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Summary

This thesis explores the application of algebraic topology to computer vision,
specifically focusing on the challenge of scale-independent keypoint detection within
image matching. Across three chapters, this work builds a theoretical and practical
foundation, presenting a novel deep learning approach that leverages topological
principles for keypoint detection.

The first chapter establishes essential background in algebraic topology, covering
concepts such as CW-complexes, homology, and persistent homology, which allow
for topological invariants to be computed via discrete structures. These concepts
are particularly relevant to computer vision as they can model the structure of
digital images represented by pixel grids, or cubical complexes. To provide practical
tools for our work, the chapter also covers Morse theory and discrete Morse theory,
which connect local extrema to topological features, and allow e!cient computation
of topological invariants. This theoretical framework lays the groundwork for
keypoint detection methods that can generalize across di"erent scales.

The second chapter delves into computer vision fundamentals, focusing on image
matching and the detection of reproducible keypoints across di"erent views of the
same scene. We start with the basics of the pinhole camera model, projective
geometry, and homographies, which are essential for understanding how images
relate spatially. The chapter then introduces the current techniques of image
matching and the keypoints-and-descriptors paradigm, which includes traditional
methods such as SIFT and deep learning approaches like R2D2. The goal is to
provide a comprehensive overview of the current methods and the limitations they
face, particularly in achieving scale invariance—a gap this thesis aims to address.

The third chapter presents the main contribution of this thesis: a topology-based
framework for keypoint detection. The proposed method is built on persistent
homology and discrete Morse theory, employing these topological tools to detect
keypoints as local maxima in a scale-agnostic manner. The approach includes a
novel deep learning loss function that integrates topological invariants to ensure
robust keypoint detection across di"erent transformations. Empirical results are
provided to validate the consistency and performance of our techniques.
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In conclusion, this thesis bridges algebraic topology and computer vision, con-
tributing a framework that addresses the challenge of scale-invariant keypoint
detection. This work paves the way for further exploration of topology-based
methods in computer vision applications, o"ering a promising direction for future
research.
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Chapter 1

Algebraic Topology

In this chapter, we provide the algebraic topology background necessary for devel-
oping our techniques and applications. The main focus is on cellular complexes, or
CW-complexes, introduced in Section 2. Loosely speaking, these can be viewed as
topological spaces constructed by assembling regular building blocks, such as a 3D
shape composed of vertices, edges, and polygonal faces. Cellular complexes play a
critical role in bridging continuous topological questions with discrete structures
suitable for computation. A classic example is the Euler characteristic, which, in
its simplest form, states that the number of vertices minus edges plus faces for any
convex polyhedron equals 2. This characteristic is related to the topology of the
sphere and applies to any complex homotopic to the sphere.

More generally, many topological invariants of a space can be captured and
computed by means of a discrete triangulation. Particularly relevant to our work
are homology modules and persistent homology modules, which are discussed in
Sections 1.2 and 1.3, respectively. Cellular complexes are also inherently interesting
because many problems are naturally formulated in terms of discrete structures. For
example, in computer vision, a digital image captured by a sensor can be represented
as a two-dimensional array—a grid of pixel values—that can be modeled as a cubical
complex. For an in-depth treatment of homology theory and persistent homology,
we refer to (Ghrist 2014) and (Edelsbrunner and Harer 2022).

Finally, in Sections 1.4 and 1.5, we cover Morse theory and discrete Morse theory,
which relate these topological invariants to the local extrema of a given function.
These theories provide both computational tools and algorithms for computing the
invariants, as well as a theoretical connection between local extrema and topology
that finds applications in our computer vision work. For further reading on these
topics, we refer to (Milnor 1963) and (Forman 2002). Our discussion aims to
provide a su!cient and practical understanding of all relevant details for our
applications, even without prior knowledge of the subjects. However, some basic
notions of topology are required, which are reviewed in Appendix A.
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Algebraic Topology

1.1 Complexes
In general, a CW-complex (or cellular complex) is a space that can be decomposed
into simple pieces, each homeomorphic to a ball B

m. We begin this section by
introducing the notion of CW-complex and regular CW-complex, following an
inductive construction as in (Hatcher 2005). However, we avoid the treatment of
abstract complexes, and directly consider the geometric realization of a complex K

embedded in Euclidean space R
N , to simplify the discussion and notation.

We will soon specialize in two specific types of complexes: simplicial complexes
and cubical complexes. The former has numerous applications in the literature,
even if it plays a marginal role in our work; nonetheless, we believe it is useful to
present it to the reader. Cubical complexes, on the other hand, are primarily used
in computer vision and are central to our development.

Definition 1.1.1. (n-cell) An n-cell of dimension n → 1 is a topological space
homeomorphic to the open ball B

n. For n = 0, a 0-cell is a point. Given an n-cell
ω, we denote dim ω = n as a function that returns the cell’s dimension.

We usually indicate a cell with a Greek letter ω or ωn to highlight its dimen-
sion; however, to simplify proofs, we often identify a cell or its boundary with
a corresponding homeomorphic space, e.g., B

n, omitting the underlying chain of
morphisms where necessary.

Definition 1.1.2. (CW-complex) A compact set K ↑ R
N is a (finite) CW-complex

if it belongs to a chain of sets K
0

↑ K
1

↑ · · · ↑ K
n constructed from a finite

collection of cells CK = {ωi} in the following way:

1. K0 is a collection of points in bijection with the 0-cells in CK.

2. For every m-cell ωi, identified for convenience with B
m, there is a continuous

function from the closure of the cell εi : Bm ↓ R
N , called the attaching

map, such that: (i) when restricted to the cell boundary, the image εi(Sm→1)
is included in K

m→1, and for every k-cell ωj of lower dimension, k < m,
if εj(Bk) ↔ εi(Sm→1) /= ⊋ then εj(Bk) ↑ εi(Sm→1). (ii) When restricted
to the interior, εi : B

m
↓ R

N is an embedding, and εi(Bm) ↔ K
m→1 = ⊋.

(iii) For every other m-cell ωj, the images of their interiors do not intersect,
εi(Bm) ↔ εj(Bm) = ⊋. We define Km = Km→1

!
i εi(Bm), where i ranges over

all m-cells.

3. If n is the highest dimension of a cell in CK and K = K
n, then K is a

CW-complex of dimension n, and CK represents its cells.

Definition 1.1.3. (Subcomplex) A subcomplex K
↑ of complex K is a set K

↑
↑ K

that is a complex constructed from a subset of cells CK→ ↑ CK.

2



Algebraic Topology

Example 1.1.1. (Skeleton) For every m, the set K
m from Definition 1.1.2 is

a subcomplex of K. In particular, K
m is called the m-skeleton of K and is the

subcomplex constructed from all cells of dimension at most m.

Definition 1.1.4. (Regular CW-complex) A regular CW-complex is a complex K

for which every attaching map in Definition 1.1.2 is an embedding when restricted to
the cell boundary. Notice that, in this case, each attaching map εi is an embedding
of the entire domain, thus defining a homeomorphism of Bm into the image εi(Bm).

Theorem 1.1.5. For n → 1, in a regular CW-complex, the boundary εi(Sn→1) of
an n-cell is the closure of the union of a collection of at least two (n ↗ 1)-cells!

j εj(Bn→1) (or equivalently the union of the closures).

Proof: For n = 1, the boundary of a 1-cell is a pair of points, thus 0-cells that
must necessarily be di"erent in a regular complex. Let n be greater than 1. From
the definition of the attaching map, it is clear that εi(Sn→1) can be expressed as a
disjoint union of cells in K

n→1. The set of all the (n↗1)-dimensional cells contained
in its image A = !

j εj(Bn→1) is (relatively) open in K
n→1. To see this, consider

that an (n ↗ 1)-cell does not appear in the boundary of any cell in K
n→1, so the

complement of A is a necessarily closed subcomplex. If A is not dense in εi(Sn→1),
then the complement of its closure B = εi(Sn→1) ↗ A contains a non-empty open
set U of K

n→1. B can be written as a disjoint union of cells that are in εi(Sn→1)
but not in A, explicitly as B = !

k εk(Bmk) with mk ↘ n ↗ 2 for every k. There
must be at least one k for which ε→1

k
(U) is a non-empty open set (if not, U would

be empty). On this set, ε→1
i

≃ εk is a homeomorphism from an open set of a ball
B

mk and an open set of a sphere S
n→1, with mk ↘ n ↗ 2, which is not possible

(see "invariance of domain" in Appendix A). We conclude that A must be dense.
Thus, εi(Sn→1) must equal the closure of at least the image of an (n ↗ 1)-cell, but
if it contains only one, then εi(Sn→1) = εj(Bn→1) = εj(Bn→1) and ε→1

i
≃ εj is a

homeomorphism, which is impossible for similar reasons.

Definition 1.1.6. (Faces and cofaces) From the previous theorem, the boundary
of every n-cell ωi of a regular complex is the closure of a subset of (n ↗ 1)-cells.
For every (n ↗ 1)-cell ωj in the boundary of ωi (i.e., εj(Bn→1) ↑ εi(Sn→1)), we say
that ωj is a face of ωi, denoted ωj < ωi, and conversely, we say that ωi is a coface
of ωj, denoted ωi > ωj.

Definition 1.1.7. (Maximal cell) A maximal cell of a regular complex K is a cell
that has no cofaces.

Definition 1.1.8. (Free face) A free face of a regular complex K is a face of a
maximal cell that has no other cofaces.

3



Algebraic Topology

Example 1.1.2. Figure 1.1 depicts a CW-complex decomposition of the sphere,
composed of points, edges between points, and areas bounded by these edges, which
are, respectively, the images of the underlying 0-cells, 1-cells, and 2-cells. A
similar decomposition can be obtained by projecting the faces of an inscribed convex
polyhedron.

Now we introduce two particularly simple cases of regular complexes: simplicial
complexes and cubical complexes. The former are the natural choice for triangu-
lating continuous spaces, while the latter are commonly used in computer vision,
as they naturally model the arrangement of pixels on a grid in digital images. An
example of a simplicial complex is shown in Figure 1.2, and an example of a cubical
complex is shown in Figure 1.3.
Definition 1.1.9. (Simplicial complex) A simplex !k

↑ R
N of dimension k ↘ N

is the convex hull of k + 1 a!nely independent points {xi}
k+1
i=1 , denoted !k =

[x1, . . . , xk+1]. Examples include a point, segment, triangle, or tetrahedron for k
from 0 to 3. A simplicial complex K is a regular complex such that: (1) every k-cell
ω is the interior of a k-simplex !k; (2) if [x1, . . . , xk+1] represents a k-cell, then
also all the (k ↗ 1)-simplices

[x1, . . . , x→i, . . . , xk+1]

obtained by removing a vertex xi, are (k ↗ 1)-cells.
Definition 1.1.10. (Cubical complex) A cube is a set Q ⇐ R

N for which there
is a set of integers IQ := {l1, . . . , lN} such that Q = I1 ⇒ · · · ⇒ IN , where each

Figure 1.1: CW-complex.
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Algebraic Topology

Ij = [lj, lj + 1] or Ij = [lj, lj]. When I = [l, l], it is called degenerate, and the
number of non-degenerate intervals in Q is its dimension. A cubical complex
is a regular complex K where: (1) every k-cell is a cube of dimension k; (2) if
I1 ⇒ · · · ⇒ IN represents a cell and Ii = [li, li + 1] is a non-degenerate interval of
the product, then also

I1 ⇒ . . . [li, li] ⇒ . . . IN and I1 ⇒ . . . [li + 1, li + 1] · · · ⇒ IN

, the cubes where Ii has been substituted with a degenerate interval, both represent
cells.

The following property will allow us to follow the simplified approach to homology
theory of (Edelsbrunner and Harer 2022) in the next sections. We will prove that
it holds for simplicial and cubical complexes so that the topic can be treated in an
agnostic way.

Definition 1.1.11. (Mod 2 boundary) We say that the regular complex K has
the mod 2 boundary property if the fact that a (n ↗ 2)-cell ϑ is contained in the
boundary of an n-cell ω, implies that it is contained in the boundary of exactly two
faces of ω.

Theorem 1.1.12. Every simplicial complex K has the mod 2 boundary property.

Proof: Given a n-cell [x1, . . . , xn+1], every (n ↗ 2)-cell of its boundary is of the
form [x1, . . . , x→i, . . . , x→j . . . , xk+1] and is contained in exactly

[x1, . . . , x→i, . . . , xk+1] and [x1, . . . , x→j, . . . , xk+1].

Figure 1.2: Simplicial complex.
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Theorem 1.1.13. Every cubical complex K has the mod 2 boundary property.

Proof: Given an n-cell that is a cube, a (n ↗ 2)-cell contained in its boundary
is a cube obtained by degenerating two intervals Ii and Ij. Thus, it is contained in
both the (n ↗ 1)-faces with only Ii or only Ij degenerated (at the same extreme as
the (n ↗ 2)-cell), and it is not contained in any other face.

1.2 Homology
Homology theory associates a topological space with an algebraic invariant, specifi-
cally by assigning to the space a sequence of modules whose dimensions correspond
to the number of connected components, holes, voids, and higher-dimensional
volumes enclosed by the space. This is an invariant in the precise sense that if two
spaces are homotopic, they are associated with isomorphic algebraic structures,
capturing the same topological information. In this work, we address the topic
in the context of regular complexes, which is su!cient for our purposes, though
homology theory can be extended to topological manifolds in general. We follow the
approach of (Edelsbrunner and Harer 2022) based on F2-homology, which provides
a particularly simple treatment of the subject and suits the applications. Consult
(Hatcher 2005) for an alternative approach to homology theory.

Although the algebraic approach to the problem may seem unnecessary at first,
we emphasize that it will prove valuable by allowing us to translate qualitative

Figure 1.3: Cubical complex.
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Algebraic Topology

problems (e.g., how many holes does a space have?) into questions about vector
spaces and linear maps, which, in turn, provide quantitative answers through simple
computations. Appendix B covers basic results of abstract algebra and modules.

Definition 1.2.1. (k-chains) The k-chains Ck is the free F2-module generated by
the set of k-cells in a given regular complex K. Thus, Ck consists of all possible
formal sums of k-cells with coe!cients in F2, and an element of Ck has the form"

m

i=1 aiωi, where dim ωi = k and ai ⇑ F2 for each i = 0, . . . , m. The k-cells of K

form a basis for Ck, meaning the number of k-cells is equal to the dimension of the
module.

Definition 1.2.2. (Boundary operator) For every k > 0, we define the boundary
operator ϖk as the linear operator that maps each k-cell in Ck to the formal sum
of its faces in Ck→1. Since the k-cells form a basis for Ck, this definition extends
linearly to the entire space without ambiguity. The boundary operator ϖ0 is defined
trivially on C0 as the map that sends every element to 0. If the underlying complex
K has dimension n, we also define a trivial linear operator ϖn+1 : {0} ↓ Cn.

To summarize, the k-chains form a sequence of modules connected by a sequence
of linear operators:

{0}
ωn+1

↗↗↗↗↓ Cn

ωn
↗↗↓ Cn→1

ωn↑1
↗↗↗↗↓ . . . C1

ω1
↗↗↓ C0

ω0
↗↗↓ {0}

This collection of algebraic structures is called the chain complex and reflects
the topological relations of the underlying complex.

The following result shows that the boundary of a boundary is zero, which is
the key property that leads to the definition of homology.

Theorem 1.2.3. If the underlying complex has the property in Definition 1.1.11,
then the following holds (in particular, it holds for simplicial and cubical complexes):
the composition of two boundary operators results in the trivial map, which sends
every element to 0, i.e., ϖk ≃ ϖk+1 = 0, for every k.

Proof: Since ϖk ≃ ϖk+1 is a linear map, it su!ces to show that ϖk(ϖk+1(ω)) = 0
for every (k + 1)-cell ω in K. This follows directly from the property in Definition
1.1.11: each face of a face of ω appears exactly twice in the resulting formal sum of
(k ↗ 1)-cells. Because we are working modulo 2, these repeated faces cancel out,
resulting in 0.

Definition 1.2.4. (Boundaries and cycles) The image of the boundary operator
ϖk+1 is a submodule of Ck, referred to as the space of k-boundaries and denoted by
Bk. The kernel of the boundary operator ϖk is a submodule of Ck, called the space
of k-cycles, denoted by Zk. Notice that the previous theorem establishes that Bk is
a submodule of Zk, i.e., Bk ↑ Zk ↑ Ck.

7



Algebraic Topology

Definition 1.2.5. (Homology modules) The k-homology module of a given complex
is defined as the quotient module Hk = Zk/Bk. Two k-cycles a, c ⇑ Zk are said to
be homologous if they di"er by a k-boundary, i.e., there exists b ⇑ Bk such that
a = c + b. The elements of Hk are precisely the equivalence classes of homologous
cycles.

Definition 1.2.6. (Betti numbers) The k-th Betti number ϱk is the dimension of
the k-homology module: ϱk = dim Hk = dim Zk ↗ dim Bk.

On a two-dimensional surface, the presence of a hole is directly related to the
existence of a loop that cannot be contracted to a point—formally, a closed curve
that is not homotopic to a point. Furthermore, around the same hole, there are
many di"erent loops that can be deformed into one another. Thus, what matters
when counting holes is how many distinct non-homotopic loops exist. This idea is
captured by the 1-cycles and homologous 1-cycles in C1. Moreover, around two holes
in the space, we can draw three distinct loops, including one that circumnavigates
both holes, clearly requiring an additional condition. What we are truly looking
for is the number of linearly independent, non-homologous 1-cycles. This reasoning
generalizes to higher dimensions. Indeed, the Betti number ϱk, which counts the
number of non-homologous k-cycles, tells us how many distinct k-dimensional
volumes are enclosed by the complex.

Example 1.2.1. Consider the cubical complexes represented in Figure 1.4, labeled
a, b, c, and d from left to right. The first two-dimensional complex, a, corresponds

Figure 1.4: Homologous cycles.
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Algebraic Topology

to the entire space and can be viewed as representing a 2-chain, which is the sum
of all the 2-cells. The 1-complex b represents the 1-boundary ϖ2(a), depicted by
removing all the 2-cells along with all the 1-cells that are faces of two cells. The
complexes c and d are homologous 1-cycles, as d = b+c. This sum can be visualized
by drawing all the cells of b and c, then removing the ones that appear in both.
Indeed, the entire complex is homotopic to an annulus with one hole, and we cannot
find two non-homologous 1-cycles.

1.3 Persistent Homology
Persistent homology extends homology theory by adding a temporal dimension,
allowing us to study how topological features such as connected components and
holes are created, persist, and eventually disappear across a sequence of topologies.
Persistent homology has found significant applications in data analysis, where it is
used to relate a discrete sample (a point cloud) to the topology of the manifold
where the data lies. In these applications, the temporal dimension is a clever
modeling artifice, and persistent homology is often employed to model noise, for
instance by considering features with a short lifespan as noise, and to infer the
homology of the underlying target space.

In Morse theory and discrete Morse theory, which will be discussed in the
following sections, the temporal dimension arises naturally and provides a useful
tool for iteratively computing the homology of a space from a sequence of subspaces.
Moreover, in computer vision, persistent homology itself is of interest, underlying
many watershed algorithms, and will be exploited by our methods.

Definition 1.3.1. (Filtrations) A real-valued function defined on CK, the set of
cells in a complex K, is called a filtration if it is non-decreasing along faces; that is,
if ς < ω then f(ς) ↘ f(ω). The sublevel sets of a filtration f form subcomplexes of
K. We denote by Kt = f→1(↗⇓, t] the subcomplex Kt ↑ K, constructed from all
cells ωi for which f(ωi) ↘ t.

Definition 1.3.2. (Induced Morphism) If t1 ↘ t2, then Kt1 is a subcomplex of Kt2.
The inclusion of the cells of Kt1 into those of Kt2 defines a linear map between
their k-chains, i : Ck,t1 ↓ Ck,t2, corresponding to the inclusion of a submodule
into a larger space. Since every cycle (and boundary) in Ck,t1 remains a cycle (or
boundary, respectively) in Ck,t2, the inclusion map induces a well-defined linear map
between classes of homologous cycles. Consequently, it induces a linear map between
their homology modules, i↓ : Hk,t1 ↓ Hk,t2, which we call the induced morphism.

Given a filtration function and a set of times {ti}
m

i=0, we obtain a sequence
of homology modules for the respective sublevel set complexes, connected by a
sequence of induced morphisms:

9
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Hk,t0 ↗↗↓ Hk,t1 ↗↗↓ . . . ↗↗↓ Hk,tm↑1 ↗↗↓ Hk,tm

Throughout this sequence, new homology classes may appear (with no preimage),
disappear (mapped to zero), merge (mapped to a common image), or remain
unchanged. The following example illustrates some of these behaviors.

Example 1.3.1. Figure 1.5 shows two examples based on simplicial complexes.
Each example includes a sequence of three filtered complexes. In each complex, a
basis for H1,ti is depicted by highlighting their representative 1-cycles in di"erent
colors. The diagrams above illustrate how the induced morphism acts on the
respective elements of the basis.

In the first example, there is initially a single homology class, represented by a
red 1-cycle. At the second step, a new cycle, which is not homologous to the red one,
appears, indicated in blue; thus, the dimension of the homology module increases.
Moving to the third step, the red cycle becomes a boundary, meaning it is mapped
to zero, while the blue cycle persists, resulting in a decrease in the dimension of the
homology module.

In the second example, we also begin with a single homology class, and a new one
appears in the next step. As in the first example, at the third step, the dimension
of the homology module decreases; however, in this case, the two cycles become
homologous, meaning they are mapped to the same homology class.

The sequence of modules and morphisms can be defined for continuous time,
but since the filtration function assume only a finite set of values, changes in

Figure 1.5: Induced morphism.
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homology correspond to a finite set of critical times. The following results explain
the structure of this sequence.

Definition 1.3.3. (Persistent homology module) Given a filtration on a regular
complex, the related k-th persistent homology module Hk is defined, for every k,
as the collection of homology modules Hk = {Hk,t}t↔R, related by the collection of
induced morphisms {i↓

k,(t1,t2)}t1↗t2, which has the following composition property: if
t1 ↘ t2 ↘ t3 then i↓

k,(t2,t3) ≃ i↓
k,(t1,t2) = i↓

k,(t1,t3).

Theorem 1.3.4. An interval F2-modules I[b,d), with 0 ↘ b < d and d possibly
equal to +⇓, is a collection of one-dimensional modules I[b,d) = {Ft}t↔R, where
Ft = F2 for every b ↘ t < d and Ft = {0} otherwise, together with the collection
of morphisms {h(t1,t2)}t1↗t2 that are: the identity ht1,t2 = id for b ↘ t1 ↘ t2 < d or
the (only possible) trivial linear map otherwise.

Every persistent homology module Hk is isomorphic to the direct sum of simple
interval modules. Moreover, this decomposition is unique up to a permutation of
the summands:

Hk
⇔=

#
I[bi,di).

This sum is element-wise, meaning
#

I[bi,di) = {F0,t ⇒ · · · ⇒ Fm,t}t↔R

and h(t1,t2) = h0,(t1,t2) ⇒ · · · ⇒ hm,(t1,t2). The isomorphism means that we can find
a collection of invertible linear maps {At}t↔R such that the following diagram
commutes for every choice of times:

Hk,t1
!!

At1
""

Hk,t2
!!

At2
""

. . . !! Hk,tn
!!

Atn

""

F0,t1 ⇒ · · · ⇒ Fm,t1
!! F0,t2 ⇒ · · · ⇒ Fm,t2

!! . . . !! F0,tn ⇒ · · · ⇒ Fm,tn

meaning that starting from a specific element we find the same image regardless of
which sequence of morphisms we use to reach the codomain.

Proof: This fundamental result in persistent homology was originally proved
using graph representation theory in (Gabriel 1972), with an English overview
provided in (Derksen and Weyman 2005). An adapted proof for persistent homology
is available in (Botnan and Crawley-Boevey 2020).

Definition 1.3.5. (Barcode) We denote by R+ = [0, +⇓] the set of positive real
numbers extended to include infinity. The barcode of a persistent homology module,
Bar(Hk) ↑ R

2
+ ⇒ N, is the collection of time intervals corresponding to the interval

modules present in the decomposition, counted with their multiplicity in case two
intervals are equal, uniquely characterized by the previous theorem.

11
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Definition 1.3.6. (Persistence) The persistence of a bar e = (b, d), an element
of the barcode e ⇑ Bar(Hk), is defined as Pers(e) = d ↗ b if d < +⇓, or +⇓

otherwise. The times b and d are called, respectively, the birth time and death time
of the bar e.

The decomposition in Theorem 1.3.4 reduces to a linear algebra problem and is,
essentially, achieved through a careful choice of basis for the underlying homology
modules. Although we have not provided a technical proof of the theorem, the
following example helps to clarify the concept.

Example 1.3.2. (Barcode decomposition) In Example 1.3.1, we demonstrated
two samples of filtrations and their respective induced morphisms. Notice that, in
the first case, the sequence already takes the form of a composition of two simple
interval modules; that is, each of the two homology classes appears at the birth time
of a bar and disappears, being mapped to zero at the respective death time. The
second case, however, does not initially have this simple form, as the two selected
homology classes merge at a certain point. In Figure 1.6, we show how the desired
decomposition is achieved for the same scenario by making an appropriate choice
of basis cycles.

To sum up, the barcode encapsulates the topological information of the persistent
module. Notice that bars with infinite persistence describe the homology of the
entire space (the whole complex). We can also interpret an element of the barcode
as a homological class existing between its birth and death times, with persistence

Figure 1.6: Barcode decomposition.
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representing the lifespan of this class. By choosing a basis that does not merge, we
eliminate any ambiguity in this interpretation.

1.4 Morse Theory
Morse theory demonstrates how the homology, and more generally the homotopy
type, of a smooth manifold is intrinsically linked to, and can be fully explored
through, the structure of the critical points of almost any real-valued smooth
function defined on it. The discrete counterpart, discrete Morse theory, is more
immediately relevant from our perspective and will be thoroughly covered in the
next section. However, in this section, we aim to provide a brief overview of the
continuous case, as it motivates the methods and intuition behind the discrete
setting. For these reasons, we will only present the main results without covering
the proofs. For a general introduction to the topic of di"erential topology and
Morse functions, we refer the reader to (Guillemin and Pollack 2010), while (Milnor
1963) covers Morse homology in depth.

Definition 1.4.1. (Morse function) Given a smooth manifold X and a real-valued
smooth function f : X ↓ R, if f(x) = y and ϖfx = 0, we say that x and y are,
respectively, a critical point and a critical value of f . We say that f is Morse if,
around every critical point x, we can find a local parametrization ε such that the
Hessian matrix of the composition at ε→1(x), i.e., H(f ≃ ε)(ε→1(x)), is invertible.
Notice that this condition does not depend on the specific choice of parametrization;
hence being a Morse function is a property of the function f alone.

Theorem 1.4.2. (Isolated critical points) If f is a Morse function on X , then
it has only isolated critical points, meaning that around every critical point x we
can find an open set U of X , i.e., U ↑ X , for which x is the only critical point
contained in the set.

Theorem 1.4.3. (Genericity) If X ↑ R
N is a smooth manifold embedded in

Euclidean space and f is a real-valued smooth function f : X ↓ R defined on the
manifold, then for almost every a ⇑ R

N , the function fa(x) = f(x) + ↖x, a↙ is a
Morse function on X , where ↖x, a↙ is the scalar product in R

N . This implies that
every smooth function f is Morse up to an infinitesimal linear perturbation.

Example 1.4.1. Consider the function f(x) = x3, which has only one critical
point at x = 0, where the gradient f ↑(x) = 3x2 vanishes. The function is not Morse
since the Hessian, which in this case reduces to the second derivative f

→→(x) = 6x,
is zero at the origin. For every φ ⇑ R ↗ {0}, the perturbed function fε(x) = x3 + φx
has the same second derivative f

→→
ε
(x) = 6x, which vanishes only at x = 0; however,

13
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it is not a critical point since f
→
ε
(0) = φ. Consequently, fε(x) is Morse. Notice that

we can choose φ arbitrarily small.

Example 1.4.2. Figure 1.7 depicts a torus with a single point resting on the xy
plane. The height function on the z axis, i.e., f(x, y, z) = z restricted to the torus
points, defines a Morse function. In the image, the four isolated critical points
are shown: a minimum at u, saddle points at v and w, and a maximum at z.
In this case, we chose the direction e3 = (0,0,1) to define a height function, i.e.,
f(x, y, z) = ↖(x, y, z), e3↙. In general, any other choice of direction to define the
height leads to a Morse function with the same configuration of four critical points,
except for directions parallel to the y axis. In that case, the torus lies fully on
the y = 0 plane, and, for example, a whole circumference corresponds to a set of
non-isolated local minima.

Theorem 1.4.4. (Morse lemma) Given a scalar function f defined on a smooth
manifold X of dimension n, if f is Morse, then around every one of its critical
points p, there is a local parametrization on which

f ≃ ε(x) = f(p) +
n$

i=1
φix

2
i

, where each φi = ±1. Notice that this representation is unique up to a permutation
of the elements in the summation.

Figure 1.7: Morse function, picture taken from (Edelsbrunner and Harer 2022).
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Definition 1.4.5. (Morse index) The index of a critical point p of a Morse function
f defined on a smooth manifold X of dimension n is the number of coe!cients φi

in the previous theorem that equal ↗1. A critical point p with an index of 0 is a
local minimum; if the index equals n, it is a local maximum. Generally, if the index
is k, we say that p is a k-saddle.

Figure 1.8 depicts a classical example from Morse theory, originally borrowed
from (Milnor 1963). The picture shows the changes in the topology of the sublevel
sets Xt = {x ⇑ X | f(x) ↘ t} of the torus filtered by the height function, as in
Example 1.4.2. We can see that qualitative changes that alter the homotopy type
of the sublevel set occur at critical values. Before the minimum f(u), the set is
empty; between f(u) ↘ t < f(v), the set is homotopic to a point or an open disk.
Reaching the level t = f(v) is equivalent to attaching a 1-cell to the sublevel set.
The same holds for t = f(w), while at the maximum f(z), a 2-cell is added.

Morse theory not only proves that every topological change occurs at a critical
value, but it also provides an exact CW-complex decomposition of a smooth
manifold X based on the gradient flow defined by ↗ϖfx, where the structure of
the stable and unstable manifolds of every equilibrium, which is a critical point,
is viewed as a cell. In particular, every k-saddle corresponds to a k-cell in this
construction. We do not cover this construction in the continuous case; instead, in
the following section, the discrete analog for finite complexes will be discussed in
detail.

Figure 1.8: Morse decomposition, picture taken from (Edelsbrunner and Harer
2022).

15



Algebraic Topology

1.5 Discrete Morse Theory
In this section, we develop the discrete analog of continuous Morse theory and
present an algorithm that, by mimicking gradient descent in a discrete setting,
computes the birth and death pairs of the barcode. In the smooth case, changes
in the topology of sublevel sets occur at critical values, which are associated with
critical points. Similarly, in the discrete setting, we will associate each critical
time and change in homology with a corresponding critical cell. The primary
reference for discrete Morse theory is (Forman 2002); in the following discussion,
we also draw on (Robins et al. 2011), specifically applied to computer vision, and
(Lingareddy 2018) for a detailed persistent homology perspective.

Definition 1.5.1. (Discrete Morse function) A filtration f on the cells of a
given regular complex is a discrete Morse function if for every cell ω the following
conditions on its faces and cofaces hold:

1. #{ς > ω|f(ς) ↘ f(ω)} ↘ 1

2. #{ς < ω|f(ω) ↘ f(ς)} ↘ 1

Definition 1.5.2. (Critical cell) A cell ω is a critical cell if the following conditions
on its faces and cofaces hold:

1. #{ς > ω|f(ς) ↘ f(ω)} = 0

2. #{ς < ω|f(ω) ↘ f(ς)} = 0

If a cell is not critical, we say that the cell is regular.

Theorem 1.5.3. If a cell ω is regular (i.e., it is not critical), conditions 1 and
2 in Definition 1.5.1 are mutually exclusive in the following sense: either ω has
exactly one coface ς > ω with f(ς) ↘ f(ω), in which case ω has a higher filtration
value than all its faces; or ω has exactly one face ϑ < ω with f(ϑ) → f(ω), in which
case ω has a lower filtration value than all its cofaces.

Proof: Suppose there is a cell ω that has both a coface ς > ω for which
f(ς) ↘ f(ω) and a face ϑ < ω such that f(ϑ) → f(ω). Since ϑ would be contained
twice in the boundary of ς , there must be another cell ↼ such that ς > ↼ > ϑ.
Moreover, ς and ϑ already have, respectively, a face with a greater or equal value
and a coface with a lesser or equal value; thus, it must hold that f(ς) > f(↼) > f(ϑ).
But this leads to the absurdity f(ς) > f(ϑ) → f(ω) → f(ς).

The above theorem shows that regular cells are added in pairs across the filtration
Kt = f→1(↗⇓, t], specifically as a pair of a maximal face and its free face as defined
in Definitions 1.1.7 and 1.1.8. In contrast, a critical cell has a filtration value greater
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than all its faces and lower than all its cofaces, meaning it appears in isolation.
The next results demonstrate that the filtration value of a critical cell represents a
critical time, as changes in homology occur only with the introduction of critical
cells.

Theorem 1.5.4. If t1 < t2 and f→1(t1, t2] contains only regular cells, then Kt1 has
the same homology as Kt2.

Proof: From the previous theorem, regular cells form pairs of a coface ωk

and face ς k→1 with the same filtration value. At the time of their insertion,
they must be a maximal face, as ωk cannot be a face of a coface with the same
filtration value, and a free face, as ς k→1 cannot have another coface with the same
filtration value. To convey the basic idea, we consider what happens when we
add only one pair of a maximal cell and a free face to the complex. Introducing
ωk, a new k-chain appears, dim Ck,t2 = dim Ck,t1 + 1, which does not belong to
any boundary, nor to any cycle; thus, dim Hk,t2 = dim Hk,t1 . Since this extra
dimension does not contribute to the kernel, it contributes to the image of the
boundary operator: dim Bk→1,t2 = dim Bk,t1 + 1, now containing an element
with ς k→1. However, since ωk is a cell, this boundary must also be a cycle, so
dim Hk→1,t2 = dim Bk,t1 + 1 ↗ dim Ck,t1 ↗ 1 = dim Bk,t1 ↗ dim Ck,t1 , with no change.
For a complete proof of the general case, see (Forman 2002).

Theorem 1.5.5. If t1 < t2 and f→1(t1, t2] contains only a critical k-cell ω, then
there is a change in homology and only one of the following two situations can
occur:

1. ϱk,t2 = ϱk,t1 + 1. In this case, f(ω) is the birth time of a bar in Bar(Hk), and
ω is said to be a creator cell.

2. ϱk→1,t2 = ϱk,t1 ↗ 1. In this case, f(ω) is the death time of a bar in Bar(Hk→1),
and ω is said to be a destructor cell.

Proof: A critical k-cell ω has a filtration value below each of its cofaces; hence,
it cannot be part of a boundary at the time of its insertion. Thus, ω creates
a new dimension dim Ck,t2 = dim Ck,t1 + 1, which cannot be a boundary, so
dim Bk,t2 = dim Bk,t1 . Only two cases arise: either this new dimension contributes
to the kernel of ϖk, hence ϱk,t2 = ϱk,t1 + 1, or it contributes to the image, giving
ϱk→1,t2 = ϱk→1,t1 ↗ 1, as the (k ↗ 1)-boundary gains one dimension in Ck→1.

Example 1.5.1. (Creator and destructor cells) Figure 1.9 provides examples for
both the one-dimensional and two-dimensional cases. The insertion of a critical
cell, marked in red, modifies the homotopy type of the complex. A destructor
1-cell reduces the number of connected components in the complex by creating
a bridge between two existing components, thus decreasing the dimension of H0.
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Conversely, a creator 1-cell opens a loop, forming a new connection within a
component, increasing the dimension of H1 by one. In the two-dimensional case, a
destructor 2-cell fills a hole, transforming the surrounding loops into boundaries
and reducing the dimension of H1, while a creator 2-cell encloses a volume, creating
a new homological class in H2.

Notice that the previous results relate to a fundamental result of topology: there
is no retraction of a ball onto its boundary sphere (see Appendix A). This implies
that inserting a cell in isolation must change the homotopy type of a complex. In
contrast, we can easily find a retraction of a ball and part of its boundary onto
the rest of the boundary. The following result summarizes our construction so far
and relies on the fact that we can iteratively retract pairs of regular cells onto the
remainder of their boundaries, so that only critical cells are needed to determine
the homotopy type of a complex.

Theorem 1.5.6. (Fundamental theorem of discrete Morse theory) Every regular
CW-complex K is homotopic to a CW-complex M with exactly one k-cell for every
critical k-cell of K.

Proof: The proof is based on Theorems 1.5.4 and 1.5.5. A complete proof can
be found in (Forman 2002).

The end of this section presents an algorithm for computing persistent homology
and the associated pairs of creator and destructor cells by analyzing the structure
of the Morse complex. The key ingredient is a discrete analog of a vector field,

Figure 1.9: Creator and destructor cells.
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the discrete vector field, on which we can perform a form of gradient descent
algorithm. By following the descending or ascending paths from each critical cell,
we can identify the critical cells and their boundary relations, providing an abstract
description of the Morse complex.

Definition 1.5.7. (Discrete vector field) A discrete vector field V on a complex K

is a collection of pairs (ωk, ς k→1) composed of a k-cell ωk and one of its faces ς k→1

(where the dimension is highlighted for clarity), such that each cell belongs to at
most one pair.

Theorem 1.5.8. A discrete Morse function f defines a discrete vector field Vf on
a complex.

Proof: From Theorem 1.5.3, we have seen that regular cells form unique pairs
of ς < ω, a face and coface with the same filtration value f(ς) = f(ω). This is
exactly the partial matching we seek. Critical cells remain unpaired.

Definition 1.5.9. (V -path) If V is a discrete vector field, a V -path is a sequence
of cells

ς k→1
0 , ωk

0 , ς k→1
1 , ωk

1 , . . . , ς k→1
r

, ωk

r
, ς k→1

r+1

, such that (ωk

i
, ς k→1

i
) ⇑ V and ωk

i
> ς k→1

i+1 for every i = 0, . . . , r. If r → 1 and
ς k→1

0 = ς k→1
r+1 , the path is said to be a non-trivial closed path.

Theorem 1.5.10. The discrete vector field Vf of a Morse function f does not have
a non-trivial closed path.

Proof: Every V -path is a sequence of pairs ς k→1
i

, ωk

i
of regular cells such that

f is constant on the pair f(ς k→1
i

) = f(ωk

i
). Since ωk

i
> ς k

i+1 and ωk

i
already has a

face with the same value, it must hold that f(ς k

i+1) < f(ωk

i
). Thus, the path is

decreasing on pairs.

Theorem 1.5.11. If V is a discrete vector field that has no closed path, there is a
Morse function f such that V = Vf .

Proof: A proof can be found in (Forman 2002).
A vector field imposed by the gradient of a function has no closed orbits, except

at equilibrium points. The previous result demonstrates the same property in the
discrete setting. Essentially, every V -path can be completed so that it starts and
ends at a critical cell. By following these gradient paths, we can establish the
boundary relationships between the critical cells of the Morse complex.

In the final section of this chapter, we specialize our discussion and the presented
algorithms to the case of 2D cubical complexes, which are particularly relevant
for computer vision applications. This focus allows us to simplify the topic and
provide a more targeted presentation with relevant examples. For an algorithm
that applies to regular complexes in general, see (King et al. 2005).
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1.5.1 Applications to Digital Images
We will explain the algorithm of (Robins et al. 2011), which serves as the basis for
implementing discrete Morse theory in our applications. The original work handles
both 2D and 3D data structures; here, we limit the exposition to applications
involving 2D cubical complexes and grayscale digital images.

The starting point is a digital grayscale image I, represented as a W ⇒H matrix.
It is convenient to model this image as a subset of R

2: the pixel locations are
represented as a set D = {(i, j) | i, j ⇑ N, 0 ↘ i ↘ W, 0 ↘ j ↘ H}, where a
function f : D ↓ R is defined so that g(i, j) = I[i, j] (the grayscale value).

To study the topological structure of the image, it is necessary to extend this
set to a complex. Specifically, we consider the 2D cubical complex K whose 0-cells
are the points of D, and the 1-cells and 2-cells are all edges and faces formed by
adjacent lower-dimensional cells (see Figure 1.3).

The lower cut of an image, Dt, is the set of pixels with grayscale values at most t,
i.e., Dt = {(i, j) ⇑ D | f(i, j) ↘ t}. The goal is to build a filtration (specifically, its
discrete vector field) on the complex such that Dt ↑ Kt. Moreover, this filtration
should minimize the number of critical cells to capture only the topological features
induced by the pixel values, avoiding arbitrary additions. This is achieved by
considering the lower-star filtration.

Definition 1.5.12. (Lower-star filtration) Given a regular complex K and a scalar
function g defined on its 0-cells, we recursively define a function f that extends g to
all cells of the complex: (1) for every 0-cell ω, we set f(ω) = g(ω); (2) for every k-
cell ω, the function has the value of the maximum of its faces, f(ω) = maxϑ<ϖ f(ς).

Definition 1.5.13. (Lower star of a pixel) We define the lower star of a 0-cell x,
a pixel, as the set of faces containing the pixel that have the same filtration value:
L(x) = {ω ↑ K | x ⇑ ω, f(ω) = f(x)}. More precisely, it includes the pixel itself,
together with all edges and faces for which x is the vertex with the highest filtration
value.

Along the lower-star filtration, the lower star of each pixel appears simultaneously,
and the function value on each cell depends entirely on the pixel value. This aligns
with our intuitive idea that a filtration should induce a topology that is as directly
derived from the image data as possible.

However, the lower-star filtration function f is not yet a discrete Morse function;
there are some additional steps needed to obtain a discrete vector field.

First, we must ensure that all pixel values are distinct. An infinitesimal pertur-
bation is applied to break ties while preserving any other order relations.

Theorem 1.5.14. Given a function g defined on D, let d = minx,y↔D |g(x) ↗ g(y)|.
If d > 0, then the lower-star sets of the respective filtration f form a partition of
the cells of the complex K.
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Proof: Each cell belongs to the lower-star set of its vertices that achieve the
maximum filtration value. If each vertex has a unique value, this maximum is
unique.

Theorem 1.5.15. Let d = minx,y↔D |g(x) ↗ g(y)|. If d > 0, then the lower-star
sets form a partition. If d = 0, there exists an infinitesimal perturbation g↑(x) of
g(x) such that d > 0 and g(x) > g(y) =∝ g↑(x) > g↑(y).

Proof: Let ↼ be the smallest positive di"erence among values |g(x) ↗ g(y)|.
Define g↑(i, j) = g(i, j) + φ i+Ij

2IJ
with 0 < φ < ↼.

Since
0 <

1
2IJ

↘

%%%%%
(i ↗ i↑) + I(j ↗ j↑)

2IJ

%%%%% ↘
I + IJ

2IJ
< 1,

if g(i, j) = g(i↑, j↑), then |g↑(i, j) ↗ g↑(i↑, j↑)| > 0; and if g(i, j) < g(i↑, j↑), we have
g↑(i↑, j↑) ↗ g↑(i, j) > ↼ ↗ φ > 0.

From now on, we assume distinct pixel values, resulting in a partition of lower
stars. The following algorithm creates a discrete vector field where only cells within
the same lower star are paired.

We highlight two remarks about the algorithm, which are relevant for applica-
tions:

1. The discrete vector field pairing occurs only among cells within the same lower-
star set. Since all cells in this set share the same value from f , ties are broken
arbitrarily to assign gradient pairs and critical cells among multiple possibilities.
For instance, if a pixel is the local maximum within a neighborhood patch,
this choice will only a"ect which specific 2-cell among four possibilities in the
same lower star is designated as critical. There is a one-to-one correspondence
between critical 2-cells and pixels that are local maxima within a neighborhood
whose number does not depend on these choices.

2. The algorithm constructs a discrete vector field by processing the lower star of
each pixel independently. Thus, it has a complexity proportional to the image
size O(W ⇒ H), but can be parallelized to achieve a constant-time complexity
of O(1) with respect to image size.

Algorithm 1.5.1. (ProcessLowerStars) The proposed algorithm processes L(x), the
lower star of each pixel, to return a discrete vector field consisting of critical cells C
and pairs of regular cells V [↽(p)] = ϱ(p+1). The pseudocode from (Robins et al. 2011)
is given in Algorithm 1. The algorithm uses a function num_unpaired_faces to
track the number of paired faces of a cell. It also requires G, a complete ordering
among the cells of the lower star that decreases along faces.

Once a discrete vector field has been constructed, we know that the critical cells
form part of the Morse complex. To compute the boundary relations in the Morse
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Algorithm 1 ProcessLowerStars, taken from (Robins et al. 2011).
Input: D (digital image pixels), g (grayscale values)
Output: C (critical cells), V (discrete vector field V [↽(p)] = ϱ(p+1))
for x ⇑ D do

if L(x) = {x} then
add x to C ( x is a local minimum)

else
⇀ ′ the 1-cell in L(x) such that G(⇀) is minimal
V [x] ′ ⇀
add all other 1-cells from L(x) to PQzero
add all cells ↽ ⇑ L(x) to PQone such that ↽ > ⇀ and
num_unpaired_faces(↽) = 1
while PQone /= ∞ or PQzero /= ∞ do

while PQone /= ∞ do
↽ ′ PQone.pop_front()
if num_unpaired_faces(↽) = 0 then

add ↽ to PQzero
else

V [pair(↽)] ′ ↽
remove pair(↽) from PQzero
add all cells ϱ ⇑ L(x) to PQone such that (ϱ > ↽ or ϱ > pair(↽))
and num_unpaired_faces(ϱ) = 1

end if
end while
if PQzero /= ∞ then

⇁ ′ PQzero.pop_front()
add ⇁ to C
add all cells ↽ ⇑ L(x) to PQone such that ↽ > ⇁ and
num_unpaired_faces(↽) = 1

end if
end while

end if
end for
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complex, we can trace the V -paths originating from each critical cell. Since these
paths cannot form cycles, there are only two possible outcomes: either the path
will reach the lower star of another critical cell, indicating that this cell is a face of
the source cell in the Morse complex, or it will end trivially at the boundary of the
image.

Since we need to evaluate the V -paths starting from each critical cell, the
complexity of the algorithm scales with the number of critical cells. This number
is approximately proportional to the image size, giving a complexity of O(W ⇒ H).
However, because each V -path can be evaluated in parallel, the algorithm could be
parallelized over V -paths to achieve performance improvements depending on the
actual implementation and computer architecture.

Algorithm 1.5.2. (ExtractMorseComplex) The algorithm takes as input V , the
discrete vector field pairing, and C, the critical cells as computed from the previous
method, and returns Facelist, a list of tuples made by a cell of the Morse complex
and the list of its faces. In Algorithm 2, we present the pseudocode from (Robins
et al. 2011).

The retrieved Morse complex may not be regular; for example, it could have a
2-cell with a boundary composed of only one 1-cell (it has only one face). However,
it allows us to compute the homology of the former complex in a straightforward
way:

1. Every 2-cell ω is the destructor cell of an element in the barcode Bar(H1), of
which the 1-cell ς in the boundary of ω, i.e., ς < ω, with the highest filtration
value, is the creator cell.

2. Every 1-cell ω, left unpaired by the previous step, is the destructor cell of an
element in the barcode Bar(H0), of which the 0-cell ς , in the boundary of ω,
i.e., ς < ω, with the highest filtration value, is the creator cell.

3. The 0-cell ω, left unpaired, obtains the global minimum of the filtration function
and corresponds to the bar in Bar(H0) with infinite length, representing the
connected component of the entire complex.

This scheme also provides a straightforward method for an algorithm that
computes the persistence pairs from a given Morse complex.

Example 1.5.2. (Discrete Morse Theory on images) We demonstrate an applica-
tion of the methods developed in this section to a handwritten digit image from the
MNIST dataset. Figure 1.10 shows, in order: (1) the input grayscale image, where
the background corresponds to values close to zero, and the digit corresponds to val-
ues close to one; (2) the discrete vector field computed with the previous algorithms,
where cell pairings are represented as arrows from a coface to a face, and the critical
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Algorithm 2 ExtractMorseComplex, taken from (Robins et al. 2011).
Input: V (discrete vector field), C (critical cells of V )
Output: M (cells in the Morse chain complex), Facelist (cell adjacencies of
the Morse chain complex)
for p ⇑ {0, 1, 2} do

for ⇁(p)
⇑ C do

create a new p-cell ⇁̃ ⇑ M
if p > 0 then

for ↽(p→1) < ⇁(p) do
if V [↽] /= ∞ then

Qbfs.push_back(↽)
end if

end for
while Qbfs /= ∞ do

↽ ′ Qbfs.pop_front()
ϱ(p)

′ V [↽]
for ⇀(p→1) < ϱ(p) s.t. ⇀ /= ↽ do

if ⇀ ⇑ C then
add ⇀̃ to Facelist(⇁̃)

else if V [⇀] /= ∞ then
Qbfs.push_back(⇀)

end if
end for

end while
end if

end for
end for
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cells are depicted in red, blue, and green for critical 2-cells, 1-cells, and 0-cells,
respectively; (3) a set of V -paths that fully describe the boundary relations between
their originating critical cells and the sinks; note that some V -paths may end at
the image boundary and do not establish a boundary link; (4) a representation of
the derived Morse complex, where each point corresponds to a critical cell with
the previous color notation, and cofaces are linked to their faces by an edge. The
points are positioned according to the vertex with the maximum value, i.e., the pixel
associated with the critical cell; (5) the persistence diagram of the barcode Bar(H1),
a Cartesian diagram where each bar is represented as a point with its birth and
death time coordinates. Notice that there is only one bar, i.e., only one 1-cycle, with
significantly high persistence. This corresponds to the fact that the digit forms a
single connected component, representing a hole in the background that was created
early in the sublevel set filtration and was closed at the end (when t = 1).
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Figure 1.10: Discrete Morse Theory.
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Chapter 2

Computer Vision

In this chapter, we revisit some concepts and problems in computer vision, par-
ticularly within image matching, which is our field of application. A fundamental
challenge in these areas is understanding the relationship between di"erent views of
the same subject. For example, a sequence of photos of the ground captured from
a moving probe can be used to infer the probe’s relative trajectory and facilitate
a successful landing. Conversely, if the subject is moving, multiple frames can
be used to estimate its velocity and future position, as long as the object can be
accurately matched between frames. Image matching can also enhance the accuracy
of retrieval tasks in image-based search engines; we refer to one of our previous
works published in (Barbarani, Mostafa, et al. 2023) as an example.

To provide a su!ciently complete understanding of the foundations of our
topics, we begin with the pinhole camera model, the simplest and most instructive
abstraction of the physical model underlying a camera and the process of capturing
digital images, discussed in Section 2.1. In Section 2.2, we introduce some notions
of projective geometry and demonstrate how the core aspects of the problem and
solutions can be approached by working with the projective plane and homographies.
Our primary references for this subject are (Richter-Gebert 2011) for mathematical
results on projective geometry and (Fusiello 2024) for the applicative context.

Once we have developed the necessary tools, the initial problem of understanding
the relationship between two images reduces to the task of estimating a homography.
Section 2.3 explains how current methodologies address this task through a set
of correspondences, which may be uncertain, derived from the image data. Many
algorithms have been proposed to estimate these correspondences within the
keypoints-and-descriptors paradigm: a set of reliable pixel locations (keypoints) is
identified, along with descriptors of the represented features. Numerous algorithms
have been proposed for this task, ranging from theoretically grounded hand-crafted
solutions to data-intensive deep learning models.

Examples of these methodologies, as well as the overall paradigm of image
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matching, are covered in Section 2.4, with a special focus on some prototypical
examples. Specifically, we explore the scale-space theory framework, following
the comprehensive work of (Lindeberg 2013), and its primary application, SIFT,
an e"ective hand-crafted method proposed by (Lowe 2004). Among recent deep
learning approaches, we discuss R2D2, introduced by (Revaud et al. 2019), while
additional deep learning methods are briefly covered in Appendix C.

2.1 The Pinhole Camera Model
The earliest photographs were taken with the help of a camera obscura, a dark
environment where light rays could enter exclusively through a small pinhole,
imprinting themselves on a photoreactive plate placed on the opposite side. The
pinhole camera model is an abstraction that captures how the primary aspects of
perspective work in this setup. By thinking of the pupil (or the lens of a modern
camera) as the pinhole, and the retina (or sensor) as the plate, this model serves
as a reasonable abstraction for vision systems in general.

The model consists of a point C, called the center of projection, which represents
the position of the pinhole in space, and an image plane Q, which represents
the plane where the plate lies. The focal length f is the distance between the
center of projection and the image plane. To explain the geometry of perspective,
we introduce a Cartesian coordinate system with C as the origin. The model is
depicted in Figure 2.1. As shown in the figure, a source point P = (X, Y, Z) emits
a ray of light that is projected onto a two-dimensional image point p = (x, y).
By similarity of triangles, we can explicitly derive the relationship between their
components:





x = ↗f X

Z

y = ↗f Y

Z

From these equations, we can quickly retrieve some intuitive aspects of perspec-
tive: the farther an object is from the center of projection (increasing Z), the less
space it will occupy in the image. Conversely, increasing the focal length f , as with
an adjustable zoom in photography, will make the object appear larger.

To understand where the object at P will be mapped in a digital image, we also
need to account for an independent rescaling to pixel coordinates, an axis reversal
to convert the negative image plane to a positive one, and a translation to align
with the top-left corner as the pixel origin.





x = fkx

X

Z
+ cx

y = fky
Y

Z
+ cy
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The set of parameters f, kx, ky, cx, and cy are called intrinsic parameters, as they
depend only on the camera and not on its position in space.

Before continuing, we introduce some simplifications to make the treatment of
the problem easier, both in notation and complexity.

First, we assume the focal length to be one, f = 1, by default. Additionally,
we consider our image plane to be in front of the center of projection, so we do
not need to flip the image. Specifically, we set the image plane as the xy-plane
translated to z = 1. Note that these assumptions do not alter the generality of the
model: in real systems, the sensor lies behind the camera, but by considering a
positive translation in z instead, we achieve the necessary axis reversal. As for focal
length adjustments, we will demonstrate how to handle changes in the camera’s
internal settings and coordinates.

A stronger assumption we make in our treatment is to consider only planar
objects; in other words, we assume the scene to be a specific plane in space.
This assumption is e"ective for many applications, as it reasonably approximates
flat surfaces like building facades, the ground viewed from above, and objects at
su!cient distance. Moreover, this simplified model is instructive in general, as
more complex scenarios can often be handled by considering multiple planes.

In this context, every point on the plane emits radial light with a specific value,
which can be a scalar intensity or an RGB vector—either representation suits the
general problem.

Our main assumptions is captured in the following definition.

Figure 2.1: The pinhole camera model.
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Definition 2.1.1. (Object) The object O is an a!ne subspace of R3 that is the
domain of a function F : O ↓ V (we are not interested in specifying the codomain).

Consider the (positive) image plane of a camera with a center of projection C
that necessarily does not lie on the object O.

When a ray of light from a point on the plane reaches the center of projection
C and strikes the image plane, it imprints the same light value as the originating
point. Thus, the function F induces a function on a subset of points in the image
plane, FI , which in the camera coordinate system is given by

FI

)
X

Z
,
Y

Z

*
= F (X, Y, Z)

for every (X, Y, Z) ⇑ O.
As shown in Figure 2.2, if we move our camera to a new position or orientation,

formally changing the coordinate system via an isometry T (P ) = R(P ) + t, where
R ⇑ SO(3) and t ⇑ R

3, there will be a relationship between the pixel values
depicted in our new image plane I ↑ and the former one. In the coordinate system
of the new camera, this relationship is given by

FI→

)
X

Z
,
Y

Z

*
= FI

+
T →1(X, Y, Z)1
T →1(X, Y, Z)3

,
T →1(X, Y, Z)2
T →1(X, Y, Z)3

,

for every (X, Y, Z) ⇑ O.

Figure 2.2: Planar object.
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In the next section, we will formalize these relations and concepts more precisely
and show how, under certain conditions, we can generate a second image without
the need to capture a new photo.

2.2 The Projective Plane
In this chapter, we introduce the formalism of projective geometry to model
perspective in Euclidean space. Our main goal is to explain how the relationship
between di"erent images of the same planar object can be reduced to linear algebra
problems and solved with well-known tools.

Definition 2.2.1. (Bundle of rays) PR is the collection of equivalence classes of
non-zero vectors in R

3 that di"er by a scalar multiplication. In formula, an element
[λ] ⇑ PR is a one-dimensional subspace [v] = {λv | v ⇑ R

3
↗ {0}, λ ⇑ R ↗ {0}}

with the 0 element excluded. Note that orthogonality relations are preserved by the
classes, i.e., v ∈ w ∋∝ [v] ∈ [w].

Definition 2.2.2. (Homogeneous coordinates) For every point (x, y, z) ⇑ R
3 such

that z /= 0, we define its homogeneous coordinates to be the point
-

x

z
, y

z
, 1

.
. Note

that if the homogeneous coordinates are defined for a representative v of a class
[v] ⇑ PR, then all representatives of the same class have the same homogeneous
coordinates. Thus, we can refer to the homogeneous coordinates of the class [v]
without ambiguity.

The object PR that has just been introduced can be thought of as the bundle
of rays passing through the origin. In the previous section, we showed how, in a
camera model, the color or light value of a point in the image plane is inherited
from the ray that hits it—specifically, from the unique ray passing through the
center of projection and a point chosen on the image plane. This defines, at most,
a bijection between the bundle of lines PR passing through the origin, set as our
center of projection C, and the points in the image plane Q, namely the plane over
(x, y, 1). Every point of the image Q thus represents the homogeneous coordinates
of a class in PR. However, there is a puzzle to solve in this discussion: lines with
directions parallel to Q (i.e., those with z = 0) do not correspond to any point,
as they represent rays parallel to the image plane that never intersect it. If we
consider a sequence of points in homogeneous coordinates (a + rx, b + ry, 1) with
increasing r, they correspond to a sequence of rays with directions

-
a

r
+ x, b

r
+ y, 1

r

.

in PR, which tend toward the direction (x, y, 0) as r ↓ ⇓. Thus, PR can be seen
as an extension of the image plane with the addition of limiting points (x, y, 0),
called points at infinity.

Let LR be, for notational purposes, an identical but distinct copy of PR. We
can use the same set to model lines on the image plane Q. Each line can be
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defined by its normal as the set (a, b, 1) ⇑ Q such that (a, b, 1) ∈ (x, y, z) for a
fixed (x, y, z) /= 0. This set remains the same for any non-zero multiple of the
normal vector, meaning each class [v] ⇑ LR defines a line on the image plane. The
line with normal direction (0, 0, z) do not correspond to any line in the image
plane, but can be thought of as the line passing through all points at infinity, as
(x, y, 0) ∈ (0, 0, z). Points (x, y, 0) in our extended image plane PR represent the
limit of all the sequences like (a + rx, b + ry, 1) = (a, b, 1) + r(x, y, 0), which can
be understood as the intersection points of parallel lines in the image plane with
direction (x, y, 0).

We have seen that PR and its copy LR extend both the image plane Q and its
one-dimensional a!ne subspaces with the addition of points at infinity and a line
passing through them. From a formal point of view, this extension is consistent
and preserves all Euclidean geometry properties of interest, such as orthogonality
and incidence relations. For an in-depth treatment, see (Ghrist 2014). Practically,
there is nothing inherently special about points at infinity—they are an artifact
of perspective. As shown in Figure 2.3, di"erent positions and orientations of the
camera in space lead to di"erent points at infinity. This extension is summarized
in the following definition.

Definition 2.2.3. (Projective plane) Given PR as defined in Definition 2.2.1,
and its identical but distinct copy LR, the triplet RP2 = (PR, LR, IR) is called the
projective plane, where PR and LR are its points and lines, respectively, and IR is

Figure 2.3: Point at infinity.
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the set of incidence relations:

IR ↑ PR ⇒ LR such that ([v], [w]) ⇑ IR ∋∝ [v] ∈ [w]

The projective plane RP
2 can be thought of as the extension of the image plane Q

with its extended points and lines. Every subset of its points, lines, and incidence
relations that has an immediate interpretation in terms of homogeneous coordinates
behaves as points and lines of Q in Euclidean space.

Definition 2.2.4. (Homography) A homography, or projective transformation
T = (TPR , TLR), is an isomorphism of the projective plane RP

2. This means a pair
of bijective functions

TPR : PR ↓ PR and TLR : LR ↓ LR

such that
([v], [w]) ⇑ IR =∝ (TPR([v]), TLR([w])) ⇑ IR.

Theorem 2.2.5. Every 3 ⇒ 3 invertible matrix M defines a homography. If two
3 ⇒ 3 invertible matrices M and N di"er by a scalar multiplication, i.e., M = λN
with λ /= 0, then they define the same transformation. We denote by [M ] the class
of matrices that di"er by a non-zero scalar multiple, i.e., that represent the same
transformation of the projective plane.

Proof: Both M and
-
MT

.→1
are linear maps, thus they induce a pair of well-

defined functions on equivalence classes of PR and LR, respectively. As the matrices
are invertible, both functions are bijections. Finally, it holds that

↖x, y↙ = 0 ∋∝ ↖Mx,
-
MT

.→1
y↙ = 0,

hence incidence relations are mapped consistently. If M = λN , then both M and
N induce the same bijection on classes, and the same holds for the inverse of their
transposes.

Theorem 2.2.6. (Fundamental theorem of projective geometry) Every isomorphism
of the projective plane RP

2 is induced by a 3 ⇒ 3 invertible matrix H.

Proof: The proof is highly technical and requires a more complete exposition
from abstract algebra; see (Richter-Gebert 2011) for details.

As a result of the fundamental theorem, in the context of the real projective
plane RP

2, every projective transformation is induced by a matrix, and the terms
homography, isomorphism, and projective transformation are commonly used
interchangeably. Likewise, an invertible 3 ⇒ 3 matrix is often directly referred to as
a homography or homography matrix. In our context, we will adopt this common
terminology.
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As we have seen, the projective plane naturally extends the image plane and its
geometry, and we can think of the color of a point in Q as the color of a ray in PR

interchangeably. Based on this, we define an image as follows:

Definition 2.2.7. (Image) An image is a function defined on a subset I of PR,
i.e., F : I ↑ PR ↓ V. An initial image can be defined by the object (Definition
2.1.1), seen as the homogeneous coordinates for a coordinate system in which the
plane O coincides with the image plane. In this case, F is defined at every point
except those at infinity. Alternatively, we may have an initial photo of the object,
in which case the image is defined on a rectangular region R = [a, b] ⇒ [c, d] of the
image plane that corresponds to rays in direction (x, y, 1) for every (x, y) ⇑ R.

The following 3 ⇒ 3 matrices show how the intrinsic transformations discussed
in the previous section act on the image in terms of the projective plane and
homographies:

K =




↗kx 0 cx

0 ↗ky cy

0 0 1



 , If =




↗f 0 0
0 ↗f 0
0 0 1



 , Hintr = KIf

To map an image F defined on our ideal image plane coordinate system to the real
image defined on the real coordinates and physical units of the sensor, we compute
Ff = F ≃ I→1

f
. In practice, Ff is defined on the rectangular region representing the

sensor Rf = [↗a, a] ⇒ [↗b, b]. To convert to pixel coordinates, starting from the
top-left corner as commonly used in computer vision (i.e., R = [0, H] ⇒ [0, W ]), we
choose parameters in K so that R = K(Rf ), ensuring correct axis orientation. The
digital image will then be a discretization of Ff ≃ K→1. Overall, the homography
matrix Hintr represents a transformation that depends solely on the intrinsic
parameters of the physical system or data representation conventions.

Note that K, If , and Hintr map homogeneous coordinates to homogeneous
coordinates, so if the input is in planar coordinates, the output is immediately
interpretable as an image plane coordinate. For a generic homography matrix,
however, further division by the third component of the output is needed to locate
it on the image plane.

Now we address the main problem presented in the introductory section and
depicted in Figure 2.2. We consider a camera with center of projection C and
image plane Q, and a second camera with center of projection C ↑ = R(C) + t and
image plane Q

↑ = R(Q) + t, where T (x) = R(x) + t is an isometry with R ⇑ SO(3)
and t ⇑ R

3. A ray passing through the center of projection C and a specific point
on the image plane Q that intersects the object at P will have the same color as
the ray passing through C ↑ and Q

↑ that intersects the object at the same point P .
This defines a bijection between a subset of the bundle of rays at C and a subset
of those at C ↑, excluding rays parallel to the image plane, which would have no
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color in either system. However, this bijection is also determined by the position
of the object in space, as shown in Figure 2.4. Moving the plane O to the plane
O

↑ changes the pairing of rays from H to H ↑. Thus, a projective transformation
describing the mapping from the image plane in the coordinate system of the first
camera to the second depends on the relative position of the object in space.

The following theorem formalizes this relationship. Note that in the theorem,
we assume the coordinate system of the first camera, which defines the domain of
the homography. Thus, R is expressed in the coordinates of this system.

Theorem 2.2.8. The homography matrix H representing the change of perspective
obtained by moving the camera location and orientation via an isometry T (x) =
Rx + t, where R is a 3 ⇒ 3 invertible matrix and t ⇑ R

3, is given by H = R + tn
T

d
,

where n and d are the outward normal and distance from the origin, respectively,
of the object plane O.

Proof: The theorem is a well-known result in computer vision and projective
geometry. For a step-by-step proof, see (Fusiello 2024). The proof presented here
follows the language and methods of this context, primarily based on linear algebra
and the reasoning developed so far.

We know how H acts on lines represented by points on the object plane, as
[Hx] = [Rx + t] for every x ⇑ O. Since the center of projection (the origin) lies
outside the object plane, we can find three linearly independent points on the plane
using the outward normal n and the distance from the origin d. We know that
a = dn lies on the plane. Let m and w be vectors in the basis of the orthogonal

Figure 2.4: Relative Homographies.
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complement {n}
↘, so that n, m, and w form an orthonormal basis. We can find

two more points on the object plane, b = dn + m and c = dn + w; together, a, b,
and c form a basis for R

3, and we denote its basis matrix as B = [a, b, c]. Define
the matrix

M = RB + t1T ,

where M is invertible and will be shown to equal HB, our desired homography
matrix in the basis B.

In B-coordinates, any point on the plane can be expressed as (1 ↗ λ ↗ ↼, λ, ↼),
as:

nT ((1 ↗ λ ↗ ↼)a + λb + ↼c) =
nT (d(1 ↗ λ ↗ ↼)n + λ(dn + m) + ↼(dn + w)) = d.

Thus, if x ⇑ O, it can be expressed as (1 ↗ λ ↗ ↼, λ, ↼) in B for some choice of
parameters. Notice how M acts on x in B-coordinates:

M




1 ↗ λ ↗ ↼

λ
↼



 = RB




1 ↗ λ ↗ ↼

λ
↼



 + t1T




1 ↗ λ ↗ ↼

λ
↼



 = Rx + t.

Therefore, HB = M acts as the desired map in B-coordinates. To express it in
the usual basis, we right-multiply M by B→1:

H = MB→1 = R + t1T B→1.

Finally, we verify that (B→1)T1 = n

d
. Using the transpose properties:

↖

-
B→1

.
T

1, n↙ = ↖1, B→1n↙ = ↖1,
a

d
↙ = ↖1,

e1
d

↙ = 1
d

↖

-
B→1

.
T

1, m↙ = ↖1, B→1(b ↗ a)↙ = ↖1, e2 ↗ e1↙ = 0

↖

-
B→1

.
T

1, w↙ = ↖1, B→1(c ↗ a)↙ = ↖1, e3 ↗ e1↙ = 0

Thus (B→1)T
1 has the same expression of n

d
in the orthonormal system n, m, w

and they are equal.
The theorem shows that we can depict how an image would look if taken from

a di"erent position using an initial image and additional information about the
object’s location. If we know the homography matrix H, we can evaluate F ≃ H→1

on the rectangular region R representing our picture. In practice, only covisible
regions (i.e., points lying in R ↔ H(I), where I is the domain of the initial image)
can be reconstructed. This technique is widely used, for instance, to generate
synthetic data for neural network training or to adjust photos of buildings taken
from the ground to reduce distortion for aesthetic purposes. Examples are shown
below.
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Example 2.2.1. (Random homographies) Synthetic perspective changes are widely
adopted for data augmentation in neural network training for computer vision
tasks. This technique is used to prevent overfitting and to make classifiers robust to
perspective changes. Figure 2.5 shows two pairs of images: the first images are real
photos, while the second images are generated by applying random homographies.
These are examples of training data used for image matching tasks.

With knowledge of H, we can also solve the system in Theorem 2.2.8 for R
and t, or for n and d. In general, the system may be underdetermined, requiring
additional assumptions or observations to obtain a unique solution. However, the
relative camera positions can often be recovered when the homography matrix is
known with su!cient accuracy, which is particularly relevant for applications such
as trajectory estimation and 3D reconstruction.

In the next chapter, we address the problem of homography estimation: knowing
the visual features of two images (i.e., having two photos of the same scene), which
e"ectively addresses the problem of recovering a homography matrix from raw
image data.

2.3 Homography Estimation
In this section, we show how a homography matrix can be estimated from two
images of the same scene, using only the image data in pixel coordinates. This

Figure 2.5: Random homographies.
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provides the foundation of image matching, an application field that addresses the
problem of finding correspondences between images.

The next result shows that all we need are four correspondences between non-
collinear pixel locations in the first and second images. Since a homography [H] is
defined up to a scalar multiplication, it has eight free parameters, and four pairs of
points in homogeneous coordinates provide exactly eight linear equations, which
are linearly independent if we are not in a degenerate case.

Theorem 2.3.1. Given four points [vi] ⇑ PR, i = 1, ..,4, such that every subset of
three points is linearly independent, and another four points [wi] ⇑ PR satisfying
the same condition, consider a bijection [vi] ↓ [wi] between them. There is a
unique homography, represented by H, that extends this bijection, i.e., such that
[Hvi] = [wi] for every i.

Proof: Consider the basis B = [v1, v2, v3] of R
3. Expressed in this basis,

the homography matrix HB is simply given by representatives (i.e., multiples) of
w1, w2, w3 stacked by columns: HB = [λw1, ςw2, µw3]. The fourth element v4 can
be expressed in the basis coordinates as ϱ ⇑ R

3, where v4 = ϱ1v1 + ϱ2v2 + ϱ3v3, on
which HB must act as

HBϱ = w4.

Given our assumptions, this system is solvable and we can find λ, ς, and µ.
Finally, we obtain H in the usual basis by H = HBB→1.

Given a set of matchings, i.e., correspondences, between pixel locations (whether
as rays, homogeneous coordinates, or image plane coordinates), denoted by

M : A ↓ B,

where A, B ↑ PR are discrete subsets and M is a bijection between them. Theorem
2.3.1 suggests how an algorithm for homography estimation can be implemented in a
straightforward manner, provided the matchings satisfy certain minimal constraints.
One simple approach is to compute H by minimizing its squared error over the
matchings, as is common in regression tasks. However, such estimators are not
robust to outliers, and computer vision typically requires higher accuracy. For
these reasons, a more robust approach is often preferred in practice, namely an
algorithm based on Random Sample Consensus (RANSAC), which iteratively seeks
the best four pairs of matchings.

Algorithm 2.3.1. (RANSAC) The pseudocode for an implementation of RANSAC
is provided in Algorithm 3. For a complete reference on the algorithm, we refer
to (Fischler and Bolles 1981). The algorithm takes as inputs a list of at least four
matchings M, represented as pairs of points in R

3 (i.e., M [i] = (pi, p↑
i
)), an error

tolerance threshold φ, and the number of iterations T to be run.
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The function RandomSampling returns a random sample of four pairs of matching
points. The algorithm makes use of CheckCollinearity, a function that evaluates
four matchings and returns True if they satisfy the non-collinearity conditions
of Theorem 2.3.1, or False otherwise. The function FindHomography takes the
sample as input and returns the homography matrix H (represented as a 3⇒3 array),
following the steps of the previous theorem. The function CountInliers takes the
matchings, the threshold, and a homography matrix as inputs. It applies H to every
point pi and checks if the distance from p↑

i
in homogeneous coordinates is less than

φ; if so, the pair is counted as an inlier. This function returns the number of inliers
of the given homography H. Finally, the algorithm returns the homography matrix
Hbest with the maximum number of inliers among those evaluated.

Algorithm 3 RANSAC
Input: M (list of matchings), φ (tolerance), T (number of iterations)
Output: Best homography Hbest
Hbest ′ 0, nbest ′ 0
for i from 1 to T do

m ′ RandomSampling(M)
if CheckCollinearity(m) then

H ′ FindHomography(m)
n ′ CountInliers(M, H, φ)
if n > nbest then

Hbest ′ H
nbest ′ n

end if
end if

end for
return Hbest

In conclusion, we have shown how to obtain a robust and reliable estimation of
the homography matrix relating two di"erent images from a set of (possibly noisy)
correspondences. In the next section, we will delve into the current methodologies
for extracting these pairs of matches from raw image data.

2.4 Image Matching
Image matching refers to the broad field of techniques and challenges related to
understanding relationships between di"erent images. Homography estimation, for
instance, is a common problem in this field. A comprehensive survey of the field
can be found in (Ma et al. 2021).
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The main approach in image matching is to extract a set of local features
FA = {(pi, di)} from an image A. Each local feature consists of a keypoint p,
representing a notable pixel location, and a descriptor d ⇑ R

K , capturing the visual
characteristics of that point. Local features from di"erent images, such as FA and
FB, are then matched to find correspondences. These correspondences are essential
for estimating the homography matrix between images using RANSAC, as covered
in the previous section. Once local features are extracted, various methods are
used to establish matching relationships; the simplest is to identify mutual nearest
neighbors (MNN) based on the Euclidean distance in descriptor space. Specifically,
a pair of pixel locations (pi, pj), where (pi, di) ⇑ FA and (pj, dj) ⇑ FB, is considered
a match in MA,B if

di = arg min
dk↔FA

||dk ↗ dj|| and dj = arg min
dk↔FB

||dk ↗ di||.

Keypoints are essential in image matching, helping to identify unique regions
within images, often in areas like corners or intersections of lines. The key re-
quirements for e"ective keypoints include high repeatability, allowing them to be
consistently found across di"erent images of the same scene, even with changes in
viewpoint or lighting. They should also be easily matchable with corresponding
points in other images. Keypoints work together with descriptors, which capture
the visual properties of the detected feature.

Various algorithms have been developed to detect local features, ranging from
classic hand-crafted methods to modern deep learning approaches. These algorithms
are often called "detectors" or "extractors" in image matching workflows. Detectors
are typically evaluated using two approaches. The first follows the protocol from
(Mikolajczyk and Schmid 2005), which assesses detectors individually using metrics
like keypoint repeatability, designed to predict performance in multiple applications.
The second approach evaluates the entire image matching pipeline directly on the
downstream task, as suggested by (Jin et al. 2021).

In the following sections, we introduce a classic hand-crafted algorithm, SIFT,
with its background in scale-space theory, and a deep learning-based detector,
namely R2D2, which are particularly helpful for understanding applications relevant
to our study. Additional methods are briefly described in Appendix C.

2.4.1 Scale-Space Theory
Scale-space theory is a foundational framework in computer vision that enables
the analysis of image structures across multiple scales, addressing the inherent
variability in object appearances depending on the observation scale. This theory
acknowledges that objects exhibit meaningful features only within certain scale
ranges; for instance, analyzing the texture of a leaf requires a close-up scale, while
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observing the overall form of a tree demands a broader view. To account for
these variations, scale-space theory proposes a method to systematically represent
images across a continuum of scales by progressively smoothing the image data
using Gaussian filters. This approach results in a series of increasingly coarser
representations of the original image, in which finer details are gradually suppressed.

More specifically, scale-space theory proposes analyzing the image through the
lens of a one-parameter operator, named the scale-space operator. This operator,
represented by the function L(x, t), is the convolution of a grayscale image f(x)
with a Gaussian kernel g(x, t), where t serves as a scale parameter that controls
the progressive loss of details through the level of blurring:

L(x, t) =


R2
f(x ↗ ξ) g(ξ, t) dξ

Here, g(x, t) = 1
(2ϱt)n/2 e→ ||x||2

2t defines the Gaussian kernel, which smooths the
image and progressively removes finer details as t increases.

The choice of a Gaussian kernel is not arbitrary; it has emerged from multiple
streams of research, motivated by theoretical insights and biological inspirations,
as thoroughly reviewed in (Lindeberg 2013). Essentially, the Gaussian kernel is
the only valid choice that provides an operator exhibiting strong scale-invariance
properties.

The intuition that structures recognizable at a distance should already be visible
in finer details suggests the need for a form of non-creation property. Formally,
this implies that keypoints detected at a coarse scale should also appear at finer

Figure 2.6: Progressive smoothing, picture taken from (Lindeberg 2013).
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scales. For one-dimensional signals, the local extrema of the scale-space operator
uphold this property: as shown in Figure 2.6, increasing the level of smoothing
causes pairs of local minima and maxima to merge and cancel out, without creating
any new extrema. Although this property does not extend directly to higher
dimensions, the scale-space operator still preserves certain non-creation properties
for multidimensional signals. In particular, as shown in (Yuille and Poggio 1986),
it does not introduce new zero-crossings of its Laplacian, and similar conditions
apply to other derived linear di"erential operators.

Scale Invariant Feature Transform (SIFT) is a widely recognized algorithm in
computer vision based on the framework of scale-space theory, published in (Lowe
2004). It creates a pyramid of filters by repeatedly applying Gaussian convolutions
to the input digital image with an increasing scale and multiple strides. Then, it
computes a set of keypoints based on the local extrema of the di"erences of the
resulting filters. The computational flow of SIFT is depicted in Figure 2.7. The
pyramid of convolutions can be seen as a discrete implementation of the scale-space
operator, while the Di"erence of Gaussians (DoG) serves as an approximation of
its Laplacian.

The relationship between DoG and the Laplacian can be derived from the heat
di"usion equation, parameterized in terms of ω rather than t = ω2:

ϖg

ϖω
= ω△

2g.

From this, we see that △
2g can be approximated by the finite di"erence of ωg

ωϖ
.

Figure 2.7: SIFT, picture taken from (Lowe 2004).
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For a detailed explanation, see the original work in (Lowe 2004).
After locating these DoG-based keypoints, SIFT assigns each keypoint an

orientation based on the local image gradients, achieving rotational invariance.
Finally, it generates a distinctive descriptor by analyzing gradient orientations
around each keypoint.

In summary, scale-space theory introduces a notion of keypoints based on their
consistency across scales, which has proven successful in practical applications.
This structured approach allows keypoints to represent meaningful image features
that are robust to scale variations.

2.4.2 Deep Learning
Neural networks are universal function approximators and can be e"ectively trained
using gradient descent algorithms. If we can express our desired properties through a
di"erentiable loss functional, then a neural network can approximate the minimizer
and produce any desired output. This capability makes neural networks highly
adaptable, and in computer vision, convolutional neural networks (CNNs) have
specialized to leverage spatial structures in images. Compared to traditional,
hand-crafted feature extraction methods, CNNs can be directly trained on data to
provide representations robust to various transformations, noise, and distortions.

A notable application of deep learning to image matching is R2D2 from (Revaud
et al. 2019). This method implements CNNs and a set of loss functions for
jointly learning keypoint detection and descriptors. By processing an input digital
image I ⇑ R

H≃W ≃C , the network produces three output feature maps: (1) a
descriptors map D ⇑ R

H≃W ≃K , (2) a scalar repeatability map S ⇑ R
H≃W , and (3)

a scalar reliability map R ⇑ R
H≃W . Keypoints are selected as locations maximizing

both repeatability and reliability, with the associated descriptor taken from the
corresponding location in the descriptor map.

The R2D2 training pipeline involves two primary loss functions: a repeatability
loss for keypoint detection and a reliability loss for descriptor discriminativeness.
We will focus on the repeatability loss, as it is particularly instructive for our further
development, while referring to the original work for a comprehensive explanation
of descriptor training.

For repeatable keypoints, R2D2 employs a self-supervised loss to ensure that the
repeatability map S remains consistent across di"erent viewpoints and illumination
changes. It uses image pairs I, I ↑ of the same scene, related by a known homography.
These image pairs can be synthetically generated, as discussed in Section 2.2
and Example 2.2.1, or real pairs with recorded camera intrinsic and extrinsic
parameters. Additional data augmentation techniques, such as noise injection and
random illumination changes, are applied. The homographic relation projects the
repeatability map output from the second image into the coordinate system of the
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first image I, resulting in two aligned repeatability maps, S and S ↑.
To enforce consistency between S and S ↑, R2D2 uses cosine similarity computed

over image patches:

Lcosim(I, I ↑) = 1 ↗
1

|P |

$

p↔P

cosim(S[p], S ↑[p])

where P represents overlapping patches in the images, and S[p] is the vectorized
N ⇒ N patch of S. This ensures that local maxima in S and S ↑ align under
transformations. To avoid a trivial constant solution, a peakiness loss encourages
distinct local maxima in S and S ↑:

Lpeaky(I) = 1 ↗
1

|P |

$

p↔P

+

max
(i,j)↔p

Sij ↗ mean(i,j)↔pSij

,

The final repeatability loss Lrep combines these two terms:

Lrep(I, I ↑) = Lcosim(I, I ↑) + λ
-
Lpeaky(I) + Lpeaky(I ↑)

.

Moreover, at inference time, R2D2 processes an input image at multiple scales to
enforce scale invariance of the detected keypoints, identifying keypoints by finding
local maxima in the combined repeatability and reliability maps.

In summary, the method implements a system of di"erent loss functions and
uses both real and synthetic data to train the CNN outputs to be equivariant to
homographies and invariant to noisy transformations.
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Applications

In this chapter, we present our applications of algebraic topology to the field of
computer vision, already published in (Barbarani, Vaccarino, et al. ) In particular,
we aim to address a gap in the field of image matching, specifically the lack of a
scale-independent notion of keypoints. These motivations are thoroughly explained
in Section 3.1. In Section 3.2, we introduce a framework for scale-free keypoint
detection based on deep learning and an unsupervised loss function. This proposed
methodology builds on all the material covered in the previous chapters and
represents a novel contribution to computer vision. In Section 3.3, we empirically
demonstrate the validity of our approach with experiments on common benchmarks.
At the end of the chapter, readers will find our final remarks and conclusions on
the current state of the research and directions for future work.

3.1 Motivations
In Section 2.4, we explained the importance of keypoint detection—the consistent
extraction of points from an image across di"erent views—which is a fundamental
task in computer vision and serves as a crucial preliminary step for many complex
applications.

A theoretical framework for this problem is provided by scale-space theory (see
Section 2.4.1). In this context, keypoints of an image I ⇑ R

H≃W are modeled as
the collection of local extrema (maxima and minima) of a one-parameter operator
related to the Laplacian of the scale-space operator. The guiding principle for
designing this operator is the non-creation property: features noticeable at a coarse
scale should have been already visible in finer details at smaller scales. Therefore,
an ideal operator should remain consistent across scales, identifying keypoints at a
larger scale s2 as a subset of the keypoints at a smaller scale s1 < s2. Many classical
handcrafted keypoint detectors exploit this scale-space theoretical framework, with
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the most notable example being SIFT, also discussed in Section 2.4.1.
Recently, several learning-based detectors have been introduced. In the spirit

of deep learning, these methods replace a formal definition of keypoints with a
data-driven approach, teaching a neural network to select salient points. Inspired
by scale-space theory, they model keypoints at inference time as local maxima of
a scalar map produced by a trained convolutional neural network. However, at
training time, these methods require several relaxations to define a di"erentiable
loss function. A common approach is to consider local maxima within a fixed-size
N ⇒ N sliding window. As an example, we have detailed the loss function of a
deep learning method, R2D2, in Section 2.4.2.

Despite these recent innovations in deep learning, classical handcrafted solutions
remain competitive and often outperform their learnable counterparts. We hypoth-
esize that a major reason for this is the current formulation of keypoints in the
deep learning literature, which relies on a fixed-size, patch-wise, di"erentiable relax-
ation of the concept of local maxima. This approach encourages models to detect
keypoints at a specific frequency, introducing a scale dependency that contradicts
the non-creation property, a requirement established as crucial in earlier literature.
As depicted in Figure 3.1, a training objective based on a fixed-size N ⇒ N sliding
window may encourage the model to find keypoints in large, untextured areas or
to miss multiple keypoints that are close to one another. Overall, this approach
could be inconsistent when the same subject is presented at di"erent resolutions.

We thus outline the necessity for a new methodology, suitable for gradient-based
optimization, that does not rely on any relaxation. This approach should model

Figure 3.1: Scale inconsistency.
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and optimize the structure of local maxima of an output scalar map in its generality,
independent of feature scale.

To address this, we propose a framework based on homology theory. Persistent
homology is particularly suitable for gradient-based methods, as formally established
by (Leygonie et al. 2021) and (Carriere et al. 2021), and empirically demonstrated
in applications such as neural network regularization (Chen et al. 2019), deep
learning autoencoders (Moor et al. 2020), and image segmentation (Hu et al. 2021;
Gupta et al. 2024). Moreover, persistent homology, as deeply explored in Morse
theory and discrete Morse theory (see Section 1.4 and Section 1.5), establishes a
bijection between local extrema and the evolution of topological features along
a sublevel-set filtration. Specifically, each local maximum corresponds to a loop
that appears at a critical value associated with a saddle point and closes at the
maximum value itself, as illustrated in Figure 3.2. This formulation introduces no
model-specific choices to represent local maxima and is inherently scale-independent,
as it quantitatively tracks only the persistence of features. This persistence, being
topological in nature, does not depend on the size of the region that the feature
occupies.

3.2 Methods
In this section, we introduce MorseDet, a keypoint detector model based on
deep learning that falls within the image matching paradigm described in Section

Figure 3.2: Local maximum.
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2.4. As is common in the field, it models keypoints as local maxima; however, as
discussed in the previous section, our method is built upon persistent homology
and its connection to local maxima, as established by discrete Morse theory, which
is treated in Section 1.5.

Our model utilizes a convolutional neural network backbone Fς that, given an
input image I ⇑ R

H≃W ≃C , generates discrete pixel locations {ki} ⇑ R
2 representing

keypoints. Specifically, we use the convolutional neural network described in (Tian
et al. 2017), with the same modifications from (Revaud et al. 2019), as a backbone.

To incorporate a topological approach, we modify the final layer of the backbone
to output a single channel, yielding a scalar map for each image. This map, denoted
Fς(I) = H ⇑ R

H≃W , serves as a unified representation of spatial features, or height
map, analogous to the concept of a height function used in Morse theory.

We adopt the same training data pipeline as R2D2, covered in Section 2.4.2.
Every training instance consists of images I1 and I2, along with a ground-truth
correspondence map U ⇑ R

H≃W ≃2, which encodes pixel-level correspondences
within co-visible regions. The map specifies, for instance, that U [i, j] = (i↑, j↑) if
pixel (i↑, j↑) in I2 corresponds to pixel (i, j) in I1.

The objective function Ldet(H1,H2), a detection loss that operates on the height
maps H1 and H2 produced by forwarding I1 and I2 through the model, is optimized
using a common approach based on stochastic gradient descent on mini-batches.
The loss function Ldet is the key innovation of our approach, as it enforces local
peakness of the height maps while ensuring reproducibility at topologically relevant
locations. The design of the loss function will be treated in detail in the next

Figure 3.3: Pipeline.

48



Applications

section.
At inference time, MorseDet performs keypoint detection based on local maxima

in a straightforward manner that does not involve discrete Morse theory. Given a
new image, we proceed as follows:

1. The input image I is processed through the trained feature extractor Fς,
producing a height map H ⇑ R

H≃W .

2. Local maxima are identified by performing a Non-Maximum Suppression
(NMS) algorithm on H, which rapidly finds all local maxima by comparing
each pixel with its neighbors.

3. To filter out noisy features, only local maxima that exceed a threshold ⇁ are
selected as keypoints. We set ⇁ = 0.7 in our experiments.

A summary of the training and inference pipeline is provided in Figure 3.3.

3.2.1 Loss Function
In contrast to previous heuristic methods, during training, we model keypoints
bijectively with the local maxima of the feature map. We refer to a local maximum
via the associated topological feature.

Formally, we construct K(H1), the 2D cubical complex associated with H1, the
output scalar height map obtained by the backbone convolutional neural network
from the input image I1. In Section 1.5, we described the methodology for extending
the pixel values of a grayscale image through lower-star filtration and for deriving
a discrete vector field on the cubical complex. Unlike traditional applications of
discrete Morse theory in computer vision, our method works on the complex derived
from the output feature map H1, which can still be viewed as an H ⇒ W image,
rather than from the raw input image.

Let H1(H1) denote the persistent homology module given by the filtration on
the complex K(H1). From the theory developed in Section 1.3, each element
e ⇑ Bar(H1(H1)) can be seen as a cycle that appears at a specific birth time b(e)
and disappears at a death time d(e) along the filtration, with persistence defined
as Pers(e) = d(e) ↗ b(e). Since the filtration is determined by a discrete Morse
function, Theorem 1.5.5 establishes a correspondence between d(e) and b(e) with a
critical 2-cell and a critical 1-cell, respectively.

Through the construction of the lower-star filtration and the discrete vector field,
each critical cell belongs uniquely to the lower star of a single pixel location where
the input entry value matches the critical time, allowing us to directly associate
critical times with "critical pixels." As discussed in Section 1.5, this establishes
a bijection between the death times d(ei) of elements in Bar(H1(H1)) and the
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Figure 3.4: Critical pixels.
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entries of H1 that, when viewed as pixel locations, represent local maxima across
neighboring patches.

An example is shown in Figure 3.4, which illustrates: (1) H1 as a pixel grid
colored according to the values of the entries; (2) the cubical complex K(H1), where
each cell is colored according to its filtration value; (3) the filtered complex Kt0 at
a stage with no holes; (4) Kt1 , where t1 = b(e) corresponds to a birth time, and the
insertion of a saddle (a critical 1-cell) creates a hole. This cell belongs to the lower
star of a specific pixel, marked in red; (5) Kt2 , filtered at a regular time t2, showing
the hole shrinking but without a qualitative change; (6) Kt3 , where t3 = d(e), the
death time at which the introduction of a critical 2-cell closes the hole. Here, the
critical cell is associated with the pixel also marked in red.

In the degenerate case where multiple entries of H1 have the same value, this
construction requires an infinitesimal perturbation, as described in Theorem 1.5.15.
The exact implementation of this perturbation can be regarded as a design choice;
we discuss the role of such perturbation in the training process from a theoretical
perspective at the end of this section. However, once this design choice has been
fixed, we can always define a function that associates each birth time b(e) and
death time d(e) with a corresponding saddle pixel s(e) and maximum pixel m(e),
such that b(e) = H[s(e)] and d(e) = H[m(e)] (the critical times match the values
of the input feature map at the respective critical pixel locations).

The entries of the height map are functions of the neural network parameters
that depend on the input image, which ultimately allows us to define an objective
function based on the critical times that supports gradient backpropagation.

Given a training instance (I1, I2, U), which consists of two images of the same
scene and a correspondence map U defined on co-visible regions, we define the
error matrix between two height maps H1 and H2 as follows:

E[i, j] = H1[i, j] ↗ H2[U [i, j]]

if U is defined at (i, j); otherwise, E[i, j] = 0. We introduce a new term, the
boundary similarity, to account for di"erences in H1 and H2 at topologically relevant
positions. For each e ⇑ Bar(H1(H1)), the boundary similarity term is defined as:

Sim(e) = E[s(e)]2 + E[m(e)]2

Given a positive constant ↽, the proposed detector loss for keypoint detection is
finally defined as

Ldet(H1,H2) = ↗
$

e↔Bar(H1(H1))
Pers(e) [Pers(e) ↗ ↽Sim(e)] (3.1)

To understand our objective function, consider the case when ↽ = 0. In
this scenario, the optimization of the loss function corresponds to maximizing
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"
Pers(e)2, the total squared persistence of K1, which leads to a trivial and

uninformative solution. Without the Sim(e) term, the loss function drives the
output feature map to contain as many local maxima as possible, resulting in a
grid of 1s surrounded by 0s within every 3 ⇒ 3 patch, disregarding the input image
values.

Figure 3.5 compares models trained with ↽ = 0 and ↽ = 10. The model trained
with ↽ = 0 produces an almost ideal grid pattern of local maxima, while the model
trained with ↽ = 10 generates repeatable local maxima that align with image
corners and edge endpoints, e"ectively capturing meaningful keypoints. Indeed, the
boundary similarity term serves as a regularizing constraint, promoting an increase
in the persistence term Pers(e) only when the height maps are reproducible at the
corresponding critical pixel locations (i.e., if H1 and H2 have approximately the
same values at m(e) and s(e)). The strength of this regularization is controlled by
the hyperparameter ↽, which is set to 10 in our experiments.

Notice that Ldet, compared to previous approaches in the image matching
literature, does not involve any scale parameter. Our loss is capable of modeling the
local maxima of the output feature map H1 in their generality, without imposing
any fixed frequency. Indeed, it depends solely on quantities that are topological in
nature.

We conclude by discussing some theoretical aspects of the loss function and
its optimization. Previous works (Leygonie et al. 2021; Carriere et al. 2021)
have shown that adopting a perturbation to compute critical cells corresponds to
choosing a directional derivative in the filtration values. Simpler objectives using

Figure 3.5: Boundary similarity.
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only persistence terms and critical times are Lipschitz continuous, ensuring the
convergence of gradient methods to a local optimum. In practice, the choice of an
infinitesimal perturbation (see Theorem 1.5.5) determines which pixel is assigned a
critical time among multiple pixels with the same value.

In our loss function, the boundary similarity terms introduce discontinuities.
The loss is still di"erentiable almost everywhere, specifically when H1 has distinct
values. However, in cases where H1 has multiple entries with the same value, the
function value and gradient depend on the corresponding location in H2. Indeed,
it is always possible to define a direction in the filtration values along which the
function and its gradient can be extended continuously, but they may not agree
across di"erent choices.

Although our training objective belongs to a family of functions that are wild
and may hinder the convergence of gradient methods, the loss function was designed
to meet specific application requirements. Empirically, we observe convergence to
high-quality optima, as shown in the next section.

3.3 Experiments
Regarding the evaluation of the presented methods, our main concern is comparing
the quality of the extracted keypoints for di"erent detectors. Following the protocol
established by (Mikolajczyk and Schmid 2005), repeatability is a key metric in the
literature for assessing the detection of reproducible keypoints. In our experiments,
we adopt the version from (DeTone et al. 2018), which aligns with current point-
based prediction methods. For clarity, we detail this metric: given two sets of
predicted keypoints A, B from a pair of images I1, I2 related by a homography
U , a keypoint x ⇑ A is positively referenced in B if miny↔B ||x ↗ U→1(y)|| is less
than a threshold φ, where U→1(y) is the projection of y through the ground truth
homography. The repeatability score is the average number of keypoints with a
positive reference, typically assessed within covisible areas, acknowledging that
detectors do not know a priori which regions will match.

However, repeatability is influenced by the number of extracted keypoints. For
instance, a uniformly distributed grid of keypoints can artificially inflate the score.
To mitigate this, we varied the maximum number of keypoints in our experiments,
as in (Revaud et al. 2019). Despite this, the metric may still favor detectors that
produce clustered keypoints, as noted by (Rey-Otero et al. 2015; Lenc and Vedaldi
2018). The work in (Lenc and Vedaldi 2018) suggested a method that restricts
keypoints to match at most once: computing repeatability based on matches from
an optimally constructed bipartite graph, minimizing the sum of a cost function
based on distance, with a proposed greedy approximation for this optimization
problem.
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Thus, we employ a revised version of the repeatability metric, which further
requires keypoints to be mutually nearest neighbors, i.e.,

x = arg min
x→↔A

||y ↗ U(x↑)|| (3.2)

and
y = arg min

y→↔B

||x ↗ U→1(y↑)|| (3.3)

In the following, we compare the performance of MorseDet, our method, in
terms of the repeatability metric against a comprehensive set of baselines, namely:
SIFT, a handcrafted approach discussed in Section 2.4.1; R2D2, a deep learning
method covered in Section 2.4.2; and D2-Net (Dusmanu et al. 2019), SuperPoint
(DeTone et al. 2018), DISK (Tyszkiewicz et al. 2020), and ALIKED (Zhao et al.
2023), which are briefly introduced in Appendix C.

3.3.1 Viewpoint and Illumination
We assessed the capability of our method to predict repeatable keypoints using the
well-established HPatches benchmark (Balntas et al. 2017). This dataset comprises
116 scenes, split into 696 images, with the first 57 scenes emphasizing variations in
illumination and the subsequent 59 containing changes in viewpoint. Each sequence
in the dataset comprises image pairs of increasing di!culty. We focus on this
dataset, given that it represents a classical, longstanding benchmark for the task of
keypoint detection, to assess the validity of our framework.

We present results for various maximum values of detected keypoints. These
results are shown in Table 3.1, with metrics averaged across all thresholds up to 5
pixels. In each column, the best result is marked in bold text, and the second-best
result is underlined.

Method Illumination Viewpoint
250 500 1000 2000 4000 250 500 1000 2000 4000

D2-Net 21.1 22.0 23.6 26.4 28.7 12.1 13.6 19.5 18.6 22.1
R2D2 27.3 28.6 29.8 30.5 30.7 24.3 25.5 26.5 27.6 28.3
SIFT 34.9 37.2 38.8 40.4 41.2 37.8 38.9 39.9 40.7 40.4
SuperPoint 42.4 47.7 49.8 49.5 49.4 27.5 36.0 43.6 46.8 46.4
DISK 42.2 45.9 49.8 54.2 57.4 30.6 35.0 39.3 44.0 47.6
ALIKED 14.8 24.4 37.3 47.0 51.9 6.5 10.6 18.1 29.7 43.1
MorseDet (ours) 44.3 47.3 50.3 53.4 55.2 40.6 42.8 44.6 46.1 47.2

Table 3.1: HPatches repeatability.
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We can see that MorseDet achieves consistently good performance, regardless
of the number of keypoints or settings (i.e., illumination and viewpoint changes),
being either best or second-best across the table.

Some other methods perform competitively with MorseDet under specific settings,
although none is competitive in all cases. Notably, DISK shows strong results with
a high number of keypoints, and SIFT is second-best with fewer keypoints under
viewpoint changes but performs poorly under illumination changes. On average,
SuperPoint is second-best.

3.3.2 Scale Shift
We posit that models employing a fixed-size window approach for keypoint modeling
during training learn to predict keypoints at a specific frequency. Building on
this premise, such models may struggle to consistently replicate keypoints under
rescaling transformations. To study this idea in isolation, we designed the following
experiment using the images of HPatches. We evaluated for every method the
repeatability metric between every image resized to 1000⇒1000, and the image
resized to smaller sizes to have approximately 75%, 50%, and 25% the pixel area
of the original image. As the number of keypoints deeply influences repeatability,
we limit keypoints to 500, to ensure that every method uses the same number of
keypoints at every scale for fair comparisons, thus also measuring how the methods
can prioritize their most robust keypoints. The metrics are summarized in the tab.
3.2 by their average above all the thresholds till 5px.

The results show that MorseDet obtains second-best results on average after
SIFT. In particular, MorseDet shines with 75% image resize (i.e. to images of
750⇒750), outperforming the second best method, SIFT, by 6.3 points. For
extreme scale changes (i.e., 25% of the original resolution), the best model is SIFT,

Method Avg 75% 50% 25%
D2-Net 24.6 31.9 19.2 22.8
R2D2 48.5 55.7 56.2 33.7
SIFT 63.6 75.9 64.8 50.2
SuperPoint 60.6 73.3 63.0 45.6
DISK 56.0 71.8 57.4 38.8
ALIKED 18.7 24.2 16.5 15.4
MorseDet (ours) 62.2 82.2 63.0 41.3

Table 3.2: Scale shift repeatability.
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which is a handcrafted detector built to be scale-invariant, followed by SuperPoint
and MorseDet. Overall, the only learnable model competitive with MorseDet
is SuperPoint, which benefits from a human-informed prior on keypoints (see
Appendix C). Notably, despite SIFT being proposed nearly two decades ago, it still
outperforms modern detectors in this setup; MorseDet performs significantly better
than every other learnable method in this task. This is a direct consequence of
the fact that previous learnable methods lack a principled framework for modeling
local maxima, which is our core contribution.

3.3.3 Qualitative Results
Fig. 3.6 shows, in order: (1) the height map of MorseDet; (2) the keypoints detected
by MorseDet; (3) the repeatability map produced by R2D2; and (4) the keypoints
detected by R2D2.

The repeatability map of R2D2 shows a bias towards detecting keypoints at
a fixed resolution, resulting in the exclusion of some features and the creation of
artifacts, especially along edges and in untextured areas. In contrast, MorseDet
adapts its keypoints to the image content, e"ectively detecting both large-scale
corners and fine-grained details without creating artifacts in low-textured regions.

This comparison demonstrates the validity of the topological formulation, high-
lighting the limitations of a fixed-size sliding window relaxation.

3.4 Conclusions
In this chapter, we introduced an application of algebraic topology to the field
of computer vision, specifically leveraging a topological characterization of the
concept of local maxima to model scale-agnostic keypoints in the context of image
matching.

In these final remarks, we want to emphasize some innovative features of our
approach. MorseDet, our model, is the first method in the deep learning literature to
operate with a training objective purely defined on topological quantities, without
relying on other loss functions. Indeed, we can say that MorseDet is the first
topology-based learning model for feature detection.

We have already demonstrated some advantages of this approach, such as the
ability to model a set of features in an unsupervised manner, independent of their
cardinality or scale within the input image. In a certain sense, through topology, we
have managed to define a more high-level loss function, free from scale parameters
that are necessary for previous methods but not inherent to the problem.

However, the use of persistent homology in di"erentiable deep learning appli-
cations to this extent, being novel, presents numerous challenges. As we have
seen, for example with the concerns expressed at the end of Section 3.2.1, many
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MorseDet’s height map MorseDet’s keypoints

R2D2’s repeatability map R2D2’s keypoints

Figure 3.6: Qualitative results.
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new questions arise. Further e"orts will be necessary to clearly define the fields of
application, the potential, and the limitations of this approach.
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Topology

In this section, we provide some basic definitions and notions of topology that
are assumed to be familiar in our discussion, particularly for the treatment of
complexes.

Definition A.0.1. (Topological space) A topological space is a set X together with
a collection T of subsets of X satisfying the following conditions:

1. ∞ ⇑ T and X ⇑ T .

2. The union of any collection of sets in T is also in T .

3. The intersection of any finite number of sets in T is also in T .

The collection T is called a topology on X, and the elements of T are called open
sets.

Definition A.0.2. (Closed set) A subset A ↑ X is closed if its complement X ↗ A
is open.

Definition A.0.3. (Base of a topology) A base (or basis) for a topology on a set
X is a collection B of open sets in X such that:

1. Every open set in X can be written as a union of sets from B.

2. For any B1, B2 ⇑ B and any point x ⇑ B1 ↔ B2, there exists a B3 ⇑ B such
that x ⇑ B3 ↑ B1 ↔ B2.

Definition A.0.4. (Subspace topology) Let (X, T ) be a topological space and let
Y ↑ X be a subset of X. The subspace topology on Y , denoted by TY , is defined
as follows: a set U ↑ Y is open in Y (i.e., U ⇑ TY ) if and only if there exists an
open set V ⇑ T such that U = V ↔ Y .

In other words, the open sets of the subspace topology on Y are precisely the
intersections of open sets in X with the subset Y .
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Definition A.0.5. (Usual topology on R
n) The usual topology on R

n is the topology
induced by the Euclidean metric d, where d(x, y) =


(x1 ↗ y1)2 + · · · + (xn ↗ yn)2.

In this topology, open balls Br(x) = {y ⇑ R
n : d(x, y) < r}, with r > 0 and x ⇑ R

n,
form a basis.

Theorem A.0.6. (Characterization of open sets in R
n) A set U ⇐ R

n is open if
and only if for every x ⇑ U , there exists an open ball Br(x) ⇐ U containing x.

Definition A.0.7. (Boundary in R
n) The boundary of a subset A ⇐ R

n, denoted
ϖA, is defined as the set of points x ⇑ R

n such that every open neighborhood of x
intersects both A and R

n
↗ A.

Theorem A.0.8. (Characterization of closed sets in R
n) A set F ⇐ R

n is closed
if and only if it contains its boundary, i.e., ϖF ⇐ F .

Definition A.0.9. (Dense set) A subset A ⇐ R
n is said to be dense in R

n if every
open set in R

n contains at least one point of A, or equivalently, the closure of A is
equal to R

n.

Definition A.0.10. (Compact set) A subset K ⇐ X is compact if every open cover
of K has a finite subcover. That is, if for every collection of open sets {Uφ}φ↔I

such that K ⇐
!

φ↔I Uφ, there exists a finite subcollection {Uφ1 , . . . , Uφm} such that
K ⇐

!
m

i=1 Uφi.

Theorem A.0.11. (Characterization of compact sets in R
n) A subset K ⇐ R

n is
compact if and only if it is closed and bounded.

Definition A.0.12. (Continuous function) Let X and Y be topological spaces. A
function f : X ↓ Y is continuous if the preimage of every open set in Y is open
in X. That is, for every open set V ⇐ Y , we have f→1(V ) ⇐ X is open.

Definition A.0.13. (Homeomorphism) A function f : X ↓ Y between two
topological spaces X and Y is a homeomorphism if f is continuous, bijective, and
its inverse f→1 : Y ↓ X is also continuous. If such a function exists, X and Y are
said to be homeomorphic, meaning they are topologically equivalent.

Definition A.0.14. (Embedding) Let X and Y be topological spaces. A function
f : X ↓ Y is called an embedding if f is a homeomorphism onto its image f(X),
where f(X) is endowed with the subspace topology from Y . In other words, f is an
injective continuous map such that the inverse f→1 : f(X) ↓ X is also continuous.

Definition A.0.15. (Topological manifold) A topological manifold of dimension n
is a topological space M such that:

1. Every point in M has an open neighborhood homeomorphic to an open subset
of Rn.
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2. M is a Hausdor" space (any two distinct points have disjoint neighborhoods).

3. M has a countable basis (is second countable).

Theorem A.0.16. The hyper-sphere Sn→1 = {x ⇑ R
n : ▽x▽ = 1} is an (n ↗ 1)-

dimensional manifold.

Theorem A.0.17. The open ball Bn = {x ⇑ R
n : ▽x▽ < 1} is an n-dimensional

manifold.

Definition A.0.18. (Homotopy) Let X and Y be topological spaces, and let
f, g : X ↓ Y be continuous functions. A homotopy from f to g is a continuous
map H : X ⇒ [0,1] ↓ Y such that H(x,0) = f(x) and H(x,1) = g(x) for all x ⇑ X.
We say that f and g are homotopic if such a homotopy exists, denoted by f ⇔ g.
Homotopy is an equivalence relation on the set of continuous maps from X to Y .

Definition A.0.19. (Homotopy type) Let X and Y be topological spaces, X and Y
are said to be homotopic if there exist continuous maps f : X ↓ Y and g : Y ↓ X
such that f ≃ g ⇔ idY and g ≃ f ⇔ idX . In this case, we write X ⇔ Y .

Definition A.0.20. (Retraction) Let X be a topological space and A ↑ X. A
continuous map r : X ↓ A is called a retraction if r(a) = a for all a ⇑ A, meaning
that r restricted to A is the identity map on A. If such a map exists, it follows that
X and A are homotopic.

Theorem A.0.21. There is no retraction from the closed unit ball B
n in R

n to its
boundary, the sphere S

n→1.

Theorem A.0.22. (Invariance of domain) Let U be an open subset of Rn, and let
f : U ↓ R

n be an injective continuous map. Then f(U) is open in R
n and f is a

homeomorphism onto its image.

Theorem A.0.23. (Corollary of invariance of domain) An open subset of R
n

cannot be homeomorphic to an open subset of Rm if n /= m.

Definition A.0.24. (Connected set) A subset A ↑ R
n is said to be connected if

it cannot be partitioned into two non-empty disjoint open subsets in the subspace
topology on A. In other words, there do not exist two open sets U, V ↑ R

n such that
A ↔ U and A ↔ V are both non-empty, disjoint, and satisfy A = (A ↔ U) ̸ (A ↔ V ).

Definition A.0.25. (Connected component) A connected component of a subset
A ↑ R

n is a maximal connected subset of A. This means that a connected component
C ⇐ A is connected, and there is no larger connected subset D ⇐ A containing C
as a subset. Every point in A lies in exactly one connected component of A.
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Definition A.0.26. (Loop) In a topological space X, a loop at a point x0 ⇑ X is a
continuous map ⇁ : [0,1] ↓ X such that ⇁(0) = ⇁(1) = x0. A loop can be visualized
as a path that starts and ends at the same point.

Definition A.0.27. (Simply connected manifold) A topological space X is said to
be simply connected if it is path-connected and every loop in X can be continuously
deformed (is homotopic) to a single point within X. In particular, a simply connected
manifold has no "holes" that would prevent a loop from contracting to a point.
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Algebra

In this section, we summarize key concepts from abstract algebra necessary for our
discussion on homology and persistent homology.
Definition B.0.1. (Field) A field is a set F equipped with two operations, addition
and multiplication, such that F forms an abelian group under addition, the nonzero
elements of F form an abelian group under multiplication, and multiplication
distributes over addition. Two commonly used fields are the real numbers R and
the finite field F2 = {0, 1} with addition and multiplication modulo 2.
Definition B.0.2. (Module) Let R be a ring. An R-module is a set M together
with an addition operation and a scalar multiplication by elements of R, such that
M is an abelian group under addition and scalar multiplication is distributive over
both module addition and ring addition, and associative with ring multiplication.
In this work, we primarily consider modules over fields, which are known as vector
spaces.
Definition B.0.3. (Basis) A basis of an R-module M is a set of elements in M
that are linearly independent and span M . If M has a basis, then M is said to be
a free module, and the cardinality of any basis of M is called the dimension of M .
For modules over fields (vector spaces), any two bases have the same cardinality.
Definition B.0.4. (Linear map) Let M and N be R-modules. A linear map (or
homomorphism) from M to N is a function f : M ↓ N that preserves addition and
scalar multiplication, i.e., for all x, y ⇑ M and r ⇑ R, we have f(x+y) = f(x)+f(y)
and f(rx) = rf(x).
Definition B.0.5. (Kernel and image) The kernel of a linear map f : M ↓ N is
the set of elements in M that are mapped to zero in N , denoted by ker(f) = {x ⇑

M | f(x) = 0}. The image of f is the set of elements in N that are the images of
elements of M , denoted by Im(f) = {f(x) | x ⇑ M}. Both the kernel and image of
a linear map are submodules of M and N , respectively.
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Theorem B.0.6. (Rank-nullity) Let M and N be R-modules, and let f : M ↓ N be
a linear map. If M is finite-dimensional, then we have the following dimensionality
result:

dim(M) = dim(ker(f)) + dim(Im(f))

Definition B.0.7. (Coset) Let f : M ↓ N be a linear map between R-modules,
and let ker(f) be the kernel of f . A coset of ker(f) in M is defined as {x + y |

y ⇑ ker(f)} for a fixed x ⇑ M , and is denoted by x + ker(f). The cosets form a
partition of M into equivalence classes on which f has the same value.

Definition B.0.8. (Quotient module) Let f : M ↓ N be a linear map between
R-modules, and let ker(f) be the kernel of f . The quotient module M/ker(f)
is the set of cosets of ker(f) in M , with the module operations defined by (x +
ker(f)) + (y + ker(f)) = (x + y) + ker(f) and r(x + ker(f)) = (rx) + ker(f) for
all x, y ⇑ M and r ⇑ R. The map f induces a well-defined injective linear map
from M/ker(f) to Im(f).

Theorem B.0.9. Given a quotient R-module M/ker(f), its dimension is given by
dim(M/ker(f)) = dim(M) ↗ dim(ker(f)).
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Baselines

In this section, we explain the design of the baselines considered in our experiments
that have not been discussed in the main document. All the presented models are
deep learning methods that utilize convolutional neural networks to extract a set
of keypoints and their descriptors from an image.

SuperPoint

SuperPoint (DeTone et al. 2018) is based on a fully convolutional encoder-
decoder network with shared layers that split into two distinct branches: one for
detecting keypoints and the other for computing descriptors.

The model training process employs a two-step approach called "homographic
adaptation." Initially, SuperPoint is trained on synthetic images of simple geometric
shapes, where keypoints are defined, such as intersections of edges. In the second
phase, SuperPoint is fine-tuned on real images, enforcing the detected keypoints
to be equivariant to homographic transformations. In practice, SuperPoint uses
self-supervised learning to generalize a notion of keypoints originally defined on a
simple subset of geometric shapes to natural images.

At inference time, the network outputs a heatmap where prominent local maxima
represent keypoints. These keypoints are filtered using non-maximum suppression
to ensure spatial separation, resulting in a set of distinct and stable detections.

D2-Net

D2-Net (Dusmanu et al. 2019) is a deep learning model designed to jointly
learn keypoint detection and descriptor extraction by training on dense pixel-wise
correspondences between images. Its loss function encourages both repeatability
and distinctiveness of keypoints and descriptors.

At training time, D2-Net uses a triplet margin loss to align descriptors for
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corresponding pixels across image pairs while separating descriptors for non-
corresponding pixels. For each pixel in an image, the model learns to minimize
the distance in the descriptor space to its corresponding location in the paired
image (positive match) and to maximize the distance to a set of non-corresponding
locations (negative matches). This loss formulation ensures that descriptors for
matching keypoints are close in feature space, while those for non-matching pixel
are pushed apart, up to a specified margin.

At inference time, D2-Net processes an input image to produce dense feature
maps, identifying keypoints as local maxima within these maps. Descriptors are
then directly extracted from the feature maps at each detected keypoint location.

DISK

DISK (Tyszkiewicz et al. 2020) is a local feature extractor based on reinforcement
learning. Recognizing that casting keypoint detection and matching in a di"eren-
tiable manner suitable for optimization is a notoriously di!cult problem without
an obvious solution, DISK proposes a formulation that allows exact gradients to
be computed using policy gradient techniques.

During training, DISK utilizes a CNN to process input images and generate
keypoint heatmaps along with dense descriptors. Heatmaps are normalized across
N ⇒N windows to produce a keypoint probability distribution within image patches.
Keypoints are sampled from these heatmaps, and their corresponding descriptors
are used to establish a distribution over potential feature matches between image
pairs. The method applies reinforcement learning principles to maximize the
expected reward associated with correct feature matches.

At inference time, DISK processes new images through the CNN to produce
keypoint heatmaps and dense descriptors. Keypoints are then sampled from
the heatmaps or deterministically selected using non-maximum suppression, and
their descriptors are matched across images to identify correspondences. DISK
has demonstrated state-of-the-art performance on various public benchmarks,
highlighting its e"ectiveness in local feature learning.

ALIKED

ALIKED (Zhao et al. 2023) is a deep learning framework that has achieved state-
of-the-art performance both in terms of accuracy and computational e!ciency by
incorporating several innovations in keypoint detection and descriptor computation.

During training, ALIKED computes a keypoint score scalar feature map. Key-
points are selected with sub-pixel accuracy in a partially di"erentiable manner.
Within each N ⇒ N image patch, a keypoint is identified as the position of the
local maxima within the patch, combined with a weighted sum of all other pixel
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locations in the patch based on their normalized scores. While the first component
is not di"erentiable, the second component can be optimized during training.

For descriptor computation, ALIKED employs deformable convolutional layers.
These layers use di"erentiable o"sets to adapt the supporting features on which the
descriptors are computed, making them robust to various geometric transformations.

At inference time, ALIKED processes new images through the CNN to produce
a score map and an aggregated feature map.
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