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Abstract

Retrieving an accurate battery’s state-of-charge is crucial for dependable opera-
tion in a variety of use cases as the era of vehicle electrification advances. Traditional
methods of state-of-charge estimation often struggle with the underlying non-linear
behavior and the battery’s temperature effect on the estimation’s accuracy. This
work suggests a model-based method using the Extended Kalman Filter (EKF) to
estimate the battery’s state-of-charge under multiple tests while accounting for the
temperature effect to improve its robustness and accuracy. The testing dataset
from the Tesla Model 3 NCA Li-ion battery, which McMaster University made
available online, supports the study.

The methodology starts with developing a second-order continuous dual po-
larization (DP) equivalent circuit model. This model is used to estimate ECM
parameters based on various characteristic tests and on multiple test temperatures
(-20, -10, 0, 10, 25, and 40°C) given by the dataset. Once all parameters are
acquired and validated, the discretized model is then developed on the base of
its continuous counterpart. The EKF algorithm is then employed on top of the
discretized DP model. The root mean square errors between the measured SOC
and simulated SOC are calculated to quantify the performance of the EKF across
multiple driving cycles.

The work demonstrates a significant increase in ECM accuracy (up to 66.3% on
a highway driving cycle including the effect of road grade) by incorporating the
real-time battery temperature data into the model. The proposed EKF-based SOC
estimation achieves excellent accuracy and robustness at higher temperatures with
an acceptable limited error band. The EKF, however, couldn’t perform adequately
at low temperatures (-20°C and -10°C) due to the increasing hysteresis phenomenon
which is uncaptured by the ECM model. Several solutions are proposed to tackle
the problem, leaving the work open for further improvement.

Keyword: State-of-charge, lithium-ion battery, equivalent circuit model (ECM),
dual-polarization (DP) model, Extended Kalman Filter (EKF), parameter extrac-
tion, electric vehicles.
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Chapter 1

Introduction

1.1 Background

The necessity of battery engineering infrastructure to guarantee safety and depend-
ability during real-time operation has been highlighted by the increasing demands
of lithium-ion batteries (LIB) for grid storage, electric vehicles (EV), and aviation
applications. In the electric vehicle sector alone, Global EV Outlook 2024 reported
rising demand for batteries as a result of the increase in EV sales, which is maintain-
ing the increasing trend seen in recent years [1]. Although the annual growth rate
decreased marginally from 2021 to 2022, the demand for EV batteries increased
by 40% to over 750 GWh in 2023, of which around 95% of this rise is attributable
to electric vehicles sales. These surging demands for EV batteries are followed
by competition among manufacturers and battery suppliers for safe and reliable
batteries, which is translated into a set of specific requirements. One of those
is to prevent overcharging or deep draining and thus, promote a longer lifespan,
considering the cost of the battery itself constitutes around one-third of the cost
of the vehicle [2]. To achieve it, an accurate state-of-charge (SOC) estimation is
vital for maintaining the dependability, security, and lifespan of battery systems.
State-of-charge is an internal parameter that reflects the remaining usable capacity
in the battery, which would be the basis of other important control logic employed
in the vehicle [3].

Unfortunately, the capacity of the battery (which lies the foundation of the
state-of-charge definition) in a given time is not a quantity that can be measured
directly. Batteries are complicated electrochemical systems that are both nonlinear
and dynamic. Their properties change over time, and their internal electrical
parameters change both during charging and discharging and over the course of
their lifetime. Due to this complex behaviour, traditional and direct methods of
SOC calculation such as Coloumb counting often struggle to predict the battery’s

1



Introduction

state. This method is based on the integration of current over time, which is very
sensitive to initial conditions and the error accumulates over time [4], raising the
need for a more advanced and accurate SOC prediction.

Over the years, various solutions have been proposed to accurately estimate
the battery’s SOC, mainly divided into 2 domains: physics-based model and data-
driven model. Physics-based models contain differential equations to capture a set
of specific behavior of the battery. Normally, the model is complex and requires a
deep understanding of the cell’s characteristics and electrochemistry of the battery
for accurate parameterization [5]. On the opposite side, data-driven models utilize
machine learning methods to generate the model straight from a set of training
data, containing the measured quantity from prior testing. The model becomes a
black box with input and output based on the training dataset. However, machine
learning algorithms require huge datasets to properly train the model and to include
multiple scenarios and use cases [6]. To solve this problem, the equivalent circuit
model (ECM) is widely implemented for real-time application on-board. ECM
doesn’t model the internal dynamic inside the battery, rather, they are represented
in an equivalent electrical circuit. It provides a good compromise between accuracy
and complexity. Nonetheless, ECM’s prediction is imprecise and is still highly
sensitive to measurement error and noises which deteriorates the model’s accuracy
[7]. A common approach to solve this problem is using Kalman filtering-based
method, such as the extended Kalman filter (EKF), as reported in multiple journals
[5, 8, 9, 10, 11, 12].

In the previous works provided, the temperature effect on model’s accuracy is
often underlooked. One strong work from Khanum [13] incorporated temperatures
in developing Kalman filters built on top of second-order ECM battery. It was
tested on several dynamic cycles with a temperature range from -10 to 40 °C. This
paper, however, is focused on developing the MATLAB tool instead of analyzing
the temperature effect on the battery’s performance. In addition, the validation
test was done only on the LA92 driving cycle, a supplementary driving cycle to the
Federal Test Procedure. Our work’s aim is to develop an Extended Kalman Filter
based on a two-state Dual Polarization equivalent circuit model while accounting
for the temperature effect and testing the algorithm on multiple driving cycles.
The dataset for parameterization and validation is the Tesla Model 3 NCA Li-ion
battery testing, conducted and made available online by McMaster University [14].

1.2 Thesis Objective
The main focuses of this work are summarized as follows:

1. Developing a two-state dual polarization equivalent circuit model (ECM).

2



Introduction

2. Developing a two-state Extended Kalman Filter (EKF) on the base of the
ECM.

3. Validating the ECM and EKF model on multiple driving cycles and on multiple
temperature datasets.

1.3 Thesis Organization
This work is structured as follows:

1. Chapter 2 explains the framework of the thesis, along with the explanation of
what is inside the dataset and which are the driving cycles used to validate
the model.

2. Chapter 3 starts with a literature review around battery modeling. The main
topic focuses on developing the one- and two-state dual polarization equivalent
circuit model from the parameter extraction to the model’s validation.

3. Chapter 4 reports how the extended Kalman filter is modeled and the SOC
estimation results on multiple tests.

4. Chapter 5 gives the reader an idea of efforts conducted to make the equivalent
circuit model accurate around the low temperature.

5. The last chapter concludes the thesis and gives the reader some suggestions
for future exploration based on this work.

3



Chapter 2

Methodology

2.1 Battery Diagnostic Test and Dataset Analysis
The reference for our work is an open-source dataset of Tesla Model 3 battery
packs, of which the test was conducted by McMaster Automotive Reseach Center
(MARC) [14]. Given hundreds of SOC estimation methods proposed over the year,
McMaster developed a blind modeling tool as a standardized comparison method
for collaborators and developers to test their algorithm. Some of the datasets are
open to public for SOC estimation parameterization (for ECM-based algorithm) or
training data (data-driving/ machine learning based tool).

The structure of the dataset consists of multiple test cases, and each of the
test cases consists of the corresponding characterization (diagnostic) test and the
driving cycle test. There were four battery cells under test, each for every test case.
The test cases are composed of varying payload mass (in addition to the vehicle
curb mass of 1612 kg) and HVAC load as given in the following Table 2.1.

Cell number Payload mass HVAC load Dataset name

Cell 1 80 kg ON m80
Cell 2 448 kg ON m448
Cell 3 448 kg OFF m448-N
Cell 4 1000 kg ON m1000

Table 2.1: Dataset test case organization

The battery cell under test is a cylindrical Panasonic 2170 Lithium-ion battery
with Nickel Cobalt Aluminium (NCA) cathode. Based on the given datasheet, the
upper cut-off voltage is 4.2 V and the lower cut-off voltage is 2.8 V.

4
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On each test case, the evaluation was carried out in 16 ft3 Envirotronics SH16C
thermal chamber with various condition temperatures: -20°C, -10°C, 0°C, 10°C,
25°C, and 40°C. The testing tool used is the Arbin with specifications as shown in
Table 2.2 below. Although Arbin could handle sampling frequencies up to 2000 Hz,
the time arrays of all the testing are resampled to 1 Hz.

Specification Details
Voltage 0V to 5V
Current 60A per channel
Number of
channels

8

Parallel operation 2 to 8 sequential channels can be
operated in parallel

Series operation Series connections cannot be
made

Input impedance 50 MΩ
Current Range +/- 60A, 5A, 500mA, 20mA
Control Accuracy +/- 24mA, 2mA, 200µA, 8µA

(0.04%)
Voltage Accuracy +/- 2mV (0.04%)
Max command rate 5ms
Max system log
rate

2000 samples per second

Temperature
Sensing

16 channels, type T
thermocouples

Control Software Arbin MITS 8.0

Table 2.2: Arbin Cell Tester Specifications

2.1.1 Characterization Test
A diagnostic test or reference performance test (RPT) is a standardized set of
procedures to characterize the battery aging process and track the performance
of battery cells. In the battery’s lifetime, the RPTs are commonly performed at
regular intervals, either monthly or every 100 full equivalent cycles to assess the
battery performance. Another RPT is usually conducted at the end-of-life (EoL)
of the battery to assess its characteristics after a defined lifetime [15]. There are
mainly 3 types of diagnostic tests conducted: the capacity test, EIS, and HPPC
test. Inside this dataset, only the capacity and HPPC tests are present, from which
the battery parameters are derived.
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The capacity test is mainly used to assess the discharged capacity and conse-
quently, the dependence of OCV against SOC. The test is done by discharging the
battery at a very low constant current (CC) of C/20 C-rate which is measured
at 40°C before the beginning of the test at each temperature. As mentioned in
the previous section, the capacity highly depends on temperature. Knowing the
proper discharge capacity is crucial in determining the SOC. The complete list of
the battery’s capacity and the associated temperature is given in Table 2.3.

40°C C/20 Capacity
[Ah]

Associated Temperature
[°C]

4.6768 40
4.5339 25
4.2885 10
4.3009 0
4.2629 -10
4.2112 -20

Table 2.3: Capacity at different temperatures for 40°C C/20 rate

Figure 2.1 illustrates the HPPC test performed on each battery cell. The HPPC
tests were performed with multiple C-rates for every SOC level. They consist of
four ten-second discharge and charge pulses in the following order, with 0.3C pulses
in between to return SOC to the prior value. The 0.3C return pulses ensure that
each 10s charge and discharge pulse is performed at the same SOC. The same
HPPC tests were repeated for every test case and every test temperature. Figure
2.2 presents the voltage, SOC, and current pulses characteristic. A negative current
indicates the discharge phase. We could appreciate that four discharge phases with
different C-rate levels are present in each SOC level. The SOC data plotted in the
figure comes from the Arbin testing tool and is attached to the dataset. Focusing
on the SOC level, the HPPC test is performed until the SOC is almost depleted.
Nevertheless, such a condition is not necessarily true for all tests. On some test
temperatures (particularly the lower temperatures), the HPPC tests don’t reach
a low SOC level. This might hinder our characterization process which requires
some modifications as explained later in Chapter 3.

2.1.2 Driving Cycle Test
The driving cycle is the main test for validating our model. A total of 16 driving
cycles are tested on each cell. Some of the tests are blind tests, meaning they are not
shared publicly and are only used for validation purposes by McMaster University
on the SOC estimation algorithm. The complete list of battery experiments and
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Figure 2.1: HPPC Test procedure

Figure 2.2: Voltage, SOC, and Current of HPPC test for m80 load case under
25°C test temperature

their corresponding status can be found in the published journal [14]. Inside the
open dataset, eight REORDERED cycles, made up of randomized parts of the
standardized cycles: UDDS, HWFET, LA92, and US06 cycles, are available for the
public and serve as one of our main validation tests. To simulate driving across
mountain passes, there are additionally HWCUST1, HWCUST2, HWGRADE1,
and HWGRADE2, which are unique highway drive cycles with speeds ranging from
100 to 130 km/h with recurring steep ascents and descents. Only HWCUST1 and
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HWGRADE1 are open to the public while the rest are dedicated to blind testing.
Each of the driving cycles was tested repeatedly until the cell achieved the cut-off
capacity, defined as the point at which the calculated pack power capability, based
on the HPPC test results and the number of cells in the vehicle pack, equals 60
kW. Considering the random nature of REORDERED cycles, only one of them,
REORDERED1, is used for our validation step. We argue that REORDERED1
and REOREDERED8 have similar characteristics, so validating one is enough. For
the highway and mountainous terrain, only HWGRADE1 is used as a validator.

2.2 Methodology Framework
In the following section, the workflow of this thesis is presented in Figure 2.3. In
the initial phase, the continuous equivalent circuit model is developed. We started
with the simple one-dimension dual-polarization equivalent circuit model for each
of the temperature datasets, developed using the Simulink tool to represent the
mathematical model. From the HPPC dataset, initial parameter guess is extracted
on every temperature set to obtain the rough estimation of the ECM parameters
which will reduce the time needed for our next step: Parameter Estimation. In
this phase, optimization process is performed on the base of data fitting between
the simulation output and the voltage measurement provided in the dataset. The
outputs are sets of arrays for each parameter: OCV, R0, R1, R2, C1, and C2 as a
function of SOC. Subsequently, these parameters’ profiles are loaded on the model
along with driving cycle data measurement and the model is run. This is the
validation process, and the root mean square error between the simulated voltage
from the model and the measured voltage is quantified. A similar procedure is
conducted on all the temperature datasets until all the parameters’ profiles are
obtained. Six grids containing these profiles are arranged to form a 2D look-up
table, with temperature and SOC as the breakpoints.

The next step is to develop the 2D dual-polarization ECM in a continuous
domain using the defined parameters grid. The idea is strictly similar to our
previous 1D model, the only difference is the usage of the 2D look-up table rather
than 1D, which allows the model to have an additional input of the temperature as
will be explained in the later chapter. As in the previous procedure, this model is
then validated on the driving cycles by taking into account the temperature of the
battery. This model marks the end of the ECM phase.

Coming into the second phase of our workflow, we started to develop the
Extended Kalman Filter. Initially, the discrete model needs to be built as it serves
as the basis of our Kalman filter. We started from the 1D discrete model and
its corresponding Extended Kalman filter before moving on to the 2D model, in
which all of them are written in MATLAB environment. In each of the discrete
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model’s procedures, the voltage of the discrete model, continuous model, and the
real voltage measurement value are compared to check the discretization error
(between discrete and continuous model) and the model’s error (between discrete
and measured data). As soon as the discrete model is validated on all temperature’s
HPPC and Driving cycles, the corresponding 1D EKF is matured. The important
part of this section is the tuning of the EKF parameters, which consists of the
initial state covariance, process noise covariance, and measurement noise covariance.
The objective of the tuning is to obtain a robust filter, capable of performing under
normal conditions, and under robustness tests, including incorrectly initialized
state, and offset current input on all of the driving cycle tests. Once the tuning
results in an acceptable SOC error under all cases mentioned above, we move on to
the development of a 2D Extended Kalman Filter which has the same idea as the
previous. Similarly, the only difference lies in the additional input for the model to
take into account the battery’s temperature.
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Figure 2.3: Methodology Workflow
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Chapter 3

Dual-Polarization Equivalent
Circuit Model

3.1 One-state dual polarization ECM
Lithium battery technology has advanced rapidly and steadily since Sony first
introduced it to the market in 1991, making it a key component of EV innovation.
Lithium-based batteries are now considered the best option for powering present
and future generations of electric vehicles (EVs) due to their extremely effective
energy storage capacities.

Efficient battery management requires precise State of Charge (SOC) estimates.
Direct measurement methods and model-based estimate methods are the two
primary categories into which SOC estimating techniques fall. Direct measurement
techniques, such Open Circuit Voltage (OCV) method [16] or the Coulomb counting
(Ah) approach [17], are based on directly measurable battery characteristics and
are typically open-loop and simpler to apply. These methods are sensitive to
measurement errors which might result in inaccuracies.

The Dual-polarization (DP) model is one modeling approach considered suitable
for automotive system-level complexity [18]. It was first developed from the
Thevenin-based electric equivalent circuit (EEC) models with an additional RC
pair to model the battery dynamic further. The equivalent circuit model is made
up of a voltage source in series with a resistor and two RC blocks which model
two stages of the dynamic process of the battery. These models are widely utilized
because of their simplicity, ease of understanding, and standard test instrumentation
requirements [18].

DP ECM model is represented by several core components:

1. Open-circuit voltage (OCV ): The voltage represents the ideal condition of
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Figure 3.1: Dual-Polarization Equivalent Circuit Model

the battery with no load. This parameter is highly dependent on the battery’s
SOC and could be extracted through a capacitance test.

2. Internal resistance (R0): A resistor mounted in series models the ohmic losses
of the battery. When a current is flowing through, this parameter models the
instantaneous voltage drop. It is composed of various contributions from the
electrolyte, active materials, cell connectors, and current collectors [18, 5].

3. Resistor-Capacitor branch: The dynamic behaviors of the battery is modelled
using two resistor-capacitor (RC) pairs:

(a) The first RC pair (R1 and C1) models charge transfer (activation) polar-
ization, which represents the voltage involved in increasing the rate of the
chemical reactions which then causes and increase in voltage needed to
surpass the chemical activation barrier [5, 19, 20].

(b) The second RC pair (R2 and C2) models concentration or diffusion po-
larization, which accounts for slower dynamic changes in the battery’s
voltage due to ion diffusion. The pair represents the voltage involved in
the concentration gradients of the charge carriers in the electrolyte. This
slow phenomenon is thus fitted by the larger time constant RC block [5,
19, 20]:.

These RC pairs are what define a dual-polarization model: based on two
battery polarization phenomena which are modeled in the two pairs.

These components create a nonlinear relationship between the terminal voltage,
current, and SOC described in the following mathematical representations.
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Mathematical Representation of the Dual-Polarization ECM
All of the parameters mentioned above are correlated with one another in a main
mathematical expression as follows:

Vbatt = OCV − I0.R0 − VRC1 − VRC2 (3.1)
with VRC1 and VRC2 being the voltage drop across the charge-transfer and diffusion
RC pair, respectively. The equations to describe voltage drop across RC pairs are
expressed below.

VRC1 = Ibatt.R1 − Ibatt.R1.
3

e
− t

(C1.R1)

4
(3.2)

VRC2 = Ibatt.R2 − Ibatt.R2.
3

e
− t

(C2.R2)

4
(3.3)

It should be noted that operating conditions have a significant impact on all
of the model parameters presented. The main factors influencing OCV, R0, and
the RC blocks are SOC and temperature. In addition, RC blocks are also sensitive
to load current (C-rate) and its direction [18]. For the balance of model accuracy
and complexity, the C-rate is neglected, leaving just SOC as the main predictor
of the parameters’ value. Temperature, on the other hand, is accounted for by
extracting the parameters from all 6 temperature datasets. In this section, the 1D
DP model will be exhaustively described which later will lay a foundation for the
2D DP model.

3.1.1 Simulink model representation
The mathematical equation presented in Eq. 3.1 which governs the main DP model
and Eq. 3.2 - Eq. 3.3, which express the dynamics of the RC pairs, are translated
into graphical model using Simulink blocks as shown in Fig. 3.2 and Fig. 3.3,
respectively.

The Simulink model’s inputs for the simulation are the current array Ibatt and
the SOC array found in the battery testing dataset. Even though the SOC could
be self-calculated by integrating the current over time, given the battery capacity
and initial condition, the SOC data given has already taken into consideration
the degrading capacity (state-of-health) from running the tests which gives more
accuracy to the model and more convenience to the user. On the other hand,
the simulation output is the simulated voltage. Our model aims to compare the
simulated voltage and the measured voltage, hence defining a simulation error.
Having the OCV, R0, R1, R2, C1, and C2 as a function of SOC requires a 1-D
Lookup table for each of the parameters. The 1D LUT takes the value of the actual
SOC given by the dataset to interpolate the parameters’ value at each time step.
These six parameter values over SOC were initially extracted from the discharge test
and HPPC test and then further optimized using a Simulink Parameter Estimation
as explained in the following section.
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Figure 3.2: Equation governing dual-polarization equivalent circuit model ex-
pressed in Simulink environment

3.1.2 Parameters extraction for initial value estimation
Looking at the Simulink model, it is immediately understood that the accuracy
of the model lies in how well the parameter arrays are constructed. As explained
in Chapter 2, we will first estimate the initial value to prevent the optimization
performed later using Simulink Parameter Estimation showing the local minima
and unreasonable range, and to speed up the optimization time. In general, the
OCV-SOC relationship is estimated from the Discharge test, while internal ohmic
resistance R0 and the resistors in RC pairs (R1 and R2) are extracted from the
HPPC test. We will initially explain the initial estimation and the following
optimization steps only for 25 °C and the same procedure will be repeated for the
rest of the dataset.

Discharge OCV-SOC characteristic

Open circuit voltage has a strict static relation to the actual capacitance and
temperature [5]. Given the capacity test, discharge OCV dependence of SOC could
be derived from it by looking at the voltage profile while the battery is emptied
which is commonly referred to as the pseudo-OCV calculation method [21]. Initially,
the State-of-Charge of the battery should be computed from the amount of capacity
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Figure 3.3: Equation governing resistor-capacitor pairs expressed in Simulink
environment

available throughout the testing time. For illustration purposes, the first test case
(80 kg payload with HVAC ON) is evaluated. The nominal capacity Qn for 25 °C is
given in the data set as 4.5339 Ah. Inserting the known nominal capacity and the
current at a given time step Ibatt(t); and imposing the initial SOC as 100 %, the
one-to-one relation between capacitance and SOC at any given time throughout
the test is obtained. Plotting the voltage against the computed SOC will give us
the voltage profile as a function of SOC. Considering the discharge rate is trivial
(C/20), we could regard this characteristic as OCV’s dependency profile on SOC.
Figure 3.4 illustrates the OCV-SOC behaviour for the first test case under 25°C
climatic temperature. Although the OCV-SOC relationship is somewhat static, as
we will see later, slight variation still could occur. Accordingly, this profile only
serves as an initial estimation before casting it into Simulink Parameter Estimation
and tuning it based on the HPPC results. Following the same manner on every
test case and test temperature of interest, we would obtain a bigger picture of the
OCV dependence to SOC.

15



Dual-Polarization Equivalent Circuit Model

Figure 3.4: OCV dependence on SOC obtained from 25°C capacity test

Discharge internal ohmic resistance R0,dchg

In this section, the internal ohmic resistance during the discharging phase is
extracted from the HPPC test on every SOC level. Ha et al. [21] describes
deliberately the procedure to obtain both the charge and discharge ohmic resistance
from the HPPC test. The idea is to measure the delta of voltage on the leading edge
when a determined current pulse is given. Figure shows the current pulses profile
and the produced voltage response, equipped with the labels for V0,pn, V1,pn, I0,pn,
and I1,pn annotation for the nth pulse sequence.

The calculation for R0,dchg are described by the following equation:

R0,dchg,1 =
-----V1,pn − V0,pn

I1,pn − I0,pn

----- (3.4)

Due to the different nature of the HPPC profile, some modifications are needed
from the original algorithm provided by Ha et al. The current profile of the HPPC
test given by the dataset has multiple pulses for both discharge and charge for each
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Figure 3.5: HPPC discharge and charge current pulse profiles and the voltage
response at the n-th pulse

SOC. The code first locates at what index the negative slope (discharging pulse)
occurs. Knowing that a negative pulse could indicate both the leading edge of a
discharging pulse or the trailing edge of a charging pulse, a subsequent step to
filter only the indices of discharging current pulses is needed, characterized by a
negative slope delta between 2 timesteps (t0 and t1 and a zero value of the current
timestep (t0. Looking at Figure 3.5, we could easily recognize 2 discharge pulses
for each pulse sequence, giving us R0,dchg,1 and R0,dchg,2 with the same computation
procedure as explained in the equation and annotation above. The code then
averages the R0,dchg for a defined list of SOC levels: 0%, 5%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%. The scattered data points on each
SOC and the corresponding average value are depicted in the following figure,
which defines the R0,dchg(SOC) characteristic. Notice how some SOC points lie
slightly lower or higher than the corresponding SOC levels, particularly those data
points lower than 0% SOC. These values occur due to mainly discrepancies in the
testing device measurement and numerical error, which then are rounded up and
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interpolated accordingly. Averaging the scattered points on the closest SOC points
and connecting the average points gives us Figure 3.6, which shows the profile of R0
as a function of SOC that is aligned to what is commonly found in the literature
[5, 11, 21]. The resistance profiles are often found minimized around the mid-level
SOC such as what we obtain from parameter estimation.

Figure 3.6: Ohmic Resistance R0 initial estimation as a function of SOC

3.1.3 Initial calculation of the RC pairs
The approach of calculating the initial value guess for resistors and capacitors in
the DP model is slightly different than the internal resistance calculation. While
for the latter, we are primarily and cautiously extracting the parameters from the
HPPC test through deliberate calculation; the initial values estimation of R1, R2,
and particularly C1, and C2 as a function of SOC relies heavily on the Parameter
Estimation process described on the following section. This approach is considered
time-effective while being accurate enough to avoid local minima. Several methods
of parameter extraction from other test procedures have been deliberately explained
by Barai et al. [22]. It might come in handy when the test dataset (such as EIS) is
available, which is not the case with ours. In the case of RC pairs, the SOC level
data points are reduced to only: 0%, 10%, 25%, 50%, 75%, 90%, and 100%. The
decision was made mainly to have a comparative parameter to Wassiliadis [11] and
Cittanti [18], and also to prevent the fluctuations in the parameters’ value found
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during the several iterative studies. Later at the end of the parameter estimation,
a comparative study of early findings of each capacitor and resistor profile as a
function of SOC is conducted as a measure of sanity check.

Resistor values extraction

The resistors (R1 and (R2) are extracted in a similar manner as discharge internal
ohmic resistance (R0,dchg). The main difference lies in the position of extraction
of current pulse and voltage response. Knowing that these resistances oversee
the model’s dynamic behaviors along with the capacitors, both resistor values
are observable during the transient responses. Plett [5] explained the parameter
extraction of a single parallel resistor-capacitor subcircuit from the HPPC test.

Figure 3.7: Plett R-C pair parameter extraction from HPPC test [5]

Referring to Figure 3.7, as the discharge current pulse is terminated at 20
minutes time mark, the immediate change in voltage must equal the product of the
instantaneous change in current and the series resistance R0,dchg. It occurs since the
voltage across the capacitor cannot change instantaneously, and the state of charge
remains unchanged when the current is zero. The voltage response relaxation
continues to its steady state value indicated at the 60-minute time mark. Knowing
the value of ∆I (equal definition as in R0,dchg calculation) and R0,dchg, we could
compute the value of R1 as follows:

R1 =
-----∆V∞

∆I

----- − R0 (3.5)
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Plett mentioned how this method is suitable only as a rough estimation and
applies only to single RC value pairs. Suppose the model uses multiple parallel RC
pairs (as found in our model), this simple approach will not work, and a Simulink
Design Optimization-based estimation should be done instead. Nevertheless, we
argue that the approach could still be useful as a first estimate of the Simulink
Design Optimization, to avoid floating and local minima convergence.

We theorized that in the dual-polarization model, the effect of R1 and R2
combined are much greater than the R0, hence giving us the permission to omit it
from the calculation and thus simplify a lot the model. The equation becomes:

R1 + R2 =
-----∆V∞

∆I

----- (3.6)

Following the same procedure as described in the R0,dchg calculation, we would get
the R1 + R2 profile as pictured in Figure 3.8.

Figure 3.8: Initialized datapoints of R1 + R2

For the sake of simplicity and considering the identical order of magnitude for
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R1 and R2, the proportion of each component is considered to be equal, meaning
the value of R1 + R2 is calculated by halving the R1+R2 as our first estimates.

Capacitor value initialization

Differently compared to the resistors and OCV, the capacitor values are obtained
through literature reviews. Plett [5] mentioned in his work on the methodology to
calculate the capacitance based on the known resistance R1 and R2 by determining
the resistor-capacitor time constants, referring to the subspace system identification
by van Overschee and De Moor [23]. Nonetheless, the writer feels that the work
in calculating the capacitances is unjustified considering how little time is saved
during parameter estimation, the accuracy and uncertainty of the calculation,
and the effort needed to develop the code and algorithm to extract the value.
As mentioned, considering that initialization serves only as the first estimate for
Simulink Parameter Estimation (SPE), it is sufficient to pass the right order of
magnitude as an estimate and let SPE optimize the value based on the voltage
difference between measurements and ECM result. From the references found [11,
18], we understand that normally C2 has 10-100 times the order of C1. The value
arbitrarily chosen was as follows:

Capacitor Value [F]
C1 1000
C2 10000

Table 3.1: First estimate value of capacitors

The selected values are constant across the SOC as shown in Figure 3.9.

3.1.4 Parameter Estimation and Optimization
Once the initial parameter estimates from the HPPC tests are extracted, they
form the basis for creating an Equivalent Circuit Model (ECM). How well these
parameters and the OCV-SOC curve reflect the actual battery behavior will
determine how accurate this model is. Consequently, further optimization of these
values is needed to guarantee accurate voltage predictions under various scenarios.

Optimization problem formulation

There are numerous approaches to choose from to further refine the ECM parameters.
The Simulink Parameter Estimation toolbox is a widely used method. In essence,
the refining procedure is an iterative cycle of simulating the output voltage and
optimizing the defined parameters to achieve the least minimum error between
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Figure 3.9: Constant initialized value of C1 and C2 over SOC for 25°C dataset

the measured quantity and the simulated output of the model. Initial estimates
extracted from HPPC explained in the previous section serve as a good foundation
for the first guess of this iteration, as a means to prevent local minima and
enhance computational time. The simulation is then compared to the known
measurement data and the cost function of a certain optimization algorithm is
calculated. Simulink Parameter Estimation tries to modify the parameters on each
specified SOC level within the range of set boundaries. The objective is to find
the parameters that fit the measurement data, meaning with the minimized cost
function, following the selected optimization algorithm.

Prior to the optimization process, an objective function and a minimizing
algorithm must be selected. The objective function is the error between the
measured and simulated output voltages. The error is commonly expressed as the
sum of squared errors (SSE):

SSE =
nØ

i=1
(Vmeas(i) − Vsim(i))2 (3.7)
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where Vmeas(i) is the measured voltage at time step i, Vsim(i) is the voltage
predicted by the ECM with the current set of parameters at that time step, and N
is the total number of points in a test data. The goal of optimization is to minimize
this SSE by adjusting the parameters of ECM.

Knowing that our ECM model is nonlinear, the optimization algorithm must be
able to accommodate correspondingly. Simulink’s parameter estimation toolbox
has several non-linear optimization algorithms such as Gradient Descent Algorithm,
Non-linear Least Squares, Genetic algorithm, or Nelder-Mead (Simplex) to carry out
this process. In this case, the non-linear least square method is preferable mainly
due to its capability to handle non-linear models, combined with its simplicity
which subsequently resulted in a faster convergence. Nevertheless, the algorithm’s
performance depends heavily on the quality of the initial parameter estimates,
hence the reason why parameter extraction explained in the previous section shall
be done prior.

Parameter boundaries set-up

In the Simulink Parameter Estimation environment, it is important to set the
boundary of each selected parameter to be estimated, which in this case happens
to be OCV , R0, R1, C1, R2, and C2. By default, Simulink sets the boundary
as [− inf, + inf], which would take a considerably longer time to converge and
with even more coarse parameter modification in each iteration. Consequently,
the solver might skip the minimum point of our optimization problem. Imposing
the boundary, hence, is an important step. The upper and lower values of the
boundary are selected as the reasonably lowest and highest values for that specific
parameter. In some cases, imposing this boundary is a trivial problem, like what
is encountered in the OCV. The datasheet of the battery from the manufacturer
specifies meticulously the upper and lower values allowable for the battery, which
are 2.8 and 4.2 V, respectively. In other cases like R0, R1, C1, R2, and C2, the
upper and lower boundaries could be found through comparative literature study,
by selecting the exhaustive upper and lower boundaries for the particular battery
type, and through trial and error during the Simulink parameter estimation process.
The latter point indicates that the parameter estimation is not done just once,
since an iterative procedure is needed to increase or lower the boundary depending
on whether or not there might be a minimal solution above or below the previously
imposed boundary value. Generally, such occurrence could be detected by looking
if in one of the SOC datapoints, the value is limited by or closely reaches the
boundary. In this case, an increase or reduction of boundary is permitted as long
as the value is within the reasonable range. As an example, let’s say that in the
first iteration, the imposed upper boundary value for the capacitor C1 is 1500, and
later on, we found that the result of the Simulink parameter estimation for SOC
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level 50 and 60% both reach 1500. In this case, an increase in the boundary for 50
and 60% might be needed. The idea is that the value 1500 is the local minimum in
that iteration and by opening up a higher range of C2, it could get us closer to our
global minimal point of an acceptable range. The iteration continues until the C1
value of 50 and 60% stays the same even if the upper boundary is increased OR if
the upper range becomes unreasonable, like reaching the commonly found value of
C2, which is rarely seen based on the literature. This step is important to have
proper and representative parameters for our model since each battery type has
its boundaries and characteristics, especially when the parameter is not initially
extracted, like the case with the capacitors.

Simulink Parameter Estimation result for 25°C dataset

Figure 3.10: OCV-SOC profile comparison between the initial extracted data
from the capacitance test (Initial dataset) and the parameter estimation result
(Estimated dataset) for 25°C
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Figure 3.11: R0 profile comparison between the initial extracted data from the
capacitance test (Initial dataset) and the parameter estimation result (HPPC
optimized) for 25°C dataset

Comparison between the initial extraction parameters and the parameter es-
timation result is presented in Figure 3.10 to 3.13. Regarding OCV parameters,
we could see only slight differences are present between the initial dataset and
the result of SPE (estimated dataset), meaning we could conclude that the initial
extraction (labeled as the Initial dataset in Figure 3.10) from the capacitance test
is quite accurate to predict the OCV. Notice how the trendline for not only 25°C,
but also other temperature sets, is to have the estimated dataset slightly higher
at the lower SOC region compared to the initially extracted data. Part of this
phenomenon is caused by the considerably higher current on the HPPC rather
than the capacity test (with C/40-rate), which caused the component Ibatt.R0 to
augment as well. The other part is due to the higher phenomena of polarization
inside the battery for the HPPC test (which affects Simulink Parameter Estimation
result) at low SOC than the capacitance test which is done at a such low C-rate.

Parameter Estimation modified slightly the R0 profile by initial extraction for
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Figure 3.12: R1 and R2 profile from the parameter estimation result for 25°C
dataset

25°C. The minimum R0 value is consistently found around the mid-SOC, which is a
fair profile to have, and the trendline remains consistent from the original dataset.

The resistances for the RC pairs show a commonly found profile, with high
resistance at lower SOC and plateauing to a certain value as shown in Figure 3.12.
This result is comparable to Cittanti’s and Wassilidis’ publications. In Figure 3.13,
C1 and C2 profile are shown.

The same procedure of parameter extraction, estimation, and optimization is
conducted on each of the dataset temperatures which will give us parameters’
profiles for our DP ECM from -20 to 40°C. These profiles are then combined to
form a grid which will be discussed next.

3.1.5 Model Validation on HPPC Test and Driving Cycles
Loading up the model with the parameters’ values from Simulink Parameter
Estimation, the next step is to validate our result by running it on different tests.
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Figure 3.13: C1 and C2 profile from the parameter estimation result for 25°C
dataset

Initially, the model will be tested on the HPPC test. We would expect an excellent
result on this, considering that it is based on this HPPC test that we retrieved all
the parameters. This step is important as a base comparison between temperature
datasets. Given that Parameter Estimation will always be done based on the HPPC
test, we would be able to judge whether the ECM model could equally predict with
the same accuracy on every range of temperature.

As a validation step, the ECM model will be tested on several driving cycles.
There are numerous driving cycles inside the open dataset given, and even more
on the blind dataset, which could be categorized into two main classifications: the
reordered drive cycles and the highway drive cycle. In order to have quick and
comprehensive validation, we opted to test our model on one of each category,
hence, the REORDERED 1 Driving cycle and the HWGRADE 1 Driving cycle are
selected. This section presents the model’s simulation result on the HPPC test,
the REORDERED 1, and the HWGRADE 1.
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Model Testing on HPPC Test

Figure 3.14 presents the measured voltage quantity and the simulated voltage
for 25°C dataset on the upper subplot, while the difference between the two,
so-called the voltage error, is presented in the lower subplot. In this particular
dataset temperature, the ECM could mimic the behaviour of the battery accurately,
indicated by a low RMSE of 4.9 mV. Two major points to highlight from this
dataset: first, there are some uncaptured dynamics indicated by the instantaneous
spikes on the voltage error. Such behavior is expected considering the limit of the
two RC pairs model. Second note, there is a tendency of degrading ECM accuracy
on the lower as we will see also in the driving cycle validation. This propensity
is also found in other papers, namely Cabello et. al [24]. and Ouyang [25] which
characterize the limitation of the equivalent circuit model due to strong linearity
around the low SOC region. The accuracy of the ECM drops when the SOC falls
below 20% and decreases evidently under 10% [25] [26] [27].

Figure 3.14: ECM test on 25°C HPPC Test

Model Validation on REORDERED1 Driving Cycle

Immediate impression perceived looking at Figure 3.15 is how severe the dynamics
of the driving cycle are compared to the HPPC test. With the dual-polarization
model’s two RC pairs, it can be seen that we couldn’t capture all the dynamic
details, as seen in the lower subplot and further enlarged in Figure 3.16 on the
mid-SOC section, where some error spikes occur every time the input current
fluctuates. Nevertheless, highlighting the limited error band of ±0.2 V, we could
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conclude that our model works well in following the measured voltage data with
an RMSE of 14.37 mV.

Figure 3.15: ECM validation on 25°C REORDERED1 Driving Cycle

Figure 3.16: Enlarged section of ECM validation on 25°C REORDERED1 Driving
Cycle. Notice the fluctuations of error are caused by the uncaptured dynamics
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Model Validation on HWGRADE1 Driving Cycle

As an initial analysis phase, Figure 3.17 is presented, where the measured and simu-
lated voltage are plotted along the SOC and current demand from the HWGRADE1
driving cycle. Some notes regarding this driving cycle: the battery is, in some
instances, charged as shown by the ramping up SOC and positive current demand.
Notice also how the driving cycle is much shorter and more severe compared to the
REORDERED1. The shorter driving cycle would cause the plot to appear with
more error between the voltages compared to the REORDERED1, of which the
subplot on Figure 3.18 is presented to give the magnitude of the discrepancy.

Figure 3.17: HWGRADE1 Driving Cycle (25°C data) ECM result

Analyzing the result in-depth, Figure 3.18 shows that there are some parts
of the driving cycle where the simulated voltage has an offset to the reference
measured voltage (e.g. around the 2000 s time mark) while the ECM could follow
the dynamic profile of the reference voltage. Knowing that the parameters to run
this driving cycle are retrieved from the HPPC, we could argue that there should be
some disparity in between the two. Some possible causes are the hysteresis affecting
the battery caused by the severe change in the current demand, the aging of the
battery that caused the parameters to change, and the temperature discrepancy
between the HPPC test and the Driving cycle test. The two formers are less
likely to cause this phenomenon, as the hysteresis is considerably low around this
temperature and is more dominant around the low temperature [5] and the aging
of the battery is already accounted in the lowering of nominal capacity. The latter,
however, has a strong reasoning as the real-time battery temperature exceeds 25°C
and thus causes an inaccurate output. By comparing to Figure 3.20, we could
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Figure 3.18: ECM validation on 25°C HWGRADE1 Driving Cycle

Figure 3.19: SOC-segmented RMSE result for 25°C HWGRADE1 dataset

highlight the 2000-second time mark and, especially, the 8000-second time mark
where the temperature reaches over 30°C, the model struggles to fit the measured
voltage. Such behaviour reiterates the need to take into account the temperature
in our ECM model as explained later in the next section. Another interesting point
is the voltage-bottoming phenomena found at the end of the simulation, where
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the measured voltage is flat while the simulated dips down to follow the current
demand. The discrepancy between the two could be explained by knowing that
the lowest voltage specification for the corresponding battery is 2.8 V, of which the
measured voltage bottoms down at that voltage. Meanwhile, we model the OCV
1D LUT to allow extrapolation, hence explaining the lowering of the simulated
voltage.

Figure 3.20: Real-time battery temperature of HWGRADE 25°C

As previously discussed in the HPPC validation subsection, the result in HW-
GRADE1 reaffirms our suggestion that on low SOC, the ECM’s accuracy drops.
Figure 3.19 shows the RMSE error calculated in several SOC brackets. As shown,
the RMSE increased significantly under 20% SOC, although for 5-10% SOC, the
spike in RMSE occurs due to the lower voltage bottoming as mentioned earlier.
Regardless, this finding reaffirms our hypothesis on the limitation of ECM on low
SOC.

Considering the severeness of the model, the limitation of single-state DP ECM,
and the RMSE of 40.36 mV we got from the simulation, we argue that the model
could satisfactorily fit the measured voltage and thus complete the validation phase
for the 25 °C dataset.
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3.2 Two-state dual polarization ECM

3.2.1 Model description

Having completed all the parameter estimations leaves us with six complete arrays
of OCV, R0, R1, C1, R2, and C2 profiles for each dataset temperature. Subsequently,
our next step is incorporating these temperature effects into our ECM model. In
order to do that, some changes are needed in our Simulink model, mainly in the
look-up table. Instead of using 1D LUT for each parameter as we did in the 1D
model, the 2D LUT is used to take into account both SOC and temperature as
the breakpoint of the search, with the parameter’s value as the output as shown in
Figure 3.25. Ideally, the temperature breakpoint list should be the intended test
temperature, as stated in the naming of the dataset. This is not necessarily true
as discovered later when analyzing the battery temperature. This modification
brings another requirement: the 2D look-up table needs a gridded matrix instead
of an array, hence we need to make parameter grids that combine all temperature
profiles in a single matrix. The gridded parameters from all temperature datasets
are presented in Figure 3.21 to 3.24.

Looking at Figure 3.21, we could notice some straight lines. These lines indicate
the non-existing SOC value for that particular dataset. As we know, we retrieved
these parameters from the HPPC test. On some temperatures, particularly the low
ones, the tests don’t fully deplete the SOC, hence, the characteristic of each param-
eter below that SOC couldn’t be retrieved. In order to prevent misunderstandings,
these values are assigned equal to the last value of which SOC is available to be
retrieved. This decision to hold the value is based on the extrapolation method
used in the 2D LUT, which is ’Clip’ extrapolation, meaning it is only logical to also
plot the extrapolated value as clipped. In the OCV-SOC plot, particularly around
low SOC and 70-90% SOC level, an interesting characteristic could be identified.
As we look closer, the lines separates with a trend: the lower the temperature, the
lower the OCV. Farmann [28] mentioned similar behaviour observed on several
batteries under 45°C and -20°C test temperatures with a pronounced discrepancy
of OCV around 60% SOC, while in our case, it is around 80% SOC.

The internal resistor shows an expected profile (Fig. 3.22), where its value
increases exponentially as the temperature drops as explained by Plett [5] and
affirmed by various publications [29]. Another important characteristic of the
resistors is that for each temperature, the resistor value is minimized around
mid-SOC as we could also see in our result, thus affirming the sanity check of
the parameter estimation result. These characteristics could also be found in the
resistors inside the RC pairs as shown in Figure 3.23.

In Figure 3.24, the capacitors profiles are shown. The C1 gives us a clear image
of the trendline, in accordance with the literature and common findings from other
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Figure 3.21: OCV-SOC profile for various temperatures

publications [5, 29]. The resistor-capacitor time constants tend to get slower with
increasing temperature [5, 11, 30], which might seem counterintuitive as we might
expect the internal dynamics to increase at higher temperatures. Consequently,
considering the resistors’ characteristics at different temperatures, the capacitors
must have an increasing value with increasing temperature as we see clearly in the
upper subplot. On the other, similar behaviour could be spotted in C2 profile as
well, although not as clear as in the C1 due to the fluctuations.

The second change revolves around the definition of the temperature as an
input to the look-up table. Throughout our journey working on this project, we
initially passed the temperature input for the look-up table as a fixed list of dataset
temperature = [-20, -10, 0, 10, 25, 40] °C. We discovered later that along with
the dataset, the real-time battery temperature in Celcius of the battery under test
is also attached. By looking at these data, we understand how on several tests
the temperatures fluctuate and even drift away from the designed temperature,
although the tests were conducted inside a controlled climatic chamber. Figure
3.27 and 3.28 show the HPPC temperatures for -20°C and 25°C respectively. The
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Figure 3.22: R0 profile as a function of SOC for various temperatures

lowest temperature profile exhibit a fluctuating (even with a huge spike up to 25°C
for -20°C dataset) and drifting tendency. This is the worst examples of HPPC
test temperatures which are most likely caused by the incapability of the climatic
chamber to control the low temperature to remain constant and measurement error.
On the other hand, the rest of the HPPC test has a battery temperature similar to
what is shown on the 25°C test (Figure 3.28) with negligible fluctuation around its set
temperature. The average battery temperature is tabulated in Table 3.2 to give the
reader an insight into the temperature test profile. Combined with the information
conveyed in Figure 3.28, we could appreciate that the temperature conditioning
chamber struggles in the lower temperature, as the fluctuation increases. Another
thing to pinpoint is how the average temperature is no longer following the dataset
temperature. For example, the -20°C HPPC test has an average temperature
of -17.08°C (2.92°C discrepancy between the designed temperature and the true
average temperature).

Even worse battery temperature fluctuations are found in the driving cycle,
which is normal considering the severe nature of the test. Figure 3.29 to 3.30
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Figure 3.23: R1 and R2 profile as a function of SOC for various temperatures

shows the fluctuation in REORDERED1 and HWGRADE1 driving cycles for -20°C
dataset. The average temperatures for REORDERED1, and HWGRADE1 are
given in Table 3.3 and 3.4, respectively. Notice how the HWGRADE1 dataset for
-20°C has an average temperature closer to the next dataset, which is -10°C. The
trendlines are clear, first, the lower the temperature, the higher the discrepancy
between the intended temperature and the real temperature of the battery. In
addition, limited fluctuation occurs for higher temperatures compared to lower
temperatures. Understanding these phenomena, it is not logical to use a fixed value
of the dataset temperature list as the input. Consequently, the real-time battery
temperature is used as the input, indicated as [temp] on the left side of Figure 3.25

Based on these preliminary analyses, two major decisions are made: incorporating
this real-time battery temperature is a mandatory requirement to have an accurate
ECM model, and using the true average temperature as the breakpoint for the
look-up tables is a logical solution instead of utilizing the dataset (or intended) test
temperature. Addressing the latter problem, since parameter estimation for each
temperature dataset is based on the HPPC test, the average temperature list of
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Figure 3.24: C1 and C2 profile as a function of SOC for various temperatures

Test Temperature
(°C)

HPPC Average Battery
Temperature (°C)

Discrepancy
(°C)

-20 -17.08 -2.92
-10 -7.49 -2.51
0 1.34 -1.34
10 11.06 -1.06
25 24.96 0.04
40 40.13 -0.13

Table 3.2: HPPC average battery temperature

the HPPC dataset mentioned in Table 3.2 will be the breakpoint of our 2D look-up
table.
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Figure 3.25: Main equation of 2D ECM model using 2D LUT for OCV and R0
that takes SOC and temperature as inputs

Figure 3.26: Example of OCV look-up table composed of OCV grid on various
temperatures and SOC levels
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Figure 3.27: HPPC real-time battery temperature for -20°C

Figure 3.28: HPPC real-time battery temperature for 25°C

3.2.2 Benchmark result: Fixed input temperature simula-
tion

As earlier indicated, the more reasonable choice is to use the real-time battery
temperature as the input to the 2D look-up tables. Nevertheless, it is also important
to show the RMSE result of the model which input is an array of fixed temperatures
that follows the temperature dataset naming, especially since we described only the
25°C result of the single-state DP model. In its entirety, it allows us to compare
the effect of using real-time battery temperature on the model’s accuracy and
which test is most influenced by the temperature. Since the model is validated
on the driving cycles, Table 3.5 presents the RMSE over REORDERED1 and
HWGRADE1 driving cycles.
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Figure 3.29: REORDERED1 real-time battery temperature for -20°C

Figure 3.30: HWGRADE1 real-time battery temperature for -20°C

At a glance, it is obvious that our two-state equivalent circuit model’s output
fits the reference value with higher accuracy on REORDERED1 compared to
HWGRADE1 as the RMSEs are significantly less than on the HWGRADE1 driving
cycle. The immediate reasoning for this could be found by simply looking at Table,
with augmenting temperature discrepancy on the lower test temperature, the
RMSE on HWGRADE1 also increases. Meaning there must be a clear correlation
between this temperature discrepancy and the RMSE it produced. Focusing our
attention on HWGRADE1 results, two worst examples (-20°C and -10°C dataset)
are analyzed further.

Figure 3.31 plots the two-state ECM performance with fixed input on the -20°C
HWGRADE1 dataset, while Figure 3.32 for the-10°C dataset. In both figures,
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Test Temperature
(°C)

Reordered1 Average Battery
Temperature (°C)

Discrepancy
(°C)

-20 -16.42 -3.58
-10 -7.49 -2.51
0 2.01 -2.01
10 11.12 -1.12
25 25.10 -0.10
40 39.79 0.21

Table 3.3: REORDERED1 average battery temperature

Test Temperature
(°C)

HWGRADE1 Average Battery
Temperature (°C)

Discrepancy
(°C)

-20 -8.96 -11.04
-10 -0.57 -9.43
0 7.18 -7.18
10 14.90 -4.90
25 27.11 -2.11
40 41.80 -1.80

Table 3.4: HWGRADE1 average battery temperature

we could appreciate the offset between the measured and simulated voltage. To
understand this issue, we need to look at the average temperature and how we assign
the temperature input for the 2D LUT. The average temperatures for HWGRADE
-20°C and -10°C datasets are -8.96°C and -0.57°C, which are extremely far from
the intended temperature. They are even close to the next intended temperature.
Consequently, casting a temperature input according to the dataset (-20°C and
-10°C) is not a wise option since the parameters retrieved in the HPPC test apply
only to that specific temperature (-17.08°C and -7.49°C according to Table 3.2).
A further observation of the lower plot of the figures gives us an idea of the
discrepancy in the fitting accuracy. At a glance, it seems like the error is growing
on the positive phase of the temperature gradient, meaning when the temperature
is ramping up, the error is also escalating. This is partially true. Temperature is
the indication of the discharging and charging phase of the cycle. When the battery
is discharged, the temperature ramps up, and vice versa. The charge and discharge
nature emphasizes the hysteresis which we didn’t model in the DP ECM. The
hysteresis particularly becomes important for lower temperature, which explains
why there are disparities between the charging and discharging phase during the
HWGRADE1 particularly on these two datasets and not on high temperatures.
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Fixed Input Temperature RMSE over Driving Cycles (mV)
Test Temperature [°C] REORDERED1 HWGRADE1

-20 60.46 661.40
-10 45.69 464.12
0 18.47 190.96
10 11.90 106.70
25 8.12 39.09
40 9.81 64.94

Table 3.5: RMSE values for different test temperatures under REORDERED1
and HWGRADE1 driving cycles

Figure 3.31: Two-state ECM with fixed temperature input validated on HW-
GRADE1 -20°C dataset. Voltage RMSE: 661.40 mV

Bottom line, our ECM could not model the large hysteresis that occurs at lower
temperatures. Further information regarding hysteresis will be discussed in the
next subsection and in the next chapter where the hysteresis modeling is proposed
to tackle this problem.

All in all, this finding once more highlights the need to use real-time battery
temperature as one of the inputs to the ECM model, apart from the second
contribution of error, the hysteresis, which is out of the scope of our model. In real
applications, such fluctuating conditions are extremely common and the solution is
relatively simple to implement. The temperature data from the battery could be
fed directly to the ECU responsible for estimating the SOC.
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Figure 3.32: Two-state ECM with fixed temperature input validated on HW-
GRADE1 -10°C dataset. Voltage RMSE: 464.12 mV

3.2.3 Model Validation on Driving Cycle

The two-state DP ECM with real-time temperature input to the 2D look-up table
needs to be tested against the driving cycles. Initially, the comparative voltage
RMSE between fixed and real-time battery for REORDERED1 and HWGRADE1
are summarized in Figure 3.33 and 3.34, respectively for all the temperature datasets
given, to give the reader a sense of significance of having a real-time temperature
input.

In the REORDERED 1 driving cycle, the use of real-time battery temperature
as the secondary input (after SOC) of the parameters’ 2D LUT is negatively
impacting the RMSE, especially around the lower temperature. Our hypothesis
is that the REORDERED1 datasets have a more stable battery temperature
than the HWGRADE1. The fluctuations that occured in these driving cycles
are predominantly caused by noises and measurement errors, resembling to what
happens also in the HPPC dataset. By feeding the noises inside the real-time
battery temperature to the 2D LUT, we are degrading the result. Another major
cause is due to unstable HPPC temperature. As shown in Figure 3.27, there is a
huge spike until 25°C in the middle of the HPPC test, which significantly increases
its average temperature and thus makes it not representative to the HPPC test
temperature. Nevertheless, the worsening RMSE is negligible compared to what
we will see next in the HWGRADE1.

The most significant improvement happens in the HWGRADE1. As we expected
by looking at the high-temperature fluctuation, in addition to the significant offset
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Figure 3.33: REORDERED1 driving cycle RMSE in mV comparison between
fixed temperature input and real-time temperature input on two-state DP ECM

Figure 3.34: HWGRADE1 driving cycle RMSE in mV comparison between fixed
temperature input and real-time temperature input on two-state DP ECM

between the average battery temperature and the intended test temperature, the
usage of real-time battery temperature massively and positively impacts the RMSE.
In the lowest temperature dataset (-20°C), the RMSE is cut down to 222.41 mV,
equivalent to 66.3% improvement. This advantage is then reduced as we pass to the
higher temperature dataset. The reason for this is due to the temperature variance
as presented in Table 3.4. The more discrepancy in the average temperature, the
bigger the advantage of using real-time temperature on our model.
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Apart from our effort to raise the model’s accuracy by incorporating real-time
temperature, in the end, our attempt is insufficient to reduce the error below a
satisfactory level. As a means to understand the phenomenon, we will further
analyze the lowest two temperature datasets (the -20°C and -10°dataset) and
compare them to the fixed-temperature input solution presented in Figure 3.31 and
Figure 3.32.

Figure 3.35: Two-state ECM with real-time temperature input validated on
HWGRADE1 -20°C dataset. Voltage RMSE: 222.41 mV

Compared to Figure 3.31, the output voltage on -20°C dataset fits the measure-
ment voltage better although there are still huge errors unsolved between the two,
especially in the discharging phase. This disparity is caused by voltage hysteresis.
Plett [5] mentioned that voltage hysteresis is speeding up at lower temperatures and
decreasing in magnitude as temperature increases. The hysteresis effect becomes
more significant due to the slower diffusion of lithium ions at lower temperatures
according to Bodnar [31]. The illustration of hysteresis as retrieved from Plett’s
book is presented in Figure 3.37.

An important remark on this SOC estimation, the accuracy of the equivalent
model is crucial for the accuracy of the Extended Kalman Filter, as the latter
is built upon the discretized version of the ECM. One of the inputs of the SOC
estimation is the voltage resulted by the ECM, meaning if the ECM couldn’t fit
the measured model, EKF’s accuracy would also be limited by the ECM accuracy.
These errors related to the modeling process, in the EKF, will be considered as
process noise.
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Figure 3.36: Two-state ECM with real-time temperature input validated on
HWGRADE1 -10°C dataset. Voltage RMSE: 153.46 mV

Figure 3.37: Hysteresis example. Retreived from Plett [5]
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Chapter 4

Extended Kalman Filter
Model

4.1 One-state discrete model
In the early section, the continuous model of the dual-polarization equivalent circuit
model has been developed on Simulink. Considering the purpose of our work, which
is to develop an Extended Kalman Filter for State-of-Charge estimation of the
battery, and the intended real-time application on-board of the vehicle, a fast and
reliable discrete model shall be developed instead of continuous-time. The discrete
model is implemented in MATLAB code with a time step following the given data
array, which is 1 s (1 Hz sampling frequency). The continuous ECM equations
given in Equation 3.1, 3.2, and 3.3, are translated to the discrete-time domain in
the state-space system format.

In general, the discrete equation is given by:

xk+1 = f(xk, uk) (4.1)

yk = g(xk, uk) (4.2)

where xk is the state vector of the system at a given timestep k, uk describes
the current input to the model, and yk is the terminal voltage output from the
model. Equation 4.1 describes the state space transition from one timestep to the
next one, while Equation 4.2 describes the measurement output equation. The
state vector xk is defined as:

xk =

SOC
VRC1
VRC2

 (4.3)
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Correlating these general equations to the corresponding physical relationships in
discrete time, we would get:

f(xk, uk) =


SOC + dt

Qn
.ik

VRC1e
− dt

R1C1 +
3

1 − e
− dt

R1C1

4
R1.ik

VRC2e
− dt

R2C2 +
3

1 − e
− dt

R2C2

4
R2.ik

 (4.4)

where dt is the time step, and Qn is the nominal capacity of the battery at
a certain condition (temperature and aging). The output of the model g(·) are
described as follows:

y(xk, uk) = OCV + VRC1 + VRC2 + R0.ik (4.5)

Consider that the parameters OCV, R1, R2, C1, and C2 are modeled as a function
of SOC for the 1D discrete model, and also the temperature in the 2D discrete
model. It is important to acknowledge that the state transition equation f(·)
exhibits linearity, as demonstrated by decomposing the vector in relation to xk

and uk. The non-linearity of the model lies inside the parameters, such as the
SOC–OCV correlation, resistors, and capacitors correlation to SOC.

As previously explained, the discrete model is developed in MATLAB, and the
1D discrete model is the basis of our complete 2D EKF. It is crucial to have an
accurate and functioning discrete model prior to developing the EKF, to separate
the error proportion of discretization error and the tuning error of EKF as we will
discover later. This section will take 25°C dataset as an example to have continuity
in explanation and to allow comparison with the continuous model. In general, the
idea of the discrete model is the same as the previous continuous model. Apart
from the obvious discretization, the only difference is how we model the look-up
table. In the Simulink environment, loading the table and breakpoints could be
easily and graphically achieved by using a 1D-LUT toolbox. In MATLAB however,
such behavior could be replicated by using a griddedInterpolant function. Refer to
MATLAB documentation for further information.

Inside our model, each of the six parameters is loaded up onto a 1D grid (or
table), containing SOC as the sample point (x) and the parameter’s value profile for
a given temperature as the corresponding point (v). Figure 4.1 depicts a snapshot
of part of the code with the upper part, explaining how the grid interpolants for
all parameters are formed. The first input is the SOC array, which is different
depending on the parameter referred. As explained in Chapter 4, the RC pairs have
only 7 levels of SOC as a means to compare them to other publications, while the
R0 and OCV both use the complete 14 levels of SOC. The second input shows the
array profile of the parameters at a given temperature. The third input imposes
the type of interpolation desired, which in this case is linear interpolation. The
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extrapolation method is set to be nearest as imposed in the fourth input for the
griddedInterpolant function.

Figure 4.1: Gridded Interpolant approach as a look-up table for DP ECM
parameters in a given SOC

The discretization approach requires a for loop in MATLAB to be deployed on
the code to move the time from one instance to the next one. Subsequently, on
every given time step, the grid interpolants of all parameters are called with the
current SOC(k) as the input.

The results of the discrete model for 25°C on various tests are to be compared
with the Simulink continuous model and the measurement data. As a means to
measure the discrepancy between them, a quantitative metric root mean squared
error (RMSE) is used.

RMSE =
öõõô 1

n

nØ
i=1

(yi − ŷi)2 (4.6)

where yk represents the actual measurement voltage from the dataset at a given
timestep k and ŷk represents the simulated voltage from our model. Figure 4.2
depicts the voltage output comparison between discrete model, continuous model,
and the measurement value on the HPPC test. As seen, there a very little difference
between those three. A further analysis was conducted to see the voltage discrepancy
between the discrete and continuous model (Figure 4.3 above), and discrete model
and measurement data (Figure 4.3 below). Looking at the scale of the above
plot, the discrete model could follow the continuous model very closely, with a
negligible discrepancy of under 2.5 mV or 0.0025 V. By increasing in the sampling
frequency, the discrepancy could only be minimized. The RMSE value between
discrete and continuous models is 0.0734 mV. We could conclude that the discrete
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and continuous model have no significant difference.

Figure 4.2: Discrete model voltage output comparison

Figure 4.3: Voltage discrepancy between discrete model and continuous model
(above) and discrete model and measurement data (below)
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4.2 One-state Extended Kalman Filter
The one-dimensional discrete DP ECM model introduced earlier provides a physics
and mathematical foundation between the input, states, and output of our Kalman
Filter model. Early in this chapter, it has deliberately explained the importance of
the Kalman filter as an observer algorithm to obtain a good estimate of the hidden
states of the system, such as SOC, by taking the input and output measurement of
the model. It implies that an accurate discrete model would contribute the the
less measurement error of the Kalman Filter and hence, increase its estimation
accuracy.

As the basis of our Extended Kalman Filter development, Plett [5] introduced
the extended Kalman filter as a modified general standard Kalman filter that
linearizes the non-linear system at each instance. Before starting the development
of Extended Kalman filter, some notations are important to be understood as it
will be needed to indicate an extra-information about the variables’ status.

• A superscript “-” indicates a predicted quantity based only on past measure-
ments.

• A superscript “+” indicates an estimated quantity based on both past and
present measurements. It implies that estimated quantity is different from a
predicted quantity.

• The hat annotation “ˆ” on top of a variable indicates either a predicted or
an estimated value of that variable. For example, x̂−

k indicates the predicted
value of xk and x̂+

k indicates the estimated value of xk, both at time step k

• The tilde decoration “∼” on a variable means an error between true and
predicted or estimated quantity. For example, x̃k = xk − x̂−

k and x̃+
k = xk − x̂+

k .

• The symbol “P” indicates the correlation between the two components in its
subscript.

Pxy = E[xyT ] and Px = E[xxT ].

4.2.1 Extended Kalman Filter development: six-step method
The development of Extended Kalman Filter is broken down into 6 steps as follows.
This section is presented as a pragmatic and practical approach of Extended Kalman
Filter without having to dig into the derivation of equations:
Phase zero: Initialization Initialization of the first time instance is an important
process since it lays the iterative foundation for the next timestep. This initialization
is part of the tuning process and will be further explained in the following subsection.
First phase: Prediction
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In this phase, our EKF calculates the predicted quantities based on the past and
present measurements and states. This phase is composed of three prediction:
states, error-covariance, and the system output.

Step 1a: State-prediction time update
Based on the knowledge of the previous timestep (or from information obtained
prior to the measurement being made at time k) and the system model of our
discrete model, we try to compute an updated prediction of the current value of xk

at each time step. In this step, we introduce the state-space matrices A and B:

A =


1 0 0
0 exp

1
− dt

R1C1

2
0

0 0 exp
1
− dt

R2C2

2


B =


dt

Qbatt·3600
−

1
1 − exp

1
− dt

R1C1

22
R1

−
1
1 − exp

1
− dt

R2C2

22
R2


The state prediction is based on the past state value x̂+

k−1 and matrices (Ak−1Bk−1),
which is described by the equation below.

x̂−
k = Ak−1x̂

+
k−1 + Bk−1uk−1 (4.7)

where uk−1 is the input of previous iteration.

Step 1b: Error-covariance time update
To compute the prediction-error covariance, the previous timestep corrected-error
covariance and the estimated A matrix from the previous step are needed, along
with the process noise covariance Qx,k−1. The relations between those parameters
are as follows:

P −
x,k = Âk−1P

+
x,k−1Â

⊤
k−1 + Qx,k−1 (4.8)

Step 1c: Prediction of system output yk The voltage output is predicted using
Equation 4.5. One important step that differentiate Extended Kalman Filter and
the rests is the linearization process. In this step, the OCV voltage is linearized.
The means of linearization in the MATLAB environment of OCV and other pa-
rameters are exactly the same as in Discrete Model by using a griddedInterpolant
function. In the equation below, the RC voltages are modified as the second and
third state estimates of our model as follows:
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ŷk = OCVk + x̂−
k (2) + x̂−

k (3) + R0,k.ik (4.9)

Second phase: Correction
We correct the parameters for the advanced time instance based on our predicted
and estimated quantities.

Step 2a: Defining the estimator gain matrix Lx

Before computing the estimator gain matrix, we first define the output prediction
as

yk = yk − ŷk = g(xk, uk, vk) − g(x̂−
k , uk, v̄k)

In the Extended Kalman Filter assumption, the error is approximated using
a truncated Taylor-series expansion of yk around the setpoint qk = {x̂−

k , uk, v̄k},
hence, the previous equation could be written in linearized Jacobian matrices

yk ≈ Ĉkx̃−
k + D̂kṽk

Based on this equation and the covariance matrices resulted from this derivation,
we could define the estimator gain matrix as

Lx,k = P̂x,k CT
k

Ck.P̂k.CT
k + Rx,k

(4.10)

Step 2b: State-estimate measurement update The state for next step is
corrected by the Kalman gain following this equation:

x̃+
k = x̂−

k + Lx,k(yk − ŷk) (4.11)

where yk is the measured voltage at that instant k. It is important to limit the
SOC state. We allow 0.5% percent of overcharging and undercharging the battery.

x̂k(1) =


−0.005 if x̂k(1) < −0.005
1.005 if x̂k(1) > 1.005
x̂k(1) otherwise

Step 2c: Error-covariance measurement update At last, the error-covariance
is corrected according to this equation:

P +
x̃,k = P −

x̃,k − LkPỹ,kL⊤
k (4.12)
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4.2.2 Parameters Initialization and Tuning
As mentioned above, the parameter initialization is a major part of EKF design.
There are mainly 4 items to be initialized: the initial state vector, the corresponding
initial state covariance matrix Px, and the process Qx and measurement Rx noise
covariance matrices. Regarding the state vector, each test always starts from 100%
SOC after the battery stabilizes. It implies that the second and third states of
the voltage across RC pairs are almost certainly zero. Subsequently, there must
be uncertainty about this prediction that will be accounted for in the initial state
covariance matrix, the higher the value, the higher the confidence level of our initial
prediction. Schneider and Georgakis [32] extensively described the systematic
approach to determine the covariance matrices. Haykin [33] also gives a detailed
methodology for finding the order of magnitude of these matrices. Most of the
writers, though, agree that the order of magnitude of the measurement noise Rx

covariance matrix (or in our case, a single value) could be easily determined by
knowing the square root of measurement error. Nonetheless, the measurement error
is not given in the data set and thus remains undetermined. Plett [8] on the other
hand, suggested that due to inconsistent performance, where some methods tend to
perform well in some applications but not as effectively in others, a trial-and-error
approach is advisable to get the tuned and working EKF. This approach is also
selected to determine ours.

As a base reference, we referred to Khanum’s work [13] on the order of magnitude
and started the tuning procedure by changing the three parameters. The objective
of the tuning is to obtain the parameters that with the best SOC prediction,
quantified by the least RMSE across different tests (HPPC and driving cycles)
under multiple different state initialization and offsets. The details of these tests
are explained in the following subsection. After several trials, we obtained the value
of Px, the process noise covariance Qx and measurement noise covariance Rx as:

Px = diag (0.025, 0.01, 0.01)

Qx =

1 × 10−5 0 0
0 20 × 10−5 0
0 0 20 × 10−5


Rx = 0.05

4.2.3 One-state EKF Model Validation on the HPPC and
Driving Cycle Tests

In validating the model, there are mainly three different steps to be done:
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1. Simulation on the normal test with the correct initialization of the SOC
(starting from 100%) on the corresponding temperature, i.e HPPC test, RE-
ORDERED1 driving cycle, and HWGRADE1 driving cycle.

2. Simulation with the wrong initialization of the SOC: 80% and 0%.

3. Simulation with the offset value of current input Ibatt.

In each case, we are going to quantify the RMSE between the estimated SOC from
our EKF model and the measured SOC from the dataset.

SOC estimation on the HPPC Test using 1D EKF

The result of HPPC is satisfying with the SOC predicted using the EKF could
closely predict the SOC as shown in Figure 4.4. The coulomb counting annotation
acts as the reference of SOC, which array was calculated and extracted from the
Arbin measurement tool. The 1-σ uncertainty bound is also plotted in the figure
based on the following equation for 0-100% scale of SOC:

1-σ = ±
ñ

Px(1) × 100

with Px(1) being the state covariance of SOC state. This 1-σ bounds covers around
68% of the potentially true values in a normal distribution. On the second plot
of Figure 4.4, the error between EKF and the reference is shown. Notice how the
error are minimal, with SOC RMSE of 0.281%, meaning that our EKF model
functions properly for this particular temperature, HPPC test, and with correct
initialization.

The next step as mentioned, is to test the robustness of the EKF model. Not in
every case we know the initial value of the SOC like in a controlled test, especially
when the algorithm is about to be deployed in a real driving environment where the
initial SOC state is uncertainly known and where it’s very likely that the sensor’s
current reading is being interfered. These next two tests: wrong initialization and
current offset act as our robustness test.

EKF wrong initialization test on HPPC
Instead of using 100% SOC, we are going to impose the initial SOC as 80% and
50% and check whether the EKF is adaptive. The simulation output is plotted in
Figure 4.5 and 4.6 for 80% and 50% initial SOC, respectively. Both plots show
an adaptive EKF indicated by the SOC returning to the initial estimate to the
value of our reference. Looking at the errors, after the huge discrepancy at the
start, the SOC returns exponentially to under 1% of the absolute error bound
and remains quasi-constant until the end of the simulation. This proves that our
tuning is robust enough to handle wrong initialization on the HPPC test. The
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Figure 4.4: SOC comparison between EKF model and measured data on HPPC
with correct initialization

Figure 4.5: EKF wrong initialization (80%) test on HPPC

SOC RMSE for 80% and 50% initial SOC are 1.69% and 4.10%. respectively, of
which the major part of the error comes from the initial phase.

EKF offset current test on HPPC
The purpose of this test is to replicate the faulty condition of current sensor reading
and check how far the EKF could still give an accurate prediction. There are two
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Figure 4.6: EKF wrong initialization (50%) test on HPPC

sub-case of the current test, with the offset being 0.1 A and 0.5 A. The snapshots
of HPPC offset current profiles Ibatt are illustrated in Figure 4.7. The latter is
considered to be a severe faulty condition, meaning the test is at a high level of
disturbance. In each plot, there are three signals to be compared: SOC of our
EKF model considering the offset current, the reference SOC without any offset,
and the reference SOC coulomb counting if the offset is considered. The overall
RMSE between true reference SOC and our EKF model is 0.50% which is still in
the tolerable range.

Figure 4.7: Current offset test for HPPC with 0.1 and 0.5 A offset
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As shown in Figure 4.8, the coulomb counting that considers the current offset
has a higher SOC in every instance since the battery is always charged more by 0.1
A throughout the test. What is unique is that our EKF follows the true reference,
which is the dataset’s original SOC even though the input for our EKF has 0.1
offset. This result is fascinating and it proves that our tuning allows the EKF
model to auto-align itself based on the voltage-measured quantity and the tuned
covariance matrices.

Figure 4.8: Adaptive behaviour of EKF model under 0.1 A offset current test

Figure 4.9: Adaptive behaviour of EKF model under 0.5 A offset current test
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Similarly, Figure 4.9 shows alike trendline for the 0.5 A offset on EKF. The
coulomb counting SOC based on our offset current shows an overall charging
condition, affirming our previous statement on how severe this test case is. Our SOC
prediction from EKF model could still follow the true reference value, indicating
an excellent performance even under high disturbance.

SOC estimation on the REORDERED1 Driving Cycle using 1D EKF

With similar manner, the model is validated on REORDERED1 Driving cycle.
Figure 4.10 depicts the SOC prediction result and its corresponding error to
the measurement reference. We could clearly see the value discrepancy kept on
increasing between the predicted SOC and the measured one. In order to understand
whether or not the EKF tuning is not suitable for this particular cycle, we will
take a look at the voltage error between the 1D discrete model and the measured
value. Figure 4.11 shows that the discrete model simulated voltage is drifting apart
from the measured voltage from the dataset, particularly towards the end of the
simulation. This proves that the EKF is doing its job just fine by following the
simulated voltage coming from the discrete model. ECM model is known to have a
poor estimates around the low SOC, especially when the hysteresis is high, and this
might be the case that explains what we encountered. In any case, the drift is simply
minimal, with the maximum error being 4% at the end of the simulation. The
RMSE throughout the whole cycle is around 1.72% which is still highly acceptable.
We will see later that by incorporating temperature in our discrete model, the
accuracy of it will increase, and thus reducing the SOC discrepancy coming from
the EKF model.

Figure 4.10: EKF performance under REORDERED 1 Driving cycle
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Figure 4.11: Voltage discrepancy between the 1D discrete model and the Simulink
(above) and the measured value (below). The drift between the discrete model and
the measured value results in poor estimation for the EKF

Figure 4.12: EKF wrong initialization (80%) test on REORDERED1

EKF wrong initialization test on REORDERED 1
As before, the EKF model SOC is mistakenly initialized which result can be ob-
served in Figure 4.12 for 80% initial SOC and 4.13 for 50% initial SOC, Besides
the gradually increasing error explained earlier, in both cases, the EKF model
is adaptive and capable of closing the gap to the true reference SOC value quite
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Figure 4.13: EKF wrong initialization (50%) test on REORDERED1

promptly, showcasing the robustness and adaptability of our EKF model. The
RMSE for these 80% initial SOC and 50% initial SOC are 4.05% and 6.56%,
respectively.

EKF offset current test on REORDERED 1
Under the current offset test, the EKF model for REORDERED1 is performing

even exceptionally for both offset cases. In both cases, the EKF follows the
true reference value as shown in Figure 4.14 and 4.15. The SOC errors between
the measured value and the simulated value are corrected in both plots (lower
figures) before the voltage error of the discrete model becomes prominent. What
is fascinating about these results is the RMSE of these tests. The 0.1 A offset
test resulted in 1.46% of SOC error while the 0.5 A offset augmented the RMSE
only to 1.88%. In other words, the disturbance coming from the faulty current
measurement has the same order of magnitude of RMS error as if there is no
disturbance.

SOC estimation on the HWGRADE1 Driving cycle

HWGRADE is one of the most severe cycles, indicated by intense and long C-rate
with several charging phases, presumably from regenerative braking. It is inter-
esting to see how the EKF model will perform under such cycles and different
test cases as an integral part of our understanding of our model characteristics.
Similar to previous cycles, we will conduct normal test, wrong initialization test,
and current offset test.
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Figure 4.14: EKF result on REORDERED 1 with 0.1 A current offset

Figure 4.15: EKF result on REORDERED 1 with 0.5 A current offset

Figure 4.16 again shows promising EKF performance with 1.46% of SOC RMSE.
The SOC error is maintained under ± 2% bound throughout the cycle until the
simulation approaches the end relaxation phase, where the error grows slightly to
3.4%. This last SOC error is trivial and is not caused by the incapability of EKF
but due to inaccuracy of the discrete model (ECM model in general) under low
SOC condition.
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Figure 4.16: SOC comparison between EKF model and measured data on
HWGRADE 1 with correct initialization

Figure 4.17: SOC comparison between EKF model and measured data on
HWGRADE 1 with 80% initial SOC

EKF wrong initialization test on HWGRADE 1
Under HWGRADE1 with the wrong SOC initialization, the results are not quite

satisfying (Fig 4.17 for 80% SOC initial and 4.18 for 50% SOC initial). As we know,
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Figure 4.18: SOC comparison between EKF model and measured data on
HWGRADE 1 with 50% initial SOC

HWGRADE1 has an intense and dynamic profile, and by looking at the figures
for both cases, the EKF model doesn’t seem to be agile enough for this. Recall
that in REORDERED1, the results for the wrong initialization were on par with
the correct SOC initialization, meaning the only variable that changes here is the
driving cycle. The RMSE reported for 80% and 50% initial SOC case are 6.62%
and 11.60% which are considerably high. One thing that we could do is to tune the
value of our process noise covariance Qx to have a lower value. Lowering the Qx

matrix would reduce the response time, making our model more agile. Nonetheless,
it comes with the tradeoff of reducing the accuracy of our model to follow the true
reference value. This decision will lead to the depletion of our model’s accuracy,
especially on test cases with the correct SOC initialization (and also on other
driving cycles and HPPC tests). Subsequently, it will increase the RMSE of those
tests for far more. In any case, we considered that 50% offset of SOC initialization
is quite a severe test case and we opted not to change the tuning but to accept
this tradeoff as part of the design choice.

EKF current offset test on HWGRADE 1
The EKF under HWGRADE1 performs distinctively compared to the other test.

As shown in the lower plot of Figure 4.19 for 0.1 A offset and 4.20 for 0.1 A offset,
the SOC error is bounded to 1% and circa 2%, respectively, ignoring the last part
where the error is enlarging due to the discrete model’s voltage error. Throughout
the cycle, we obtain 1.41% and 1.32% of SOC RMSE for 0.1 A and 0.5 A offset in
that order.
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Figure 4.19: EKF result on HWGRADE 1 with 0.1 A current offset

Figure 4.20: EKF result on HWGRADE 1 with 0.5 A current offset

Concluding the section, we could say our tuned EKF model performs highly on
HPPC and driving cycles, and under different test cases for the 25°C dataset. Apart
from that, we also noticed how closely related the voltage error of the discrete model
to the EKF performance in predicting SOC, since the discrete model’s voltage
output acts as the foundation for the EKF to estimate the SOC. Considering
the discrete model’s inaccuracy as noise, it is obvious that increasing the discrete
model’s performance will surely also improve our EKF model due to minimized
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system noise. What remains is to replicate the analysis on different cases and
incorporate battery temperature to achieve better discrete model’s performance
across multiple temperature dataset.

4.3 Two-state Extended Kalman Filter
Following our workflow, the two-state Extended Kalman Filter is due to develop
after completing the single-state counterpart validated over the driving cycles. As
in the previous one-state EKF, we will start by developing the discrete model.
Nevertheless, we will not be describing all the details, only the changes with respect
to the one-state model.

4.3.1 Model Description
Instead of using a 1D gridded interpolant, we needed to use the griddedInterpolant
function for 2 dimensions. The 2D griddedInterpolant input requires to create
a grid of the breakpoints: SOC array and average temperature array from the
HPPC average temperature; and subsequently casting it into griddedInterpolant
as presented in the first two lines in Figure 4.21. As shown, two grids are needed
since we have two different SOC levels, with 7 and 13 SOC levels indicated with
SOC_array1 and SOC_array, respectively. Figure 4.22 shows the code to call the
parameters’ value based on the SOC SOC and the battery temperature T_batt at a
given instance.

Figure 4.21: Two-state griddedInterpolant on MATLAB

As soon as the model is set, the previous EKF parameters’ tuning obtained from
the 25°C needs to be validated over the rest of the temperature datasets. Unfortu-
nately, even without going into the robustness tests, the previous tuning couldn’t
perform for the whole dataset, particularly for the lower temperatures dataset of
the HWGRADE1 driving cycle. This means that the matrices (Px, Qx, andRx)
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Figure 4.22: Calling the 2D griddedInterpolant

need to be redefined so that the EKF model works for all driving cycles on all of
the temperature datasets. The main cause is due to the low ECM accuracy on
the two lowest temperature datasets (-20°C and -10°C) as explained in Chapter 4.
Figure 4.23 gives us an illustration of the previous tuning on -10°C HWGRADE1.
As shown, the errors were accumulated and the EKF failed to follow the true
reference indicated by ’Coulomb Counting’ legend. Similar results occurred also on
the -20°C HWGRADE1. The mission is to get the EKF working on the lowest two
temperature datasets while maintaining the robustness and agility of the model.

Figure 4.23: Old tuning 2D EKF result on -10°C HWGRADE1 driving cycle

The new tuned parameters are presented below:

Px = diag (0.025, 0.01, 0.01)
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Qx =

1 × 10−6 0 0
0 20 × 10−5 0
0 0 20 × 10−5


Rx = 0.05

The only parameter being re-tuned was the Qx as we changed the order of
magnitude of the first element of the process noise covariance, which corresponds
to the SOC noise covariance, from 10−5 to 10−6. What does lowering the Qx

significantly mean? Reducing it by a factor of 10 suggests that we rely more on
the process model rather than on frequent measurement updates compared to the
previous tuning. Most importantly, lowering the Qx results in smoother estimates
since the EKF is less responsive to fluctuations. As we will see in the results, the
new tuning parameters will perform relatively poorer compared to the old ones on
the robustness test, as it becomes less agile to interferences and noises. Despite that
trade-off, this new tuning offers us a better performance at steady-state conditions
and less sensitivity to the noises, which we commonly encounter in the temperatures
and hysteresis voltages, especially on low-temperature datasets.

4.3.2 Two-state EKF Model Validation on Driving Cycles
In the validation process, similar test cases to the one-state are applied. Each
of the following test cases are repeated on driving cycles (REORDERED1 and
HWGRADE1 driving cycle) at each temperature datasets: [-20, -10, 0, 10, 25, 40]
°C.

1. Simulation on the normal configuration with the correct initialization of the
SOC (starting from 100%).

2. Simulation with the wrong initialization of the SOC: 80% and 0%.

3. Simulation with the offset value of current input Ibatt.

For the sake of conciseness, the results are tabulated in Table 4.1 for the first
two test cases and Table 4.2 for the third robustness test case, while only the plots
of important scenarios are presented and discussed. Under the normal test case, we
could clearly notice some great results for both REORDERED1 and HWGRADE1.
As mentioned several times, the ECM accuracy will impact the EKF performance,
hence explaining the reason of degrading EKF performance on both REORDERED1
and HWGRADE1 for the two lowest temperatures. The SOC RMSEs follow closely
the RMSE of ECM displayed in Figure 3.34 and 3.33. Understanding the limit of
the EKF performance on the two lowest temperatures, the EKF seems to present
an exceptional RMSE on the other temperature datasets, none of which reach the
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limit of 2% SOC. Khanum [13] tested their EKF solution on LA92 drive cycle under
normal configuration and obtained the RMSE of 9.89%, 1.78%, 1.01%, 2.90%, and
1.94% for -10, 0, 10, 25, 40 °C. LA92 is one of the supplementary Federal Test
Procedure (FTP) standard, which is one of the four driving cycles constituting
the reordered driving cycles. This indicates that REORDERED1 is the closest
comparison to LA92, in which our results show a much higher accuracy. The
increase in SOC RMSE around the low temperature is also reported in Khanum’s
work, affirming our previous finding.

Table 4.1: Temperature RMSE for REORDERED1 and HWGRADE in normal
and wrong initialization test cases

Temperature REORDERED1 RMSE HWGRADE RMSE
[°C] [%] [%]

Normal Configuration
-20 5.93 2.10
-10 4.01 3.54
0 1.84 0.70
10 1.33 0.96
25 0.38 0.89
40 0.78 1.68

Wrong Initialization SOC = 80%
-20 11.03 3.67
-10 13.46 14.17
0 10.11 12.92
10 7.54 10.26
25 3.78 6.43
40 2.84 3.68

Wrong Initialization SOC = 50%
-20 34.37 (F) 32.34 (F)
-10 24.64 (F) 29.40 (F)
0 16.16 22.01
10 12.19 16.47
25 7.11 11.94
40 5.68 6.73

Wassilidis [11] tuned a single-state dual-extended Kalman Filter (DEKF) under
a logged real dynamics driving cycle profile with 20°C test temperature. Even
though the temperature effect is not covered in their analysis, under 100% SOH, the
DEKF resulted in 0.5% of RMSE, comparable to our results. Figure 4.24 presents
the best-achieving scenario for our two-state EKF model (under REORDERED1
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25°C) with RMSE if 0.38% and maximum absolute SOC error of 0.74%. Notice
the accurate RMSE is a product of good tuning and most importantly, an accurate
ECM model as we achieved only 8.2 mV RMSE under this scenario (Figure 3.33).
These comparisons further assert our positive outcome of high performing EKF
model.

Figure 4.24: Best scenario for EKF model under REORDERED1 25°C with
0.38% RMSE

Figure 4.25: Challenging scenario for EKF model under HWGRADE -20°C due
to low ECM accuracy. SOC RMSE = 2.10%
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On the contrary, Figure 4.25 depicts the struggle of our EKF model for -20°C
HWGRADE scenario given the ECM couldn’t provide a good fit to the measurement
voltage reference. Nonetheless, we could highlight an important property of EKF.
Notice that the EKF tries to stabilize the error shown by the plateauing RMSE to
zero. It takes a significantly longer time for the EKF due to the higher process (or
modeling) error from the ECM.

Figure 4.26: Agile EKF performance under 25°C REORDERED1 with 80%
initial SOC

The two-state EKF model was tested also with some wrong SOC initialization.
In general, the model is capable of handling the 80% SOC initialization in both
driving cycles and all temperature datasets. Figure 4.26 depicts an agile behavior
of our EKF as it closes down the initial SOC error from 20% to under 1% SOC for
REORDERED1 25°C case. In the 50% initialization, however, the EKF fails at
the low temperatures for both cycles. Failing EKF is indicated by the incapability
of the model to close down the initial error during the cycle as illustrated in
Figure 4.27 where the SOC error remains constant throughout the driving cycle
Furthermore, affirming our previous finding, the failing scenarios and the highest
RMSE, in general, could be found in lower temperature scenarios, corresponding to
the increase in the RMSE of ECM. We understand that accuracy and robustness
are always part of design trade-off. Considering that 50% error of SOC initialization
is a massive number, we could accept the shortcoming for a fraction of the test
temperatures scenarios.
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Figure 4.27: Failing EKF under HWGRADE1 -20°C dataset with 50% initial
SOC

4.3.3 Two-state EKF Model Robustness Test on Driving
Cycles

During its lifetime, the EKF might undergo some unintended use cases related to
the credibility of the model’s input and the reliability of the model itself. In these
critical yet reasonable cases, the model shall still perform at an acceptable level.
One of the common methods to test the robustness of the model is by simulating an
input current offset, as reported by Khanum et. al. [13] and Kollmeyer et. al. [14],
similar to what we did in the one-state model validation. Table 4.2 summarized
the robustness test performed using 0.1 and 0.5 A current input offset to our EKF
model for both driving cycles and multiple temperatures.

Under 0.1 A current offset, all scenarios resulted in an acceptable RMSE. Figure
4.28 depicts the EKF result on REORDERED1 under 10°C dataset. On the lower
plot, one could argue that the maximum error is considerably high (3.2%) and that
the EKF is not capable to eliminate completely the error at the end. Nonetheless,
the error is bounded. It grows up until the maximum error, shrinks to 1%, grows
again to reach the maximum error before going back to 2%. The second error
increase is caused by the degrading performance of the discrete ECM at low SOC,
as we discussed in the one-state EKF model. The model, however, could still
tolerate the sensor error and perform at an acceptable level.

On the other hand, most of the tests for 0.5 A current offset ended up in error,
particularly for the REORDERED1. As shown in Figure 4.29, the EKF model
follows the coulomb counting offset. In the newly tuned parameters, we assigned
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Table 4.2: Temperature RMSE for REORDERED1 and HWGRADE under
Current Offset Tests

Temperature REORDERED1 RMSE HWGRADE RMSE
[°C] [%] [%]

Current Offset Test 0.1 A
-20 3.59 1.87
-10 2.86 5.04
0 2.85 1.26
10 2.26 1.13
25 2.43 1.63
40 2.49 2.47

Current Offset Test 0.5 A
-20 FAIL FAIL
-10 FAIL 4.02
0 FAIL 4.42
10 FAIL 4.21
25 11.50 5.16
40 9.16 6.40

Figure 4.28: Two-state EKF performance under 10°C REORDERED1 with 0.1
A current offset

quite a low value of SOC noise covariance component of Qx, which means that we
give more confidence level on the model rather than the measurement feedback
update. Consequently, the time needed for the EKF model to realize that it has

73



Extended Kalman Filter Model

gotten the wrong track is significantly long. Around the 2.5 ∗ 104 second time
mark, the EKF starts to correct itself to follow the true reference. Had the ECM
model been more accurate, this problem could easily be solved by reducing the
SOC noise covariance and allowing the feedback to promptly correct the model.
Nonetheless, such a level of current offset is considerably a severe case (Khanum
tested only for 0.1 A). Given the excellent result on 0.1 A, a fair result on half
of the 0.5 A, and our ECM model limitation causing this failure, we argue that
our model has an acceptable robustness test. The conclusion marks our discussion
on two-state Extended Kalman Filter. Further discussion regarding alternative
solutions to tackle our hindrance will be discussed in the next chapter.

Figure 4.29: Failing two-state EKF robustness test for 10°C REORDERED1
with 0.5 A current offset
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Chapter 5

Attempts to enhance the
ECM performance at low
temperatures

Up until this point, it is somewhat clear that the main issue of degrading two-state
EKF performance is mainly caused by its incapability of the equivalent circuit model
to perform accurately, particularly at low temperatures. This chapter is designed to
present some of the efforts made to tackle the problem, along with the outcome of
each attempt. Interested readers could take these trials into consideration to avoid
re-inventing the wheel and start immediately with the most significant solution.
Mainly, there are four solutions explored:

1. Tuning ECM parameters directly on the two-state model with concatenated
HPPC test from all temperatures.

2. Tuning ECM parameters directly on the two-state model with concatenated
driving cycles from all temperatures.

3. Casting the OCV-SOC curve directly to the DP ECM without Parameter
Estimation.

4. Modeling the ECM hysteresis

5.1 Tuning ECM parameters on concatenated
HPPC test

In our previous workflow presented in Figure 2.3, the parameter estimation processes
using Simulink were conducted on one-state ECM on each temperature, before grids
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were made to combine those parameters. The idea of this trial is to use the two-state
model, which takes into account the real-time battery temperature, as the base of
our parameter estimation. This implies that the HPPC test must concatenated
throughout the temperatures, allowing the Simulink Parameter Estimation to
configure the most optimum parameter value within the imposed range. First,
using a simple MATLAB code, a single HPPC test containing all test temperature
datasets in a random order was concatenated. Figure 5.1 depicts the concatenated
HPPC data. In total, 4 quantities are combined from all six temperature datasets:
measured SOC, voltage, current, and battery temperatures.

Figure 5.1: Concatenated HPPC test

With an equivalent procedure to the single-state ECM model, the optimized
parameters from Simulink Parameter Estimation are obtained in grid forms. Figure
5.2 and 5.3 depicts the OCV - R0 and RC pairs optimized profiles, respectively.
The OCV, R0, and capacitors are similar to the Figure 3.21 to 3.24. Notice that due
to the concatenated dataset, the missing SOC values present in some of the datasets
are compensated by another dataset, hence, explaining some differences at the
low SOC for these parameters. This finding concludes that the single-temperature
HPPC datasets are representative enough (concatenating them is not necessary)
to the whole characteristic of the battery model. On the other hand, resistors
in the RC pairs are quite different compared to the old parameters, particularly
we can no longer appreciate the trend of increasing resistor value with decreasing
temperature.

These parameters are validated on HWGRADE1 and REORDERED1 as in the
previous chapters. The voltage RMSE results are summarized in Figure 5.4 and

76



Attempts to enhance the ECM performance at low temperatures

Figure 5.2: Optimized OCV and R0 from HPPC tests concatenated

Figure 5.3: Optimized RC pairs parameters from HPPC tests concatenated

5.5 and are compared to the previous result as the benchmark. We could clearly
appreciate that this brute-force approach didn’t enhance the model’s RMSE. We
knew the main problem was in the hysteresis around the low temperatures. In this
approach, we thought of compensating the hysteresis found in the low-temperature
dataset with another dataset with the same temperature. Parameter estimation
will optimize the parameter’s value of the same SOC point and same temperature
(since we also cast the temperature into the model) from the concatenated HPPC
tests. Nonetheless, the temperatures in HPPC are mostly constant, which might be
the reason for the degrading performance since the hysteresis is still uncaptured by
the parameter estimation. It is the temperature noises and disturbances (which are
not valid) are the ones being captured and thus estimated, explaining the worsening
result we got. That being said, the next idea is to use a test dataset in which the
temperatures fluctuate significantly, which is found in the driving cycles.
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Figure 5.4: Voltage RMSE for concatenated HPPC tuning on REORDERED1

Figure 5.5: Voltage RMSE for concatenated HPPC tuning on HWGRADE1

5.2 Tuning ECM parameters on concatenated
Driving Cycle test

Similar to the previous section, the REORDERED1 and HWGRADE1 from all
temperatures are concatenated into one, and out of this data, the parameter
estimation was performed. The method is considered as not a scientific approach
since the parameter estimation is commonly conducted on the characterization
test such as the HPPC test. Whatever our result is, it won’t be a global solution.
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Nevertheless, we argue that this attempt is still useful in providing us with the best
possible value if parameter estimation and model validation are both performed on
the driving cycle.

Figure 5.6: Voltage RMSE for concatenated driving cycles tuning on RE-
ORDERED1

Figure 5.7: Voltage RMSE for concatenated driving cycles tuning on HWGRADE1

Without going into the details (due to similar procedures), we could now analyze
the results on REORDERED1 and HWGRADE1 presented in Figure 5.6 and
5.7. It is evident that the RMSE would be lower on the REORDERED1 and
HWGRADE1 since the parameters are extracted out of these driving cycles, so
this finding is expected. The HWGRADE1 seemed to have benefited significantly
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from this approach as we cut down the RMSE to only 52.4 mV, which gives us an
idea of the expected order of magnitude of a good HWGRADE1 RMSE.

Figure 5.8: Voltage RMSE for concatenated driving cycles tuning on HPPC

Figure 5.9: Huge voltage offset on HPPC test with model using the parameters
extracted from concatenated driving cycles

The true validation occurs when we compare the result between the HPPC test
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for this approach and the old parameters’ results which are extracted from HPPC.
Figure 5.8 presents the RMSE summary on HPPC. We notice immediately the
degradation of accuracy on the HPPC. The hysteresis around the low temperature
again is showing in the graph as the RMSE is way worse on this. By analyzing
each waveform as depicted in Figure 5.9, we found another problem correlated to
the hysteresis. The driving cycles seem to have a lower OCV, which is proven by
the underestimation of simulated voltage compared to the measured voltage during
zero current (early stabilization phase in Figure 5.9). This could be another sign
of hysteresis, or it could simply be a sign of aging since the same battery cell is
tested in series starting from the HPPC test followed by the driving cycles. To
be certain of a definitive cause, the hysteresis or the state-of-health (SOH) should
be modeled. Any solution that could significantly improve or even eliminate this
discrepancy will be our answer. Considering that such work is out of the scope of
this thesis, the author invites future collaborators to contribute to developing the
existing model.

5.3 Direct use of the OCV-SOC curve
When the battery is discharged or charged very slowly, the contribution of diffusion
voltage and the ohmic internal losses (caused by R0) are very small [5]. This test
is equal to the discharge capacitance test described in Chapter 4 as the initial
estimation of the OCV profile before casting it into Simulink Parameter Estimation.
Meanwhile, during the parameter estimation, the solver will adjust this profile to
fit the HPPC voltage profile, which has a considerably higher current demand. We
hypothesized that the parameter estimation process causes the offset we saw earlier
in Figure 5.9 (the discussion in the previous sections was concluded after all of the
trial ended, hence, during this effort of using direct OCV-SOC, we didn’t know
the exact cause of voltage offset). In this attempt, the OCV-SOC relationship
profile was not cast into the Simulink Parameter Estimation (SPE). The rest of
the parameters were undergoing the same procedure for SPE similar to the one
described in Chapter 4. Instead, the OCV-SOC profile is calculated by:

OCV (SOC) = VC/40(SOC) − R0(SOC) ∗ C/40 (5.1)

with VC/40(SOC) is the OCV profile derived from capacitance test, R0(SOC) is
the internal resistance profile, and C/40 is the C-rate. The result of this calculation
is presented in Figure 5.10. One can immediately notice the higher value of OCV
throughout all the SOC ranges although the trendline still follows the original
parameter (from SPE). The rest of the parameters are indifferent to the original
parameter, hence, will not be presented again in this section.

For succinctness purposes, we will only analyze REORDERED1 and HW-
GRADE1 under -20°C as this temperature represents the worst dataset, as depicted
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Figure 5.10: OCV-SOC profile calculated using Equation 5.1

Figure 5.11: REORDERED1 -20°C result for direct OCV usage attempt

in Figure 5.11 and 5.12, respectively. In both of the attempts, the RMSE worsened
by 33 mV to 91.4 mV for the REORDERED1 and by 28 mV for the HWGRADE1.
Looking at the REORDERED1, we could understand why. The errors are no
longer fluctuating around 0 as was the case with our normal parameters (recall
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Figure 5.12: HWGRADE1 -20°C result for direct OCV usage attempt

that our original model has fluctuations due to the uncaptured dynamics nature,
while in a steady state, the result is decent with minimized error). Looks like
the calculated OCV profile is underestimating the measured voltage reference
despite the additional R0(SOC) ∗ C/40 component already accounted for inside the
calculation, meaning there is another factor contributing to this difference between
the capacitance test and the driving cycle. This effort is thus abandoned due to
insufficient and unpromising results.

5.4 Hysteresis Voltage Modeling
The conclusion of the thesis ultimately comes to the need for hysteresis voltage
modeling to improve the ECM model accuracy at low temperatures, thus allowing
the EKF to perform accurately and robustly under multiple circumstances and
use cases. The modeling of hysteresis in DP ECM, however, is out of the scope of
this work. This section will only lay the foundation of how the hysteresis model
might be implementable in real-time scenarios for the ECM and most importantly,
the Extended Kalman Filter. hopefully sparking the interest of the reader to
continue improving this existing model. Plett [5] and Bodnar [31] mentioned that
voltage hysteresis speeds up at lower temperatures and decreases in magnitude as
temperature increases as illustrated in Figure 5.13. Readers are referred to Plett’s
and Rzepka’s [7] work for the methodology to retrieve these hysteresis parameters
and its implementation on the Simulink.

Bodnar’s work revolves around the enhancement model’s accuracy at lower
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Figure 5.13: SOC-averaged hysteresis as a function of temperature. Retreived
from Plett [5]

temperatures by modeling temperature temperature-dependent hysteresis model,
which is identical to what we needed. It is reported in the work a promising result
as the calculated RMSE on INR18650 batteries for five multiple temperatures as
summarized in the following table.

Table 5.1: RMSE Comparison of Base Model and Model with Hysteresis by
Bodnar [31]

T [°C]
RMSE of

base model
[mV]

RMSE of model
with hysteresis

[mV]

Improvement
[%]

40 0.0165 0.0081 50.91
30 0.0198 0.0111 43.94
20 0.0264 0.0095 64.02
10 0.0342 0.0096 71.93
0 0.0468 0.0107 77.14

The improvements are significant throughout the temperature dataset by over
50%. Moreover, the amount of benefit is bigger as the temperature is lower, showing
a huge advantage of low-temperature usage. This finding becomes an interesting
topic to be explored and sets a new development direction for the existing model.
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Chapter 6

Conclusion and Suggestion

The work could be categorized into two major milestones: the development of
two-state dual-polarization equivalent circuit model and on top of it, the Extended
Kalman Filter. Both ECM and EKF models are validated on a randomized
standard driving cycle (REORDERED1) and highway-mountainous driving cycles
(HWGRADE1) with multiple temperature datasets: [-20, -10, 0, 10, 25, 40] °C.
In the first milestone, model parameters were extracted from characterization
tests such as HPPC and capacitance tests. The Simulink Parameter Estimation
tool is then used to optimize these parameters to fit the measured data. These
processes were iterated throughout all temperature datasets, forming grid profiles
for all parameters. Enhancing a dual-polarization RC equivalent circuit model by
incorporating the effect of temperature (two-state model) demonstrates a significant
increase in ECM accuracy (up to 66.3% on the HWGRADE1 driving cycle). During
the validation phase, our model showed promising results, particularly in predicting
the output voltage on higher temperatures, with the best-case scenario RMSE to
the measured value of 8.2 mV and 35.33 mV for REORDERED1 and HWGRADE1,
respectively, of which both were found on the 25°C dataset. On the other hand,
the results for low temperatures (-20 and -10 °C) have significant inaccuracy,
indicated by the surging RMSE of 63.67 mV for REORDERED1 and 222.41 mV for
HWGRADE1. We figured out that the lack of accuracy in lower temperatures is
hypothetically caused by the prominent voltage hysteresis around low temperatures
as reported by multiple journals [5, 7, 31].

In the second milestone, a temperature- and SOC-dependent Extended Kalman
Filter was established on the basis of the equivalent circuit model. The aim is to
develop an accurate and robust EKF, capable of operating in multiple tempera-
tures. The proposed EKF-based SOC estimation achieves excellent accuracy and
robustness at higher temperatures with an acceptable limited error band. The
EKF, however, couldn’t perform adequately at low temperatures (-20°C and -10°C)
due to the increasing hysteresis phenomenon which is uncaptured by the ECM
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model. Several solutions are proposed to tackle the problem, leaving the work open
for further improvement.

The author strongly suggests exploring the possibility of incorporating the
hysteresis model into EKF to improve its accuracy around low temperatures. Such
a solution is possible by adding one more state to our EKF model accounting of this
hysteresis parameter and subsequently, testing the model on the same driving cycle.
Another possibility is by having a different EKF tuning for multiple temperatures,
which allows our model to adapt its covariance matrices depending on the accuracy
of our model. By doing so, we can assign a higher trust in the model for datasets
with higher ECM accuracy and vice versa.
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