properties were measured to establish the relationship between porosity and 
mechanical performance. 
 
Fig. 48 depicts the overall organization of the tasks carried out, with the first three sections 
related to the methodology detailed in the preceding chapter. These sections are essential as 
they provide the basis for the work done in this chapter. The following sections of the figure 
describe the procedures undertaken to process the data, test the models, and conduct a 
comprehensive analysis of the critical parameters. The data under study includes measured 
relative density percentages obtained through three distinct methodologies: Archimedes 
density measurement, image analysis, and X-ray computed tomography. These three 
methodologies were selected to guarantee an efficient and comprehensive dataset. 
Subsequently, Density data was split into training and test sets, a conventional procedure in 
ML for assessing model performance. In Fig. 48, the letter "i" denotes that the data partitioning 
into training and test sets took place in several phases, employing different sets. For instance, 
the data were partitioned using an 80/20 split, allocating 80% for training and 20% for testing. 
The focus has now transitioned to evaluating the effects of various model hyperparameters. 
The impact of these hyperparameters on model performance was analyzed through specific 
plots, which are discussed later in this chapter. Three evaluated hyperparameters exhibited the 
most substantial influence and were selected for a detailed analysis. To guarantee a 
comprehensive analysis, the impacts of these critical parameters were assessed using a large 
dataset. Their impact on the R² value (a metric of model precision) was evaluated. As the R² 
value nears 1, the model's efficacy seems to enhance, signifying that the predictions closely 
correspond with the actual data. Following identifying the optimal two hyperparameters, the 
influence of a third parameter was investigated. This analysis utilized 2D plots to assess errors 
through multiple metrics. The error plots facilitated the identification of the optimal range for 
the third parameter, which, similar to the preceding hyperparameters, was chosen based on the 
maximum R² value achieved. Following the completion of hyperparameter tuning, attention 
shifted to the prediction phase. During this phase, two-dimensional graphs were used to 
compare the model's predicted values with the measured values. Subsequently, regression 
analysis was employed to evaluate the accuracy of the model's predictions about actual 
outcomes. This comparison is essential, as it offers a final assessment of the model's accuracy 
and the accuracy of the predictions. After the prediction phase, a critical evaluation was 
performed to ascertain if the training size had attained 90%. If it had not, the entire process was 
started again with a new training and test data division. Upon reaching the 90% training size, 
the workflow advanced to the final stage, during which the optimal model and its associated 
hyperparameters were chosen. 
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This chapter subsequently discusses a variety of ML models in detail. Upon reaching the 
specified training size, the outcomes of these models, including their optimal parameters and 
performance, are documented. 
 
 
 
 

 
 
 

Fig. 48.An overview of the workflow is provided in this chapter, demonstrating the use of machine learning 
models to analyze data and optimize process parameters by finding a relationship between them and defect 

content. The initial three sections pertain to the approach, whereas the subsequent sections outline the process 
parameter optimization. 

 
 

4.2. Data preprocessing 
 
All data acquired from the second part has been compiled at this stage. Table 8 presents the 
relative density percentages measured for each of the 64 samples. Furthermore, for a specific 
subset of chosen samples, the densities were assessed using two alternative methods, as detailed 
in Table 8. This table additionally displays the porosity percentages for the samples. Upon 
gathering data from the three methodologies, the averages were computed to facilitate the 
implementation of diverse ML models such as Bayesian Regression, Decision Tree Regression 
(DT), Gradient Boosting Regression (GBR), Gaussian Process Regression (GPR), K-Nearest 
Neighbors (KNN), Support Vector Regression (SVR), and Random Forest Regression (RFR) 
on the average density. The primary objective is to enhance the process parameters according 
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to these models. The tomography and metallography methods were not conducted on all 64 
specimens. The average values of 13 pieces were initially computed, and subsequently, these 
averages were extrapolated to the remaining pieces. This methodology guarantees a thorough 
analysis while considering the data constraints of specific techniques. The data was divided 
into training and test sets. The total number of these portions equals 100%. Multiple machine 
learning models were utilized on up to 90% of the training data, and the ideal ratio of training 
to test data was subsequently determined. The analyses and conclusions are presented based on 
these chosen ratios. This precise data splitting and model setup procedure ensures that the 
models' performance is both powerful and reliable, resulting in important insights into 
optimizing process parameters. The findings of these analyses, including optimal arrangements 
for training and testing data, are detailed, providing the precise selection of the most 
appropriate machine learning models for the dataset. 

Table 8.Relative density percentages measured for 64 samples. 

Sample 
ID 

Relative 
Density[%] 

 Sample 
ID 

Relative 
Density [%] 

1 96.89  33 96.11 
2 98.27  34 98.80 
3 98.46  35 99.93 
4 99.69  36 99.15 
5 99.03  37 96.33 
6 97.68  38 98.30 
7 98.90  39 99.56 
8 98.24  40 98.87 
9 97.87  41 97.94 
10 97.38  42 98.25 
11 98.69  43 97.81 
12 98.79  44 97.64 
13 96.40  45 96.38 
14 97.74  46 97.05 
15 98.03  47 98.51 
16 97.27  48 97.60 
17 96.36  49 95.89 
18 96.44  50 97.42 
19 98.57  51 98.52 
20 98.48  52 99.09 
21 96.47  53 97.88 
22 97.74  54 98.31 
23 98.10  55 99.53 
24 99.48  56 98.55 
25 96.16  57 96.99 
26 98.58  58 98.19 
27 97.77  59 98.51 
28 98.80  60 98.89 
29 96.86  61 95.95 
30 97.90  62 97.92 
31 99.33  63 97.66 
32 98.08  64 97.28 
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The results from the metallography and tomography techniques, as illustrated in Table 9, were 
determined by images obtained by optical microscopy and Tomography analysis. The optical 
microscope images were subsequently analyzed using ImageJ software. The porosity 
percentages were determined via image analysis of the tomographic data. This detailed analysis 
confirmed a thorough examination of the samples' surface and volumetric characteristics, 
providing significant insights into the materials' internal structure. Advanced imaging 
techniques and software facilitated a more precise assessment of porosity, thereby improving 
the overall accuracy of the data and its significance to the study. 
 

Table 9.Porosity percentages for selected samples using two additional methods (metallography and X-ray  

 
Sample ID 

Porosity content by 
XCT [%] 

Porosity content by 
image analysis [%] 

Porosity content by 
Archimedes Density 

analysis[%] 
5 0.99 - 0.97 
7 1.09 - 1.10 
9 4.72 - 2.13 
13 4.55 1.99 3.60 
16 2.52 7.58 2.73 
18 3.11 2.82 3.56 
21 3.26 2.41 3.53 
22 0,90 1.37 2.26 
23 1.26 1.38 1.90 
31 2.24 2.11 0.67 
34 1.11 1.24 1.20 
39 1.43 - 0,44 
52 0.96 0.94 0.91 

 
 
A selection of samples was made for additional analysis to investigate the correlation between 
tomography and metallography data. The density percentage for each sample was determined 
using two distinct methodologies. In Sample 16, the notable difference between tomography 
and metallography results can be attributed to the fact that metallography mainly investigates 
the surface. Fig. 50(b) illustrates that this sample exhibits significant porosity at the surface, 
whereas the bulk displays reduced porosity, highlighting the differences between these 
measurement techniques. The 3D tomography images depicted in Fig. 50(a) illustrate the 
distribution, morphology, and dimensions of the pores. In denser samples, such as Sample 52, 
the outcomes from both methods converge more closely due to the reduced porosity, resulting 
in a minimal disparity between the methods. 
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Fig. 49. Porosity percentage chart displaying the results after applying standard error to the data in Table 8. 

 
Furthermore, after applying the standard error to all data in Table 9, the porosity percentage 
chart is illustrated in Fig. 49. This figure illustrates that, following the application of the 
standard error, the proximity of the data points is significant. The analysis concentrated 
exclusively on the Archimedes method applied to all 64 samples. The purpose of this analysis 
was to determine the closeness of the data using the Archimedes method to achieve a precise 
comprehension of its accuracy. The notable disparity identified in Sample 16 can be ascribed 
to the metallographic analysis, which is confined to a singular surface and indicates that the 
predominant porosity is localized in that region. Conversely, tomography revealed that the 
upper portion of the sample demonstrates markedly reduced porosity, underscoring a constraint 
of the metallographic technique.Fig. 50 demonstrates that the 3D representation depicts the 
distribution and morphology of the pores, showing that the majority of the porosity in Sample 
16 is concentrated near the surface. This concentration yields a markedly porous appearance in 
the metallographic analysis. The metallographic and tomographic data for the remaining 
samples are relatively similar and consistent. Sample 52 demonstrates alignment between the 
3D and 2D tomographic images shown in Fig. 50 (a) and (b), along with the metallographic 
image in Fig. 50 (c). 
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Fig. 50. This figure thoroughly analyzes the samples employing various density measurement  techniques.  (a) 
presents the 3D tomography, providing a comprehensive visualization of the sample structure, with each sample 
measuring 5 × 5 × 5 mm, (b) emphasizes the frontal perspective of the samples, displaying internal characteristics 
via tomography imaging, (c) presents metallographic images acquired through OM, comprehensively analyzing 
the sample's structure. Furthermore, the density values of the samples, obtained through XCT and image analysis 
techniques, are presented for comparison. 

 
Fig. 51 depicts the influence of process parameters on the relative density of components as it 
varies with the VED. The intensity of the laser power is represented by the size of the points, 
whereas the hatch distance and scan speed are denoted by the color in Fig. 3a and Fig. 3b, 
respectively. The VED ranges from 33 to 283 J/mm³, resulting in component densities between 
90.9% and 99.9%. Sample 38 demonstrated the greatest density at 99.9%, accompanied by a 
VED of 66 J/mm³. Insufficient laser energy at lower VED values leads to incomplete fusion, 
thereby diminishing the density of the components. However, when the VED  surpasses 50 
J/mm³, the L-PBF process yields components with a significant density, as evidenced by the 
optical micrographs presented in Fig. 51. As VED increases, a reduction in density transpires 
due to keyhole formation, underscoring the importance of vaporization effects at elevated VED 
levels. Consequently, both exceedingly low and exceedingly high values of VED are generally 
unsuitable for producing a fully dense component. Consequently, variations in the VED result 
in the observation of distinct types of porosities. 
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Fig. 51. Illustration of the relationship between VED and the relative density. The size of the points represents 

laser power, while color indicates (a) scan speed and (b) hatch distance. 

 

4.3. Hyperparameter Tuning 
 

Various ML models were utilized on the density measutrement data, assessing their impact to 
identify the most accurate and optimal model for process parameter optimization. Supervised 
learning is a prominent ML approach that employs labeled data segmented into training and 
testing sets, primarily to develop models that identify relationships between predictors 
(features) and the response (target) within the dataset. Supervised learning can be subdivided 
into two categories: regression, which forecasts continuous values, and classification, which 
entails predicting discrete class labels [131,194]. Given that the target variables and relative 
density in this study were continuous, regression models including SVR, GPR, GBR, k-NN, 
DT, RF, and Bayesian regression were utilized. A heat map was employed to analyze the 
influence of distinct hyperparameters associated with each ML model on the R² value. This 
analysis identified the three hyperparameters showing the most significant influence on the R² 
score. In the subsequent step, a 3D mesh plot was utilized to identify the hyperparameter 
configurations yielding the highest R² value. A 2D plot was employed to examine the 
correlation between the subsequent hyperparameter and various error metrics, including R², 
MSE, and MAE, to determine the optimal value for the hyperparameter. In the subsequent 
phase, following applying the selected hyperparameters to the ML model, a two-dimensional 
plot of predicted density against actual density was generated utilizing regression. This 
facilitated an assessment of which model provided the most precise prediction, exhibiting the 
closest correspondence between the predicted and actual data. 

4.3.1. Heat map correlation plot 
 
In the heat map correlation plot, as illustrated in Fig. 52 for various ML models, each model 
applied to the data has its distinct hyperparameters. To find the optimal value for each 
hyperparameter, heat maps were utilized to show the effect of each parameter on the R² score. 
The best hyperparameters were identified by examining the bottom row or last column, 
highlighting the parameters with the maximum impact. The three hyperparameters with the 
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most significant impact were selected for further analysis in the next stage, where the optimal 
value, corresponding to the lowest error, was determined for each. For instance, as shown in 
Fig. 52 (a) , the parameters C, kernel, and gamma were found to have the most significant 
impact. Similarly, for the other models, three hyperparameters were chosen for further 
examination to determine their precise values in the following optimization stage. 

 
(a) 

 
(b) 
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                                                                       (c) 

 
(d) 
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(f) 
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(g) 

 
Fig. 52.Heat map correlation plot illustrating the impact of different hyperparameters on the R² score for various 
ML models: (a) SVR, (b) GPR, (c) GBR, (d) k-NN, (e) DT, (f) RF, and (g) Bayesian Regression. The color 
intensity represents the degree of influence each hyperparameter has on the model's performance. (training size is 
80%) 

 

4.3.2. 3D plot surafce 
 
At this stage, a 3D plot is created utilizing two of the hyperparameters chosen in the preceding 
step, and the maximum R², indicative of the minimal error, is determined for each model. Fig. 
53 depicts the optimal hyperparameter values that yield the R² for each model. Following this 
step, only one hyperparameter remains unassigned a value. In the subsequent phase, a 2D plot 
is employed to ascertain the optimal value for the remaining hyperparameter by analyzing the 
minimal errors. 
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Fig. 53. 3D plots illustrating the optimal hyperparameter values for achieving the maximum R² score (minimum 

error) for various machine learning models. 
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4.3.3. 2D plot Based on Hyperparameter Optimization 
 
The following part employs 2D plots to identify the optimal value for the third hyperparameter, 
utilizing three distinct error metrics: R², MSE, and MAE, as depicted in Fig. 54. The ideal value 
for the third hyperparameter is determined by the criterion that an elevated R² and lowered 
MSE and MAE signify superior model performance with minimized error. This step represents 
the last stage of hyperparameter selection, wherein values for all hyperparameters have been 
established for each model. The next step is to investigate the error rates of the various models. 

 

 
 
Fig. 54.2D plots showing the optimal value selection for the third hyperparameter based on three error metrics, 

including R², MSE, and MAE for various ML models. 
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4.3.4. Model Evaluation 
This section has identified the optimal hyperparameters for the models. To assess performance, 
a graph of predicted density against actual density is created for each model as can be seen in 
Fig. 55, and regression analysis is employed to evaluate accuracy. The model exhibiting the 
highest R² value, nearest to 1, is considered the most precise for prediction. 

 
 

 
 

Fig. 55. Comparison of predicted vs. actual relative densities for all algorithms at 80% training size. The red 
dashed line indicates the optimal prediction (when projected values align with actual values), and the gray-

shaded area indicates ±1% tolerance range. 

After completing the hyperparameter tuning process and identifying the optimized 
hyperparameters, we employed these values in the machine learning algorithms to forecast the 
target variable (the relative density of the testing data) for which the actual values were 
previously established. The efficacy of each model was subsequently evaluated by measuring 
the discrepancies between the predicted and actual values. The influence of varying training 
sizes on model performance, evaluated via R2, MAE, and MSE, is a critical aspect of model 
assessment and enhancement. Figure 8 illustrates the influence of different training sizes (40%, 
50%, 60%, 70%, 80%, 90%) on the specified error metrics across multiple algorithms including 
Bayesian Regressor, Decision Tree Regression, GBR, GPR, KNN, SVR, and RF. Fig. 56 (a) 
reveals a general trend where an increase in training size percentage correlates with a rise in 
MSE across most algorithms, adversely impacting prediction accuracy. The augmentation in 
MSE is more pronounced in the Bayesian Regressor. For example, with a training size of 40%, 
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the Bayesian Regressor exhibits an MSE of 1.987, which escalates to 7.043 when the training 
size is increased to 90%. The substantial increase in MSE underscores the model's 
susceptibility to reduced testing size, resulting in diminished predictive efficacy. Conversely, 
certain algorithms, like SVR, exhibit an inverse trend, wherein an increase in training size 
results in a reduction of the MSE, signifying improved predictive accuracy with larger datasets.  
 
The influence of train size on MAE, illustrated in Fig. 56 (b), exhibits a comparable trend to 
that of MSE. The minimal MAE values are generally recorded at a 60% training size, whereas 
increased training sizes of 90% yield elevated MAE values. In the GBR model, the MAE is 
0.713 at a 60% training size, increasing to 0.896 at 90%. This indicates that a 60% training size 
may produce optimal results for minimizing MAE; however, it is crucial to consider additional 
error metrics, such as MSE and R², to determine the most suitable training size for overall 
model efficacy.Fig. 56 (c)illustrates that the coefficient of determination (R²) escalates with an 
increase in training size, signifying enhanced predictive accuracy. Notable enhancements in R² 
manifest when the training size attains 80% and 90%. In the GPR model, the R² value begins 
at 0.252 with a 40% training size and exceeds 0.856 when the training size increases to 90%. 
The SVR model exhibits a notable enhancement, with the R² rising from 0.344 at a 40% 
training size to 0.842 and 0.871 at 80% and 90%, respectively. This trend is not uniform across 
all algorithms. In the Bayesian Regressor, a contrasting trend is evident, as an increase in 
training size results in a reduction of R2, underscoring the unique characteristics of each 
algorithm. Utilizing 90% of the data for training typically yields the highest R² score across 
multiple algorithms; however, employing merely 10% of the data for testing results in an 
elevation of MAE and MSE. This indicates that relying solely on R² is insufficient for assessing 
the accuracy of the model's predictions; additional error metrics must also be taken into 
account.  
 
The findings demonstrate that a training size of 80% attains an optimal equilibrium among 
three distinct error metrics, contingent upon the algorithm utilized. Among the examined 
algorithms, SVR demonstrates superior accuracy across nearly all training sizes, whereas the 
Bayesian Regressor exhibits the least predictive efficacy throughout the assessment. These 
findings underscore the importance of selecting an appropriate training size and optimal 
hyperparameters to enhance accuracy and error metrics for each algorithm. 
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Fig. 56. R2, MAE, and MSE values for different values and train sizes of each machine learning algorithm. 
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4.4. Final Model Selection 
 
Following the assessment of the models, the optimal machine learning model for density 
prediction has been identified which was SVR. Subsequently, the ideal process parameters for 
the desired feature can be predicted utilizing the most accurate model, resulting in reduced 
powder usage for printing and time and cost savings. Supplementary advantages encompass 
enhanced efficiency and diminished material waste in production, thereby fostering more 
sustainable and economically viable manufacturing. 
 

 
 

Fig. 57. Comparison of predicted vs. actual relative densities for SVR algorithms at 80% training size. 

 

4.5. Selected Model Verification 
 
Fig. 58 compares the actual and predicted relative densities achieved by the optimal machine-
learning model utilizing testing data. The SVR algorithm, using optimized hyperparameters 
(kernel = rbf, C = 215.44, Max_iter = 990, tol = 0.0278, epsilon = 0.1), was employed to 
forecast relative densities at 15 testing points. Among the models, SVR demonstrated superior 
performance, achieving the lowest MAE of 0.601, MSE of 0.640, and the highest R2 of 0.842 
with a training size of 80%. The predictions closely align with the actual values, as illustrated 
in Fig. 58. Furthermore, Fig. 58 illustrates the optimal values of the target variable (relative 
density), the associated VED, and the similar trend depicted in Fig. 51for manufacturing under 
optimal conditions.  
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Fig. 58. Comparison of actual and predicted relative density as a function of calculated VED using SVR with 

optimized hyperparameters at the training size of 80%. 

Fig. 59 illustrates the predicted relative density for four different scan speeds: 400, 600, 800, 
and 1000 mm/s based on the best predictor model, SVR at the training size of 80% with specific 
optimized hyperparameters. These values are within the specified range of hatch distance (0.1 
to 0.2 mm) and power (100 to 400 W). Generally, as the scan speed increases, the contour plots 
in Figure 10 indicate a continuous rise in predicted relative density, as shown by the expansion 
of yellow and green regions. This trend highlights the influence of scan speed on the 
densification process, where higher scanning speeds caused enhanced relative density under 
the given conditions.At a scanning speed of 400 mm/s, the minimum relative densities are 
observed in the power range of 300 to 400 W, independent of the hatch distance. Conversely, 
the highest relative densities at this scan speed are obtained when the power ranges from 100 
to 200 W, with the hatch distance between 0.13 and 0.15 mm. This suggests that optimal 
relative density at the scan speed of 400 mm/s can be achieved within these specific process 
parameters at lower power levels combined with moderate hatch distances.At a scanning speed 
of 600 mm/s, the predicted relative density improved across the entire hatch distance and power 
range compared to the previous scan speed. However, the maximum predicted relative density 
is still lower at scanning speeds of 800 and 1000 mm/s. The lowest relative density is observed 
when the power exceeds 300 W, particularly at hatch distances less than 0.12 mm. On the other 
hand, when the power is less than 300 W, the highest relative densities are achieved in two 
specific hatch distance ranges, 0.10 to 0.11 m, and 0.15 to 0.18 mm.The maximum predicted 
relative density at a scan speed of 800 mm/s increased by 0.8% compared to the previous scan 
speed of 600 mm/s, and by 1.1% compared to the speed of 400 mm/s, reaching a peak of 99.5%. 
The highest relative densities were achieved in the hatch distance range of 0.12 to 0.18 mm. 
However, at high P values,  particularly around 400 W, the highest percentage of porosity 
would be possible, especially in small hatch distance ranges.At the scanning speed of 1000 
mm/s, the maximum relative density decreased by 0.5%. The predicted relative density value 
reached its lowest value at the hatch distance range of less than 0.12 mm. For hatch distances 
greater than 0.12 mm, the power should be set between 100 and 250 W to achieve high relative 
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density, particularly at a hatch distance of 0.14 mm.Based on Fig. 59, it can be concluded that 
while high relative density values are achievable in all four plots, a scanning speed of 800 mm/s 
can be considered the optimal value. At this scanning speed, porosities can be further 
minimized using a power setting of approximately 250 W and a hatch distance of 0.13 mm. By 
analyzing the relationship between process parameters and porosity content, various objectives, 
such as maximizing productivity and identifying optimal process parameters for that, can be 
achieved through this model. 

 

 
 

Fig. 59. Illustration of predicted relative density for different scan speeds (400, 600, 800, and 1000 mm/s) by 
varying power (100-400 W) and hatch distance (0.1-0.2 mm) ranges, using the SVR algorithm at the training 

size of 80% after hyperparameter tuning. 

4.6. Microstructure Analysis 
 
Based on different VEDs, AISI 316L-Cu samples exhibit different densities. Fig. 60 presents 
OM images comparing different AISI 316L-Cu samples. In these images, the ring-shaped melt 
pools observed for the AISI 316L-Cu samples have average depth of 100 μm, and widths of 89 
μm, respectively. This difference in melt pool dimensions is likely due to the rapid 
solidification and increased temperature gradient resulting from copper’s significantly higher 
thermal conductivity (approximately 385 W/m·K) compared to that of stainless steel (10–30 
W/m·K)[195].It is well known that copper can dissolve into iron, forming a substitutional solid 
solution within the steel matrix[196]. As copper is an austenite stabilizer, its presence is 
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expected to promote a fully austenitic microstructure. This finding aligns with earlier research, 
suggesting that copper atoms in solid solution, or substituting for iron atoms, may contribute 
to a slight increase in lattice distortion of the austenite phase[197]. Studies have indicated that 
materials with higher thermal conductivity exhibit an elevated temperature gradient and 
enhanced cooling rate during solidification, which supports faster heat extraction during 
dendrite formation, ultimately leading to finer microstructures[195].  
The microstructural analysis focuses on understanding the influence of process parameters on 
the melt pool geometry, analyzing type of cells, and porosity distribution within the samples. 
Variations in laser power, scanning speed, and hatch distance directly impact the melt pool 
dimensions which subsequently govern the solidification behavior and microstructural 
characteristics. By adjusting these parameters, it is possible to optimize the grain structure and 
minimize defects, ultimately enhancing the mechanical properties of the material. Higher 
energy densities promote deeper melt pools, leading to slower cooling rates and coarser grains. 
Conversely, lower energy densities result in shallower melt pools, faster cooling rates, and finer 
grains [198].  
 
 

 
 
Fig. 60. Schematic depiction of melt pool geometry in laser-based AM , highlighting melt pool width and depth. 
Microscopic images of melt pools illustrate differences in shape and depth under diverse processing conditions. 
The red outlines delineate the boundaries of the melt pool, while the build direction (BD) arrows signify the layer-
wise stacking in the manufacturing process. 

 
Fig. 60 provides a detailed examination of melt pool geometry in laser-based AM. The left side 
illustrates a schematic representation of the melt pool created by the interaction of a laser beam 
with the material. This schematic emphasizes two essential dimensions, melt pool width, 
denoting the horizontal extent of the pool, and melt pool height (or depth), indicating the 
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penetration depth of the melt pool into the material. The dimensions are directly affected by 
process parameters including laser power, scanning speed, and hatch distance. Increased laser 
power generally leads to a deeper melt pool, whereas elevated scan speeds tend to create a 
shallower pool. The geometrical variations are essential for regulating the solidification 
behavior, microstructure, and ultimately the mechanical properties of the material [198]. On 
the right side of Fig. 60, a collection of micrographs illustrates the melt pool configurations 
observed in various samples. These samples were selected to investigate the melt pools with 
varying VEDs.  The red outlines in each image demonstrate the boundaries of the melt pools, 
which display the characteristic semi-circular profiles typical of laser-based additive 
manufacturing. The build direction (BD), denoted by arrows in the images, illustrates the 
vertical layering of components throughout the process. The geometries of the melt pool vary 
according to the process conditions, with curvature and depth differing among samples. Images 
with high magnification emphasize intricate details of the microstructure, such as grain 
boundaries and possible defects like porosity. Shallow melt pools typically result in accelerated 
cooling rates and finer grain structures, thereby improving mechanical properties such as 
strength and toughness. Conversely, deeper melt pools exhibit a slower cooling rate, leading to 
the formation of coarser grains. Moreover, defects such as pores, cracks, or unmelted areas 
may be discerned at elevated magnifications, potentially resulting from inadequate energy 
input or improper melting processes. These defects adversely affect the density and mechanical 
properties of the final component. A noticeable trend indicates that a rise in VED is associated 
with an enlarged melt pool size, which can substantially affect the microstructural 
characteristics of the samples. This observation relies on evaluating essential characteristics, 
including the depth, width, and overall geometry of the melt pools, which are pivotal in 
influencing the mechanical properties and integrity of the final product.Though indicative of a 
singular instance, this observation has yet to be thoroughly evaluated across all samples. 
Consequently, the conclusion reached remains broad. The dimensions of the melt pools in each 
sample are specified, illustrating this prevailing trend. Moreover, variations in melt pool 
characteristics may impact cooling rates and solidification behavior, subsequently affecting the 
distribution of porosity and alloying elements within the samples. These insights emphasize 
the intricacy of the AM process and underscore the need for additional research into the 
correlations among processing parameters, melt pool morphology, and resultant material 
properties. A thorough comprehension is crucial for optimizing the additive manufacturing 
process and improving the performance of the final components [199,200]. 
 
The SEM backscattered images in Fig. 61(a) and (b) depict the microstructure of the as-
fabricated AISI316L-Cu sample52. Fig. 61(a) depicts the grain structures within the melt pools 
that developed throughout solidification. Fig. 61(b) presents an enlarged perspective This 
figure illustrates the solidification of the melt pool, comprising both columnar grains and 
delicate cellular structures at the microstructural level. This substructure is probably associated 
with the elevated cooling rate, the intricate and non-equilibrium thermal history of the L-PBF 
process, and fluctuations in chemical composition resulting from insufficient homogenization 
of larger atoms [201]. Various substructures are located at the junctions of multiple melt track 
borders, resulting in intricate growth orientations of columnar grains perpendicular to the BD, 
considerably affecting tensile properties. 
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, whereby region (1) is defined by equiaxed cells, signifying rapid solidification within the melt 
pool. This microstructure is recognized for increasing mechanical strength and facilitating 
isotropic characteristics. Conversely, region (2) has columnar cells resulting from directed 
solidification, frequently resulting in anisotropic material behavior. The interplay of equiaxed 
and columnar grain patterns, influenced by specific process factors like laser power, scanning 
speed, and hatch distance, is vital in defining the material's mechanical properties. The 
equilibrium between isotropic and anisotropic properties substantially affects tensile strength, 
and yield strength. The coexistence of different grain forms indicates regulated temperature 
gradients during solidification, which directly influences the material's performance and 
application potential[179]. 
 

 
(a)                                                                              (b) 

Fig. 61.SEM backscattered images highlighting the microstructure of sample 52. (a) depicts the melt pools with 
clearly defined grain shapes, (b) offers an enlarged perspective, with (1) displaying equiaxed cells and (2) 

presenting columnar cells. 

 
Prior research [202] has demonstrated that the dimensions of the melt pool are affected by the 
parameters of the L-PBF process, leading to irregular overlaps and variations between 
neighboring layers.The cell size of the as-fabricated AISI316L-Cu samples, determined via the 
triangle method [16], is 0.68 ± 2% μm. The intricate cellular microstructure results from the 
elevated cooling rate caused by the localized quenching process. Numerous researchers have 
reported that the cooling rate during solidification is a critical parameter that inversely 
influences cell size[16]. The cooling rate for the AISI316L-Cu sample was estimated at 1.8 × 
10^6 K/s, signifying that the incorporation of copper increased thermal conductivity, thereby 
improving the cooling rate during the L-PBF process and subsequently decreasing cell size. 
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Fig. 62.Backscattered SEM image displaying columnar and equiaxed cellular structures. 

 
 
The EDS analysis results, illustrated in Fig. 63 for Spot 1 in (a) and Spot 2 in (b), reveal 
elemental peaks for Fe, Cr, Ni, Mo, and Cu. Accelerated solidification during the construction 
process, coupled with the reheating of the solidified layers, may facilitate the segregation of 
alloying elements and induce microstructural variations. This results in a more luminous 
appearance in the backscattered SEM image, ascribed to elevated concentrations of alloying 
elements and localized elemental segregation during the L-PBF process. Fig. 62 depicts the 
backscattered SEM image, revealing distinct microstructural characteristics of the as-fabricated 
AISI316L-Cu sample. The pronounced contrast in specific areas signifies the presence of 
higher atomic number elements, such as nickel and molybdenum, which can augment the 
material's strength and resistance to corrosion. The interfaces between different microstructural 
features may act as potential sites for crack initiation under stress. Table 10 presents the EDS 
elemental analysis findings for Spots 1 and 2 . The tables present comprehensive data on the 
composition of the examined regions, emphasizing the variations in elemental distribution and 
concentration that can substantially affect the alloy's mechanical properties. 
 

Table 10.EDS elemental analysis results for Spots 1 and 2 in Fig. 62. 

Element spot1 (Weight %) spot1  (Atomic   %) spot2 (Weight %) spot2 (Atomic %) 
MoL 3.56 2.09 4.24 2.51 

CrK 16.66 18.05 16.61 18.11 

FeK 69.38 70.00 65.65 66.62 

NiK 8.82 8.46 9.93 9.59 

CuK 1.58 1.40 3.56 3.18 
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Fig. 63. EDS analysis for Spot 1 in Fig. (a) and Spot 2 in Fig. (b), shows elemental peaks for Fe, Cr, Ni, Mo, 
and Cu. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)

(b)
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4.7. Mechanical test 
 
Tensile tests on samples with various porosity levels demonstrate a distinct inverse correlation 
between porosity, tensile strength, and other mechanical properties. The specimen with the 
most significant porosity demonstrated the least tensile strength, while the specimen with the 
lowest amount of porosity exhibited the highest strength among the samples. The red curve in 
Fig. 64 denotes a maximum tensile strength of 550 MPa, signifying the sample with the least 
porosity. The green curve, at 538 MPa, and the blue curve, at 489.9 MPa, further illustrate this 
trend, emphasizing the influence of porosity on mechanical performance. The curves display a 
similar initial elastic region but diverge in plastic deformation, with lower density samples 
showing reduced mechanical strength and earlier failure. This underscores the significance of 
density optimization in enhancing material properties for 316L stainless steel with copper. 
These findings highlight the significance of controlling porosity in AM  processes, as increased 
porosity may compromise structural integrity and diminish load-bearing capacity. Pores can 
act as stress concentrators, as initiation sites for crack propagation, especially under tensile 
stress. Consequently, optimizing processing parameters to reduce porosity can markedly 
enhance the material's mechanical properties, thereby improving its overall durability and 
strength. 

 
Fig. 64.Tensile stress-strain curves for samples with different porosity levels. 

 
 

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

En
gi

ne
er

in
g 

st
re

ss
,M

Pa

Engineering strain,%

AISI316L-Cu (density 95.89)

AISI316L-Cu (density 98.80)

AISI316L-Cu (density 99.93)



 89 

 

Fig. 65. Fracture surfaces of the AISI 316L-2.5% Cu samples 

 
The fracture surface morphology of AISI316L-Cu samples post tensile testing at ambient 
temperature is depicted in Fig. 65. A comprehensive analysis of the fracture surface indicates 
a ductile fracture marked by dimple networks, corroborating the 22.4% elongation noted in the 
as-built sample with a relative density of 99,93%, alongside areas of brittle fracture displaying 
protrusions (Fig. 65(b)). A quasi-cleavage plane, possibly indicating the boundaries of the melt 
pool, is observable between the layered structures (Fig. 65(c)). The boundaries of these melt 
pools exhibit inadequate interfacial bonding, rendering them probable locations for crack 
initiation and sample failure under tensile stresses. Various dimples of differing sizes are 
evident on the fracture surface, corresponding to the intra-granular cellular structures (Fig. 
65(b)). Furthermore, Fig. 65(b) illustrates an unmelted spherical powder particle and cracks 
along the boundaries of the melt pool, which developed during the testing procedure. These 
particles are recognized for promoting crack propagation under tensile stresses. The L-PBF 
process has been extensively documented to allow partially melted or unmelted powder 
particles to exist between melt pools, thereby compromising the overall mechanical strength of 
the samples[202]. During tensile testing, these particles often dislodge, forming crater-like 
voids that are considerably larger than standard dimples on the fracture surface. However, 
optimizing the L-PBF processing parameters can reduce these defects and significantly 
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improve the material's mechanical properties.Analysis of additional mechanical 
properties indicators, including elongation, yield strength, and ultimate tensile strength (UTS), 
reveals that the deterioration of mechanical qualities correlates directly with the increase in 
porosity. The ultimate tensile strength, yield strength, and elongation, which collectively show 
mechanical performance, are all shown to decrease with increasing porosity, as represented in 
Fig. 66. 
 

 
Fig. 66. Effect of Increasing Porosity on UTS, Yield Strength, and Elongation in Additively Manufactured 
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5. Conclusion and Future Perspective 
 
In the future, 3D printing is expected to become more diverse and application-focused in terms 
of materials, departing from traditional perspectives. This shift is driven by increased 
willingness and the availability of a broader range of materials. Industries, such as aerospace 
and automotive, are increasingly turning to 3D printing to develop materials that meet their 
specific needs. Designers can now choose materials specifically tailored to their applications 
to evaluate printability, complexity, time, cost, raw materials, model size, and geometry for 
prototypes or manufacturing. To address this, GA(Genetic Algorithms) and genetics-based ML 
methods optimize these multi-indicators and minimize complexity. GA is preferred due to its 
ability to handle extensive data in binary string format [203]. 
As discussed in this thesis, addressing the challenges of applying ML algorithms in AM 
involves overcoming limitations related to specific machines, materials, and process 
parameters. A crucial research gap is the need to generalize these ML models to broader 
contexts, necessitating further investigation. Additionally, even though the data used in these 
algorithms is often voluminous, it may prove insufficient. Various sensors on AM machines 
can be combined to improve defect detection and accuracy for monitoring goals, yet this 
introduces new challenges. Handling diverse and high-volume sensor data requires the 
development of novel ML algorithms. Consequently, the following research directions are 
proposed to enhance the use of ML techniques for real-time monitoring and control of AM 
processes. 

5.1. Sensor Development 
 
To ensure timely corrective actions are taken in AM, it is essential to have a prompt response 
when employing the ML model for real-time control [21]. As a solution, it has been proposed 
to create an intelligent sensor  that can leverage "Big Data" analytics and facilitate AM 
integration into the Industry 4.0 framework [204]. Moreover, computational tools and 
algorithms are essential for operating newly developing sensing platforms. These tools enable 
the platforms to perform better than earlier sensor technologies in terms of cost, resolution, 
size, and sensitivity, among other factors [204]. Furthermore, it is important to emphasize that 
the benefits are reciprocal (Fig. 67); using ML algorithms can enable an iterative design process 
that rectifies inconsistencies in prototype sensors as they transfer to large-scale manufacture 
[205], further paving toward acquiring high-quality data. 
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Fig. 67. The mutual benefits sensors and ML models may offer to enhance the quality of metal AM. 

This thesis provides an in-depth overview of the current research on machine learning in laser-
based AM processes such as L-PBF. It examines the key issues, focusing on application case 
studies, methodologies, and model development. Conducting a thorough thesis of the current 
literature on the applications of ML in L-PBF reveals that researchers are exploring innovative 
approaches, including data-driven techniques, to address time and cost-related issues. 
According to this thesis conducted on the applications of ML in process parameter 
optimization, the following outcomes can be drawn: 
 

1. Following the assessment of multiple machine learning models, the SVR 
algorithm was determined to be the most effective for predicting process 
parameter defect detection relationship of samples generated by LPBF. The 
SVR model attained high accuracy and reliability with an optimal data division 
of 80% for training and 20% for testing, demonstrated by its low MAE, MSE, 
and high R2 value. The model facilitated precise predictions of relative density 
based on VED, thereby optimizing process parameters to minimize material 
consumption, production duration, and expenses.  

 
2. The analysis demonstrated that scan speed significantly affects densification, 

with 800 mm/s recognized as the optimal speed for attaining high relative 
density under specific power and hatch distance parameters. The selection of 
optimal process parameters enhances sustainable manufacturing by reducing 
porosity and increasing material efficiency. 

 
3. Microstructural observations reveal that the columnar type of grains and fine 

cell structures formed along the building direction. 
 

Additive Manufacturing

Sensors Machine Learning 
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4. Increased energy densities yield deeper melt pools with coarser grains, whereas 
decreased energy densities generate shallower melt pools with finer grains. This 
illustrates that attaining an optimal equilibrium in process parameters is crucial 
for improving material properties, including strength and density, in the final 
component. 

 
5. The tensile test analysis of AISI316L-Cu samples demonstrates that porosity       

substantially affects mechanical properties, with increased porosity resulting in 
reduced tensile strength, yield strength, and elongation. The sample exhibiting 
the lowest porosity attained the highest tensile strength, highlighting the 
significance of density optimization in additive manufacturing. 

 
 
It is noteworthy that ML alone cannot address every problem. It is crucial to identify the 
specific conditions and contexts in which ML is advantageous and select the appropriate 
algorithm to address the issue. Although there are many promising applications, using ML to 
improve the production process of L-PBF still faces numerous challenges.  Overcoming these 
obstacles will require further investigation 
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