
POLITECNICO DI TORINO

Master degree in
Mathematical Engineering

Master degree thesis

Fully Homomorphic Encryption and applications to
Machine Learning

Supervisor Candidate
prof. Danilo Bazzanella Edoardo Venturini

Co-supervisors
Veronica Cristiano and Marco Rinaudo

Academic year 2023-2024

Summary

Nowadays, cloud technologies are increasingly embedded in both our personal lives and
businesses, transforming how we store, process, and access data. They offer numerous
advantages: cloud storage solutions enable remote accessibility from any device, while
powerful cloud computing resources allow companies to scale their operations and compu-
tational needs, without heavy investments in physical infrastructure. Additionally, cloud
services encourage collaboration and innovation by enabling real-time data sharing and
easy integration with Artificial Intelligence and Machine Learning tools.

However, as reliance on cloud platforms grows, so do the risks for users’ privacy. Data
stored in the cloud is often exposed to potential security breaches, unauthorized access
and surveillance, as cloud providers hold extensive access to personal and sensitive in-
formation. Despite encryption and other protective measures, users remain vulnerable
to data exploitation and privacy erosion. Balancing cloud benefits with robust privacy
protections is crucial to safeguard user trust and maintain the technology’s long-term
potential.

In this scenario, this thesis wants to analyze the main features of Fully Homomorphic
Encryption (FHE), a revolutionary cryptographic approach that enables computations
on encrypted data without needing to decrypt it. The ultimate purpose is to explore its
applications to Machine Learning (ML), focusing on the privacy challenges of client-server
frameworks, where sensitive data must be shared for processing.
The work begins with a general introduction to cryptography, including both symmetric
and asymmetric techniques. It then presents the history and evolution of FHE, describing
the development of the most studied schemes through the last 15 years.
After that, the thesis discusses some of the most popular FHE libraries, examining their
implementations and potential for real-world applications. Key applications of FHE high-
lighted in the work include medical research, where it allows for secure analysis of en-
crypted medical data; cloud services, enabling private data processing without expos-
ing the contents to service providers; and search engines, which can perform encrypted
searches on sensitive data without revealing to service providers either the queries or the
results.

This encryption technique offers promising solutions to the privacy problems encoun-
tered in the context of Machine Learning, where sensitive information is often outsourced
to external servers for model inference. More specifically, in a client-server architecture,
the server trains a public ML model on some public data, and every client can send it a
query, i.e. a new sample to be classified. When the server receives a query, it performs
encrypted computations, and then sends back the encrypted response to the client, who
can decrypt it to obtain the result.
In this framework, Fully Homomorphic Encryption ensures that the data remains en-
crypted throughout the entire process, safeguarding user privacy. However, encrypting
data with FHE comes with a price: the computational effort can be high and this can

2

become a problem when considering complex tasks. This thesis explores the integration
of FHE with ML algorithms, focusing on the tradeoff between safeguarding data confi-
dentiality and keeping the model accurate and efficient. First of all, we present some
solutions to optimize the application of FHE to Machine Learning, proposed with the
purpose of reducing the overall computational overhead. Then, we analyze the general
ML classification paradigm, going into details of three ML supervised algorithms: K-
Nearest Neighbors, Support Vector Machines, Decision Tree (and Random Forest). We
compare encrypted versus unencrypted models, describing some of the proposed solutions
in literature. Our goal is to give a general idea, showing how TFHE and CCKS, two of
the main FHE schemes, are integrated with the aforementioned ML methods. Our work
demonstrates the potential of FHE to enable secure ML, so that the clients’ data can be
processed by servers without any information leakage.

3

Contents

List of Tables 5

List of Figures 6

1 Introduction 7
1.1 Mathematical Preliminaries . 7
1.2 General Principles of Cryptography . 8

2 Homomorphic Encryption 13
2.1 Evolution . 13
2.2 Security . 17
2.3 Developments . 19
2.4 Implementations . 22
2.5 Applications . 23

3 The Machine Learning Paradigm 27
3.1 Machine Learning Foundations . 27
3.2 ML Algorithms . 29

3.2.1 K-Nearest Neighbors . 30
3.2.2 Support Vector Machines . 31
3.2.3 Decision Tree and Random Forest 34

4 Fully Homomorphic Encryption for Machine Learning 39
4.1 Framework . 39
4.2 Homomorphic KNN . 43
4.3 Homomorphic SVM . 47
4.4 Homomorphic Decision Tree and Random Forest 52

5 Conclusion 59
5.1 Results . 59
5.2 Future works . 60

4

List of Tables

2.1 Main FHE open-source libraries . 23
4.1 Summary of Homomorphic KNN papers 46
4.2 Execution time for KNN homomorphic inference featuring polynomial ap-

proximation for comparison and sorting . 47
4.3 Summary of Homomorphic SVM papers 50
4.4 Performance analysis of Homomorphic SVM with ultra-packing in terms of

number of threads versus average prediction latency 51
4.5 Summary of Homomorphic DT papers . 56
4.6 Trees depth vs accuracy of encrypted and unencrypted RF 56

5

List of Figures

2.1 Idea of the bootstrapping procedure . 17
2.2 Cloud service for privately computing operations on encrypted data 24
3.1 Working idea of the KNN algorithm . 30
3.2 SVM plane division . 31
3.3 Sketch of a decision tree . 34
3.4 Scheme of a random forest . 36
4.1 Working idea of the client/server architecture 40
4.2 Encrypted majority vote . 45
4.3 Accuracy of unencrypted vs encrypted KNN 46
4.4 Sum of the components of a vector . 48
4.5 Sum of the components of multiple vectors 49
4.6 SVM output for different datasets . 51
4.7 Evaluation of a node during inference, with nmax = 4, p = 4, t = 3 54
4.8 Path evaluation and label assignment . 55
4.9 Inference: (A) execution time and (B) accuracy comparison 56
4.10 Experiment reporting the f1-score and average precision with varying pre-

cision on the spambase dataset . 57
4.11 FHE inference time for different bit widths 57

6

Chapter 1

Introduction

Our work starts with the introduction of the mathematical tools we need: section 1.1
gives some algebraic definitions which are fundamental for the understanding of the thesis.
After that, section 1.2 provides a general overview of cryptography, describing its building
blocks.

1.1 Mathematical Preliminaries
Before presenting the bases of cryptography, we must introduce some mathematical for-
malism which constitute the background for the topics of next chapters. Let us start with
the definition of groups and fields:

Definition 1.1.1 (Group) A group (G, +) consists of a set G with an operation + :
G × G → G, that associates an element of the set to every pair of elements of the set.
The operation satisfies the following constrains:

• it is associative, i.e. ∀f, g, h ∈ G (f + g) + h = f + (g + h);

• it has an identity element, i.e. ∃0G ∈ G : g + 0G = 0G + g = g ∀g ∈ G;

• every element of the set has an inverse element, i.e. ∀g ∈ G ∃!− g ∈ G : g + (−g) =
−g + g = 0G.

Definition 1.1.2 (Field) A field (F, +, ·) is a set F endowed with two binary operations
+ and · called addition and multiplication, such that:

• (F, +) is a group and + is commutative, i.e. ∀f, g ∈ F f + g = g + f ;

• the multiplication is associative, i.e. ∀f, g, h ∈ F (f · g) · h = f · (g · h);

• the multiplication has an identity element, i.e. ∃1F ∈ F : f ·1F = 1F ·f = f ∀f ∈ F ;

• every element of the set has an inverse with respect to multiplication, i.e. ∀f ∈
F ∃!f−1 ∈ F : f · f−1 = f−1 · f = 1F ;

7

Introduction

• the multiplication is distributive over addition, i.e. ∀f, g, h ∈ F f · (g + h) =
f · g + f · h.

A finite field Fq is a field with q elements and it exists if and only if q is prime or a
prime power. Tipically, cryptographic messages are defined as belonging to F2, such that
they are represented as binary numbers and they are equipped with the OR and AND
operations (corresponding to + and ·).
A ring is the generalization of a field:

Definition 1.1.3 (Ring) A ring R is a field whose multiplication does not need to be
commutative and whose elements do not need to have the multiplicative inverse.

Then, we also need to specify what an ideal is.

Definition 1.1.4 (Ideal) Given a ring (R, +, ·), an ideal is a subset I of R that is a
subgroup of the additive group of R and such that ∀x ∈ I rx, xr ∈ I ∀r ∈ R.

Given an ideal I, the relation

x ∼ y if and only if x− y ∈ I

is an equivalence relation on R, and the equivalence classes form a set called the quotient
of R by I, denoted by R/I. For example, the set of integers Z forms a ring with ordinary
addition and multiplication. The set 3Z formed by the multiples of three forms an ideal,
and the quotient Z3 := Z/3Z has only three elements: {0,1,2}, each one representing an
equivalence class composed by the numbers equivalent to 0,1 and 2 mod 3. One of the
most used quotients in Homomorphic Encryption is the real torus T, which is the set R/Z
of real numbers modulo 1. T is a group, when using the addition.

The most commonly employed rings in Homomorphic Encryption are the polynomial
rings.

Definition 1.1.5 (Ring of polynomials) Given the set Z[x] of polynomials with inte-
ger coefficients and given a monic polynomial f(x), a quotient ring R = Z[x]/⟨f(x)⟩, is a
ring of polynomials with integer coefficients modulo f(x).

If the coefficients of the polynomial are in Zq then we denote it Rq. It is worth pointing
out that the ring R is also a field if and only if f(x) is an irreducible polynomial over Z.

After this brief section, we are now ready to start focusing on cryptography.

1.2 General Principles of Cryptography

Basic cryptography features
Cryptography is a discipline that provides the principles, techniques, and methodologies
for securing communication and data in the presence of adversaries. It derives from the
Greek words "kryptos", meaning hidden, and "graphein", meaning writing. At its core,
cryptography is concerned with the construction and analysis of protocols to prevent third
unauthorized parties from reading private messages. In this framework, encryption of data
is usually based on two functions:

8

1.2 – General Principles of Cryptography

• Encryption function Enc, which takes as input a plaintext and a key and outputs
the ciphertext;

• Decryption function Dec, the inverse of the encryption function, which takes as input
a ciphertext and a key and outputs the original plaintext.

An encryption scheme can be symmetric or asymmetric, as stated in the following defini-
tions:

Definition 1.2.1 (Symmetric cryptography) An encryption algorithm is symmetric
if it uses the same cryptographic keys k for both the encryption of plaintext and the de-
cryption of ciphertext. If k is the key and m is the message, we have that

Deck(Enck(m)) = m.

Definition 1.2.2 (Asymmetric cryptography) An asymmetric scheme features a key
pair made up of a public key pk and a secret key sk, both belonging to a specific user
and linked by some mathematical relation. The encryption function, denoted by Encpk,
is public, so everyone can encrypt a message and send it to the user U using his public
key pk. Then, if U wants to decrypt the message, he will use its own decryption function
Decsk, employing its private key sk, to recover the original plaintext. In other words, given
a message m, it yields

Decsk(Encpk(m)) = m.

For symmetric schemes, intercepting k, which has to be shared between sender and re-
cipient, is enough to break the security of the protocol. On the other hand, asymmetric
systems do not present this issue: there is no key exchange, because each user can gener-
ate the pair (pk, sk) by itself, employing a certain key generation algorithm. Plus, in this
case the number of required keys to perform secure exchanges among n users is 2n, which
is far less than those needed for the symmetric paradigm, namely

!n
2
"
∼ n2/2. However,

asymmetric schemes are usually considerably slower than symmetric ones: for this reason,
in real-world applications the two technique are combined. Namely, asymmetric cryptog-
raphy is employed for key exchange, i.e. securely exchanging the keys used for symmetric
encryption, while symmetric cryptography is used to encrypt the messages.

Cryptography usage and limitations
With the necessity of exchanging larger and larger masses of information, cryptography has
become more and more indispensable, serving as the cornerstone of secure communications
and information security. Its importance is multifaced, addressing critical aspects such
as:

• Confidentiality: shared data must be inaccessible to unauthorized users, in order
to safeguard sensitive information, ensuring that such information remains private
until it reaches its intended recipient.

• Integrity: during transmission or storage, it has to be verified that data received by
the recipient has not been altered, ensuring that it is exactly as it was sent.

9

Introduction

• Authentication: before granting access to sensitive information or systems, verifying
their identity of users and devices involved is fundamental to prevent impersonation.

• Non-repudiation: in any communication established, the sender of data has to be
provided with proof of delivery and the recipient must be provided with proof of the
sender’s identity, so neither can later deny having processed the data.

Integrity of a message can be ensured by exploiting some algorithms called hash functions.

Definition 1.2.3 (Hash function) Hash functions are algorithms that take an arbitrary
size input and return a fixed-size string of bytes, said a hash value or digest. They are
deterministic, thus the same input will always produce the same output, and even a small
change in the input will produce a completely different hash value.

These functions participate in the creation of digital signatures, which are employed to
secure non-repudiation:

Definition 1.2.4 (Digital signatures) Digital signatures use asymmetric cryptography
to create a distinctive cryptographic object that can only be generated by the private key
holder, but can be verified by anyone with access to the corresponding public key. They
work as follows:

• Key generation: each user generates a pair of keys: a private key and a public key.

• Signature: the sender (who is the signer) uses his private key to produce the digital
signature.

• Verification: when the receiver (the verifier) receives the signed message, he uses the
signer’s public key to check if the signature is valid.

Finally, authenticity of data is addressed by Message Authentication Code (MAC).

Definition 1.2.5 (MAC) Message Authentication Code (MAC) is a system which gen-
erates authentication tags of a fixed length by processing a message m: the resulting com-
putation is the m’s MAC. This tag is generated by using a secure symmetric key k, only
known to the sender and the recipient, and it is appended to the message and transmitted
to the recipient. Then, the recipient verifies the authencity of the message employing k
and the tag.

All these resources can ensure secure and reliable exchange of information, but, depending
on the usage, data needs different kinds of protection. More specifically, data can be
classified in three different types:

• Data-in-transit: this type of data needs to be transferred between two parties. The
major concerns here are to avoid data tampering, where unauthorized parties alter
the data during transmission, and to prevent third parties from unauthorized access
to sensitive information like credentials. On Internet, the most employed method
to protect data in this sense is the TLS protocol [1]. In particular, HTTPS is an
implementation of TLS encryption added to the HTTP protocol, which is used by
nearly all websites. Any website that uses HTTPS therefore uses TLS encryption.

10

1.2 – General Principles of Cryptography

• Data-at-rest: this data does not actively move across networks or systems, but it
needs to be securely stored. It is particularly vulnerable to breaches, theft, and
unauthorized access, especially in environments like data centers, cloud storage, and
local device storage. In order to protect this static data, Windows offers a function-
ality called BitLocker [2] providing encrypton for large volumes of data, which deals
with threats of data theft or exposure from lost or stolen devices.

• Data-in-use: this kind of data needs to be securely processed. At the moment, the
only way to process encryptedd data is to decrypt it, sacrificing privacy. In order
to avoid this, it would be necessary to be able to operate on data maintaining it
encrypted.

A client-server architecture presents all these three types of data. In this scenario, each
client sends encrypted data to a server, requiring data-in-transit protection. This infor-
mation can be stored using users’ keys (data-at-rest protection is needed), but making
any operations on data by keeping it encrypted, i.e. achieving data-in-use protection, is
a big challenge. This is because, in general, performing operations on encrypted data
does not match the result obtained by making the same operations on the unencrypted
data. If data were directly elaborated in its encrypted version, a client would be able to
make the server do any computations while keeping his data private: this is the problem
Homomorphic Encryption tries to solve.

11

12

Chapter 2

Homomorphic Encryption

This chapter introduces the Homomorphic Encryption framework, dwelling on its devel-
opments and employments. Specifically, section 2.1 details the evolution of Homomorphic
Encryption, which eventually lead to FHE. After a brief analysis of the security aspects
in section 2.2, we follow a historical perspective, introducing the most popular schemes
(section 2.3) and the libraries that implement FHE techniques (section 2.4). Finally, in
section 2.5 we explore some practical FHE applications, ranging from enhancing privacy
in medical research and cloud computing to secure data retrieval in search engines.

2.1 Evolution
The first idea of Homomorphic Encryption (HE) was introduced in 1978 [3]. This type
of encryption represents a class of methods offering a transformative capability in the
field of secure data processing. It permits computations to be performed on ciphertexts,
generating an encrypted result which, when decrypted, matches the result of operations
as if they were performed on the plaintext. This property is paramount for several rea-
sons, particularly in enhancing privacy and security. In a more and more cloud-dependent
world, data breaches and unauthorized access to sensitive information constitute an im-
portant issue, and Homomorphic Encryption provides a robust framework for preserving
the confidentiality of data. It enables the processing of encrypted data without necessi-
tating its decryption, ensuring that the underlying data remains private throughout its
lifecycle. This is especially critical in sectors where the protection of personal and sensitive
information is essential: HE enables data to be shared across organizations or geographies
without revealing the underlying information.
For example, in the medicine field, healthcare providers can analyze patient data across
networks while complying with privacy regulations by using encrypted data.
Another main context of employment is finance: FHE can be a game-changer in credit risk
assessment by banks. In this application, HE allows a bank to compute an individual’s
credit score based on encrypted income, assets, debts, and spending habits provided by
various financial sources, without revealing the actual values of sensitive data.
Here is a more formal definition for HE:

13

Homomorphic Encryption

Definition 2.1.1 (Homomorphic Encryption) Given two plaintexts m1 and m2, an
encryption algorithm is said to be homomorphic with respect to two operations ×1 and ×2
if

Enc(m1)×1 Enc(m2) = Enc(m1 ×2 m2), (2.1)

where Enc is the encryption function.

Unfortunately, in general this property can be subject to some constraints. For this reason,
HE is usually described by three subtypes:

• Partially Homomorphic Encryption (PHE), if this relation holds just for one specific
operation, no matter how many times it is performed;

• Somewhat Homomorphic Encryption (SHE), if (2.1) is valid for certain operations
among all the possible ones on the plaintext, but there are some limitations on the
number of times they can be carried out;

• Fully Homomorphic Encryption (FHE) if the scheme possesses this property for every
type of operation, with no restrictions at all.

Partially Homomorphic Encryption

The RSA scheme [4] is an example of a PHE system. In this protocol, the sender A acts
as follows:

• he chooses two prime numbers p and q;

• he computes N = pq and ϕ(N) = |{n ∈ N : n < N, gcd(n, N) = 1}| = (p−1)(q−1);

• he picks e ∈ Z∗
ϕ(N) = {x ∈ Zϕ(N) | x < ϕ(N), gcd(x, ϕ(N)) = 1} and calculates d

such that ed ≡ 1 mod ϕ(N);

• the couple (ϕ(N), d) will constitute the private key, whereas (N, e) will be the public
key.

If A wants to encrypt a message m, he will use the function Enc(m) := me mod N and
send this to another user B; for decryption, given a ciphertext c, B will employ Dec(c) := cd

mod N . Because of the nature of the encryption function, given two plaintexts m1 and
m2, it trivially yields:

Enc(m1 ·m2) = (m1 ·m2)e mod N = (m1)e · (m2)e mod N = Enc(m1) · Enc(m2).

Of course, it does not work the same way with the sum operation, because the power of
a sum is not the sum of the powers of its terms.

14

2.1 – Evolution

Somewhat Homomorphic Encryption
An example of SHE is the BGN scheme [5], which can be described as follows:

• Key generation: The public key is (n, G, G1, e, g, h), where G, G1 are groups of order
n = q1q2, with q1 and q2 prime numbers. g is a generator of G, and e : G×G→ G1
is a bilinear map such that e(g, g) is a generator of G1. h is defined as h = uq2 ,
where u is a randomly chosen generator of G, different from g. It follows that h is
the generator of the subgroup of G with order q1: this number q1 will be kept hidden
as the secret key.

• Encryption: To encrypt a message m, a random number r from the set {0, 1, . . . , n−
1} is picked and m is encrypted as follows:

c = Enc(m) = gmhr mod n.

We assume the message space consists of integers in the set {0, 1, . . . , T} with T < q2.
In most applications, bits are encrypted, thus T = 1.

• Decryption: To decrypt the ciphertext c, one first computes c′ = cq1 = (gmhr)q1 =
(gq1)m (because hq1 ≡ 1 mod n) and g′ = gq1 using the secret key q1. Then,
decryption is completed as follows:

m = Dec(c) = logg′c′

Note that decryption in this system takes polynomial time in the size of the message
space T . Therefore, the system as described above can only be used to encrypt short
messages.

The homomorphic properties belonging to this protocol are:
• Homomorphism over addition: Homomorphic addition of plaintexts m1 and m2 using

ciphertexts E(m1) = c1 and E(m2) = c2 are performed as follows:

c = Enc(m1)Enc(m2)hr = (gm1hr1)(gm2hr2)hr = gm1+m2hr′ = Enc(m1 + m2),

where r′ = r1 + r2 + r is uniformly random just like r, because it is essentially a
traslation of r itself. It can be seen that m1 + m2 is easily decryptable from the
resulting ciphertext c.

• Homomorphism over multiplication: To perform homomorphic multiplication, use
g1 with order n and h1 with order q1 and set g1 = e(g, g), h1 = e(g, h), and h = gαq2 .
Then, the homomorphic multiplication of messages m1 and m2 using the ciphertexts
c1 = Enc(m1) and c2 = Enc(m2) are computed as follows:

c = e(c1, c2)hr
1 = e(gm1hr1 , gm2hr2)hr

1 = gm1m2
1 hm1r2+r2m1+αq2r1r2+r

1 = gm1m2
1 hr′

1

It is seen that r′ is uniformly distributed like r and so m1m2 can be correctly decrypted
from resulting ciphertext c. However, c is now in the group G1 instead of G. Therefore,
another homomorphic multiplication operation is not allowed in G1 because the bilinear
map e is not available anymore. Nevertheless, resulting ciphertext in G1 still allows an
unlimited number of homomorphic additions.

15

Homomorphic Encryption

Fully Homomorphic Encryption
The very first FHE scheme was proposed in 2009 by Craig Gentry in his PhD thesis [6].
One of the issues he tackled is how to deal with the order of magnitude of the random
noise. The problem is that this noise increases any time we perform a homomorphic
operation, and it affects the possibility to correctly decrypt the ciphertext. To overcome
this limitation, Gentry introduced a new technique, called bootstrapping, structured as
follows. Let E be a cryptographic scheme: consider two pairs of keys (sk1, pk1) and
(sk2, pk2). Let us denote with Enc the encryption algorithm such that c = Encpk1(m)
encrypts m under pk1, with Dec the decryption algorithm, and with Evalevk the evaluation
algorithm. This takes as input the public evaluation key evk, a function f and tuple of
ciphertexts (c1, . . . , ct). It outputs a ciphertext cf , such that it decrypts to the result of
the evaluation of (m1, . . . , mt) over f , i.e. cf = Evalevk(f, (c1, . . . , ct)) and Decsk(cf) =
f(m1, . . . , mt). Gentry’s procedure is articulated in three steps:

• Encrypting sk1 under pk2:
Encpk2(sk1) = sk1.

• Encrypting the ciphertext c under pk2:

Encpk2(c) = c.

• Decrypting homomorphically the new ciphertext using the encrypted secret key, such
that an encryption of the same message under the second public key Encpk2(m) is
obtained. Namely:

Evalevk(Dec, c, sk1) = Evalevk(Dec, Encpk2(c), Encpk2(sk1)) =
= Encpk2(Decsk1(c)) = Encpk2(m).

This method works also if we apply a certain function φ to the message before encrypting
it.
Figure 2.1 schematizes the whole process, with particular attention on the error, repre-
sented by the bar on the right of each box. As noticeable from the image, the error of
the obtained ciphertext is higher than a fresh ciphertext obtained with the encryption
algorithm, but lower than the starting ciphertext obtained after homomorphic evaluating
functions with higher depth than the decryption circuit. The dotted line represents the
maximum error limit: beyond that threshold, decryption is not correct anymore.

There exists also a tecnhique which is able to evaluate a function at the same time as
it reduces the noise, which is called programmable bootstrapping [8]. Essentially, given a
message m and a function f , this method outputs a ciphertext encrypting f(m). This is
highly advantageous, as it enables FHE schemes to handle more complex functions with
lower computational overhead. Of course, bootstrapping is a special case of programmable
bootstrapping when f is the identity function.

It is worth considering that Homomorphic Encryption schemes can be computationally
intensive and inefficient. In order to mitigate this issue, Gentry introduced the so-called
squashing technique. This method involves transforming the decryption function into a

16

2.2 – Security

Figure 2.1. Idea of the bootstrapping procedure [7]

simpler form that requires less computational effort to execute. This is typically achieved
by introducing additional structure into the encryption scheme or by applying certain
transformations that reduce the complexity of the decryption circuit. The goal is to make
the decryption process feasible and efficient while maintaining the security of the scheme.

2.2 Security
A homomorphic encryption scheme E = (KeyGen, Enc, Dec, Eval), with KeyGen denoting
the key generation algorithm, is secure if and only if it is semantically secure, i.e. indis-
tinguishable under chosen-plaintext attack (IND-CPA security), where an attacker can
obtain encryptions of arbitrary plaintexts, but it cannot decrypt arbitrary ciphertexts.

The definition is formalized as a game between two players, which for the case of public
key encryption is the following:

Definition 2.2.1 (IND-CPA) Let C be the challenger, and A be the adversary. Con-
sidering an encryption scheme E, C and A act as follows:

1. C generates a keypair based on some security parameter k, e.g. a key size in bits,
and sends the public key pk to the adversary A, keeping hidden the secret key sk.

2. A selects a pair of messages m0, m1 of equal length and sends them to the challenger.

3. C picks a random bit b ∈ {0,1} and encrypts the message mb as c = Encpk(mb). He
sends back c to the adversary.

17

Homomorphic Encryption

4. A can make a polynomial number of queries to the encryption oracle, and eventually
he has to come up with a guess b′.

The scheme is told to be IND-CPA secure if, for all possible (time-bounded) adversaries,
it holds that

P[b′ = b]− 1
2 = ϵ(k),

where ϵ(k) is a negligible function in the security parameter k, that is for every nonzero
polynomial function f there exists k0 such that |ϵ(k)| < | 1

f(k) | for all k > k0.

One obvious note about the IND-CPA game is that the attacker has the public key, so
the following strategy can be proposed for winning the game:

• The adversary picks two messages m0, m1 and then encrypts both of them using the
public key.

• When the adversary receives the ciphertext c, he just compares that ciphertext to
the two he generated himself.

Proceeding like this, the adversary can always figure out which message was encrypted.
Therefore, the implication is that in order to satisfy the IND-CPA definition, any public-
key encryption scheme must be randomized. Namely, it must take in some random bits
as part of the encryption algorithm, and it must use these bits in generating a ciphertext.
This implies that encrypting the same message multiple times gives different ciphertexts
as a result.

Furthermore, if we want bootstrapping to be performed securely, the following prop-
erty is also fundamental.

Definition 2.2.2 (Circular security) An encryption scheme that is secure against ad-
versaries who observe an encryption of the scheme’s secret key under its public key is
called circular secure.

Unfortunately, this is not proven to hold on most FHE schemes: there exist a formal
demonstration just for some protocols, like [9] and [10]. Thus, it is in general taken as an
assumption on top of the scheme’s underlying security assumptions.

Optionally, the system can be required to be function private.

Definition 2.2.3 (Function privacy) A FHE scheme is function private when the eval-
uation of a function f homomorphically over a ciphertext does not reveal any information
about the function itself, beyond the outputs for the queried inputs.

Note that for a scheme to be function private, the property has to hold even against an
adversary that knows the secret key and can decrypt any ciphertext.

18

2.3 – Developments

2.3 Developments
Gentry’s innovation has stimulated many researches on this topic, as summarized in [11]:
the FHE schemes developed after 2009 can be divided into four generations.

First generation
The first generation is essentially composed of two families: the first one is characterized
by schemes based on ideal lattices, the second one on the Approximate Greatest Common
Divisor (AGCD) problem. Lattices are mathematical structures consisting of points in
space that are arranged in a regular grid-like pattern. More specifically, a k-dimensional
lattice is a discrete additive subgroup of Rn.
Definition 2.3.1 (Lattice) Let B = (b1, . . . , bk) be linearly independent vectors in Rn,
then the lattice generated by B is

L(B) =
I

kØ
i=1

γibi : γi ∈ Z, bi ∈ B

J
.

Ideal lattices are a special type of lattice that are derived from ideals in ring theory. In
particular:
Definition 2.3.2 (Ideal lattice) An ideal lattice is an integer lattice L(B) ⊆ Zn where
B = {g mod f : g ∈ I}, I ⊆ Z[x]/⟨f⟩ is an ideal, and f a monic polynomial of degree n.
The use of ideal lattices in cryptography offers advantages in terms of efficiency and se-
curity. They allow operations to be performed more quickly than general lattice-based
systems, making them well-suited for constructing FHE schemes. Every scheme in this
category has a common origin, which is Gentry’s initial idea itself. It was initially imple-
mented by [12], and then improved by other studies, like [13], [14] and [15].

On the other hand, the AGCD problem can be formulated as follows. Let us say
that one chooses a secret integer p, then samples n random integers qi and defines mi =
pqi ∀i = 1, . . . n. Now, given these mi, it is easy to recover p as gcd(m1, . . . , mn). We
talk about AGCD problem if we are given just “approximate multiples” of p, i.e. xi =
pqi + ri ∀i = 1, . . . n, where each ri is a small integer.
Here, the pioneers are van Dijk, Gentry, Halevi and Vaikuntanathan, who introduced a
Fully Homomorphic Encryption scheme over integers, named DGHV [16], simpler than
the ideal-lattice based one. The basic construction of their idea is the following:

• Key generation: outputs the secret key p, i.e. an odd random integer, and the public
key (x0, . . . , xn) where x0 is odd and x0 > xi = pqi + ri ∀i, with qi, ri random
integers.

• Encryption: the message m ∈ F2 is encoded into the ciphertext c = (m + 2r +
2
q

i∈S xi) mod x0, where r is a random integer and S is a random subset of
{1, . . . , n}.

• Decryption: computes (c mod p) mod 2.
Other algorithms in this family essentially consist of different optimizations of DGHV.

19

Homomorphic Encryption

Second generation

The second generation schemes can also be divided into two classes. The first one is based
on the Learning With Errors (LWE) and Ring Learning With Errors (RWLE) problems,
the second one on the NTRU lattice-based encryption method [17]. Given a vector b ∈ Zm

q

and a matrix A ∈ (Zq)m×n, the LWE problem consists in finding s ∈ Zn
q such that

As + e = b mod q,

where e ∈ Zm
q is sampled coordinate-wise from an error distribution χ. The RLWE

problem is the reformulation of LWE in ring theory. Let us define Rq = Zq[x]/⟨f(x)⟩,
where f(x) ∈ Z[x] is a monic, irreducible polynomial of degree d and q is a prime. We
are given an arbitrary number of independent samples (a, b = s · a + e) ∈ Rq ×Rq, where
a is chosen uniformly at random in Rq, and e ∈ Rq is sampled from an error distribution
χ. The goal of the RWLE problem is to discover the vector s ∈ Rq used to generate the
samples.
BV [18] is an example of LWE-based system, which is structured as follows:

• Encryption: the message m ∈ F2 is encoded into a ciphertext c such that c = (a, b =
⟨a, s⟩ + 2e + m) ∈ Zn

q × Zq, where e is the error randomly chosen from an error
distribution χ and s ∈ Zn

q is the secret key composed of random elements in Zq.

• Decryption: outputs the plaintext (b−⟨a, s⟩ mod q) mod 2, which is equal to (2e+
m mod q) mod 2. The decryption works properly if e < q/2.

A more practical version of this scheme was proposed by Brakerski, Gentry and Vaikun-
thanathan (BGV) in [19]. At the same time, Fan and Vercauteren also optimized this
protocol by implementing the FV system [20]. These schemes are scale-invariant, i.e.
their security and correctness do not depend on the ciphertext "scale" or modulus size,
allowing efficient homomorphic operations at multiple scales without needing to change
the underlying security parameters.

The other class of schemes is based on NTRU [17], a protocol which was first presented
by Hoffstein, Pipher, and Silverman in 1996. From its introduction, its security features
sparked debates within the academic community. This continued until 2011, when Stehle
and Steinfeld [21] made minor adjustments to the original protocol, resulting in a ver-
sion whose security relies on the RLWE assumption. Following this, in 2012, Lopez-Alt,
Tromer, and Vaikuntanathan developed the first FHE scheme [22], drawing inspiration
from the Stehle-Steinfeld modification of NTRU.
Second generation schemes feature an efficient data-packing technique, which allows mul-
tiple plaintext data values to be encrypted into a single ciphertext. This innovation
significantly improves the efficiency of homomorphic operations, especially in applications
that process large datasets. They utilize a structure known as Single Instruction, Multiple
Data (SIMD) within the ciphertext, allowing multiple slots in the plaintext space to store
different data values. As a result, a single homomorphic operation on the ciphertext is
performed across all slots simultaneously, as if they were individual elements in parallel.

20

2.3 – Developments

Third generation
Third generation schemes include a second family of LWE schemes, which started with
Gentry, Sahai and Waters [23] (GSW). Their construction is as follows:

• Key generation: outputs the secret key s = (s1, s2, . . . , sn) ∈ Zn
q , where s1 = 1 and

the si’s are chosen at random and a public key A ∈ Zn×n
q such that As = e ≈ 0;

• Encryption: computes the ciphertext C = mIn + RA, where m ∈ Zq is the message,
In is the identity matrix, R is a random matrix with size n×n and with coefficients
in F2.

• Decryption: First, computes Cs = mIns + RAs, which is approximately equal to
mIns, because R has small entries (belonging to F2) and As ≈ 0. Finally, outputs
the first element of the vector x ≈ mIns ≈ (ms1, . . . , msn), which is m, since s1 = 1.

There exists also the corresponding RWLE version of this scheme, created by Khedr,
Gulak and Vaikuntanathan and illustrated in [24].

It is also worth mentioning another important scheme, which consists of three compo-
nents realizing FHE on the Real Torus T:

• TLWE, which is a generalized version of the LWE problem for the Torus;

• TRLWE, which is its ring variant;

• TRGSW, which improves the ring version of GSW scheme.

These three methods are usually grouped under the name TFHE [25].

Fourth generation
In 2017, Cheon, Kim, Kim, and Song [26] unveiled a new wave of FHE frameworks, intro-
ducing a technique for creating an encryption system tailored for Approximate Arithmetic
Numbers. This innovation was accompanied by the release of an open-source library for
the scheme’s implementation. Initially dubbed HEAAN, the scheme later became known
as CKKS, an acronym derived from the last names of its creators, while HEAAN now
specifically refers to the library implementing this scheme. A year following its introduc-
tion, the method was enhanced to support FHE by Cheon, Han, Kim, Kim, and Song
[27].

The fourth-generation schemes share similarities with their second-generation coun-
terparts, with the primary distinction being their reliance on approximate computations.
This approach significantly boosts speed by embedding the message space within a com-
plex hyperplane and incorporating encryption errors as part of the calculation’s inherent
approximation error. A notable aspect of CKKS is its ability to perform homomorphic op-
erations on approximate real numbers, rendering it particularly effective for floating-point
arithmetic tasks. Like its predecessors of second generation, this one also features efficient
data packing methods and is optimized for quick addition and multiplication operations,
though any nonlinear operation demands considerable computational resources.

21

Homomorphic Encryption

Summarizing considerations
Among all the presented schemes, the most effective and popular ones currently are BGV,
BV, FV, TFHE and CKKS. The BGV, BV and FV schemes, belonging to the second
generation, are optimized for operations within finite fields using modular exact arith-
metic. These schemes come with efficient data packing capabilities, making them ideal
for processing large datasets in parallel.

However, for scenarios requiring bootstrapping, or the implementation of non-linear
functions, second-generation schemes fall short. In such cases, third-generation schemes,
particularly TFHE, are recommended. TFHE excels in bit-wise operations and is more
suited for computations modeled as boolean circuits, whereas it limits its efficiency in
handling large-scale parallel data processing compared to its predecessors.

For arithmetic operations involving real numbers, the fourth-generation CKKS scheme
stands out as the superior choice. This scheme is specifically tailored for handling com-
putations with real numbers, offering a significant advantage in scenarios requiring such
operations.

2.4 Implementations
The primary goal of FHE libraries is to offer access to FHE scheme operations through
an Application Programming Interface (API). In addition to the fundamental capabilities
offered by key generation, encryption, decryption and evaluation, most prominent libraries
also include extra functionalities. These functionalities facilitate the management and
manipulation of ciphertexts, specifically addressing the challenge of noise growth during
computations, and provide methods for homomorphic addition and multiplication. A vast
majority of these libraries is written in C++, as those presented by [28], but there also some
other languages. Table 2.1 shows an overview of some of the most recent implementations.

The SEAL library [29], for example, made open source by Microsoft towards the end
of 2018, is a library with no dependencies for some two second-generation homomorphic
schemes. In particular, it features the scale-invariant BV and FV schemes of Brakerski
[30], with its implementation in [20], and the CKKS scheme, as introduced by Cheon et
al. [26].

Another important library is HElib [31], designed and maintained by IBM. The first
implementation included one for the BGV scheme [19] and provided support for data
manipulation instructions, e.g. the packing techniques as introduced by Smart et al. [32].
As of the 1.0.0 beta release, HElib also includes partial support for the CKKS scheme.

We also cannot forget PALISADE [33], which is a general-purpose library providing
implementations of various building blocks for lattice-based cryptography along with im-
plementations of advanced lattice-based cryptographic protocols. This modular design
approach makes it possible to achieve both implementations of standard protocols that
can be used out of the box for building applications on top and as a platform for more
advanced users, allowing experimentation and the possibility to combine their specific
implementations with those provided by the library. In terms of HE scheme capabilities,
PALISADE most notably implements the second generation BV and FV [20] and BGV
[19] schemes and some of their variants.

22

2.5 – Applications

Library Languages Schemes
SEAL C++, C# BV, FV, BGV, CKKS
Helib C++ BGV, CKKS

PALISADE C++ BV, FV, BGV, CKKS, FHEW, TFHE
OpenFHE C++ BV, FV, BGV, CKKS, FHEW, TFHE

FHEW C++ FHEW
TFHE C++, C TFHE

TFHE-rs Rust TFHE
Concrete Python TFHE

ConcreteML Python TFHE for Machine Learning
Lattigo Go BV, FV, CKKS

Table 2.1. Main FHE open-source libraries

In 2022, PALISADE’s creator decided not to update anymore their library, but they
implemented OpenFHE [34], which is its enhanced version. This library supports all com-
mon FHE schemes; its design is based on PALISADE, but it introduces some new design
features, as detailed in [35]. For example, OpenFHE includes both user-friendly modes,
where maintenance operations (such as bootstrapping) are automatically invoked by the
library, and compiler-friendly modes where an external compiler makes these decisions.
OpenFHE design also supports “importing” functionality from its predecessors, such as
HElib.

Concerning the third-generation schemes, it is worth mentioning the FHEW library
[36] by Ducas and Micciancio, even if it has not been updated since 2017, and the TFHE
library [37]. This was provided by the authors of the TFHE paper [25], it is also available
in C and is considered to be the successor of the FHEW library.
TFHE has been particularly studied by Zama [38], an open source cryptography company
which has developed some libraries for this scheme. In particular, we have TFHE-rs
[39], written in Rust, and Concrete [40], implemented in Python. The latter features
a sublibrary, i.e. ConcreteML [41], which integrates privacy-preserving features of FHE
into Machine Learning (ML) use cases. Its interface is very similar to Scikit-learn [42], a
famous ML library written in Python.

Finally, Lattigo [43] is also a milestone: it was proposed by Mouchet, Bossuat, Tron-
cosoPastoriza and Hubaux [44] and is the first library written in Go. It includes the
implementation of the BFV, BGV and CKKS schemes.

2.5 Applications

Cloud computing
Cloud services are one of the most common applications, where client sends encrypted
data to server (data-in-transit protection). This data can be securely stored using users’
keys (data-at-rest protection) via the cloud storage functionality. Unfortunately, it is not

23

Homomorphic Encryption

Figure 2.2. Cloud service for privately computing operations on encrypted data

possible to exploit the potential of cloud engine to make any operations on data (no data-
in-use protection) by keeping it encrypted in cloud. On the contrary, if data is directly
elaborated in its encrypted version via the usage of HE, a client can make the server
do some computations while keeping his data private. This idea is well represented by
Figure 2.2, which outlines operations and information exchanges carried out during the
user-cloud communication process.

In this scenario, a significant challenge is to enable collaborative computations between
different users. Since ciphertexts coming from different users are encrypted with different
keys, they need to be re-encrypted under a common key: this is done by a process known
as Homomorphic Proxy Re-Encryption (HPRE). This method originates from Proxy Re-
Encryption (PRE), a technique commonly utilized in cloud computing for traditional
encryption methods, which facilitates the transformation of a ciphertext from one user
(the delegator) to another (the delegatee) via a proxy. This is how it works:

1. A user encrypts a message with their public key. This encryption can only be de-
crypted by the owner’s private key.

2. The user generates a special re-encryption key and gives it to the proxy. This re-
encryption key is specific to the relationship between the data owner and the intended
recipient.

3. The proxy uses the re-encryption key to convert the original ciphertext into a form
that can be decrypted by the recipient’s private key. Importantly, the proxy never
learns anything about the underlying plaintext.

24

2.5 – Applications

4. The recipient decrypts the re-encrypted message using their private key, gaining
access to the plaintext without requiring the user’s direct involvement.

This procedure allows the delegatee to decrypt the message intended for the delegator
without accessing the original secret key. HPRE extends this functionality by enabling the
cloud service to apply homomorphic operations on the re-encrypted ciphertexts, enhancing
the utility of PRE in scenarios requiring encrypted computations.

In his thesis, Gentry outlines a straightforward method for implementing HPRE. This
involves the delegator creating two specific ciphertexts: one that homomorphically en-
crypts the delegator’s secret key using the delegatee’s public key, and another that en-
crypts the actual data using the delegator’s own public key. The proxy then applies the
decryption algorithm of the homomorphic encryption scheme to the data ciphertext, effec-
tively re-encrypting it for the delegatee’s public key. This process is essentially analogous
to the bootstrapping technique utilized in HE schemes.

Medical research
Collaboration in the medical research field among institutions of different countries can be
very complex. This happens because of different rules in personal data treatment, often
incompatible one with each other. HE allows to carry out studies while saving patients’
privacy. For example, the Cryptography Research Team at Microsoft has developed a
prototype system for assessing a patient’s cardiovascular risk using their encrypted health
information, as outlined in [45]. This system showcases a cloud-based service capable of
executing predictive algorithms on secure, encrypted medical data. Specifically, it utilizes
an algorithm to evaluate the risk of a heart attack by analyzing certain physical metrics.
The architecture of this service includes a client-side application on a personal device and a
cloud-based application hosted on the Microsoft Windows Azure platform. The client-side
application gathers health metrics from the user, encrypts this data, and then transmits
the encrypted information to the cloud service. There, the prediction algorithm processes
the encrypted data without ever decrypting it, ensuring privacy. The cloud service then
generates an encrypted output detailing the heart attack risk, which is sent back to the
client application. The user has the ability to decrypt this result to understand their
potential risk of experiencing a heart attack.

Search engines
Nowadays, maintaining privacy during web searches is a critical concern. Homomorphic
Encryption (HE) offers a solution by keeping the search content hidden from the search
engine. In this vein, Jie Li, Yamin Liu, and Shuang Wu introduced Pipa [46], a system
that leverages homomorphic encryption to protect user privacy. Pipa’s framework includes
a server that holds a database of compromised accounts, storing only the hash values of
account details rather than the actual usernames and passwords. To enhance search
efficiency within this potentially vast database, the data is segmented into smaller blocks
using the initial bits of each account’s hash value, known as the hash prefix. The size
of these blocks is carefully balanced to optimize homomorphic processing speed without
compromising user privacy.

25

Homomorphic Encryption

On the user side, a HE module is prepared during a pre-computation phase, generat-
ing necessary keys based on parameters received from the server. These keys are securely
stored on the user’s device.
When a user wants to check if his account details are compromised, the HE module calcu-
lates the hash of the username for the prefix and the full hash of the account information,
encrypting the latter with the homomorphic encryption scheme. A checkup request is
then sent to the server, including the hash prefix and the encrypted account hash.
Upon receiving a request, the server identifies a subset of hashes that match the provided
prefix, and then determines if the account hash is in the database. Importantly, the server
cannot decrypt the result.
Finally, the server returns the encrypted result to the user, where the HE module de-
crypts it and notifies the user of their account’s status. This process ensures that the
user’s account details remain private, with the server only learning minimal, non-sensitive
information.

26

Chapter 3

The Machine Learning
Paradigm

This chapter’s purpose is to introduce the main characteristics of Machine Learning (ML)
and some of the most used methods. In particular, section 3.1 presents the general ideas
behind ML, while section 3.2 describes the ML algorithms we decided to analyze.

3.1 Machine Learning Foundations
The primary objective of Machine Learning (ML) is to make predictions about an output
or target variable y based on an input vector x, whose components are called features.
For instance, x could denote the weight and smoking status of a pregnant woman, while y
might be the newborn’s weight. This predictive endeavor is encapsulated in a mathemat-
ical model g, known as the prediction function, which accepts x as input and produces
an estimate ŷ = g(x) for y. Essentially, g captures the dynamics between x and y, dis-
counting the influence of randomness and chance. From now on, we will denote vectors
and matrices in bold type, and numbers in italics.

If y is restricted to a discrete set, such as y ∈ {0, . . . , c − 1}, the task of predicting y
equates to categorizing x into one of c distinct classes, transforming prediction into a clas-
sification challenge. The precision of a prediction ŷ = g(x) relative to the actual response
y can be evaluated using a specific loss function L (y, ŷ). In classification scenarios, the
zero-one loss function, L (y, ŷ) := ✶{y /=ŷ}, i.e.

L (y, ŷ) =
I

1 if y /= ŷ

0 if y = ŷ,

is frequently utilized.
Among all the possible prediction functions g belonging to a certain class of functions F ,
the best one would be the minimizer of the loss, i.e.

g∗ = argmin
g∈F

L (y, g(x)).

27

The Machine Learning Paradigm

In this context, we usually have available a finite number of independent samples (x, y),
interpretable as realizations of two random variables and coming from the joint density
f(x, y). The optimal prediction function g∗ depends on the unknown joint distribution,
and our goal is to approximate it at best just by using our samples, which form the training
set, defined as follows

Definition 3.1.1 (Training set) The sample τ = {(x1, y1), . . . , (xn, yn)} is defined as
the training set with n examples.

All the vectors xi belong to Rp, where p is the number of features; thus, they can be
represented as (xi1, . . . , xip) and arranged to form the training matrix

X =

x11 . . . x1p

.
xn1 . . . xnp

 .

We represent the optimal approximation of g, based on a given criterion, using gτ , which
is derived from the training dataset τ . This scenario can be likened to a teacher-student
dynamic. In this analogy, the "teacher" presents n instances demonstrating the true
connection between the input xi and the output yi for i = 1, . . . , n, educating the student,
gτ , on making predictions for new inputs x′ without the teacher specifying the correct
output y′ (which remains unknown). These new inputs constitute the so-called test set:

Definition 3.1.2 (Test set) The sample τ ′ = {(x′
1, y′

1), . . . , (x′
n′ , y′

n′)} is defined as the
test set with n′ examples.

This framework is identified as supervised learning: the process typically involves using x,
a set of explanatory variables, to predict y. The name supervised is due to the fact that
the label of samples in the training set, called ground truth, is known.

In order to find the function gτ , we usually minimize the training loss with respect to
g, looking for the optimal function in a specific family F .

Definition 3.1.3 (Training loss) Given a training set τ = {(xi, yi)}n
i=1, the training

loss is defined as

ℓτ (g) = 1
n

nØ
i=1

L (yi, g(xi)). (3.1)

After having gτ , we can use it to make inference, i.e. we can apply it to the data in the
test set. We can then evaluate the predictions by computing the test loss.

Definition 3.1.4 (Test loss) For any outcome τ of the training data, given a prediction
function gτ and a test set τ ′, the test loss is

ℓτ ′(gτ) := 1
n′

n′Ø
i=1

L (y′
i, gτ (x′

i)).

28

3.2 – ML Algorithms

There are also other metrics to measure how a classifier is performing: the most frequently
employed is accuracy A, which is the fraction of correctly labelled samples in the test set,
i.e.

A = 1
n′

n′Ø
i=1

✶{yi = ŷi}.

This indicator is often preferred to the test loss because the former gives us a relative
measure, whereas the latter computes an absolute measure. Namely, a large accuracy
indicates a well-performing model, whereas a high test loss does not necessarily prove the
model to be poor. Some other very common metrics are:

• recall of a class c, which is the ratio between the number of correctly classified
samples of class c and the number of times that class occurs in the data sample.

• precision of a class c, which is the ratio between the number of correctly classified
samples of class c and the number of times the classifier has predicted that class.

• F1 score of a class c, which is the harmonic mean of recall and precision for that
class.

Note that these measures refer to a specific class, thus they are usually averaged through
all possible labels to have a general idea of the performance of the algorithm.

In this context, we need a way to choose training and test sets. Normally, these sets
are derived from the available data: assume we have N samples {(xi, yi)}N

i=1. We can
randomly partition this collection of samples into two parts and use one as the training
set, and one as the test set (this procedure is called hold-out, and a standard proportion
is 70%-30%). Then, if we want to establish the best among a certain class of learners,
we can employ a standard technique, named k-fold cross validation. It basically consists
in dividing the training set into k partitions. Then, k − 1 of these partitions are used as
the training set, and the remaining one as the test set, which is called validation set. The
model is trained on the former and tested on the latter, and the procedure is repeated k
times, choosing every time a different partition as the validation set, and the remaining
data as the test set. At the end, performance is evaluated by taking the average accuracy
of all k inferences (a tipical choice is k = 5 or k = 10). The idea is that in this way
we can rank models, discriminating with respect to the hyperparameters we use. If we
try different combinations of parameters, we will choose the one associated to the model
which scores the highest accuracy. Eventually, the best-performing method is employed
to make predictions on the test set.

3.2 ML Algorithms
After this general introduction, we are now ready to go into details of how some ML
methods work. More specifically, we are going to describe the following algorithms:

• K-Nearest Neighbors in subsection 3.2.1;

• Support Vector Machines in subsection 3.2.2;

29

The Machine Learning Paradigm

Figure 3.1. Working idea of the KNN algorithm

• Decision Tree and Random Forest in subsection 3.2.3.

All the following descriptions follow what is presented in [47].

3.2.1 K-Nearest Neighbors
Let τ = {(xi, yi)}n

i=1 be the training set, with yi ∈ {0, . . . , c − 1} and xi ∈ Rp, and let q
be a new feature vector. The K-Nearest Neighbors (KNN) method works as follows:

1. Sort the training data by closeness to q in some distance; let x(1), . . . , x(n) be the
ordered feature vectors.

2. Choose the subset of τ that contains the K feature vectors that are closest to q,
say τ(q) := {(x(1), y(1)), . . . , (x(K); y(K))}. The choice of this parameter K is quite
important, because it directly affects the label to be assigned to q.

3. Classify q by majority vote, according to the most frequently occurring class labels
in τ(q). If two or more labels receive the same number of votes, the feature vector
is classified by selecting one of these labels randomly with equal probability.

Figure 3.1 gives a graphical interpretation: as we can see, with K = 3 the new point,
represented by the blue square with a question mark, would be classified as a green
triangle, whereas with K = 7 it would be labelled as a red star. For this reason, K has to
be properly tuned: a good choice is tipically a number which is not too small (otherwise
the model is very sensitive to outliers) nor too high (because this can lead to underfitting,
i.e. the model can be unable to generalize to new data). The new sample can be also
labelled via a weigthed vote procedure, where the influence on the output class of each

30

3.2 – ML Algorithms

Figure 3.2. SVM plane division

sample x(i) is inversely proportional to its distance from q.
There exist many possible measures of distance, such as:

• the Manhattan distance ||x(i) − q||1 =
qp

j=1 |x
(i)
j − qj |;

• the Euclidean distance ||x(i) − q||2 =
ñqp

j=1(x(i)
j − qj)2;

• the Chebyshev distance ||x(i) − q||∞ = supj=1,...,p |x
(i)
j − qj |.

3.2.2 Support Vector Machines
The next method we want to analyze is Support Vector Machines (SVM): suppose we are
given the training set τ = {(xi, yi)}n

i=1 where each response yi can be -1 or 1, and we wish
to construct a classifier taking those values. We are looking for a function

g : Rn → R
x → θ0 + θT x,

which minimizes
ℓτ (g) = 1

n

nØ
i=1

max{0, 1− yig(xi)}.

After having found the minimizer gτ (x), we are simply taking as a classifier sgn(gτ (x)):
this is a typical binary classification task.

31

The Machine Learning Paradigm

Let us give a geometric interpretation to this problem: the data {xi}n
i=1 can be seen as

points in Rp, where p is the number of features. For the sake of simplicity, let us initially
assume the points are linearly separable, i.e. there exists an hyperplane dividing them
into two different classes. The idea of SVM algorithms is to find the best hyperplane,
which is the one maximizing the gap between it and the points, as shown in Figure 3.2.
More formally, let us define

gτ (x) = θ∗
0 + θ∗T x,

where θ∗ is such that gτ (x) = 0 is the best separator hyperplane, called decision boundary
(the red line in the image). Then, the two hyperplanes gτ (x) = 1 and gτ (x) = −1
represent the margins (the dotted lines in the image). The points lying on the margins
are usually called support vectors (SV); without loss of generality, we can consider θ0 = 0.
The scalar product θT x can be written as:

θT x = ||θ||2||x||2 cos θ = r||θ||2,

where r is the length of the projection of the support vectors onto θ. Since for the support
vectors θT x = ±1, then r = 1

||θ||2 , and the margin is simply 2r. Therefore, if we want to
maximize the margin, we will have to solve

min
θ

1
2

pØ
j=1

θ2
j

s.t. yi(θT xi) ≥ 1 ∀i,
(3.2)

In this formulation, the object to be minimized is often called objective function. The
constraint is due to the following:

• if θT xi > 1, it means that the point i is above the margin gτ (x) = 1 in the image,
so it has to be classified with yi = 1;

• if θT xi < −1, it means that the point i is below the margin gτ (x) = −1 in the image,
so it has to be classified with yi = −1.

The optimal solution is usually found by employing the so-called Lagrange function. First
of all, let us introduce the following theorem.

Theorem 3.2.1 (Lagrange multipliers) Consider the optimization problem

min
θ

f(θ)

s.t. g(θ) = 0m,

h(θ) > 0q,

with g : Rp → Rm and h : Rp → Rq, where m is the number of equality constraints and q
the number of inequality constrains. Let us define

L(θ, α, β) = f(θ) + αT g(θ) + βT h(θ)

32

3.2 – ML Algorithms

as the Lagrangian function, where α ∈ Rm and β ∈ Rq. If ∇f(θ) and ∇g(θ), and
∇f(θ) and ∇h(θ) are linearly independent, then there exists a unique vector of Lagrange
multipliers (α∗, β∗) such that

∇θL(θ∗, α∗, β∗) = 0
∇αL(θ∗, α∗, β∗) = 0
∇βL(θ∗, α∗, β∗) = 0.

If we solve the following optimization problem, named dual problem

max
α,β

min
θ

L(θ, α, β)

we get (θ∗, α∗, β∗): strong duality states that if there exists a point θ strictly satisfying
all constraints in (3.2), (α∗, β∗) coincides with the Lagrange multipliers vector, and θ∗ is
the solution of (3.2). This is true only if the initial problem is convex, such as in the case
we are currently analyzing.
In this context, after having solved the dual problem, we obtain

gτ (x) =
Ø

i∈SV

α∗
i yi⟨xi, x⟩+ θ∗

0, (3.3)

where α∗
i is the Lagrange multiplier associated to the i-th constraint and

θ∗
0 = 1
|SV |

Ø
i∈SV

yi −
Ø

j∈SV

α∗
j yj⟨xixj⟩

 .

Unfortunately, this model is utopic, because it assumes that there are no points in the
neutral region {x : −1 < gτ (x) < 1}. Plus, the linear separability between points is not
guaranteed at all.

Since these assumptions may lead to an unfeasible problem, we can introduce some
slack variables ei > 0 for i = 1, . . . , n and modify (3.2) as follows:

min
θ,e

1
2

pØ
j=1

θ2
j + Cf(e)

s.t. yi(θT xi) ≥ 1− ei ∀i,
(3.4)

where f(e) is a merit function, which penalizes every unperfect classification by a factor
C, i.e. a parameter to be tuned. Proceeding like this, we are allowing the model for
misclassification error if ei > 1, and for leaving some points in the neutral region if
ei ∈ [0,1]. The name of the classifier depends on the form of the merit function: if it is
quadratic we talk about Least Square Support Vector Machines (LSSVM), if it is linear
we refer to the method as Linear Support Vector Machines (LSVM). In this two cases, we
usually have that f(e) = 1

2
qn

i=1 e2
i and f(e) =

qn
i=1 ei, respectively.

Nevertheless, even with this alternative formulation, we might achieve a poor perfor-
mance. This is because there could exist a different coordinate system where it is easier to

33

The Machine Learning Paradigm

Figure 3.3. Sketch of a decision tree

find a hyperplane separating the data. In this case, we need a feature map Φ to represent
the points in a new space. For example, if xi ∈ R2:

Φ : R2 → R3

(xi1, xi2)→ (xi1, xi2, x2
i1 + x2

i2)

If the transformation is not complex, it is enough to run the algorithm on {Φ(xi)}n
i=1,

but sometimes this can result to be very expensive. For this reason, instead of computing
gτ using ⟨Φ(xi), Φ(x)⟩, we replace this dot product with K(xi, x). The purpose of this
function, named kernel, is to calculate the dot product without having to evaluate Φ.
Some of the most popular kernels are:

• the polynomial kernel K(xi, xj) = ⟨xi, xj⟩q;

• the Radial Basis Function (RBF) kernel K(xi, xj) = exp
1
− ||xi−xj ||22

2σ2

2
(σ is a hyper-

parameter to be tuned);

• the cosine similarity kernel K(xi, xj) = xT
i xj

||xi||||xj || .

3.2.3 Decision Tree and Random Forest
The purpose of a binary decision tree (DT) is to partition the feature space X into a
certain number of regions by using some decision or splitting rules, expressing a condition
on a specific feature. Tipically, given a sample xi, the possible decision rules are s(xi) =
✶{xij ≤ k} for numerical features and s(xi) = ✶{xij ∈ S} for categorical ones, where
S is a subset of the support of feature j. The name of this classifier is due to the fact
that every decision rule can be represented as a node of a tree, whose leafs are the above-
mentioned regions of X . A typical example of a decision tree is illustrated in Figure 3.3,
where seawater corrosion of stainless steel is described in terms of:

34

3.2 – ML Algorithms

• the type of stainless steel alloy,

• the depth in meters under the sea surface at which the corrosion took place,

• the period in days over which the metal alloy was exposed to seawater,

• the maximum depth in millimeters of pitting that was observed,

• the depth in millimeters to which crevices formed in the metal.

The class variable is the amount of corrosion that occurred, i.e. Low, Medium or High.
Let us denote the set of leaf nodes by W . The overall prediction function g that

corresponds to the tree can then be written as

g(x) =
Ø

w∈W
gw(x)✶{x ∈ Rw}, (3.5)

where ✶ denotes the indicator function, Rw is the subregion of X associated to the leaf
w and gw is the regional prediction function. In a classification setting with class labels
0, . . . , c− 1, the regional prediction function for w ∈ W is chosen to be:

gw(x) = arg max
z∈{0,...,c−1}

pw
z ,

where pw
z is the proportion of feature vectors in Rw that have class label z. For example,

in Figure 3.3 the rightmost leaf is associated with Class High, implying that the majority
of training samples with

• maximum pit depth greater than 110 mm;

• depth beneath surface greater than 1600 m;

• crevice depth greater than 50 mm

belong to this class.
For the construction of the tree, given the training set τ = {(xi, yi)}n

i=1, the goal is always
to minimize the training loss (3.1). Since g is in the form (3.5), we have that:

ℓτ (g) =
Ø

w∈W

1
n

nØ
i=1

✶{xi ∈ Rw}L (yi, gw(xi)).

The key aspect in the loss minimization is the choice of the splitting rules. Taking an
arbitrary training subset σ ⊆ τ , a splitting rule divides it into two subdatasets σT (the
one for which the proposition of the rule is true) and σF (the other one). Let y∗

T be the
most prevalent class in σT and y∗

F be the most prevalent class in σF . Using the indicator
loss and a constant regional prediction function, the best splitting rule minimizes

1
n

Ø
(x,y)∈σT

✶{y /= y∗
T}+ 1

n

Ø
(x,y)∈σF

✶{y /= y∗
F}. (3.6)

35

The Machine Learning Paradigm

Figure 3.4. Scheme of a random forest [48].

The first split is performed on τ with the goal of minimizing (3.6), and new splits are
carried out until a certain stopping criteria is satisfied, e.g. a threshold on the maximum
depth of the tree.
The reason why (3.6) has to be minimized is the following: let us say that pz is the
proportion of data points in σ with label z. The quantity

pσ = 1− max
z∈{0,...,c−1}

pz

measures the diversity of the labels in σ and is called the misclassification impurity.
Consequently, (3.6) is the weighted sum of the misclassification impurities of σT and σF ,
with weights |σT |/n and |σF |/n, respectively. Thus, the goal is to have rules which split σ
less uniformly as possible: pσ reaches its maximum value when every label has proportion
1/c, its minimum, i.e. 0, when all samples in σ have the same label.
Instead of minimizing the misclassification impurity to decide how to split a dataset, it
is possible to utilize other impurity measures that only depend on the label proportions,
such as the Gini Impurity (GI) index:

GI = 1
2

A
1−

c−1Ø
z=0

s2
z

B
.

Decision trees serve as a building block for the Random Forest (RF) classifier, which
consists of B trees, where the parameter B must be carefully chosen. Tipically, the larger
this number, the better the performance, but if it is too high, the computational effort
becomes really heavy. For this reason, this parameter is often chosen pre-training, by
trying some values to find the best tradeoff between time needed and accuracy. However,
each tree b = 1, . . . , B is trained on a dataset T ∗

b , composed by a random sample of the

36

3.2 – ML Algorithms

original observations. Furthermore, every tree uses only a randomly selected subset of
⌊√p⌋ features for the splitting rules, where p is the total number of features. For the
inference phase, every tree will make a prediction, and then the label will be assigned via
majority vote: the most frequent class will be selected. (see Figure 3.4).

37

38

Chapter 4

Fully Homomorphic
Encryption for Machine
Learning

FHE and ML can work together in a powerful way to enable secure computation on
encrypted data. This collaboration is particularly important in scenarios where sensitive
data needs to be analyzed without compromising privacy.
In this chapter, we are going to analyze the applications of some ML methods, particularly
focusing on the advantages and disadvantages of the usage of FHE. First of all we are
going to introduce the working framework in section 4.1, and after that we will present the
solution of some scientific papers in this field. More in detail, the chapter is articulated
as follows:

• In section 4.2 we present the solutions proposed by [49][50][51][52] for an efficient
homomorphic KNN inference;

• In section 4.3 we describe how [53][54][55][56][57] integrate FHE and SVM;

• In section 4.4 we show the differences between the homorphic implementation of
Decision Tree and Random Forest by [58] and [59].

4.1 Framework
The context we are going to analyze features two main protagonists:

• A client, who has some data and needs to perform some operations on it;

• A server or Service Provider (SP), which can carry out some complex tasks and is
able to store a large quantity of data.

39

Fully Homomorphic Encryption for Machine Learning

Figure 4.1. Working idea of the client/server architecture. PK and SK stand for public
and secret key, pt and ct for plaintext and ciphertext respectively

These two parties can interact one with each other in different ways. For instance, the
client can use the SP just to store his data, but can also ask him to perform some compu-
tations on it. In the latter case, a paramount concern is how to make SP do that without
revealing the client’s data, and this is where FHE comes to play. In particular, we are
going to study how SP can classify encrypted data using some ML tools. The standard
process is the following:

1. The SP trains a public ML model on some public data. After the training phase, the
hyperparameters of the model are kept secret, therefore only the SP knows them;

2. The client sends to SP a query Enc(x) encrypted with a FHE scheme;

3. The SP performs encrypted computations, applying a certain function f to the
ciphertext, thus obtaining f(Enc(x));

4. The SP sends back the encrypted response to the client, which decrypts it to get the
result f̃(x).

The whole process is summarized in Figure 4.1. In some applications, the third point is
not entirely up to SP, depending on the type of computations to be done. Furthermore,
some studies also developed a private training phase, where even the training data is

40

4.1 – Framework

encrypted. This is possible, but it drastically impacts the overall computational overhead.
Finally, some tasks can be very challenging to address while operating homomorphically,
e.g. comparison or conditional operations. For this reason, sometimes SP does most of
the job, but the last part of inference is left to the client.

Difficulties
Mathematical structures and cryptographic primitives of FHE are already computation-
ally intensive by themselves. When applied to ML, the situation gets worse, and can
become unsubstainable depending on the ML algorithm or on the hardness of classifi-
cation (for example, this is the case while dealing with images). For instance, a simple
division in plaintext might correspond to several underlying cryptographic operations in
the encrypted domain.

For this reason, at its first lights, the application of FHE to ML was not possible at all:
the homomorphic algorithms, for example [6], performed an encrypted operation about 1
billion times slower than the time needed to do it on plaintext. Year after year, the gap has
been progressively reduced: FHE algorithms can still be 4 orders of magnitudes slower
than standard encryption schemes, but applications are possible. This enhancement is
due to some new brand solutions developed in the last years, e.g. hardware acceleration.
One example in this sense is the work presented by [60], where they introduce the first
programmable accelerator. This product is a 10 nm unit, which is tailored to complex
operations on long vectors and challenging data movements, i.e. the main characteristics
of FHE. It demonstrates sensible speedups over state-of-the-art software implementations:
this idea and other methods, such as [61] and [62], paved the way to new FHE applications.

Storage problems must also be taken into account: FHE ciphertexts are often much
larger than their plaintext counterparts. The size of the ciphertexts grows significantly
due to the need to encapsulate enough information to support multiple homomorphic
operations without losing the ability to decrypt correctly: the larger the ciphertext, the
higher the memory demand and increased computational overhead. Furthermore, in order
to achieve a high level of security, FHE schemes use large parameters (e.g., large key sizes),
which make each cryptographic operation even more expensive in terms of computation
and memory. More specifically, in the client-server framework, if every clients send a
massive quantity of data to the server, the cost of whole process becomes unbearable.
This issue can be addressed by Hybrid Homorphic Encryption (HHE). The main idea
behind HHE is the following: instead of encrypting the data with HE schemes, encrypt
the data with a symmetric cipher and send the ciphertexts to the server. The server
then first homomorphically performs the symmetric decryption circuit to transform the
symmetric ciphertext into a homomorphic ciphertext and then proceeds with performing
the actual computations. This procedure trades bandwidth requirements with a more
expensive computation on the server and requires that the data holder first sends the
symmetric key encrypted with the HE scheme [63] [64].

Noise also plays a significant role, because FHE schemes introduce it into the cipher-
texts to ensure security. Every homomorphic operation (addition or multiplication) in-
creases this noise, whose management requires additional computational resources. Boot-
strapping is usually needed to control the growth of the error of the encrypted data, but

41

Fully Homomorphic Encryption for Machine Learning

it is computationally intensive and significantly contributes to the overall cost. However,
if the noise grows too large, it can lead to incorrect decryption, affecting the results of the
ML algorithm.

Accuracy of methods combining FHE and ML can be reduced compared to standard
ML algorithms, because of many reasons. First of all, FHE schemes often operate on
fixed-point numbers with limited precision or on integers by quantization, which can lead
to loss of accuracy in computations that require floating-point arithmetic. This is be-
cause quantization can disrupt the algebraic structures supported by FHE by introducing
non-linearities and discontinuities in the data representation. This incompatibility can
worsen the performance of homomorphic operations, as the schemes may not handle the
quantized values as efficiently or accurately as they do with the unquantized ones. Plus,
certain mathematical operations, such as division or non-linear functions, are not directly
supported by FHE and must be approximated. These approximations can introduce er-
rors that degrade the performance of ML models. It is worth underlining that this loss in
accuracy is due to implementative reasons, because conceptually there is no theoretical
motivation. Indeed, mathematical-wise a standard ML algorithm should be as accurate
as a FHE - ML method.

Model complexity is also a major concern: in order to make algorithms compatible
with FHE, some methods might need to be simplified. For instance, deep neural networks
with many layers might be replaced with shallower networks, leading to reduced accuracy.
In general, FHE-friendly models often avoid or approximate operations that are hard to
implement efficiently with FHE.

Finally, quantization processes can lead to loss of information and worse performance.
These methods essentially consist in the conversion of continuous features into discrete val-
ues to fit the integer-based arithmetic of FHE. Unfortunately, they can introduce rounding
errors in the ciphertexts, which accumulate during the multiple homomorphic operations,
leading to significant deviations from the true result.
Then, the quantization process can affect the noise in the ciphertexts. When values are
quantized, the small errors introduced by rounding are magnified through homomorphic
operations, potentially causing the noise to grow faster than it would without quantiza-
tion. This can result in the ciphertext becoming too noisy to decrypt correctly after a
certain number of operations, thus limiting the depth of feasible computations.
Furthermore, quantization limits the range of representable values, potentially causing
overflow or underflow issues during computations. This constraint can restrict the types
of operations that can be performed homomorphically and reduce the overall functionality
of the scheme.

For all these reasons, it is clear that all the presented ML algorithms need some adjust-
ments when data necessitates protection from a FHE scheme. We noticed that TFHE [25]
and CKKS [26] are the mostly employed schemes when coping with ML, so we are going
to focus on these two. In general, in the following sections we are going to analyze some
issues that may arise in the transition to the encrypted domain homomorphic context, and
present some of the proposed solutions. We will study both encrypted and unencrypted
algorithms, trying to understand in which contexts it is worth to lose time and accuracy
in order to gain privacy and security.

42

4.2 – Homomorphic KNN

Algorithm 1 SquaredEuclideanDistance(X,Y)
Input: ciphertext arrays X = (x1, . . . , xn), Y = (y1, . . . , yn)
Output: ciphertext cd

D ← zeros(n)
for i = 1, . . . , n do

s← Add(X[i],−Y [i])
D[i]←Mult(s, s)

end for
cd = D[1]
for i = 2, dots, n do

cd ← Add(cd, D[i])
end for

We want to precise that the following mentioned papers have been preferred with respect
to others on the same topics because of completeness and correctness. In the research
process, we actually found a high number of papers on these topics, but we chose only
the most recent ones.

4.2 Homomorphic KNN
When dealing with homomorphic inference of a KNN algorithm, the three most problem-
atic aspects are distances computation, distances sorting and majority vote.

One of the main obstacles to face when calculating distances is the type of metric to use.
KNN offers a few metrics to operate (such as those listed in subsection 3.2.1), but some
of them are more suitable to FHE than others. More specifically, every distance measure
featuring a division needs additional effort to approximate it. For this reason, many
studies [49][50][51][52] avoid this complication by using the squared Euclidean metric only.
This metric features just sums and multiplications, which are far easier to be computed
homomorphically.

Given a training set τ , for a new sample q and a point xi ∈ τ , both belonging to Rp,
let us define cq = Enc(q) and ci = Enc(xi). The squared distance in the plaintext domain
is

di := d(xi, q) =
pØ

j=1
(xij − qj)2. (4.1)

In [49], this formula is homomorphically computed by Algorithm 1, where Add and Mult
are to be intended as the homomorphic sum and multiplication.

After having computed all the distances, a major concern is how to put them in ascend-
ing order, such that we can select the K closest points to q to make inference. In order
to do that, we need to compare distances one by one, thus we have to use a comparison
method. Cheon et al. [50] presented a solution based on polynomial composition which
is based on the following: let the comparison function comp(a, b) and the sign function

43

Fully Homomorphic Encryption for Machine Learning

sign(x) be defined as

comp(a, b) =

1 if a > b
1
2 if a = b

0 if a < b

, sign(x) =

1 if x > 0
0 if x = 0
−1 if x < 0

.

It holds that
comp(a, b) = sign(a− b) + 1

2 .

The idea is that we can compare two numbers via this relation, approximating the sign
function with a polynomial p(x) = f r

n(x) ◦ gs
n(x), where the powers stand for the r or

s-times composition, whereas fn and gn are polynomials of degree n. The authors have
proved that p(x) converges to sign(x) if and only if r and s are high enough, and if the
two polynomials satisfy some properties. Namely:

• fn(−x) = −fn(x) ∀x;

• fn(1) = 1, fn(−1) = −1;

• fn(x) is convex in [−1,0] and concave in [0,1],

and

• gn(−x) = −gn(x) ∀x;

• ∃γ ∈ (0,1) : x < gn(x) ≤ 1 ∀x ∈ (0, γ);

• ∃τ ∈ (0,1) : gn([γ,1]) ⊆ [1− τ,1].

The authors of the paper show that there exists a unique polynomial fn(x) meeting all
the three needed requirements, whereas gn(x) is not unique, but the optimal choice is the
one that minimizes γ.

Polynomial approximation is one of the possible ways to address the problem, but there
are other alternatives. Indeed, the approach described in [51] is completely different. In
this paper, the authors take into considerations the differences between all pairs of possible
distances, calculated by (4.1), which can be written as follows:

di − di′ =
pØ

j=1
(x2

ij − x2
i′j)− 2

pØ
j=1

qj(xi′j − xij).

In the encrypted domain, once we compute this quantity by composing the necessary
homomorphic operations, it is possible to define

δij =
I

1 if comp(dj , di) = 1
0 otherwise

.

We can build a matrix δ ∈ Rn×n containing all these values; by summing its rows, we get
the vector

(δ1·, . . . , δn·), with δi· =
nØ

j=1
δij ∈ [0, n− 1].

44

4.2 – Homomorphic KNN

Figure 4.2. Encrypted majority vote [52]

The distance for which every comparison to another distance yields a 0 will correspond
to δi· = 0, i.e. the greatest distance. Respectively, the smallest distance has an associated
δi· equal to n − 1. Thus, this vector will give us the ordered distances, which will allow
us to choose the K nearest neighbors for the new point q.
Unfortunately, the method has a limitation: in an homomorphic setting we cannot add
an unlimited amount of ciphertexts together, because the computational cost of the boot-
strapping procedure can become unbearable in high dimensions.
It has to be mentioned that this idea has been implemented on the TFHE scheme, so
in order to make it suitable for that, every measure has to be in a certain range. For
example, [52] exploited this procedure, rescaling the distances in [−1

2 , 1
2].

Finally, majority vote can cause some troubles because it is performed by comparisons,
thus it needs conditional operations to be carried out. Unluckily, there is no straight-
forward homomorphic-friendly method to deal with "if" conditions, but there are some
ways to get around the obstacle.

The simplest way is to leave the last part of inference to the client. This means that
the user receives from the server the labels of the K points in the neighboorhood of q,
he decrypts this information and then chooses the most common class. This method is
the one chosen by [49], which also uses the above-descripted polynomial approximation to
sort distances. This approach results to be the fastest, but of course it sacrifices privacy,
because the client becomes aware of which points compose the neighborhood of q. For
this reason, [52] proceedes by making the server carry out the majority voting process in
an encrypted manner. Initially, the client encodes the labels using one-hot encoding. This
means that each sample is associated to a vector with l entries, where l is the number of
possible labels. The labels are ordered in some way, and each vector will have 1 in the
position corresponding to the label of that sample, 0 everywhere else.
After that, the SP does its computations to establish the K closest points to q, and
then defines a vector which serves as a mask to indicate which samples compose the
neighborhood. With both the mask and the one-hot encoded label matrix available, an
AND operation can be performed between the mask and each column of the label matrix,

45

Fully Homomorphic Encryption for Machine Learning

Reference Scheme Problem Solution
[49] CKKS Distances computation Homomorphic Euclidean distance
[50] CKKS Distances comparison Polynomial approximation
[51] TFHE Distances sorting Delta matrix
[52] TFHE Private majority vote Encrypted procedure

Table 4.1. Summary of Homomorphic KNN papers

Figure 4.3. Accuracy of unencrypted vs encrypted KNN [52]

as illustrated in Figure 4.2. This results in a matrix A, where Aij equals 1 if individual i
is among the k-nearest neighbors and belongs to class j. By summing the columns of this
matrix, the frequency of each class can be determined. The process allows for the return of
only a vector with these frequencies, ensuring no information leakage about which points
belong to the neighboorhood of q.

To conlcude, Table 4.1 summarizes all the presented issues with the relative solution.

Performances

Regarding the performance of the method, these studies enlight that the number of sam-
ples heavily affects the execution time. In particular, [49] shows that increasing the size
of the dataset, the time consumed in the distance sorting phase becomes very high and
dominant. More in detail, 9 minutes are required with 8 samples and 11 hours with 17
samples (see Table 4.2 for more details). On the other hand, the parameter K does not
seem to have a considerable influence. For what concern accuracy, [52] tests the algorithm
on different known datasets, such as Iris [65], Breast Cancer [66], Heart [67], Wine [68],
Glass [69], and MNIST [70], finding only a small performance drop, as can be spotted in
Figure 4.3 (probably because these data are quite simple and very well preprocessed). A
big difference in memory usage has also to be reported: each ciphertext encrypting one
value of the dataset in [49] occupies approximately 51 MB. Considering a scenario with 16
samples, the total size would be 10.3 GB; in contrast, the original dataset in .csv format
is only 649 bytes.

46

4.3 – Homomorphic SVM

Samples Encryption Distances Comparisons Sorting Total time
8 0 : 00 : 49 0 : 02 : 06 0 : 14 : 57 0 : 08 : 58 0 : 26 : 50
9 0 : 00 : 55 0 : 02 : 39 0 : 22 : 27 0 : 17 : 38 0 : 43 : 39
10 0 : 01 : 01 0 : 03 : 10 0 : 28 : 12 0 : 27 : 24 0 : 59 : 48
11 0 : 01 : 10 0 : 03 : 44 0 : 40 : 10 0 : 46 : 54 1 : 31 : 59
12 0 : 01 : 14 0 : 04 : 20 0 : 50 : 45 1 : 12 : 35 2 : 08 : 56
13 0 : 01 : 18 0 : 04 : 49 1 : 02 : 23 1 : 51 : 31 3 : 00 : 01
14 0 : 01 : 28 0 : 05 : 43 1 : 19 : 31 2 : 52 : 25 4 : 19 : 07
15 0 : 01 : 39 0 : 05 : 51 1 : 38 : 49 4 : 16 : 46 6 : 03 : 05
16 0 : 01 : 42 0 : 06 : 41 1 : 59 : 44 6 : 19 : 01 8 : 27 : 08
17 0 : 01 : 49 0 : 07 : 58 2 : 33 : 37 10 : 51 : 28 13 : 34 : 52

Table 4.2. Execution time for KNN homomorphic inference featuring polynomial ap-
proximation for comparison and sorting (time is measured in HH:MM:SS) [49]

4.3 Homomorphic SVM
This ML algorithm does not include any particular difficulties in the inference phase, ex-
cept for the evaluation of the sign function. In all the analyzed studies [53][54][55][56][57]
this part is left to the user, which receives Enc(gτ (x)) from the server, and computes the
sign of this expression in the plaintext domain. Essentially, the only operation the SP has
to do is the evaluation of the objective function, by using the optimal parameters coming
from the unencrypted training phase.
At this stage, an important question is how to encrypt the feature vector. The most intu-
itive solution is to encrypt each component of the feature vector in a separate ciphertext
element, but this would impose very large computation requirements. For instance, if the
client needs to encrypt and communicate m ciphertexts to the SP, the latter necessitates
m homomorphic multiplications and m − 1 homomorphic additions to compute the dot
product in the decision function.

Luckily, the CKKS scheme offers a smarter technique, thanks to Smart and Vercauteren
[54]. Their method allows one to encode multiple messages in one plaintext element that
can be encrypted to generate only one packed ciphertext element. More concretely, an
array of up to t = n/2 complex numbers, where n is a parameter of the scheme, can be
encoded as one plaintext element. One may view the plaintext or ciphertext elements
as a container with a fixed number of slots. In each slot, one input message (a numeric
value) can be stored. Homomorphic addition or multiplication of two packed ciphertexts,
say a = Enc(u1, . . . , ut), and b = Enc(v1, . . . , vt) results in component-wise homomorphic
addition or multiplication. In order to work, the size of feature vectors must not be more
than t.

This method comes into play while computing gτ (x) in the encrypted domain: the
basic procedure is to pack each SV xi in one plaintext element. Afterwards, x̃i = Enc(xi)
and x̃ = Enc(x) are multiplied element-wise, and finally the components of the resulting

47

Fully Homomorphic Encryption for Machine Learning

Figure 4.4. Sum of the components of a vector [53]

vector are summed up to get the dot product in (3.3). These last procedure is called total
sum, and it is well explained by Figure 4.4: at the beginning, the ciphered vector ct is
summed to a vector c, which contains the same elements as ct, right-shifted of 1 position.
The same process is then repeated, but the vector c is obtained performing a shift of 2j

positions, where j identifies the iteration number. At the end, we will get a vector whose
components are all equal to the desired sum.

In fact, [53] also developed an ultra-packed plaintext/ciphertext strategy for LSVM,
capable of packing multiple support vectors in one plaintext element. Firstly, they com-
pute η = 2⌈log2 p⌉ and create a vector that contains N = t

η support vectors. In this vector,
support vector xi is stored at index iη for i = 0, . . . , N − 1, and any unpopulated compo-
nent is filled with zeros. The client is also required to create a vector of linearly packed
η clones of x similar to the way xi is packed. The vector will be encrypted and sent to
the server for homomorphic evaluation of LSVM prediction. By doing so, it is possible to
compute η addends of the sum in (3.3) at a time, speeding up the whole process. This
process is carried out by employing the partial sum algorithm, as shown in Figure 4.5. In
the image, each feature vector xi belongs to R3, resulting in η = 4, thus every vector is
padded by adding a zero at the end. Then, the vectors are concatenated to form ct, and
after these preliminary operations, c is built and summed to ct analogously as in total
sum. At the end, we will have the sum of the components of vector xi in position (iη−1).

Some studies have also explored the possibility of performing training in the ciphertext
domain. For example, [55] decided to use SVM for the so-called fair learning task. This
basically consists in establishing the influence of some sensitive features on classification,
determining the fairness of the model. [56] defines how this characteristic can be measured:
each sample has an associated sensitive feature z ∈ {0, 1} (e.g. gender). In this case,
fairness is expressed as the absence of disparate impact.

48

4.3 – Homomorphic SVM

Figure 4.5. Sum of the components of multiple vectors (p = 3, η = 4) [53]

Definition 4.3.1 (Disparate impact) A binary classifier does not suffer from disparate
impact if the probability that a classifier assigns a user to the positive class, ŷ = 1, is the
same for both values of the sensitive feature z, i.e.,

P[ŷ = 1|z = 0] = P[ŷ = 1|z = 1].

The framework in [57] enables to measure the disparate impact and to train a fair LSSVM
classifer by forcing a covariance-based constraint. Namely, the covariance measure for a
sensitive feature z and a decision function f(x) for a dataset τ is:

Covτ (z, f(x)) = 1
|τ |

Ø
(z,x)∈τ

(z − z)f(x).

where z denotes the average of z. The fairness constraint is simply |Covτ (z, f(x))| ≤ c.
In this context, the LSSVM minimization problem (3.2) has to be modified. From now
on, we will be writing x to not overcomplicate the notation, but we remind that all this
procedure has to be carried out in the encrypted domain, so it is actually run on Enc(x).
Given the column vectors zj ∈ Rn for j = 1, . . . , s, where s is the number of sensitive
features, we can define the matrix Z = [z1, . . . , zj] ∈ Rn×s, and solve:

min
θ,e,d

1
2

pØ
k=1

θ2
k + C1

2

nØ
i=1

e2
i + C2

2

sØ
j=1

(ndj)2

s.t. yiθ
T ϕ(xi) = 1− ei, i = 1, . . . , n

dj = 1
n

nØ
i=1

(zij − zj)θT ϕ(xi), j = 1, . . . , s,

with zj =
qn

i=1 zij and C1, C2 > 0.
We can notice some differences with respect to (3.2): the third sum in the objective
function and the new constraint are needed to regularize the magnitude of disparate

49

Fully Homomorphic Encryption for Machine Learning

Reference Scheme Problem Solution
[53] CKKS Ciphertext management Ultra packing technique
[54] CKKS Encode multiple messages Standard packing technique
[55] CKKS Fair learning Reformulation of SVM problem
[56] CKKS Fairness formalization Disparate impact
[57] CKKS Fairness management Covariance measure

Table 4.3. Summary of Homomorphic SVM papers

impact, in order to satisfy the covariance constraint. This optimization problem is solved
by employing the Lagrangian function with multipliers α ∈ Rn and β ∈ Rs:

L(θ, e, d; α, β) = 1
2 ||θ||

2 + C1

2 ||e||
2 + C2

2 ||nd||2+

+
nØ

i=1
αi(yi − θT Φ(xi)− ei) +

sØ
j=1

βj(z̃T
j Φθ − ndj),

where Φ = [Φ(x1), . . . , Φ(xn)]T and z̃j = zj − zj✶n. Using the optimality conditions of
Theorem 3.2.1 we get the linear system

M

5
α
β

6
=
C
K + 1

C1
In −KZ̃

−Z̃T K Z̃T KZ̃ + 1
C2

Is

D 5
α
β

6
=
5
y
0

6
, (4.2)

with Z̃ = [z̃1, . . . , z̃s] and Kij = Φ(xi)T Φ(xj) ∈ Rn×n. At this point, we have to solve this
linear system in the homomorphic domain. Lagrange multipliers theory ensures existence
and uniqueness of the solution, thus a possible way to proceed might be to invert the
matrix M utilizing the gradient descend method [71], but the computational effort would
be too high. Since we are in the encrypted domain, we want to simplify the system as
much as possible to solve it in a reasonable time. Indeed, matrices multiplications require
a huge number of sums and multiplications to be performed if the involved factors are
large, sensibly increasing the overall computational overhead. For this reason, the authors
of this paper explored some techniques to reduce the number of equations in (4.2).

One of the possibilities is the employment of the Schur complement [72], which is
essentially a reformulation of the inverse matrix. In the process, inverse matrices are
computed by using Goldschmidt’s division algorithm [73] if s = 1, Newton-Schulz iterative
algorithm [74] if s > 1.

Although this algorithm significantly reduces the number of matrix multiplications,
the computational cost can still pose a challenge when n is very large. To address scala-
bility, the authors introduce a low-rank approximation technique for the n× n matrices.
Using eigendecomposition, we express K = VΛVT , where V = [v1, . . . , vn] ∈ Rn×n is
an orthogonal matrix composed of the eigenvectors of K, and Λ is a diagonal matrix
containing the eigenvalues λ1 ≤ · · · ≤ λn.
The key is approximating K using the its q largest eigenvalues, selecting the correspond-
ing p eigenvectors. This allows to replace the multiplications between n × n matri-
ces and the centered sensitive attribute matrix Z̃ ∈ Rn×s with VT

(p)Z̃ ∈ Rp×s, where

50

4.3 – Homomorphic SVM

Threads Latency Speed up
1 29.89 23.01
2 15.30 44.95
4 8.14 84.49
8 4.33 158.83
16 2.33 295.17
27 1.64 424.01
32 1.51 419.36
52 1.25 550.20

Table 4.4. Performance analysis of Homomorphic SVM with ultra-packing in terms of
number of threads versus average prediction latency [53]

Figure 4.6. SVM output for different datasets [55]

V(p) = [v1, . . . , vp] ∈ Rn×p. This approximation can significantly improve the algorithm’s
efficiency when p≪ n, with a minimal impact on accuracy.
Table 4.3 gives an overview of all the aspects we covered in this paragraph.

Performances
[53] did some tests to measure the impact of their ultra-packing technique on the method,
trying also to introduce parallelization to achieve an even better result. The standard
method needs 688 seconds to execute, but parallelization improves the latency by almost
one order of magnitude when the number of threads is 8 or above. Plus, when applying
the aforementioned technique with the maximum number of threads, the total time is only
1.25 seconds, making the method suitable for real-time predictions (more details reported
in Table 4.4). In addition, the authors declare a zero loss in the prediction accuracy with
respect to the unencrypted inference when the system is tested over all the examples in
the testing dataset.
[55] implemented the method with linear kernel and RBF kernel with for two datasets,
Linear and Nonlinear. In Figure 4.6 there is a plot of the classification results with
fairness constraint (FSVMHE) and without it (LSSVM). In the image, the color of a
point represents its label, the shape depends on the sensitive feature z. Hence, an accurate
classifier should separate yellow points from dark ones, whereas a good fairness is achieved
if the number of crosses and circles on the same side is approximately the same.
We can notice that LSSVM classifes more z = 0 samples as negative. For the first

51

Fully Homomorphic Encryption for Machine Learning

dataset, to make the model fair, FSVMHE changes the decision boundary to classify
more z = 0 samples as positive. Similarly for Nonlinear dataset, FSVMHE creates a
more complex decision boundary to prevent more z = 0 samples from being classifed as
negative. Furthermore, the experimental results verifed that FSVMHE could attain good
inference performance even if the low-rank approximation was applied during training.

4.4 Homomorphic Decision Tree and Random Forest
The tree-based algorithms share the problem of traversing the binary tree in a homomor-
phic way. This issue was addressed, for example, by [58] employing the TFHE scheme,
and by [59] utilizing the CKKS scheme.
The first solution is based on quantization, which rescales the values xij of every column
of the training matrix xj = (x1j , . . . , xnj), containing the j-th feature of all n training
samples. Given the number of bits b that will be used to represent the quantized values,
this is done by the formula

q(xij) =
7

xij

∆ + µ

:
,

where
∆ = max(xj)−min(xj)

2b − 1
is the step size and µ is the center of the quantized distribution of values. Because of the
definition of the step size, we have that q(x) ∈ [−2b−1, 2b−1 − 1] if µ = 0. This would be
the case of symmetric quantization, but for the application we are analyzing asymmetric
quantization is preferred, thus µ is chosen such that q(min(xj)) = 0. The latter is better for
its greater precision, and since a tree-based model does not perform linear combinations of
the inputs, every single feature can be quantized independently of each other. This allows
to have a scale and a zero point (the minimum assumed by the unquantized values) for
each feature, which is a great advantage when the input dimensions have different orders
of magnitude and follow different distributions. Proceeding like this, the input space is
fully quantized, i.e. made of integers only. This means that the tree-based model can be
trained on this new input space, resulting in quantized decision rules. In practice, when a
splitting rule ✶{xij < k} is chosen, k is rounded to the closest integer and the inequality
is converted into a lower or equal comparison, with the purpose to have an integer-only
problem. Finally, each terminal leaf value is properly quantized.

When dealing with splitting rules, we face conditional operations, which are not directly
feasible in FHE. To work around this limitation, the lookup table (LUT) operation, which
is currently a unique feature of TFHE, is a valid solution. For example, consider a two-
dimensional integer input space where each data point xi belongs to the set [0,2b)× [0,2b),
where b is the number of bits used to encode the features of xi. Let the first feature of
xi be represented as xi1 and the second feature as xi2, and assume b = 3. The simple
condition xi2 > 3 can be expressed by a function:

f(xi) =
I

0 if xi2 > 3
1 otherwise.

52

4.4 – Homomorphic Decision Tree and Random Forest

Algorithm 2 Tensorial tree scoring
Input: Input features to internal nodes X, tensors A, B, C, D, E
Output: Prediction matrix T

P ← X · A
Q← P < B
R← Q · C
S ← R == D
T ← S · E

Such a function includes an "if", which is not FHE-compatible, but if we take the array
T = [1,1,1,1,0,0,0,0] as a table lookup, it yields f(xi) = T [xi2]. In particular, the TFHE
scheme allows to transform an input ciphertext (encrypting some value x) into a cipher-
text encrypting f(x), by using LUT and bootstrapping. This whole process is called
programmable bootstrapping [75] (the same introduced in section 2.1).

After this procedure, tree traversal still needs to be done. Unfortunately, it is not
directly possible in FHE, as control-flow operations are not supported. Selecting which
branch to run from the encrypted data is thus impossible. To overcome this, every branch
has to be computed simultaneously by converting the tree traversal into tensor operations.
This is done by Algorithm 2 employing the integer matrices A, B, C, D and E, which are
derived from the training process. More in detail:

• A encodes the relationships between input features and internal nodes.

• B represents internal node values.

• C captures the relationship between internal nodes and the left or right sub-trees.

• D tracks the count of left child nodes from leaf to root in the decision tree.

• E maps the leaf nodes to produce the final prediction.

This algorithm consists of five main steps:

1. Input Path Tensor Creation: the input tensor X is multiplied by a tensor A, resulting
in the input path tensor P.

2. Comparison with Internal Node Values: the resulting tensor P is compared to tensor
B. This comparison assigns a binary value to each element of P, indicating whether
the corresponding internal node is satisfied, producing the boolean tensor Q.

3. Output Path Tensor Creation: the tensor Q is then multiplied by tensor C, producing
the output path tensor R.

4. Path Comparison: the tensor R, representing the output path, is compared with
tensor D. This comparison generates tensor S, indicating the matching paths.

5. Prediction Generation: finally, the matching paths tensor S is multiplied by tensor
E that maps the leaf nodes to produce the final prediction.

53

Fully Homomorphic Encryption for Machine Learning

Figure 4.7. Evaluation of a node during inference, with nmax = 4, p = 4, t = 3 [59]

On the other hand, [59] developed a completely different solution: they tried to use the
CKKS scheme to perform encrypted inference on integer data, supposing that each feature
j = 1, . . . , p can assume only values in {1, . . . , nj}, for some nj ∈ N. Let us define nmax =
max{n1, . . . , np} and let y = {0, . . . , c− 1} be the set of possible labels. All variables are
represented using one-hot encoding, and the length of the vector representation for each
variable is nmax. This allows for easy expansion by adding zeros at the end of features
with nj < nmax. Such a representation expresses a sample as a vector with p · nmax

elements. To enhance efficiency, data is processed column-wise: in plaintext, a feature
j of a new sample x = (x1, . . . , xnj) would be represented as (x1

j , . . . , xnmax
j), where xh

j

stands for the h-th bits across the one-hot encoded value of feature j. Once encrypted, xh
j

is stored in w ciphertexts, represented as ch,1
j , . . . , ch,w

j . It is worth underlining that the
application of one-hot encoding implies that there is no decision rule of the form xij ∈ S
for a categorical feature j. This is because with this encoding, feature j is replaced by
nj features, say j1, . . . , jnj , each one representing one of the possible values of the initial
feature. All these new features will assume only 0 and 1 values, so the only meaningful
decision rule for each one of them will be xh

l < 1 ∀l = j1, . . . , jnj , which discriminates
between those values.

For efficient inference, given the new sample x, each condition s(x) for each node
Ni is processed further to be represented in nmax · p slots, as shown in Figure 4.7. This
representation enables checking whether the inference input being processed at Ni satisfies
the condition, following the process outlined in the lower part of Figure 4.7, which is
denoted with (B). The input used for inference is also represented with one-hot encoding
across nmax · p slots. By performing the operations shown, the model value is multiplied
by the input and then the sum of all slot values is shifted into the first slot. This step
allows to move the inference result into the first slot, regardless of its original position.
By subtracting this value from 1, we obtain the desired result as described in the image,
returning 0 if the split condition is met, and 1 otherwise during the path evaluation in a

54

4.4 – Homomorphic Decision Tree and Random Forest

Figure 4.8. Path evaluation and label assignment [59]

decision tree.
At this point, let us denote the evaluation process and its result at node Ni as Ii, and

consider the complement of the bit in Ii as I i. These individual Ii and I i are referred to as
blocks. Figure 4.8 illustrates how the tree shown evaluates the red path using the proposed
method. The left part (A) shows the conditions relative to the nodes of the tree, the
right part (B) explains how the correct branches are selected. The yellow-colored blocks
represent the nodes where actual computations are performed to obtain evaluation results,
while the remaining results are generated through rotations and addition operations. In
this figure, blocks I1, I2, and I3 are computed as 0, while the rest are set to 1 because
x2 ≤ 3, x3 > 4 and x1 ≤ 4. Adding the top two ciphertexts of the blocks in (B) results in
only the block corresponding to the leaf nodes along the red path in (A) having a value of
0, while the others contain non-zero values. Next, this result is multiplied by a randomly
sampled plaintext polynomial and added to the ciphertext that contains the label of the
target variable at the positions corresponding to each leaf node. This ensures that only
the label of the final leaf node along the red path is stored in the corresponding slot of the
ciphertext, while the other slots are filled with random values. To further obfuscate the
positions of the leaf nodes containing the result, a random rotation is applied, producing
the final inference result. In the proposed inference method, the client sends their input
in a single ciphertext, where the one-hot encoded values of the independent variables are
stored in the first nmax ·p slots, without revealing any information about the decision tree
to the client.

Since many decision trees constitute a random forest, this classifier is simply con-
structed by carrying out the aforementioned procedures. After that, the server sends to
the client the classification result of each tree, and the client decrypts this data, performing
majority vote in the plaintext domain. Table 4.5 serves as a recap of the aforementioned
descripted methods.

Performances
[59] compared their work with a previous one, developed by Akavia et al. [76], who
employ a low-degree polynomial approximation for the evaluation of decision rules. The
results clearly demonstrate that the proposed method outperforms [76] across all datasets,

55

Fully Homomorphic Encryption for Machine Learning

Reference Scheme Problem Solution
[58] TFHE Tree traversal Tensorial operations, quantization
[59] CKKS Homomorphic inference Binary vectorial operations
[76] CKKS Decision rules management Polynomial approximation

Table 4.5. Summary of Homomorphic DT papers

Figure 4.9. Inference: (A) execution time and (B) accuracy comparison [59]

Trees Depth Encrypted accuracy Unencrypted accuracy
1 0.800 0.807
2 0.920 0.933
3 0.960 0.967
4 0.960 0.973

Table 4.6. Trees depth vs accuracy of encrypted and unencrypted RF [59]

achieving speeds at least 3.7 times faster. For trees with a depth of 4 (16 leaf nodes), the
proposed method delivers nearly eight times faster inference times. Figure 4.9 presents a
comparison of inference execution times, showing that the CPU implementation is at least
3.7 times faster than Akavia et al.’s method. Additionally, GPU-assisted inference times
ranged from 0.03 seconds (depth 1, Iris data) to 1.69 seconds (depth 8, Cancer data).
Notably, with GPU acceleration, inference performance was found to be less than 200
times slower compared to plaintext inference on a single CPU core for trees with depths
up to 4 in the same environment.
Figure 4.9 compares also the accuracy of the inference results between the encrypted
model and models trained on plaintext data, using two different measures to define the
splitting rules (Gini Impurity (GI) and Modified Gini Impurity (MGI), which is its more
efficient version). As shown in the graph, there is little difference in accuracy between the
model trained with the proposed method and the plaintext-based model trained with GI,

56

4.4 – Homomorphic Decision Tree and Random Forest

Figure 4.10. Experiment reporting the f1-score and average precision with varying
precision on the spambase dataset [58]

Figure 4.11. FHE inference time for different bit widths [58]

demonstrating comparable accuracy.
Finally, Table 4.6 shows some tests performed on the Iris dataset, highlighting the differ-
ences bewteen the encrypted and unencrypted RF. The experiments have been carried out
by setting the number of trees B = 64 in advance. A small accuracy drop can be spotted
in the encrypted model, and the gap slightly increases while the trees depth grows.

Regarding the TFHE implementation, Figure 4.10 shows the F1 score and average pre-
cision on the spambase dataset [77] at varying precision levels. This behavior is expected,
and the intuitive choice would be to select the highest bit width for better accuracy. How-
ever, in Fully Homomorphic Encryption (FHE), execution time is affected by changes in
precision. To better understand the impact of the quantization parameter, [58] conducted
an experiment shown in Figure 4.11, where they measured the FHE inference time for the
two models at different quantization precisions.

Figure 4.10 and Figure 4.11 together provide a clear view of the trade-off between
model accuracy and FHE inference time. A significant increase in FHE inference time is
observed starting at 7 bits. On the other hand, 5- and 6-bit precision yield metrics that

57

Fully Homomorphic Encryption for Machine Learning

are very close to the unencrypted model (FP32), with less than a 2% drop in reported
metrics for 6-bit precision.

58

Chapter 5

Conclusion

Our analysis clearly shows that Fully Homomorphic Encryption represents a significant
advancement in secure Machine Learning. By enabling computations on encrypted data,
FHE not only protects sensitive information from unauthorized access but also fosters
collaboration among various users. Its potential to enhance model evaluation and fairness
makes FHE a powerful tool in the development of robust, privacy-preserving ML solutions
that can address the complex challenges of modern data-driven applications. As the
technology matures and becomes more accessible, FHE is likely to play an increasingly
important role in ensuring the security and ethical use of Machine Learning across a wide
range of industries.

In particular, the client-server architecture we analyzed ensures data privacy, secure
computation and scalability. This is because client’s sensitive information remains en-
crypted at all times, significantly reducing the risk of data breaches. Then, the server
can perform complex computations without needing access to the underlying data, and
the architecture can be easily scaled, as multiple clients can interact with the same server
infrastructure, facilitating parallel processing of encrypted data.

5.1 Results
From the discussion of the previous chapter, it is clear that some algorithms present more
difficulties than others. For instance, KNN is quite simple if tested on unencrypted data,
but it is way more complicated if we try to perform homomorphic inference, because there
are three different phases to deal with (as explained in section 4.2).

On the other hand, the inference phase of SVM just consists in the evaluation of the
sign of a function: for this reason, some studies also analyzed the possibility of homomor-
phically training the algorithm (refer to section 4.3).

Finally, DT and RF have the problem of tree traversal, which is pretty complex to
handle in the encrypted domain, and because of that the inference phase has to be adapted
to the homomorphic world via quantization or tensorial operations (see section 4.4).

Regarding the employed scheme, we can notice that both TFHE and CKKS are equally
utilized in the homomorphic version of KNN and DT and RF, whereas SVM features only

59

Conclusion

the latter.
In general, we can say that the homomorphic algorithms are slower than their unen-

crypted counterpart, but many improvements have been made to reduce the gap. For
what concerns accuracy of the encrypted models, it is usually a bit lower, but generally
comparable to the standard algorithms run on plaintext.

5.2 Future works
In this work we described the homomorphic implementations for some of the main ML
algorithms, but the field can be further explored by looking at other methods. For ex-
ample, Logistic Regression [78][79] has been integrated with FHE, as well as all sorts of
Neural Networks [80][81]. Furthermore, we have chosen to study the classification set-
ting, without covering regression, which is used to predict a continuous output variable
instead of a discrete one. It features many algorithms which have been developed in the
homomorphic domain, implementing the encrypted version of methods such as Linear
Regression [82][83]. We have also decided to focus only on supervised learning, where ML
models are trained on some known data whose label is known. However, ML also includes
unsupervised learning, where we do not have the label ground truth to train the model.
Some of the most commonly used unsupervised methods have been integrated with FHE,
such as K-means [84][85] and Principal Component Analysis (PCA) [86][87].

Besides the type of ML method, for widespread adoption, further advancements in
computational efficiency and optimized algorithms will be essential. Future work should
focus on developing hybrid approaches that combine FHE with other privacy-preserving
methods, such as differential privacy [88][89] or secure multi-party computation [90][91],
to create more scalable and efficient solutions. By overcoming these obstacles, FHE has
the potential to become an integral part of ML practices, supporting ethical data usage
and fostering public trust in ML applications.

60

Bibliography

[1] The tls protocol version 1.3. https://datatracker.ietf.org/doc/html/rfc8446.

[2] Bitlocker. https://learn.microsoft.com/it-it/windows/security/operating-
system-security/data-protection/bitlocker/.

[3] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and
privacy homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[4] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, 1978.

[5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.
In Theory of Cryptography: Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005. Proceedings 2, pages 325–341. Springer,
2005.

[6] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[7] Bootstrapping scheme. https://zhuanlan.zhihu.com/p/260033204.

[8] Programmable bootstrapping. https://www.zama.ai/post/tfhe-deep-dive-part-
4.

[9] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Ad-
vances in Cryptology-CRYPTO 2009: 29th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, pages 595–618.
Springer, 2009.

[10] Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-secure en-
cryption from decision diffie-hellman. In Advances in Cryptology–CRYPTO 2008:
28th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2008. Proceedings 28, pages 108–125. Springer, 2008.

[11] Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli, Frank H. P.
Fitzek, and Najwa Aaraj. Survey on fully homomorphic encryption, theory, and
applications. Proceedings of the IEEE, 110(10):1572–1609, 2022.

61

https://datatracker.ietf.org/doc/html/rfc8446
https://learn.microsoft.com/it-it/windows/security/operating-system-security/data-protection/bitlocker/
https://learn.microsoft.com/it-it/windows/security/operating-system-security/data-protection/bitlocker/
https://zhuanlan.zhihu.com/p/260033204
https://www.zama.ai/post/tfhe-deep-dive-part-4
https://www.zama.ai/post/tfhe-deep-dive-part-4

BIBLIOGRAPHY

[12] Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with rel-
atively small key and ciphertext sizes. In International Workshop on Public Key
Cryptography, pages 420–443. Springer, 2010.

[13] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryp-
tion scheme. In Annual international conference on the theory and applications of
cryptographic techniques, pages 129–148. Springer, 2011.

[14] Peter Scholl and Nigel P Smart. Improved key generation for gentry’s fully homo-
morphic encryption scheme. In IMA International Conference on Cryptography and
Coding, pages 10–22. Springer, 2011.

[15] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In Advances
in Cryptology-ASIACRYPT 2010: 16th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 5-9, 2010.
Proceedings 16, pages 377–394. Springer, 2010.

[16] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Advances in Cryptology–EUROCRYPT
2010: 29th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, French Riviera, May 30–June 3, 2010. Proceedings 29, pages
24–43. Springer, 2010.

[17] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public key
cryptosystem. In International algorithmic number theory symposium, pages 267–288.
Springer, 1998.

[18] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. SIAM Journal on computing, 43(2):831–871, 2014.

[19] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3):1–36, 2014.

[20] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic en-
cryption. Cryptology ePrint Archive, 2012.

[21] Damien Stehlé and Ron Steinfeld. Making ntru as secure as worst-case problems
over ideal lattices. In Advances in Cryptology–EUROCRYPT 2011: 30th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings 30, pages 27–47. Springer, 2011.

[22] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 1219–1234,
2012.

62

BIBLIOGRAPHY

[23] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ad-
vances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92. Springer,
2013.

[24] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. Shield: scalable homo-
morphic implementation of encrypted data-classifiers. IEEE Transactions on Com-
puters, 65(9):2848–2858, 2015.

[25] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe: fast
fully homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91,
2020.

[26] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryp-
tion for arithmetic of approximate numbers. In Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part
I 23, pages 409–437. Springer, 2017.

[27] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
Bootstrapping for approximate homomorphic encryption. In Advances in Cryptology–
EUROCRYPT 2018: 37th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018 Pro-
ceedings, Part I 37, pages 360–384. Springer, 2018.

[28] Oussama Amine. Overview of open source libraries for fully homomorphic encryption
(fhe). Technical report, 2019.

[29] SEAL. https://github.com/Microsoft/SEAL.

[30] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In Annual cryptology conference, pages 868–886. Springer, 2012.

[31] HElib. https://github.com/homenc/HElib.

[32] Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd operations. De-
signs, codes and cryptography, 71:57–81, 2014.

[33] PALISADE. https://palisade-crypto.org.

[34] OpenFHE. https://openfhe.org.

[35] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja
Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee,
et al. Openfhe: Open-source fully homomorphic encryption library. In Proceedings of
the 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pages 53–63, 2022.

[36] FHEW. https://github.com/lducas/FHEW.

63

https://github.com/Microsoft/SEAL
https://github.com/homenc/HElib
 https://palisade-crypto.org
https://openfhe.org
https://github.com/lducas/FHEW

BIBLIOGRAPHY

[37] TFHE. https://github.com/tfhe/tfhe.

[38] Zama. https://www.zama.ai/.

[39] TFHE-rs. https://github.com/zama-ai/tfhe-rs.

[40] Concrete. https://github.com/zama-ai/concrete.

[41] ConcreteML. https://github.com/zama-ai/concrete-ml.

[42] Scikit-learn. https://scikit-learn.org/stable/.

[43] Lattigo. http://github.com/ldsec/lattigo.

[44] Christian Vincent Mouchet, Jean-Philippe Bossuat, Juan Ramón Troncoso-Pastoriza,
and Jean-Pierre Hubaux. Lattigo: A multiparty homomorphic encryption library
in go. In Proceedings of the 8th Workshop on Encrypted Computing and Applied
Homomorphic Cryptography, pages 64–70, 2020.

[45] Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private predictive analysis on
encrypted medical data. Journal of biomedical informatics, 50:234–243, 2014.

[46] Jie Li, Yamin Liu, and Shuang Wu. Pipa: Privacy-preserving password checkup
via homomorphic encryption. In Proceedings of the 2021 ACM Asia Conference on
Computer and Communications Security, pages 242–251, 2021.

[47] Dirk P. Kroese, Zdravko I. Botev, Thomas Taimre, and Radislav Vaisman. Data
Science and Machine Learning: Mathematical and Statistical Methods. 2020.

[48] Random forest example. https://williamkoehrsen.medium.com/random-forest-
simple-explanation-377895a60d2d.

[49] Albert Viladot Saló. Implementation of a privacy preserving knn algorithm based on
fhe. 2023.

[50] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomorphic com-
parison methods with optimal complexity. In Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of Cryptology
and Information Security, Daejeon, South Korea, December 7–11, 2020, Proceedings,
Part II 26, pages 221–256. Springer, 2020.

[51] Martin Zuber and Renaud Sirdey. Efficient homomorphic evaluation of k-nn classi-
fiers. Proceedings on Privacy Enhancing Technologies, 2021.

[52] Yulliwas Ameur, Rezak Aziz, Vincent Audigier, and Samia Bouzefrane. Secure and
non-interactive k-nn classifier using symmetric fully homomorphic encryption. In In-
ternational Conference on Privacy in Statistical Databases, pages 142–154. Springer,
2022.

[53] Ahmad Al Badawi, Ling Chen, and Saru Vig. Fast homomorphic svm inference on
encrypted data. Neural Computing and Applications, 34(18):15555–15573, 2022.

64

https://github.com/tfhe/tfhe
https://www.zama.ai/
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/concrete
https://github.com/zama-ai/concrete-ml
https://scikit-learn.org/stable/
http://github.com/ldsec/lattigo
 https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d
 https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d

BIBLIOGRAPHY

[54] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low latency privacy pre-
serving inference. In International Conference on Machine Learning, pages 812–821.
PMLR, 2019.

[55] S Park, J Byun, and J Lee. Privacy-preserving fair learning of support vector machine
with homomorphic encryption. association for computing machinery, 2022.

[56] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P
Gummadi. Fairness constraints: A flexible approach for fair classification. Journal
of Machine Learning Research, 20(75):1–42, 2019.

[57] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P
Gummadi. Fairness beyond disparate treatment & disparate impact: Learning clas-
sification without disparate mistreatment. In Proceedings of the 26th international
conference on world wide web, pages 1171–1180, 2017.

[58] Jordan Frery, Andrei Stoian, Roman Bredehoft, Luis Montero, Celia Kherfallah,
Benoit Chevallier-Mames, and Arthur Meyre. Privacy-preserving tree-based infer-
ence with fully homomorphic encryption. Cryptology ePrint Archive, 2023.

[59] Hojune Shin, Jina Choi, Dain Lee, Kyoungok Kim, and Younho Lee. Fully homomor-
phic training and inference on binary decision tree and random forest. In European
Symposium on Research in Computer Security, pages 217–237. Springer, 2024.

[60] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. F1: A fast and pro-
grammable accelerator for fully homomorphic encryption. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 238–252,
2021.

[61] Guozhu Xin, Yifan Zhao, and Jun Han. A multi-layer parallel hardware architecture
for homomorphic computation in machine learning. In 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2021.

[62] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. Heax: An architecture
for computing on encrypted data. In Proceedings of the twenty-fifth international
conference on architectural support for programming languages and operating systems,
pages 1295–1309, 2020.

[63] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier Standaert.
Towards case-optimized hybrid homomorphic encryption: Featuring the elisabeth
stream cipher. In International Conference on the Theory and Application of Cryp-
tology and Information Security, pages 32–67. Springer, 2022.

[64] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger,
Markus Schofnegger, and Roman Walch. Pasta: A case for hybrid homomorphic
encryption. 2023.

[65] Iris dataset. https://archive.ics.uci.edu/dataset/53/iris.

65

https://archive.ics.uci.edu/dataset/53/iris

BIBLIOGRAPHY

[66] Breast cancer dataset. https://archive.ics.uci.edu/dataset/14/breast+cancer.

[67] Heart dataset. https://archive.ics.uci.edu/dataset/45/heart+disease.

[68] Wine dataset. https://archive.ics.uci.edu/dataset/109/wine.

[69] Glass dataset. https://archive.ics.uci.edu/dataset/42/glass+
identification.

[70] MNIST dataset. https://archive.ics.uci.edu/dataset/683/mnist+database+
of+handwritten+digits.

[71] Saerom Park, Junyoung Byun, Joohee Lee, Jung Hee Cheon, and Jaewook Lee. He-
friendly algorithm for privacy-preserving svm training. IEEE Access, 8:57414–57425,
2020.

[72] Schur complement. https://en.wikipedia.org/wiki/Schur_complement.

[73] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Keewoo Lee.
Numerical method for comparison on homomorphically encrypted numbers. In In-
ternational conference on the theory and application of cryptology and information
security, pages 415–445. Springer, 2019.

[74] Adi Ben-Israel. An iterative method for computing the generalized inverse of an
arbitrary matrix. Mathematics of Computation, pages 452–455, 1965.

[75] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping enables
efficient homomorphic inference of deep neural networks. In Cyber Security Cryp-
tography and Machine Learning: 5th International Symposium, CSCML 2021, Be’er
Sheva, Israel, July 8–9, 2021, Proceedings 5, pages 1–19. Springer, 2021.

[76] Adi Akavia, Max Leibovich, Yehezkel S Resheff, Roey Ron, Moni Shahar, and Mar-
garita Vald. Privacy-preserving decision trees training and prediction. ACM Trans-
actions on Privacy and Security, 25(3):1–30, 2022.

[77] Spambase dataset. https://archive.ics.uci.edu/dataset/94/spambase.

[78] Xiaopeng Yu, Wei Zhao, Yunfan Huang, Juan Ren, and Dianhua Tang. Privacy-
preserving outsourced logistic regression on encrypted data from homomorphic en-
cryption. Security and Communication Networks, 2022(1):1321198, 2022.

[79] VVL Divakar Allavarpu, Vankamamidi S Naresh, and A Krishna Mohan. Privacy-
preserving credit risk analysis based on homomorphic encryption aware logistic re-
gression in the cloud. Security and Privacy, 7(3):e372, 2024.

[80] Lorenzo Rovida and Alberto Leporati. Encrypted image classification with low mem-
ory footprint using fully homomorphic encryption. Cryptology ePrint Archive, 2024.

[81] Adrien Benamira, Tristan Guérand, Thomas Peyrin, and Sayandeep Saha. Tt-tfhe:
a torus fully homomorphic encryption-friendly neural network architecture. arXiv
preprint arXiv:2302.01584, 2023.

66

https://archive.ics.uci.edu/dataset/14/breast+cancer
https://archive.ics.uci.edu/dataset/45/heart+disease
https://archive.ics.uci.edu/dataset/109/wine
https://archive.ics.uci.edu/dataset/42/glass+identification
https://archive.ics.uci.edu/dataset/42/glass+identification
https://archive.ics.uci.edu/dataset/683/mnist+database+of+handwritten+digits
https://archive.ics.uci.edu/dataset/683/mnist+database+of+handwritten+digits
https://en.wikipedia.org/wiki/Schur_complement
https://archive.ics.uci.edu/dataset/94/spambase

BIBLIOGRAPHY

[82] Guowei Qiu, Xiaolin Gui, and Yingliang Zhao. Privacy-preserving linear regression
on distributed data by homomorphic encryption and data masking. IEEE Access,
8:107601–107613, 2020.

[83] Junyoung Byun, Saerom Park, Yujin Choi, and Jaewook Lee. Efficient homomor-
phic encryption framework for privacy-preserving regression. Applied Intelligence,
53(9):10114–10129, 2023.

[84] Ray-I Chang, Yen-Ting Chang, and Chia-Hui Wang. Outsourced k-means clustering
for high-dimensional data analysis based on homomorphic encryption. Journal of
Information Science & Engineering, 39(3), 2023.

[85] Peng Zhang, Teng Huang, Xiaoqiang Sun, Wei Zhao, Hongwei Liu, Shangqi Lai, and
Joseph K Liu. Privacy-preserving and outsourced multi-party k-means clustering
based on multi-key fully homomorphic encryption. IEEE Transactions on Dependable
and Secure Computing, 20(3):2348–2359, 2022.

[86] Jung Hee Cheon, Hyeongmin Choe, Saebyul Jung, Duhyeong Kim, Dah Hoon Lee,
and Jai Hyun Park. Arithmetic pca for encrypted data. Cryptology ePrint Archive,
2023.

[87] Samanvaya Panda. Principal component analysis using ckks homomorphic scheme.
In Cyber Security Cryptography and Machine Learning: 5th International Sympo-
sium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Proceedings 5, pages 52–70.
Springer, 2021.

[88] Baiyu Li, Daniele Micciancio, Mark Schultz-Wu, and Jessica Sorrell. Securing approx-
imate homomorphic encryption using differential privacy. In Annual International
Cryptology Conference, pages 560–589. Springer, 2022.

[89] Rezak Aziz, Soumya Banerjee, Samia Bouzefrane, and Thinh Le Vinh. Exploring
homomorphic encryption and differential privacy techniques towards secure federated
learning paradigm. Future internet, 15(9):310, 2023.

[90] Debasis Das. Secure cloud computing algorithm using homomorphic encryption and
multi-party computation. In 2018 International Conference on Information Network-
ing (ICOIN), pages 391–396. IEEE, 2018.

[91] Yongbo Jiang, Yuan Zhou, and Tao Feng. A blockchain-based secure multi-party
computation scheme with multi-key fully homomorphic proxy re-encryption. Infor-
mation, 13(10):481, 2022.

67

	List of Tables
	List of Figures
	Introduction
	Mathematical Preliminaries
	General Principles of Cryptography

	Homomorphic Encryption
	Evolution
	Security
	Developments
	Implementations
	Applications

	The Machine Learning Paradigm
	Machine Learning Foundations
	ML Algorithms
	K-Nearest Neighbors
	Support Vector Machines
	Decision Tree and Random Forest

	Fully Homomorphic Encryption for Machine Learning
	Framework
	Homomorphic KNN
	Homomorphic SVM
	Homomorphic Decision Tree and Random Forest

	Conclusion
	Results
	Future works

