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Abstract 
 

 

 
The J-integral is a fundamental parameter in fracture mechanics, representing the strain energy 
release rate around a crack tip. Traditional methods for measuring the J-integral rely on 
standardized mechanical testing procedures, involving complex loading and unloading 
procedures and post-processing of load-displacement data. This thesis explores the application 
of Digital Image Correlation (DIC) as a novel technique for calculating the J-integral. DIC is a 
non-contact optical method that provides full-field displacement and strain measurements with 
high spatial resolution. By capturing the deformation field around the crack tip, DIC allows for 
direct and real-time assessment of the J-integral. 
 

The research presented in this thesis involves the development of a DIC-based methodology 
for J-integral calculation. The integration path was chosen so as to avoid large-strain regions 
and allow to determine the stress from the strain. The study also addresses discrepancies 
between the DIC approach and standard test methods, providing insights into the underlying 
reasons for these differences. 
 

Results indicate that DIC offers a significant advantage in visualizing and analyzing crack tip 
fields, leading to a more comprehensive understanding of fracture behavior. However, 
challenges related to measurement sensitivity were identified, necessitating further refinement 
of the technique. Overall, this thesis demonstrates the potential of DIC as a powerful tool for J-
integral calculation, potentially offering enhanced accuracy and efficiency for fracture 
toughness assessment in engineering materials. 
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1. Introduction 
 
 
 
 
Fracture mechanics is a critical field of study in materials science and engineering, aiming to 
understand the behavior of materials under stress and predict the conditions under which they 
fail. One of the most important parameters in this field is the J-integral, which characterizes the 
strain energy release rate and provides a measure of the driving force on a crack tip in a material. 
Standard methods were developed using the integral that allowed the measurement of critical 
fracture properties in sample sizes that are too small for Linear Elastic Fracture Mechanics 
(LEFM) to be valid. These experiments allow the determination of fracture toughness from the 
critical value of fracture energy JIc, which defines the point at which ductile tearing and 
macroscopic crack propagation takes place under mode I loading. 
 
Accurate determination of the J-integral is essential for predicting material failure and ensuring 
the safety and reliability of engineering structures. 

 
Traditionally, the J-integral is measured using standardized mechanical testing methods, which 
involve applying a load to a pre-cracked specimen and recording the load-displacement 
response. These methods, while well-established, are often time-consuming and require 
complex instrumentation and/or complex loading and unloading procedures. Additionally, the 
accuracy of the J-integral calculation can be influenced by various factors, such as specimen 
geometry, loading conditions, and data interpretation techniques. 

 
In recent years, advancements in optical measurement technologies have opened new avenues 
for improving the accuracy and efficiency of fracture mechanics testing. One such technology 
is Digital Image Correlation (DIC), a non-contact, optical method that measures full-field 
displacement and strain with high spatial resolution. DIC involves capturing a series of images 
of the specimen surface during loading and analyzing the changes in the speckle pattern to 
obtain displacement and strain fields on the specimen surface. 

 
The application of DIC to the calculation of the J-integral presents some potential advantages 
over traditional methods. By providing detailed, real-time measurements of the deformation 
field around the crack tip, DIC potentially allows for a more comprehensive and direct 
assessment of the J-integral. However, the use of DIC also introduces new challenges, 
particularly regarding the calculation of the stress state in the plastic zone and the measure of 
the crack length.  
 
This thesis aims to develop a method for calculating the J-integral using DIC and to evaluate 
its accuracy compared to standard test methods. For this purpose, a set of experimental data 
available from prior work [1], related to JIC measurements on SENB (Single-Edge Notched 
Beam) specimens, is used. The J- Δa curve obtained using the standard test method is compared 
with the results obtained by the calculations from Digital Image Correlation.



1 DICe is an open-source digital image correlation (DIC) tool intended for use as a module in an external 
application or as a standalone analysis code. Its primary capabilities are computing full-field 
displacements and strains from sequences of digital images and rigid body motion tracking of objects. 
The images analyzed are typically of a material sample undergoing a characterization experiment, but 
DICe is also useful for other applications (for example, trajectory tracking). 
6 

 

 
The software, which is used to study the sequence of digital images, estimates the coordinates 
and displacements of all points on the surface of the test piece by solving a model-based 
optimization transport problem. 
 
The DIC technique is based, in fact, on the comparison of two successive images of a 
component before and after being deformed. Deformations and displacements are thus 
calculated by considering and correlating the variation in position of blocks pixels between the 
reference image and the deformed image. The Image correlation process is based on the contrast 
between different shades of gray present on the sample. 
 
A Digital Image Correlation Software (DICE 1) was used to calculate the strain field on the 
specimen surface at different times. The calculated strain field was then used to calculate the J 
integral. 
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2.  Elastic-plastic fracture toughness testing 
 

 

 

Linear elastic fracture mechanics is only valid as long as the plastic deformation is confined to 
a small region surrounding the tip of the crack. In many materials, however, it is not possible 
to effectively describe the fracture behavior with linear elastic fracture mechanics and one must 
use another model, elastic-plastic fracture mechanics. The two main Elastic-Plastic parameters 
that describe the conditions at the crack tip are the CTOD and the J integral. The main difference 
between J and CTOD as measures of toughness is that J is related to the area under the load-
displacement curve whereas CTOD is related to the clip gage displacement. This means that 
the relationship between the two parameters depends on strain hardening and constraint [2]. 
 
 

2.1. CTOD measurement 
 
There are various definitions of Crack Tip Opening Displacement. Among the most used there 
are the opening at the front of the crack and the displacement of the intersection of a 90-degree 
angle with the sides of the crack, as shown in Figure 1. 

 
 

 
Figure 1. Alternative definitions of CTOD (a) Crack front opening (b) 90° intersection 

 
 
It is possible to observe that the two definitions of CTOD (δ) are equivalent if the crack ends 

with semicircular (rounded) shape. In general, most of the tests in laboratory used to measure 
the CTOD are carried out with fracture toughness specimens loaded on three points (see Figure 
2). 
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Figure 2. Typical test arrangement 

 
 
Among the various techniques used to measure the CTOD, some have been developed based 
on digital image correlation. 
 
In one method the first definition given of CTOD is considered (Figure 1(a)), which allows it 
to be measured from the relative displacements between the two faces of the crack. To obtain 
its value are considered the vertical displacements obtained experimentally. Figure 3 shows an 
example of the mapping of the vertical displacement. 
 

 
Figure 3. Vertical displacement measured with DIC [3] 
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After defining the graphic position of the crack tip, it is possible to calculate the CTOD. In 
order to obtain this, a pair of points are defined behind the apex of the crack and their 
movements relative to a loading and unloading cycle are analyzed [3]. The positions of the two 
points are indicated in terms of distance from the crack tip: 𝐿𝑥 in crack propagation direction 
and 𝐿𝑦 in the direction perpendicular to it, as can be seen in the enlargement in Figure 4. 
 

 
Figure 4. Enlargement on the pair of points chosen for the CTOD calculation [3] 

 
 

2.2. The Integral J 
 

 
The J-Integral equation was first introduced by Jim Rice in 1968 [4] and is probably the most 
fundamental quantity in nonlinear fracture mechanics. It is an integral equation that gives the 
amount of energy “released” per unit area of crack surface increase. It is the analog of Griffith's 
energy release rate [5], G, from LEFM (Linear Elastic Fracture Mechanics), though J is not 
limited to linear elastic analyses as G is. 
 
Metals like steel exhibit elastic behavior for small loads. When the load is further increased the 
material can undergo plastic deformation. Such materials are called elastoplastic materials.  
 
In a non-linear elastic model, the stress σ depends from the deformation ε in a biunivocal way. 

In a plastic-elastic model, instead, σ depends only from the elastic component of the 

deformation, while the plastic component of the deformation depends from the previous history 
and it is not in a biunivocal relation with σ. 
 

https://www.fracturemechanics.org/j-integral.html#refs
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The two models are approximately equivalent as long as the efforts increase monotonically, but 
they differ clearly when downloading as shown in Figure 5. 
 
 

 
Figure 5. Strain/Stress trend of non-linear elastic and elastic-plastic materials 

 
 

To characterize the fracture behavior of a non linear elastic plastic material, it is common to 
describe the fracture process with the help of the crack resistance curve (see Figure 6). The J-
integral represents the energy released in a linear or nonlinear elastic material, due to an 
infinitesimal increase in crack length (∆a). Applying the J-Integral to materials which show 
elastic plastic deformation behavior requires some preconditions. Hence, several experimental 
methods exist to determine the crack resistance curve of mentioned non-linear elastic plastic 
materials. 
 
 
 

 
Figure 6. Crack resistance curve  

 
 

J-integral theory is largely based on an elastic-nonlinear model; while metallic materials are 
correctly described only by an elastic-plastic model. Despite this, the elastic-nonlinear model 
is adopted because it allows a better approximation, compared to the simpler linear-elastic 
model. 
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2.2.1. First definition of J 
 
 
To an increment of dA in the crack area generally follows an increment of the work of external 
forces dLest, an increment of breaking work dLrot and a variation in the elastic energy of the 
body dUel (see Figure 7). 

 

 
Figure 7. First definition of J 

 
 
By applying the energy conservation: 
 
 

dLest = dLrot + dUel      Eq. 1 
 
 
The breaking work can be defined: 
 
 

J = dLrot /dA      Eq. 2 
 
 
Substituting the previous equality into Eq. 1 it is obtained: 
 
 

J = - d/dA(Uel - Lest)      Eq. 3 
 
 
The quantity Uel - Lest is defined as “potential energy”, i.e. energy that is produced available 
when crack propagation occurs, so J is the amount of energy that is available for an infinitesimal 
advancement of the crack, in units of energy / area. 
 
As a particular case, if the remote displacement is constant there is no work done by external 
forces (dLext=0) and so: 
 

𝐽 = −
𝑑𝑈

𝑑𝐴
= −

𝜕

𝜕𝐴
∫ 𝑃𝑑𝑣

𝑣

0
      Eq. 4 
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It immediately follows that, within the limits of linear elastic fracture mechanics, J = G (rate of 
release of elastic energy). Beyond the limits of linear elastic fracture mechanics however, in the 
real case (i.e. elastic-plastic and not elastic-non-linear), the deformation work can be recovered 
(or "released") only in part, because the plastic part is irrecoverable; therefore, G is no longer 
defined, while J takes on a different meaning. 
 
 

2.2.2. Second definition of J 
 
J is also defined with the following line integral in two dimensions, under the hypothesis of 
plane stress or plane strain, in a reference system where the crack is perpendicular to y and 
grows in direction x: 
 

       Eq. 5 
 

 
where Γ is a path starting on one face of the crack and ending on the other, going around the 
apex, as shown in Figure 8; w is the elastic energy (or mechanical work of deformation) per 
unit volume, T is the local traction on a plane perpendicular to the unit vector nj, and the same 
nj is perpendicular to Γ (locally) and always points outwards. 
 
 

 
Figure 8. Flat surfaced notch in two-dimensional deformation field (all stresses depend only on x and 

y). Γ is any curve surrounding the notch tip. 
 
 
The elastic energy w (in the linear elastic case) can be calculated as follows:  
 
  𝑤 = ∫ 𝜎𝑖𝑗 ∗ 𝑑𝜀𝑖𝑗 =

1

2
(𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦 + 2𝜎𝑥𝑦𝜀𝑥𝑦)

𝜀𝑖𝑗

0
   Eq. 6 

 
And the traction Ti can be calculated as: 

 
 𝑇𝑖 = 𝜎𝑖𝑗 ∗ 𝑛𝑗     Eq. 7 

𝑇𝑖 = 𝜎𝑖𝑗 ∗ 𝑛𝑗 = 𝜎𝑖𝑥𝑛𝑥 + 𝜎𝑖𝑦𝑛𝑦 = (𝜎𝑥𝑥𝑛𝑥+𝜎𝑥𝑦𝑛𝑦

𝜎𝑥𝑦𝑛𝑥+𝜎𝑦𝑦𝑛𝑦
)    Eq. 8 
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2.2.3. Demonstrations  

 
With the non-linear-elastic hypothesis, in the two-dimensional case (plane stress or plane 
strain), Rice demonstrated: 
 

1. The integral J* calculated along a closed line Γ* (which does not contain singularities) 
is always zero. 
 

 
 

2. J calculated as a line integral is independent of the path chosen (as long as it starts on a 
face of the crack and ends on the other, going around the tip). 

 
3. The two definitions of J (as a derivative of the deformation work and as a line integral) 

are always equivalent 
 
 
Considering a homogeneus body of linear or nonlinear elastic material free of body forces and 
subjected to a two-dimensional deformation field (plane strain, generalized plane stress, 
antiplane strain) so that all stresses σij depend only on two Cartesian coordinates x1 (=x) and x2 
(=y). A straight crack is a limiting case for the demonstration, so it is considered a body 
containing a notch of the type shown in Figure 9, having flat surfaces parallel to the x-axis and 
a rounded tip [4]. 
 

 
Figure 9. Line J-integral around a notch in two dimensions 

 
 
The strain-energy density W is defined by  
 

𝑊 = 𝑊(𝑥, 𝑦) = 𝑊(𝑒) = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗
𝜀

0
   Eq. 9 
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Where ε=[εij] is the infinitesimal strain tensor. Considering now the integral J defined by Eq. 5 
where Γ still represents a curve surrounding the notch tip, the integral being evaluated in a 

counterclockwise sense starting from the lower flat notch surface and continuing along the path 
Γ to the upper flat surface. T is the traction vector defined according to the out-ward normal 
along Γ, Ti=σijnij, ‘u’ is the displacement vector and ds is an element of arc length along Γ. To 
prove path independent, it is considered any closed curve Γ* enclosing an area A* in a two-
dimensional deformation field free of body forces [4]. An application of Green’s theorem gives  
 

𝐽 = ∫ (𝑊𝑑𝑦 − 𝑇
𝜕𝑢𝑖

𝜕𝑥
𝑑𝑠) = ∫ [

𝜕𝑊

𝜕𝑥
−

𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥
)]𝑑𝑥𝑑𝑦

𝐴∗𝛤∗
   Eq. 10 

 
Differentiating the strain energy density, 

  
𝜕𝑊

𝜕𝑥
=

𝜕𝑊

𝜕𝑒𝑖𝑗 

𝛿𝜀𝑖𝑗

𝛿𝑥
=  𝜎𝑖𝑗

𝜕𝜀𝑖𝑗

𝛿𝑥
                 Eq. 11 

 

 = 1

2
 𝜎𝑖𝑗[

𝜕

𝜕𝑥
(

𝜕𝑢𝑖

𝜕𝑥𝑗
) +

𝜕

𝜕𝑥
(

𝜕𝑢𝑗

𝜕𝑥𝑖
)] 

 

 = 𝜎𝑖𝑗
𝜕

𝜕𝑥𝑗
(

𝜕𝑢𝑖

𝜕𝑥
)    (since 𝜎𝑖𝑗 = 𝜎𝑗𝑖) 

 

=
𝜕

𝜕𝑥𝑗
(𝜎𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥
)     (since 𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
 = 0) 

 

The area integral in equation Eq. 10 vanishes identically, and thus  
 

∫ (𝑊𝑑𝑦 − 𝑇
𝜕𝑢𝑖

𝜕𝑥
𝑑𝑠) = 0

𝛤∗
     Eq. 12 

 
Considering any two paths Γ1 and Γ2 surrounding the notch tip as in Figure 9. Traversing Γ1 in 
the counterclockwise sense, continuing along the upper flat notch surface to where Γ2 intersects 
the notch, traversing Γ2 in the clockwise sense, and then continuing along the lower flat notch 
surface to the starting point where Γ1 intersects the notch. This describes a closed contour so 
that the integral of (𝑊𝑑𝑦 − 𝑇

𝛿𝑢

𝛿𝑥
𝑑𝑠) vanishes. But T=0 and dy=0 on the portions of path along 

the flat notch surfaces. Thus, the integral along Γ1 counterclockwise and the integral along Γ2 
clock-wise sum zero. J has the same value when computed by integrating along either Γ1 or Γ2 
and path independence is proven (always assuming that the area between curves Γ1 and Γ2 is 
free of singularities) [4]. 

 
By taking Γ close to the notch tip can be made the integral depend only on the local field. The 
path could be shrunk to the tip of a smooth-ended notch and since T=0: 

 
𝐽 = ∫ (𝑊𝑑𝑦)

𝛤
     Eq. 13 
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So that J is an averaged measure of the strain on the notch tip. The limit is not meaningful for 
a sharp crack. Nevertheless, since an arbitrarily small curve Γ may then be chosen surrounding 

the tip, the integral may be made to depend only on the crack tip singularity in the deformation 
field. The utility of the method rests in the fact that alternate choices of integration paths often 
permit a direct evaluation of J [4]. 
 
2.2.4. Principles of JIC 

 
The critical J-integral, denoted as JIc, is a fundamental parameter in fracture mechanics used to 
characterize the onset of crack growth in materials subjected to stress. It represents a measure 
of the strain energy release rate associated with crack initiation and is a critical indicator of a 
material's fracture toughness, especially under conditions where plastic deformation occurs 
before fracture (nonlinear elastic or elastic-plastic behavior). As such, JIc is particularly valuable 
in materials and structures expected to undergo significant plasticity near crack tips, providing 
a comprehensive approach for evaluating fracture resistance in ductile materials. 
 
In essence, JIc quantifies the energy required per unit of crack extension in the presence of a 
stress field at the crack tip. It is defined as the critical value of the J-integral, J, at which stable 
crack initiation occurs under Mode I (opening mode) loading. 
 
The JIc parameter is central to evaluating fracture toughness in engineering and materials 
science due to its ability to address conditions beyond the purely elastic assumptions of linear 
elastic fracture mechanics (LEFM). In materials prone to significant plasticity at the crack tip, 
LEFM parameters like KIc (stress intensity factor) may not adequately predict crack growth 
behavior. The J-integral, and particularly JIc, overcomes this limitation by accounting for 
elastic-plastic effects and providing a more realistic assessment of fracture initiation under 
complex stress states. 
 
Experimental determination of JIc involves loading a precracked specimen (commonly single-
edge bend [SE(B)], compact tension [C(T)], or disk-shaped compact [DC(T)] specimens) under 
controlled displacement. Loading is increased incrementally while simultaneously measuring 
load, displacement, and crack extension.  
 
The multisample method, i.e. the use of several different samples to carry out the test, is 
expensive, because many must be pre-tested samples; therefore, it is rarely used (almost never). 
Instead, the single-sample method is used in practice and described here after. 
 
During the test: 
 

1. The basic procedure provides a single JIc value, utilizing optical crack size 
measurements at the initial loading stage. 

2. The R-curve method yields a continuous resistance curve, J versus crack extension 
(Δa), to determine JIc as the point where stable crack growth initiates. 
 

The exact value of JIc is identified as the intersection between a construction line (representing 
the initial crack resistance) and a 0.2 mm offset line from the J-Δa curve. This geometric method 

compensates for variations in plasticity, establishing JIc as a critical material constant indicating 
the onset of significant crack growth. To verify accuracy, a compliance calibration is often used, 
and multiple measurements ensure repeatability and reliability. 
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In practice, it serves as a robust indicator of material performance, particularly in applications 
where toughness and ductility are prioritized. It is used to: 
 

 Rank materials for fracture resistance, 
 Support material selection and quality control, 
 Predict crack growth under loading conditions that include plastic deformation, and 
 Guide flaw tolerance assessments in safety-critical structures. 

 
Because JIc provides an intrinsic measure of a material’s resistance to crack initiation under 

elastic-plastic deformation, it is instrumental in safety and reliability assessments, particularly 
for metals, polymers, and composites exposed to high-stress environments. The JIc metric also 
allows engineers to account for differences in laboratory and field conditions, making it highly 
applicable in structural integrity and life-prediction studies. 
 
In summary, JIc is a critical fracture parameter in elastic-plastic fracture mechanics, essential 
for understanding and predicting the initiation of crack growth in ductile materials. Its 
definition, based on the J-integral, extends beyond the limitations of linear fracture mechanics, 
addressing the complexities of plastic deformation and making it invaluable in modern material 
and structural design. 
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3. Standard Test method for Measurement of JIC 
 
 
 
In this chapter it is introduced the methodology and procedures used to determine the fracture 
toughness of metallic materials, a critical parameter for assessing a material's resistance to crack 
propagation under stress. This assessment focuses on two key fracture behaviors: fracture 
instability, characterized by sudden, unstable crack extension, and stable tearing, where crack 
extension occurs progressively. These responses are identified through carefully controlled 
mechanical tests that yield critical toughness parameters, including K, J, and CTOD (crack-tip 
opening displacement), which characterize the material's resistance to different fracture 
scenarios. 
 
The test methodology includes two main approaches: a basic procedure to measure a single 
fracture toughness value, and a resistance curve (R-curve) procedure for developing a 
continuous toughness versus crack extension relationship. Through these procedures, fracture 
properties can be evaluated under realistic loading conditions, providing valuable insights for 
material selection, quality control, and comparative studies within materials of similar yield 
strength. 
 
The experimental setup consists of specialized fracture toughness testing equipment and single-
edge bend (SE[B]), compact (C[T]), or disk-shaped compact (DC[T]) specimens. Each 
specimen contains a precracked notch to simulate realistic crack initiation and progression 
under controlled load conditions. By systematically applying incremental loading and partial 
unloading, compliance measurements allow for precise estimation of crack growth and crack-
tip opening displacements, facilitating the construction of the R-curve. 
 
Detailed calculations based on these measurements, such as compliance and J-integral values, 
are carried out to generate a fracture toughness curve, identifying the transition between stable 
tearing and the onset of plastic tearing. This rigorous approach allows for a comprehensive 
understanding of the material’s crack growth resistance, which is essential for predicting 

performance in real-world applications. 
 
The objective of this test method is to load a fatigue precracked test specimen to induce either 
or both of the following responses: 
 
1. Unstable crack extension, including significant pop-in, referred to as “fracture instability.” 

 
2. Stable crack extension, referred to as “stable tearing”.  

 
Fracture instability results in a single point-value of fracture toughness determined at the point 
of instability. Stable tearing results in a continuous fracture toughness versus crack-extension 
relationship (R-curve) from which significant point-values may be determined (see Figure 6 as 
a reference of R-curve). Stable tearing interrupted by fracture instability results in an R-curve 
up to the point of instability [6]. 
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Assuming the previously mentioned presence of a preexisting, sharp, fatigue crack, the material 
fracture toughness values identified by this test method characterize its resistance to:  
 

1.  Fracture of a stationary crack,  
2.  Fracture after some stable tearing,  
3. Stable tearing onset, and 
4. Sustained stable tearing.  

 
This test method requires continuous measurement of force versus load-line displacement or 
crack mouth opening displacement, or both. If any stable tearing response occurs, then an R-
curve is developed and the amount of slow-stable crack extension shall be measured [6]. 
 
Two alternative procedures for measuring crack extension are presented, the basic procedure 
and the resistance curve procedure. The basic procedure involves physical marking of the crack 
advance and multiple specimens used to develop a plot from which a single point initiation 
toughness value can be evaluated. The resistance curve procedure is an elastic-compliance 
method where multiple points are determined from a single specimen. In the latter case, high 
precision of signal resolution is required. These data can also be used to develop an R-curve 
[6]. 

 
 

3.1. Standard JIC Test Method 
 
 
The fracture toughness determined in accordance with this test method is for the opening mode 
(Mode I) of loading [6]. 
 
The recommended specimens can be single-edge bend, [SE(B)] (Figure 10(a)), compact, [C(T)] 
(Figure 10(b)), and disk-shaped compact, [DC(T)] (Figure 10(c)). All specimens contain 
notches that are sharpened with fatigue cracks [6]. 
 

 
                      (a)                                               (b) 

 
(c) 

Figure 10. Examples of the different shapes of the metal specimens 
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The procedure to follow is to load the sample in steps with displacements gradually increasing. 
Between each step a partial unloading is performed to determine the compliance C, as shown 
in Figure 11 (a given unload must not fall below 50% of the previous load). 
 

 
Figure 11. Procedure of the load and unload steps 

 

 
The compliance is measured to estimate the original crack size, ao, using unloading/reloading 
sequences over a force range of 0.5 to 1.0 times the final maximum precracking force. Then, it 
is estimated the provisional initial crack size, aoq, from at least three unloading/reloading 
sequences [6]. 
 
The maximum recommended range of unload/reload for crack extension measurement should 
not exceed either 50 % of Pm, or 50 % of the current force, whichever is smaller. Experience 
has shown that satisfactory results may be obtained with unloads of 10-20% of Pm [6]. A 
consistent force range should be used for all unloadings in the test. 

 
A minimum of twenty (crack opening displacement, force) data points, uniformly spaced over 
the unload interval, are required to estimate the specimen compliance. The uncertainty of the 
compliance estimates can be improved by increasing the number of data points used in the 
regression analysis. It is recommended that forty or more data points be used in the regression 
analysis of each unload (reload) [6]. 

 
For each unload it is calculated the point J-Δa. The simplest method would be: 
 

 
Figure 12. Integration area of point i 
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For each ai value, it is calculated a corresponding ∆ai as follows: 
 

∆𝑎𝑖 = 𝑎𝑖 − 𝑎0𝑞       Eq. 14 
 
 
From which it would be obtained a series of data Ji – Δai. However, it is preferable to carry out 
a calculation more precise. In fact, the formula: 
 
 

     𝐽 = 𝐽𝑒𝑙 + 𝐽𝑝𝑙 =
𝐾𝐼

2

𝐸′
+ 𝜂

1

𝐵𝑏0
𝐴𝑝𝑙    Eq. 15 

 
 
was originally demonstrated for the case of a crack whose crack length ‘a’ remains constant 
during load application, while in this case ‘a’ generally increases. 
 
An example of the loading path of each step can be seen in Figure 13. 
 
 

 
Figure 13. Loading and deformation path of load step ai 

 
From this it is considered using an incremental formula – i.e. Ji is calculated starting from Ji-1 
by applying a formula that takes into account both the increase in the plastic area from the step 
i to the step i+1 and a correction factor based on the increase in crack length between the same 
steps. 
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JQ is determined from the curve J-Δa as seen in Figure 14. 
 
 

 
Figure 14. JQ calculation from the curve J-Δa (crack extension) 

 
 
JQ is defined as the transition point between the tip blunting and the plastic tearing. During the 
initial rounding phase of the apex, J presents approximately linear trend with respect to Δa. The 
initial slope, however, is difficult to estimate, because the graph has few points; therefore, it is 
preferred to assume by hypothesis that the initial slope = 2 σy (with σy=yield stress) –see 
“construction line” in Figure 14 (This is because in the rounding phase Δa is proportional to δ 
(deformation), which in turn is proportional to J). 
 
When plastic tearing occurs, however, Δa increases significantly more rapidly than J. Therefore, 
the curve has a point of transition. To determine this point, a conventional geometric 
construction is used (very similar to the one used to determine the conventional yield strength 
in a tensile curve). A reference line (“0.2 mm offset line”) is drawn parallel to the construction 
line, but shifted by 0.2 mm. The JQ is defined as the intersection between this straight line and 
the J - Δa curve. 
 
Unfortunately, it often happens that the J – Δa curve is made up of just a few experimental 
points, with high noise; reason why the point of intersection is uncertain. To avoid this problem, 
all experimental points which fall within a certain distance are selected, in practice between the 
two “exclusion lines” in Figure 14) and a function of interpolation is applied to them; then it is 
found the intersection between the reference line and the interpolating function. 
 
 
Finally, before confirming JIc = JQ, it must be verified: 
 
- if the pre-cracking was carried out in an “adequate” manner with respect to the final results 
and whether the precrack (which can be observed after breaking the sample) is “fairly” regular. 
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- if the initial and final crack lengths (which are measured after the test, having marked and 
broken the sample) are “not too much” different from the estimates obtained with the 
compliance method. 
 
-if the measurement points in the J – Δa plane are “fairly” numerous and 
“fairly” well distributed. 
 
- if the sample size is adequate, i.e. if: 
 

 
 

The fracture toughness test is carried out with the same machine used for traction tests, but the 
appropriate instrumentation has been mounted which allows to carry out the fracture toughness 
tests on three points as shown in Figure 15. 
 
 

3.2. Experimental setup 
 
 

In Figure 15 it is seen the preparation of the test. It is highlighted the positioning of the camera 
and the Lamp used to acquire the images necessary for DIC analysis. It is also seen the 3 load 
points, being the middle one used to apply the Force. 

 
Figure 15. Machine for carrying out fracture toughness tests [1] 

 
 
In the Figure 16 is seen the fracture toughness testing machine with one of the specimens used 
for testing. 

 
There were added two metal plates in the external part of the opening with the function of acting 
as a grip for the mechanical strain gauge. The following image, Figure 16, is inserted to clarify 
how the strain gauge was inserted. 
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Figure 16. Positioning of mechanical strain gauge with metal plates [1] 

 
 

It is also seen the speckle pattern applied to the specimen with paint, in order to create a 
reference for DIC analysis. 

 
The two metal plates were glued and during insertion of the strain gauge, particular attention 
was paid not to create impacts that could cause damage the detachment. 
 

3.3. Test material 
 
The specimen subjected to three-point fracture toughness test is made of steel 39𝑁𝑖𝐶𝑟𝑀𝑜3 [1] 
which is one of the most used hardened and tempered steels in Italy.  
 
The mechanical characteristics of the material were taken from an article published by Roberti, 
La Vecchia and Firrao [7]. The specimens were obtained in the longitudinal direction with 
respect to the processing of the material from which they were obtained. In this case the 
tempering was carried out at a temperature of 600°𝐶. 
 
After preparing the sample 44, it is observed under an optical microscope. An image was 
acquired for both magnification 20 and one with magnification 100 (see Figure 17). 
 

 
Figure 17. Images acquired with an optical microscope of Test 44, on the left magnification 20, on the 

right magnification 100 [1] 
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3.4. Test specimen 
 
 
In terms of the dimensions of the sample, as can be seen in Figure 18 and Table 1, ‘W’ is taken 

as the vertical width of the sample, while ‘B’ is the horizontal width.   
 

 
Figure 18. General dimensions of the sample 

 

The Flow stress value is approximated as an intermediate value between Yield Strength and 
Ultimate Tensile Strength. 
 
S: Length of the sample        σy: Flow stress 
 
YS: Yield Strength        E: Elastic Modulus 
 
UTS: Ultimate Tensile Strength      v: Poisson Modulus 
 
 

 
W B S YS UTS σy E v 

mm mm mm MPa MPa MPa GPa - 
40 20 160 922 1049 985.5 200 0.3 

 
Table 1. Geometrical data of the sample 
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3.5. Test procedure 
 
 
On the following Table is indicated the first part of the load and unload experiment (the absolute 
values). A total of 9758 data points were measured, recording the load and displacement of each 
data point. With the value of Force indicated in [N] and the displacement in [mm]. 
 
 

 |Force| |Displ| 
1 260.89 0.0006 
2 261.52 0.00083 
3 259.59 -0.00059 
4 259.89 0.00037 
5 262.43 0.00112 
6 261.45 -0.0005 
7 262.89 0.00097 
8 262.56 0.00024 
9 268.79 0.00026 

10 272.22 -0.00035 
11 274.46 0.00094 
12 276.38 0.00033 
13 285.06 0.00133 

Table 2. First 13 Timesteps of the Measured Load and Displacement 
 

 
In total there were carried out 67 load and reload steps during the experiment, as can be seen in 
part in Table 3. 

 
 

 
Table 3. Time in seconds of the first 20 unload steps 

 
 
 
 
 
 

Num. unload start unload [s] start load [s]

1 9 12

2 17 19

3 24 26

4 31 34

5 39 41

6 45 48

7 53 55

8 60 63

9 68 70

10 75 77

11 82 85

12 90 92

13 97 99

14 105 107

15 113 115

16 121 123

17 129 131

18 137 140

19 146 148

20 154 156
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The Force-Displacement graph of the test is depicted in Figure 19.  

 

 
Figure 19. Displacement vs Force result of unload/reload test 44 

 
Table 4 indicates some of the results of the 67 Unload steps. The 2nd and 3rd column represent 
the maximum force applied and the measured extensometer opening before the i-th unload starts 
(the negative sign just indicates the Force exerted downwards). The 4th column represents the 
compliance (with respect to the COD). The 5th column represents the crack opening 
displacement (COD or v) and equals the present extensometer opening minus the initial 
extensometer opening.  
 

Num unload P [N] Extensometer 
Opening [mm] 

Compliance 
(C) [μm/kN] 

v [mm] 

1 -7,953535e+03 2,971740e+00 -1,142345e-05 0.085 
2 -1,045384e+04 2,999296e+00 -1,116263e-05 0.113 
3 -1,296071e+04 3,027226e+00 -1,115630e-05 0.141 
4 -1,546601e+04 3,055856e+00 -1,133597e-05 0.169 
5 -1,792357e+04 3,083786e+00 -1,104877e-05 0.197 
. 
. 
. 

    

30 -3,989742e+04 4,744143e+00 -1,884764e-05 1.858 
31 -3,851512e+04 4,841188e+00 -1,948120e-05 1.955 
32 -3,727999e+04 4,936697e+00 -1,892189e-05 2.050 
. 
. 
. 

    

64 -1,620112e+04 7,758530e+00 0,000000e+00 4.872 
65 -1,595948e+04 7,758530e+00 0,000000e+00 4.872 
66 -1,575773e+04 7,758530e+00 0,000000e+00 4.872 
67 -1,551293e+04 7,758530e+00 0,000000e+00 4.872 

Table 4. Unload steps 
 
To organize the calculations, the first part (first four columns) of the Table 5 contains the 
experimental data measured.  

 
i : Represents the number of the unload step 
P: Force before the i-th unloading in kN 

v: Displacement before the i-th unloading in mm 

0
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C: compliance (slope of the curve) of the i-th unload in μm/kN 
 
The 5th to the 8th columns of Table 5 are used to calculate the crack size. For a resistance curve 
test method using an elastic compliance technique on single edge bend specimens with crack 
mouth opening displacements measured at the notched edge, the crack size is given as follows: 

 
𝑎𝑖

𝑊
= [0.999748 − 3.9504𝑢 + 2.9821𝑢2 − 3.21408𝑢3 + 51.51564𝑢4 − 113.031𝑢5] 

 Eq. 16 
 

Where: 
 

     Eq. 17 
 

For the estimation of ‘b’ it is taken into account the relation: 

 
W=a + b       Eq. 18 

 
 
 

The 9th to 11th columns of Table 5 are used to calculate K and Jel.  For the compact specimen at 
a force P(i), K is calculated as follows:  
 

𝐾(𝑖) =
𝑃(𝑖)

𝐵√𝑊
𝑓(

𝑎𝑖

𝑊
)      Eq. 19 

 
 

With 

 

  Eq. 20 

    Eq. 21 
 

The 12th and 13th columns are then used to estimate the plastic deformation and plastic work. 
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Vpl(i) = plastic part of the load-line displacement, vi − P(i)CLL(i) (see Figure 20). 
CLL(i) = experimental compliance, (∆v/∆P)i, corresponding to the current crack size, ai (Used in 
this case the C value previously computed) 
 

.  

Figure 20. Definition of Plastic Area for Resistance Curve. J Calculation 
 

And  

  Eq. 22 
 
The quantity Apl(i) − Apl(i–1) is the increment of plastic area under the chosen force versus plastic 
displacement record between lines of constant plastic displacement at points i−1 and i. The 

quantity Jpl(i) represents the total crack growth corrected plastic J at point i and is obtained in 
two steps by first incrementing the existing Jpl(i-1) and then by modifying the total accumulated 
result to account for the crack growth increment [6]. 
 
Columns 14th to 16th of Table 5 are used to calculate the plastic component of J, with the 
correction factors ηpl and γpl that take into account the effect of the crack growth.  
 
 

  Eq. 23 

  Eq. 24 

  Eq. 25  
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Table 5. Calculation results of Test 44 

 
The J-a curve is interpolated with the following formula in order to obtain the a0 or initial crack 
length 
 

   𝑎 = 𝑎0𝑞 +
𝐽

2𝜎𝑌
+ 𝐵𝐽2 + 𝐶𝐽3    Eq. 26 

 

 
The results previously calculated are depicted in Figure 21, where the J-a points obtained are 
plotted and interpolated in order to obtain the a0q point. 

i P v C u a/W a b f K Jel vpl Apl ηpl γpl Jpl J Δa a (int) J (int)

- kN mm µm/kN - - mm mm - MPa√m kJ/m2 mm J - - kJ/m2 kJ/m2 mm mm kJ/m2

start 0 0.54 21.6 18.4 0 0 2.61 0.854 0 0 21.55275
1 8.0 0.09 11.42 0.129 0.54 21.7 18.3 3.07 24.4 2.7 -0.01 0.0 2.60 0.856 -0.2 2.6 0.19 21.55
2 10.5 0.11 11.16 0.130 0.54 21.6 18.4 3.03 31.7 4.6 0.00 0.0 2.61 0.854 0.0 4.5 0.03 21.55
3 13.0 0.14 11.16 0.130 0.54 21.6 18.4 3.03 39.3 7.0 0.00 0.0 2.61 0.854 0.0 7.0 0.02 21.56
4 15.5 0.17 11.34 0.129 0.54 21.7 18.3 3.06 47.3 10.2 -0.01 0.0 2.60 0.856 -0.3 9.9 0.13 21.56
5 17.9 0.20 11.05 0.131 0.54 21.5 18.5 3.01 54.0 13.3 0.00 0.1 2.61 0.853 0.4 13.6 -0.04 21.56
6 20.4 0.23 11.04 0.131 0.54 21.5 18.5 3.01 61.6 17.2 0.00 0.1 2.61 0.853 0.6 17.8 -0.05 21.56
7 23.0 0.26 11.01 0.131 0.54 21.5 18.5 3.01 69.1 21.7 0.00 0.1 2.61 0.853 1.0 22.7 -0.07 21.56
8 25.4 0.29 11.00 0.131 0.54 21.5 18.5 3.01 76.5 26.6 0.01 0.2 2.61 0.853 1.5 28.1 -0.07 21.56
9 28.0 0.32 11.16 0.130 0.54 21.6 18.4 3.03 84.8 32.7 0.01 0.2 2.61 0.854 1.3 34.0 0.03 21.56
10 30.4 0.35 10.97 0.131 0.54 21.5 18.5 3.00 91.3 38.0 0.02 0.5 2.61 0.853 3.5 41.4 -0.09 21.56
11 32.9 0.38 11.17 0.130 0.54 21.6 18.4 3.03 99.9 45.4 0.02 0.5 2.61 0.854 3.4 48.8 0.03 21.55
12 35.4 0.42 10.98 0.131 0.54 21.5 18.5 3.00 106.4 51.5 0.03 1.0 2.61 0.853 6.9 58.4 -0.09 21.55
13 38.0 0.46 11.19 0.130 0.54 21.6 18.4 3.04 115.3 60.5 0.03 1.1 2.61 0.855 7.8 68.3 0.05 21.56
14 40.5 0.50 11.00 0.131 0.54 21.5 18.5 3.00 121.6 67.2 0.06 2.0 2.61 0.853 14.4 81.6 -0.08 21.56
15 43.0 0.55 11.01 0.131 0.54 21.5 18.5 3.01 129.1 75.9 0.08 3.0 2.61 0.853 21.2 97.1 -0.07 21.58
16 45.4 0.61 11.38 0.129 0.54 21.7 18.3 3.07 139.2 88.1 0.10 3.8 2.60 0.856 26.4 114.5 0.16 21.61
17 47.5 0.68 11.43 0.129 0.54 21.7 18.3 3.07 145.9 96.8 0.14 5.7 2.60 0.857 39.9 136.8 0.19 21.68
18 49.0 0.75 11.49 0.129 0.54 21.8 18.2 3.08 151.1 103.9 0.19 8.1 2.60 0.857 56.9 160.9 0.23 21.81 152
19 50.0 0.83 11.92 0.127 0.55 22.0 18.0 3.15 157.6 113.1 0.23 10.1 2.59 0.860 70.7 183.8 0.48 21.99 199
20 50.5 0.91 12.28 0.125 0.56 22.2 17.8 3.21 161.9 119.3 0.29 13.0 2.58 0.863 90.6 209.8 0.68 22.27 226
21 50.3 0.99 12.33 0.125 0.56 22.3 17.7 3.21 161.7 118.9 0.37 17.4 2.58 0.863 122.1 241.0 0.71 230
22 49.7 1.09 12.96 0.122 0.56 22.6 17.4 3.31 164.5 123.1 0.44 20.7 2.56 0.867 144.2 267.3 1.04 264
23 48.7 1.18 13.41 0.120 0.57 22.8 17.2 3.38 164.5 123.1 0.53 25.0 2.55 0.870 173.3 296.4 1.27 284
24 47.5 1.28 14.46 0.116 0.58 23.3 16.7 3.54 167.8 128.2 0.59 28.1 2.53 0.875 191.8 320.0 1.76 320
25 46.2 1.38 14.63 0.116 0.58 23.4 16.6 3.56 164.6 123.2 0.70 33.1 2.53 0.876 229.0 352.2 1.84
26 44.8 1.48 15.15 0.114 0.59 23.6 16.4 3.64 163.0 120.9 0.80 37.6 2.52 0.878 259.7 380.6 2.06
27 43.6 1.57 16.05 0.111 0.60 24.0 16.0 3.77 164.1 122.5 0.88 41.0 2.51 0.882 280.7 403.2 2.43
28 42.4 1.67 16.28 0.110 0.60 24.1 15.9 3.80 160.9 117.8 0.98 45.3 2.50 0.883 312.8 430.6 2.52
29 41.2 1.76 16.78 0.109 0.61 24.3 15.7 3.87 159.3 115.4 1.07 49.2 2.49 0.885 339.3 454.8 2.71
30 39.9 1.86 18.85 0.103 0.62 25.0 15.0 4.16 165.9 125.2 1.11 50.7 2.46 0.890 337.3 462.5 3.43
31 38.5 1.95 19.48 0.102 0.63 25.2 14.8 4.24 163.4 121.5 1.20 54.6 2.46 0.892 364.7 486.2 3.63
32 37.3 2.05 18.92 0.103 0.63 25.0 15.0 4.17 155.4 109.8 1.34 59.9 2.46 0.891 413.1 522.9 3.45
33 35.9 2.14 19.31 0.102 0.63 25.1 14.9 4.22 151.7 104.7 1.45 63.6 2.46 0.892 440.6 545.3 3.58
34 35.0 2.23 35.74 0.077 0.71 28.5 11.5 6.25 218.5 217.1 0.98 47.2 2.32 0.906 243.2 460.4 6.95
35 33.7 2.33 21.60 0.097 0.64 25.8 14.2 4.53 152.5 105.8 1.60 68.5 2.43 0.896 555.8 661.6 4.24
36 32.6 2.42 21.24 0.098 0.64 25.7 14.3 4.48 145.8 96.7 1.73 72.6 2.43 0.895 595.0 691.7 4.14
37 31.6 2.51 22.12 0.096 0.65 25.9 14.1 4.59 145.1 95.8 1.81 75.3 2.43 0.897 608.2 704.0 4.38
38 30.5 2.60 22.71 0.095 0.65 26.1 13.9 4.67 142.4 92.2 1.90 78.2 2.42 0.898 626.9 719.2 4.53
39 29.5 2.68 24.72 0.091 0.66 26.6 13.4 4.93 145.3 96.0 1.95 79.7 2.40 0.900 620.4 716.5 5.01
40 28.4 2.77 24.99 0.091 0.67 26.6 13.4 4.96 140.9 90.3 2.06 82.8 2.40 0.900 645.8 736.1 5.07
41 27.4 2.86 25.62 0.090 0.67 26.8 13.2 5.04 138.3 87.0 2.15 85.4 2.39 0.901 662.4 749.4 5.21
42 26.6 2.94 26.30 0.089 0.67 26.9 13.1 5.12 136.1 84.2 2.24 87.7 2.39 0.902 676.5 760.7 5.35
43 25.8 3.01 27.15 0.088 0.68 27.1 12.9 5.23 134.9 82.8 2.31 89.6 2.38 0.902 685.3 768.1 5.53
44 24.9 3.08 27.89 0.086 0.68 27.2 12.8 5.32 132.6 80.0 2.39 91.4 2.37 0.903 695.5 775.6 5.67
45 24.3 3.16 29.17 0.085 0.69 27.5 12.5 5.48 133.0 80.5 2.45 93.0 2.36 0.904 697.8 778.3 5.91
46 23.5 3.23 29.72 0.084 0.69 27.6 12.4 5.54 130.4 77.4 2.53 95.0 2.36 0.904 711.4 788.8 6.01
47 22.9 3.29 30.40 0.083 0.69 27.7 12.3 5.62 129.0 75.7 2.60 96.5 2.35 0.904 719.6 795.3 6.13

Experimental data Calcoli J-Δa Curve Interp. Curve
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Figure 21. J-a curve 
 
In Table 6 are represented the interpolation values. 
 

 
Table 6. Interpolation of J-a curve 

 
After substracting a0, the J-a curve is obtained and interpolated using Eq. 27, considering just 
the points JC between the two exclusion lines with offset 0.15 and 1.5 mm. The results of this 
interpolation is shown in Table 7. 
 

J = 𝐶1(𝛥𝑎/𝑘)𝐶2      Eq. 27 
 

 
Table 7. Interpolation for JIC 

 
In Table 8 are constructed the exclusion Lines that are taken into account in the analysis (1st 
column for the 1st exclusion line with offset of 0.15 [mm] and 3rd column for the 2nd exclusion 
line with offset of 1.5 [mm]) and the construction line with offset of 0.2 [mm] (2nd column), 
while last two columns are used to establish boundaries for calculation. 
 

 
Table 8. Exclusion and construction lines definition 

 

 

C B a0q

1.5E-07 -1.7E-05 2.2E+01

Interp. per a0q

C1 C2 Ln(C1)

260.5 0.364 5.56

Interp. per JIc

J Δa Δa Δa J Δa
kJ/m2 mm mm mm kJ/m2 mm

0 0.15 0.2 1.5 112 0
1500 0.91 0.96 2.26 112 4

Inclinated lines sup. Limit
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JIc is obtained as the intersection between the interpolating curve and the line of construction 
with offset 0.2 mm (the intersection point is calculated in iterative way as seen in Table 9). 
 
 

 
Table 9. Iterative calculation of JIC 

 
 
In Figure 22 is replicated the procedure previously detailed in order to obtain the interpolated 
value JIC. 

 
Figure 22. J-Δa curve 

 
 
 
 
 

Δa J

mm kJ/m2

0.281614 160.861
0.283324 164.232
0.283508 164.595
0.283528 164.633
0.283530 164.638

0.283530 164.638
0.283530 164.638

JIc 164.6

Calculus of JIc
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4. Digital Image Correlation 
 

 

 
This chapter delves into the fundamental principles, methodology, and practical considerations 
of DIC, highlighting its application in the analysis of fracture mechanics, particularly in the 
calculation of the J-integral. 
 
Digital Image Correlation (DIC) is a powerful optical method used for measuring full-field 
displacements and strains on the surface of a specimen under deformation. It has gained 
significant relevance in experimental mechanics due to its non-contact nature, high spatial 
resolution, and ability to capture complex deformation patterns. The process includes image 
acquisition, preprocessing, identifying patterns or markers, analyzing deformation, and post-
processing and visualization. 
 
To measure how an object changes shape and moves, a camera or group of cameras take high-
quality images before and after the change occurs. These images go through different 
processing techniques to improve their quality and reduce any unwanted effects that could 
interfere with tracking. 
 
Some common materials that are tested include metals, polymers, concrete, geological samples, 
biological tissues, battery electrodes, explosives, etc. and test pieces range from, for example, 
small coupons used in tensile tests up to entire sub-assemblies of aircraft. This versatility has 
led to a plethora of methodologies and software codes, both commercial and independently 
developed, to utilize the data captured from a DIC measurement. Digital image correlation is 
especially helpful for studying mechanical properties and complicated deformations and getting 
detailed strain information. DIC is commonly employed in experimental mechanics and 
materials science to obtain accurate and reliable measurement data for mechanical properties 
and beyond [8]. 
 
In the mechanical engineering field, digital image correlation has been widely used to monitor 
and process test data in both research and industrial contexts, for applications ranging from 
common material testing to characterization of massive and complex components (part of an 
airplane or a helicopter, roadway bridges, nuclear power-plant structures). The method is very 
versatile and can be applied indifferently to structures of any shape, size, or material, as long 
as they can be observed by cameras. It is also a contactless and non-destructive technique [8]. 
 
At the core level, DIC estimates full-field coordinates and displacements from a sequence of 
digital images taken of a pattern on the surface of a test piece, by solving an optimization 
problem, typically based on a transport model such as optical flow. A fundamental assumption 
in DIC measurements is that the pattern on the surface of the test piece, either natural or applied, 
follows the deformation of the underlying test piece. Thus, the images of the test piece taken 
throughout the test can be correlated to produce full-field coordinates representative of the 
shape, motion and deformation of the surface of the test piece (see Figure 23). 2D coordinates 
of the surface can be measured using a single camera system, and this is referred to as 2D-DIC 
[9]. 
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Figure 23. Digital Image correlation calculation logic 

 
 
 
Comparing the positions of these markers helps the software calculate the displacement and 
strain fields, which reveal important information about localized strain distributions. 
 
In brief, a software code analyzes a user-defined region-of-interest (ROI) within the images, 
which contains a set of interrogation, or measurement, points. In local DIC, each interrogation 
point is centered within a subset of the image. The interrogation points are typically defined at 
some regular spacing (step size), such that neighboring subsets may (or may not) overlap. The 
subsets are numerically correlated from the reference image (before motion/deformation) to 
each subsequent image (during motion/deformation). This correlation is performed by first 
approximating the pattern in each subset using an interpolant function, and then allowing that 
function to deform from the reference image based on a subset shape function. A matching 
criterion in conjunction with subset weights is used to match each subset in the reference image 
with the corresponding subset in the deformed images [9]. 
 
Just like the human eye, a digital image correlation algorithm must be able to determine the 
displacement (i.e., rigid body motion that is a combination of rotation and translation) and 
deformation of a pattern across several images: 
 
 

 
Figure 24. DIC variables to compare reference vs deformed image [8] 
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Conversely, ‘periodic’ texture patterns should be avoided because it will become difficult for 
the digital image correlation software to determine individual point locations unequivocally 
(see Figure 25 as a reference). 

 
 

 
Figure 25. Speckles uniform pattern to be avoided in DIC [8] 

 
 

To remove this ambiguity on individual point locations for digital image correlation, a random 
texture that allows to distinguish the vicinity of a given point from the surrounding areas is 
preferred (see Figure 26 as a reference). For parts with sizes ranging from a centimeter up to a 
meter, paint speckle patterns are often directly sprayed on the sample surface. The resulting 
texture is made of randomly distributed speckles of 1mm in average diameter [8]. 
 
Every measurement point (in practice, every image ‘subset’) can then be distinguished from its 
surroundings. Acceptable textures for DIC can be obtained from other methods, for imaging 
techniques ranging from Secondary Electron Microscopy (SEM) and X-Ray tomography up to 
observations of much larger structures [8]. 
 
 

 
 

 
Figure 26. Example of speckles pattern on a test piece [8] 
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Both natural and applied patterns should have the following general characteristics:  
 

- Size  
 

The optimum pattern feature size is 3–5 pixels. 
 

- Variation  
 

The pattern should have sufficient random variation such that subsets in different regions of the 
image can be uniquely identified. 
 

- Density  
 

Pattern density should be approximately 50 % (i.e. there should be approximately the same area 
of light (white) and dark (black) pixels in any intended subset of the ROI of the image). If round 
speckles are used, then a density closer to 25–40 % can be expected due to the required 
minimum spacing between the round speckles. 
 

- Quality  
 

Pattern quality degradation should be minimized and not permitted to result in decorrelation 
during the analysis. 
 

- Reflections  
 

The pattern sheen should be matte and not glossy, to avoid glare and specular reflections. 
 
Applied patterns, regardless of the method used to create them (i.e. painting, applying an 
adhesive-backed foil or sticker, stamping, or drawing with ink, applying a powder, transfer 
printing, etc.), should have the following additional characteristics, which do not necessarily 
apply to natural patterns. 
 

- Compliance  
 

The applied pattern should be thin and compliant relative to the test piece, such that it does not 
change the test piece behavior being measured during the test. 
 

- Bonding  
 

There should be good bonding between the test piece and the applied pattern. 
 

-  Fidelity  
The applied pattern should move and deform conformally with the test piece surface. 
 

- Thickness  
 

The pattern should be of uniform thickness. The calculation of derived field quantities is the 
final step in many DIC processing schemes.  
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The most derived quantities from these coordinate fields are probably strains, though DIC 
provides access to other quantities of interest, such as curvature, velocity and acceleration. The 
minimum resolution (also called the noise-floor) of the quantities of interest, as well as potential 
bias errors, are tied to both the measurement setup (e.g. camera selection, image contrast, DIC 
pattern feature size), and the data processing parameters (e.g. subset size, subset shape function, 
virtual strain gauge). Therefore, determination of the resolution of the quantities of interest 
through uncertainty quantification analysis completes the DIC data processing. This leaves the 
user with a full-field description of displacements, and/or derived quantities, of a test piece 
subjected to a mechanical test, as well as the uncertainties of those measurements [9]. 
 
Typically, the regions of interest of the test piece should almost fill the field of view to optimize 
the spatial resolution, while still remaining in the field of view throughout the test. 
 
One fundamental assumption of DIC is that the motion and deformation of the pattern that is 
imaged exactly replicates the underlying test piece motion and deformation. Sometimes, images 
of the surface of the test piece itself have a sufficient natural pattern that is adequate for DIC, 
and no artificial pattern needs to be applied [9]. 
 
The digital image correlation software can then extract relevant data and present it visually by 
using techniques like contour plots or animations. 
 
The measurement accuracy of digital image correlation can seem surprisingly high. It is due to 
sub-pixel grey level interpolation: if a black spot with a diameter of 1 pixel is translated across 
a uniform white background, the neighboring pixels will react to this displacement by taking a 
grey level value proportional to the surface of the dot overlapping this pixel. Sub-pixel 
interpolation makes it possible to commonly measure displacement amplitudes smaller than 0.1 
pixel, and even smaller than 0.01 pixel in favorable experimental conditions. To achieve this 
precision, great care must be taken in providing constant and uniform lighting to the observed 
sample, and image acquisition must be carried out with high-quality lenses and cameras [8]. 
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5. DIC Analysis 
 
 
 
A total of 615 images were taken during the test with a frequency of 1 [Hz] (so 1 image is taken 
per second). The initial condition is shown in the following Figure: 
 
 

 
Figure 27. Initial condition of the test, image 0001 

 
 

5.1. Comparison between DIC and extensometer 
 

 
In order to verify the DIC method, this is first used to calculate the COD at some relevant times 
in the test, and the result is compared with the same value as obtained from the extensometer 
opening. Seeing the coordinates of the point of maximum force before an Unload in Figure 28 
(Displacement=1.155857 [mm], Force= 43724.5 [N]) and comparing it with the values given 
in the test is possible to see that it corresponds to the time 113 [s] (the corresponding image 
would be image number 113, corresponding to Unload 15).  
 
 

 
Figure 28. Zoom of Unload 15 
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Figure 29. Crack growth on Image 0113 

 
 
Using the undeformed image (Figure 27) and the image taken at time 113 [s] (Figure 29) the 
analysis of deformations on DICe is carried out. The configurations to make the calculation 
such as analysis mode, step size and subset size are indicated in Table 10. 
 
 

Analysis mode Subset-based full-field 
Subset size 51 pixels 
Step size 15 pixels 

Table 10. Simulation Options 
 
 

Two points of interest are added as close as possible to the strain gauge in order to obtain the 
results of the vertical displacements of these two points (see Figure 30). The algebraic 
difference of the y displacements of the points will be made in order to compare them to the 
COD values given in Table 4, in order to prove the accurateness of the DIC method. 

 
 
 

 
Figure 30. Placement of Point 0 (Upper) and Point 1 (lower) on the image 
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The results of DIC calculation are given in terms of pixels (point 0: -8.139, point 1: 10.626). 
To transform this result in [mm] it is considered the width ‘W’ given in Table 4. Considering 
the step size, it is obtained that each pixel corresponds to 0.0264 [mm]. 
 
In addition, the previous procedure is repeated for the first 20 Unload steps and the results are 
reported in Table 11. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12. COD obtained from Sperimental Test vs calculated in DICe for the first 20 Unload steps 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unload 
number 

Extensometer COD DIC % Variation 

1 0.085 0.050 -41.18% 
2 0.113 0.082 -27.4% 
3 0.141 0.102 -27.7% 
4 0.169 0.131 -22.5% 
5 0.197 0.163 -17.3% 
6 0.226 0.176 -22.1% 
7 0.256 0.218 -14.8% 
8 0.286 0.241 -15.7% 
9 0.318 0.277 -12.9% 
10 0.350 0.308 -12% 
11 0.383 0.333 -13.1% 
12 0.419 0.375 -10.5% 
13 0.459 0.407 -11.3% 
14 0.502 0.449 -10.6% 
15 0.553 0.495 -10.5% 
16 0.614 0.546 -11.1% 
17 0.682 0.617 -9.5% 
18 0.752 0.673 -10.5% 
19 0.826 0.746 -9.7% 
20 0.907 0.803 -11.5% 
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5.2 J Integral calculation 
 
The J-integral calculation is made immediately before unloading steps, so as to allow 
comparison with the Standard method (see the red dots in Figure 31 as a reference). The 
calculation performed on image 113 is discussed here as an example. 
 
 

 
Figure 31. J-integral points of calculation on R-curve 

 
 
As shown in Figure 32 the region of interest is chosen to enclose the most of the surface to have 
the highest freedom as possible for the election of the integration path. The boundaries are:  
 

X0 = 220 pixels   Xf = 1730 pixels 
Y0 = 30 pixels     Yf = 1040 pixels 

 
An exclusion zone is added in the crack so to avoid unnecessary calculation.  
 
It was found that the DIC options used in Table 10 were not accurate enough to obtain the 
desired J value, so a smaller step size and subset size were chosen in order to obtain better 
accuracy as shown in Table 13. 
 
 

 
Figure 32. Region of Interest chosen for tracking 
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Analysis mode Subset-based full-field 
Subset size 31 pixels 
Step size 10 pixels 

Table 13. Simulation Options 
 
The txt file produced by DICe consists of a Table (see Table 14) containing the coordinates in 
x and y direction of each subset with a separation depending of the step size. Other data 
produced in the txt file such as sigma, gamma, status flag and uncertainty are not indicated here 
as they are a representation of the accuracy of the calculation and are not important for this 
analysis.  

 
Subset _ID COORDINATE_

X 
COORDINATE_

Y 
DISPLCEMENT_

X 
DISPLACEMENT_

Y 
VSG_STRAIN_

XX 
VSG_STRAIN_

YY 
VSG_STRAIN_

XY 
0 2.2000E+002 1.0400E+003 -8.2163E+000 -6.6870E-001 9.3865E-004 -3.5545E-003 -5.9954E-004 
1 2.2000E+002 1.0300E+003 -8.1425E+000 -6.2974E-001 8.9107E-004 -3.4622E-003 -1.0911E-003 
2 2.2000E+002 1.0200E+003 -8.0602E+000 -5.8830E-001 7.0554E-004 -3.3076E-003 -1.8389E-003 
3 2.2000E+002 1.0100E+003 -7.9754E+000 -5.5009E-001 5.5753E-004 -2.3879E-003 -2.1591E-003 
4 2.2000E+002 1.0000E+003 -7.9008E+000 -5.3255E-001 6.6559E-004 -2.8527E-003 -1.9679E-003 

Table 14. txt file produced by DICe 
 
With the use of Matlab, the matrices of displacements and strains are created with the number 
of x elements in the columns and the number of y elements in the rows. 
 

ux=zeros(102,152); 
uy=zeros(102,152); 

eps_xx=zeros(102,152); 
eps_yy=zeros(102,152); 
eps_xy=zeros(102,152); 

 
 

With the number of subsets in the x direction and the width dimension indicated in Table 1 it is 
found that the scale of the system corresponds to 0.0264 [mm/pixel]. In Figure 33(a) is shown 
the image created of the object with each point representing a subset, while Figure 33(b) 
indicates the position of each subset in millimeters. 

 
 

 
 

                  (a)            (b) 
Figure 33. Image of each subset position (a) and their position in [mm] (b) 
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The coordinate system that is implemented by DICe uses a vertical axis going downwards 
(which inverts the images from Figure 33 but does not influence on the final result).  
 
Once finished the first column it continues with the second one starting from the same y 
coordinate going downwards and so on. 
 
Based on this, the following loop is created to order the displacements x and y, and strains in 
xx, yy and xy directions:  
 
 
for i=1:length(COORDINATE_X) 

ux(1+(COORDINATE_Y(i)-30)/10,1+(COORDINATE_X(i)-220)/10)=DISPLACEMENT_X(i)*scale;  
%[mm] 
uy(1+(COORDINATE_Y(i)-30)/10,1+(COORDINATE_X(i)-220)/10)=DISPLACEMENT_Y(i)*scale;  
%[mm] 

     eps_xx(1+(COORDINATE_Y(i)-30)/10,1+(COORDINATE_X(i)-220)/10)=VSG_STRAIN_XX(i); 
     eps_yy(1+(COORDINATE_Y(i)-30)/10,1+(COORDINATE_X(i)-220)/10)=VSG_STRAIN_YY(i); 
     eps_xy(1+(COORDINATE_Y(i)-30)/10,1+(COORDINATE_X(i)-220)/10)=VSG_STRAIN_XY(i); 
end 

 
 
In Figure 34 are indicated the plots of the previous DIC variables. As the test is carried out the 
object is subjected to a deflection that tends to open the crack, so the extremities tend to open 
and move towards the left, as can be seen in the displacements from the plots from Figure 34 
(A) and (B). 
 
 

 
(A) Horizontal Displacement                                         (B) Vertical Displacement 

Figure 34. Plots of x (A), y (B) Displacements for calculation of Image 113 vs Image 001 
 
 
Directly ahead of the crack tip (along the crack plane), the strain εxx is typically positive, 
indicating tensile strain due to the opening of the crack (see Figure 35 (A) and (B)), while 
directly behind the crack tip, εxx can be negative due to compressive effects as the crack faces 
pull apart and induce a compressive strain in the material behind the crack tip. Above and below 
the crack tip (perpendicular to the crack plane), the strain εxx is generally positive, indicating 
the material is being pulled apart in the vertical direction. The same assumptions can be made 
when analyzing the strain εyy (Figure 35 (C) and (D)). 
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(A) Strain xx                                       (B) Zoom of crack tip zone 

 

 
C) Strain yy                                       (D) Zoom of crack tip zone 

Figure 35. Plots of Strain xx (A) and yy (C), and focus of Strain xx (B) and yy (D) over the crack tip 
for calculation of Image 113 vs Image 001 

 
Directly ahead of the crack tip, the εxy strain is generally zero. This is because there is no shear 
strain in the plane directly ahead of the crack tip. Further ahead  the crack tip, the εxy strain is 
also generally zero due to the symmetry of the loading condition. Above and below the crack 
tip, the εxy strain tends to be non-zero, indicating the presence of shear strain. The sign and 
magnitude of this shear strain depend on the exact angular position around the crack tip (See 
Figure 36). 
 

  
(A) Strain xy              (B) Zoom of crack tip zone  

Figure 36. Plots of Strain xy (A), and focus of Strain xy over the crack tip for calculation of Image 113 
vs Image 001 
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After analyzing the previous variables, the stresses can be calculated using an elastic-perfectly 
plastic material model [10]. 
 
Two assumptions are made in order to compare the results, first with plane strain and then with 
plane stress. 
 
 
5.3 Calculation of the stresses and energy with the Plane srain assumption 
 
Plane strain assumptions can provide very good representations of real life components. 
Essentially, the in-plane strains are developed as in the full 3D formulation, but the out-of-plane 
or z-direction strains are set to zero. This condition would exist in an object that is constrained 
in the z-direction by rigid walls; the formulation only allows the resolution of strain ‘in (the) 

plane’, hence the name ‘plane strain’ [11]: 
 
εzz = εxz = εyz = 0 
 

Plane strain assumptions tend to be a very good approximation of the behavior inside a thick 
component that is loaded only in one plane. The large amount of material through the thickness 
essentially renders through-thickness strain irrelevant (or at least negligible) [11]. 
 
Under plane strain conditions the Hooke's law takes the form 
 

     Eq. 28 
 
The potential energy density can be calculated as indicated in Eq. 6. In addition, the Von 
Mises stress assuming plane strain is calculated from Eq. 29 in order to evaluate whether each 
point of the material is Yielded or not. 
 
 

𝜎𝑉 = √𝜎𝑥𝑥
2 + 𝜎𝑦𝑦

2 − 𝜎𝑥𝑥𝜎𝑦𝑦 + 3𝜎𝑥𝑦
2 − 𝑣(1 − 𝑣)(𝜎𝑥𝑥 + 𝜎𝑦𝑦)2   Eq. 29 

 
A study of local yielding is carried out. For each subset in the structure is calculated the local 
Von Mises stress and is compared with the Yield strength. If that value is higher than the 
yield strength  correction factor has to be applied to the stresses in that point: 
 

 
𝜎𝑥𝑥 = 𝜎𝑦𝑦

𝜎𝑌𝑆

𝜎𝑉𝑀
       Eq. 30 
 

𝜎𝑦𝑦 = 𝜎𝑦𝑦
𝜎𝑌𝑆

𝜎𝑉𝑀
       Eq. 31 
 

𝜎𝑥𝑥 = 𝜎𝑥𝑦
𝜎𝑌𝑆

𝜎𝑉𝑀
       Eq. 32 
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Indicating that the material undergoes plastic deformation at those points. So, the elastic energy 
‘w’ must also be corrected as function of the Yield strength (see Figure 37 and Eq. 3). 
 
 

 

 
Figure 37. Elastic energy calculation for stresses higher than Yield strength 

 
 
The red area indicates the elastic energy under elastic deformation. To that contribution it is 
added the strain energy under plastic deformation (black area): 
 
 

𝑤 =
1

2

𝜎𝑌𝑆
2

𝐸
+ 𝜎𝑌𝑆(

𝜎𝑉𝑀−𝜎𝑌𝑆

𝐸
)    Eq. 33 

 
 
The matlab code for the calculation of the previous variables is: 
 
 

for i=1:102 
    for j=1:152 
        sig_xx(i,j)=E/((1+v)*(1-2*v))*((1-v)*eps_xx(i,j)+v*eps_yy(i,j)); %[N/mm2] 
        sig_yy(i,j)=E/((1+v)*(1-2*v))*(v*eps_xx(i,j)+(1-v)*eps_yy(i,j)); %[N/mm2] 
        sig_xy(i,j)=E/((1+v)*(1-2*v))*(1-2*v)*eps_xy(i,j); %[N/mm2] 
        
w(i,j)=0.5*(sig_xx(i,j)*eps_xx(i,j)+sig_yy(i,j)*eps_yy(i,j)+2*sig_xy(i,j)*eps_xy(i
,j)); %[N/mm2] 
        sig_vonMises(i,j)=sqrt(sig_xx(i,j)^2+sig_yy(i,j)^2-
sig_xx(i,j)*sig_yy(i,j)+3*sig_xy(i,j)^2); 
        if sig_vonMises(i,j)>sig_ys 
            sig_xx(i,j)=sig_xx(i,j)*sig_ys/sig_vonMises(i,j); 
            sig_yy(i,j)=sig_yy(i,j)*sig_ys/sig_vonMises(i,j); 
            sig_xy(i,j)=sig_xy(i,j)*sig_ys/sig_vonMises(i,j); 
            w(i,j)=0.5*sig_ys^2/E+sig_ys*(sig_vonMises(i,j)-sig_ys)/E; 
        end 
    end 
end 
 

The results of the Von Mises stresses are compared to the Yield strength of the material 
indicated in Table 4. The superior limit on Figure 38 is set equal to this Yield strength (YS= 
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922 [MPa]), so all the values that surpass this limit are set equal to the Yield strength, as they 
represent nonrealistic values and just indicate whether the material is yielded at that point. 
 
 

 
Figure 38. Von Mises stresses of calculation for Unload 15 and J-integral path 

 
The same procedure to limit the stresses made previously is made for the stresses xx, yy and 
xy indicated in Figure 39. 
 

 
(A) Stress xx                                                               (B) Stress yy 

 
(C) Stress xy 

Figure 39. Plots of Stress xx (A), yy (B) and xy (C) for calculation of Image 113 vs Image 001 
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5.4 Integration 
 
For a rectangular path as the one seen in Figure 40 (as the one chosen for this project) Eq. 5 can 
be simplified subdividing the integral into horizontal and vertical paths: 

 
Figure 40. Subdivision of the different paths for integration over a rectangle  

 
- Vertical path (path 1) 

 
n = (1,0)  ny = 0, nx = 1 

ds = dy 
𝑇 = [𝜎][𝑛] = (𝜎𝑥𝑥 , 𝜎𝑥𝑦) 

 
J integral for the vertical path becomes:  
 

𝐽 = ∫ [
𝛤

𝑤𝑑𝑦 − (𝜎𝑥𝑦𝜀𝑥𝑥 + 𝜎𝑦𝑦 ∗
𝜕𝑢𝑦

𝜕𝑥
) 𝑑𝑦]  Eq. 34  

 
This formula is referred for a vertical path pointing upwards. For the vertical path going 
downwards (path 3) the formula is the same but multiplied by -1. 
 

- Horizontal path (path 2) 
 

n = (0,1)  nx=0 
dy=0 

ds = dx 

𝑇 = (𝜎𝑥𝑦, 𝜎𝑦𝑦) 
 
J integral for the horizontal path becomes:  

 
𝐽 = ∫ [

𝛤
− (𝜎𝑥𝑦𝜀𝑥𝑥 + 𝜎𝑦𝑦 ∗

𝜕𝑢𝑦

𝜕𝑥
) 𝑑𝑥]    Eq. 35 

 
This formula is referred for a horizontal path going to the left. For the horizontal path going to 
the right (path 4) the formula is the same but multiplied by -1. 
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The values of dux/dx in Eq. 12 correspond to the strain εxx, while the values of duy/dx are 
calculated with the denominator as δx and the numerator as the difference between two 
consecutive values of uy from the same row. 
 
for i=1:102 
    for j=1:151 
        duy_dx(i,j)=(uy(i,j+1)-uy(i,j))/10; 
    end 
end 

 
Considering the dimensional limits of the analysis the path to calculate the J integral is set as 
indicated in Figure 41. Each 'X' represents the corners of the rectangle with the respective 
coordinates. 
 

J1 -> J for the path (1) 
J2 -> J for the path (2) 
J3 -> J for the path (3) 
J4 -> J for the path (4) 
J5 -> J for the path (5) 

 

 
Figure 41. Integration path coordinates 

 
 
The values of ‘e’ and ‘d’ are constant, as they represent the position of the intersection of the 

path with the crack edges (d=43, e=71). The following considerations to choose the 
integration path are taken into account: 
 

1. The integration path has to be as far as possible from the large strain zone. i.e. From 
the crack tip. 
 

2. Leave a couple of pixels between the border of the piece and the integration path, in 
order to avoid calculation errors due to boundaries. 4 pixels of space is chosen as a first try 
(see Figure 42). The first calculation for Unload 15 is carried out with this consideration and 
the results obtained are: 
 
 

Unload number J integration [kJ/m2] 
Unload 15 127.62 

Table 15. J integration value first try for Unload 15 
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Figure 42. Integration path first try Unload 15 

 
 

3. It was observed that moving the path (3) to the right slightly increases the J value. Some 
examples of how J changes by modifying the ‘a’ value (horizontal position of path (3)) are 

given in the following Table: 
 
 

“a” value J integral [kJ/m2] 
a=4 127.62 
a=5 125.88 
a=6 129.41 
a=10 132.51 
a=15 134.99 
a=25 134.38 

Table 16. J integral values changing the path (3) position for Unload 15 
 
By changing the other path values (b, c and f) the changes in the J integral are again negligible 
(see Tables 17, 18 and 19), which confirms the theory of the path independence of the J integral. 
 
 

“b” value J integral [kJ/m2] 
b=135 119.99 
b=140 123.63 
b=145 125.37 
b=146 123.25 
b=147 127.62 
b=148 133.21 

Table 17. J integral values changing the path (1) position for Unload 15 
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“c” value J integral [kJ/m2] 
c=3 138.07 
c=4 127.62 
c=5 122.68 
c=6 129.26 
c=10 130.99 
c=15 132.59 
c=20 129.18 

Table 18. J integral values changing the path (4) position for Unload 15 
 

“f” value J integral [kJ/m2] 
f=100 126.88 
f=99 120.66 
f=98 123.30 
f=97 127.62 
f=96 125.61 
f=90 121.23 
f=85 125.24 
f=80 125.67 

Table 19. J integral values changing the path (2) position for Unload 15 
 

 
It is thus demonstrated that the calculated J values is nearly path-independent as expected. 

 
In addition, the same procedure carried out for Unload 15 is repeated from Unload 10 to 25, as 
seen in Table 20. 
 

 
 J standard test method 

[KJ/m2] 
J integration 

[KJ/m2] 
Unload 10 41.4 54.09 
Unload 11 48.8 61.19 
Unload 12 58.4 80.87 
Unload 13 68.3 88.84 
Unload 14 81.6 105.43 
Unload 15 97.1 127.62 
Unload 16 114.5 143.96 
Unload 17 136.8 187.95 
Unload 18 160.9 214.54 
Unload 19 183.8 237.13 
Unload 20 209.8 246.68 
Unload 21 241.0 291.51 
Unload 22 267.3 349.98 
Unload 23 296.4 356.86 
Unload 24 320.0 365.01 
Unload 25 352.2 402.14 

Table 20. J integral obtained using the standard test method vs integrating for Unloads 10 to 25 for 
plane strain  
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5.5 Plane stress 
 
Plane stress, on the other hand, assumes that the three stress tensor components relating to the 
z-direction are zero (see Eq.36). This is, of course, never actually the case inside of a real part, 
but the approximation trends towards applicability as thickness of the component approaches 
zero; there is not enough bounding material to maintain the through-thickness stress: 

 
σzz = σxz = σyz = 0 
 

This is great for analyzing very thin plates that are loaded only in the plane, but it can also be 
applied to the surface of thicker components. In fact, the surface of a plate is the only location 
where true plane stress conditions can exist. It is a perfect representation of the boundary 
condition [11]. 
 
 

`     Eq. 36 
 
The same path is chosen for this case, as shown in Figure 45 for the J integration. The same 
procedure is repeated for the calculation from Unloads 10 to 25 (see Table 21). 
 
 

 J standard test method 
[KJ/m2] 

J integration 
[KJ/m2] 

Unload 10 41.4 46.05 
Unload 11 48.8 52.24 
Unload 12 58.4 69.54 
Unload 13 68.3 76.52 
Unload 14 81.6 92.22 
Unload 15 97.1 110.98 
Unload 16 114.5 127.07 
Unload 17 136.8 168.29 
Unload 18 160.9 192.86 
Unload 19 183.8 212.92 
Unload 20 209.8 223.85 
Unload 21 241.0 265.20 
Unload 22 267.3 317.58 
Unload 23 296.4 324.97 
Unload 24 320.0 333.37 
Unload 25 352.2 368.63 

Table 21. J integral obtained using the standard test method vs integrating for Unloads 10 to 25 for 
plane stress 
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In Figure 43 is indicated the colored map of the Von Mises stresses for Plane stress condition.   

 

Figure 43. Von Mises stresses of calculation for Unload 15 and J-integral path Plane stress 
 
 
5.6 Differences in J-Integral Calculation Plane Strain vs Plane stress 
 
 
While it's typically expected that the strain energy density might be higher under plane strain 
for the same strain, in practice, calculations and specific material behaviors can show variations. 
Table 22 shows the comparison between the J integration values for the previous two cases 
considered and how consistently the integration values are higher in Plane strain. 
 
 

 J integration Plane strain 
[KJ/m2] 

J integration 
Plane stress 

[KJ/m2] 
Unload 10 54.09 46.05 
Unload 11 61.19 52.24 
Unload 12 80.87 69.54 
Unload 13 88.84 76.52 
Unload 14 105.43 92.22 
Unload 15 127.62 110.98 
Unload 16 143.96 127.07 
Unload 17 187.95 168.29 
Unload 18 214.54 192.86 
Unload 19 237.13 212.92 
Unload 20 246.68 223.85 
Unload 21 291.51 265.20 
Unload 22 349.98 317.58 
Unload 23 356.86 324.97 
Unload 24 365.01 333.37 
Unload 25 402.14 368.63 

Table 22.Comparison between J integral obtained under Plane strain and Plane stress for Unloads 10 
to 25 
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In plane stress, stress is assumed to be zero in the thickness direction (typically, the out-of-
plane direction). This condition usually applies to thin structures like thin plates or shells, where 
the stress in the thickness direction is negligible due to the small dimension. The strain in the 
thickness direction is not constrained, so the material can expand or contract freely in that 
direction in response to loading. 
 
The absence of significant constraint in the thickness direction means that the material's 
response to loading is somewhat "relaxed." As a result, the stresses in the in-plane directions 
(along the length and width of the structure) may be lower compared to a situation where the 
material is constrained. 
 
In plane strain, strain in the thickness direction is assumed to be zero, which corresponds to a 
fully constrained situation in that direction. This typically applies to thick structures or cases 
where the material cannot deform in the out-of-plane direction, such as in long cylinders or 
deep beams. This constraint means that the material cannot expand or contract in the thickness 
direction, which introduces additional stress in the in-plane directions. 
 
So the constraint on deformation increases the stiffness of the material, causing higher in-plane 
stresses. In other words, since the material is "locked" from deforming out-of-plane, it is forced 
to accommodate the load entirely through in-plane stress, leading to higher stresses compared 
to plane stress conditions and finally, higher J integral estimates. 
 
 
 
5.7 Δa calculation 
 
 
To complete the analysis, it has to be calculated the variation of crack length (Δa) in both Plane 
strain and Plane stress conditions, taking into account a visual analysis in DICe . The procedure 
is descibred in the following steps. 
 
The uy displacement chart from Figure 34 (B) evidences clearly the presence of the crack. Two 
halves are present, the upper one with positive displacement and the lower one with negative 
displacement, evidencing that the piece is separating in the crack.  
 
The points in which the color difference is barely visible are then seen as points in which the 
material is not being separated yet. So the objective is to find the boundary where the colors 
stop being uniform and start being two completely different. 
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Figure 44 indicates some examples of different Unload steps where the crack tip is located. 
 
 

 
(A)        (B) 

 
(C)        (D) 

Figure 44. Crack tip localization on Unload 10 (A), 15 (B), 20 (C) and 25 (D) 
 
Once found the points, it is located their horizontal position in terms of the subset number, to 
then being multiplied by the scale (x0.264 [mm/subset]). 
 
The curve J-a obtained from the previous calculations is plotted in Figure 45. 

 

 
Figure 45. J-Δa curve comparing the results for Plane strain and Plane stress 
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The calculations from section 3.2 of the Standard Test method are repeated for the crack length 
previously measured, in order to calculate a0q (for both Plane strain and Plane stress) and to 
interpolate J. In this way it is obtained the J integral curve for Plane strain and Plane stress with 
the interpolated ‘a’ values (see Figure 46). 
 
 

 
Figure 46. J-a curve comparing the results from DIC calculations using the J values in Plane strain 

and Plane stress. 
 

 
Figure 47. J-Δa curve comparing the results from DIC calculations, the Standard Test Method and the 

J values in Plane strain and Plane stress calculating crack length in DICe 
 
 
It is possible to see the difference of the a0q value for the three cases considered. An offset of 
around 1 [mm] is seen between the calculations using the crack length obtained by Fontana [1] 
and the approximations from DICe in Plane strain and Plane stress conditions. 
 
 
In the case of J as seen in Figure 47, slight underestimation of the J-Δa curves is now seen 
compared to the Standard Test Method curve for low Δa values, while for higher ones there is 
an overestimation of J. 
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Table 23 compares the JIc values obtained from the previous analysis.  
 

 Standard Test Method 
Test 44 

DIC metho (Plane 
strain) 

DIC metho (Plane 
stress) 

JIc 164.6 150.62 134.68 

Table 23. Comparison of the results of JIc for Standard Test Method of Test 44, Plane strain and Plane 
stress conditions 
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6. Conclusions 
 
 
Elastic-plastic fracture mechanics provides a more comprehensive approach for analyzing 
fracture behavior in materials that exhibit significant plastic deformation. While linear elastic 
fracture mechanics is useful for materials where plasticity is limited to a small region near the 
crack tip, elastic-plastic fracture mechanics becomes essential when plastic deformation is more 
pronounced. The Crack Tip Opening Displacement and the J-integral are the two primary 
parameters used to assess fracture toughness in such cases. 
 
J-integral offers an energy-based description of crack growth and is applicable to both linear 
and non-linear elastic materials. Its energy-based formulation provides valuable insights into 
the fracture process, making it a key tool in understanding the failure of elastoplastic materials. 
 
It reflects different aspects of the fracture process, and their relationship depends on factors 
such as strain hardening and material constraints. As such, this parameter is crucial for 
designing and testing materials in structural applications where plastic deformation and fracture 
toughness are critical. 
 
The research presented in this thesis focused on the analysis of the J-integral in fracture 
mechanics using Digital Image Correlation (DIC) techniques, by using the integral definition 
of J. The primary objective was to develop and validate a method for accurately measuring the 
J-integral through DIC, offering a non-contact, full-field approach that improves upon 
traditional techniques. 
 
One of the main objectives is to present a reliable measurement technique of the J integral 
without the need of the Load/Unload procedure required in the Standard Test Method, as the 
data used (Figure 28) only take into account the peak Force at the beginning of each Unload 
step, which approximates a normal strain/stress curve. 
 
This work underscores the importance of accurate crack length measurement and post-test 
verification in ensuring the validity of JIC results, making it a valuable reference for materials 
testing and quality assurance in structural applications. 
 
As far as the comparison between the different results obtained is concerned, the results of the 
Digital Image Correlation (DIC) analysis highlight a consistent underestimation of the Crack 
advancement when compared to the values obtained from the experimental Test. While for the 
J integral as seen in Tables 20 and 21 an overestimation for both cases is seen.  
 
Once done the corresponding interpolation of the ‘a’ value, a slight underestimation of the J-
Δa curves is now seen compared to the Standard Test Method curve for low Δa values, while 

for higher ones there is an overestimation of J. 
 
In terms of the JIC value, despite being in both Plane strain and Plane stress lower, the results 
are still close to the Standard Test method. 
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Several factors contribute to the observed discrepancies, such as Subpixel Interpolation and 
Resolution, Speckle Quality and Surface Preparation, Calibration and Optical Distortion or 
Strain Averaging. 
 
Despite these challenges, the DIC method remains a valuable tool for displacement and strain 
measurement, especially given its versatility and non-contact nature. The slight variations in 
results can be mitigated by optimizing the experimental setup and improving factors like image 
resolution, calibration, and speckle pattern quality. 
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