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Summary

The first part introduces key financial derivative concepts, such as forwards, futures,
swaps, and options. It provides an overview of basic pricing methods, including parame-
ters like stock price, strike price, volatility, and time to maturity. The section also explains
foundational models such as Black-Scholes, put-call parity, and Geometric Brownian Mo-
tion (GBM), supported by Python simulations to demonstrate how stock prices evolve.
The second part delves into more complex exotic options like Bermuda options, barrier
options, and Asian options. These options differ from standard ones in terms of payoff
structures and risks. The section also includes Python code for pricing exotic options
and simulating stock price behaviors. In addition, it covers portfolio management, focus-
ing on risk measurement, variance, correlation, and optimization strategies for building
portfolios with multiple assets, including minimum variance portfolios. The third part
explores the use of machine learning for pricing American put options, contrasting it with
traditional approaches like Longstaff-Schwartz’s LSM method. The section outlines the
neural network model used to estimate the continuation value, improving the accuracy of
option pricing. The final chapter provides a detailed explanation of the implementation,
from data preparation to training and testing the model, with Python code integrated
throughout.
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Chapter 1

General Introduction about
Financial Derivatives

1.1 General concepts
To provide an exhaustive introduction about financial derivatives without going too much
in the details we will refer to the Hull’s book Hull [2021]. Financial derivatives are a
fundamental part of financial markets, derivatives are contracts between two individuals
or institutions in which one counterpart buys the contract and the other counterpart sells
the contract. To cite some of the most important derivatives that we will analyze later
we have : forwards, futures, swaps and options. Our major focus in this thesis will be
about options and how to price them. Derivatives are bought and sold (traded) on specific
markets/exchanges or they can be traded "over-the-counter". In the case of trading on
exchanges the most commonly traded derivatives are futures and options, when we refer to
"over-the-counter" we mean that the exchange is not done on regulated markets, instead
it is done with an agreement between two financial institutions, in this case forwards
and swaps are usually agreed. Derivatives are instruments whose value depends on the
value and properties of another asset, like the price or the historical progress of the asset,
that in case of derivatives is called the underlying. Financial derivatives are just one
type of derivatives, but there exist many other types of derivatives in other fields like
energy, insurance, credit and real estate. In USA one of the most important exchanges for
derivatives contracts is the Chicago Board Of Trade(CBOT) while in Europe one of the
most important exchanges for derivatives is the Eurex. This Chapter will closely follow
the book of Hull [2021] and Merton [2022].
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General Introduction about Financial Derivatives

1.2 Forwards
Forwards contracts are derivatives used to buy or sell a specific amount of an asset at a
predetermined price, one counterpart agrees to buy the asset (the asset can be a commod-
ity or currency) at the forward price that is agreed when issuing the contract at a future
time instant, the other counterpart that sells the contract agrees to sell at the forward
price the asset in the future. As anticipated before these types of contracts are usually
traded in the over-the-counter market between financial institutions. The institution that
buys the asset is said to have assumed the long position, while the one who sells is said
to have assumed the short position. At the initial time when the contract is issued the
price to buy or sell a forward contract is equal to zero and there is no exchange of cash-
flow between the two counterparts, the exchange of money and asset will be realized only
at the future time specified by the contract that is usually referred to as "maturity" or
"delivery time". Forwards and derivatives in general are a fundamental tool for hedging
financial risks, in particular forwards can be used to hedge against increases in the prices
of assets; for example suppose that we want to hedge the risk of increase in the price of a
commodity that we will have to buy in the future, the forward allows us to buy it in the
future at a predetermined price.

1.3 Futures
Futures contracts, similarly to forwards, are agreements to buy or sell an asset in the future
at a fixed price. Differently from forwards, futures are traded on a regulated exchange,
and the maturity is not necessarily specified. Since futures are traded on an exchange they
reduce the risk of default of one of the two individuals in the contract by using marking-
to-market. Some of the main exchanges of futures contracts in Europe are Eurex and ICE
Futures. The exchange used to trade futures may specify a range for daily price movement
limits, a limit move is a change in the price such that the price reaches the boundaries of
the price range either up or down. The daily price limits is used to prevent high variations
in prices due to excessive speculations on the futures contracts. For the same reason there
also exist position limits that are limits in the number of contracts that each individual
can buy or sell. As anticipated before futures reduce the risk of default of one of the
two counterparties of the contract, the investor must deposit a certain quantity of money
or collateral (it depends on the underlying of the futures contract) in a margin account
and the initial amount that must be deposited is known as initial margin. Each day at
the end of the day the margin account will be adjusted according to the gain/loss of the
investor on the contract computing the gain or loss using the variation of the price of the
contract and adding/subtracting this quantity to the margin account : this technique is
called marking to market. At the end of each day the theoretical value of a future contract
is equal to zero, so the cost to buy a contract is equal to zero. The investor can withdraw
money when the value of the account is greater than the initial margin and the maximum
quantity of money that can be withdrawn must be the difference between the value of
the account and the initial margin. To avoid the risk of default of an individual, the
balance of the account must not be negative so maintenance margins are used, these are
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lower than initial margin and if the balance of the account is lower than the maintenance
margin a margin call is done and the investor will be asked to put an amount of money
(or collateral) on the account to bring the value of the account at the initial margin, if
the investor does not put money in the account his position will be closed. When the
delivery month of a futures contract is approaching, the futures price converges to the
spot price of the underlying asset. If the price of the futures contract were higher during
the delivery month traders would short the futures and buy the asset to perform deliveries,
if the price were lower people who need the commodity would buy directly the futures. In
both cases the contract price would converge to the spot price as many people exploit this
difference in prices. Basically the difference in price opens up the opportunity of arbitrage
which means the opportunity of creating a positive payoff without any risk; when this
opportunities are exploited prices tend to converge to an equilibrium. If the futures price
increases with the maturity this is called normal market, if it decreases it is an inverted
market. Hedging with futures means to take a position in a contract whose payoff at
maturity can offset the possible loss on another side, short hedge is done if we already
own an asset and we expect its price to go down, instead long positions are useful to fix
now the price for an asset whose price is expected to increase in the future.

1.3.1 Stock Index Futures
Another hedging instrument to hedge a portfolio against unwanted trends of the market
are stock index futures. The Euronext market includes the italian derivatives market,
there are different futures contracts on the Ftse MIB index : Futures, Mini Futures and
Micro Futures. The fair value of this contracts is computed by multiplying a scalar factor
measured in euro to the value of the index, in the case of italian contracts for Futures the
scalar is 5, for Mini Futures is 1 and for Micro Futures is 0.2.

1.4 A first measure of risk
One important concept of derivatives is basis risk, the basis is defined as the spot price
of the asset minus the price of the corresponding futures contract, at maturity the basis
is zero and depending on the asses it may be either positive or negative before maturity,
it indicates the risk that the spot price of the asset and the futures price do not converge
to the same value. This means that our hedging of the position will not be accurate, and
price changes will not be offsetted by our hedging instrument.

At initial time :
b0 = S(0)− F (0, T )

while at maturity, in normal conditions of the market :

bT = 0
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1.5 Interest Rates
A basic understanding of how interest rates work is fundamental to analyze derivatives
such as options and swaps, we will try to identify the most important rates for our pur-
poses:

• Treasury rate : is the rate at which the government can borrow money from indi-
viduals in its own currency, usually this rate is also called risk free rate

• LIBID/LIBOR : these are the rates at which banks can lend money to other banks
(London Interbank Offer Rate LIBOR) or take money to deposit from other banks
(London Interbank Bid Rate LIBID) for short periods of time (months), these are
not risk-free

• Repo rate : used when one individual can temporarily sell its asset and buy it back
later at a higher price determined by the repo rate

• Zero rate: rate at which an amount of money is invested for some years, it is com-
puted annually, the zero curve is a plot of the zero rates versus the years of the
investment

• Forward rate : rate at which an amount of money is invested for a certain period
starting in the future

We can find the values of the current LIBOR rates on the website of Global-Rates and
we can look at the picture of the LIBOR rates for USD over the years, from 1987 to 2024:

Figure 1.1. LIBOR rate for 6 months maturity, from 1987 to 2024
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1.5.1 Term Structure of Interest Rates
When we plot the interest rate on the y-axis and the maturity for the investment on
the x-axis we obtain a yield curve. The yield curve reflects expectations of the market
for long-term investments, the set of interest rates for each maturity compose the term
structure. Regarding the term structure, different theories exists about its shape, we try
to summarize the most important ones:

• Expectations theory : the long-term interest rates are the expectation in the future
of the current short-term interest rates

• Segmentation theory : the short-term, medium-term and long-term rates are not
correlated

• Liquidity preference theory : the long-term interest rates should be higher because
the risk associated with longer period investments is higher and the investor chooses
to reduce his liquidity to perform an investment, the premium to take this risk should
reflect in a higher interest rate; this is the most commonly used theory.

1.6 Swaps
Another important derivative that is traded between two financial institutions is the swap.
Swaps are not traded by retail investors and they are a modern instrument to hedge
different risks, such as interest rate risk. For example swaps can be used by institutions to
transform a floating rate liability into a fixed rate loan. A swap is a contract between two
individuals to exchange cash flows periodically in the future based on some rules defined
when issuing the contract. To enter into a swap contract it costs zero at the beginning.
There exist different types of swaps, the most common are:

• Interest rate swaps : based on the exchange of two quantities (only the net differ-
ence will be exchanged) computed on a notional principal for several timesteps, one
individual will pay a fixed rate on the principal while the other will pay a rate that
is chosen at the beginning of each time period (floating rate), for example if we use
the LIBOR for 6 months periods as floating rate, at the beginning of each period
the LIBOR rate is observed and at the end of each period the exchange of the net
difference between the two quantities is done.

• Currency swaps : exchange between two individuals of interest of a notional principal
(the principal is chosen to be the same for the two individuals according to their
exchange rate for the two currencies) in two different currencies, each individual will
pay in one currency and receive payments in another currency, it can be used to
hedge currency risk
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1.7 Options
Differently from the derivatives seen before, options do not constrain an individual to buy
or sell an asset, they give the possibility to buy or sell. We consider two types of options,
the call and the put. The person who buys (holder) the call option has the right to buy
the underlying (the asset) at a specific price K (strike price), instead the put option gives
the right to sell an asset at strike price. An european option can be only exercised at ma-
turity, while an american option can be exercised at (almost) any time during the horizon
of investment. The person who buys the option is called holder while the person who
sells the option is called writer. There exist many types of options, in this first part we
will analyze "vanilla" options and later we will analyze "exotic" options. Options can be
written on stocks, stock indices, foreign currencies and futures contracts. Usually stock
options contracts give the holder the right to buy or sell 100 shares. Instead index op-
tions can be written for example on S&P500 (SPX), Nasdaq 100 (NDX) and Dow Jones
Industrial (DJX), in these cases the option gives the right to buy or sell a specific number
of times the value of the index at a strike price. For what concerns foreign currencies,
the option gives the right to buy or to sell a specific amount of currency. Futures options
are options on futures, so the underlying is a futures contract, for example if the holder
exercises a call option he gains from the writer the long position in a futures contract
that will mature shortly after the maturity of the option plus a cash amount that is equal
to the futures price minus the strike price: f(t, T ) − K , instead with a put option the
holder gains the short position in the futures contract plus an amount of cash equal to
K − f(t, T ). In USA the CME Group provides a large number of different options on
different underlyings: Indexes, Interest rates, Forex, Cryptocurrencies, Energy, Agricul-
ture, Metals. In Italy, Borsa Italiana provides options on the main index, FTSE MIB
and stocks. When we trade an option the exchange may declare some information like
expiration date (maturity), strike price, dividends and how large is the contract position.
Options trade with a specific maturity based on the current month, usually is a couple of
months from the current month but LEAPS (Long-Term equity anticipation securities)
are options with longer expiration date, up to three years and the expiration is usually in
January. Equity LEAPS calls can provide benefit from the growth of companies without
having to buy stocks, puts instead can provide a hedge against substantial declines in
underlying. Index LEAPS options let an investor take a bullish or bearish position on
the entire market. Some of the derivatives discussed above can be traded on the CBOE
Chicago Board Options Exchange website. The intrinsic value of an option is the maxi-
mum between zero and the payoff if the option were exercised immediately.
If we have a long position either in a call or a put option the payoffs will be:

payoff(call) = max(S(T )−K,0)
payoff(put) = max(K − S(T ),0)

instead, if we have a short position:

payoff(call) = −max(S(T )−K,0)
payoff(put) = −max(K − S(T ),0)
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Before going more in detail, we analyze a real example of option.

1.7.1 Example : Index options on FTSE MIB
Let’s look at a practical example, we put ourselves in the position of an investor who wants
to trade an option on Borsa Italiana on the index FTSE MIB. In August 2024 the value
of the index is around 32.000 , so for simplicity let’s analyze call and put options with
strike K = 32.000,00 with maturity in October 2024. We analyze the different positions
that an investor can take and simulate possible outcomes of profit/loss. To understand
the data, we summarized this setting in a table:
(All the data were taken directly from Borsa Italiana, as today 4th August 2024, market
closed)
Note : By now we will not be concerned of how this parameters can be computed and
how prices of options can be estimated, we will just provide a real-scenario example to
understand how it works.

Type Price Strike Value Underlying Multiplier(euro)
call 1.410,00 32.000 32.018,82 2,50
put 885,00 32.000 32.018,82 2,50

Table 1.1. Parameters of Options and Underlying, on 4th August 2024 for european
options with maturity 18th October 2024

The multiplier is the value in currency (in this case euro) of each index point, in our
case each index point will be multiplied by 2,50 to obtain a value in euro. For our example,
suppose we will buy only one option on the index and let’s analyze the possible outcomes
we could have by taking four positions:

• long call

• short call

• long put

• short put

The Python code for the following plots and simulations can be found on my GitHub,
it is necessary to download the file and open it with a Python notebook editor. In order
to carry out our analysis we used steps of 50 index points, the real value of the index was
32.018,82 and we supposed values that went from 31.000,00 to 33.000,00.
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To analyze the results, we will use this notation :

• S: Current value of the index

• K: Strike price of the options

• C: Price of the call option

• P : Price of the put option

• PL: Profit or Loss

• a: Price per index point, it is the multiplier, in our case is 2,50€

Figure 1.2. Long position in a call

For the long position in the call the profit can be computed as :

PLLong Call = max(0, a(S −K))− C
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Figure 1.3. Short position in a call

For the short position in the call the profit can be computed as :

PLShort Call = C −max(0, a(S −K))

Figure 1.4. Long position in a put

For the long position in the put the profit can be computed as :

PLLong Put = max(0, a(K − S))− P
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Figure 1.5. Short position in a put

For the short position in the put the profit can be computed as :

PLShort Put = P −max(0, a(K − S))
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1.7.2 More details on Vanilla Options

As anticipated before, American options are options that can be exercised when the in-
vestor wants to do so. The value of an American in-the-money option must be at least as
much as its intrinsic value because the holder can exercise it immediately, even if usually
it is better to wait. The total value of an option is the sum of the intrinsic value and the
time value, which is the value of movements in the underlying that are well accepted by
the holder. The time value is zero in two cases : when the option has reached maturity
and when it is optimal to exercise the option immediately. There exist also options where
strike prices and expiration dates are different from the ones mentioned before, in this
case we call them Flex Options. Exchange-traded options are not adjusted in the strike
price when a stock pays dividend but they are adjusted in the contract for stock splits and
dividends. Options on stocks are adjusted for stock dividends, that is when the company
issues more shares to people who already own shares of the company. Stock dividends
have no effect on the asset, like the splits. Stock splits happen when a share splits in
more shares, for example 1 share may divide into 3 shares without changing the asset of
the owners, in a n-for-m split the stock price goes down by m/n times its previous value.
After a n-for-m split, the parameters of the option get adjusted accordingly : the strike
price is multiplied by m/n, and the number of shares that represent the underlying of the
contract is multiplied by n/m. To be more clear, let’s look at this example taken from
Hull [2021].

Example 7.1 from Hull [2021] :
A contract of a call option to buy 100 shares is trading for $30 per share, the stock splits
in 2-for-1, the contract is adjusted to give the holder the right to purchase 200 shares for
$15 per share

Example 7.2 from Hull [2021] :
A put option to sell 100 shares of a company is trading for $15 per share, the stock divi-
dends are 25% , in this case it is equivalent to a 5-for-4 stock split, the contract is adjusted
to permit the holder to sell 125 shares at $12 per share

The volume of options is the total number of options exchanged on a specific day on
a specific exchange while the option open interest is the number of outstanding options.
Market makers quote the bid and offer price for an option, the bid is the price at which
the market maker is willing to buy the option while the offer price is the price at which he
sells the option, the offer price is always higher than the bid price, the difference between
the offer and bid price is called the bid-offer spread. Brokers may include commissions
for trading of options, usually with a fixed quote plus a variable one based on the number
of contracts or dollars invested. For stocks the commissions are usually computed as a
percentage, so if we close out a position on an option by offsetting the position we will
pay the option commissions again, while if we exercise the option we will pay the stock
commissions. Offsetting is the technique based on closing a position by taking the opposite
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position on the same option, for example if we are in a long position we can enter a short
position with another investor to sell our option, the net result will be that of having no
positions. Usually if an option is exercised commissions will be higher than selling it. We
may consider an hidden commission cost in the bid price at which we buy the option,
whose fair price is a bit less than the one quoted by the market. Usually options cannot
be bought on margin and for the writer of the options the broker requires an amount of
money to be deposited in the account to be sure that the writer will be able to respect
the contract The options clearing corporation is similar to the clearing house for futures,
basically in this case it will be responsible to guarantee that the writer of the option will
be able to fulfill the contract and it will fund if some default of writers will happen. The
holder of option will deposit the price paid for the option in the OCC and the writer will
maintain a margin in the broker, if the broker is not a member of the OCC it will have
a margin account in the OCC. Other types of options include Warrants and Executive
stock options, that are options written by a company on its own stocks, warrants usually
come with a bond to increase the value of the bond contract, executive stock options are
sold to employees and managers to motivate them to work the best possible way for the
company.
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Chapter 2

Pricing Options

After the introduction about derivatives, we now introduce some standard models to
price options and we try to understand what the prices of options represent; again in this
Chapter we will closely follow some of the approaches from Hull [2021], Merton [2022] and
Black and Scholes [1973]. We will try to implement some of those approaches to price
options in Python.

2.0.1 Assumptions
We will make assumptions regarding the structure of the market and brokers, these in-
clude:

• perform trading of derivatives without paying transaction costs when we buy or sell

• we can borrow or invest cash at the risk-free rate

• there are no arbitrage opportunities

2.1 Parameters
The parameters we will use to perform our analysis are :

• S(t) = the stock price where t represents a time instant

• K = the strike price at maturity

• T = the maturity, supposing we start at time t = 0 the maturity is

• σ = the standard deviation of the random variable represented by the stock price,
it is also called volatility

• r = the risk-free interest rate
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2.1.1 Analysis of parameters
The first parameter affecting the price of the option is the stock price. For call options
the price of the contract increases if the stock price is increasing, because the expected
payoff from exercising the option is greater. Instead, the price of put options will decrease
if the stock price increases, because the expected payoff from exercising the option will
decrease, and the opposite behavior in the contracts prices is observed when the stock
price decreases. For the same reasoning of the expected payoff, when there is an increase
in the strike price the call price will decrease, while the put price will increase, the opposite
trend is observed when the strike decreases. Longer time to maturity makes the prices
of both call and put to increase if the stock pays no dividends, if we have dividends it
may depend on the case, note that when dividends are paid the stock price decreases and
so call prices may decrease, and put prices may increase. Volatility is a measure of how
large the upward and downward movements of the stock price are; for both call and put
options high variability of prices may be well accepted because depending on the type of
option it may lead to a high payoff if the stock price moves in the direction desired by the
investor and lead to a risk-limited position if it moves in the direction that the investor
does not desire as we will only lose the premium paid to hold the option, so both call and
put prices will increase with volatility. If we assume all the parameters to be constant and
we move the interest rate the prices of call options will increase if the rate is increased,
instead the prices of put options will decrease. If the interests are higher the expected
return on stock prices will be higher, but in reality, the stock prices will decrease so it is
not straightforward to understand how prices of options will move.

2.2 Bounds of Options prices
We analyze some basic bounds for options prices, we will use the index ’e’ for European
options and ’a’ for American.

• Upper bounds for European and American call :

ce ≤ S0 ca ≤ S0

• Upper bounds for European and American put :

pe < Ke−rt pa < Ke−rt

• Lower bounds for European and American call :

ce ≥ S(0)−Ke−rt ca ≥ S(0)−Ke−rt
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2.3 Put-call Parity
Assuming we are dealing with options with :

• same underlying

• same strike

• same expiration date

we will try to derive a relationship between the price of European call and put options,
called ’Put-Call Parity’, as done in the Hull [2021] book. We construct a portfolio con-
sisting of a long position in a call option and a short position in a put option. The total
payoff of the portfolio will generate the payoff of a forward contract, that is S(T )−K at
time T . We assumed before that there are no arbitrage opportunities, so two portfolios
that have the same payoff at time T must have the same value at time t = 0. Consider a
second portfolio by buying one share S(0) and selling zero-coupon bonds with face value
K, the value at time t = 0 of the second portfolio is S(0) − Ke−rT . We may note that
the payoff of the second portfolio is also S(T ) −K at time T, like the first portfolio. In
conclusion we obtain that :

ce − pe = S(0)−Ke−rT

2.3.1 Implementation
In order to plot the resulting payoff from the first portfolio I used a Python script. The
code implemented can be found here. In the Python notebook I used the Black-Scholes
formula for European call and put options to create prices based on these fixed parameters,
chosen realistically:

• S(0) = 100 is the current stock price

• K = 100 is the strike price

• T = 1 is the time to maturity (measured in years)

• r = 0.05 is the risk-free rate

• σ = 0.2 is the volatility of the stock price

The Black-Scholes formula will be analyzed in detail later, for the moment we only focus
on having the prices to verify if the put-call parity holds. In the script, after computing
the prices of options and verifying that the put-call parity holds, we plot the payoff of the
portfolio and graphically the payoff of a forward can be recognized:
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Figure 2.1. Payoff of portfolio in red dashed line

2.3.2 Put-call Parity for American options
For American options, there is no equation relating the prices of call and put but we have
that the following inequality holds:

S(0)−K ≤ ca − pa ≤ S(0)−Ke−rt

2.3.3 Early exercise for American options
It is never optimal to exercise an American call option before maturity if the stock is not
paying dividends and if the investor will keep the stock for a time longer than the time to
maturity. Instead for a put option, it is optimal to exercise it early if it is in the money.
So we have the following inequalities for the prices of American call and put :

pa > pe ca ≥ ce

2.3.4 Options on stocks that pay dividends
When we deal with stocks that pay dividends in the future, in the equation of the put-call
parity we will subtract from the current price of the stock S(0) the present value of the
dividends d0, as the stock price will decrease by that amount when the dividends will be
released.
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The put-call parity for European options becomes :

ce + Ke−rt = p + S(0)− d0

and for the American options :

S(0)− d0 −K ≤ ca − pa ≤ S(0)−Ke−rt

When dividends are released, the early exercise of an American call option makes sense
the day before the dividends are released.
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Chapter 3

Stock Pricing

In order to price derivatives with more accuracy, we need to build models that represent
the underlying behavior. In our case, when we want to price stock options, it is necessary
to have a model that represents the stock’s price movements. To build such a model, we
may introduce some properties that we assume the stock will follow. In this Chapter will
follow Hull [2021] book, and Black and Scholes [1973].

3.0.1 Markov Property
We assume that stock prices are modeled as stochastic processes that follow the Markov
property. This implies that the future price of the stock is determined only by its present
value, and not by the history of past prices. In other words, all the relevant information
about the future is encapsulated in the current price.

To capture the random nature of stock price movements, we will use a continuous-
time stochastic process model. These models allow for a realistic representation of asset
price dynamics by incorporating both the drift (expected return) and volatility (random
fluctuations).

3.0.2 Normal Distribution
For a stock price process where price changes are assumed to follow a normal distribution,
we can apply the properties of normal distributions to analyze the behavior of price
changes over time. When price changes are measured at different time intervals, the sum
of two independent normal distributions remains normally distributed. Thus, over a time
horizon T , the price change will follow a normal distribution N(0, T ), where the mean is
zero and the variance scales linearly with time.

If we use standard deviation as a measure of risk, we observe that the risk (measured as
the standard deviation of the random variable that represents the returns) is proportional
to the square root of time. This relationship implies that as time increases, the uncertainty
or risk associated with the stock’s price also increases, but at a slower rate than the passage
of time itself. Mathematically, this is observed by the fact that the standard deviation of
a normally distributed process with variance T is

√
T .
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3.1 Wiener Processes
Wiener processes are Markovian stochastic processes that describe the behavior of a ran-
dom variable over time. These processes have the Markov property, meaning the future
value of the variable depends only on its current value and not on the past.

The change in the value of a variable following a Wiener process, denoted by dz,
is a random variable that is normally distributed with a mean of zero and a variance
proportional to the time interval dt over which the change is measured, dz ∼ N(0, dt).
The mean is zero and the variance equals the time increment dt. This property indicates
that over very short time intervals, the change is small.

For a process starting at time t = 0, the expected value of the variable at any future
time T is equal to its current value at time t since it is a zero mean process. In this case
indeed we are considering the absence of any drift. However, the variance of the variable
increases linearly with time, such that the variance at time T is equal to T . This growing
variance captures the property of increasing uncertainty as time progresses.

3.2 Generalized Wiener Processes
A generalized Wiener process is an extension of the standard Wiener process where both
drift and volatility components are introduced. The stochastic differential equation for a
generalized Wiener process can be written as:

dx = a dt + b dz

where:

• dz represents the standard Wiener process (Brownian motion), which follows a nor-
mal distribution N(0, dt) with zero mean and variance proportional to the time
increment dt

• a represents the drift coefficient, which determines the average rate of change in x
over time

• b represents the volatility coefficient, which measures the magnitude of random fluc-
tuations in the process

• dx is the increment over a small time step

For the generalized Wiener process, the increment dx is normally distributed:

dx ∼ N(a dt, b2 dt)

• The mean of the increment dx is a dt, indicating that the process tends to drift by
a dt over each time interval

• The variance of dx is b2 dt, reflecting that the randomness of the process grows
proportionally with time and is scaled by the volatility b
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3.3 – Itô Process

In the generalized Wiener process, the term a dt represents the deterministic component
(drift), while the term b dz introduces randomness via the Wiener process.

Generalized Wiener will be fundamental in the Black-Scholes equation, where they are
employed to model the stochastic behavior of asset prices. The drift a represents the
expected return, and the volatility b captures the uncertainty or risk associated with the
asset.

3.3 Itô Process
An Itô process is an extension of the generalized Wiener process where the drift and
volatility coefficients are no longer constants, but functions of both the underlying variable
(the asset) x and time t. This allows for greater flexibility in modeling stochastic processes
where the dynamics change over time.

The stochastic differential equation for an Itô process is given by:

dx = a(x, t) dt + b(x, t) dz

where:

• dz represents the standard Wiener process, which follows a normal distribution
N(0, dt) with zero mean and variance proportional to the time increment dt

• a(x, t) is the drift term, a function of both the underlying variable x and time t,
representing the deterministic component of the process

• b(x, t) is the volatility term, also a function of x and t, which scales the random
fluctuations driven by the Wiener process

For an Itô process, the increment dx over a small time interval dt is normally dis-
tributed:

dx ∼ N
1
a(x, t) dt, b2(x, t) dt

2
• The mean of the increment dx is a(x, t) dt, which represents the expected change in

x over the time interval dt, based on both the current state x and the time t

• The variance of dx is b2(x, t) dt, showing that the randomness of the process, or
volatility, depends on both the state x and the time t

The Itô process introduces a key improvement over the generalized Wiener process by
allowing the drift a(x, t) and volatility b(x, t) to vary with both the underlying variable
x and time t. One of the most important results involving Itô processes is Itô’s Lemma,
which is used to derive the differential of a function of an Itô process. This is fundamental
in derivative pricing, such as the Black-Scholes model, where asset prices follow stochastic
dynamics with parameters that depend on time and state.
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3.4 Stock Model - Geometric Brownian Motion
Geometric Brownian Motion (GBM) is a model that describes the stochastic behavior
of stock prices. It is based on the assumption that the relative change in stock price
follows a stochastic differential equation consisting of a deterministic drift and a random
component driven by a Wiener process.

The stochastic differential equation for a stock price S(t) under the Geometric Brow-
nian Motion model is given by:

dS

S
= µ dt + σ dz

where:

• S(t) represents the stock price at time t

• µ is the drift coefficient, representing the expected rate of return of the stock

• σ is the volatility coefficient, representing the degree of randomness or uncertainty
in the stock’s price movement

• dz is the increment of a standard Wiener process, dz ∼ N(0, dt), which introduces
randomness into the system

In discrete time intervals, the continuous-time GBM equation can be approximated.
Over a small time interval δt, the change in stock price δS can be written as:

δS

S
= µ δt + σ ϵ

√
δt

where:

• ϵ is a standard normal random variable, ϵ ∼ N(0, 1)

• The term σ ϵ
√

δt captures the random fluctuations in the stock price due to the
volatility σ and the Wiener process

In the discrete-time approximation, the relative change in stock price δS
S is normally

distributed:

δS

S
∼ N

1
µ δt, σ2 δt

2
Analyzing the distribution we may note that:

• The mean of δS
S is µ δt, which represents the expected return over the time interval

δt

• The variance of δS
S is σ2 δt, indicating that the randomness in the stock price scales

with the volatility σ and the time interval

The GBM model assumes that stock prices grow exponentially over time and that the
random component scales with the square root of time, reflecting the increasing uncer-
tainty over longer time horizons.
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3.4 – Stock Model - Geometric Brownian Motion

3.4.1 Monte Carlo Simulation
Now we will implement a Python code to simulate the behavior of a stock that follows
this model, which is just a rewritten form of the equation of the GBM:

δS = µSδt + σSϵ
√

δt

The parameters used in this simulation are:

• S0 = 100 is the initial stock price

• µ = 0.05 for the drift (annual return)

• σ = 0.2 is the volatility (annualized standard deviation)

• T = 1 is the time horizon in years, one year in our case

• N = 1000 is the number of time steps

The Python code can be found here, and the result obtained with this simulation is
shown below. The simulation was done on ϵ by drawing samples from a standard normal
distribution, these samples were used to compute the changes in the stock price with
respect to the previous value of the stock, using the equation written above.

Figure 3.1. Simulation of stock price behavior using a GBM model
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3.5 Itô’s Lemma
Itô’s Lemma provides a way to find the differential of a function G(x, t), where x follows
an Itô process, this lemma is used to model the evolution of derivatives. We consider an
Itô process for a variable x described by the stochastic differential equation:

dx = a(x, t) dt + b(x, t) dz

Now, consider a function G(x, t) that depends on both the stochastic process x and
time t. Itô’s Lemma provides the differential for G(x, t), which follows the following
equation:

dG =
A

∂G

∂x
a + ∂G

∂t
+ 1

2
∂2G

∂x2 b2
B

dt + ∂G

∂x
b dz

This equation describes the evolution of the function G(x, t) in terms of its partial
derivatives with respect to x and t, as well as the drift a(x, t) and volatility b(x, t) of the
underlying Itô process for x.

The drift rate (or the expected rate of change) of the function G(x, t) is given by:

∂G

∂x
a + ∂G

∂t
+ 1

2
∂2G

∂x2 b2

This term represents the deterministic part of the evolution of G(x, t).

The variance rate of G(x, t) is given by:3
∂G

∂x

42
b2

This term represents the randomness in the evolution of G(x, t).

Suppose we apply Itô’s Lemma to a function G(x, t) = ln(S), where S is a stock price
that follows a Geometric Brownian Motion. In that case, the lemma helps to prove that
the logarithmic change in stock prices over a time interval δt, ln(St)− ln(S0) is normally
distributed.

The mean of the logarithmic return is:A
µ− σ2

2

B
δt

The variance of the logarithmic return is:

σ2δt

This result is crucial for understanding the distribution of stock returns in models like
the Black-Scholes option pricing model. It implies that over small intervals of time δt, the
logarithmic returns of a stock price are normally distributed with the mean and variance
described above.

38



Chapter 4

Black-Scholes-Merton model

The Black-Scholes formula provides a solution for pricing European call and put options.
It assumes that the underlying asset follows a Geometric Brownian Motion, and that
the price of the option depends on the time to maturity, the underlying stock price, and
volatility.

We report an intuitive derivation of the B&S formula, as in Hull [2021] book.
The derivation begins by modeling the price S(t) of a stock using the Geometric Brow-

nian Motion explained before:

dS = µS dt + σS dz

Let C(S, t) be the price of a European call option as a function of the stock price S
and time t. Using Itô’s Lemma for a function C(S, t), we get the following stochastic
differential equation for the option price:

dC = ∂C

∂t
dt + ∂C

∂S
dS + 1

2
∂2C

∂S2 dS2

Since dS = µS dt + σS dz, we substitute into the above equation and obtain:

dS2 = (σS)2dt = σ2S2dt

Thus, the equation for dC becomes:

dC = ∂C

∂t
dt + ∂C

∂S
(µS dt + σS dz) + 1

2
∂2C

∂S2 σ2S2 dt

Rearranging terms:

dC =
A

∂C

∂t
+ µS

∂C

∂S
+ 1

2σ2S2 ∂2C

∂S2

B
dt + σS

∂C

∂S
dz

Now we construct a risk-free portfolio.
To eliminate risk, we construct a portfolio Π consisting of a long position in the option

and a short position in ∆ = ∂C
∂S units of the stock. The portfolio is:
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Π = C −∆S

The change in the value of the portfolio dΠ is:

dΠ = dC −∆ dS

Substituting for dC and dS:

dΠ =
A

∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2

B
dt

Note that the dz terms cancel out because ∆ = ∂C
∂S , which eliminates the randomness

in the portfolio. Therefore, the portfolio is risk-free, and it must earn the risk-free rate r.
Hence, the value of the portfolio must satisfy:

dΠ = rΠ dt

Substituting Π = C − ∂C
∂S S:

∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 = r

3
C − S

∂C

∂S

4
Expanding the right-hand side:

∂C

∂t
+ 1

2σ2S2 ∂2C

∂S2 = rC − rS
∂C

∂S

Rearranging this equation gives the Black-Scholes partial differential equation (PDE):

∂C

∂t
+ rS

∂C

∂S
+ 1

2σ2S2 ∂2C

∂S2 = rC

For a European call option with strike price K and maturity T , the boundary condition
is given by the payoff at expiration:

C(S, T ) = max(S −K, 0)

To solve the Black-Scholes PDE, we make a transformation using the variable τ = T−t
(the time to expiration). After several steps (including change of variables and solving
the heat equation), the solution for the price of a European call option is given by the
Black-Scholes formula:

C(S, t) = SN(d1)−Ke−r(T −t)N(d2)
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4.1 – Volatility

where:

• d1 = ln(S/K)+(r+σ2/2)(T −t)
σ

√
T −t

• d2 = d1 − σ
√

T − t

• N(·) is the cumulative distribution function of the standard normal distribution

Using put-call parity, we can derive the price of a European put option:

P (S, t) = Ke−r(T −t)N(−d2)− SN(−d1)

4.1 Volatility
Volatility is a measure of the uncertainty associated with the price movements of a stock.
Typically, this uncertainty is expressed with a time horizon of one year. To estimate the
volatility of a stock, which is equivalent to estimating the standard deviation of its price
changes, we proceed with the following assumptions and notations.

Assumptions

• Each measurement is taken at fixed and constant time intervals.

• The stock does not pay dividends.

Notations

• n + 1: Total number of observations.

• Si: Stock price at each time instant i = 0, 1, . . . , n.

• ui: Logarithmic price change between two subsequent instants, computed as:

ui = ln
3

Si

Si−1

4
, i = 1, 2, . . . , n

• ∆t: Time interval between observations.

The quantity ui represents the log-change in the stock prices. To estimate the volatility
of the stock, we compute the standard deviation of the ui, denoted as s.
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Estimation of Volatility
The standard deviation s of the ui can be estimated using the formula:

s =

öõõô 1
n− 1

nØ
i=1

(ui − ū)2

where ū is the empirical mean of the ui:

ū = 1
n

nØ
i=1

ui

As previously defined, the theoretical standard deviation of the ui is σ
√

∆t, where σ
represents the true volatility of the stock. Therefore, the estimated value of σ can be
expressed as:

σ̂ = s√
∆t

Trade-off in Estimation
Increasing the number of observations generally leads to a more accurate estimate of σ.
However, stock volatility tends to vary over time. Thus, it is important to strike a balance
between the number of observations and the relevance of recent data. Typically, volatility
estimations are based on data from the past 3 to 6 months, using daily closing prices for
stocks.
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4.1 – Volatility

4.1.1 Estimation of Volatility for non-dividend-paying stock
We now try to estimate volatility for a non-dividend-paying stock, in our example it will
be the Netflix stock, the data was found on the Nasdaq website and it was free to download
and read. The dataset included the closing price for the stock of the past 6 months. The
analysis was carried out using Python, the code can be found here. We applied to the
data the method explained before for the estimation of the volatility.

In the picture the first rows of the dataset are reported, and a transformation from
dollars to non-unit numbers with two decimals was applied to the first column to correctly
compute the standard deviation, the total number of observations was 127.

Figure 4.1. Dataset

The results did show:

• Estimated standard deviation of the logarithmic(daily) returns = 0.017 ≈ 1.7%

• Annualized volatility = 0.27 ≈ 27%

• Standard error of the annual volatility = 0.017
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4.2 More on B&S model
The Black-Scholes formulas give the prices at time t = 0 for European call and put options
on a non-dividend-paying stock. These formulas provide closed-form solutions based on
several parameters.

For a European call option, the price is given by:

c = S0N(d1)−Ke−rT N(d2) (1)

For a European put option, the price is given by:

p = Ke−rT N(−d2)− S0N(−d1) (2)

where:

• S0 is the current stock price

• K is the strike price of the option

• T is the time to maturity (in years)

• r is the risk-free interest rate (continuously compounded)

• σ is the volatility of the stock price (standard deviation of the stock’s returns)

• N(x) is the cumulative distribution function (CDF) of the standard normal distri-
bution

The terms d1 and d2 are intermediate variables used in the pricing formulas and are
defined as:

d1 =
ln
1

S0
K

2
+
1
r + σ2

2

2
T

σ
√

T

d2 =
ln
1

S0
K

2
+
1
r − σ2

2

2
T

σ
√

T
= d1 − σ

√
T

The function N(x) represents the probability that a normally distributed random vari-
able with mean zero and variance one is less than or equal to x. In other words, N(x) is
the cumulative distribution function of the standard normal distribution.

4.2.1 Properties of American and European Options
• For non-dividend-paying stocks, the price of an American call option is equal to the

price of a European call option. This is because there is no advantage in exercising
an American call option early when no dividends are paid.

• On the other hand, there is no closed-form analytical formula for pricing American
put options. These options are more complex to price due to the possibility of early
exercise, which must be handled using numerical methods, such as finite difference
methods, binomial trees, or Monte Carlo simulations.
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4.3 Implied Volatility
In the context of option pricing, the implied volatility is a key concept. It refers to the
value of the volatility parameter σ that, when substituted into the Black-Scholes (B&S)
pricing formula, yields the market-observed price of an option. In other words, the implied
volatility represents the market’s view on the future volatility of the stock price, inferred
from current option prices.

Mathematically, implied volatility (σimpl) is the solution to the following equation:

Option price = f(S0, K, T, r, σimpl)

where:

• S0 is the current stock price.

• K is the strike price.

• T is the time to maturity.

• r is the risk-free interest rate.

• σimpl is the implied volatility.

• f(·) represents the Black-Scholes formula for either a call or a put option price.

4.3.1 Finding Implied Volatility

Since the Black-Scholes formulas cannot be explicitly inverted to solve for σ, iterative
numerical methods are required to determine the implied volatility. Common methods
include:

• Newton-Raphson method: A root-finding algorithm that iteratively adjusts σ by
considering the difference between the observed option price and the Black-Scholes
theoretical price.

• Bisection method: A bracketing method where the volatility is incrementally
adjusted within an interval until the observed option price is closely matched.

• Secant method: A faster iterative approach that approximates the derivative of
the option price function using secant lines.

These methods are necessary because an explicit closed-form solution for σ does not
exist within the Black-Scholes framework, making implied volatility estimation a non-
trivial problem.
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4.3.2 Market Significance of Implied Volatility
Implied volatility is widely used to infer the market’s expectations of future volatility.
When investors observe the prices of options, they can deduce the level of volatility that
the market deducts over the life of the option. High implied volatility typically indicates
that the market expects significant price movements in the underlying stock, whereas low
implied volatility suggests that the stock is expected to remain relatively stable.

Traders and investors rely on implied volatility as a measure of risk and potential price
fluctuations in the stock.

4.4 Dividends in European and American Options
Dividends play an important role in the pricing and exercise strategy of options. When a
stock pays dividends, the treatment of those dividends affects both the price of European
options (which cannot be exercised early) and the exercise strategy of American options
(which can be exercised before maturity).

4.4.1 Dividends and European Options
For European options, the Black-Scholes (B&S) formula can still be used to price options
on dividend-paying stocks, provided that we adjust the stock price to account for the
present value of future dividends.

Let:

• S0 be the current stock price,

• D be the present value of all dividends expected to be paid before the option’s
expiration.

The adjusted stock price used in the Black-Scholes formula becomes:

S0 −D

Thus, the pricing formulas for European call and put options on dividend-paying stocks
become:

c = (S0 −D)N(d1)−Ke−rT N(d2)

p = Ke−rT N(−d2)− (S0 −D)N(−d1)

where d1 and d2 are defined in the usual manner, with S0 replaced by S0 − D in the
logarithmic term.
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4.4.2 Dividends and American Call Options
For American call options, the presence of dividends introduces a situation where early
exercise may become optimal. Specifically:

• If a stock does not pay dividends, it is never optimal to exercise an American call
option early. This is because the holder of the call option benefits from delaying
exercise until maturity in order to maximize the time value of the option.

• If a stock pays dividends, it may be optimal to exercise the American call option
just before the ex-dividend date, especially if the dividend is large and the dividend
payment date is close to the option’s maturity. In such cases, the stock price is
expected to drop by the dividend amount after the ex-dividend date, so early exercise
allows the option holder to capture the dividend and avoid the price drop.

The optimal exercise strategy for American call options on dividend-paying stocks
depends on both the magnitude of the dividend and the timing of its payment relative to
the option’s maturity. Typically, early exercise is optimal if:

• The dividend payment is large, and

• The ex-dividend date is close to the expiration of the option.

4.4.3 American Put Options and Dividends
Unlike American call options, the presence of dividends does not significantly affect the
exercise strategy for American put options, since put options benefit from stock price
declines, which are unaffected by dividend payments.

4.5 Black Approximation
The Black approximation is a widely used method to estimate the price of American
call options on stocks that pay dividends. Since American call options allow for early
exercise, particularly when dividends are involved, this method offers a practical approach
to estimate the option price when dividends complicate the direct application of the Black-
Scholes model.

4.5.1 Method of the Black Approximation
The Black approximation simplifies the problem by calculating the prices of two European
call options:

• The first price is calculated for the option maturing at the actual expiration date T
taking into account the dividend payment

• The second price is calculated for the option just before the last dividend payment,
denoted tn, where tn is the ex-dividend date closest to the option’s expiration date.
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The logic behind this method is that if the dividend is significant and the ex-dividend
date is close to the option’s maturity, it may be advantageous for the holder to exercise
the option early, just before the stock price drops due to the dividend.

Thus, the price of the American call option is the maximum of these two European
option prices:

CAmerican = max (C(T ), C(tn))

where:

• C(T ) is the price of the European call option with expiration at T ,

• C(tn) is the price of the European call option just before the last dividend payment
at time tn.

This approach approximates the price of the American call option by considering both
the potential early exercise due to dividends and the time value of waiting until maturity.

4.5.2 Dividends and American Put Options
In contrast to American call options, dividends typically do not encourage the early exer-
cise of American put options. Since put options benefit from a declining stock price, the
dividend payment, which reduces the stock price, is advantageous for put holders.

4.5.3 Implementation
A Python implementation of the Black Approximation can be found here, in the script
I computed the two prices of a European call at maturity T after the dividend has been
paid and at tn before the payment of the dividend, using B&S formula. The final price
using Black approximation was then set equal to the maximum of the two.
The parameters used for this example are the following:

• S0 = 100 Current stock price

• K = 100 Strike price

• r = 0.05 Risk-free interest rate

• T = 1.0 Time to maturity (years)

• σ = 0.2 Volatility

• D1 = 2.0 Dividend payment

• t1 = 0.5 Time of dividend payment (years)

The final results are shown in the table below.
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4.6 – Roll-Geske-Whaley

Description Value
Call before dividend 6.88
Call after dividend 9.24

Black Approximation Price 9.24

4.6 Roll-Geske-Whaley
The Roll-Geske-Whaley formula provides an exact solution for the price of an American
call option on a stock that pays one discrete dividend. If several dividends are expected
before maturity, the formula can still be used by adjusting S0 as the stock price at the
initial time minus the present value of all dividends except the last one. Thus, D1 is the
value of the final dividend and t1 is the time of the final dividend payment. We will follow
the formulas presented in Geske and Roll [1984].

4.6.1 The Roll-Geske-Whaley Formula
The price of the American call option is given by:

C = (S0 −D1e−rt1)M
A

a1,−b1;−
ò

t1

T

B
+ (S0 −D1e−rt1)N(b1)+

−Ke−rT M

A
a2,−b2;−

ò
t1

T

B
− (K −D1)e−rT N(b2)

where:

a1 =
ln
1

S0−D1e−rt1
K

2
+
1
r + σ2

2

2
T

σ
√

T

a2 = a1 − σ
√

T

b1 =
ln
1

S0−D1e−rt1
S∗

2
+
1
r + σ2

2

2
t1

σ
√

t1

b2 = b1 − σ
√

t1

Here, σ is the volatility of the stock (adjusted for dividends), and S∗ is the critical
stock price that satisfies the early exercise condition, which is obtained by solving:

c(S∗) = S∗ + D1 −K

where c(S∗) is the Black-Scholes price for a European call option when the stock price
is S∗, and the time to maturity is T − t1.

M(a, b; ρ) is the cumulative distribution function for a standardized bivariate normal
distribution, which represents the probability that the first variable is less than a and the
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second is less than b, with correlation ρ. N(x) is the cumulative distribution function for
a standard normal distribution.

4.7 Drezner Approximation for M(a, b; ρ)
For the case where a ≤ 0, b ≤ 0, and ρ ≤ 0, Drezner’s approximation for M(a, b; ρ) is
given by:

M(a, b; ρ) =
ð

1− ρ2

π

4Ø
i,j=1

AiAjf(Bi, Bj)

where:

f(x, y) = exp [a′(2x− a′) + b′(2y − b′) + 2ρ(x− a′)(y − b′)]

with:

a′ = að
2(1− ρ2)

, b′ = bð
2(1− ρ2)

The constants Ai and Bi are as follows:

A1 = 0.3253030, A2 = 0.4211071, A3 = 0.1334425, A4 = 0.006374323

B1 = 0.1337764, B2 = 0.6243247, B3 = 1.3425378, B4 = 2.2626645

If the product of a, b, and ρ is negative or zero, we have the following identities:

M(a, b; ρ) = N(a)−M(−a,−b;−ρ)

M(a, b; ρ) = N(b)−M(−a,−b;−ρ)

M(a, b; ρ) = N(a) + N(b)− 1 + M(−a,−b; ρ)

When the product of a, b, and ρ is positive, we use the identity:

M(a, b; ρ) = M(a, 0; ρ1) + M(b, 0; ρ2)− δ

where:

ρ1 = ρa− bð
a2 − 2ρab + b2

sgn(a), ρ2 = ρb− að
a2 − 2ρab + b2

sgn(b)

δ = 1− sgn(a) sgn(b)
4
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The sign function sgn(x) is defined as:

sgn(x) =
I

+1 if x ≥ 0
−1 if x < 0
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4.8 Implementation of Roll-Geske-Whaley
The implementation of the Roll-Geske-Whaley formula in Python code can be found here.

4.8.1 1. Libraries and Dependencies
The code begins by importing the necessary libraries:

• numpy: Used for numerical operations, such as logarithms and square roots.

• scipy.stats.norm: Provides functions for working with the standard normal cu-
mulative distribution function (CDF).

• scipy.stats.mvn: Contains functions to compute the cumulative distribution for
multivariate normal distributions, which is essential for calculating the bivariate
normal CDF.

• scipy.optimize.fsolve: Used for solving nonlinear equations, specifically for solv-
ing for the critical stock price S∗.

4.8.2 2. Bivariate Normal CDF Calculation
The Roll-Geske-Whaley formula involves the bivariate normal cumulative distribution
function (CDF), denoted by M(a, b; ρ), where a and b are the limits for two correlated
normal random variables, and ρ is the correlation between them.

The function M_bivariate_normal(a, b, rho) computes the CDF for two variables
with correlation ρ using the mvn.mvnun function from the scipy.stats module. The
input parameters are:

• lower = [-inf, -inf]: Specifies the lower bounds for the integration, which are
negative infinity for both variables.

• upper = [a, b]: Specifies the upper bounds of integration, which are a and b.

• mean = [0, 0]: The mean of the two normal variables is assumed to be 0 (standard
normal).

• cov_matrix = [[1, rho], [rho, 1]]: This is the covariance matrix where the
diagonal elements represent the variance (1 for a standard normal), and the off-
diagonal elements represent the correlation ρ between the two variables.

The result, p, is the value of the bivariate normal CDF.

4. Solving for S∗

The function bs_condition(S_star) represents the equation that needs to be solved for
the critical stock price S∗:

c(S∗) = S∗ + D1 −K
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where c(S∗) is the Black-Scholes price for a European call option when the stock price is
S∗, and the maturity is T − t1. The function fsolve from scipy.optimize is used to
numerically solve for S∗.

5. Roll-Geske-Whaley Formula
The main function roll_geske_whaley(S0, K, r, T, sigma, D1, t1) implements the
Roll-Geske-Whaley formula to compute the American call option price. The key steps are:

• Calculate a1 and a2:

a1 =
ln
1

S0−D1e−rt1
K

2
+
1
r + σ2

2

2
T

σ
√

T

a2 = a1 − σ
√

T

• Solve for S∗ using the condition:

c(S∗) = S∗ + D1 −K

• Calculate b1 and b2:

b1 =
ln
1

S0−D1e−rt1
S∗

2
+
1
r + σ2

2

2
t1

σ
√

t1

b2 = b1 − σ
√

t1

• Compute the correlation coefficient ρ:

ρ = −
ò

t1

T

• Calculate the bivariate normal CDF values M1 and M2 using the function
M_bivariate_normal:

M1 = M(a1,−b1; ρ)

M2 = M(a2,−b2; ρ)

• Compute the final American call option price using the Roll-Geske-Whaley
formula:

C = (S0 −D1e−rt1)M1 + (S0 −D1e−rt1)N(b1)−Ke−rT M2 − (K −D1)e−rT N(b2)
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6. Parameters and Output
The parameters are set as follows, they are the same as before to compare the result
obtained with the Black approximation:

• S0 = 100 (current stock price),

• K = 100 (strike price),

• r = 0.05 (risk-free interest rate),

• T = 1.0 (time to maturity in years),

• σ = 0.2 (volatility),

• D1 = 2.0 (dividend payment),

• t1 = 0.5 (time of dividend payment in years).

The final result is similar to the one obtained with the Black approximation, this indicates
that with a certain tolerance the approaches are equivalent.

Output:
Roll-Geske-Whaley American Call Option Price: 9.25
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Chapter 5

Introduction of Exotic Options

5.1 Exotic Options
Exotic options are a category of financial derivatives that have more complex structures
compared to standard options (like European and American options). They are usually
traded over-the-counter (OTC), meaning they are customized contracts between two par-
ties rather than standardized and traded on exchanges. Many exotic options are linked
to an underlying asset that provides a continuous dividend yield, denoted as q, which
affects their pricing. For this Part about Exotic Options and Portfolio management we
will closely follow the book of Hull [2021] and Capiński and Zastawniak [2011].

5.1.1 Bermuda Options
Bermuda options give the holder the right to exercise the option, but only on specific
dates during the life of the option, rather than at any time (as in American options)
or only at maturity (as in European options). These pre-defined exercise dates provide
more flexibility than European options but less than American ones. Early exercise is
only permitted on certain dates, typically spaced out at regular intervals. Investors use
Bermuda options when they want the flexibility of potential early exercise, but with limited
and specific opportunities to do so.

5.1.2 Warrants
Warrants are similar to long-term options that give the holder the right, but not the
obligation, to buy or sell an underlying asset (usually company shares) at a specific price,
known as the strike price, within a certain period. Unlike typical options, the strike price
of a warrant can change during its lifetime. Additionally, early exercise is allowed only
during a specific period, rather than throughout the entire life of the option. Warrants are
often issued by the company itself, meaning exercising them can result in the issuance of
new shares, potentially diluting the company’s existing share capital. Warrants are often
used as sweeteners in debt or equity deals, giving investors an incentive for long-term
investment.
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5.2 Forward Start Options
A forward start option is a type of option that begins at a future date. The option itself
is agreed upon in advance, but it only comes into existence at the specified future start
date. While the option is structured and priced at inception, the actual strike price is
typically set when the option starts, often at the underlying asset’s price at the start
date (i.e., the at-the-money price at that future time). These options are commonly
used for hedging purposes, particularly when an investor anticipates needing protection
or exposure starting at a future date. For example, they are popular with corporations
managing long-term compensation plans, where the need for an option begins only in
future periods.

5.2.1 Pricing European Forward-Start Call Option
Consider a European forward-start call option on a non-dividend paying stock (i.e., the
dividend yield q = 0). Let the following notation be defined:

• Initial time: t = 0

• Start time: T1 (this is when the option becomes active, and the strike price is
determined)

• Maturity time: T2 (this is when the option expires)

• Stock price at time t = 0: S0

• Stock price at time T1: S1

• Risk-free interest rate: r

Using the risk-neutral measure, the value of the forward-start European call option
at time t = 0 is given by the discounted expectation of the option payoff under the risk-
neutral measure Ê. Since the option starts at time T1, the present value of the option
depends on the stock price S1 at that time.

The value of the option at t = 0 is:

V (0) = e−rT1Ê [C(S1, T1, T2)]

where C(S1, T1, T2) is the value of the European call option at time T1 with the un-
derlying price S1, strike price K, and maturity at T2.

For a non-dividend paying stock (i.e., q = 0), under the risk-neutral measure, the
expected value of the future stock price S1 is known. Specifically, it is given by:

Ê[S1] = S0erT1

Substituting this into the valuation equation simplifies the expression. Since the ex-
pected value of S1 is known, the option value at time t = 0 simplifies to:
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V (0) = Ce−rT1

where C is a constant representing the price of a European call option under these
conditions using B&S formula. The discount factor e−rT1 accounts for the time T1 until
the option becomes active.

5.3 Compound Options
Compound options are a type of exotic option where the underlying asset is itself an option.
These options provide the holder with the right, but not the obligation, to purchase or
sell another option at a specified future date. Compound options are highly leveraged
and useful when the price of an option is uncertain, or the investor wants flexibility in
deciding whether to acquire an option.

There are four main types of compound options:

• Call on Call: A call option on a call option

• Call on Put: A call option on a put option

• Put on Call: A put option on a call option

• Put on Put: A put option on a put option

Compound options are characterized by:

• Two strike prices:

– K1 (the strike price of the first option)

– K2 (the strike price of the second option)

• Two exercise dates:

– T1 (the maturity of the first option)

– T2 (the maturity of the second option), where T2 > T1

At the first maturity T1, the holder can exercise the first option by paying the strike
price K1. If exercised, the holder obtains a second option with strike price K2 and maturity
T2. The first option is exercised if the value of the second option at T1 exceeds K1, i.e.,

C(T1) > K1

where C(T1) is the value of the second option at time T1.
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5.3.1 Pricing a Call on Call Compound Option
Consider the case of a call on call compound option. The key parameters are:

• The strike price of the first option is K1

• The maturity of the first option is T1

• The strike price of the second option is K2

• The maturity of the second option is T2, where T2 > T1

At time T1, if the value of the second call option exceeds K1, the first option will be
exercised. The value of the second option, denoted C(T1), depends on the expected value
of the underlying asset at time T2:

C(T1) = e−r(T2−T1)Ê [max(ST2 −K2, 0)]

If C(T1) > K1, the holder pays K1 to acquire the second option, which can be exercised
at T2.

5.4 General models to price Compound Options
For all cases, the compound option has two strike prices and two maturities:

• K1 is the strike price for the first option, expiring at T1

• K2 is the strike price of the second option, which expires at T2

The first option is exercised at time T1 if and only if the value of the second option
at T1 exceeds K1. The pricing formulas below rely on the cumulative bivariate normal
distribution M , since the valuation requires considering two sources of uncertainty: the
price at T1 and the price at T2.

The value of a European call option on a call option is given by:

Vcall on call = S0e−qT2M(a1, b1;
ó

T1

T2
)−K2e−rT2M(a2, b2;

ó
T1

T2
)− e−rT1K1N(a2)

where the parameters are defined as:

a1 =
ln
1

S0
S∗

2
+
1
r − q + σ2

2

2
T1

σ
√

T1
, a2 = a1 − σ

ð
T1

b1 =
ln
1

S0
K2

2
+
1
r − q + σ2

2

2
T2

σ
√

T2
, b2 = b1 − σ

ð
T2
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here:
• M(a, b; ρ) is the cumulative bivariate normal distribution with correlation ρ

• N(x) is the cumulative univariate normal distribution
The value of a European put option on a call option is given by:

Vput on call = K2e−rT2M(−a2, b2;−
ó

T1

T2
)− S0e−qT2M(−a1, b1;−

ó
T1

T2
) + e−rT1K1N(−a2)

The value of a European call option on a put option is:

Vcall on put = K2e−rT2M(−a2,−b2;
ó

T1

T2
)− S0e−qT2M(−a1,−b1;

ó
T1

T2
)− e−rT1K1N(−a2)

The value of a European put option on a put option is:

Vput on put = S0e−qT2M(a1,−b1;−
ó

T1

T2
)−K2e−rT2M(a2,−b2;−

ó
T1

T2
) + e−rT1K1N(a2)

The parameters used in the formulas are defined as follows:
• S0 is the initial price of the underlying asset

• K1 is the strike price of the first option (compound option)

• K2 is the strike price of the second option (underlying option)

• T1 is the time to maturity of the first option

• T2 is the time to maturity of the second option, with T2 > T1

• r is the risk-free interest rate

• q is the continuous dividend yield of the underlying asset

• σ is the volatility of the underlying asset

• S∗ is the critical asset price at time T1, where the value of the second option is
exactly K1

• M(a, b; ρ) is the cumulative bivariate normal distribution with correlation ρ

• N(x) is the cumulative univariate normal distribution
The first option will be exercised at time T1 if the value of the second option at time

T1 exceeds K1. This means that if the price of the asset at T1 is greater than the critical
level S∗, the first option will be exercised:

ST1 > S∗

where S∗ is the price at which the value of the second option equals K1 at time T1.
Otherwise, the first option will not be exercised.
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5.5 Chooser Options
A chooser option is a type of exotic option that grants the holder the right to decide, at
a specific future time T1, whether the option will become a call or a put. This flexibility
allows the holder to defer the decision until T1, depending on how the underlying asset’s
price evolves over time.

The parameters used for this analysis are the following:

• S0 is the initial price of the underlying asset

• S1 is the price of the underlying asset at time T1

• K is the strike price of the option

• T1 is the time at which the holder decides if the option will be a call or a put

• T2 is the maturity of the option (after the choice is made)

• r is the risk-free interest rate

• q is the continuous dividend yield

• C(T1) is the value of the European call at time T1

• P (T1) is the value of the European put at time T1

If the option is bought at t = 0, the holder makes the decision at time T1. The value
at T1 of the chooser option is:

Vchooser(T1) = max(C(T1), P (T1))

where:

• C(T1) is the value of the option if it were a European call at time T1

• P (T1) is the value of the option if it were a European put at time T1

To value the chooser option, we can exploit put-call parity. The put-call parity rela-
tionship for European options with the same strike price K and maturity T2 is:

C(T1)− P (T1) = S1e−q(T2−T1) −Ke−r(T2−T1)

where:

• S1 is the price of the underlying asset at time T1

• K is the strike price

• T2 is the maturity of both the call and the put

• r is the risk-free interest rate
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• q is the continuous dividend yield of the underlying asset

Using put-call parity, we can express the value of the chooser option as follows:

Vchooser(T1) = max
1
C(T1), C(T1) + Ke−r(T2−T1) − S1e−q(T2−T1)

2
Simplifying this expression:

Vchooser(T1) = C(T1) + max
1
0, Ke−(r−q)(T2−T1) − S1

2
e−q(T2−T1)

From the final equation, we can interpret the chooser option as a portfolio consisting
of:

• A European call option with strike K and maturity T2

• A quantity of e−q(T2−T1) European put options with strike price Ke−(r−q)(T2−T1) and
maturity at T1

At time T1 the chooser option’s holder selects whether to exercise the option as a call
or a put, at T2 if the call is chosen, the payoff will be max(ST2 − K, 0); if the put is
selected, the payoff will be max(K −ST2 , 0). By exploiting put-call parity, we rewrite the
chooser option’s value in terms of a call option and an embedded put option.

Thus, the chooser option can be viewed as a strategy combining a long position in a
European call and a certain quantity of European puts, where the strike and maturity of
the put are adjusted based on interest rate and dividend yield differences.

5.6 Implementation to price Chooser Options
In this section, we analyze a Python code that can price Chooser Options. The Black-
Scholes formula for a European call option is given by:

C = Se−qT Φ(d1)−Ke−rT Φ(d2)

where:

d1 =
ln
1

S
K

2
+
1
r − q + σ2

2

2
T

σ
√

T

d2 = d1 − σ
√

T

Here:

• S is the current asset price

• K is the strike price

• T is the time to maturity

• r is the risk-free interest rate
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• q is the dividend yield

• σ is the volatility

• Φ is the cumulative distribution function of the standard normal distribution

The Black-Scholes formula for a European put option is:

P = Ke−rT Φ(−d2)− Se−qT Φ(−d1)

5.6.1 Pricing of Chooser Options in Python
Now, a chooser option can be priced as follows:

Chooser Price = C + e−q(T 2−T 1) · P

where:

• C is the price of the European Call

• T1 is the time to maturity of the put option

• T2 is the time to maturity of the call option

• P is the price of the put option with strike K · e−(r−q)(T 2−T 1) and maturity T1

The put option price P is calculated using:

P = Kpute
−rT 1Φ(−d2)− Se−qT 1Φ(−d1)

where Kput = K · e−(r−q)(T 2−T 1).

5.6.2 Code Implementation
The Python implementation involves the following steps:

1. Define functions to calculate Black-Scholes prices for call and put options.

2. Use these functions to calculate the price of the chooser option.

Here are the parameters used in the pricing of the chooser option:

• S0 = 100 : Initial asset price

• K = 105 : Strike price of the chooser option

• T1 = 0.5 years : Time to maturity of the put option

• T2 = 1.0 years : Time to maturity of the call option

• r = 0.03 : Risk-free interest rate (3%)
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• q = 0.02 : Dividend yield (2%)

• σ = 0.25 : Volatility (25%)

• c = 1.0 : Constant term in the chooser option price

The price of the chooser option, given the parameters above, is:

Price = 10.15
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Chapter 6

Pricing Exotic Options

6.1 Barrier Options
Barrier options are a class of exotic options whose payoff at maturity depends not only
on the terminal value of the underlying asset but also on whether the underlying asset’s
price has reached or crossed a certain threshold level during the life of the option. This
threshold is called the barrier level, and the behavior of the option changes depending on
whether the barrier is reached.

There are two main types of barrier options:

• Knock-Out Options: These options become worthless if the price of the underlying
asset reaches or exceeds (or falls below, depending on the option type) a specified
barrier level

• Knock-In Options: These options only come into existence and acquire value if the
price of the underlying asset touches or crosses the barrier level

6.1.1 Down-and-out Call

A down-and-out call is a type of knock-out option. It behaves like a standard European
call option but will become worthless if the price of the underlying asset falls to or below
a specified barrier level H at any point before the option’s maturity. The barrier H is set
below the initial asset price S0.

The key features of a down-and-out call are:

• The option holder has the right to buy the underlying asset at the strike price K at
maturity if the asset price remains above the barrier level H

• If the underlying asset price reaches or falls below the barrier level H before maturity,
the option is immediately knocked out and becomes worthless
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6.1.2 Down-and-in Call
A down-and-in call is a type of knock-in option. It only becomes active and acquires
value if the price of the underlying asset touches or falls below a specified barrier level H
during the life of the option. If the barrier is reached, the option becomes a standard call
option with the following features:

• If the asset price reaches the barrier H, the option holder has the right to buy the
underlying asset at the strike price K at maturity

• If the underlying asset price never reaches or falls below the barrier H, the option
expires worthless

6.1.3 Down-and-In Call Option
The formula for the down-and-in call option, denoted cdi, is given by:

cdi = S0e−qT

3
H

S0

42λ

N(y)−Ke−rT

3
H

S0

42λ−2
N(y − σ

√
T )

where:

λ =
r − q + 1

2σ2

σ2

and

y =
ln
1

H2

S0K

2
σ
√

T
+ λσ

√
T

Here, N(x) is the cumulative distribution function (CDF) of the standard normal distri-
bution.

6.1.4 Down-and-Out Call Option
The price of the down-and-out call option, denoted as cdo, is given by:

cdo = c− cdi

where c is the price of a standard European call option, calculated using the Black-Scholes
formula.

For cases where the barrier level H ≥ K, the down-and-out call price is calculated
using the following formula:

cdo = S0N(x1)e−qT −Ke−rT N(x1 − σ
√

T )− S0e−qT

3
H

S0

42λ

N(y1)+

+Ke−rT

3
H

S0

42λ−2
N(y1 − σ

√
T )

68



6.1 – Barrier Options

where:

x1 = ln(S0/H)
σ
√

T
+ λσ

√
T

y1 = ln(H/S0)
σ
√

T
+ λσ

√
T

6.1.5 Up-and-Out Call Option
An up-and-out call option becomes worthless if the asset price reaches a barrier level
H, which is higher than the current price of the underlying asset. If the barrier is not
reached, the option behaves like a standard call option.

6.1.6 Case 1: H ≤ K

When the barrier level H is less than or equal to the strike price K:
cuo = 0 (up-and-out call is worthless)

cui = c (up-and-in call is equivalent to a regular European call)

6.1.7 Case 2: H > K

When the barrier level H is greater than the strike price K, the up-and-in and up-and-out
call prices are calculated as follows:

Up-and-In Call Price

The formula for the up-and-in call price cui is:

cui = S0N(x1)e−qT−Ke−rT N(x1−σ
√

T )−S0e−qT

3
H

S0

42λ è
N(−y1)−N(−y1 + σ

√
T )
é

+

+Ke−rT

3
H

S0

42λ−2 è
N(−y1 + σ

√
T )−N(−y1)

é
Up-and-Out Call Price

The up-and-out call price cuo is computed by subtracting the up-and-in call price from
the price of a regular European call c:

cuo = c− cui

6.1.8 Barrier Put Options
For put options, the two main categories are up-and-out and up-and-in put options:

• An up-and-out put ceases to exist if the asset price moves above the barrier H

• An up-and-in put comes into existence only if the asset price reaches the barrier
H
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6.1.9 Case 1: H ≥ K

When the barrier H is greater than or equal to the strike price K, the up-and-in put price
pui is determined by subtracting the up-and-out put price puo from the price of a regular
put option p:

puo = p− pui

The up-and-in put price is calculated by:

pui = −S0e−qT

3
H

S0

42λ

N(−y) + Ke−rT

3
H
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42λ−2
N(−y + σ

√
T )

6.1.10 Case 2: H < K

When the barrier H is less than the strike price K, the up-and-out put price is given by:

puo = −S0N(−x1)e−qT + Ke−rT N(−x1 + σ
√

T ) + S0e−qT

3
H

S0

42λ

N(−y1)+

−Ke−rT

3
H
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42λ−2
N(−y1 + σ

√
T )

The up-and-in put price is then:
pui = p− puo

6.1.11 Down-and-Out and Down-and-In Put Options
The pricing of down-and-out and down-and-in put options follows a similar logic, with
the key difference being that the barrier H is below the current asset price.

The price of a down-and-out put is given by:

pdo = −S0N(−x1)e−qT +Ke−rT N(−x1+σ
√

T )+S0e−qT

3
H

S0

42λ è
N(y1)−N(y1 − σ
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+
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N(y1 − σ
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T )−N(y1)

é
The down-and-in put price pdi is computed by subtracting the down-and-out put price

from the regular put price p:
pdi = p− pdo

6.1.12 Barrier Types: Summary
There are several variations of barrier options depending on whether the barrier is set
above or below the current price of the asset.
The primary types are:

• Up-and-Out Option: A knock-out option that becomes worthless if the asset price
rises above the barrier level
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• Up-and-In Option: A knock-in option that becomes active if the asset price rises
above the barrier level

• Down-and-Out Option: A knock-out option that becomes worthless if the asset price
falls below the barrier level

• Down-and-In Option: A knock-in option that becomes active if the asset price falls
below the barrier level

Barrier options can be advantageous for investors seeking to reduce premiums, as they
are typically cheaper than standard options. However, the complexity of their payoff
structure, which depends on the asset’s path, adds an additional layer of risk.

Barrier options offer flexible risk management tools but also come with the risk of
becoming worthless if the underlying asset touches or breaches the barrier level. They are
often used by traders who anticipate significant price movements but want to limit the
cost of option premiums.

6.2 Implementation to Price Barrier Options
In this section we will analyze a Python code to price Barrier Options, we will focus on
down-and-in-call and down-and-out-call.
The code implements the following functions for pricing barrier options:

• down_and_in_call: This function calculates the price of a down-and-in call option
using the derived formula. It computes:

– λ: A parameter that depends on the risk-free rate r, the dividend yield q, and
the volatility σ.

– y: A term involving the logarithm of the barrier and strike prices.

– The cumulative normal distribution values N(y) and N(y − σ
√

T ).

• european_call: This function calculates the price of a standard European call op-
tion using the Black-Scholes formula. It computes the terms d1 and d2, which are
used to evaluate the call price based on the risk-neutral probability framework.

• down_and_out_call: This function calculates the price of a down-and-out call op-
tion. It does so by subtracting the price of the down-and-in call from the price of a
standard European call option:

cdo = c− cdi

where c is the price of the European call and cdi is the price of the down-and-in call.
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6.2.1 Example in Python
The following parameters are used to calculate the option prices:

• S0 = 100: The current asset price

• H = 90: The barrier level

• K = 95: The strike price

• T = 1: Time to maturity (in years)

• r = 0.05: The risk-free interest rate (5%)

• q = 0.02: The dividend yield (2%)

• σ = 0.2: The volatility (20%)

Using these parameters, the code computes the down-and-in call price and the down-and-
out call price.
The code produces the following results for barrier option pricing:

• Down-and-In Call Price: 2.50

• Down-and-Out Call Price: 9.44

6.3 Binary Options
Binary options are financial instruments that allow traders to speculate on the price
movement of an underlying asset. Unlike traditional options, where the payoff depends
on the magnitude of the price movement, binary options offer only two possible outcomes:
the trader either receives a fixed payoff or nothing at all.

There are two main types of binary options:

1. Cash-or-nothing options

2. Asset-or-nothing options

Each type can further be classified into call options and put options, depending on
whether the trader expects the underlying asset price to go up or down.

6.3.1 Cash-or-Nothing Options
A cash-or-nothing call option pays a fixed amount, denoted as Q, if the price of the
underlying asset at maturity, ST , is greater than the strike price, K. Otherwise, the payoff
is zero.

In a risk-neutral framework, the probability that the asset price ends up above the strike
price at maturity is given by N(d2), where N(d2) represents the cumulative distribution
function (CDF) of the standard normal distribution.
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The value of a cash-or-nothing call option at time t is:

Value of cash-or-nothing call = Qe−r(T −t)N(d2)

where:

• Q is the fixed payoff if the option finishes in-the-money (i.e., ST > K)

• r is the risk-free interest rate

• T − t is the time to maturity

• N(d2) is the probability that the asset price will exceed the strike price at time T

A cash-or-nothing put option pays the fixed amount Q if the asset price at maturity
is less than the strike price. The value of a cash-or-nothing put option is given by:

Value of cash-or-nothing put = Qe−r(T −t)N(−d2)

where N(−d2) represents the probability that the asset price will be below the strike
price at maturity.

6.3.2 Asset-or-Nothing Options

An asset-or-nothing call option pays the price of the underlying asset, ST , if the asset
price is greater than the strike price at maturity. If the asset price is below the strike
price, the payoff is zero. The value of an asset-or-nothing call option is:

Value of asset-or-nothing call = S0e−q(T −t)N(d1)

where:

• S0 is the current asset price

• q is the dividend yield of the underlying asset

• N(d1) is the risk-neutral probability that the option finishes in-the-money (i.e., ST >
K)

Similarly, an asset-or-nothing put option pays the asset price if the price at matu-
rity is less than the strike price. The value of an asset-or-nothing put option is:

Value of asset-or-nothing put = S0e−q(T −t)N(−d1)
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6.3.3 The d1 and d2 Parameters
The parameters d1 and d2 used above are the usual parameters of the B&S formula. These
parameters are defined as:

d1 =
ln
1

S0
K

2
+
1
r − q + σ2

2

2
(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t

where:

• S0 is the current asset price

• K is the strike price

• r is the risk-free rate

• q is the dividend yield

• σ is the volatility of the underlying asset

• T − t is the time to maturity

6.3.4 Relationship with European Options
Interestingly, binary options can be linked to traditional European options. A European
call option can be considered as a combination of a long position in an asset-or-nothing
call and a short position in a cash-or-nothing call. The payoff structure of a European
call can be reconstructed as:

European call = (Asset-or-nothing call)− (Cash-or-nothing call with payoff K)

Similarly, a European put option can be thought of as a combination of a cash-or-
nothing put and an asset-or-nothing put:

European put = (Cash-or-nothing put)− (Asset-or-nothing put with payoff K)

6.3.5 Summary of Pricing Formulas
For reference, here are the key pricing formulas for binary options:

• Cash-or-nothing call option:

Call = Qe−r(T −t)N(d2)

• Cash-or-nothing put option:

Put = Qe−r(T −t)N(−d2)
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• Asset-or-nothing call option:

Call = S0e−q(T −t)N(d1)

• Asset-or-nothing put option:

Put = S0e−q(T −t)N(−d1)

Binary options are financial instruments that provide traders with an all-or-nothing
payout structure. Their pricing can be derived using risk-neutral probabilities, with both
cash-or-nothing and asset-or-nothing variations available. Although binary options are
relatively simple in their payout structure, they are closely linked to traditional European
options, and their valuation shares similar components, such as the parameters d1 and d2.

6.4 Lookback Options
Lookback options are path-dependent options whose payoff depends on the maximum or
minimum asset price reached during the life of the option. These options allow the holder
to "look back" over the entire life of the option to determine the payoff based on the most
favorable asset price. For more details see M. Barry Goldman and Gatto [1979].

6.4.1 Payoff Structure
For a European-style lookback call option, the payoff is the difference between the final
asset price and the minimum asset price achieved during the life of the option. That
is, the option allows the holder to buy at the lowest price the asset reached during the
option’s life and sell at the final price.

For a European-style lookback put option, the payoff is the difference between the
maximum asset price achieved during the life of the option and the final price. This allows
the holder to sell at the highest price the asset reached and buy at the final price.

6.4.2 Valuation of European Lookback Call Option
The valuation of a European lookback call option at time zero is given by the formula:

S0e−qT N(a1)− Smine−rT N(−a2)− Smine−rT

A
σ2

2(r − q)

B
N(−a3) + Smine−rT eY1N(−a3)

where:

• S0 is the current asset price

• Smin is the minimum asset price achieved to date (i.e., the lowest price the asset has
reached so far)

• r is the risk-free interest rate
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• q is the dividend yield

• σ is the asset price volatility

• T is the time to maturity

• N(x) represents the cumulative distribution function (CDF) of the standard normal
distribution

6.4.3 Definitions of a1, a2, a3, and Y1

The terms a1, a2, a3, and Y1 are defined as follows:

a1 =
ln
1

S0
Smin

2
+
1
r − q + σ2

2

2
T

σ
√

T

a2 = a1 − σ
√

T

a3 =
ln
1

S0
Smin

2
+
1
r − q + σ2

2

2
T

σ
√

T

Y1 =
−2(r − q − σ2

2 ) ln
1

S0
Smin

2
σ2

6.4.4 Explanation of Parameters
• Asset Price (S0): The current price of the underlying asset

• Minimum Asset Price (Smin): The lowest price reached by the asset over the life
of the option up until the current time

• Risk-Free Rate (r): The continuously compounded risk-free interest rate

• Dividend Yield (q): The continuously compounded rate at which dividends are
paid by the underlying asset

• Volatility (σ): The annualized volatility of the underlying asset’s returns

• Time to Maturity (T ): The time remaining until the option expires

• Cumulative Normal Distribution (N(x)): Represents the probability that a
standard normally distributed variable is less than x

The above formula applies to European-style lookback call options. For lookback put
options, the structure is similar, but with the roles of the maximum and minimum asset
prices reversed.
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6.4.5 European lookback put options
European lookback put options provide the holder with the payoff depending on the
maximum asset price, Smax, achieved during the option’s life. The payoff at maturity is
the difference between the maximum asset price and the asset price at expiry. The payoff
for the European lookback put option is:

max(Smax − ST , 0)

6.4.6 Valuation of European Lookback Put Option
The valuation formula for a European lookback put option at time zero is given by:

Smaxe−rT N(b1)− S0e−qT

A
N(−b2) + σ2

2(r − q)eY2N(−b3)
B

where:

b1 =
ln
1

Smax
S0

2
+ (r − q + σ2/2)T

σ
√

T

b2 = b1 − σ
√

T

b3 =
ln
1

Smax
S0

2
+ (r − q − σ2/2)T

σ
√

T

Y2 =
−2(r − q − σ2/2) ln

1
Smax

S0

2
σ2

In the above equations:

• Smax is the maximum asset price achieved during the life of the option (if the lookback
has just been originated, Smax = S0)

• S0 is the current price of the underlying asset

• r is the risk-free interest rate

• q is the dividend yield

• σ is the volatility of the asset

• T is the time to maturity

• N(·) is the cumulative distribution function of the standard normal distribution
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Lookback options offer significant flexibility to the holder, allowing them to base their
payoff on the maximum or minimum asset price observed during the life of the option.
This feature makes lookback options more expensive than standard European or American
options. The continuous nature of lookback options means the asset price is assumed to
be monitored at all times; however, in practice, discrete monitoring may be used to
approximate continuous observation.

78



Chapter 7

Asian Options

An Asian option is a type of financial derivative where the payoff depends on the average
price of the underlying asset over a specific period, rather than its price at a single point
in time, such as at maturity.

7.0.1 Key Features
• Average Price: The payoff is determined by the average price of the asset over a

defined period.

• Two Main Types of Asian Options:

– Average Price Options: The payoff depends on the difference between the
average price of the underlying asset and the strike price

– Average Strike Options: The payoff depends on the difference between the
terminal price of the underlying asset and the average price over the life of the
option

7.0.2 Formulas for Pricing Asian Options
For European-style Asian options (where the option can only be exercised at matu-
rity), the payoff depends on whether it is an average price or average strike option.

7.0.3 Asian Option Payoff

Payoff = max
A

1
N

NØ
i=1

Si −K, 0
B

where:
• Si is the price of the underlying asset at time ti.

• K is the strike price.

• N is the number of time intervals over which the average is calculated.
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7.0.4 Stock Price Simulation under Geometric Brownian Mo-
tion (GBM)

A stock price under Geometric Brownian Motion (GBM) follows the stochastic differential
equation:

dSt = µStdt + σStdWt

Where:

• µ is the drift rate (expected return)

• σ is the volatility of the underlying asset

• dWt is the Wiener process (random noise)

7.0.5 Monte Carlo Simulation for Pricing an Asian Option
We can price the Asian option using Monte Carlo simulation by following these steps:

1. Simulate multiple stock paths using the Geometric Brownian Motion (GBM) model

2. Compute the average price of the underlying asset for each simulated path

3. Calculate the payoff of the Asian option based on the average price

4. Discount the expected payoff to the present value using the risk-free rate

The Python code provided simulates this process and calculates the price of the Asian
option using real parameters such as:

• Initial stock price S0 = 100

• Strike price K = 105

• Time to maturity T = 1 year

• Risk-free rate r = 0.05 (5%)

• Volatility σ = 0.2 (20%)

• Number of time steps N = 252 (daily time steps for 1 year)

• Number of simulations M = 10,000
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7.1 – Implementation to Price Asian Options

7.1 Implementation to Price Asian Options
In this Python code we analyze a way to price Asian Options using Monte Carlo simulation
for the paths of a stock. In this method, multiple paths of the stock price are simulated
using the Geometric Brownian Motion (GBM) model. The payoff of the option is based
on the average price of the stock over the life of the option, which is then discounted to
the present value to determine the option price.

7.1.1 Stock Price Simulation
The stock price follows a Geometric Brownian Motion, which models the price evolution
using a stochastic differential equation. The stock prices are simulated for a large number
of paths, where each path represents the possible price evolution of the underlying asset
over time.

7.1.2 Average Price Calculation
Once the stock price paths are simulated, the code computes the average stock price for
each path. This average price is critical because, for an Asian option, the payoff depends
on the average price of the asset, rather than just the final price at maturity.

7.1.3 Payoff Calculation
The option payoff is computed based on the difference between the average stock price
and the strike price for a call option. For each simulated path, if the average price exceeds
the strike price, the payoff is positive; otherwise, it is zero.

7.1.4 Discounting to Present Value
After calculating the payoff for all simulated paths, the expected payoff is discounted to
the present value using the risk-free interest rate. This discounting accounts for the time
value of money, and the average discounted payoff across all simulations gives an estimate
of the option price.

In summary, the code simulates many possible stock price paths, calculates the average
price for each path, computes the option payoff, and then discounts the payoff to estimate
the price of the Asian option. The Monte Carlo simulation approach allows for a flexible
and numerical way to price options when closed-form solutions are not available.

7.1.5 Results
The parameters used for this pricing are as follows:

• S0 = 100: Initial stock price

• K = 105: Strike price

• T = 1.0: Time to maturity (in years)
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• r = 0.05: Risk-free interest rate

• σ = 0.2: Volatility of the underlying asset

• N = 252: Number of time steps (daily observations over one year)

• M = 10,000: Number of Monte Carlo simulations

After running the Monte Carlo simulation to estimate the value of the Asian option,
the resulting option price is approximately 3.41.

The price reflects the discounted expected payoff of the Asian option, taking into
account the averaging feature and the randomness introduced by the daily fluctuations in
asset prices.

Figure 7.1. 10 of the 10000 Monte Carlo simulations for paths of the stock used
to price the Asian Option
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Chapter 8

Portfolio Management

8.1 Measuring Risk
In financial analysis, risk is often quantified using statistical measures. Let K be a random
variable representing the return on an investment over a given period. The expected
return, E(K), and the dispersion of potential outcomes around this expected return,
measured by the variance Var(K), are key components in assessing the risk associated
with an investment. In order to introduce some concepts of Portfolio management and
risk measuring, we will follow the book of Capiński and Zastawniak [2011]. For this
Chapter we will follow the book of Capiński and Zastawniak [2011] also to derive some
notable formulas.

8.1.1 Variance
The variance, Var(K), measures the spread or dispersion of the returns around the
expected value. It quantifies the degree to which the actual returns deviate from the
expected return, and is calculated as:

Var(K) = E
è
(K − E(K))2

é
This gives a squared measure of risk, where larger values of Var(K) indicate higher

risk, implying that the returns can vary significantly from their expected value.

8.1.2 Standard Deviation
While the variance provides a useful measure of risk, it is expressed in squared units of
return. To obtain a measure of risk that is in the same units as the return itself, we take
the square root of the variance, known as the standard deviation, denoted σK . The
standard deviation is a widely used risk measure and is computed as:

σK =
ñ

Var(K) =
ñ

E [(K − E(K))2]
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The standard deviation is particularly useful because, unlike the variance, it is ex-
pressed in the same unit of measure as the return K, allowing for a more intuitive in-
terpretation of risk. A higher standard deviation indicates a greater level of volatility or
uncertainty in the potential returns of the investment.
In summary :

• The expected return E(K) provides a measure of the average or typical outcome

• The variance Var(K) measures the dispersion of returns around the expected value,
giving an indication of the risk involved in the investment

• The standard deviation σK , being the square root of the variance, offers a more
intuitive and easily interpretable measure of risk, expressed in the same units as the
return K

Understanding these concepts helps investors evaluate both the potential profitability
and the uncertainty associated with their investments.

8.2 Portfolio with two assets
8.2.1 Portfolio Return and Risk
In financial analysis, when constructing a portfolio consisting of two securities, we are
often interested in both the portfolio’s expected return and the associated risk (variance).
Let the portfolio consist of x1 shares of security 1 and x2 shares of security 2. The return
and risk of the portfolio can be derived as follows.

8.2.2 Initial and Final Values of the Portfolio
The initial value of the portfolio at time t = 0 is given by the sum of the values of each
security:

V (0) = x1S1(0) + x2S2(0)

where S1(0) and S2(0) are the initial prices of securities 1 and 2, respectively.
At time t = 1, the final value of the portfolio is:

V (1) = x1S1(0)(1 + K1) + x2S2(0)(1 + K2)

where K1 and K2 represent the returns on securities 1 and 2, respectively, over the period.
We can factor the initial portfolio value as:

V (1) = V (0) (w1(1 + K1) + w2(1 + K2))

where w1 and w2 are the proportions of the total initial value invested in securities 1 and
2, defined as:

w1 = x1S1(0)
V (0) , w2 = x2S2(0)

V (0)
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8.2.3 Portfolio Return
The return on the portfolio, KV , is defined as the relative change in the portfolio value
from time t = 0 to t = 1:

KV = V (1)− V (0)
V (0) = w1K1 + w2K2

Thus, the return on the portfolio is a weighted average of the returns on the individual
securities, where the weights are determined by the proportion of the portfolio invested
in each security.

8.2.4 Expected Return of the Portfolio
The expected return of the portfolio, E(KV ), is the weighted average of the expected
returns of the individual securities:

E(KV ) = w1E(K1) + w2E(K2)

where E(K1) and E(K2) are the expected returns of securities 1 and 2, respectively.

8.2.5 Variance of the Portfolio
The variance of the portfolio, Var(KV ), is a measure of the risk associated with the
portfolio. To derive the variance, we substitute the expression for KV and expand:

Var(KV ) = E(K2
V )− E(KV )2

Since KV = w1K1 + w2K2, we can expand K2
V :

K2
V = w2

1K2
1 + w2

2K2
2 + 2w1w2K1K2

Thus, the variance becomes:

Var(KV ) = w2
1

1
E(K2

1 )− E(K1)2
2

+ w2
2

1
E(K2

2 )− E(K2)2
2

+2w1w2 (E(K1K2)− E(K1)E(K2))

Finally, recognizing that the terms E(K2
1 )−E(K1)2 and E(K2

2 )−E(K2)2 are simply
the variances of K1 and K2, and that E(K1K2) − E(K1)E(K2) is the covariance of K1
and K2, we can express the portfolio variance as:

Var(KV ) = w2
1Var(K1) + w2

2Var(K2) + 2w1w2Cov(K1, K2)

This shows that the variance of the portfolio depends on both the variances of the
individual securities and the covariance between them.
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8.3 Expectation, Variance, and Correlation Coeffi-
cient

To simplify notation, we introduce symbols to represent the expectation and variance
of the portfolio’s return, as well as the return of its individual components. This will allow
us to express the portfolio’s expected return and variance more concisely.

Let KV , K1, and K2 represent the returns on the portfolio and the two individual
securities, respectively.

8.3.1 Expectations and Standard Deviations
Define the following:

µV = E(KV ), σV =
ñ

Var(KV )

where µV is the expected return of the portfolio, and σV is the standard deviation
(risk) of the portfolio’s return.

Similarly, for the individual securities:

µ1 = E(K1), σ1 =
ñ

Var(K1),

µ2 = E(K2), σ2 =
ñ

Var(K2),

where µ1 and µ2 represent the expected returns of securities 1 and 2, respectively, and
σ1 and σ2 are their standard deviations.

8.3.2 Correlation Coefficient
The correlation coefficient ρ12 measures the linear relationship between the returns on
securities 1 and 2. It is defined as:

ρ12 = Cov(K1, K2)
σ1σ2

The correlation coefficient ranges between -1 and 1, where:

• ρ12 = 1 indicates a perfect positive correlation

• ρ12 = −1 indicates a perfect negative correlation

• ρ12 = 0 indicates no linear relationship between the returns

8.3.3 Expected Return of the Portfolio
Using the notation introduced above, we can express the expected return of the portfolio
as the weighted average of the expected returns of the two securities:

µV = w1µ1 + w2µ2
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where w1 and w2 are the proportions of the total value invested in securities 1 and 2,
respectively.

8.3.4 Variance of the Portfolio
The variance of the portfolio can also be expressed in a more compact form using the
correlation coefficient. The formula for the variance becomes:

σ2
V = w2

1σ2
1 + w2

2σ2
2 + 2w1w2ρ12σ1σ2

where σ2
1 and σ2

2 are the variances of the returns on securities 1 and 2, and the final term
accounts for the correlation between the two securities.

This formula shows that the variance of the portfolio depends not only on the variances
of the individual securities but also on the degree of correlation between them. When the
securities are highly correlated (ρ12 close to 1 or -1), the portfolio’s variance is more heavily
influenced by this relationship.

8.4 Upper Bound on Portfolio Variance
We aim to prove that the portfolio variance σ2

V is bounded above by the largest of the
two individual variances, σ2

1 and σ2
2.

Let us assume without loss of generality that σ2
1 ≤ σ2

2. We also assume that short
sales are not allowed, meaning that the portfolio weights satisfy w1, w2 ≥ 0 and thus
w1 + w2 = 1.

8.4.1 Step 1: Bound on Weighted Standard Deviations
Given that σ2

1 ≤ σ2
2, the weighted sum of the standard deviations can be bounded as

follows:

w1σ1 + w2σ2 ≤ (w1 + w2)σ2 = σ2

This implies that the weighted average of the two standard deviations cannot exceed
the larger of the two, which is σ2.

8.4.2 Step 2: Upper Bound on Portfolio Variance
Recall the formula for the variance of a two-asset portfolio:

σ2
V = w2

1σ2
1 + w2

2σ2
2 + 2w1w2ρ12σ1σ2

where ρ12 is the correlation coefficient between the two securities. Since the correlation
coefficient satisfies −1 ≤ ρ12 ≤ 1, we can establish the following inequality:

σ2
V ≤ w2

1σ2
1 + w2

2σ2
2 + 2w1w2σ1σ2

This inequality holds because the term 2w1w2ρ12σ1σ2 is maximized when ρ12 = 1.
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8.4.3 Step 3: Simplification of the Variance Expression
The right-hand side of the inequality simplifies as follows:

σ2
V ≤ w2

1σ2
1 + w2

2σ2
2 + 2w1w2σ1σ2 = (w1σ1 + w2σ2)2

From Step 1, we know that w1σ1 + w2σ2 ≤ σ2, so it follows that:

(w1σ1 + w2σ2)2 ≤ σ2
2

Thus, we conclude that:

σ2
V ≤ σ2

2

8.4.4 Step 4: The Case σ2
1 ≥ σ2

2

If σ2
1 ≥ σ2

2, the proof proceeds analogously. In this case, we would have:

w1σ1 + w2σ2 ≤ σ1

and similarly:

σ2
V ≤ σ2

1

Thus, we have shown that the portfolio variance σ2
V is bounded above by the largest

of the two individual variances, σ2
1 and σ2

2. Specifically, we have proven that:

σ2
V ≤ max(σ2

1, σ2
2)

8.5 Implementation of a Portfolio with two assets
In this Python code we analyze a simulation of a portfolio with two assets.

In this section, we analyze how to calculate the expected return, variance, and standard
deviation for a portfolio of two assets based on scenario-based probabilities using Python.

The initial parameters for this calculation are:

• Probabilities of scenarios: [0.2, 0.5, 0.3]

• Returns for Asset 1: [0.10, 0.12, 0.08]

• Returns for Asset 2: [0.15, 0.10, 0.05]

• Portfolio weights: w1 = 0.6 (60% invested in Asset 1), and w2 = 0.4 (40% invested
in Asset 2)
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8.5 – Implementation of a Portfolio with two assets

8.5.1 Scenario Probabilities and Returns
We are given three market scenarios, each with an associated probability. For each sce-
nario, we know the expected returns for two different assets. Let:

• pi: the probability of scenario i

• r1i: the return of Asset 1 in scenario i

• r2i: the return of Asset 2 in scenario i

8.5.2 Expected Return
The expected return for each asset is the weighted average of returns across the scenarios:

µ1 =
nØ

i=1
pir1i, µ2 =

nØ
i=1

pir2i

Given the probabilities and returns, we compute:

µ1 = 0.104, µ2 = 0.095

8.5.3 Variance and Standard Deviation
The variance for each asset measures the spread of returns around the expected return.
It is calculated as:

Var(r1) =
nØ

i=1
pi(r1i − µ1)2, Var(r2) =

nØ
i=1

pi(r2i − µ2)2

The standard deviation is the square root of the variance:

σ1 =
ñ

Var(r1), σ2 =
ñ

Var(r2)

For Asset 1 and Asset 2, the calculated variances and standard deviations are:

Var(r1) = 0.000304, σ1 = 0.017436,

Var(r2) = 0.001225, σ2 = 0.035000

8.5.4 Covariance
Covariance measures how two assets move together:

Cov(r1, r2) =
nØ

i=1
pi(r1i − µ1)(r2i − µ2)

The covariance between Asset 1 and Asset 2 is:

Cov(r1, r2) = 0.000321
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8.5.5 Correlation Coefficient
The correlation coefficient normalizes the covariance, making it easier to interpret:

ρ12 = Cov(r1, r2)
σ1σ2

For Asset 1 and Asset 2, the correlation coefficient is:

ρ12 = 0.524

8.5.6 Portfolio Construction
The portfolio is constructed by allocating 60% to Asset 1 and 40% to Asset 2. The weights
are denoted by w1 = 0.6 and w2 = 0.4.

8.5.7 Portfolio Expected Return
The expected return of the portfolio is the weighted average of the expected returns of
the two assets:

µV = w1µ1 + w2µ2

Substituting the values, we get:
µV = 0.1004

8.5.8 Portfolio Variance and Standard Deviation
The variance of the portfolio is calculated as:

σ2
V = w2

1σ2
1 + w2

2σ2
2 + 2w1w2Cov(r1, r2)

For our portfolio, the variance is:

σ2
V = 0.000459

The standard deviation of the portfolio is the square root of the variance:

σV =
ñ

σ2
V = 0.021425

8.5.9 Summary Table
The following table summarizes the calculated values for the expected return, variance,
standard deviation, and correlation coefficient for both assets and the portfolio.

8.5.10 Conclusion
This analysis explains the calculation of the expected return, variance, and standard
deviation for a portfolio composed by two assets. Using these metrics, we can evaluate the
risk and return characteristics of a portfolio and understand the benefits of diversification.
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8.6 – Zero Variance Portfolio for ρ12 = 1 and ρ12 = −1

Asset (µ) (σ2) (σ) (ρ12)
Asset 1 0.1040 0.000304 0.017436 -
Asset 2 0.0950 0.001225 0.035000 -

Portfolio 0.1004 0.000459 0.021425 0.524

Table 8.1. Portfolio Comparison Table

8.6 Zero Variance Portfolio for ρ12 = 1 and ρ12 = −1
We aim to show under what conditions the portfolio variance σ2

V is zero when the cor-
relation coefficient ρ12 is either 1 or −1. These cases correspond to perfect positive and
perfect negative correlation, respectively.

8.6.1 Case 1: Perfect Positive Correlation (ρ12 = 1)
Let ρ12 = 1. In this case, the formula for the portfolio variance simplifies to:

σ2
V = w2

1σ2
1 + w2

2σ2
2 + 2w1w2σ1σ2 = (w1σ1 + w2σ2)2

In order for the portfolio variance to be zero, we need:

σ2
V = 0 if and only if w1σ1 + w2σ2 = 0

This condition holds when σ1 /= σ2, and the weights w1 and w2 are given by:

w1 = − σ2

σ1 − σ2
, w2 = σ1

σ1 − σ2

Since the weights w1 and w2 sum to 1, we can see that this configuration requires short
sales because either w1 or w2 must be negative. Specifically, the sign of w1 is negative
when σ1 > σ2, which implies the need for short selling in security 1.

8.6.2 Case 2: Perfect Negative Correlation (ρ12 = −1)
Now let ρ12 = −1. In this case the equation takes the following form:

σ2
V = w2

1σ2
1 + w2

2σ2
2 − 2w1w2σ1σ2 = (w1σ1 − w2σ2)2

For the portfolio variance to be zero, we need:

σ2
V = 0 if and only if w1σ1 − w2σ2 = 0.

This condition holds when the weights w1 and w2 are given by:

w1 = σ2

σ1 + σ2
, w2 = σ1

σ1 + σ2
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Since both w1 and w2 are positive in this case, short sales are not required. The weights
represent a balanced portfolio where the variance is eliminated due to the perfect negative
correlation between the two securities.

In summary, when ρ12 = 1 (perfect positive correlation), the portfolio variance σ2
V can

be zero if the portfolio involves short sales, with the weights given by the equations of w1
and w2 in case 1. In contrast, when ρ12 = −1 (perfect negative correlation), the portfolio
variance σ2

V can also be zero, but no short sales are required, with the weights given by
the equations of w1 and w2 in case 2.

8.7 Implementation of Portfolio Relationships
In this section we analyze an implementation in Python that outlines the process of sim-
ulating the variance and expected return of a two-asset portfolio, considering different
correlation scenarios between the assets. The objective is to visualize how varying the
allocation between the two assets affects the overall portfolio characteristics.

We begin by defining the key parameters for the two assets involved in the portfolio:

• Volatility of Asset 1 (σ1): Set to 1.

• Expected Return of Asset 1 (µ1): Set to 1.5.

• Volatility of Asset 2 (σ2): Set to 2.

• Expected Return of Asset 2 (µ2): Set to 2.5.

A variable s is introduced to represent the proportion of asset 2 in the portfolio. This
variable ranges from -1 to 2, which allows for exploration of short selling (where s < 0)
as well as over-investing in asset 2 (where s > 1).

The analysis includes two primary correlation scenarios, denoted by ρ12:

8.7.1 Case 1: Perfect Negative Correlation (ρ12 = −1)
In this scenario, the portfolio variance and expected return are calculated. The portfolio
variance is represented by the absolute value of the linear combination of the asset volatil-
ities, while the expected return is computed as a weighted sum of the individual asset
returns.

8.7.2 Case 2: Perfect Positive Correlation (ρ12 = 1)
Similarly, the calculations for the portfolio variance and expected return are performed
under the assumption of perfect positive correlation between the assets.
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8.8 – Finding minimum variance portfolio for any ρ12

8.7.3 Visualization
The results are plotted to illustrate the relationship between portfolio variance and ex-
pected return across the defined range of s:

• The plot includes dashed lines for both correlation scenarios.

• A highlighted segment is shown for 0 < s < 1, which represents the case without
short selling.

• Individual assets are marked on the plot for visual clarity.

This simulation provides insights into how different correlation scenarios influence the
risk-return profile of a two-asset portfolio. By adjusting the allocation parameter s, in-
vestors can better understand the implications of their investment choices.

Figure 8.1. Relationship between Variance and Exp. Return

8.8 Finding minimum variance portfolio for any ρ12

8.8.1 Portfolio Characteristics
The expected return µV and variance σ2

V of the portfolio are defined as:

µV = (1− s)µ1 + sµ2

σ2
V = (1− s)2σ2

1 + s2σ2
2 + 2s(1− s)ρ12σ1σ2

where:
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• µ1, µ2: Expected returns of assets 1 and 2

• σ1, σ2: Volatilities (standard deviations) of the two assets

• ρ12: Correlation between the returns of the two assets

The expected return µV is a linear function of s, while the variance σ2
V is a quadratic

function of s with a positive leading coefficient, subject to the condition:

σ2
1 + σ2

2 − 2ρ12σ1σ2 ≥ 0

To minimize the variance σ2
V (or the standard deviation σV ), we consider the following:

Theorem 5.5 from Capiński and Zastawniak [2011]:
For −1 < ρ12 < 1, the portfolio with minimum variance is attained at:

s0 = σ2
2 − ρ12σ1σ2

σ2
1 + σ2

2 − 2ρ12σ1σ2

If short sales are not allowed, the minimum variance is attained at:

smin =


0, if s0 < 0,

s0, if 0 ≤ s0 ≤ 1,

1, if s0 > 1

8.8.2 Derivation of Minimum Variance Portfolio
To find the minimum variance, we compute the derivative of σ2

V with respect to s and set
it to zero:

d

ds
σ2

V = −2(1− s)σ2
1 + 2sσ2

2 + 2(1− s)ρ12σ1σ2 − 2sρ12σ1σ2 = 0

Solving for s yields the expression for s0. The second derivative is:

d2

ds2 σ2
V = 2σ2

1 + 2σ2
2 − 4ρ12σ1σ2,

which simplifies to:
2(σ1 − σ2)2 ≥ 0

This indicates that the second derivative is positive, confirming a global minimum at s0.
If short sales are not allowed, we find the minimum within the bounds 0 ≤ s ≤ 1:

• If 0 ≤ s0 ≤ 1, the minimum occurs at s0

• If s0 < 0, the minimum is at s = 0

• If s0 > 1, the minimum is at s = 1
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8.9 Implementation of Min-Var Portfolio
In this implementation using Python, we analyze plots that represent the minimum vari-
ance portfolios. We base our plots on the following equations. From Theorem 5.5, the
variance of a portfolio, σ2

V , as a function of s is given by:

σ2
V (s) = (1− s)2σ2

1 + s2σ2
2 + 2s(1− s)ρ12σ1σ2

The expected return µV of the portfolio as a function of s is:

µV (s) = (1− s)µ1 + sµ2

The optimal value s0 minimizing variance is given by:

s0 = σ2
2 − ρ12σ1σ2

σ2
1 + σ2

2 − 2ρ12σ1σ2

We also consider the constraints for short selling, where smin is defined as:

smin =


0 if s0 < 0
s0 if 0 ≤ s0 ≤ 1
1 if s0 > 1

8.9.1 Plotting Approach
We generated two types of plots:

1. Plotting σ2
V (s) for different values of ρ12, highlighting the region where short selling

is not allowed (0 ≤ s ≤ 1).

2. Plotting the efficient frontier in the (µV , σV ) space for ρ12 values between 0 and 1.
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Figure 8.2. Variance for different coefficients

Figure 8.3. Expected return vs Volatility for different coefficients

96



8.10 – Portfolios with a Risk-Free Security

8.10 Portfolios with a Risk-Free Security
We conclude this section with a brief discussion of portfolios that include a risk-free secu-
rity. The variance of the risky security (a stock) is positive, while the risk-free component
(a bond) has zero variance.

The standard deviation σV of a portfolio consisting of a risky security with expected
return µ1 and standard deviation σ1 > 0, and a risk-free security with return rF and
standard deviation zero, depends on the weight w1 of the risky security as follows:

σV = |w1|σ1

Let σ1 > 0 be the standard deviation of the risky asset and σ2 = 0 for the risk-free
asset. Then the equation reduces to:

σ2
V = w2

1σ2
1

and the formula for σV follows by taking the square root:

σV = |w1|σ1

8.11 Risk and Expected Return on a Portfolio with
many risky assets

A portfolio constructed from n different securities can be described in terms of their
weights:

wi = xiSi(0)
V (0) , i = 1, . . . , n,

where xi is the number of shares of security i in the portfolio, Si(0) is the initial price of
security i, and V (0) is the amount initially invested in the portfolio. We can arrange the
weights into a one-row matrix:

w = [w1 w2 · · · wn]

The weights must add up to 1, which is written in matrix form as:

1 = uwT

where
u = [1 1 · · · 1]

is a one-row matrix with all n entries equal to 1, and wT is the transpose of w.
The set of attainable portfolios consists of all portfolios with weights w satisfying

equation (5.14).
Suppose the returns on the securities are K1, . . . , Kn, with expected returns arranged

into a one-row matrix:
m = [µ1 µ2 · · · µn], µi = E(Ki).
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The covariances between returns, denoted by cij = Cov(Ki, Kj), form the n×n covariance
matrix:

C =


c11 c12 · · · c1n

c21 c22 · · · c2n
...

... . . . ...
cn1 cn2 · · · cnn


The matrix C is symmetric and positive definite, with diagonal elements cii = Var(Ki).
We assume that C has an inverse C−1.

The expected return µV = E(KV ) and variance σ2
V = Var(KV ) of a portfolio with

weights w are given by:
µV = mwT

σ2
V = wCwT

8.12 Portfolio with the smallest variance
The portfolio with the smallest variance in the attainable set has weights

w = uC−1

uC−1uT

provided that the denominator is non-zero.

8.13 Portfolio with the smallest variance whose ex-
pected return is equal to a given number

The portfolio with the smallest variance among attainable portfolios with expected return
µV has weights

w =

---- 1 uC−1mT

µV mC−1mT

----uC−1 +
----uC−1uT 1
mC−1uT µV

----mC−1----uC−1uT uC−1mT

mC−1uT mC−1mT

----
provided that the determinant in the denominator is non-zero. The weights depend lin-
early on µV .
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Part III

Machine Learning Models to
Price American Put Options
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Chapter 9

Introduction and Related
works

9.1 Motivation and goals

In this work, we showed how to implement standard mathematical models to price Vanilla
and Exotic Options. Usually, pricing can be performed using simulations of the underlying
price paths, but this method has some limitations specifically in the case of American Put
Options. We are now trying to analyze modern approaches to price American Put Options
in more detail, starting from a paper published in September 2024.

9.2 Related works

One of the most recent paper involving Machine Learning to price American Put Options
is Djagba and Ndizihiwe [2024]. As reported in the introduction of Djagba and Ndizihiwe
[2024], traditional pricing models, like Black-Scholes formulas, work well for European
options but struggle with the complexity of American options. Machine learning pricing
models can improve option pricing accuracy by adapting to changing market conditions
and capturing complex patterns. In addition, Machine learning pricing models overcome
many of the mathematical difficulties arising from the pricing of American Put Options.
The Least-Squares Monte Carlo (LSM) method by Longstaff-Schwartz (Longstaff and
Schwartz [2001]) is a popular technique for pricing American options. It estimates the
continuation value of the option at each step, using least-squares regression. Machine
learning models are used in the paper of Djagba and Ndizihiwe [2024] instead of using a
regression model to estimate the continuation values. This should improve significantly
the accuracy and speed of estimation of the continuation values.
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9.3 Formulation of the problem
Following the paper of Djagba and Ndizihiwe [2024], we now make a summary of the
reasoning behind using machine learning in the pricing of derivatives. We may say that
American option pricing is a challenging task due to the feature that allows for early
exercise, which complicates the valuation process. The research carried out in Djagba and
Ndizihiwe [2024] investigates how machine learning models can enhance the Least Squares
Monte Carlo (LSM) method, a widely used approach for pricing American options.

Traditional pricing models, such as the Black-Scholes model, have been useful for Euro-
pean options but are not well-suited for American options because they do not account for
the early exercise feature. This limitation creates the need for more advanced approaches
that can better capture the complexities of American options. With the growing avail-
ability of data and advancements in computational methods, machine learning, especially
deep learning, has emerged as a tool to improve option pricing by recognizing complex
patterns and relationships in historical market data.

Machine learning models can adapt to market fluctuations and incorporate a broader
set of input variables, leading to more accurate pricing predictions. By analyzing historical
data, these models can learn from past market dynamics and better predict option prices
under varying conditions, while the role of history was not taken into account in the paper
of Longstaff and Schwartz [2001]. This ability to adapt and evolve makes machine learning
a powerful tool for handling the complexities of option pricing, especially when dealing
with the non-linear payoff structures of American options.

The study of machine learning role in enhancing the LSM approach has the potential
to provide more reliable pricing methods, which can contribute to better decision-making
and risk management for financial professionals. By combining Monte Carlo simulations
with machine learning models, the research aims to overcome the limitations of traditional
approaches, offering greater flexibility and accuracy in pricing. This improved understand-
ing of option pricing could benefit the broader financial system by enhancing the tools
available for assessing and managing financial derivatives.

9.4 Base Model
We want to determine the price P of an American option, where the holder has the right
to exercise the option at any time before the maturity T .

Let:

• t = 0, 1, . . . , M be the discrete time steps.

• St be the stock price at time t.

• K be the strike price.

• r be the risk-free rate.

• σ be the volatility of the stock.

• Pt be the price of the option at time t.
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9.4 – Base Model

• E[·] be the expectation operator under the risk-neutral measure.

The objective is to maximize the payoff of the option, either by exercising at time t or
by continuing to hold it, using backward induction.

9.4.1 Variables
Let:

• C(St) be the continuation value of the option at time t, approximated by a polyno-
mial regression model.

• E(St, K) = max(K − St, 0) be the exercise value of a put option at time t.

• τ be the optimal stopping time (i.e., the time to exercise the option).

9.4.2 Objective
The objective is to maximize the expected payoff by selecting the optimal stopping time
τ , balancing between exercising and continuing:

max
τ∈{t,...,T }

E
#
e−rτ E(Sτ , K)

$
9.4.3 Constraints
1. Stock price dynamics: The stock price follows a Geometric Brownian Motion
(GBM):

dSt = rSt dt + σSt dWt

where Wt is a Wiener process under the risk-neutral measure.
2. Polynomial regression for continuation value: The continuation value C(St)

at time t is modeled by fitting a polynomial regression on the in-the-money paths. Let X
be the set of stock prices St where the option is in-the-money. The continuation value is
approximated by a polynomial Ĉ(St):

Ĉ(St) = β0 + β1St + β2S2
t + · · ·+ βdSd

t

where β0, β1, . . . , βd are the polynomial coefficients and d is the degree of the polyno-
mial.

3. Exercise condition: At each time step t, the option holder decides whether to
exercise the option if the exercise value exceeds the continuation value:

If E(St, K) > Ĉ(St), then exercise at time t.

4. No exercise at maturity: At maturity T , the continuation value is zero, and the
exercise decision is based purely on the intrinsic value:
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PT = E(ST , K).
5. Backward recursion: The price at time t is recursively calculated by discounting

the continuation value and comparing it with the exercise value:

Pt = max
1
E(St, K),E

è
e−r∆tPt+1 | St

é2
.

6. Discounting future cash flows: The continuation value is computed using the
discounted future cash flows:

Yt = Pt+1e−r∆t

where Pt+1 represents the option price at the next time step, discounted by the risk-free
rate r.

9.4.4 Baseline Algorithm
The LSM method proceeds as follows:

1. Simulate N asset price paths St for t = 0, 1, . . . , M using a geometric Brownian
motion model.

2. At maturity T , set the option payoff to the exercise value: PT = E(ST , K).

3. For each time step t = M − 1, M − 2, . . . , 1:

• Identify the in-the-money paths where E(St, K) > 0.
• Perform a polynomial regression on the in-the-money paths to approximate the

continuation value Ĉ(St).
• Compare the continuation value Ĉ(St) with the exercise value E(St, K) to de-

termine whether to exercise.
• If exercise occurs, set the cash flow to E(St, K). Otherwise, set it to the dis-

counted continuation value.

4. Discount the cash flows to the present time t = 0 to compute the option price P0.

The final objective can be expressed as:

max
τ∈{t,...,T }

E
è
max

1
E(Sτ , K), Ĉ(Sτ )

2
e−rτ

é
subject to:

PT = E(ST , K),

C(St) = Ĉ(St) = β0 + β1St + β2S2
t + · · ·+ βdSd

t ,

St = S0 exp
33

r − 1
2σ2

4
t + σWt

4
.
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9.4.5 Pseudo-Code
The algorithm presented in Longstaff and Schwartz [2001] is summarized in the following
pseudo-code.

Algorithm 1 Longstaff-Schwartz Algorithm for Pricing American Option
1: Start
2: Create random paths S̃j(ti), i = t0, . . . , nstep, j = 1, . . . , npath, ti = t0 + i ·∆t
3: For each path, set payoff at maturity to the payoff Vj(T ) = h(S̃j(T ))
4: Start at maturity i = ntimestep
5: while i > 1 do
6: i← i− 1
7: for each path j do
8: Discount the price Vj(ti) = e−r∆sVj(ti+1)
9: end for

10: Solve regression problem to find β coefficients
11: for each path j do
12: Compute the continuation value cj

13: if hj > cj then
14: Exercise, i.e., set Vj(ti) = h(S̃j(ti))
15: end if
16: end for
17: end while
18: for each path j do
19: Discount the price Vj(t0) = e−r∆sVj(t1)
20: end for
21: The price today is the average over all paths V (S̃(t0)) = 1

npath

qnpath
j=1 Vj(t0)

22: Stop

Step 12 is where the paper of Djagba and Ndizihiwe [2024] applies machine learning
instead of solving the regression problem. In the paper Djagba and Ndizihiwe [2024] the
training of the models was carried out on simulations of paths described by Geometric
Brownian Motion. In our analysis, we will carry out the training of the models on historical
data in order to improve the role of history and we will use the trained model in Step 12
to produce the estimated continuation value.
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9.5 Formulation with Machine Learning
Let:

• t = 0, 1, . . . , M be the discrete time steps.

• St be the stock price at time t.

• K be the strike price.

• r be the risk-free rate.

• σ be the volatility of the stock.

• Pt be the price of the option at time t.

• E[·] be the expectation operator under the risk-neutral measure.

The objective is to maximize the payoff of the option, either by exercising at time t or
by continuing to hold it, using backward induction.

9.5.1 Variables
Let:

• C(St, K, r, σ) be the continuation value of the option at time t, approximated by a
neural network.

• E(St, K) = max(K − St, 0) be the exercise value of a put option at time t.

• τ be the optimal stopping time (i.e., the time to exercise the option).

9.6 Objective
The objective is to maximize the expected payoff by selecting the optimal stopping time
τ , balancing between exercising and continuing:

max
τ∈{t,...,T }

E[e−rτ E(Sτ , K)]

9.7 Constraints
1. Stock price dynamics: The stock price follows a Geometric Brownian Motion
(GBM):

dSt = rSt dt + σSt dWt

where Wt is a Wiener process under the risk-neutral measure.
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2. Neural network approximation: The continuation value C(St, K, r, σ) at time t
is modeled by a neural network NN (St, K, r, σ; θ) with parameters θ, trained on historical
data.

3. Exercise condition: At each time step t, the option holder decides whether to
exercise the option if the exercise value exceeds the continuation value:

If E(St, K) > C(St, K, r, σ), then exercise at time t.

4. No exercise at maturity: At maturity T , the continuation value is zero, and the
exercise decision is based purely on the intrinsic value:

PT = E(ST , K).

5. Backward recursion: The price at time t is recursively calculated by discounting
the continuation value and comparing it with the exercise value:

Pt = max
1
E(St, K),E

è
e−r∆tPt+1 | St

é2
.

9.8 Neural Network Training
The neural network is trained on historical data to minimize the mean squared error
between predicted and actual continuation values:

min
θ

MØ
t=1

(NN (St, K, r, σ; θ)− True Continuation Value)2

where the true continuation value is estimated by: NN (St, K, r, σ; θ)
The true continuation value is defined as:

True Continuation Value at time t = Pt+1e−r∆t.

9.8.1 Final Formulation
The final objective can be rewritten as:

max
τ∈{t,...,T }

E
#
max (E(Sτ , K),NN (Sτ , K, r, σ; θ)) e−rτ $

subject to:

PT = E(ST , K),

C(St, K, r, σ) = NN (St, K, r, σ; θ),

St = S0 exp
33

r − 1
2σ2

4
t + σWt

4
.

107



Introduction and Related works

9.9 Neural Network Implementation
The neural network used in the code is a feedforward deep learning model created using the
TensorFlow/Keras library. The network architecture consists of the following components:

• Input Layer: The input to the neural network consists of four variables: stock
price (S), strike price (K), risk-free rate (r), and volatility (σ). These variables are
combined into a 2D array that forms the training data.

• Hidden Layers:

– The model has two dense (fully connected) hidden layers, each with 64 neurons.
These layers use ReLU (Rectified Linear Unit) activation functions, which in-
troduce non-linearity into the model, allowing it to learn complex relationships
in the input data.

• Output Layer: The output layer consists of a single neuron with a linear activa-
tion function, which represents the predicted continuation value of the option. The
continuation value helps determine whether the option should be exercised early or
held for future exercise.

• Compilation: The model is compiled using the Adam optimizer, which adjusts
learning rates based on past gradient information, and the mean squared error (MSE)
is used as the loss function. The goal is to minimize the error between predicted and
actual continuation values during training.

• Training: The network is trained on a dataset containing historical stock prices,
option prices, strike prices, risk-free rates, and volatilities. The training process aims
to minimize the error between predicted continuation values and discounted option
prices using backpropagation and optimization techniques.

• Validation: The dataset is split into training and testing sets to evaluate the model’s
performance. The loss values for both training and testing sets are monitored over
multiple epochs (in this case, 100), and accuracy metrics such as Mean Squared
Error (MSE) and R-squared (R2) are computed to assess the model’s predictive
capabilities.

9.10 Differences Between Neural Network LSM and
Classical LSM

The classical Least Squares Monte Carlo (LSM) method, proposed by Longstaff and
Schwartz, relies on polynomial regression to estimate the continuation value based
on in-the-money paths. Typically, a polynomial of degree 2 or 3 is used to fit stock prices
at each time step, and the decision to exercise or hold the option is based on this estimate.

In contrast, this implementation replaces the polynomial regression with a neural
network. Instead of using only the stock price to estimate continuation value, the neural
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network takes as input four variables: the stock price (S), strike price (K), risk-free rate
(r), and volatility (σ). This allows for a more flexible and complex relationship between
inputs and continuation value.

9.10.1 Key Differences:
1. Model Flexibility: Classical LSM uses a fixed polynomial regression, which limits

the complexity of relationships that can be captured. The neural network, however,
is capable of modeling much more intricate, non-linear relationships between inputs,
leading to potentially more accurate estimates of continuation value.

2. Input Variables: In classical LSM, only the stock price is used to estimate the
continuation value. In this neural network approach, additional variables (strike
price, risk-free rate, volatility) are considered, enabling the model to incorporate a
wider range of factors in its estimates.

3. Learning from Data: The polynomial regression in classical LSM is a one-time fit
for each time step, based solely on available paths. The neural network, however,
learns from historical data and can generalize better to new scenarios, especially in
dynamic markets.

4. Adaptability: Classical LSM is static and unable to adapt to changing market
conditions, such as fluctuations in volatility or interest rates. The neural network,
on the other hand, can adapt to different market conditions through training on
historical data.

9.11 Efficiency of the Neural Network Implementa-
tion

This neural network implementation is more efficient than classical LSM for several rea-
sons:

• Higher Accuracy: The neural network can model non-linear relationships more
effectively than polynomial regression. By incorporating additional market vari-
ables, the model provides more accurate estimates of continuation value, leading to
improved option pricing.

• Generalization to Market Changes: By learning from historical data, the neural
network can generalize better when market conditions change. The classical LSM
model does not learn from historical data of stock prices.

• Handling Complex Relationships: Classical LSM assumes a simple quadratic
relationship between stock prices and continuation values. The neural network, with
its multi-layered structure, can handle much more complex relationships, leading to
better decision-making regarding early exercise.
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• Dynamic Input Consideration: The neural network takes multiple variables into
account, such as stock price, strike price, risk-free rate, and volatility. This leads to
better predictions of the optimal exercise strategy, which in turn improves pricing
accuracy.

9.12 Advantages
In conclusion, the neural network-based LSM implementation offers a more advanced and
flexible approach to American option pricing compared to the classical LSM method. By
using machine learning and historical data, the model can capture complex market pat-
terns, adapt to changing conditions, and provide better estimates of continuation values,
thereby enhancing option pricing accuracy and decision-making.
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Implementation

10.1 Dataset
The dataset used in this analysis contains data relative to American Put Options for the
stock of Apple quoted on the NASDAQ index.
The full dataset was cleaned and only the relevant features of the Options were taken
into account. The dataset contains about 400,000 rows from 1st January 2021 to 31st
December 2023, this number of observations allows for good training of a neural network.
Let’s see more in detail the features:

• UNDERLYING_PRICE: The stock price of Apple at the time of observation,
representing the most recent price quote.

• STRIKE: The strike price of the American put option. This is the price at which
the option holder has the right to sell the underlying stock.

• OPTION_TRADE_PRICE: The price of the American put option for the spe-
cific strike price and maturity. In my analysis, it was computed as the average
between the ask and the bid price.

• DTE (Days to Expiration): The time until the option’s maturity, given in days.
This variable helps determine how much time the option has before it expires.
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10.2 Training and Testing
In order to evaluate the performance of the model in training and testing I split the dataset
into two partitions: one made of 90% of data to train the model, while the remaining 10%
of data was used to test the trained model. The performance evaluation was carried out
using the R2 metric and the loss.

10.2.1 R2 metric
The R2 (R-squared) metric, also known as the coefficient of determination, measures
the proportion of the variance in the dependent variable that is predictable from the
independent variables in a regression model. The formula for R2 is:

R2 = 1−
qn

i=1 (yi − ŷi)2qn
i=1 (yi − ȳ)2

where:

• yi is the actual value of the dependent variable

• ŷi is the predicted value from the regression model

• ȳ is the mean of the actual values yi

• n is the number of data points

In this equation:

• The numerator
qn

i=1 (yi − ŷi)2 represents the sum of squared residuals (or the vari-
ance of the error term)

• The denominator
qn

i=1 (yi − ȳ)2 is the total variance of the data (the total sum of
squares)

An R2 value of 1 indicates that the model perfectly explains the variance in the data,
while a value of 0 means the model explains none of the variance.

10.2.2 Loss
The loss in a neural network represents the difference between the predicted output and
the actual target values. It quantifies how well or poorly the model is performing on a
given dataset during training. The lower the loss, the closer the model’s predictions are
to the true values.
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1. Loss Function: The loss function (also called the cost or objective function)
measures this error and guides the training process. Common loss functions include:

• Mean Squared Error (MSE) for regression tasks:

MSE = 1
n

nØ
i=1

(yi − ŷi)2

where yi is the actual target value, ŷi is the predicted value, and n is the number of
samples.

2. Optimization Process: During training, the neural network adjusts its internal
parameters (weights and biases) to minimize the loss function. This is done through
algorithms like gradient descent, which updates the parameters in the direction that
reduces the loss the most.

• A low loss indicates that the model is making predictions that are close to the true
target values, meaning it is learning effectively from the training data.

• A high loss suggests that the model’s predictions are far from the target, meaning
the model is either underfitting (not learning enough from the data) or overfitting
(focusing too much on specific details and noise in the training data).

The loss function is a crucial measure that reflects how well the neural network is
performing during training. A low loss value signifies a well-trained model that makes
accurate predictions, while a high loss indicates poor performance, either due to a need
for more training or other issues like an improper model architecture or noisy data.

10.3 More details on the Algorithm
This code combines data preprocessing, neural network training, and the Least Squares
Monte Carlo (LSM) method to price an American put option. Below is a step-by-step
breakdown of the procedure. The code can be found on Github.

10.3.1 Importing Libraries
The code begins by importing essential libraries:

• numpy for numerical computations.

• matplotlib.pyplot for plotting graphs.

• tensorflow.keras to build and train the neural network model.

• pandas to load and manipulate the dataset.

• sklearn.model_selection for splitting the dataset into training and testing sets.

• sklearn.preprocessing.StandardScaler for feature normalization.

• sklearn.metrics for evaluating the model performance using metrics like Mean
Squared Error (MSE) and R-squared (R2).
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10.3.2 Loading the Dataset and Extracting Relevant Columns
The dataset is loaded from a CSV file using pandas. The dataset contains historical
information about various features required for option pricing.
The relevant columns represent the key variables required for American option pricing:

• Stock Prices (S_hist): The underlying stock prices over time.

• Option Prices (P_hist): The observed option prices.

• Strike Prices (K_hist): The strike price of the option.

• Risk-Free Rate (r_hist): The interest rate used for discounting.

• Volatility (σ_hist): The implied volatility used to predict stock price movements.

10.3.3 Neural Network Model Definition
A neural network is created using TensorFlow’s Keras API. The architecture consists of:

• Two hidden layers, each with 64 neurons and ReLU activation.

• An output layer with a linear activation function to produce a continuous value (the
continuation value).

The model is compiled using the Adam optimizer and MSE loss function, which is typical
for regression tasks.

10.3.4 Calculating the Target Values (Y_hist)
The target variable Y _hist, which represents the discounted future option prices, is cal-
culated by iterating backward over the option prices:

• For each time step t, the option price at t + 1 is discounted using the risk-free rate.

• At maturity, the continuation value is set to zero since there is no continuation value
at the end of the option’s life.

10.3.5 Preparing the Input Data (X_hist)
The input features for the neural network consist of:

• Stock price (S_train)

• Strike price (K_train)

• Risk-free rate (r_train)

• Volatility (σ_train)

These features are combined into a single array using numpy.column_stack.

114



10.3 – More details on the Algorithm

10.3.6 Feature Scaling
The features are standardized using StandardScaler to improve the neural network’s
performance. This transforms the features to have zero mean and unit variance.

10.3.7 Train-Test Split
The normalized dataset is split into training and testing sets using train_test_split.
90% of the data is used for training and 10% for testing, allowing the model to generalize
well.

10.3.8 Training the Neural Network
The neural network is trained on the training data for 100 epochs with a batch size of 32.
The validation data is used to track performance and detect overfitting. Loss values for
both training and validation sets are plotted over time.

10.3.9 Model Evaluation
After training, the model makes predictions on the test set. The predictions are evaluated
using two metrics:

• Mean Squared Error (MSE): Measures the average squared difference between
predictions and actual values.

• R-squared (R2): Represents the proportion of variance in the target that is pre-
dictable from the features.

10.3.10 Simulating Stock Price Paths
Stock price paths are simulated using Geometric Brownian Motion (GBM). This step
generates N paths over M time steps, using the initial stock price S0, risk-free rate r, and
volatility σ.

10.3.11 Payoff Function for American Put Option
The payoff function for the American put option is defined. At each time step, the payoff
is calculated as the maximum of K − S or 0, representing early exercise if the option is
in the money.

10.3.12 LSM Algorithm for Option Pricing
The LSM algorithm is used to price the American put option:

• At each time step, the exercise payoff is compared to the continuation value, which
is predicted using the neural network.
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• The neural network inputs stock price, strike price, risk-free rate, and volatility to
estimate the continuation value.

• If the exercise value is greater than the continuation value, the option is exercised
early, and the cash flows are updated accordingly.

10.3.13 Final Option Price Calculation
After iterating through all time steps, the final option price is calculated by averaging the
discounted cash flows at the present time. This provides the estimated fair price of the
option.

10.3.14 Output of the Option Price
Finally, the computed American put option price is printed as the result of the LSM
algorithm combined with the neural network predictions.

10.4 Results
1. Model Loss Over Epochs:

The graph shows the training and testing loss of the neural network over 100 epochs.

• Train Loss (Blue Line): The model’s loss on the training set decreases consistently
over time, with some fluctuations. This indicates that the neural network is learning
and improving its performance on the training data

• Test Loss (Orange Line): The test loss is more erratic, with significant peaks
and valleys, but overall shows a downward trend. This suggests that the model is
generalizing to unseen data, albeit with some variance

2. R-Squared Value of 74%:
An R2 value of 0.74 means that the model explains 74% of the variance in the target

variable (option prices). While not perfect, this indicates that the neural network captures
most of the underlying relationship between the inputs (stock price, strike, risk-free rate,
volatility) and the continuation value (future option prices). A higher R2 value would
suggest better predictive power, but 74% suggests a reasonably good model in practice.

3. Mean Squared Error (MSE) of 350:
The Mean Squared Error (MSE) quantifies the average squared difference between the

predicted continuation values and the actual option prices. An MSE of 350 means that,
on average, the model’s predictions deviate from the actual values by a squared error of
350. This is acceptable depending on the scale of the target variable (option price). Lower
MSE indicates better model performance.

4. Model Behavior:
The fluctuations in test loss could indicate slight overfitting at certain points, as the

model may perform well on the training data but struggles to generalize perfectly on the
test data, as seen in the spikes. However, the general downward trend in both training
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and testing loss suggests that the model is learning and improving, and the final model is
usable for predicting option prices.

5. Coherent Price Generation:
The combination of an acceptable R2 score and MSE, alongside the converging loss

curves, indicates that the model is capable of generating a coherent price for the Amer-
ican put option. This suggests that the neural network integrated within the Longstaff-
Schwartz (LSM) algorithm provides reliable continuation value approximations, which
result in a realistic option pricing estimation.

Conclusion:
Overall, the neural network model, while not perfect, shows a solid performance. With

an R2 of 0.74, it explains a significant portion of the variance in the target variable. The
fluctuations in test loss and the MSE of 350 indicate some room for improvement, but the
algorithm generates a coherent and reasonable price for the American put option based
on the given data.

Figure 10.1. Train and Test Loss for the training process
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10.5 Test
The following results summarize the prices of American put options under various param-
eter settings, calculated using the algorithm with the neural network explained previously:

Case 1: Initial Stock Price S0 = 100
• Initial stock price: S0 = 100

• Strike price: K = 100

• Risk-free rate: r = 0.05

• Volatility: σ = 0.30

• Time to maturity: T = 1.0 year

• Number of time steps: M = 50

• Number of simulations: N = 10,000

• American Put Option Price: 10.13

Case 2: Initial Stock Price S0 = 105
• Initial stock price: S0 = 105

• Strike price: K = 100

• Risk-free rate: r = 0.05

• Volatility: σ = 0.30

• Time to maturity: T = 1.0 year

• Number of time steps: M = 50

• Number of simulations: N = 10,000

• American Put Option Price: 8.33

Case 3: Strike Price K = 105
• Initial stock price: S0 = 100

• Strike price: K = 100

• Risk-free rate: r = 0.05

• Volatility: σ = 0.30

• Time to maturity: T = 1.0 year
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• Number of time steps: M = 50

• Number of simulations: N = 10,000

• American Put Option Price: 12.87

Case 4: Volatility σ = 0.2
• Initial stock price: S0 = 100

• Strike price: K = 100

• Risk-free rate: r = 0.05

• Volatility: σ = 0.20

• Time to maturity: T = 1.0 year

• Number of time steps: M = 50

• Number of simulations: N = 10,000

• American Put Option Price: 6.21

Case 5: Stock Price S = 120
• Initial stock price: S0 = 120

• Strike price: K = 100

• Risk-free rate: r = 0.05

• Volatility: σ = 0.30

• Time to maturity: T = 1.0 year

• Number of time steps: M = 50

• Number of simulations: N = 10,000

• American Put Option Price: 4.44
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Chapter 11

Conclusions for the model

The models presented in the previous chapter represent a significant shift from traditional
financial modeling methods towards a more advanced, data-driven approach using machine
learning, to price American put options. In the previous section, the focus is on overcoming
the limitations of classical pricing techniques, such as the Longstaff-Schwartz least-squares
Monte Carlo (LSM) method, by incorporating the flexibility and learning capabilities of
neural networks.

11.1 Traditional methods
The LSM method has been widely used in the financial industry to price American options,
particularly due to its ability to handle the early exercise feature. However, the method’s
reliance on polynomial regression to estimate the continuation value often struggles with
capturing complex, nonlinear relationships between the variables influencing the option’s
price, such as stock price, volatility, and time to maturity. While polynomial regression
can provide a decent approximation, its inherent simplicity limits its ability to model intri-
cate financial data patterns, especially in real-world markets where relationships between
variables are seldom linear.

Another limitation of traditional approaches like LSM is their reliance on pre-specified
basis functions, which restricts the model’s ability to adapt to new data.

11.2 Machine Learning
The implementation of neural networks in this thesis offers a powerful alternative to
classical methods. Neural networks are particularly well-suited for option pricing because
of their ability to model complex, nonlinear relationships without requiring explicit feature
engineering. Unlike traditional regression models, neural networks automatically learn the
most relevant features and relationships from historical data during training, which allows
them to better approximate the continuation value for American options.

Neural networks can capture subtle patterns in the data that classical methods may
miss, leading to more accurate pricing models. For example, the continuation value, which
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represents the expected payoff of holding an option rather than exercising it, can be highly
sensitive to small changes in the underlying variables. Neural networks, with their ability
to process large amounts of data and recognize intricate patterns, can provide a more
refined approximation of this value compared to polynomial-based methods used in LSM.

Additionally, the flexibility of neural networks means they can be easily extended to
handle more complex derivative products or datasets with different characteristics. This
adaptability is one of the key strengths of the machine learning approach: as financial
markets evolve, neural networks can learn and adapt to new patterns in the data, offering
a more robust and scalable solution for pricing American options.

11.3 Results
The thesis provides a comprehensive walkthrough of the implementation process, from
data preparation to neural network architecture and training.

The design of the neural network itself, with its layers of interconnected neurons,
allows the model to learn from the historical data of stock prices, strike prices, and other
variables. The network is trained to minimize error in the predicted continuation values,
which in turn improves the overall accuracy of the option pricing model.

Throughout the thesis, Python code is provided to demonstrate the step-by-step im-
plementation of the neural network. The inclusion of Monte Carlo simulations for stock
price paths and the use of backpropagation for optimizing the neural network’s weights
are key technical contributions.

The results of the neural network implementation show a marked improvement in ac-
curacy over the classical LSM approach. The ability of the neural network to capture more
complex relationships between variables results in more precise predictions of American
option prices. Additionally, the neural network approach demonstrates greater computa-
tional efficiency in some cases, as it reduces the need for repeated regression fitting during
the LSM simulation process.

11.4 Future Improvements
The shift towards machine learning in American option pricing offers several clear ad-
vantages. First, the accuracy of the pricing model improves due to the neural network’s
ability to handle nonlinearities and complex relationships between the input variables.
Second, the scalability of the neural network model means it can be easily extended to
more complex derivatives or larger datasets without requiring major modifications to the
core architecture. Finally, the adaptability of the model allows it to learn from new data
and adjust to changing market conditions, something that traditional models struggle
with.

One of the most promising aspects of this approach is its potential for future re-
search and application. Neural networks could be further optimized by experimenting
with different architectures (e.g., deeper networks, recurrent neural networks), loss func-
tions, or optimization techniques. Additionally, other machine learning techniques, such
as reinforcement learning or ensemble methods, could be explored to further enhance the

122



11.4 – Future Improvements

performance of option pricing models. There is also potential to apply this methodology
to other types of derivatives, such as exotic options, where traditional pricing methods
are even more limited.

In conclusion, the thesis successfully demonstrates that neural networks provide a
viable and superior alternative to traditional LSM methods for pricing American put
options. The combination of theoretical insights, practical Python implementations, and
empirical results highlights the significant advantages of integrating machine learning into
financial modeling. This work not only opens the door for further advancements in option
pricing but also underscores the broader potential for machine learning in the field of
quantitative finance.
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Part IV

Conclusions

125





Chapter 12

Final Conclusion

In this work, we focused on implementing pricing models for financial derivatives with
the ultimate goal of obtaining a modern approach to price American Put Options using
machine learning. The focus has been on comparing traditional approaches like the Least-
Squares Monte Carlo (LSM) method with newer machine learning models, specifically
neural networks, to improve pricing accuracy and computational efficiency.

12.1 Overview of Classical Methods
In the initial chapters, we discussed classical option pricing models for vanilla options
and exotic options, such as the Black-Scholes-Merton model and the Roll-Geske-Whaley
model. The Black-Scholes model, though highly influential, is limited to European options,
as it fails to account for the early exercise feature present in American options. To
address this limitation, the LSM method, introduced by Longstaff and Schwartz [2001],
was utilized to price American options by estimating the continuation value at each step
using polynomial regression.

The LSM method has proven to be a robust approach, particularly for pricing American
options where early exercise is a significant factor. However, it suffers from limitations
in accurately modeling complex financial relationships and struggles when dealing with
high-dimensional data. As such, we sought to improve upon this with modern machine
learning techniques. A new approach using machine learning techniques can be seen in
Djagba and Ndizihiwe [2024].

12.2 Neural Network Implementation for American
Option Pricing

The latter part of this thesis presents a significant shift from classical financial models to
a machine learning-driven approach, focusing on the pricing of American put options. We
proposed a neural network-based model integrated into the LSM framework. The neural
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network was designed to approximate the continuation value, a key element in the pricing
of American options, where decisions about early exercise are crucial.

The neural network was trained on a large dataset of American put options on Apple
stock, with features including the stock price, strike price, volatility, and days to expira-
tion. A multi-layered architecture with ReLU activation functions was employed to learn
the complex, non-linear relationships between these variables and the continuation value.
This implementation provided several advantages over classical methods:

• Improved Accuracy: The neural network’s ability to learn from historical data
allowed it to capture complex patterns in market dynamics that classical polynomial
regression models in LSM could not. By considering additional variables, such as the
risk-free rate and volatility, the neural network produced more accurate estimates of
continuation values, resulting in more precise option pricing.

• Flexibility and Scalability: Unlike the classical LSM, which relies on pre-defined
basis functions, the neural network can adapt to new data patterns without requiring
manual adjustments. This makes it scalable to handle different types of financial
instruments beyond American options, such as exotic options.

• Computational Efficiency: By integrating the neural network into the LSM algo-
rithm, we reduced the need for repeated regression fitting during simulations. The
network’s ability to generalize from training data made it computationally more
efficient, especially in scenarios involving high-dimensional datasets.

12.3 Empirical Results
The neural network demonstrated a higher accuracy in predicting option prices, with an
R-squared value of 0.74, indicating that 74% of the variance in option prices was explained
by the model. Additionally, the Mean Squared Error (MSE) of 350 further highlighted
the model’s effectiveness in generating realistic option prices. Even if some peaks in high
values in the MSE while training the model can be seen from the orange line in Figure 10.1,
these peaks represent a normal problem that arises while training neural networks with
real-world data because the model tends to slightly overfit to the train data. Examples of
this behavior can be seen frequently in the field of Reinforcement Learning.

Moreover, the neural network exhibited greater flexibility in adapting to various mar-
ket conditions. Unlike classical regression models that fit each time step independently,
the neural network leveraged historical data and market variables, which allowed it to
generalize better to unseen market scenarios. This adaptability is crucial in real-world
financial markets, where conditions can change rapidly.

12.4 Future Improvements
While the neural network-based model significantly improved the accuracy and efficiency
of option pricing, there remains room for future research. Several potential enhancements
could be explored:
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• Advanced Architectures: Experimenting with deeper networks or recurrent neu-
ral networks (RNNs) may improve the model’s ability to handle sequential data and
time-dependent features, such as volatility clustering.

• Reinforcement Learning: Integrating reinforcement learning techniques could
further enhance the model’s ability to make optimal early exercise decisions by learn-
ing through exploration and exploitation of the option payoff landscape.

• Generalization to Other Derivatives: The methodology outlined in this thesis
could be extended to other types of financial derivatives, such as barrier or exotic
options, where traditional pricing methods face even greater limitations.

• Handling Extreme Market Events: Incorporating stress testing and training
the model on datasets that include extreme market events, such as financial crises,
could improve its robustness in unpredictable market conditions.

12.5 Conclusion
This thesis has demonstrated that machine learning, particularly neural networks, offers a
powerful alternative to traditional option pricing models. By integrating neural networks
into the LSM framework, we were able to address the limitations of classical methods,
such as their inability to handle complex, non-linear relationships in financial data. The
neural network model not only provided more accurate and efficient pricing for American
put options but also showcased its potential to adapt to evolving market conditions.

The results of this study suggest that machine learning will play a crucial role in
the future of financial modeling. As financial markets become more complex and data-
driven, the ability of machine learning models to learn from vast datasets and adapt to new
patterns will be indispensable for financial professionals. This work serves as a foundation
for further exploration and research into the use of machine learning for derivative pricing
and opens up various ways for research into more sophisticated and robust pricing models.
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