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Abstract

Physics-Informed Neural Networks (PINNs) offer a promising framework for solving
differential problems, including Partial Differential Equations (PDEs) and Optimal
Control Problems (OCPs). They have also been explored in parametric settings,
which involves PDEs that depend on a set of parameters. In this context, the
objective is to create a framework capable of efficiently generating numerical
approximations of the solution when the parameter input of the differential problem
changes. In fact, standard numerical methods can be too time-consuming to
solve the problem in real-time and for many parameters. This thesis focuses on
applying PINNs parametric OCPs. The first contribution is the improvement of
the performances of standard PINNs on two test cases already investigated in the
literature: a parametric Elliptic OCP and a parametric Stokes OCP. Improvements
have been achieved by studying different aspects such as the sampling techniques,
the use of an alternative architecture, named PIARCH, and the strong enforcing of
the Dirichlet boundary conditions. Although results should still be improved, we
enhanced the performance, for both the problems. To better study the training
phase capabilities, we focused on the theory of Neural Tangent Kernel (NTK),
which is a matrix that describes how the training of a generic neural network evolves.
The theory behind NTK helps explain why neural networks, and specifically PINNs,
often fail to train. It has been proven that, while neural networks can easily
learn low-frequency components of the training data, they struggle to learn higher-
frequency components, a challenge known as Spectral Bias. To address this issue,
we study two approaches: augmenting the input of the PINN and applying an
adaptive balancing of the loss function. After evaluating these approaches on
one-dimensional uncontrolled problems, we applied them to two parametric OCPs
we investigated to improve their performances.
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Chapters description
Problem formulation and discretization In this chapter the OCPs and para-

metric OCPs formulations are introduced along with some key theoretical
aspects. It also provides a basic explanation of the Galerkin method.

Physics-informed Neural Networks After introducing Neural Networks, it dis-
cusses the general pipeline of their working procedure, with a special focus on
Physics-Informed Neural Networks. Afterwards, it describes Neural Tangent
Kernel and its implications.

Practical insights on Fourier Embeddings and Adaptive weights In this
chapter, one-dimensional simple problems are solved with the two proposed
techniques.

PINNs for Optimal Control Problems In this chapter we solve two proposed
parametric Optimal Control Problems, parametric Elliptic Optimal Control
and parametric Stokes Optimal Control, studying the sensitivity of the PINN
with respect to some features.

Fourier Embedding and Adaptive weights for Optimal Control Problems
In this section we apply the two approaches, i.e. Fourier Embedding and Adap-
tive weights, to the best setting found in the previous chapter.
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Chapter 1

Introduction

Optimal Control problems (OCP) are differential models with a wide range of
applications in engineering and sciences such as fluid dynamics [1, 2, 3], more specif-
ically environmental sciences [4] and hemodynamic [5], but also electronics [6]. The
model consists in a cost functional that has to be minimized subject to constraints
which often represent the governing Partial Differential Equations (PDE) of the
physical model (for example the Navier-Stokes equation in hemodynamic). The
cost functional usually represents a desired configuration of the model that has to
be reached. For example in [4] the purpose was to maintain under a certain level
the concentration of a pollutant in a specific region of the sea, in Trieste region,
Italy.
In many applications, OCPs depend also on a set of parameters. This leads to a
more complex model which is hard to solve efficiently with traditional discretisa-
tions, suchs as Finite Element Method (FEM). An efficient way of dealing with
this kind of problem could be by using Model Order Reduction (MOR), which
have been deeply studied in publications such as [7, 8, 9, 10] and, more specifi-
cally for OCPs MOR is a technique used to speed up simulations, allowing for a
more efficient analysis of the relationship between a model’s inputs and outputs.
By simplifying complex models while retaining essential dynamics, MOR enables
faster computations, which facilitates a smoother and more comprehensive study
of system behavior under various input conditions.

There are numerous methods available for performing Model Order Reduction
(MOR) (see [11] for a reference), including techniques that create a reduced set of
simulations to serve as basis functions, enabling faster future simulations within
the finite element framework. However, this thesis focuses on a more specialized
approach based on machine learning: Physics-Informed Neural Networks (PINNs)
for parametric Partial Differential Equations (PDEs).
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Introduction

PINNs are a recent method for computing numerical approximations of PDEs, based
on Neural Networks (NN). They work by incorporating the physical information
into a NN simply by adding the residual of the PDE in the training phase. They
were introduced in [12] and their usage spread during the last years, since they
exhibited the possibility of solving PDEs in relevant practical application such
as [13, 14, 15, 16, 17, 18, 19, 20]. Other positive features of PINNs rely on their
mesh-free approach and on the possibility of solving high dimensional PDEs, which
is impossible for FEM.
Despite promising results, PINNs struggle in approximating multi-scale problems
and converges towards low-frequencies solutions. This problem is known in literature
as Spectral Bias (SB) and it is well documented in [21, 22, 23]. The Neural Tangent
Kernel (NTK) is a kernel describing the evolution of the training of the NN, it can
be computed as the derivative of the residuals of the network with respect to the
parameters of the model, and its properties are the most addressed for explaining
SB. In order to fix this behavior many solutions have been proposed, but in this
thesis we will focus on testing two possible approaches for parametric OCPs:

• The first one is called Fourier Feature Embedding (FFE). The FFE consists in
expanding the input data into an higher dimensional space using trigonometric
functions. This helps the PINN in gaining more expressivity making it easier
for the NN to learn detailed and oscillatory features in the data, resulting
in faster training and improved accuracy. This procedure was introduced for
general deep learning tasks in [24], but then applied also for PINN in [25]
showing promising results.

• The second approach involves the using of adaptive weights in the loss function
of the PINN, following the algorithm proposed in [21], we studied this approach
in relation to OCPs, in order to see if it improves the accuracy also for
parametric OCPs. The idea behind is strictly related to NTK theory and will
be better explained in 3.4.

Concerning the experiments, we studied two problems taken from [26], the first is an
OCP constrained to a Poisson problem, the second a constrained to Stokes equation.
Firstly, we enhanced the performances of the PINN by training different settings
and understanding what were the best features and structure to use. Afterwards we
implemented FFE and NTK in order to investigate if one or both help in enhancing
the training of the PINN and its accuracy.

The work behind the writing of this thesis has been divided between Politecnico di
Torino (PoliTO) and Scuola Internazionale degli Studi Superiori Avanzati (SISSA).
For the practical aspects of this thesis, the libraries PINA and RBniCS were used,
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Introduction

the first concerning PINNs and the second used for the finite elements simulations.
Both are available at the SISSA mathLab GitHub website.
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Chapter 2

Problem formulation and
discretization

In this section, we will introduce what OCPs, then we will see their generalization
to parametric OCP and some known methods to solve them. Afterwards, we will
introduce the Galerkin discretization related to FEM.

2.1 Optimal control problems
The main features of an Optimal Control Problem are schematically presented
in Figure 2.1. The system is described by a state variable y, a variable u called
control that represents something we can regulate and an observable of interest
p that is typically derived from the state variable. Usually y is the solution of a
generic differential problem such as an ordinary differential equation or a PDE.
The aim of an OCP is to find the right control u in order to make the system reach
a desirable value of the observable of interest pd.

Figure 2.1: Basic scheme of an OCP, adapted from [27].

Let us now introduce the formalism of an OCP. Let U , Y and Z be suitable Banach
spaces and Ua ⊂ U and Ya ⊂ Y the admissible spaces for the control variable and
the state variable respectively. Then we can consider the following OCP:
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Problem formulation and discretization

min
(y,u)∈(Ua,Ya)

J(y, u)

s.t. E(y, u) = 0,
(2.1)

where J : Y × U → R is a functional and E : Y × U → Z represents the state
equation. One of the most important aspects when investigating mathematical
models is to understand if the model admits a solution and under which assumptions.
For this reason we introduce the following theorem:

Theorem 1 Let us assume as true the following hypothesis:

i. Ua is convex, bounded and closed;

ii. Ya is convex and closed such that (2.1) has a feasible point;

iii. the state equation E(y, u) has a bounded solution operator u ∈ Ua → y(u) ∈ Y ;

iv. E : Y × U → Z is continuous under weak convergence;

v. J is weakly lower semicontinuous;

then the problem (2.1) has an optimal solution (ȳ, ū).

The OCP’s cost function that we are going to take into account can be written in
the following form

J(y(u), u, p(y(u)); pd) = 1
2∥p(y(u)) − pd∥2

P + α

2 ∥u∥2
U , (2.2)

where α > 0 and p : Y → P . But practically we will see only the case where p ≡ y.
We can also relieve the notation of y(u) to only y, therefore:

J(y, u; yd) = 1
2∥y − yd∥2

Z + α

2 ∥u∥2
U . (2.3)

The parameter α is an important penalization term. In fact α is needed to penalize
control functions that are too costly. Higher values of α enforce the request of
having a "small" (in norm) control. If we try to solve the OCP without it, we could
get an unrealistic control with high peaks and variation, which cannot be reached
in a concrete setting, but matematically we lose the uniqueness of the solution.
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Problem formulation and discretization

2.2 Parametric Optimal Control Problem
Let us now introduce the reduced problem. Always accounting the problem (2.1),
if we assume that J and E are continuously Fréchet differentiable and that for
every control u the state equation E admits a solution y(u) then we can define a
solution operator K : u ∈ U → y(u) ∈ Y . For these reason we can re-define the
OCP’s functional J making it depending only on the control variable u, because if
u is defined, for y is the same thanks to the operator K. The new OCP reduced
problem is:

min
u

Ĵ(u) = J(y(u), u)

s.t. u ∈ Ûa = {u ∈ U : (y(u), u) ∈ Y × U}. (2.4)

This formulation is important in order to demonstrate the following

Theorem 2 Assume that

i. Ua ⊂ U is nonempty, closed and convex;

ii. J : Y × U → R and E : Y × U → Z are continuously Fréchet differentiable
and U, Y, Z are Banach spaces

iii. if V ⊂ U neighborhood of Ua, the state equation E(y, u) = 0 has a unique
solution y = y(u) ∈ Y ;

iv. Ey(y(u), u) has a bounded inverse for all u ∈ V ⊃ Ua;

then, if ū is a local solution of (2.4), ū also satisfies the following variational
inequality

⟨Ĵ ′(ū), v − ū⟩U∗,U ≥ 0 ∀v ∈ Ua. (2.5)

The notation U∗ stands for the dual space of U . Equation (2) is also known as
Optimality Condition. Let us now define the Lagrangian functional L : Y ×U×Z∗ →
R as

L(y, u, z) = J(y(u), u) + ⟨z, E(y, u)⟩Z∗,Z , (2.6)

where z ∈ Z∗ is the adjoint variable also known as Lagrange Multiplier. If we can
compute an explicit formulation of Ĵ ′(ū) we can use (2) plus the definition of the
Lagrangian (2.6) to prove the following corollary for OCPs:
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Problem formulation and discretization

Corollary 1 With the same hypothesis of theorem (2) plus having Ua ≡ U , if (ȳ, ū)
is an optimal solution of the problem (2.1), then there exists an adjoint state (also
known as Lagrange multiplier) z̄ ∈ Z∗ such that the following equations hold true


⟨DyL(ȳ, ū, z̄), v⟩ = 0, ∀v ∈ Y,

⟨DuL(ȳ, ū, z̄), ω⟩ = 0, ∀ω ∈ U,

⟨DzL(ȳ, ū, z̄), q⟩ = 0, ∀q ∈ Y.

(2.7)

The system (2.7) is also known as Optimality System. All details about the previous
theorems can be found in [28, Sections 1.5-1.6].

Let us now introduce parametric OCPs: they can be easily seen as a generalization
of a standard OCP with the only difference that the problem depends also on a set
of parameters µ:

min
(y(µ),u(µ))∈(Ya,Ua)

J(y(µ), u(µ);µ)

s.t. E(y(µ), u(µ);µ) = 0 in Ω,
(2.8)

where µ ∈ P ⊂ RD is a set of D parameters.
All the results developed earlier are also true for parametric OCPs, especially
focusing on the Lagrange system (2.7).
This setting provides the real challenge of this work: the goal will be solving the para-
metric OCP with only one neural network that can give the solution with respect to
any input parameters. The NN will not learn the solution (y(x,µ), u(x,µ), z(x,µ))
of the state variable, control variable and adjoint variable for a fixed µ, but all the
solutions with respect to the parametric domain P . Thus µ will be a input of the
framework.
If we define M : µ ∈ P → (y(x,µ), u(x,µ), z(x,µ)) ∈ (Y, U, Y ) then the space

M := {M(µ) = (y(x,µ), u(x,µ), z(x,µ)) : µ ∈ P}, (2.9)

that is called Solution Manifold, contains all the possible solutions of the OCP
when the parameters µ belong to P. The map M represent the function that we
want to surrogate with a NN.

The previous task is suited in the MOR setting, because the real problem does not
consist in finding a solution of the problem fixed a parameter, which, in theory,
could be an easy task achievable with methods such as FEM, but to generate a
framework that can quickly compute a new solution given a parameter µ∗ ∈ P . In
fact, for instance, FEM could take too much time to run, making them not suitable
for real time applications. In the case of PINNs the gain is that the training phase

7



Problem formulation and discretization

is achieved during an "offline" phase, after that it is extremely fast to get a solution
using the pre-trained network. A more interested reader may refer to [11] for a
more detailed explanation of MOR-based methods.

For completeness we briefly introduce what are the classical methods of solving
OCPs. Here some hints will be given, but more details are given, for example
in [27]. In general there are two pradigms that can be used to solve differential
problems: optimize then discretize, discretize then optimize. Let us suppose to
reformulate the problem (2.1) into

find u ∈ U such that J(u) < J(v) ∀v ∈ U, (2.10)

then, two approaches can be formulated as follows:

1) Discretize then optimize Firstly we discretize the control variable space Ua

into Ua,h and the state equation accordingly to the finite element theory, obtaining:

Eh(yh, uh) = 0, (2.11)

then we search for a discretized control uh such that

J(yh(uh), uh) < J(y(vh), vh) ∀vh ∈ Ua,h. (2.12)

2) Optimize then discretize This approach is quite different. Firstly we have to
use Lagrange optimality condition to write the system

G(y, u, z) = 0, (2.13)

where G is only a compact way of referring to the system (2.7). Then we can
discretize this problem and solve it numerically. This was the approach that was
used to compare the results with respect to the high fidelity solution, which, for us,
will be the finite elements one. This choice allows us to compare also the accuracy
of the PINN with respect to the adjoint variables, although the major interest will
be on physical variables, i.e. state and control.
The two described approaches do not consistently yield identical results. For
instance in [29], where the state equation deals with a dynamic problem, applying
a finite element approximation can result in discrepancy because the method is not
precise enough for high-frequency solutions.
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Problem formulation and discretization

2.3 Galerkin approximation
In this section we briefly introduce and describe some basic aspects about the
Galerkin approximation which is used by FEM, discretization on which we relied
to produce the high fidelity simulations used as a comparison for the PINN ones.

Let us take a generic elliptic problem enforced with Dirichlet boundary conditions:A(u) = f(x) in Ω,

u = gD on ΓD,
(2.14)

such that ΓD ⊆ ∂Ω. The elliptic operator is represented by A. It is well known [27]
that this problem can be reformulated in variational form: find u ∈ V such that

a(u, v) = F (v), ∀v ∈ V, (2.15)

where V is a suitable Hilbert space subset of the Sobolev space H1. If a : V ×V → R
is a continuous and coercive bilinear form, and if F : V → R is a continuous and
linear form, then, for the Lax-Milgram lemma, the problem (2.15) admits a unique
solution.
Let us take a space Vh ⊂ V such that:

dim(Vh) = Nh < dim(V ) = ∞, (2.16)

where h > 0 is an index related to the dimension of Vh: Nh increases as h shrinks.
Suppose to solve the same variational problem of before using Vh: find uh ∈ Vh

such that

a(uh, vh) = F (vh), ∀vh ∈ Vh. (2.17)

The problem (2.17) is also known as Galerkin Problem. It easy to prove, always
with Lax-Milgram theorem, that it admits a unique solution. If we take a basis
{ϕj}Nh

j=1 of the space Vh, we can describe every function of the space with respect
to the basis we have just taken as

uh(x) =
NhØ
j=1

ϕj(x)uj, (2.18)

where uj are the components of uh with respect to the basis {ϕj}Nh
j=1. If we

insert (2.18) into (2.17) and take tests functions vh = ϕk we obtain the following
expression:

9



Problem formulation and discretization

a(
NhØ
j=1

ϕj(x)uj, ϕk) = F (ϕk) j = 1...Nh, k = 1...Nh,

NhØ
j=1

uja(ϕj, ϕk) = F (ϕk) j = 1...Nh, k = 1...Nh.

(2.19)

Now, we define the matrix A = (ai,j = a(ϕj, ϕk)), the vector f = (fk = F (ϕk)) and
the vector u = (uj), thus the second equation in (2.19) can be written as a linear
system

Au = f , (2.20)

that can be solved in order to obtain the vector u, i.e. the components of the solu-
tion to the Galerkin problem with respect to the basis {ϕj}Nh

j=1. In this framework
uh is exactly the function that approximates the solution of the elliptic problem.

One of the most important results about the Galerkin method is the Céa Lemma:

Theorem 3 If a : V × V → R is a bilinear application continuous with constant
C and coercive with constant α, then referring to the problems (2.17) and (2.15),
the following inequality holds:

||u − uh||V ≤ C

α
inf

wh∈Vh

||u − wh||V . (2.21)

The Lemma tells us that the convergence of the method is always reached until we
satisfy the following condition:

lim
h→0

||v − vh||V , (2.22)

that can be intended as a request of Vh tending to "fill" the space V as h approaches 0.

The procedure just described is at the basis for the FEM that we used in this
context to obtain a high fidelity solution, in order to compare the results of the
PINN when we had not a ground truth solution of the problem. In particular we
used the plynomials of degree 1 as basis functions for writing the Galerkin system.
All the theory we developed in this section is naturally extendable to OCPs.
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Chapter 3

Physics-informed Neural
Networks

In this section, we will introduce what Neural Networks is, then we will move
toward the standard definition of a PINN. Afterwards the NTK and the SB will be
described, along with Fourier Feature embedding.

3.1 Introduction to PINN
Physics-Informed NN are a recent research area that developed thanks to the
advancing of machine learning techniques and to the rapid growth of computational
resources. They can both be applied to direct and inverse problems as shown
in [30] and [31]. For solving direct problems, PINNs take a different approach
compared to classical NN. Instead of learning from empirical datasets, PINNs use
the physical laws described by PDEs as their source of information. In fact by
sampling points within the problem domain, it is possibile to calculate the residual
of the PDE through automatic differentiation. Then the loss can be computed
and be minimized, guiding the network to solutions consistent with the governing
physics.
This tool was introduced in [12] and its study has significantly expanded over the
past years. The reason is that the standard methods that are used for numerical
approximation such as finite elements, finite differences and spectral methods suffer
from the "curse of dimensionality", which means that the approximation is infeasible
when the PDE involves many dimensions due to the lack of computational power.
In fact, when the dimension of the PDE increases, the computational effort needed
increases.
Many relevant problems, rapidly chemistry, economy and physics, involve the
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Physics-informed Neural Networks

formulation of a PDE with high dimensional spaces, i.e. the Black Scholes equations
for pricing the derivatives and the Schrödinger equation for many body problems.

3.2 Neural Networks

A neural network is a non-linear function approximator that can be used to find
relationship between data. It can be modeled, as the name suggests, as the
neurons of the human brain. Every neuron takes the information and propagates
it, concerning FeedForward Neural Networks, to all other neurons of the following
layer of neurons as shown in the scheme of Figure 3.1. The function within the
neurons is:

Nk
j (x) = σ

A
mØ

i=1
xiω

jk
i + ωjk

0

B
, (3.1)

where ωjk
i ∈ R are trainable parameters of the neuron in k-th layer at j-th position,

the parameter ωjk
0 is usually known as "bias", m is the number of data taken from

the previous layer, while xi is the information taken from the previous neurons.
The function σ is known as "activation function", it is usually non-linear. The
first and the last layer of the network are the input layer and the output layer
respectively, the first one takes as input the data, while the output layer, usually,
is a scalar that represents the label predicted with respect to the input taken. For
example, always addressing to Figure 3.1, we have that z = [N1

1 (x), N1
2 (x), N1

3 (x)]
and t = [N2

1 (z), N2
2 (z), N2

3 (z)], but t can also be written recursively with respect
to x:

t = [N2
1 ([N1

1 (x), N1
2 (x), N1

3 (x)]),
N2

2 ([N1
1 (x), N1

2 (x), N1
3 (x)]),

N2
3 ([N1

1 (x), N1
2 (x), N1

3 (x))]].
(3.2)

And this is just with a very modest Neural Network. It is clear that bigger networks
work with a very complex structure that is difficult to interpret.
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xInput

N1
1 (x)

N1
2 (x)

N1
3 (x)

N2
1 (z)

N2
2 (z)

N2
3 (z)

Nout(t) Output

Figure 3.1: Simple NN with 2 hidden layers and 3 neurons for each of them, with
one input and one output.

In this framework, if we have a training set T = {xi, yi}N
i=1 of N examples,

which represents the couple of predictors and labels, we can easily define a loss
function that measures how much the approximation of the neural networks fails
the predictions on the training set. If xi ∈ Rn and yi is a scalar, then we can define
f̃ω : Rn → R as the function represented by the NN, which depends also on the
parameters ω. The loss function will be

LQ(ω) = ||y − f̃ω(x)||Q, (3.3)
where Q is a norm computed using the set T and f̃ is the surrogate function of
the NN. Many loss functions can be defined, as for every task there may be an
appropriate one, although in this work we will not explore them and use the most
common one that we will introduce later.
Now we will remind some known theoretical results that let us understand the
power of NNs: the universal approximation theorems. The following theorems are
taken from [32].

Theorem 4 Let f : K ⊂ Rn → Rm be a function with K compact and f ∈
C0(K,Rm). Let f̃ : K → Rm be the NN function and σ : R → R its activation
function. Then

∀n, ∀m, ∀K ⊂ Rn, ∀f ∈ C0(K,Rm), ∀ϵ > 0,

∃d ∈ N, W 1 ∈ Rd×n,ω0 ∈ Rd, W 2 ∈ Rm×d such that
y = f(x) = W 2(σ(W 1x+ ω0)) ⇒ ||f̃ − f ||∞,K < ϵ, ⇐⇒ σ is not polynomial

The previous theorem states that a NN, with just one hidden layer, can approximate
every function that respect the hypothesis with an error at will provided the right
number of neurons in that layer.
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Physics-informed Neural Networks

Theorem 5 Suppose σ : R → R be a non linear, continuously differentiable in at
least one x ∈ R, where σ(x) /= 0, activation function. Then

∀n, ∀m, ∀K ⊂ Rn, ∀f ∈ C0(K,Rm), ∀ϵ > 0
∃L > 0, ∃NN with L layers each with n + m + 2 neurons | ||f̃ − f ||∞,K < ϵ.

This theorem states that for similar hypothesis if we increase the number of layers
and we fix the number of neurons we can always get an error at will.

Theorem 6 For every interval [a, b] there exists σ : R → R continuous and
computable such that

∀n, ∀f ∈ C0([a, b]n,R)∃NN with n neurons in the first layer
2n + 2 neurons in the second layer | ||f̃ − f ||[a,b]n,∞ < ϵ.

The previous theorems show us how powerful NN can be. Unfortunately, they do
not give us any information on how many neurons or layers should we use, when
we are approaching a specific task.
We now introduce the PINNs more in depth, explaining their functioning and, later
on, some improvements that have been made until today.

3.3 PINN formulation
Let us take a generic 2-dimensional PDE with generic Neumann and Dirichlet
boundary conditions: 

A[u](x, y) = F(x, y), in Ω,

u(x, y) = gD(x, y), on ΓD,
∂u
∂n

(x, y) = gN(x, y), on ΓN ,

(3.4)

where ΓD, ΓN represent the boundaries enforced with Dirichlet and Neumann
conditions respectively, such that {ΓD, ΓN} is a partition of ∂Ω. The vector n
is a vector orthogonal to ΓN and the functions gD : R2 → R and gNR2 → R are
the information on the boundaries. The symbol A represents a generic differential
problem, for instance it could be the Stokes equation or the heat equation, while
F is the forcing term. The residuals of this problem are:

Rpde(x, y) = A[u](x, y) − F(x, y), for (x, y) ∈ Ω,

RD(x, y) = u(x, y) − gD(x, y), for (x, y) ∈ ΓD,

RN(x, y) = u(x, y) − gN(x, y), for (x, y) ∈ ΓN .

(3.5)
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If we imagine to approximate u with a NN, i.e. u(x, y) ≈ uNN(x, y;ω), we obtain
the following expressions for the residuals:

Rpde(x, y;ω) = A[uNN(x, y;ω)](x, y) − F(x, y), for (x, y) ∈ Ω,

RD(x, y;ω) = uNN(x, y;ω) − gD(x, y), for (x, y) ∈ ΓD,

RN(x, y;ω) = uNN(x, y;ω) − gN(x, y), for (x, y) ∈ ΓN .

(3.6)

If we sample points {xi}Np

i=1 ⊂ Ω, {xi}ND
i=1 ⊂ ΓD and {xi}NN

i=1 ⊂ ΓN , then, from (3.6),
we can easily compute the loss function of the PINN. More specifically we take
the Mean Squared Error L(r) = 1

N

qN
i=1 r(xi)2, where N is the number of points

sampled. In this case the mean squared errors are:

MSEp = L(Rpde(xi, yi;ω)) = 1
Np

NpØ
i=1

è
Rpde(xi, yi;ω)

é2
,

MSED = L(RD(xi, yi;ω)) = 1
ND

NDØ
i=1

è
RD(xi, yi;ω)

é2
,

MSEN = L(RN(xi, yi;ω)) = 1
NN

NNØ
i=1

è
RN(xi, yi;ω)

é2
.

(3.7)

Globally, the loss function to minimize is

L(ω) = MSEp + MSED + MSEN . (3.8)

The introduced pipeline can be easily generalized to time dependent problems,
where also the information about the initial conditions must be integrated, and to
the case of systems of partial differential equations with multiple unknowns, which
are the ones we are going to deal with.

Now we introduce a generic system of PDEs neglecting, with a slight abuse of
formality, the boundary conditions: in fact, in this framework, the methodology
of PINN does not change if we deal with boundary conditions or equations, thus
for the following system we will only consider the equations, knowing that the
methodology can be extended easily to boundary conditions:


A[u, v, w](x) = F1(x), in Ω,

B[u, v, w](x) = F2(x), in Ω,

C[u, v, w](x) = F3(x), in Ω,

(3.9)

where u, v, w are the unknowns of the system and A, B, C are generic differential
operators. Then the loss function of (3.9) can be written as
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L(ω) = 1
Np

NpØ
i=1

3è
A[uNN(xi), vNN(xi), wNN(xi)] − F1(xi)

é2
+
è
B[uNN(xi), vNN(xi), wNN(xi)] − F2(xi)

é2
+
è
C[uNN(xi), vNN(xi), wNN(xi)] − F3(xi)

é24
,

(3.10)

which allows us to consider the information given by every condition of (3.9).

3.4 Neural Tangent Kernel and Spectral Bias
An important aspect for understanding the learning of PINNs is analyzing the
NTK. It is a concept that emerged from the theory of deep NN, offering insights
into how networks behave during optimization.
Learning the network parameters ω, implies minimization of the loss function (3.8).
Assuming an infinitesimally small learning rate, gradient descent can be expressed
using the continuous-time differential equation known as gradient flow, [21], if

ωnew = ωold − α∇ωL(ω), (3.11)

is the optimization step, then ωnew → ωold as α → 0, thus

dω

dt
= −∇ωL(ω), (3.12)

if we introduce t as the fictitious time stream. Let us neglect the Neumann term in
(3.8) for the sake of simplicity, then, computing the gradient, we obtain:

dω

dt
= −

5 NpØ
i=1

(A[u(xp,i,ω(t))]∂A[u(xp,i,ω(t))]
∂ω

+
NDØ
i=1

([u(xD,i,ω(t)) − gD(xi)]
∂[u(xD,i,ω(t))]

∂ω

6
.

(3.13)

To be clear with the notation we remind that ∂f
∂ω

means the derivative of f with
respect to every element of ω, all collected in the same vector. From now on we
will simplify the notation ω(t) → ω.
In general using the chain rule we can state that:

dA[u(xp,k,ω)]
dt

= A[u(xp,k,ω)]
dω

· dω

dt
,

du(xD,j,ω)
dt

= du(xD,j,ω)
dω

· dω

dt
.

(3.14)
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Inserting equation (3.13) in equation (3.14) we obtain the following expressions

dA[u(xp,k,ω)]
dt

= −
5 NpØ

i=1
(A[u(xp,i,ω)] ⟨∂A[u(xp,k,ω)]

∂ω
,
∂A[u(xp,i,ω)]

∂ω
⟩

+
NDØ
i=1

([u(xD,i,ω) − gD(xi)] ⟨∂A[u(xp,k,ω)]
∂ω

,
∂[u(xD,i,ω)]

∂ω
⟩
6
,

(3.15)

and

du(xD,j,ω)
dt

= −
5 NpØ

i=1
(A[u(xp,i,ω)]⟨∂[u(xD,j,ω)]

∂ω
,
∂A[u(xp,i,ω)]

∂ω
⟩

+
NDØ
i=1

([u(xD,i,ω) − gD(xi)]⟨
∂[u(xD,j,ω)]

∂ω
,
∂[u(xD,i,ω)]

∂ω
⟩
6
,

(3.16)

where ⟨.⟩ represents the l2 scalar product. Let us define the following kernels:

(Kr)j,i(t) = ⟨∂A[u(xp,j,ω)]
∂ω

,
∂A[u(xp,i,ω)]

∂ω
⟩,

(Kb)j,i(t) = ⟨∂[u(xD,j,ω)]
∂ω

,
∂[u(xD,i,ω]

∂ω
⟩,

(Krb)j,i(t) = ⟨∂[u(xD,j,ω]
∂ω

,
∂A[u(xp,i,ω]

∂ω
⟩.

(3.17)

At this point we can rewrite the equations (3.14) remembering that xp = {xp,k}
and xD = {xD,j}:

d

dt

A
A[u(xp,ω(t))]

u(xD,ω)

B
= −K(t)

A
A[u(xp,ω(t))]

u(xD,ω(t)) − gD(x)

B
, (3.18)

where

K(t) =
A
Kb(t) KT

rb(t)
Krb(t) Kr(t)

B
, (3.19)

is the NTK, with Kb(t) ∈ RND×ND , Kr(t) ∈ RNp×Np and Krb(t) ∈ RNp×ND . The
NTK is often studied in the limit of the width that goes to infinity. One of the
most important results from [21] is the following:

Theorem 7 Let us take a PINN with one layer and N neurons. If N → ∞, then
the NTK defined in (3.17) converges in probability to a deterministic kernel K∗,
which does not depend on the fictitious time t.
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In other words we can state that the NTK stays almost constant during all the
training phase, thus

K∗ ≈ K(t), ∀t, (3.20)

then the system of ordinary differential equation (3.18) can be simplified into

d

dt

A
A[u(xp,ω)]
u(xD,ω)

B
= −K∗

A
A[u(xp,ω)]

u(xD,ω(t)) − gD(xD)

B
. (3.21)

Since gD does not depend on t we can rewrite it as

d

dt

A
A[u(xp,ω)]

u(xD,ω) − gD(xD)

B
= −K∗

A
A[u(xp,ω)]

u(xD,ω(t)) − gD(xD)

B
. (3.22)

The system (3.22) can be solved easily to obtainA
A[u(xp,ω(t))]

u(xD,ω(t)) − gD(xD)

B
= e−K∗t

A
A[u(xp,ω(0))]

u(xD,ω(0)) − gD(xD)

B
. (3.23)

Another way of computing the NTK is shown in [21, Remark 3.3]: if Jr(t) and
Jb(t) are the Jacobian matrices of A[u(xp,ω)] and u(xD,ω) respectively, then it is
easy to see that

K(t) =
A
Jr(t)
Jb(t)

B1
JT

r (t) JT
b (t)

2
. (3.24)

Of course this result is extended also to the limit kernel K∗. Since K∗ can be
written as the product of a matrix with the transposed itself, then K∗ is symmetric
and positive definite. From the spectral decomposition of a symmetric matrix we
have that:

K∗ = PΛP T , (3.25)

where P is an orthogonal matrix containing the eigenvectors of the NTK and Λ is
a diagonal matrix containing the eigenvalues of K∗, which are all positive because
K∗ is positive definite. If we use (3.25) in equation (3.23) we obtainA

A[u(xp,ω(t))]
u(xD,ω(t)) − gD(xD)

B
= P e−ΛtP T

A
A[u(xp,ω(0))]

u(xD,ω(0)) − gD(xD)

B
, (3.26)

P T

A
A[u(xp,ω(t))]

u(xD,ω(t)) − gD(xD)

B
= e−ΛtP T

A
A[u(xp,ω(0))]

u(xD,ω(0)) − gD(xD)

B
. (3.27)

If
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R(t) = P T

A
A[u(xp,ω(t))]

u(xD,ω(t)) − gD(xD)

B
(3.28)

is the vector containing the residuals, then equation (3.27) can be written as

R(t) = e−ΛtR(0). (3.29)

Equation (3.29) tells us that the learning of the NN is better explained if we pull
the residual into the space generated by the eigenvectors of the NTK. In particular
we can say that: as t → ∞ the residuals associated to the PINN go to zero. Since
Λ is diagonal, the equations (3.29) are decoupled, then the rate of convergence
of each pulled residual is related to the respective eigenvalue λi. Let us take two
residuals of the equation: ri = A[u(xp,i,ω)] and rj = A[u(xp,j,ω)] with associated
eigenvalues λi and λj respectively. If λi ≫ λj, then ri → 0 much faster than rj.
This is the Spectral Bias: the PINN learn much faster the pulled residuals with
higher eigenvalues and to get accuracy on those with lower ones the training should
go on for a very long time. For these reason we say that the PINN is biased towards
some residuals than others.

3.5 Fourier Feature Embedding
Fourier Feature Embedding (FFE) is a special feature that can be added in the
architecture of a NN. It has been introduced in [24], but its implementation in
PINNs is also popular [25].
FFE consists in an expansion of the input of the NN with the following map:

f(x) =
C
cos (B · x)
sin (B · x)

D
, (3.30)

where B ∈ Rm×d, x ∈ Rd is the input of the NN. The parameter m represents
the magnitude of the expansion that we want to perform, while the entries of the
matrix bi,j = (B)i,j are sampled from a Gaussian distribution bi,j ∼ N(0, τ 2), where
τ is a new hyper-parameter.
This Fourier layer is placed right after the input and can be performed with multiple
independent embeddings as shown in Figure 3.2.
Let us now take a toy problem with a one-dimensional input x and a network with
one FFE and only one layer without bias, namely

f(x) = 1√
m
W

C
cos (B · x)
sin (B · x)

D
(3.31)
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where W ∈ R1×2m are all the trainable weights of the NN. Then, according to the
definition (3.17) and taking a set {xi}N

i=1 of training points, the NTK is

Ki,j = K(xi, xj) = 1
m

C
cos (B · x)
sin (B · x)

DT Ccos (B · x)
sin (B · x)

D
= 1

m

mØ
k=1

cos(bk(xi − xj)).

(3.32)
In order to better study the eigenvalues we consider the case with m = 1, then

K(x, y) = cos(b(x − y)). (3.33)
Since (3.33) is a sufficiently easy kernel, from [25, Proposition 3.2] we report the
following result:

Proposition 1 For the kernel function K(x, y) = cos(b(x − y)), the non-zero
eigenvalues are given by

λ =
1 ± sin b

b

2 , (3.34)

and the corresponding eigenfunctions are

g(x) = C1 cos(bx) + C2 sin(bx). (3.35)

Since b is drawn from a Gaussian distribution N(0, τ 2), a larger choice of τ increases
the likelihood of b having a higher magnitude. Consequently, a large σ tends to
produce high-frequency eigenfunctions and smaller eigenvalue gaps. This suggests
that Fourier features can help mitigate Spectral Bias, allowing for faster convergence
to the high-frequency components of a target function.

Input
x

τ2

τ1

τ3

Fourier
Embedding

Feed Forward
Neural Networks

NN

NN

NN

Final
Layer Output

Figure 3.2: Neural Network with 3 Fourier embeddings with different τ .
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3.6 Adaptive weights

In this section we report the Algorithm proposed in [21] which aims to mitigate SB.
This approach is very different from FFE, primarily because it does not involve a
change in the architecture, but only in the loss function.
In general the loss function of a problem can be written as

L(ω) = Lp(ω) + Lb(ω), (3.36)

where Lp is the loss related to the residual, while Lb is the loss related to the
boundary conditions. One of the main issues of this approach is that the two
contributes represent different features of the problem and, in general, they can show
great differences in magnitude, thus this could lead the net to learn heterogeneously,
i.e. to suffer the SB. In general is desirable to multiply the two contributes for some
weights βp and βb respectively
some weights βp and βb to the two contributes, in order to make them reach the
same order of magnitude:

L(ω) = βpLp(ω) + βbLb(ω). (3.37)

However, the approach of tuning βp and βb in order to find a good balance is
heuristic and not systematic.

Let us recall the system (3.9): in what follows we will not make differences between
boundary conditions and equations, since all the machinery can be easily extended
for boundary conditions. The NTK of (3.9) can be written as

K =

JA
JB
JC

1JT
A JT

B JT
C

2
=

 KA KA,B KA,C
KA,B KB KB,C
KA,C KB,C KC

 , (3.38)

where we exploited (3.19). Suppose we take NA, NB, NC training points for each
condition respectively. Then we can write the following:
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Algorithm 1 Adaptive weights
Consider the following loss function

L(ω) = βALA(ω) + βBLB(ω) + βCLC(ω). (3.39)

Update the weights ω for S epochs in the following way:
for i = 1... do
Compute βA, βB, βC:

βA =
qNA+NB+NC

j=1 λjqNA
j=1 λA

j

= Tr(K)
Tr(KA) ,

βB =
qNA+NB+NC

j=1 λjqNB
j=1 λB

j

= Tr(K)
Tr(KB) ,

βC =
qNA+NB+NC

j=1 λjqNC
j=1 λC

j

= Tr(K)
Tr(KC) .

(3.40)

Compute the gradient iteration step using the formula (3.39):

ωi+1 = ωi − α∇ωL(ωi) (3.41)

end for

Where λA
j , λB

j , λC
j represent the eigenvalues of KA,KB,KC respectively. The idea

of this algorithm is strictly related to NTK theory we developed earlier. First, we
have to notice that

C :=
NA+NB+NCØ

j=1
λj = Tr(K) = Tr


JA
JB
JC

1JT
A JT

B JT
C

2 
= Tr(JAJ

T
A + JBJ

T
B + JCJ

T
C )

= Tr(JAJ
T
A) + Tr(JBJ

T
B ) + Tr(JCJ

T
C )

=
NAØ
j=1

λA
j +

NBØ
j=1

λB
j +

NCØ
j=1

λC
j

= CA + CB + CC.

(3.42)

If, for instance, CA ≪ CB, then from NTK theory we know that the NN will learn
faster the condition described by the differential operator B than the condition
described by the operator A. Thus in general the rate of convergence of the terms
can vary greatly. The weights βA, βB and βC can be written as
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βA = C

CA
= CA + CB + CC

CA
,

βB = C

CB
= CA + CB + CC

CB
,

βC = C

CC
= CA + CB + CC

CC
,

(3.43)

thus, if CA ≈ CC ≪ CB, then

βA ≈ CB

CA
≫ 1,

βB ≈ CB

CB
= 1,

βC ≈ CB

CC
≫ 1,

(3.44)

which means that, the condition B will be learned maintaining the same speed of
convergence, while the conditions A and C will be learned faster. This is a good
approach for leveling the speed of convergence of all the conditions and make the
learning homogeneous.

Compared to FFE, Algorithm 1 offers the advantage of not modifying the ar-
chitecture of the PINN and avoids the introduction of any new hyper-parameter
requiring careful tuning. On the other hand, Algorithm 1 does not take into account
the variations of speed of convergence of the residuals within the same condition,
meaning that SB can still create problems in some cases. Additionally, Algorithm
1 requires computation of the NTK, which may be time consuming. Consequently,
in the upcoming experiment concerning OCPs, we will compute traces only in the
initial step and maintain these weights throughout the training. This approach
can be particularly reasonable when training an over-parameterized network.

3.7 Implementation aspects
Before discussing the experiments, we explain all the features that we consider
relevant for training:

• Strong imposition of boundary conditions.

• Sampling of the physical and the parametric domain.

• An additional input of the problem called "Extra feature".
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For what concerns the strong boundary conditions, it is well known in literature,
see for instance [33], that is possible to cut the mean squared error MSED associ-
ated to the Dirichlet boundary conditions, and ensuring them by multiplying the
output of the NN with an ad-hoc function. For instance, if the boundary conditions
are homogeneous like in Equation (5.9), then we could multiply the output of the
NN uNN (x, y;ω) with any function that nullifies at the boundary b(x, y) such that
b|∂Ω = 0. Then, the real output of the net becomes the function uNN (x, y;ω)b(x, y)
which is clearly zero on the boundary. This procedure usually leads to an improve-
ment of the approximation of the PINN, although the choice of the function b(x, y)
is crucial: sometimes it could lead the NN to reach a suboptimal approximation. It
is important to recall that this procedure is straightforward to implement for carte-
sian boundaries, such the ones we are going to deal with, but can be a challenge for
more complex boundaries, limiting the possibility of generalization of this technique.

The sampling techniques refer to the methods used to take points both in the phys-
ical and the parametric domain. The baseline simulations made for the following
problems are made by a random sampling, but we tried others sampling strategies
such as "grid" sampling and "Chebyshev" sampling. The "grid" sampling consists
in taking equally spaced points on every dimension and then making a cartesian
product between them, which is similar to the "Chebyshev" sampling, where the
difference is that the second provides more points when is closer to the edges.
Examples of sampling strategies, that are also the ones used for the experiments,
are provided in Figures 3.3.

The "extra feature" refers to the work [26] in which the authors enforced the physical
information provided by the PDE with an additional one. Let us take a function
E(x) which depends on the other input of the NN, namely x. This operation
is particularly useful when we want to reach higher level of PINN performance
without using a deeper NN, which can lead to the problem of vanishing gradients.
The idea is that we can give some information about the physics of the problem to
the NN such as the shape of the function or maybe the behaviour of the solution
with respect to time. The addition of an extra feature is highly problem dependent,
since it should be tuned to get the best performance possible.

Another important enhancement provided by [26] concerns the Physics-Informed
Architecture (PIARCH) illustrated in Figure 3.4. This is an innovative way of
dealing with OCP with PINNs. In fact, when building the system of differential
equation with the Lagrange optimality condition (2.7), one of the equation can
always be written in the form

z(x) = αu(x), (3.45)
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where α is the penalization term. In the PIARCH framework, equation (3.45) is not
considered in the loss function and the network output is restricted excluding z(x).
The latter is rebuild by strongly imposing the excluded equation as a sequential
output of the PINN. The innovation of this feature stands in the fact that we give
the right physical information to the NN without the need of having more output
and more calculations. It has the same principle of the strong boundary conditions:
where we know something about the physics of the problem, there is no need of
training the net. In the chapter 5 we will show in detail what the equation included
in the PIARCH "step" is.

(a) Grid sampling (b) Random sampling

(c) Latin Hypercube sampling (d) Chebyshev sampling

Figure 3.3: These plots show the four sampling techniques in the parametric
domain P = [0.5, 3] × [0,1].
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y(x)

u(x)

z(x)

Figure 3.4: PIARCH structure: z(x) is not a direct output of the NN but it is
obtained afterwards.
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Chapter 4

Practical insights on Fourier
Embeddings and Adaptive
weights

In this section we deal with some experiments about the FFE in order to show its
potentialities and possible limitations. First we show a simple example where FFE
overcomes the problem of SB. Then, we show how the FFE behaves with respect
to the parameter τ both for a problem with double frequency and a problem with
increasing frequency.

4.1 Mitigating Spectral Bias with Fourier Em-
beddings

Let us take the following problem∆u = sin(x) + 0.1α2 sin(αx) in (−π, π),
u = 0 for x = {−π, π},

(4.1)

whose solution, u(x) = sin(x) + 0.1 sin(αx) depends on the parameter α. It is of
interest studying how a standard PINN can learn this solution, against a similar
architecture that embodies a double Fourier Embedding.
For the standard PINN we took a network with 2 layers with 100 neurons each. We
took Softplus as activation function and trained for 8000 epochs with a learning
rate of 0.0001.
Concerning the FFE network, addressing to equation (3.30), we took m = 100 and
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a double embedding with τ = 1 and τ = 10. The two separate embeddings are
then passed through a Feed Forward NN with one layer of 100 neurons and then
connected with a final linear layer that reunites the output from 200 to one. Again
we trained for 8000 epochs and a learning rate equal to 0.0001.
For both systems we took 900 equally spaced points in the domain and only 1 point
for each boundary condition. We then trained the network for different values of α,
expecting that the standard PINN would fail the task as α increases, while FFE
PINN should be able to get more accurate results.

Figure 4.1: From top left to bottom right, we have the comparison between
the standard PINN and the truth solution of equation (4.1) for α = 1,50,100,150,
respectively.
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Figure 4.2: From top left to bottom right we have the comparison between the
PINN enhanced with FFE and the truth solution of equation (4.1) for
α = 1,50,100,150 respectively.

As we can see from Figure 4.2, FFE is able to reconstruct a good approximation,
while standard PINN approach fails already for α = 50. It is also interesting to
note that FFE PINN is able to deliver a good approximation for all the α that we
tried, meaning that FFE is a very robust tool.
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4.2 Sensitivity on the parameter τ

Always referring to the equation (4.1) we studied how the approximation ability of
the FFE changes with respect to the parameter τ . We took a NN with a feature
expansion of m = 100, only one embedding. After the embedding the architecture
includes a Feed Forward NN with one layer and 100 neurons. We trained on 900
training points in the domain for 3000 epochs and a learning rate of 0.0001. We
fixed a high frequency, α = 150, and we made τ vary between 0.01 and 10.
Results are shown in Figure 4.3. We can see that, as τ increases, the PINN is able
to identify high variations in the solution, while lower values are more associated
to lower frequencies. What it is really interesting to see is that for τ = 5 the PINN
almost reconstruct correctly the solution. This behavior is well explained because
τ = 5 is a sufficiently big that lets the sampling wander between low values and
high values. In fact τ = 5 is in the middle of the values we used, referring to Figure
4.2, that let us recover the correct solution.
These results are aligned to the theoretical results showed in the previous chapter.

Figure 4.3: From top left to bottom right there is the comparison between the truth
solution and the PINN approximation with one FFE for τ = 0.01,0.05,0.1,0.5,1,5,10
respectively.
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4.3 Mitigating Spectral Bias with
Adaptive weights

Let us give an example of a one dimensional problem where the Adaptive weights
can fasten the convergence towards the truth solution.
Let us consider the following problem:∆u = −16π2 sin(4πx) in [0,1]

u = 0 on x = 0,1
(4.2)

whose solution is u(x) = sin(4πx). We train a PINN with the following hyper-
parameter

• Nb = 50 on every edge, Np = 100 points in (0,1),

• one layer with 512 neurons,

• activation function: σ(x) = tanh(x),

• learning rate: 0.00001,

• epochs: 40000.

This structure is not sufficient in order to get a good approximation. However if
we enhance the training using the Algorithm 1, it is evident, from Figure 4.4, that
this approach can make the training much faster using the same hyper-parameters.

Figure 4.4: On the left there is the solution with a standard PINN. On the right
the same PINN with the Adaptive weights used as in the Algorithm 1.

31



Practical insights on Fourier Embeddings and Adaptive weights

In particular, it is evident that the adaptive weights help the PINN to reach the
correct boundary conditions. In this case, referring to Algorithm 1, the weight
multiplied to the mean squared error of the boundary conditions is much higher
than the one multiplied to the mean squared error of the equation. This happens
because the SB bring the PINN to learn much faster the equation than the boundary
condition.
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Chapter 5

PINNs for Optimal Control
Problems

In this chapter we study two Parametric OCPs. In particular we start from the
work [26] and improve the performance of the PINN, studying the relationship
between the performance and some hyper-parameters and features of the PINN.

5.1 Parametric Elliptic Optimal Control
The first optimal control problem we take into account is a parametric elliptic
problem described by the following equations:

min
y(x,µ),u(x,µ)

J(y, u) = 1
2 ||y(x,µ) − µ1||2L2(Ω) + µ2

2 ||u(x,µ)||2L2(Ω) (5.1)

constrained to −∆y(x,µ) = u(x,µ), in Ω
y(x,µ) = 0, on ∂Ω,

(5.2)

where x ∈ [−1,1] × [−1,1] and µ = (µ1, µ2) ∈ [0.5,3] × [0.01,1].

Due to our solver based on PINN, we have to formulate the problem above in a
more convenient way. We apply the Lagrange theorem in order to get a system of
equation that we can solve with our framework.
Now, we proceed to write the Lagrangian system of the parametric elliptic OCP,
since we are going to solve that system with a PINN. First, we write the state
equation in weak form:
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a(y, v) = F (u, v), ∀v ∈ Y, (5.3)

where

a(y, v) =
Ú

Ω
∇y · ∇v dΩ,

F (u, v) =
Ú

Ω
fv dΩ +

Ú
Ω

uv dΩ.
(5.4)

Then we have to write the Lagrangian of the problem, that we recall being the sum
of the cost functional with the constraint: J(y, u) + ⟨p, E(y, u)⟩:

L(y, u, p) = 1
2

Ú
Ω
(y − µ1)2 dΩ + µ2

2

Ú
Ω

u2 dΩ +Ú
Ω

∇y · ∇p dΩ −
Ú

Ω
fp dΩ −

Ú
Ω

up dΩ.
(5.5)

Then we can differentiate to get the equations:

⟨DyL(y, u, z), v⟩ =
Ú

Ω
(y − µ1)v dΩ +

Ú
Ω

∇v · ∇z dΩ = 0 ∀v ∈ Y,

⟨DuL(y, u, z), ω⟩ = µ2

Ú
Ω

uω dΩ −
Ú

Ω
zω dΩ = 0 ∀ω ∈ U,

⟨DzL(y, u, z), q⟩ =
Ú

Ω
∇y · ∇q dΩ −

Ú
Ω

fq dΩ −
Ú

Ω
uq dΩ = 0 ∀q ∈ Q.

(5.6)

Applying the Green’s theorem to the first and the third equations and remembering
that v|∂Ω = q|∂Ω = 0 we getÚ

Ω

1
(y − µ1) + ∆z

2
v dΩ = 0 ∀v ∈ Y,Ú

Ω

1
uµ2 − z

2
ω dΩ = 0 ∀ω ∈ U,Ú

Ω

1
∆y − f − u

2
q dΩ = 0 ∀q ∈ Q.

(5.7)

Since the variables v, ω, q are arbitrary, and taking f ≡ 0, then the previous
equations can be written as

y(x, µ1, µ2) − ∆z(x, µ1, µ2) = µ1 in Ω,

µ2u(x, µ1, µ2) = z(x, µ1, µ2) in Ω,

−∆y(x, µ1, µ2) = u(x, µ1, µ2) in Ω,

(5.8)
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with the boundary conditionsz(x, µ1, µ2) = 0 on ∂Ω,

y(x, µ1, µ2) = 0 on ∂Ω.
(5.9)

The second equation of (5.8) is the PIARCH "step".

For this problem, eight different settings were employed, as shown in Tables 5.1.
The baseline simulation was made with the following hyper-parameters:

• Learning rate: 0.0005,

• Neurons in each hidden layer: [40,40,20],

• Optimizer: ADAM,

• Activation function: Softplus,

• Extra feature: K(x) = (1 − x2
0)(1 − x2

1),

• Epochs of training: 50000,

• Sampling: Np = 900 points randomly sampled within Ω, Nb = 200 points
randomly sampled within ∂Ω and Nµ = 50 points randomly sampled in the
parametric domain both for Ω and ∂Ω.

Every other setting is obtained by modifying one or more of the characteristics
above. For example, “Grid-Latin” indicates that grid sampling was used for the
physical domain, while Latin hypercube sampling was applied to the parametric
domain. In contrast, “Grid” sampling means only the sampling method for the
physical domain was changed to grid. Similarly, “Strong BC” or simply “Strong”
indicates that strong boundary conditions were enforced. We computed the relative
error for all settings and for three points in the parametric domain: µ = (3,0.01),
µ = (3,0.1), µ = (3,1).
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Control variable u

PINN PIARCH
µ2 = 0.01 µ2 = 0.1 µ2 = 1 µ2 = 0.01 µ2 = 0.1 µ2 = 1

Baseline 0.36 0.09 0.02 0.19 0.03 0.008
No extra feature 0.58 0.17 0.09 0.49 0.04 0.023
Grid sampling 0.28 0.22 0.01 0.15 0.08 0.008

Strong BC 0.37 0.04 0.02 0.20 0.01 0.004
Strong + Grid-Random 0.40 0.06 0.006 0.19 0.05 0.003

Strong + Grid-Grid 0.35 0.24 0.01 0.01 0.2 0.001
Strong + Grid-Latin 0.42 0.06 0.03 0.53 0.35 0.36

Strong + Grid-Chebyshev 0.36 0.06 0.007 0.18 0.03 0.002

State variable y

PINN PIARCH
µ2 = 0.01 µ2 = 0.1 µ2 = 1 µ2 = 0.01 µ2 = 0.1 µ2 = 1

Baseline 0.20 0.04 0.01 0.05 0.03 0.023
No extra feature 0.51 0.05 0.05 0.10 0.04 0.027
Grid sampling 0.08 0.16 0.007 0.04 0.04 0.006

Strong BC 0.19 0.01 0.02 0.05 0.02 0.02
Strong + Grid-Random 0.22 0.01 0.06 0.04 0.08 0.003

Strong + Grid-Grid 0.07 0.24 0.003 0.003 0.13 0.005
Strong + Grid-Latin 0.28 0.03 0.03 0.38 0.3 0.31

Strong + Grid-Chebyshev 0.15 0.05 0.005 0.09 0.007 0.001

Adjoint variable z

PINN PIARCH
µ2 = 0.01 µ2 = 0.1 µ2 = 1 µ2 = 0.01 µ2 = 0.1 µ2 = 1

Baseline 0.56 0.02 0.009 0.19 0.03 0.008
No extra feature 1.48 0.04 0.03 0.49 0.04 0.023
Grid sampling 0.17 0.03 0.006 0.15 0.08 0.008

Strong BC 0.69 0.001 0.006 0.20 0.01 0.004
Strong + Grid-Random 0.7 0.008 0.01 0.19 0.05 0.003

Strong + Grid-Grid 0.07 0.07 0.001 0.01 0.2 0.001
Strong + Grid-Latin 1.06 0.01 0.002 0.53 0.35 0.36

Strong + Grid-Chebyshev 0.44 0.01 0.001 0.18 0.03 0.002

Table 5.1: Relative error of the Parametric Elliptic OCP for different settings.
The bold text refers to the lowest error between the ones in the column. The tests
were made for a fixed µ1 = 3.
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Figure 5.1: The finite elements solutions (top row) are shown along with the
PIARCH solutions (second row) and the relative error between them (third row)
for µ1 = 3 and µ2 = 0.01. From left to right the variables are u, y and z. The red
dots represent the training points.

From tables 5.1, it is clear that enforcing strong BC is the most important feature
among those that improve the baseline simulation. In fact, the lowest errors were
obtained regardless all the other features and couples of µ. Observing the first four
settings, where we changed one feature per try, we found out that the extra feature
is actually improving the performance of the PINN as expected. Additionally, grid
sampling on the physical domain usually performs better except when µ2 = 0.1 and
strong BC performs at least with the same order of magnitude. We also noticed
that, generally, PIARCH architecture lowers the error especially on adjoint variable
z as expected.
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Figure 5.2: The finite elements solutions (top row) are shown along with the
PIARCH solutions (second row) and the relative error between them (third row)
for µ1 = 3 and µ2 = 0.1. From left to right the variables are u, y and z. The red
dots represent the training points.

As it can be seen, for the lowest values of µ2, the error is increasing for almost
all settings This is probably due to the fact that when µ2 ≪ 1, i.e. the control
is less penalized, the solutions of the problem vary more in the domain in terms
of scales, and probably PINN and PIARCH have more difficulties predicting the
correct solutions. Mainly for this reason, we tried the setting with Chebyshev
sampling in the parametric domain, assuming that samples closer to the edges
would help recognize better the less penalized solutions. Promising results were
obtained, although sampling more points would probably help.
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Figure 5.3: The finite elements solutions (top row) are shown along with the
PIARCH solutions (second row) and the relative error between them (third row)
for µ1 = 3 and µ2 = 1. From left to right the variables are u, y and z. The red
dots represent the training points.

It should be noted that for the first four settings where random sampling was used
everywhere, the error on all the variables is much lower when µ2 = 0.1. We explain
this behaviour by hypothesizing that, although grid sampling usually gives better
results, random sampling may outperform it when sufficiently "lucky", i.e. when it
samples more points nearby the tested parameters. Sampling more points would
likely reduce the probability of having great discrepancies in error between the
sampling methods.

Overall, the best approximations were obtained with PIARCH framework, enforcing
the strong BC. It is not clear which sampling is the best one, but longer trainings
and more sampling in the parametric domain could easily point it out. However,
results in Figures 5.1,5.2 and 5.3 are a good agreement in terms of accuracy.
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Figure 5.4: Trend of the mean of the loss functions of every equation for the
Parametric Elliptic OCP.

5.2 Parametric Stokes Optimal Control
The second optimal control problem we take into account is a parametric Stokes
problem described by the following equations

min
v(x,µ),u(x,µ)

J(y, u) = ||v(x, µ) − x2||2L2(Ω) + α

2 ||u(x, µ)||2L2(Ω) (5.10)

constrained to

−0.1∆v(x; µ) + ∇p(x; µ) = f(x; µ) + u(x; µ) in Ω,

∇ · v(x; µ) = 0 in Ω,

v1(x; µ) = x2 and v2(x; µ) = 0 on ∂Ω,

−p(x; µ) + 0.1∂v1(x; µ)
∂n

= 0 and v2(x; µ) = 0 on ∂Ω,

(5.11)

where the physical domain is x ∈ [0,1] × [0,2] and the parameter domain is
µ ∈ [0.5,1.5]. The constant α is fixed at 0.008 and f(x, µ) = [0, µ]T . The main
difference from the elliptic problem is that the state variables are three, v1,v2, p and
the same is true for the adjoint variables z1, z2, z3. With the same notation used
until now, we have that v ∈ Y 2 and p ∈ Q, where Y 2 is the extension of Y into
the space of two-dimensional functions. They both represent the state variables,
velocity and pressure respectively. As for the problem of parametric elliptic OCP,
we need to reformulate the problem in a Lagrangian formulation. First, we write
the problem in its weak form:
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a(v, w) + b(w, p) = F (u, w; µ) ∀w ∈ Y 2,

b(v, q) = 0 ∀w ∈ Q,
(5.12)

where

a(v, w) = 0.1
Ú

Ω
∇v : ∇w dΩ,

b(v, q) = −
Ú

Ω
p∇ · w dΩ,

F (u, w) =
Ú

Ω
f(x, µ) · w dΩ +

Ú
Ω

u · w dΩ.

(5.13)

The Lagrangian functional associated to this problem can be written as:

L(v, z, u, p, r) =1
2

Ú
Ω

3
(v1 − x2)2 + v2

2

4
dΩ + α

2

Ú
Ω

3
u2

1 + u2
2

4
dΩ+

+ 0.1
Ú

Ω
∇v : ∇z dΩ −

Ú
Ω

p∇ · z dΩ+

+
Ú

Ω
r∇ · v dΩ −

Ú
Ω
f(x, µ) · z dΩ −

Ú
Ω

u · z dΩ,

(5.14)

then, the optimality condition is given by using the Fréchet differentiation:

⟨DvL(v, z, u, p, r),ω⟩ =
Ú

Ω
[(v1 − x2), v2] · ω dΩ

− 0.1
Ú

Ω
ω · ∆zdΩ +

Ú
Ω
ω · ∇r = 0, ∀ω ∈ Y 2,

⟨DpL(v, z, u, p, r), β⟩ =
Ú

Ω
β∇ · z dΩ = 0 ∀β ∈ Q,

⟨DuL(v, z, u, p, r),ψ⟩ = α
Ú

Ω
u ·ψ dΩ −

Ú
Ω

z ·ψ dΩ = 0 ∀ψ ∈ U2,

⟨DzL(v, z, u, p, r),λ⟩ = − 0.1
Ú

Ω
λ · ∆v dΩ +

Ú
Ω
λ · ∇p dΩ

−
Ú

Ω
f · λ dΩ −

Ú
Ω

u · λ dΩ = 0 ∀λ ∈ Y 2,

⟨DrL(v, z, u, p, r), ρ⟩ =
Ú

Ω
ρ∇ · v dΩ = 0 ∀ρ ∈ Q.

(5.15)

For the arbitrariness of the functions ω, β, ψ, λ, ρ we obtain the following system
of equations
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−0.1∆z(x, µ) + ∇r(x, µ) = [x2 − v1(x, µ), 0]T in Ω,

∇ · z(x, µ) = 0 in Ω,

αu(x, µ) = z(x, µ) in Ω

−0.1∆v(x, µ) + ∇p(x, µ) = f(x, µ) + u(x, µ) in Ω

∇ · v(x, µ) = 0 in Ω

z1(x, µ) = z2(x, µ) = 0 on ΓD

v1(x, µ) = x2 and v2(x, µ) = 0 on ΓD

−r(x, µ) + 0.1∂z(x, µ)
∂n

= 0 and z2(x, µ) = 0 on ΓN ,

−p(x, µ) + 0.1∂v(x, µ)
∂n

= 0 and v2(x, µ) = 0 on ΓN .

(5.16)

where the third equation is integrated in the PIARCH "step".

Regarding the parametric OCP of the Stokes Problem, we have six total settings
included the baseline simulation run with the following hyper-parameters:

• Learning rate: 0.0005,

• Neurons in each hidden layer: [100,100,100,100],

• Optimizer: ADAM,

• Activation function: Softplus,

• Epochs of training: 50000,

• Sampling: Np = 400 points latin hypercube-sampled in the physical domain
within Ω, Nb = 1800 points latin hypercube-sampled in the physical domain
within ∂Ω and Nµ = 10 points latin hypercube-sampled in the parametric
domain both for Ω and ∂Ω.
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Figure 5.5: On the left we show the finite element solutions and on the right we
show solutions of the PIARCH framework for: p, v1, v2, for µ = 0.05.
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Figure 5.6: On the left we show the finite element solutions and on the right we
show the solutions of the PIARCH framework for: u1, u1, for µ = 0.05.

Concerning Tables 5.2, 5.3 the meaning of the settings used for training, such as
"Grid sampling", is the same explained in 5.1. As we can see, the size of the network
is increased to let it gain more expressivity, since the problem is more complex
due to the number of variables to be predicted: before we had three, this time
we have eight variables. Another important difference concerns the parametric
space which is one-dimensional. This problem turned out to be more challenging
than the previous for many reasons. First, we have many more conditions to
satisfy, which means more possibilities of converging more to some of them and
neglecting the others. The boundary conditions are no longer only Dirichlet, but,
on the left, we have also Neumann boundary conditions, i.e. even if we enforce
strong Dirichlet, we would not set to zero the error on that boundary. In fact,
the relative errors are, generally, higher. This time the problems are more related
to some particular variables that seem to be difficult to approximate such as r and v2.
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Figure 5.7: On the left we show the finite element solutions and on the right
we show the solutions of the PIARCH framework for the adjoint variables in the
following order: r, z1, z2, for µ = 0.05.
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Figure 5.8: In the western reading direction we have the relative error for
p, r, v1, v2, u1, u2, z1, z2 between the finite element solution and the PIARCH frame-
work for µ = 0.05. The red dots represent the training points used in the training
phase.
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Pressure state variable p

PINN PIARCH
µ = 0.5 µ = 1 µ = 1.5 µ = 0.5 µ = 1 µ = 1.5

Baseline 0.03 0.02 0.02 0.02 0.02 0.02
Grid sampling 0.02 0.02 0.02 0.02 0.02 0.02

Strong BC 0.01 0.01 0.01 0.009 0.01 0.02
Strong + Grid 0.01 0.007 0.007 0.01 0.009 0.01

Chebyshev 0.04 0.02 0.03 0.03 0.02 0.02
Strong + Chebyshev 0.02 0.006 0.005 0.02 0.007 0.005

Velocity state variable v1

PINN PIARCH
µ = 0.5 µ = 1 µ = 1.5 µ = 0.5 µ = 1 µ = 1.5

Baseline 0.005 0.009 0.01 0.007 0.009 0.01
Grid sampling 0.005 0.008 0.01 0.005 0.007 0.01

Strong BC 0.002 0.001 0.003 0.001 0.001 0.003
Strong + Grid 0.002 0.001 0.003 0.003 0.002 0.004

Chebyshev 0.01 0.01 0.02 0.008 0.008 0.01
Strong + Chebyshev 0.004 0.002 0.004 0.006 0.003 0.006

Velocity state variable v2

PINN PIARCH
µ = 0.5 µ = 1 µ = 1.5 µ = 0.5 µ = 1 µ = 1.5

Baseline 0.41 0.31 0.29 0.49 0.29 0.29
Grid sampling 0.31 0.2 0.27 0.41 0.23 0.23

Strong BC 0.19 0.07 0.06 0.13 0.06 0.07
Strong + Grid 0.24 0.11 0.08 0.22 0.11 0.1

Chebyshev 0.78 0.41 0.42 0.84 0.29 0.22
Strong + Chebyshev 0.34 0.07 0.08 0.54 0.16 0.16

Control variable u1

PINN PIARCH
µ = 0.5 µ = 1 µ = 1.5 µ = 0.5 µ = 1 µ = 1.5

Baseline 0.15 0.15 0.15 0.11 0.14 0.14
Grid sampling 0.1 0.13 0.15 0.11 0.12 0.13

Strong BC 0.06 0.04 0.06 0.04 0.05 0.07
Strong + Grid 0.07 0.03 0.05 0.07 0.03 0.06

Chebyshev 0.23 0.23 0.23 0.15 0.15 0.15
Strong + Chebyshev 0.08 0.03 0.05 0.11 0.04 0.06

Table 5.2: Relative error of the parametric stokes optimal control problem for
different settings. The bold text refers to the lowest error between the ones in the
column.
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Control variable u2

PINN PIARCH
µ = 0.5 µ = 1 µ = 1.5 µ = 0.5 µ = 1 µ = 1.5

Baseline 0.16 0.11 0.09 0.15 0.10 0.09
Grid sampling 0.09 0.07 0.07 0.12 0.09 0.08

Strong BC 0.05 0.03 0.04 0.04 0.04 0.05
Strong + Grid 0.08 0.05 0.04 0.06 0.05 0.05

Chebyshev 0.22 0.16 0.15 0.19 0.11 0.1
Strong + Chebyshev 0.06 0.03 0.04 0.12 0.05 0.05

Adjoint pressure variable r

PINN PIARCH
µ = 0.5 µ = 1 µ = 1.5 µ = 0.5 µ = 1 µ = 1.5

Baseline 0.94 0.6 0.75 0.67 0.50 0.66
Grid sampling 0.58 0.34 0.52 0.91 0.34 0.43

Strong BC 0.78 0.26 0.2 0.5 0.12 0.13
Strong + Grid 0.8 0.3 0.25 0.79 0.22 0.22

Chebyshev 0.89 0.70 1.03 1.04 0.48 0.48
Strong + Chebyshev 1.27 0.27 0.18 1.56 0.52 0.44

Adjoint velocity variable z1

PINN PIARCH
µ = 0.5 µ = 1 µ = 1.5 µ = 0.5 µ = 1 µ = 1.5

Baseline 0.64 0.31 0.36 0.11 0.14 0.14
Grid sampling 0.67 0.22 0.32 0.11 0.12 0.13

Strong BC 0.24 0.16 0.18 0.04 0.05 0.07
Strong + Grid 0.29 0.13 0.14 0.07 0.03 0.06

Chebyshev 0.78 0.44 0.46 0.15 0.15 0.15
Strong + Chebyshev 0.29 0.006 0.01 0.11 0.04 0.06

Adjoint velocity variable z2

PINN PIARCH
µ = 0.5 µ = 1 µ = 1.5 µ = 0.5 µ = 1 µ = 1.5

Baseline 0.72 0.29 0.36 0.15 0.10 0.09
Grid sampling 0.69 0.27 0.35 0.12 0.09 0.08

Strong BC 0.15 0.06 0.06 0.04 0.04 0.05
Strong + Grid 0.11 0.05 0.04 0.06 0.05 0.05

Chebyshev 0.88 0.28 0.42 0.19 0.11 0.1
Strong + Chebyshev 0.1 0.04 0.05 0.12 0.05 0.05

Table 5.3: Relative error of the parametric stokes optimal control problem for
different settings. The bold text refers to the lowest error between the ones in the
column.
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Overall the best framework is "Strong BC", remarking that enforcing strong BC
is essential to obtain good approximation. However, also "Strong + Chebyshev"
is good, outperforming "Strong BC" it many times. We can easily explain it: the
complexity of the BC let us suppose that having more information nearby the
boundary could be helpful in predicting them correctly. For example in Tables 5.2,
5.3 we can see that for many variables such as uy and vy there is high variability in
the FEM solution, which is harder to approximate.

Figure 5.9: Trend of the mean of the loss functions of every equation for the
Parametric Stokes OCP.

For the Stokes problem, as it can be seen in Figures 5.8, it is more evident the issue
of predicting different output variables with different order of magnitude. In fact,
the idea behind this work is that "classical" problems of the PINN may invalidate
even more parametric OCP for the tendency of having more output, i.e. the control
and also the adjoint variables.
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Chapter 6

Fourier Embedding and
Adaptive weights for
Optimal Control Problems

In this section, we show the results obtained by enhancing the training with the
two techniques we have seen previously: adaptive weights and FFE. In particular,
we took the best setting for both parametric elliptic and parametric Stokes OCPs
and trained with the enhancement of the two approaches discussed.

6.1 Adaptive weights
We now focus on the use of the Algorithm 1 and some issues related to it. From
the numerical investigations, we found that the computations of the NTK, which
is needed for the correct implementation of the algorithm, took too many resources
in terms of computational time, making Algorithm 1 infeasible. Thus, for the
sake of feasibility, we only computed the traces, and consequently the weights,
at the beginning of the training and then used those values for all the epochs.
This approach, even if related to a quite strong approximation assumption, can be
reasonable when the NN trained is, as we have already said, over-parametrized.

Another important aspect is the aggregations of the residuals for the two optimiza-
tion problems we considered.
Concerning the Parametric Elliptic OCP described by the system (5.8) and the
boundary conditions (5.9), the residuals used for computing the NTK are the ones
coming from the first and the last equation of (5.8).
All the other terms of the problem can be neglected thanks to strong boundary
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conditions and the exploitation of the PIARCH architecture. Thus the weights of
Algorithm 1 are related only to the loss of those two equations.

Concerning the Parametric Stokes OCP, the residuals taken into account for NTK
are aggregated in the following way, referring to (5.16): the first two equations,
which we can call it the physical equations, the fourth and the fifth equations, which
we can call it the adjoint equations and the Neumann conditions. Thus we divided
the residuals into three contributors, although the loss function minimized, apart
from the weights, is the same. Thus, for this problem, the weights of Algorithm 1
were three. Namely:

R1(x, µ) = − 0.1∆z1(x, µ) + ∂r(x, µ)
∂x1

− x2 + v1(x, µ)

+ −0.1∆z2(x, µ) + ∂r(x, µ)
∂x2

+ ∇ · z(x, µ),

R2(x, µ) = − 0.1∆v1(x, µ) + ∂p(x, µ)
∂x1

− f1(x, µ) − u1(x, µ)

− 0.1∆v2(x, µ) + ∂p(x, µ)
∂x2

− f2(x, µ) − u2(x, µ) + ∇ · v(x, µ),

R3(x, µ) = − r(x, µ) + 0.1∂z(x, µ)
∂n

− p(x, µ) + 0.1∂v(x, µ)
∂n

.

(6.1)

As another possible choice, one could take each equation separately and compute a
specific weight for each one.

Taking into account the last considerations, we computed also the eigenvalues of the
NTK of the two problems in Figure 6.1. To speed up computations, they were com-
puted using a NN with one layer with 512 neurons and a reduced number of sample
points. It is easy to observe that the majority of the eigenvalues is close to zero, with
a small amount of them being high in magnitude. In particular, the number of eigen-
values greater than 1 is 170 out of 3042 for the elliptic constrained problem and 19
out of 3000 for the Stokes constrained. This disparity, as already mentioned, is the
basis of SB: in fact, ideally, we would like to have all the eigenvalues take high values.

In Table 6.1, we show the relative errors for parametric elliptic OCP using the best
setting found during the previous experiment, which, in this case, was the "Strong
Grid" setting. We used the same hyper-parameters and enhanced the training as
we said earlier.
The same is true for Table 6.2 concerning parametric Stokes OCP, where the best
setting was "Strong".
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variable µ = 0.01 µ = 0.1 µ = 1
u 1.0 1.0 0.99
y 0.19 1.27 15.75
z 1.0 1.0 0.99

Table 6.1: Relative errors of Parametric elliptic OCP using the adaptive weights
in Algorithm 1.

variable µ = 0.5 µ = 1 µ = 1.5
vx 0.37 0.36 0.34
vy 1.95 0.96 0.80
ux 0.98 0.98 0.98
uy 0.74 0.77 0.79
p 0.95 0.93 0.92
r 26.63 18.7 19.8
zx 0.98 0.98 0.98
zy 0.73 0.77 0.79

Table 6.2: Relative errors of Parametric Stokes OCP using the adaptive weights
in Algorithm 1.

All the results obtained are disappointing in terms of accuracy and do not enhance
the training of the PINN. This is because the numerator of the weights βj of
Algorithm 1 are equal to the trace of the NTK, which, in general, can be a very
big number as it can be seen in Figure 6.1, where we computed the eigenvalues of
the NTK for both problems and put them in the ascending order. And since the
trace is constant, in this case, it is equivalent to having a different, much bigger,
learning rate.

variable µ = 0.01 µ = 0.1 µ = 1
u 0.10 0.03 0.003
y 0.04 0.06 0.02
z 0.10 0.03 0.003

Table 6.3: Relative errors of Parametric elliptic OCP using the adaptive weights
in Algorithm 1 and a decreased learning rate.
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variable µ = 0.5 µ = 1 µ = 1.5
vx 0.007 0.005 0.009
vy 0.61 0.28 0.21
ux 0.17 0.07 0.13
uy 0.18 0.09 0.1
p 0.09 0.02 0.02
r 1.78 0.37 0.53
zx 0.17 0.07 0.13
zy 0.18 0.09 0.1

Table 6.4: Relative errors of Parametric Stokes OCP using the adaptive weights
in Algorithm 1 and a decreased learning rate.

Figure 6.1: Eigenvalues of the NTK plotted in ascending order. On the left,
eigenvalues of Parametric Elliptic OCP are showed. On the right, eigenvalues of
Parametric Stokes OCP are showed.

For this reason, we trained again the PINN with a learning rate equal to α = 0.00005,
i.e. one order of magnitude less. Results are summarized in Tables 6.3 and 6.4. In
this case, the behavior found seems reasonable and possibly promising. Comparing
the performance with respect to the best settings already found, we can say that,
although we did not enhance the performances obtained in the previous chapters,
we showed that Adaptive weights can be used for parametric OCPs. If a training
fully respecting Algorithm 1 was performed, we could have given a more precise and
robust opinion on that. In general, to explore some methods that could make the
computation of the traces of the NTK easier is an interesting direction of research.
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Thus a better study of this approach could be conducted, especially when dealing
with parametric OCPs, where the equation to satisfy are multiple and coupled.

6.2 Fourier Feature Embeddings
Concerning FFE, again we trained the best setting found for the two problems
and tried to enhance it with FFE. We conducted three experiments, all with an
expansion of the feature of a factor m = 100, with the following combinations of
values:

• τ1 = 1 and τ2 = 5.

• τ1 = 1 and τ2 = 10.

• τ1 = 5 and τ2 = 10.

variable µ = 0.01 µ = 0.1 µ = 1
u 0.96 0.9 14.89
y 0.96 0.92 12.03
z 0.96 0.9 14.89

Table 6.5: Relative errors of Parametric elliptic OCP using FFE with τ1 = 1 and
τ2 = 5.

variable µ = 0.01 µ = 0.1 µ = 1
u 0.95 0.84 0.18
y 0.95 0.85 0.13
z 0.95 0.84 0.18

Table 6.6: Relative errors of Parametric elliptic OCP using FFE with τ1 = 5 and
τ2 = 10.

The Tables 6.5, 6.6, and 6.7 summarize the results obtained applying FFE to the
Parametric Elliptic OCP. As we can see no improvements were made with respect
to the best setting found earlier. This underlines the main disadvantage of FFE,
which is the difficulty of tuning the parameter τ .
However, it is interesting to see that the setting with τ1 = 5 and τ1 = 10 performed
better than the others. This suggests that, in this problem, higher values of τ are
more useful for detecting variations in the solution. Keeping in mind this, one
could probably improve these results by performing a greater expansion of the
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variable µ = 0.01 µ = 0.1 µ = 1
u 0.93 0.81 2.06
y 0.94 0.85 1.59
z 0.93 0.81 2.06

Table 6.7: Relative errors of Parametric elliptic OCP using FFE with τ1 = 1 and
τ2 = 10.

variable µ = 0.5 µ = 1 µ = 1.5
vx 0.005 0.004 0.01
vy 0.77 0.33 0.27
ux 0.15 0.09 0.17
uy 0.28 0.12 0.1
p 0.025 0.013 0.025
r 0.77 0.32 0.62
zx 0.15 0.09 0.17
zy 0.28 0.12 0.1

Table 6.8: Relative errors of Parametric Stokes OCP using the FFE with τ1 = 1
and τ2 = 5.

input (in this context we expanded to 50 for each embedding).

In Tables 6.8, 6.9, and 6.10 are summarized results for the Parametric Stokes OCP.
Similar considerations can be made, noticing that, in this problem, lower values of
τ seem to deliver a better performance.
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variable µ = 0.5 µ = 1 µ = 1.5
vx 0.007 0.01 0.02
vy 1.25 1.0 0.97
ux 1.0 1.0 1.0
uy 1.0 1.0 1.0
p 1.03 1.02 1.01
r 1.0 1.0 1.0
zx 1.0 1.0 1.0
zy 1.0 1.0 1.0

Table 6.9: Relative errors of Parametric Stokes OCP using the FFE with τ1 = 5
and τ2 = 10.

variable µ = 0.5 µ = 1 µ = 1.5
vx 0.006 0.006 0.02
vy 0.9 0.36 0.37
ux 0.24 0.14 0.22
uy 0.31 0.14 0.12
p 0.034 0.02 0.03
r 1.07 0.54 0.85
zx 0.24 0.14 0.22
zy 0.31 0.14 0.12

Table 6.10: Relative errors of Parametric Stokes OCP using the FFE with τ1 = 1
and τ2 = 10.
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Conclusions

The purpose of this thesis was to improve the performance of the PINN for para-
metric OCPs. First, we studied some aspects of the net implementation such as the
boundary conditions imposition and the sampling techniques, but we also validated
the PIARCH architecture already proposed in [26]. From this, we obtained satisfy-
ing results, comparable to the ground truth solution based on a Finite Element
solver. Afterward, we exploited two techniques: FFE, and Algorithm 1 to rediced
the SB in PINN training. The two strategies have been successfully tested on a toy
problem. Finally, we applied FFE and Algorithm 1 to Parametric OCPs, which,
to the best of our knowledge, was never done before. This preliminary numerical
investigation shows some criticalities.
Concerning FFE, one could obtain better results with a fine-tuning of the hyper-
parameter τ which, as we showed for some simple one-dimensional problems, can
influence the training a lot. Another interesting direction for improvement lies
in using an embedding with a greater number of features. This could be the key
ingredient to increase the accuracy of the training, especially for the Stokes problem
which is more complex indeed.

Concerning the adaptive weights, performances were similar, although slightly
worse, with respect to the ones found in 5.1 and 5.2 when applying the Algorithm
1. Despite this behavior, we think that this approach should be deeply investigated
in order to show some improvements with respect to standard PINN training. We
only computed the weights at the start of the training and kept them constant,
which, at times, could be a strong assumption and might yield inaccurate training.
We recall that the computation of the NTK is a time-consuming activity and the
approach is infeasible with the provided computational resources, unless some ad
hoc strategies are developed. Potentially, the Adaptive weights could be a very
good method. First, the number of conditions in OCPs are so many that the SB
may likely occur, and, second, it is an approach that is not problem-dependent,
because it relies on NTK theory, more specifically on the eigenvalues which describe
the convergence of the PINN to the solution of the problem.
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