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Abstract

The present study contributes to the development of an automated system that
leverages Deep Convolutional Neural Network-based approaches for the monitoring
of prestressing wire breakage in concrete structures subjected to severe aging factors,
such as bridges. Advanced methodologies for data acquisition and signal processing
within the framework of Structural Health Monitoring (SHM) are explored, focusing
on data augmentation techniques to address the critical issue of limited data
availability. The work involved conducting controlled destructive tests on two
prestressed concrete bridges in L’Aquila, Italy, prior to their planned demolition.
A combination of accelerometers and acoustic emission sensors was utilized to
capture vibration data during the controlled breakage of prestressing wires. This
approach provided essential real-world data, which is crucial for comprehensive
analysis. The acquired elastic wave signals were transformed into time-frequency
representations via the Short-Time Fourier Transform (STFT), employing various
window sizes to find an optimal balance between time and frequency resolution. The
resulting spectrograms, normalized for consistency, served as the primary input for
training Generative Adversarial Networks (GANs), which were utilized to address
the data scarcity. This study compares different GAN architectures, including
the Deep Convolutional GAN (DCGAN), Wasserstein GAN (WGAN), and Least
Squares GAN (LSGAN). Among these, the LSGAN showed superior performance,
producing stable and high-quality augmented STFT images. The generation of
synthetic datasets plays a central role in enhancing deep learning algorithms
to identify structural anomalies, thereby improving predictive maintenance and
critical degradation detection capabilities. Through these methodologies, the
thesis contributes new perspectives into the application of deep learning for SHM,
emphasizing the importance of data augmentation to support more effective and
reliable infrastructure monitoring. The findings indicate the robustness of the
GANs for augementation of STFT images to enhance SHM, which can lead to
an increment in the resilience, safety and longevity of critical civil infrastructure,
especially bridges.
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Chapter 1

Introduction

Bridges are a vital part of infrastructure, promoting connectivity and enabling
efficient transportation. Ensuring their safety is essential for protecting human
lives, underscoring the need for careful inspection and continuous monitoring. Such
monitoring is essential for detecting potential structural issues and preventing
failures. The scarcity of monitoring data makes it difficult to detect and predict
structural anomalies in time. Without a sufficient variety of representative data,
machine learning (ML) models may fail to accurately identify emerging issues in
infrastructure. This problem is compounded by the rarity of significant structural
events, such as wire breaks, which occur infrequently and do not provide enough
samples for effective model training. Therefore, there is a critical need for innovative
solutions to enrich datasets and enhance the reliability of anomaly detection models.
A bridge’s structural behavior can be influenced by various factors, including the
materials used, its geometric design, traffic load, and environmental conditions.
Bridge inspection involves evaluating the structural health of bridges to ensure they
can continue to be efficient as intended throughout their lifespan. This process helps
in detecting current issues and predicting future changes in their structural state.
Automatic monitoring systems, which utilize sensors and artificial intelligence (AI),
have become increasingly important for assessing bridge health. Recent research
has shown that detecting breakages in prestressing wires in concrete bridges is
critical for maintaining safety and preventing catastrophic failures [1, 2]. The use
of acoustic emission techniques, combined with ML models, has proven effective in
identifying critical structural events, as highlighted by Farhadi et al. (2024) [1].
To address these challenges more effectively, advancements in deep learning (DL)
have introduced innovative approaches. Generative deep learning (GDL) algorithms
have demonstrated their ability to learn the normal behavior of monitoring systems
and assess the structural health of bridges in terms of their mode shapes. These
models can be extended to produce synthetic mode shapes under ideal monitoring
conditions. Any discrepancies between synthetic and actual mode shapes can
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indicate changes in structural health, helping to identify potential damage. Reg-
ular monitoring through structural health monitoring (SHM) systems is widely
recognized as an essential practice for ensuring the safety and reliability of large
infrastructure [3, 4]. Moreover, Farhadi et al. (2024) highlighted the potential of
data augmentation (DA) and innovative signal processing techniques to enhance
traditional monitoring approaches, making real-time detection of structural anoma-
lies more effective [2].
However, despite these technological advancements, one of the main challenges
in SHM is the limited availability of data for training AI-based models. Signif-
icant structural events, such as wire breaks or major cracks, occur infrequently,
resulting in sparse and imbalanced datasets. This scarcity of data can prevent
the development of robust models capable of accurately detecting and predicting
anomalies. DA offers a promising solution to this issue by generating synthetic
data that mimics real-world events, increasing the volume and diversity of the
dataset. By expanding the dataset, AI-based models can better learn the patterns
indicative of structural damage, leading to improved reliability and performance in
real-world SHM applications. GDL models, particularly Generative Adversarial
Networks (GANs), have emerged as effective methods for DA, providing synthetic
data that maintains the statistical properties of real data, while addressing the
challenges posed by limited data availability.
Recognizing the importance of bridges is crucial, as they have historically con-
tributed to societal development by supporting the expansion of infrastructure
and promoting economic growth from ancient times to the present. However, the
impacts of bridge failures can be severe, posing serious risks to human lives and
overall well-being. Bridges facilitate the movement of people, goods, and infor-
mation, making their proper maintenance and monitoring essential for ensuring
robustness and functionality. Factors such as inadequate design, heavy traffic loads,
and adverse weather conditions can compromise the structural integrity of bridges,
making them susceptible to damage and failure. It is crucial to note that a bridge’s
initial design phase defines its theoretical static behavior through mathematical
models, but this behavior evolves once the bridge is constructed, as real-world
factors like materials, geometry, and environmental conditions come into play.

Building on this context, this thesis explores the potential of GANs and its variants
for DA in SHM. By employing GANs to generate synthetic data, it is possible
to address the challenges posed by data scarcity and enhance the detection and
prediction capabilities of ML models. Specifically, using STFT-based GANs allows
for the generation of time-frequency representations of structural signals, expanding
the range of events available for predictive analysis. By doing so, this research
intends to contribute to safer and more reliable infrastructure monitoring systems,
reducing the risk of undetected failures.

2



Introduction

To emphasize the critical importance of SHM, it is essential to examine some
prominent examples of bridge failures. These cases highlight the severe conse-
quences that can arise from structural deficiencies, including tragic losses of life,
injuries, and substantial financial costs for repairs and reconstructions.

1.1 Infrastructures Incidents

The importance of this topic becomes more clear through real-world examples. Over
the years, numerous bridge collapses have occurred around the world, resulting
in tragic loss of life, injuries, and significant financial costs for reconstruction and
repairs. Such structural failures not only create immediate risks to the community
but also decrease public trust in critical infrastructure. These tragic events empha-
size the importance of consistent inspection and timely maintenance to identify and
address vulnerabilities before they lead to catastrophic outcomes. The following
are notable examples of bridge collapses, both in Italy and internationally, which
underscore the urgent need for improved monitoring and maintenance practices.

One notable example is the 1970 collapse of the L’Aquila Bridge in Italy dur-
ing severe flooding. The extreme conditions led to water stagnation and overflow,
causing the embankments and piers to give way, which resulted in the northern
span collapsing. Fortunately, there were no casualties, as the bridge was empty at
the time.
In 1978, the Great Belt Bridge in Denmark experienced the loss of a vessel. A
violent storm forced the sailboat to cross the bridge despite the warning lights. The
sailboat was struck by a storm gust, and several containers fell on the bridge’s span.
The resulting collapse injured several individuals and caused significant property
damage.
Another tragic incident occurred in 1978 with the Pont de la Machine in Geneva,
where a damaged tunnel caused flooding around the supports, resulting in the
collapse that killed 24 people and injured 22 more. Similarly, the Congress Street
Bridge in Detroit collapsed in 1982 due to the impact of a cargo ship, though
fortunately, there were no injuries. In 1994, the Catuja Bridge’s 178 m span in
Brazil collapsed during maintenance work. The movable section was opened for
passing vessels when metal cables broke with noise. A truck on the bridge fell
into the water, but everyone escaped. In 1995, the Philadelphia Cottman Avenue
Bridge met a similar fate as the wires broke, then fell on a subway line, killing two
and injuring 20.
The 2018 collapse of the Morandi Bridge in Genoa, Italy, is perhaps one of the
most devastating examples. Built between 1963 and 1967 using then-innovative
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post-tensioned concrete technology, a large section failed, killing 43 people and
injuring 600 others (see Figure 1.1). A state commission found that design flaws
and heavy vehicle use contributed to its collapse. The bridge had previously expe-
rienced maintenance-related problems and passed inspection just 48 hours before
the disaster.

Figure 1.1: The collapse of the Morandi Bridge in Genoa, Italy, in 2018. This
catastrophic event highlights the importance of SHM for critical infrastructure.

In 2017, the La Reale viaduct in the Piedmont region of Italy collapsed suddenly.
Investigations revealed that the primary cause of failure was the incorrect injection
of wires, which led to the absence of grout inside the sheaths for a significant portion
of the deck. This void allowed aggressive environmental conditions to accelerate
corrosion, resulting in a fragile failure without any evident warning signs except for
subtle white efflorescence. The findings highlighted that conventional inspections
may not detect critical internal issues. This event underscores the importance of
advanced monitoring and preventive measures to identify underlying structural
risks [5] (see Figure 1.2).
Similarly, in 2014, the Petrulla viaduct in the province of Agrigento, Sicily, suffered
a partial collapse. The failure was attributed to the breaking of prestressed concrete
beams that supported the structure. The incident injured four people, including
a pregnant woman. The collapse was an absolute reminder of how deterioration
due to environmental exposure and material fatigue can compromise structural
integrity if not properly monitored. These cases illustrate the need for continuous,
real-time monitoring and robust maintenance strategies (see Figure 1.3).
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Figure 1.2: The collapse of the La Reale viaduct in Fossano, Italy, highlighting
the consequences of wire corrosion and structural deficiencies.

Figure 1.3: The partial collapse of the Petrulla viaduct in Agrigento, Italy, due
to the failure of prestressed concrete beams.

These examples, including the collapses of the La Reale and Petrulla viaducts,
emphasize the potential dangers of insufficient structural monitoring and the im-
portance of adopting sophisticated monitoring technologies to ensure infrastructure
safety. Learning from these failures, it becomes clear that proactive and continuous
monitoring is crucial to prevent similar incidents in the future.
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1.2 The Structural Health Monitoring and its
Challenges

Since the construction of the first bridges, the safety and stability of bridge struc-
tures have been extremely important. Today, the increasing number of vehicles
and weights crossing bridges, along with climate change, affect their integrity and
stability more than ever. As bridges age and deteriorate over time, the risk of
instability or vulnerability increases, making regular monitoring essential. This
need is further amplified by the growing number of bridges and stricter regulations,
necessitating a systematic approach to bridge inspection [6].

Traditional bridge inspections evaluate factors like safety, water resistance, stability,
and operational attributes to determine if repairs are necessary. However, this
visual approach has limitations: it’s subjective due to inspector interpretation,
some parts of the structure may be difficult to access, it consumes a lot of time, and
often lacks detailed reporting. Additionally, bridges are continuously exposed to
environmental conditions like wind, temperature fluctuations, ice, and traffic loads,
which increase the risk of deterioration. Insufficient monitoring may ultimately
lead to bridge collapse.

To improve efficiency, automated systems have been developed. These systems
collect data using cameras and sensors, performing post-processing for damage
detection. For example, video inspection uses sequences of images to monitor pre-
defined points of interest. However, these methods still require a qualified inspector
to visually assess the bridge structure almost immediately after data acquisition
to verify detected defects. As a result, SHM has become an essential practice to
ensure the safety and longevity of critical infrastructure like bridges. SHM involves
continuously collecting and analyzing data from various sensors installed on the
structure, such as as accelerometers, strain gauges, and acoustic emission detectors.
The data collected play a key role in identifying potential structural issues before
they escalate into serious problems. However, these systems still face challenges.
Common type of damage, such as cracks, steel wire cuts, corrosion and material
fatigue, can weaken a bridge’s structural integrity over time if not detected early.
The limitations of traditional visual inspections have led to increased interest in
automated systems that can continuously monitor bridges and provide real-time
feedback on their condition.

Automated SHM systems offer many advantages over traditional manual inspections.
They can continuously collect data from various sensors, allowing real-time monitor-
ing of a bridge’s condition. They measure factors like vibrations and temperature
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changes, offering a detailed view of the bridge’s structural health. Despite these
benefits, automated SHM systems still face several challenges, especially in terms
of collecting reliable and comprehensive data. Environmental factors, equipment
limitations, and the infrequent occurrence of significant structural damage can
make it difficult to collect enough data for in-depth analysis. DL methods have
become essential for processing the large amount of data collected by sensors in
SHM. In particular, advanced sound event classification techniques, which utilize
DL models, enhance the detection and interpretation of acoustic emissions identify
signal potential structural changes or failures. These methods are crucial for ac-
curately identifying anomalies in real-world SHM applications, where background
noise could often interfere with signal analysis. Especially, acoustic emission (AE)
signals are essential for detecting structural failures. Zhu et al. [7] conducted a
detailed review of DL-based techniques for processing AE signals, demonstrating
their effectiveness in analyzing data in real-time. Additionally, Abdeljaber et al.
[8] applied one-dimensional convolutional neural networks (1D CNNs) to detect
damage based on vibration data, further proving the potential of deep learning
for real-time SHM applications. These methods provide immediate insights, allow-
ing for early detection and prediction of structural issues before they become critical.

In the context of SHM, damage identification plays a critical role in ensuring
the safety and integrity of large structures such as cable-stayed bridges. Ni et
al. [9] demonstrated the importance of operational modal analysis for real-time
damage detection in bridges, emphasizing the need for continuous monitoring to
prevent catastrophic failures. Similarly, Sohn et al. [4] reviewed a wide range
of SHM methodologies, identifying both the challenges and advancements in the
field over the years. ML has introduced significant advancements in the field of
SHM, providing automated methods for detecting and predicting damage. However,
challenges remain, particularly in terms of data scarcity and model interpretability.
Worden et al. [10] explored these opportunities and challenges, offering insights
into the potential of ML in SHM while also acknowledging the hurdles that must
be overcome. Wang et al. [11] proposed methods for large-scale environmental
sound classification using dimensionality reduction techniques. These methods
can be adapted to SHM to reduce computational burden while preserving critical
information for accurate structural event classification.

Therefore, one of the main challenges in SHM remains the limited amount of
data available for analysis. This lack of data makes it difficult to train ML and
DL models, which typically rely on large datasets for accurate predictions. In this
context, DA techniques offer a promising solution to increase both the volume and
diversity of available data.
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1.3 Generative Deep Learning and its application
in Structural Health Monitoring

Generative deep learning (GDL) has emerged as a powerful solution to address the
challenge of limited data in SHM. Models such as GANs, introduced by Goodfellow
et al. [12], consist of two neural networks: a generator that creates data and a
discriminator that evaluates its authenticity. These models work in an adversarial
manner, where the generator tries to fool the discriminator while the discriminator
aims to detect the fake data. This process allows GANs to generate increasingly
realistic data over time. In SHM, GANs can produce synthetic data that mimics
real structural event data, helping ML models detect anomalies more effectively,
even when limited data is available.

Prior to the application of GDL, automated bridge inspection systems had begun
incorporating digital technologies, primarily in image processing and sensor data
acquisition. These systems evolved gradually, with each advancement improving
specific aspects of inspection but often still requiring substantial manual inter-
vention. Early bridge inspection methods primarily relied on image processing,
allowing structural engineers to collect visual data of bridge components. However,
these methods necessitated extensive manual post-processing to identify structural
issues, imposing a significant workload on engineers.
With the integration of traditional DL methods, semi-automatic inspection systems
emerged. These systems used neural networks trained on annotated images to
assist in detecting bridge defects, reducing the amount of manual work required.
By automating part of the classification process, engineers could more efficiently
identify potential structural issues based on image data, although manual validation
was often still necessary.
Recent advances in DL have enabled the development of fully automatic bridge
inspection systems. These systems incorporate advanced algorithms that enhance
image quality by filtering out noise and highlighting relevant features, such as
the depth and severity of defects. Such advancements allow for faster and more
accurate decision-making compared to previous methods, minimizing the need for
human intervention and supporting more reliable bridge monitoring processes.

While these early systems produced satisfactory results, they heavily relied on basic
image processing techniques that often required extensive manual intervention.
The introduction of GDL allowed automated systems to analyze visual data more
comprehensively. For instance, GDL models can enhance image resolution, reduce
noise, and even generate synthetic data that mimics real-world bridge conditions,
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making the model be able "learn" from more varied examples. This allows auto-
mated systems to extract and analyze key parameters, such as the severity and
type of structural defects, with a higher degree of accuracy and consistency. By
training on both real and synthetic data, GDL-based systems can better identify
critical issues in bridge structures. As a result, these advanced systems can now
process large datasets, such as visual images captured during inspections, more
efficiently and accurately, reducing the time required for post-inspection analysis.

Additionally, other techniques like masked autoencoders (MAE), introduced by He
et al. (2021) [13], have demonstrated their effectiveness in learning representations
from incomplete data. This approach allows models to perform well in various
downstream tasks by reconstructing missing parts of input data, which is particu-
larly useful in SHM where sensor data can be noisy or incomplete. Self-supervised
learning techniques, such as BEiT, introduced by Bao et al. (2021) [14], have
also contributed significantly to image modeling by predicting visual tokens from
large, unlabeled datasets. This allows models to generalize better and perform
more effectively in real-world SHM scenarios, where labeled data can be scarce or
unavailable.

Other generative models, such as Variational Autoencoders (VAEs), introduced
by Kingma and Welling [15], and methods like Corrupted Image Modeling (CIM)
[16], have also shown potential in SHM. These models generate synthetic data
by learning the underlying distribution of the data, which makes them useful for
augmenting datasets. For example, CycleGAN, developed by Zhu et al. [17], is an
unpaired image-to-image translation model that is especially useful when paired
examples are scarce, a common issue in SHM.

1.4 This research: Generative Adversarial Net-
works for Data Augmentation in Structural
Health Monitoring

Building upon the discussed applications of GANs in SHM, this thesis focuses on
applying Short-Time Fourier Transform (STFT)-based GANs to augment structural
event data collected from bridge monitoring systems. By transforming time-series
sensor data into a frequency-time representation using STFT, which effectively cap-
tures both temporal and spectral features, GANs are utilized to generate synthetic
data. This synthetic data enhances the robustness of SHM datasets and supports
more effective statistical analysis. STFT-based GANs are designed to capture the
essential characteristics of structural event data, which are crucial for detecting
and predicting anomalies in bridge structures.
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In this research, Deep Convolutional GAN (DCGAN), Wasserstein GAN (WGAN)
and Least Squares GAN (LSGAN) are specifically employed to generate synthetic
STFT representations of structural events. The choice of these GAN architectures
allows for the exploration of different training dynamics and loss functions, pro-
viding a comprehensive understanding of their effectiveness in SHM applications.
DCGANs utilize deep convolutional layers to generate high-quality images, making
them suitable for capturing the intricate patterns in STFT spectrograms. WGANs
address issues like mode collapse and training instability by minimizing the Wasser-
stein distance between real and generated data distributions. LSGANs, on the
other hand, use least squares loss functions to stabilize training and improve the
quality of generated data. While statistical tests are applied to better understand
the original signals, the primary focus of this research is not on performing detailed
statistical analysis. Instead, the investigation centers on how STFT-based GANs
can enhance the detection and prediction of structural anomalies in bridges. The
ultimate goal is to evaluate the potential of using synthetic data to improve SHM
processes for monitoring the health and safety of bridges, thereby contributing to
the development of more reliable and effective infrastructure monitoring systems.
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Chapter 2

Background

As infrastructure ages, the continuous monitoring and detection of damage become
crucial to ensure safety, prevent catastrophic failures, and reduce maintenance
costs. Structural health monitoring (SHM) has become a fundamental approach in
this field, utilizing advanced sensors, data acquisition systems, and computational
techniques to assess structural integrity. The integration of signal processing and
deep learning (DL) techniques further enhances SHM by improving system efficiency
and accuracy. This chapter provides a comprehensive overview of SHM as well
as signal processing and DL methods, examining their applications in structural
monitoring and damage detection systems.

2.1 Structural Health Monitoring Background
The main objectives of SHM include early detecting damage at an early stage,
predicting its progression, and enabling timely interventions to prevent catastrophic
failures. These goals are essential for maintaining structural integrity and ensuring
safety over the lifespan of a structure. Traditional SHM systems rely on sensor
networks distributed across the structure, collecting data that is subsequently
processed and analyzed to assess the structure’s health.

2.1.1 Role of Artificial Intelligence in Structural Health
Monitoring

Building upon traditional methods, the integration of artificial intelligence (AI)
into SHM systems has significantly advanced the field, enabling the automation
of damage detection and prediction. AI algorithms can process large amounts of
data, making sense of complex patterns that are difficult to detect with traditional
methods. As Zinno et al. highlighted [18], AI techniques, such as machine learning
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(ML) and DL, have greatly improved the ability of SHM systems to provide accurate
diagnostics and real-time monitoring for bridges and other infrastructure.
AI-driven solutions enable automatic processing of sensor data, identifying patterns
and detecting anomalies indicative of structural damage. For instance, Gao et al.
[19] demonstrated how Generative Adversarial Networks (GANs) could be used
to generate structural images for DA, significantly improving the training of AI
models in SHM. In particular, AI-driven solutions allow data from sensors to be
processed automatically, identifying patterns and detecting anomalies indicative of
structural damage. For example, Gao et al. [19] demonstrated how GANs could
be used to generate structural images for DA, vastly improving the training of AI
models used in SHM (see Figure 2.1).

Figure 2.1: GAN architecture used by Gao et al. (2019) for generating synthetic
structural images. Adopted from [19].

Additionally, the use of big data analytics has further increased the capabilities
of SHM systems by processing vast amounts of sensor data. Big data techniques
enable the identification of patterns and trends that may indicate early stages
of structural damage. Integrating AI techniques, such as DL, into SHM systems
allows for more accurate and automated damage detection. These techniques can
automatically classify and predict failures by analyzing historical data, sensor read-
ings, and environmental factors. Farhadi et al. [2] demonstrated the effectiveness
of automated event-based SHM systems in early damage detection by tracking
prestressing tendon breaks in concrete bridges using acoustic monitoring.
Farhadi et al. [2] proposed an innovative approach to SHM, focusing on the
detection and classification of acoustic emissions (AE) related to prestressing ten-
don breakage in concrete bridges. The study introduced AcousticNet, a hybrid
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convolutional neural network (CNN) designed to analyze and classify AE signals.
AcousticNet’s architecture combines multiple CNN layers to extract features from
raw AE data. The model was trained on a dataset of both simulated and real-
world AE signals, achieving high accuracy in distinguishing between normal and
anomalous events. The development and testing of AcousticNet included several
key stages:

• Data collection and pre-processing: AE signals were collected from
laboratory experiments and in-situ bridge monitoring, then preprocessed to
enhance feature extraction for AcousticNet.

• Hybrid CNN model: AcousticNet integrated DL techniques with domain-
specific knowledge to effectively process and classify AE signals.

• Validation and testing: The model was validated using a robust testing
framework, demonstrating its ability to accurately identify prestressing tendon
breakage.

The study by Farhadi et al. [2] highlights the potential of DL in advancing SHM
techniques. However, despite these advancements, several significant challenges
remain, particularly concerning data quality, sensor placement and the limited
availability of high-quality data for training models.

2.1.2 Challenges in Structural Health Monitoring
Despite significant advancements, SHM systems face several technical and logistical
challenges that impact their effectiveness. One major obstacle, as highlighted
by Yu et al. [20], is the availability of high-quality data, especially in complex
environments like tunnels or densely populated urban areas. In such conditions,
sensor data can be sparse or distorted by environmental noise, making it difficult
to detect early signs of structural degradation.
Another critical challenge in SHM is optimizing sensor placement. The efficacy
of SHM systems depends heavily on strategic sensor deployment to gather repre-
sentative structural data. Poor sensor placement can lead to incomplete datasets,
limiting the system’s ability to capture a full picture of structural health. Kaleb
Smith and Anthony O. Smith’s work on TSGAN (Time Series GAN) [21] demon-
strates how synthetic data can mitigate some of these issues, even though effective
sensor placement remains vital for high-quality data acquisition.
The rarity of certain structural events, such as crack initiation or sudden load-
induced failures, presents another challenge for SHM. Studies by Worden et al.
[10] and Ko and Ni [3] highlight the need for extensive datasets to train robust
models for anomaly detection and prediction. However, the infrequency of these
events means that SHM datasets are often sparse, which can limit the robustness
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of models in detecting less common structural anomalies.
Additionally, environmental factors complicate SHM data collection. Variations in
temperature, humidity, and other environmental conditions can introduce noise into
sensor readings, obscuring the signals that indicate structural damage. Abdeljaber
et al. [8] showed that one-dimensional convolutional neural networks could filter
out noise in vibration data, but environmental interference remains a challenge for
achieving consistent SHM accuracy.
Finally, computational demands can restrict real-time SHM applications, particu-
larly in systems utilizing advanced ML algorithms. Although approaches like those
discussed by Mosalam and Gao [22] incorporate GAN-based data augmentation
(DA) to improve SHM accuracy, the computational requirements can hinder practi-
cal implementation, especially in resource-limited settings.

In summary, the highlighted challenges in SHM underscore the need for more
resilient and efficient systems capable of providing reliable monitoring across di-
verse environments.

2.1.3 Structural Health Monitoring for Bridges
Bridges are crucial infrastructure components, yet they face constant exposure to
stresses such as heavy traffic, temperature fluctuations, and environmental degrada-
tion. Traditional SHM methods, heavily depending on periodic manual inspections,
often fail to detect early signs of damage, particularly in hard-to-access areas where
structural vulnerabilities may go unnoticed. Tragic incidents, including the collapse
of Italy’s La Reale viaduct, underscore the importance of adopting advanced SHM
technologies. Ferro et al. (2022) [5] describe how inadequate grout injection in
cable sheaths led to undetected corrosion, resulting in the viaduct’s collapse. In
the case of the Fossano bridge collapse, discussed by Bazzucchi and Ferro (2019)
[23], improper maintenance of post-tensioned tendons and lack of grout led to
accelerated corrosion, highlighting the need for enhanced SHM strategies that can
detect such invisible vulnerabilities before they lead to catastrophic failures. Both
cases reveal critical gaps in inspection methods, as visible signs alone were insuffi-
cient to predict the underlying structural degradation. These studies highlight the
need for SHM systems that provide real-time, data-driven assessments capable of
identifying subtle indicators of structural deterioration before severe damage occurs.

Traditional SHM methods for bridges have relied heavily on periodic manual
inspections and maintenance, which can be time-consuming and less effective in
detecting early-stage damage. Recent advancements in AI technologies have begun
to transform bridge monitoring processes, enabling more comprehensive and con-
tinuous assessments. Tragic incidents, such as the collapses of the I-35W bridge in
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Minneapolis and the Morandi bridge in Genoa, have underscored the importance of
adopting advanced SHM technologies to prevent similar catastrophes [18]. AI-based
SHM systems are now capable of identifying early signs of structural damage that
may not be detectable through manual inspections, thereby allowing for proactive
maintenance interventions. For example, Mosalam and Gao [22] proposed the use
of GANs for structural image DA in SHM, which enhances model training accuracy
even with limited data availability. Such AI-driven advancements demonstrate
the potential for SHM systems to become more reliable and scalable, ultimately
improving the safety and resilience of bridge infrastructure.

2.2 Signal Processing
Signal processing is essential for analyzing and interpreting data collected from
sensors in SHM systems. Data from accelerometers, strain gauges, and acoustic
emission sensors often contains noise, requiring specialized techniques to filter
and enhance the information. These methods help engineers convert raw signals
into valuable insights, identify patterns, and detect anomalies that may indicate
structural damage.

2.2.1 Traditional Signal Processing Techniques
Traditional signal processing methods, including Fourier transforms, wavelet analy-
sis, and filtering, play a fundamental role in SHM, as noted by Gul and Catbas
(2009) in their examination of time-series modeling for structural monitoring [6].
These techniques break down complex signals into their frequency component,
making it easier to identify changes that may indicate structural degradation. For
instance, Fourier analysis is frequently applied to vibration signals from bridges or
buildings to gain insights into their dynamic behavior.

Another powerful method is wavelet analysis, which is especially useful for analyzing
non-stationary signals. Wavelet transforms allow the localization of damage by
detecting changes in both time and frequency domains. Kaleb Smith and Anthony
O. Smith [21] highlighted the importance of these techniques in processing acoustic
emissions, where time-frequency domain analysis is crucial for detecting microcracks
in concrete structures.

2.2.2 Advanced Signal Processing Techniques
Advanced signal processing techniques can be utilized to improve the learning
procedure in AI-based models. By using complex data patterns, these techniques
enhance the detection and classification of structural anomalies. One of the most
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notable developments in this field is the use of DA techniques, especially GANs,
which can produce synthetic time-series data that closely mimics real-world signals,
allowing more robust ML models to be trained.

Guillermo Iglesias and Edgar Talavera [24] provided a comprehensive review of DA
techniques for time-series data, including their applications in SHM. Figure 2.2
provides a taxonomy of these DA methods, ranging from traditional approaches
such as slicing, jittering, and scaling to more advanced generative models like
Variational Autoencoders (VAEs) and GANs. These techniques, which manipulate
existing data or generate new samples, are essential for improving SHM accuracy,
particularly when training datasets are limited. A key application of GANs in
SHM is generating synthetic vibration signals or acoustic emissions to enhance
small datasets. By augmenting these datasets, signal processing algorithms can
detect rare events, such as crack initiation or material fatigue, more effectively.
The findings of Iglesias and Talavera [24] underscore the need for more advanced
DA methods designed specifically for time-series data, particularly in areas where
datasets are limited or vulnerable. These findings will inform the development
of STFT-based GANs in this research, aimed at strengthening the analysis and
augmentation of structural event data.

Figure 2.2: Taxonomy of Data Augmentation techniques as described by Iglesias
and Talavera. Adopted from [24].

Another significant development is the Time Series GAN (TSGAN), introduced
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by Smith et al. [21], which uses a conditional GAN architecture to capture com-
plex temporal patterns in time-series data. TSGAN addresses the common SHM
challenge of limited training samples by generating high-quality time-series data,
making it particularly relevant for modeling rare structural events.
As illustrated in Figure 2.3, TSGAN employs a two-stage GAN architecturein which
the first GAN generates synthetic spectrograms from random noise. The second
stage involves a conditional GAN that produces realistic time-series data based
on these spectrograms. TSGAN incorporates several innovative features. First, it
uses Wasserstein GANs (WGANs) to mitigate mode collapse by minimizing the
Wasserstein distance between real and generated data distributions. Additionally,
it applies conditional GANs (CGANs) to improve the fidelity and diversity of the
generated time-series data. Finally, TSGAN supports few-shot learning, making it
effective even when training data is limited—a common scenario in SHM applica-
tions.

The TSGAN model shows considerable promise for SHM, as it can enhance de-
tection and prediction capabilities by enriching datasets with realistic synthetic
data. Future research may explore integrating TSGAN-generated data with other
advanced ML techniques to improve the robustness and accuracy of SHM systems
[21].

Figure 2.3: TSGAN architecture used for generating synthetic time series data.
The first WGAN generates synthetic spectrograms, and the second conditional
WGAN produces realistic time series data. Adopted from [21].
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In addition to TSGAN, Cycle-Consistent GANs (CycleGAN), introduced by
Zhu et al. [25], tackle another key challenge in SHM: the lack of paired datasets.
CycleGAN enables data transformation between domains without needing paired
examples, making it useful for translating data such as acoustic signals into visual
spectrograms or other formats suitable for SHM analysis. This cross-modal trans-
lation expands DA options, particularly when labeled data is limited.

As illustrated in Figure 2.4, CycleGAN contains two mapping functions (G : X → Y
and F : Y → X) and two adversarial discriminators (DY and DX). The cycle con-
sistency loss ensures that translating from one domain to the other and back again
yields the original input image. This cycle-consistency feature allows CycleGAN to
maintain meaningful transformations, which is particularly relevant in SHM appli-
cations where paired data is often unavailable. By simulating structural damage
through generated images, CycleGAN contributes to creating more comprehensive
datasets for SHM model training.

Figure 2.4: CycleGAN architecture: The model contains two mapping functions,
G : X → Y and F : Y → X, along with the adversarial discriminators DY and
DX . Adopted from [25].

Johnson et al. [26] introduced perceptual losses for image generation tasks such
as style transfer, which enhance the quality and realism of generated images by
focusing on high-level feature representations rather than pixel-by-pixel differences.
This approach allows the generated images to retain structural coherence and
perceptual fidelity, making them more visually realistic. Such techniques could
significantly enhance the visual quality of augmented SHM datasets, especially in
applications where the realistic appearance of damage patterns or material textures
is crucial for accurate model training and validation.

Furthermore, advanced feature extraction methods, like those proposed by McLough-
lin et al. [27], leverage deep neural networks to classify complex environmental
sounds, which holds promise for SHM where unstructured acoustic signals often
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indicate structural changes. By integrating these methods, SHM systems can better
capture subtle variations in acoustic emissions, enabling the detection of anomalies
that might signify early damage or structural wear. These techniques provide a
more nuanced understanding of sound patterns, enhancing the reliability of SHM
systems in real-world monitoring scenarios.

2.2.3 Advanced Sound Event Classification
Sound event classification is essential for monitoring and analyzing acoustic emis-
sions within SHM systems, especially in challenging noise environments. Liu et
al. [28] introduced a novel classification approach that emphasizes robustness and
efficiency, transforming traditional spectrograms into a frequency-energy diagram
to highlight energy distribution across frequency bins independently of time. This
transformation helps reduce variability due to sound duration, thereby enhancing
classification accuracy.

The paper by [28] also presents a two-stage data dimension reduction process:
• Stage 1: Importance screening retains only the most significant energy bins,

reducing data size while preserving critical information.

• Stage 2: Bicubic interpolation further reduces the dimension of feature
vectors, maintaining computational efficiency.

This method has proven effective in noisy conditions, as demonstrated by evaluations
on datasets like RWCP-SSD, UrbanSound8K, and ESC-50, where it achieves strong
performance even under low signal-to-noise ratios (SNRs). Such robustness is
promising for real-world applications, where acoustic events are often obscured by
background noise.

2.2.4 Applications of Signal Processing in Structural Health
Monitoring

Signal processing techniques are critical in a variety of SHM applications, particu-
larly in the monitoring of bridges, tunnels, and other critical infrastructures. For
example, acoustic emissions, which are generated by the rapid release of energy
during crack formation, are commonly monitored using signal processing techniques.
Farhadi et al. [2] used acoustic event-based monitoring to track the breakage of
prestressing tendons in concrete bridges, demonstrating the effectiveness of auto-
mated signal processing in SHM. Moreover, wavelet analysis has been successfully
employed to monitor changes in the structural integrity of bridges by analyzing
vibration signals. This method allows for the detection of shifts in natural frequen-
cies, which may indicate the presence of damage. By applying advanced filtering
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techniques, noise in the data can be reduced, ensuring that relevant information is
retained and analyzed effectively.

In conclusion, signal processing continues to be an essential method in SHM,
enabling the extraction of critical information from noisy sensor data. The in-
tegration of ML techniques, such as GANs and TSGAN, into signal processing
workflows further enhances the ability of SHM systems to detect anomalies and
predict structural failures with greater accuracy.
According to Iglesias and Talavera [24], traditional DA techniques such as slic-
ing, jittering, and scaling have been widely used for time series data generation.
These methods are critical in SHM, where augmenting sensor data can significantly
improve model robustness in detecting anomalies like crack initiation or material
fatigue.

These advanced signal processing techniques set the foundation for integrating
DL methods, which further enhance the capabilities of SHM systems. The next
section explores how DL architectures like CNNs, RNNs, and GANs contribute to
automating and improving damage detection in SHM.

2.3 Deep Learning
Deep learning (DL) has transformed SHM by providing powerful methods for
automating damage detection, prediction, and diagnosis. Unlike traditional ML
models, which often rely on manually designed features, DL models can auto-
matically learn relevant features directly from raw sensor data. This ability to
extract complex patterns from large datasets has made DL a key component in
SHM, where multiple sensors continuously monitor the structural health of critical
infrastructures.

2.3.1 Generative Adversarial Networks
GANs have gained considerable attention in SHM for their ability to generate
synthetic data that can be used to train DL models, especially when real-world
data collection is challenging. Introduced by Goodfellow et al. [12], in GANs the
generator creates synthetic data, while the discriminator evaluates whether the data
is real or generated. This adversarial process allows the generator to improve over
time and generate more realistic data. In SHM, GANs have been successfully used
to generate synthetic structural data, such as vibration signals, acoustic emissions,
and structural images, enabling ML models to better detect rare anomalies. For
instance, Foster [29] highlights GANs as an effective method for DA, improving
SHM models’ ability to identify structural anomalies.
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Kushal Virupakshappa and Erdal Oruklu [30] demonstrate the versatility of GANs
by generating synthetic ultrasonic signals that closely resemble real-world SHM
data. Their GAN model, shown in Figures 2.5 and 2.6, comprises a discriminator
network that ensures the synthetic signals are realistic and a generator network
specifically designed to produce data that aids in augmenting SHM datasets.

Figure 2.5: Architecture of the Discriminator network in Kushal Virupakshappa’s
GAN model. Adopted from [30].

Figure 2.6: Architecture of the Generator network in Kushal Virupakshappa’s
GAN model for generating synthetic structural data. Adopted from [30].

Despite their success, GANs are not without challenges, such as mode collapse,
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where the generator produces limited types of data. To address this, Arjovsky et
al. (2017) [31] introduced the Wasserstein GAN (WGAN), which improves training
stability by minimizing the Wasserstein distance between real and generated data
distributions.
Additionally, spectral normalization, introduced by Miyato et al. (2018) [32],
controls the Lipschitz constant of the discriminator, helping to prevent training
instabilities and improve overall performance. This method has become a standard
in GAN architectures, particularly for sensitive SHM applications.
In addition to WGANs and spectral normalization, other improvements in GAN
training have been proposed, such as feature matching and minibatch discrimina-
tion, as outlined by Salimans et al. (2016) [33]. These techniques mitigate issues
like mode collapse and enhance training convergence, which is essential for robust
SHM applications.

To ensure the quality of synthetic data, evaluation methods like Maximum Mean
Discrepancy (MMD), proposed by Sutherland et al. [34], compare the distributions
of real and generated data. In SHM, Maximum Mean Discrepancy helps ensure
that synthetic data generated by GANs aligns with the statistical properties of
real-world data, thereby improving the reliability of ML models.

Chen et al. [35] introduced a Mixed Autoencoder (MixedAE), a self-supervised
learning approach that improves upon traditional Masked Autoencoders (MAEs).
MixedAE includes image mixing and homologous recognition tasks during training,
which enhances the model’s ability to learn object-aware representations (see Figure
2.7).

Figure 2.7: The architecture of Mixed Autoencoder (MixedAE) designed for
self-supervised learning with image mixing. Adopted from [35].
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Variants of Generative Adversarial Networks for Structural Health
Monitoring

GANs have evolved significantly, with specialized architectures emerging to address
specific challenges in SHM. Eahc variant offers unique advantages for augmenting
datasets and enhancing predictive models.

Conditional GANs (CGANs), introduced by Mirza and Osindero [36], generate
data conditioned on specific information, like class labels. In SHM, CGANs are
valuable for simulating structural responses under different damage conditions,
improving predictive accuracy. For instance, Yu et al. [37] demonstrated CGANs’
effectiveness in time-series forecasting, an application highly relevant to SHM. By
simulating time-series data representing different structural behaviors, CGANs
improve predictive accuracy for potential structural failures.
For tasks requiring fine visual detail, discriminative generative networks, as demon-
strated by Yu and Porikli (2017) [38], produce ultra-high-resolution images. This
is beneficial in SHM for identifying small-scale defects in structures, improving
anomaly detection accuracy.

Radford et al. (2015) [39] extended GANs by introducing Deep Convolutional
GANs (DCGANs), which utilize deep convolutional layers to generate high-quality
images. In the context of SHM, DCGANs are valuable for creating synthetic
images of structural elements, enhancing defect detection capabilities. In DCGANs,
Convolutional Neural Networks (CNNs) play a central role by enabling the network
to learn spatial hierarchies in visual data, which is essential for accurate image
generation. CNNs are particularly effective at identifying patterns within images,
which makes them suitable for applications like visual inspections in SHM. For
example, Gao et al. [19] proposed a method known as Deep Leaf-Bootstrapping
GAN, a DCGAN-based architecture for generating synthetic structural images to
enhance DA. This architecture uses CNNs to produce diverse and realistic images,
facilitating accurate classification of structural damage even when the available
data is limited. The Deep Leaf-Bootstrapping GAN introduced by Gao et al. [19]
includes several distinctive innovations, summarized as follows:

• Deep Convolutional GAN (DCGAN): The DCGAN architecture gener-
ates synthetic structural images for DA.

• Leaf-Bootstrapping Method: This method clusters data into smaller
subsets, thereby improving the GAN’s performance in generating diverse
images.

• Self-Inception Score (SIS): A proposed metric for evaluating the diversity
and realism of generated images.
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In addition to DCGANs, other advanced GAN architectures have been developed to
address specific needs in SHM. Multi-stage architectures like StackGAN [40] gener-
ate images in progressive stages, enhancing detail in structural images. This feature
proves critical for SHM applications, where detecting small-scale defects, such as
micro-cracks, requires high-resolution image data. Similarly, ultra-resolution GANs,
as demonstrated by Yu and Porikli [38], allow for high-detail anomaly detection,
an essential capability for inspecting fine structural elements.

Furthermore, image-to-image translation models, like pix2pix by Isola et al. (2017)
[41], learn mappings between paired images, beneficial when paired SHM data is
available. CycleGAN [42], however, supports unpaired translation, addressing the
challenges of SHM applications where paired datasets are often unavailable.

For SHM applications that focus on time-series data, essential for monitoring
dynamic structures, models like TSGAN [43], which generates synthetic sequences
based on real sensor data distributions. By enriching SHM datasets with realistic
synthetic sequences, TSGAN enables a more comprehensive assessment of structural
health.

Another significant GAN variant, context-aware GANs, introduced by Nie et
al. [44]. These models condition data generation on contextual factors such as
environmental conditions. In SHM, context-aware GANs can simulate bridge
conditions under various environmental stresses, which enhances the accuracy of
anomaly detection.

Yoon et al. (2019) [45] introduced TimeGAN, which combines GANs and re-
current neural networks to handle time-series data, a crucial component of SHM
for analyzing continuous sensor readings. By generating realistic time-series data,
TimeGAN enhances ML models’ ability to predict structural failures. Similarly,
Esteban et al. (2017) [46] explored Recurrent Conditional GANs (RCGANs) for
time-series generation, demonstrating their efficacy in modeling temporal dependen-
cies. In SHM, RCGANs can augment datasets with synthetic sequences, supporting
predictive models in anticipating structural behavior changes.

Applications of Generative Adversarial Networks in Structural Health
Monitoring

GANs are applied successfully in SHM to generate ultrasonic signals for Non-
Destructive Evaluation (Non-Destructive Evaluation), as demonstrated by Virupak-
shappa and Oruklu [30]. They showed GANs’ effectiveness in generating realistic
B-Scan images, critical for detecting hidden structural defects. CycleGAN [17]
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facilitates unpaired image-to-image translation, enabling synthetic image generation
in SHM even with unpaired data. In addition, Zhang et al. [47] demonstrated
how DL techniques, including GANs, can be applied to sound event classification,
which is relevant for SHM. In particular, acoustic emissions play a critical role in
detecting structural damage in bridges and other infrastructure.

Beyond SHM, GANs benefit applications such as smart grids for energy load
forecasting. For example, Srivastava et al. (2016) [48] reviewed various methods
for short-term load forecasting, noting the utility of GANs in generating synthetic
load data. This enhances forecasting models’ ability to handle demand fluctuations,
improving grid reliability and efficiency.

2.3.2 Text-to-Image Generation with MirrorGAN
GANs have been applied to various SHM tasks, especially for generating synthetic
data to augment limited datasets. MirrorGAN, introduced by Qiao et al. [49],
is a GAN-based model designed for text-to-image generation, ensuring semantic
consistency between generated images and the corresponding textual descriptions.
MirrorGAN’s ability to generate realistic images based on textual descriptions of
structural damage helps expand image datasets, especially when real-world images
are limited. Figure 2.8 illustrates the architecture of MirrorGAN.

Figure 2.8: Architecture of MirrorGAN. Adopted from [49]

2.3.3 Applications of Deep Learning in Structural Health
Monitoring

DL has been applied to a wide range of SHM tasks, from damage detection to pre-
dicting future failures. CNNs are commonly used for visual inspections, detecting
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cracks or other forms of structural degradation in bridges and buildings. LSTM
networks, on the other hand, are used to analyze time-series data, predicting when
and where damage is likely to occur. GANs, by generating synthetic sensor data,
allow DL models to be trained even when real-world data is scarce.

Mosalam and Gao [22] explored how GANs can address data scarcity, particularly in
complex environments where obtaining labeled data is challenging. Their study also
introduced a Deep Convolutional GAN (DCGAN) and a novel Leaf-Bootstrapping
method to improve GAN performance. This architecture significantly enhances
the quality and diversity of synthetic structural images, even when labeled data is
scarce.

Figure 2.9: DCGAN architecture for generating synthetic images. Adopted from
[22].

2.3.4 Challenges in Deep Learning for Structural Health
Monitoring

Applying DL in SHM introduces additional challenges specific to the nature of
these advanced models. One of the primary issues is the limited availability of
high-quality and labeled datasets for rare events, like structural failures.
Another challenge in DL for SHM is model interpretability. DL models, especially
deep neural networks, often function as "black boxes," making it difficult to under-
stand the reasoning behind their predictions. In safety-critical applications like
SHM, explainability is essential to help engineers and decision-makers trust the
results. Explainable AI (Explainable AI (XAI)) methods are being developed to
provide insights into DL models, but implementing XAI in SHM is complex due to
the sophisticated structural data involved.
The computational intensity of DL models also poses a challenge, especially for
real-time SHM deployment. Models with large computational demands may be
unworkable for applications requiring immediate results. Techniques like model
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compression, optimization and transfer learning, where pre-trained models on
broader datasets are adapted to SHM data, can help mitigate these issues, even
though balancing model performance with computational efficiency is still an ob-
stacle.
Finally, DL models in SHM must be robust to noise and environmental variability.
SHM data is often affected by external factors such as temperature changes, vibra-
tions, and other environmental noise, which can produce false positives or negatives.
Ensuring that DL models can distinguish between actual structural anomalies and
environmental variations requires sophisticated pre-processing and tuning.

Overall, the primary challenges in DL for SHM, such as data limitations, compre-
hensibility, computational demands, and robustness to noise, highlight the need
for continued innovation in DL techniques adapted to the specific requirements of
SHM.
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Chapter 3

Methodology

This chapter outlines the key methodologies used in this research, focusing on
signal representation techniques and deep generative models applied to Structural
Health Monitoring (SHM). These methodologies aim to enhance the detection and
prediction of structural anomalies through advanced signal processing and data
augmentation (DA) techniques, providing more reliable methods for infrastructure
monitoring.

3.1 Signal Representation
Signal representation is crucial in processing sensor data for SHM. Choosing the
right representation method directly impacts the ability to detect and classify
anomalies in the data. Two primary signal representation techniques commonly
used in SHM are the Short-Time Fourier Transform (STFT) and wavelet transforms.
These methods allow for time-frequency analysis, capturing both temporal and
spectral features of the signals.
As highlighted by Farhadi et al. [2], effective signal representation is essential for
analyzing acoustic emissions, such as those generated during prestressed tendon
wire breakages in bridges. Liu et al. [28] also demonstrated the importance of
transforming raw sensor data into frequency-energy features to improve classifica-
tion accuracy in noisy environments. Both studies emphasize the need for robust
time-frequency analysis to enhance SHM system performance.

To gain a comprehensive understanding of the statistical properties of the sig-
nal classes, various visualization tools such as kernel density estimate (KDE) plots
and violin plots are employed. KDE plots provide a smooth estimate of the proba-
bility density function of a random variable, allowing for visual insights into the
distribution of features across different classes. Violin plots, on the other hand,
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combine the characteristics of a box plot and a KDE plot, effectively illustrating
the distribution, spread, and density of the data. These plots are particularly useful
for highlighting differences across signal classes and help in identifying distinct
features relevant to SHM applications.

3.1.1 Short-Time Fourier Transform
STFT is a widely used technique in signal processing that converts a time-domain
signal into a time-frequency representation. It is especially useful for analyzing
non-stationary signals, such as those encountered in SHM, where structural anoma-
lies like crack formation and wire breakage generate transient events.

The STFT is computed by dividing the signal into short overlapping segments
and applying the Fourier Transform to each segment, producing a two-dimensional
representation of the signal in both time and frequency. This method provides
insights into how frequency components evolve over time, which is essential for
diagnosing structural health.

The discrete STFT of a signal x[n] is defined as:

STFT(x[n])(m, ω) =
∞Ø

n=−∞
x[n]w[n − m]e−jωn (3.1)

where w[n] is the window function, ω is the angular frequency, and n is the time
index. By applying the STFT, SHM systems can analyze acoustic signals in both
time and frequency domains, improving the detection of subtle changes that indicate
damage.

3.2 Deep Generative Models
Generative models play a vital role in SHM, especially when real-world data is
limited. These models are capable of generating synthet ic data that can augment
datasets and enhance the detection of structural anomalies.
As noted in [29], GANs are particularly effective for generating synthetic data
in SHM, where collecting large datasets of structural anomalies is difficult. By
training GANs on real sensor data, SHM systems can generate new, plausible
examples of damage, such as cracks or wire breakage, enhancing the detection and
classification of structural events.

This section discusses three primary types of GANs used in this research: Deep
Convolutional GAN (DCGAN), Wasserstein GAN (WGAN), and Least Squares
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GAN (LSGAN). These models were selected due to their proven effectiveness in
generating high-quality synthetic data and addressing common issues in GAN
training, such as mode collapse and training instability.

3.2.1 Deep Convolutional Generative Adversarial Networks
DCGAN is a variant of the traditional GAN that uses convolutional layers in both
the generator and discriminator, improving the generation of high-resolution images.
The architecture applies convolutional and transposed convolutional layers, which
are better suited for processing and generating image-like data compared to fully
connected layers.

DCGAN Generator The generator in DCGAN takes as input a noise vector z,
typically sampled from a standard normal distribution:

z ∼ N (0, 1) (3.2)
The generator’s objective is to map this input to a realistic data sample, such as
an image or spectrogram. It consists of a series of transposed convolutional layers
that progressively upsample the input. The generator’s loss function is designed to
maximize the discriminator’s output for generated samples:

LG = −Ez∼N (0,1)[log D(G(z))] (3.3)
This loss encourages the generator to create data that the discriminator classifies
as real, improving the quality of generated data. The detailed architecture of the
generator is outlined in Table 5.2.

DCGAN Discriminator The discriminator is a convolutional neural network
tasked with classifying input data as real or generated. It down-samples the input
through a series of convolutional layers and outputs a scalar probability. The
discriminator’s loss function is defined as:

LDCGAND
= −Ex∼Pr [log D(x)] − Ez∼Pz [log(1 − D(G(z)))] (3.4)

where:
• D(x) is the discriminator’s output for real data x,

• G(z) is the generator’s output for the noise vector z,

• Pr is the distribution of real data,

• Pz is the distribution of input noise for the generator.
The goal of the discriminator is to correctly classify real and fake data, maximizing
the log-probability of classifying real data as real and minimizing the probability
of classifying generated data as real.
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3.2.2 Wasserstein Generative Adversarial Networks
WGAN addresses common issues in traditional GANs, such as mode collapse, by
introducing the Wasserstein distance, which provides smoother training dynamics.
Mode collapse occurs when the generator in a GAN produces a limited variety of
outputs, effectively "collapsing" to a few modes or patterns rather than generating
a diverse set of samples. This issue limits the generator’s ability to capture the full
distribution of the data, leading to poor performance in applications requiring high
variability.

Wasserstein Loss Function The loss function in WGAN is based on the
Wasserstein distance (or Earth Mover’s distance), which measures how much
"work" is needed to transform the generated data distribution Pg into the real data
distribution Pr. The critic (discriminator in WGAN) is trained to maximize this
distance:

LW GAND
= Ex∼Pr [D(x)] − Ez∼Pz [D(G(z))] (3.5)

where D(x) is the critic’s output for real data and D(G(z)) for generated data.
Unlike in traditional GANs, the critic does not output probabilities but scores
representing how "real" the data appears.

Gradient Penalty To enforce the 1-Lipschitz constraint necessary for stable
training, WGAN introduces a gradient penalty:

LGP = λ · Ex̂∼Px̂

è
(∥∇x̂D(x̂)∥2 − 1)2

é
(3.6)

where:

• λ is the regularization coefficient, often set to 10,

• Px̂ is the distribution of points sampled along straight lines between real and
generated data,

• ∥∇x̂D(x̂)∥2 is the L2 norm of the gradient of the critic with respect to x̂.

The gradient penalty helps ensure that the critic’s output respects the Lipschitz
constraint, which stabilizes training and prevents overfitting.

WGAN Generator Objective The generator’s objective in WGAN is to pro-
duce data that maximizes the critic’s score:

LG = −Ez∼Pz [D(G(z))] (3.7)

This leads to the generator learning to produce data that the critic evaluates as
similar to real data, improving the quality of generated samples.
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3.2.3 Least Squares Generative Adversarial Networks
LSGAN modifies the traditional GAN architecture by using a least-squares loss to
stabilize training and reduce issues like vanishing gradients.

LSGAN Discriminator Loss The discriminator in LSGAN minimizes the
following least-squares loss:

LLSGAND
= 1

2Ex∼Pr

è
(D(x) − 1)2

é
+ 1

2Ez∼Pz

è
D(G(z))2

é
(3.8)

where:

• D(x) is the discriminator’s output for real data,

• G(z) is the generator’s output for input noise z,

• Pr is the real data distribution,

• Pz is the noise distribution for the generator.

This loss function helps ensure that real data is classified close to 1 and generated
data close to 0, resulting in smoother training.

LSGAN Generator Loss The generator minimizes the least-squares error to
make the generated data as close to real data as possible:

LLSGANG
= 1

2Ez∼Pz

è
(D(G(z)) − 1)2

é
(3.9)

This loss encourages the generator to produce samples that are classified by the
discriminator as real (i.e., D(G(z)) ≈ 1). By implementing these deep genera-
tive models, SHM systems can enhance data generation, improve the training of
classifiers, and detect structural anomalies more effectively.

3.3 Model Evaluation: Fréchet Inception Dis-
tance Score

In evaluating the performance of generative models such as GANs, the Fréchet
Inception Distance (FID) score is a widely adopted metric used to assess the
similarity between the real and generated data distributions. Introduced by Heusel
et al. (2017) [50], the FID score measures the quality of generated samples by
comparing the statistical properties of their distribution with those of real samples.
Specifically, it calculates the Fréchet distance (or Wasserstein-2 distance) between
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the two distributions in the feature space of a pre-trained neural network, commonly
the Inception network. This feature space represents high-level attributes of the
images, enabling the FID score to capture perceptual similarities rather than
pixel-level differences.

Mathematical Definition: The FID score is calculated based on the mean
and covariance of the real and generated data distributions, denoted as µr, Σr and
µg, Σg, respectively. The formula for the FID is given by:

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2) (3.10)

where:

• µr and µg are the mean feature vectors of the real and generated samples,

• Σr and Σg are the covariance matrices of the real and generated samples,

• Tr denotes the trace of a matrix.

The FID score captures both the difference in means and the difference in covariances
between the real and generated data distributions. A lower FID score indicates
that the generated samples are more similar to the real data, while a higher score
reflects greater dissimilarity.

Feature Space Representation: The FID score uses the output of a pre-trained
Inception network to compute the mean and covariance. Specifically, the activations
from an intermediate layer of the network are extracted for both real and generated
data. This transforms the data into a feature space where the comparison between
distributions can be more meaningful.
The FID score is particularly useful in the context of SHM because it provides
an objective measure of how closely the synthetic spectrograms resemble the real
sensor data. In this research, the FID score was used to evaluate and compare the
performance of the DCGAN, WGAN, and LSGAN models, guiding the selection of
the most effective model for DA.
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Chapter 4

Data Acquisition and
Problem Context

As the field of Structural Health Monitoring (SHM) evolves, effective data ac-
quisition strategies become essential for understanding and predicting structural
behavior under different conditions. This chapter presents the methodologies used
for in-situ data acquisition on prestressed concrete bridges. Specifically, the fol-
lowing sections describe the experimental setup and the process of data collection,
focusing on the destructive testing performed on two prestressed concrete bridges
scheduled for demolition.

4.1 In-Situ Acquisition

The in-situ data acquisition was conducted on two prestressed concrete bridges, Le
Pastena and Cerqueta, located on the A24 highway in the province of L’Aquila,
which were scheduled for demolition and reconstruction. An agreement between the
Politecnico di Torino and Autostrade dei Parchi provided a unique opportunity to
perform controlled breakage tests on the prestressing wires of these bridges, which
had already been structurally weakened in preparation for their planned demolition.
These tests provided valuable insights into the bridges’ structural behavior under
failure conditions, without physically destroying the bridges themselves.

The experiments and data collection were conducted on two spans of the Cer-
queta bridge and one span of the Le Pastena bridge. Figures 4.1 and 4.2 show
the general view of the tested bridge structures, highlighting the areas where the
sensors were installed and data acquisition took place.
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(a) General view of the left span of the
Cerqueta bridge.

(b) Close-up of the right span of the Cer-
queta bridge used for data collection.

Figure 4.1: Views of the Cerqueta bridge showing both the left and right spans
where testing was performed.

Figure 4.2: View of the Le Pastena bridge.

4.1.1 Data Acquisition Setup
Since the bridge decks were inaccessible due to their considerable height and
because an under-bridge inspection unit (a platform used to access the underside
of a bridge from above) could not be used—the weakening of the bridges had
already begun in preparation for demolition — a MEWP was utilized to reach
the side beams. Two holes were drilled at different heights on the side beams to
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expose the prestressing wires. The setup included the installation of eight acoustic
emission (AE) sensors and two accelerometers (Models 805 and 805M1) to monitor
the structural vibrations during testing.
Sensor Placement: The acoustic emission sensors were strategically positioned
to capture relevant data: the first sensor was placed 1.5 m from the cutting area,
the second 1.5 m from the first, and the remaining sensors were spaced 1 m apart.
This arrangement allowed for comprehensive monitoring of the vibrational response
during the destructive testing.

(a) Left span of the Cerqueta bridge. (b) Right span of the Cerqueta bridge.

Figure 4.3: Configuration of acoustic emission sensors on both spans of the
Cerqueta bridge.

Figure 4.4: Close-up view of the installed accelerometers and their connection
setup.
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Accelerometer Data Acquisition

For this study, we used two types of accelerometers, Model 805 and Model 805M1,
manufactured by TE Connectivity Measurement Specialties. These accelerometers
were chosen for their accuracy, durability, and suitability for structural monitoring.
Using two models allowed us to compare performance under similar conditions and
enhance data reliability through cross-validation.
Each accelerometer was assigned to capture a specific component: one recorded
the longitudinal acceleration component, while the other captured the transverse
acceleration component. This setup was essential for detailed vibrational analysis,
as it allowed us to collect comprehensive data on the structural response during
controlled cable cutting tests. With a sampling rate of 96,000 Hz and an effective
frequency range of 0–48,000 Hz, high-resolution data acquisition enabled the detec-
tion of fine changes in structural behavior. Each data line recorded left and right
channel values, supporting in-depth time-frequency analysis. The accelerometers
were positioned to effectively capture their respective longitudinal and transverse
vibrational data, maximizing data relevance.

This configuration provided a robust source of real-time data on the structural in-
tegrity and vibrational behavior of bridge structures during cutting tests, supporting
subsequent analyses on structural response and integrity.

Model 805 Accelerometer The Model 805 is a compact, low-cost accelerometer,
built with a 3-pin TO-5 header, and offers a flat frequency response up to 15 kHz,
ideal for capturing a range of vibrations. Available in ±50g and ±500g ranges, it
suits various vibration intensities in bridge monitoring. Key features of the Model
805 are summarized in Table 4.1, highlighting strengths in durability, signal clarity,
and integration with data acquisition systems.

Table 4.1: Key features of the Model 805 accelerometer used for data acquisition.

Feature Description
Manufacturer TE Connectivity Measurement Specialties.
Wide frequency range 1 to 10,000 Hz (±3 dB), suitable for capturing both low

and high-frequency vibrations.
Low noise levels Ensures high-quality signal acquisition, minimizing in-

terference and preserving data fidelity.
Stainless steel casing Provides durability and protection from environmental

conditions, essential for outdoor monitoring applications.
IEPE interface Facilitates easy integration with data acquisition systems,

enhancing setup efficiency and compatibility.
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Figure 4.5: Model 805 Accelerometer by TE Connectivity Measurement Specialties.
This diagram shows the structure and pin layout of the accelerometer used in the
study.

Model 805M1 Accelerometer The Model 805M1, also made by TE Connec-
tivity Measurement Specialties, is a similar device with a 3-wire voltage output. It
comes in dynamic ranges from ±20g to ±500g and offers a flat frequency response
up to 12 kHz. This accelerometer is known for its low power consumption (less
than 0.80 mA), making it ideal for continuous monitoring in embedded systems.
The key features of the Model 805M1 include:

Table 4.2: Key features of 805M1 accelerometer used for data acquisition.

Feature Description
Manufacturer TE Connectivity Measurement Specialties.
Wide frequency range 0.4 to 12,000 Hz (±3 dB).
Low power usage Less than 0.80 mA, perfect for long-term use.
Grounded casing Reduces interference and noise in the signal.
Easy mounting Adhesive options make it simple to attach to surfaces.

Figure 4.6: Model 805M1 Accelerometer by TE Connectivity Measurement
Specialties. This figure shows the size and pin layout of the accelerometer.

Both accelerometers were securely mounted using adhesive to ensure they were
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properly attached to the surface of the structure, which helped improve the accuracy
of the vibrational data collected. These accelerometers were connected to a central
data acquisition system that sampled the vibrations at high frequencies, enabling
real-time monitoring of the bridge’s behavior during the controlled cutting of
prestressing wires, one at a time.

4.1.2 Data Collection Process

Connected to a central data acquisition system, the accelerometers recorded sig-
nals continuously during the controlled breakage of the prestressing wires. This
continuous recording was essential for capturing the vibrations associated with the
rupture events, providing real-time data on the dynamic response of the bridge
structure during the tests. The high sensitivity of the accelerometers allowed us to
detect even small changes in vibration, providing valuable data on the condition of
the prestressing wires. This data will later be analyzed to evaluate the integrity of
the structure.

Visualization of Audio Signal in Audacity

The extracted audio signals were analyzed using Audacity, an open-source digital
audio editor, to ensure data quality and to identify significant events such as the
breakage of prestressing wires. Figure 4.7 shows an example of a signal visualized
in Audacity, representing the waveform of a breakage event captured during the
tests. This visual analysis helped in verifying the integrity of the recorded signals
and in pinpointing moments of structural significance.

Figure 4.7: Screenshot of a breakage signal analyzed in Audacity. The visualization
helps in verifying the integrity of the recorded signal and in identifying relevant
structural events.
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Extracted Audio Signal Example

The audio data collected during the in-situ testing was sampled at a frequency of
96,000 Hz and recorded in stereo format, with the left and right channels captured
simultaneously. The extracted data was then converted into text format to facilitate
further processing and analysis. The signal values are represented in a linear scale
without specific units, as they are normalized sample values. Normalization ensures
that the data is scaled consistently for analysis. Table 4.3 provides an example
segment showcasing these values from both the left and right channels.
The interpolation method applied during processing was linear, ensuring continuous
and smooth data for analysis. The table demonstrates how each line corresponds to
simultaneous readings from both channels. This format aids in identifying patterns
related to structural responses captured during events such as cable cutting and
subsequent hammering activities.

Table 4.3: Example of an audio signal extracted from a recording during the
bridge tests. The data is shown in a linear scale, recorded at 96000 Hz.

Left Channel Right Channel
0.00018 -0.02465
-0.00374 -0.01714
-0.00543 -0.01151

... ...

4.1.3 Event Monitoring
During the rupture of the cables, the data from the accelerometers were closely
monitored. To facilitate controlled cutting and detailed data collection, we under-
took preparations to expose and cut the prestressing wires. The process included
drilling access holes and cutting the cables with a multi-tool by Dremel, generating
vibrations that were recorded and classified as part of the dataset. After the cuts
were made, hammering was used to dislodge and remove the cut cable sections,
producing additional vibrational data for analysis. These steps were essential for
comprehensive structural monitoring and were documented in detail.

Figures 4.8 and 4.9 present a visual overview of the preparation and cutting
process on the Cerqueta and Le Pastena bridges, respectively. The images illus-
trate the exposed cables, cutting actions, and the arrangement of wires post-cut,
showcasing the key aspects of the monitoring and preparation phases:

• Cerqueta Bridge: The series of images in Figure 4.8 highlight the initial
exposure, cutting, and detailed view of prestressed strands during the testing
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on the Cerqueta bridge. The arrangement and condition of the cables post-cut
are also shown.

• Le Pastena Bridge: Figure 4.9 presents the process on the Le Pastena
bridge, emphasizing the exposure and cutting of parallel wires. The close-up
images detail the arrangement after the cutting process, showing the structural
response to the controlled cuts.

(a) Opened section showing two cable cut
locations on Cerqueta Bridge.

(b) Cut section showing prestressed strands
on Cerqueta Bridge.

(c) Detail of exposed strands on Cerqueta
Bridge.

(d) Close-up of cable arrangement after cut
on Cerqueta Bridge.

Figure 4.8: Details of the cut sections on the prestressing wires of the Cerqueta
Bridge using a multi-tool by Dremel. The preparation involved using a hammer to
remove loosened cable pieces post-cut.
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(a) Initial exposure of parallel wires. (b) Cutting process of parallel wires.

(c) Close-up after cutting. (d) Detailed view of wires post-cut.

Figure 4.9: Details of the cut sections on the Le Pastena bridge showing the
parallel wires. The wires were cut using a multi-tool by Dremel, and a hammer
was used for removing cut pieces.

The data collected during these tests will be analyzed using advanced signal
processing and deep generative techniques, as outlined in Chapter 3. This analysis
will enhance our understanding of the structural responses observed and contribute
to the development of more effective SHM strategies.
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Results and Discussion

This chapter presents a comprehensive analysis of the data collected during the SHM
process. The dataset comprises signals categorized into four classes, as summarized
in Table 5.1. All signals are represented on a linear scale, with amplitudes expressed
in arbitrary units. This classification allows for targeted analysis of each type of
event captured during the SHM process.

Table 5.1: Dataset Summary: Signal Characteristics and Counts per Class

Characteristic Value
Samples per Signal 1000
Signal Length (s) 0.0104

Sampling Frequency (Hz) 96000

Class Max Mean Amplitude Peak Amplitude Signals
Breakage 0.1519 0.3333 200

Hammering 0.0089 0.0419 282
Dremel 0.0151 0.1606 466
Noise 0.0103 0.0359 400

The analyses presented in this chapter follow the methodologies described in
Chapter 3, where signal representation techniques and deep generative models were
detailed. All data processing and model training were implemented in Python
using the Google Colab environment. This platform provided the computational
resources required to manage large datasets and train deep generative models
effectively.

In the time domain analysis, we evaluate various statistical parameters such as
maximum amplitude, mean, standard deviation, skewness, and kurtosis to reveal

43



Results and Discussion

key features of each signal type. Visual representations like histograms, kernel
density estimate (KDE) plots, and violin plots demonstrate the differences and
relationships between these parameters. In the frequency domain, the STFT is ap-
plied to capture the time-frequency characteristics of the signals, and the resulting
spectrograms are used as inputs for deep generative models. Then, the performance
of three different types of GANs is then compared: Deep Convolutional GAN
(DCGAN), Wasserstein GAN (WGAN), and Least Squares GAN (LSGAN).

By using statistical analyses in both the time and frequency domains, followed by
machine learning techniques, this chapter aims to find insights crucial for developing
reliable automated monitoring systems in real-world SHM applications.

5.1 Time Domain Analysis
In this analysis, signals from the different classes—breakage, hammering, multi-tool
by Dremel operation, and noise—were examined over a 0.0104-second segment,
corresponding to a sample length of 1000 samples. This specific duration aligns with
the typical timescale of prestressing wire rupture in concrete structures, making
it relevant for capturing the transient events associated with structural failures.
To ensure consistency, signals from the other classes were segmented to the same
length for comparison.

Figure 5.1 shows two time domain signals for each class. From these updated visual
plots, the following observations were made:

• Breakage Signals: Tend to display initial amplitude spikes associated with
sudden, high-energy events, often stabilizing afterward. This behavior may
relate to structural failures, such as the breaking of prestressed tendons in
concrete bridges.

• Hammering Signals: Typically show relatively uniform amplitude changes
with minimal peaks, reflecting steady impacts from a hammer.

• Dremel Signals: Often exhibit gradual increases in amplitude mid-signal,
which may correlate with the operational pattern of the multi-tool by Dremel.

• Noise Signals: Usually consist of random fluctuations without significant
peaks, representing background noise.

This time domain analysis provides an initial understanding of the signal nature in
each class. The distinctive features of breakage, hammering, and dremel signals
compared to noise highlight the importance of automated monitoring to distinguish
between different structural events.
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Figure 5.1: Time domain signals for different classes.
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5.1.1 Time Domain Statistical Analysis
To further compare the signal classes, we analyzed key statistical parameters and
visualized them using histograms, kernel density estimates (KDE), and violin plots.
Figure 5.2 presents histograms that provide an initial overview of the distributions
for each class, highlighting the following key characteristics.

• Maximum and Minimum Amplitude: Breakage signals generally show
higher maximum and minimum amplitude values, indicating sudden, high-
energy events. In contrast, noise signals display lower values, consistent with
random background fluctuations.

• Mean Amplitude: Noise signals have a mean amplitude close to zero,
suggesting balanced fluctuations without strong deviations. Breakage signals
display a skewed mean, indicative of abrupt energy bursts.

• Standard Deviation: Breakage signals have wider distributions, indicating
greater variability compared to noise signals, which show a narrower spread.

• Skewness and Kurtosis: Breakage signals are highly skewed and have higher
kurtosis values, suggesting infrequent but sharp peaks. This contrasts with
the relatively balanced and lower kurtosis of noise signals.

While histograms provide a basic overview of statistical characteristics, KDE and
violin plots offer deeper insights into the distribution and density of these parame-
ters across signal classes. Figure 5.3 shows KDE plots with a bandwidth adjustment
(bw_adjust=0.3), estimating the probability density for each statistical parameter
and offering a nuanced view of data distribution. This adjustment yields sharper,
distinct peaks that highlight fine inter-class differences. For instance, breakage
signals show sharp yet lower peaks due to their sudden, singular energy bursts,
resulting in fewer high-value points and a less dense distribution compared to
repetitive signals like hammering or dremel. Conversely, noise signals exhibit a
wider spread, reflecting their random, balanced nature.

Figure 5.4 presents the violin plots that capture both the distribution and the
underlying probability density. These plots provide a more fine view compared
to histograms and KDE plots, highlighting differences in the data spread and
variability within each class. Breakage signals, for instance, have extended tails,
demonstrating variability and the presence of extreme values. In contrast, noise
signals exhibit a more compact, symmetrical shape, which reflects their stable
and balanced nature. The elongated nature of the breakage signals’ distribution,
particularly in the maximum and minimum amplitude plots, underscores their
tendency for extreme events. Additionally, the skewness and kurtosis plots show
that breakage signals possess significant asymmetry and rare high peaks.
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Figure 5.2: Histograms of various statistical parameters for each class in the time
domain.
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Figure 5.3: Kernel density estimate (KDE) plots showing the probability density
distribution for each statistical parameter by class.
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Figure 5.4: Violin plots showing the distribution of statistical parameters by class
in the time domain. 49
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5.2 Frequency Domain Analysis

Analyzing the frequency domain properties of signals provides essential insights into
their spectral characteristics, which are crucial for distinguishing various structural
events. This analysis was conducted using the Fourier Transform, a tool that allows
for a detailed examination of each signal’s frequency components and highlights
the unique characteristics of different signal classes. By examining the amplitude
spectrum, derived from applying the Fourier Transform, we can gain a deeper
understanding of how energy is distributed across frequencies, offering insights into
the underlying physical phenomena of each class.

Figure 5.5 illustrates the frequency domain representation of selected signals from
each class. The amplitude spectrum was calculated for each signal class, with
notable patterns observed across the different types of events. Key observations
include:

• Breakage Signals: These signals show clear, prominent peaks in the low
frequency range. This concentration of energy suggests a sudden release of
energy typical of a breakage event. The amplitude gradually decreases at
higher frequencies, indicating energy dissipation.

• Hammering Signals: The amplitude spectrum of hammering signals is
characterized by evenly distributed peaks within the low-frequency range,
suggesting a consistent and repetitive energy input, as expected from manual
impacts.

• Dremel Signals: These signals exhibit distinct, sharp peaks at specific
frequency values. These peaks correspond to the operational speed of the
multi-tool by Dremel, making this class easily identifiable based on its frequency
characteristics.

• Noise Signals: The noise signals show a relatively flat frequency spectrum
with no significant peaks, which aligns with the nature of ambient noise that
is more random and lacks a structured frequency pattern

The Fourier Transform analysis underscores the distinct frequency characteristics
of breakage and Dremel signals due to their sharp frequency peaks, which are
particularly useful for differentiating between these types of structural events. The
amplitude spectra, as visualized, help in identifying the unique energy profiles of
each class, thereby enhancing the effectiveness of signal classification within SHM
applications.

50



Results and Discussion

Figure 5.5: Frequency domain grid plot showing the amplitude spectrum of
signals from different classes. Each subplot represents the frequency characteristics
of selected signals from the breakage, hammering, dremel, and noise classes.
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5.2.1 Frequency Domain Statistical Analysis
To provide a comprehensive comparison of the frequency domain characteristics
across different signal classes, we generated both violin plots and KDE plots of
various statistical metrics. These visualizations offer insights into the distribution
of parameters such as maximum magnitude, total power, spectral entropy, skewness,
and kurtosis for each class. Figure 5.6 represents the violin plots that illustrate the
spread and density of statistical parameters such as maximum magnitude, total
power, spectral entropy, skewness, and kurtosis. Key observations include:

• Max Magnitude and Total Power: Breakage signals show higher values
for both parameters, indicating their intense nature, while noise signals display
lower values, consistent with random, low-energy characteristics.

• Spectral Entropy: Noise signals have the highest spectral entropy, indicating
a more complex and random frequency distribution. This contrasts with the
structured content observed in breakage and hammering signals.

• Skewness and Kurtosis: Breakage signals show higher skewness and kurtosis,
indicating sharp and infrequent peaks, reflecting concentrated energy at specific
frequencies. Noise signals show a more balanced distribution.

KDE Plots (Figure 5.7) presents the KDE plots that provide smooth probability
density estimates for the same statistical parameters, highlighting the distribution
shapes and density for each class. Key observations from the KDE plots include:

• Max Magnitude and Total Power: The KDE plots confirm that breakage
signals have a higher density of maximum magnitude and total power values
compared to other classes. The KDE visualization smooths out individual
data points, making it easier to see the overall trend.

• Spectral Entropy: The KDE plots show that noise signals have a wider
distribution of spectral entropy, reinforcing their complex frequency nature.

• Skewness and Kurtosis: The KDE plots emphasize the sharp, skewed distri-
butions of breakage signals, showcasing their unique frequency characteristics
compared to the more symmetric distribution of noise signals.

Together, the violin plots and KDE plots provide a detailed comparison of how the
statistical properties of different signal classes vary in the frequency domain. These
visualizations are essential for identifying distinguishing features that aid in the
classification of structural events.
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Figure 5.6: Violin plots of statistical parameters in the frequency domain for
different signal classes.
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Figure 5.7: Kernel density estimate (KDE) plots of statistical parameters in the
frequency domain for different signal classes.

54



Results and Discussion

5.3 Spectrograms Analysis
Spectrograms offer a powerful visual representation of how the frequency content
of signals changes over time, making them an essential method for analyzing
structural events in SHM. In this section, we detail the process of generating and
analyzing spectrograms for each signal class. First, we applied the Short-Time
Fourier Transform (STFT) to the signals to convert them from the time domain
to the time-frequency domain. This transformation allows us to observe how the
frequency components of a signal evolve over time, which is crucial for detecting
and characterizing transient events in SHM.

5.3.1 Selection of Window Size in STFT
The choice of window size in the STFT significantly affects the balance between
time and frequency resolution in the resulting spectrogram. To determine the
optimal window size for our analysis, we experimented with four different window
sizes: 64, 128, 256, and 512. Each window size presents a trade-off between time
resolution and frequency resolution:

• Window Size 64: Provides high time resolution, capturing rapid changes in
the signals, but with lower frequency resolution. As a result, the frequency
components appear broader and less defined. This is especially evident in the
breakage and hammering signals, where fine frequency details are blurred.

• Window Size 128: Achieves a balance between time and frequency resolution.
This window size reveals the distinct spectral patterns in each signal class
more effectively, offering clearer insights into the frequency components while
still retaining sufficient time resolution for event detection.

• Window Size 256: Enhances frequency resolution at the cost of reduced
time resolution. This size provides a more detailed view of the frequency
content but introduces time smearing, making it harder to detect the precise
onset of short-duration events, such as hammering impacts.

• Window Size 512: Maximizes frequency resolution, producing the sharpest
frequency components. However, the trade-off is a significant reduction in
time resolution, leading to time smearing that makes it difficult to capture
transient events accurately. In breakage and hammering signals, important
details about the event onset are lost due to the time smearing effect.

After evaluating the spectrograms produced with different window sizes, a window
size of 128 was selected for further analysis. This choice provides a satisfactory
balance between time and frequency resolution, capturing essential features of the
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signals while maintaining adequate temporal detail for detecting structural events.

Figures 5.8, 5.9, 5.10, and 5.11 display spectrograms for two signals from each class
with the four different window sizes applied. Each spectrogram’s x-axis represents
time (in seconds), the y-axis represents frequency (in Hz), and the color intensity
corresponds to the signal’s amplitude measured in decibels (dB).

Figure 5.8: Spectrograms for breakage signals with different window sizes.
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Figure 5.9: Spectrograms for dremel signals with different window sizes.
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Figure 5.10: Spectrograms for hammering signals with different window sizes.
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Figure 5.11: Spectrograms for noise signals with different window sizes.

Spectrogram Extraction and Conversion to Numpy Arrays

With the STFT applied and the optimal window size determined, the next step
involved extracting the spectrograms from the signals and converting them into
NumPy arrays for further analysis and use in deep learning models. This process
is essential for transforming the visual spectrogram data into a format suitable for
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computational processing.

STFT Parameters: To extract meaningful information from the time-frequency
domain, specific parameters were set:

• Window size: For this study, a window size of 128 was used, as determined
from the previous analysis.

• Overlap: A 50% overlap between consecutive windows is used to enhance
the temporal resolution without compromising the spectral detail.

• Sampling rate: The signals were sampled at a rate of 96000 Hz, allowing for
the capture of fine details across a wide frequency range.

Frequency Bins Calculation: Using a window size of 128, the STFT produces
128
2 + 1 = 65 frequency bins, representing frequencies from 0 Hz to the Nyquist

frequency. The Nyquist frequency, defined as half the sampling rate, is given by:

Nyquist frequency = sampling rate
2 = 96000

2 = 48000Hz (5.1)

Each frequency bin corresponds to a range of approximately 738.46 Hz, calculated
as:

Bin frequency range = 48000
65 ≈ 738.46, Hz (5.2)

Time Frames Calculation: The number of time frames in the spectrogram
depends on the signal length, window size, and hop size (which is half the window
size due to 50% overlap):

Hop size = window size
2 = 128

2 = 64 (5.3)

The number of frames N can then be calculated using the following formula:

N = 1 +
G

signal length − window size
hop size

H
(5.4)

For example, with a signal length of 1000 samples:

N = 1 +
91000 − 128

64 = 1 + 13.625 ≈ 15 frames
:

(5.5)

Thus, the resulting shape of each spectrogram array is approximately (15, 65).
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Conversion to Numpy Arrays: Once the STFT is computed, the resulting
spectrogram is stored as a 2D array where each element corresponds to the magni-
tude of a specific frequency bin at a given time frame. These 2D arrays are saved in
the ‘.npy‘ format, which is efficient for further processing and input to DL models.
The arrays are normalized to the range [-1,1] to standardize the data and facilitate
training in neural networks.

5.3.2 Normalization and Visualization of Spectrograms
To prepare the spectrogram data for input into deep learning models, we normalized
the NumPy arrays to the range [-1, 1]. This normalization ensures consistency
across all signal classes and facilitates more stable and efficient training of neural
networks.
Figures 5.12, 5.13, 5.14, and 5.15 display examples of the normalized spectrograms
for each signal class. These visualizations highlight how the frequency content has
been uniformly scaled while preserving the essential characteristics of the original
signals.

(a) Left channel spectrogram. (b) Right channel spectrogram.

Figure 5.12: Normalized spectrograms for the Dremel signal class.

(a) Left channel spectrogram. (b) Right channel spectrogram.

Figure 5.13: Normalized spectrograms for the Noise signal class.
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(a) Left channel spectrogram. (b) Right channel spectrogram.

Figure 5.14: Normalized spectrograms for the Hammering signal class.

(a) Left channel spectrogram. (b) Right channel spectrogram.

Figure 5.15: Normalized spectrograms for the Breakage signal class.

5.4 Generative Adversarial Networks Results
This section presents the results obtained from the three types of GANs used in
this research: DCGAN, WGAN, and LSGAN. Each model was trained using the
synthetic data generated from the STFT of the SHM signals, focusing specifically
on the Dremel class. The generated spectrograms were evaluated based on their
visual quality and the corresponding loss functions.

To enhance the training process and increase the robustness of the GANs, two
types of noise were employed during training. The first type is the latent noise
used as the input to the generator, denoted as z. This latent vector z ∈ R100 is
sampled from a uniform distribution and serves as the starting point for generating
synthetic data. The randomness introduced by z is crucial for producing diverse
outputs from the generator. The second type of noise is Gaussian noise, denoted
as N (0, 0.1), which was added to the real samples before they were input into the
discriminator. This Gaussian noise, with a mean of 0 and a standard deviation of
0.1, serves several purposes. By introducing small random variations to the real
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data, it creates a more realistic learning environment that mimics sensor fluctua-
tions or environmental changes commonly found in real-world SHM applications.
This helps the discriminator avoid overfitting by learning general patterns rather
than memorizing the exact details of the real samples. Moreover, the addition of
Gaussian noise mitigates mode collapse by ensuring greater variability in the input
data, thus improving the overall robustness and generalization ability of the GAN.
Together, the latent vector z as the input for the generator and the Gaussian noise
N (0, 0.1) added to the discriminator inputs enable the GAN to capture the vari-
ability found in real SHM scenarios more effectively. This results in the generation
of synthetic data that better reflects the diversity and quality of real-world SHM
conditions.

The following subsections detail the performance of each GAN variant, outlin-
ing their respective advantages and challenges. Visual outputs from the generators,
alongside the training dynamics of both discriminator and generator, are also pre-
sented to offer a clearer understanding of each model’s effectiveness in generating
realistic spectrograms for SHM tasks. The analysis of GAN-generated samples aims
to determine which model best replicates the distinct characteristics of breakage,
hammering, dremel, and noise signals. A comprehensive comparison will then be
conducted, focusing on visual quality and the quantitative FID metric.

5.4.1 Deep Convolutional Generative Adversarial Networks
Results

This section presents the architecture, training setup, and performance analysis of
the DCGAN model, focusing on its ability to generate synthetic spectrograms for
the Dremel class.

DCGAN Model Architecture

The DCGAN model consists of two main components: the generator and the
discriminator. Each component’s architecture is designed to progressively refine
features, with specific layers dedicated to enhancing stability and generalization.
Tables 5.2 and 5.3 provide a detailed breakdown of each layer, including output
shape and parameter count.

The generator architecture, as shown in Table 5.2), is configured to upsample
an input noise vector into a structured spectrogram resembling the original Dremel
signal. Starting with a dense layer, the network reshapes the noise vector and uses
convolutional layers with batch normalization, ReLU activations, and dropout to
build high-quality, realistic signal features.
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Table 5.2: Generator Architecture for the DCGAN

Layer (type) Output Shape Param #
Input Layer (None, 100) 0
Dense (None, 33792) 3,412,992
Reshape (None, 8, 33, 128) 0
Batch Normalization (None, 8, 33, 128) 512
ReLU (None, 8, 33, 128) 0
UpSampling2D (None, 16, 66, 128) 0
Conv2D (None, 16, 66, 128) 147,584
Batch Normalization (None, 16, 66, 128) 512
Conv2D (None, 16, 66, 128) 147,584
Batch Normalization (None, 16, 66, 128) 512
Dropout (None, 16, 66, 128) 0
Add (None, 16, 66, 128) 0
Conv2D (None, 15, 65, 64) 32,832
Batch Normalization (None, 15, 65, 64) 256
Conv2D (None, 15, 65, 1) 577
Total - 3,743,361

The discriminator, as depicted in Table 5.3, evaluates the authenticity of spectro-
grams by progressively downsampling the input and extracting hierarchical features
through a series of convolutional, batch normalization, and dropout layers. The
final dense layer outputs a binary classification indicating real or generated data.

Table 5.3: Discriminator Architecture for the DCGAN

Layer (type) Output Shape Param #
Conv2D (None, 8, 33, 64) 640
Batch Normalization (None, 8, 33, 64) 256
Dropout (None, 8, 33, 64) 0
Conv2D (None, 4, 17, 128) 73,856
Batch Normalization (None, 4, 17, 128) 512
Dropout (None, 4, 17, 128) 0
Conv2D (None, 2, 9, 256) 295,168
Batch Normalization (None, 2, 9, 256) 1,024
Dropout (None, 2, 9, 256) 0
Conv2D (None, 1, 5, 512) 1,180,160
Batch Normalization (None, 1, 5, 512) 2,048
Dropout (None, 1, 5, 512) 0
Flatten (None, 2560) 0
Dense (None, 1) 2,561
Total - 1,556,225
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Performance Analysis

The performance of the DCGAN model was assessed through two primary metrics:
discriminator accuracy and the loss values for both the generator and discriminator
over 1000 epochs.

Figure 5.16 illustrates the evolution of the discriminator’s accuracy and the loss
functions of both networks. Initially, the discriminator’s accuracy increases rapidly,
stabilizing around 0.45 after 200 epochs, indicating that it effectively differentiates
real from generated samples up to a certain level. The generator’s loss shows a
steady decrease, suggesting that its ability to create realistic samples improves over
time, while the discriminator’s loss plateaus, indicating stable learning dynamics.

These observations highlight the dynamics between the generator and discrim-
inator during training, with both networks adjusting to each other and reaching a
relatively stable state as training progresses.

(a) Discriminator accuracy during train-
ing.

(b) Training loss of the generator and
discriminator.

Figure 5.16: Results of DCGAN training for the Dremel class.

Training Instability and Observations

Despite extending the training to 1000 epochs, the DCGAN struggled to generate
fully realistic spectrograms, as shown in Figure 5.17. The generated samples exhibit
some structural features, but they fall short in replicating the distinct character-
istics of real signals, such as sharp frequency peaks or coherent frequency bands.
This limitation is largely attributed to the model’s struggle with mode collapse,
resulting in limited diversity in outputs and repetitiveness in generated samples.

65



Results and Discussion

The discriminator’s accuracy plateaued at around 50%, suggesting that it became
unable to effectively distinguish between real and synthetic samples as training
progressed. This stagnation indicates that the generator and discriminator reached
an equilibrium where neither network improved significantly, reflecting a need for a
more robust architecture or different training strategies to overcome these challenges.

In conclusion, while the DCGAN demonstrated some capacity to learn and replicate
general patterns, the instability in training and the limited fidelity of the generated
spectrograms highlight the necessity for exploring alternative GAN models. The
following sections will present the performance of WGAN and LSGAN, which em-
ploy modified architectures and training techniques to address the issues observed
with the DCGAN.

Figure 5.17: Spectrogram generated by the DCGAN after 1000 epochs, that lacks
the distinctive features of real spectrograms, such as well-defined frequency bands
and sharp transitions, highlighting the limitations of the current model.

5.4.2 Wasserstein Generative Adversarial Networks Results

This section provides an overview of the architecture, training behavior, and
performance of the Wasserstein GAN (WGAN) applied to the Dremel class, over
1000 epochs. The WGAN model showed improved stability and generated higher
quality samples compared to the DCGAN.
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WGAN Model Architecture

To clarify the architectural details of the WGAN utilized in this study, Tables 5.4
and 5.5 present the layer-by-layer composition of both the generator and discrimi-
nator models. Each table outlines the output shape and parameter count for each
layer, providing insight into the model’s structure.

The generator architecture, as shown in Table 5.4, begins with a dense layer
that reshapes the input noise vector into a higher-dimensional representation. This
is followed by a series of convolutional, batch normalization, and ReLU layers,
which facilitate feature learning and upsampling. The architecture’s design aims to
gradually increase the spatial dimensions of the synthetic spectrogram, allowing
it to capture and refine the essential features associated with the target signal
class. Dropout layers are incorporated to enhance training stability by reducing
overfitting.

Table 5.4: Generator Architecture for the WGAN.

Layer (type) Output Shape Param #
Input Layer (None, 100) 0
Dense (None, 33792) 3,412,992
Reshape (None, 8, 33, 128) 0
Batch Normalization (None, 8, 33, 128) 512
ReLU (None, 8, 33, 128) 0
UpSampling2D (None, 16, 66, 128) 0
Conv2D (None, 16, 66, 128) 147,584
Batch Normalization (None, 16, 66, 128) 512
ReLU (None, 16, 66, 128) 0
Dropout (None, 16, 66, 128) 0
Conv2D (None, 16, 66, 128) 147,584
Batch Normalization (None, 16, 66, 128) 512
ReLU (None, 16, 66, 128) 0
Conv2D (None, 15, 65, 64) 32,832
Batch Normalization (None, 15, 65, 64) 256
Conv2D (None, 15, 65, 1) 577
Total - 3,742,593

The discriminator architecture, as depicted in Table 5.5, includes convolutional
and LeakyReLU layers that progressively reduce the spatial dimensions of the
input, enabling it to extract hierarchical features from the spectrograms. Dropout
layers are used to improve the model’s generalization ability, while the final dense
layer outputs a single value representing the Wasserstein distance, which guides
the generator’s training process.
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Table 5.5: Discriminator Architecture for the WGAN.

Layer (type) Output Shape Param #
Conv2D (None, 8, 33, 64) 640
LeakyReLU (None, 8, 33, 64) 0
Dropout (None, 8, 33, 64) 0
Conv2D (None, 4, 17, 128) 73,856
LeakyReLU (None, 4, 17, 128) 0
Dropout (None, 4, 17, 128) 0
Flatten (None, 8704) 0
Dense (None, 1) 8,705
Total - 83,201

Performance Analysis

The WGAN demonstrated stable training dynamics compared to the DCGAN,
as seen in the generator and discriminator loss trends over 1000 epochs. The dis-
criminator’s loss, fluctuating around negative values, indicates consistent learning
driven by the Wasserstein distance. Figure 5.18 shows the progression of both
losses, revealing a dynamic interplay that contributed to high-quality synthetic
samples. The generator’s loss became increasingly negative over time, reflecting its
improvement in producing realistic data.

Throughout training, the generator and discriminator losses evolved as follows:

• Early stages: The generator’s loss was initially low (e.g., -0.0019 at epoch 10),
while the discriminator’s was high (e.g., 7.63), indicating an initial adjustment
phase.

• Middle stages: The generator’s loss turned more negative (e.g., -1.78 at epoch
170), with the discriminator’s loss also decreasing (around -6.49), showing
progress in sample realism.

• Late stages: By epoch 1000, the generator’s loss reached -7.98, while the
discriminator’s loss stabilized around -6.76, suggesting refined outputs with
minor stability challenges.

After 1000 epochs, the WGAN produced spectrograms with clearer structures and
reduced noise, as illustrated in Figure 5.19. These spectrograms exhibit distinct
patterns and higher fidelity, indicating that the WGAN effectively captured the
essential characteristics of the Dremel class. While minor artifacts and noise remain,
the quality and structure of the generated samples improved substantially over
earlier epochs.
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Figure 5.18: Discriminator and Generator Loss during WGAN training over 1000
epochs for the Dremel class. The discriminator’s loss shows a consistent decrease,
while the generator’s loss fluctuates and stabilizes as training progresses.

Figure 5.19: Sample of a synthetic spectrogram generated by the WGAN after
1000 epochs for the Dremel class. The generated spectrogram shows more structured
patterns and reduced noise.
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Training Stability and Observations

Throughout the training, the WGAN displayed greater stability than the DCGAN,
avoiding significant mode collapse and achieving a steady progression in sample
quality. The generated spectrograms after 1000 epochs exhibited clearer and more
accurate representations of the Dremel class, showing that the Wasserstein distance
and regular updates to the discriminator contributed to a robust training process.
As illustrated in Figure 5.20, the quality of the generated spectrograms improved
noticeably from epoch 100 to epoch 1000, with later samples featuring well-defined
patterns and reduced noise.

As shown in the spectrograms, the WGAN at 1000 epochs significantly improves
upon the results at 100 epochs. The generated samples exhibit much clearer struc-
ture, and the noise levels are greatly reduced, though some artifacts still remain.
These improvements suggest that the WGAN is more effective than the DCGAN for
this dataset. In conclusion, the WGAN demonstrated superior stability and image
quality compared to the DCGAN, underscoring the importance of the Wasserstein
distance and frequent discriminator updates for enhancing model performance.

(a) WGAN Generated spectrogram at 100
epochs.

(b) WGAN Generated spectrogram at 1000
epochs.

Figure 5.20: Comparison of spectrograms generated by WGAN at 100 and 1000
epochs.

5.4.3 Least Squares Generative Adversarial Networks Re-
sults

This section provides an overview of the architecture, training behavior, and
performance of the Least Squares GAN (LSGAN) applied to the Dremel class over
1000 epochs. The LSGAN model demonstrated greater stability and produced
higher quality samples compared to both the DCGAN and WGAN.
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LSGAN Model Architecture

To provide a comprehensive understanding of the LSGAN architecture, Tables 5.6
and 5.7 detail the structures of the generator and discriminator models. Each table
includes the layer composition, output shapes, and parameter counts.

The generator architecture, shown in Table 5.6, starts with a dense layer that ex-
pands the noise input into a high-dimensional representation, followed by transposed
convolutional, batch normalization, and LeakyReLU layers. This setup gradually
upsamples the noise, creating a synthetic spectrogram with characteristics of the
Dremel class. Batch normalization stabilizes training, while LeakyReLU activations
help capture essential patterns.

Table 5.6: Generator Architecture for the LSGAN.

Layer (type) Output Shape Param #
Dense (None, 62400) 6,302,400
LeakyReLU (None, 62400) 0
Reshape (None, 15, 65, 64) 0
Conv2DTranspose (None, 15, 65, 64) 36,928
LeakyReLU (None, 15, 65, 64) 0
BatchNormalization (None, 15, 65, 64) 256
Conv2DTranspose (None, 15, 65, 1) 577
Total - 6,340,161

The discriminator, as depicted in Table 5.7, classifies real and synthetic samples
through convolutional and LeakyReLU layers, with Dropout layers for regularization.
It reduces input dimensions progressively, extracting hierarchical features that aid
in distinguishing real from generated spectrograms. The final dense layer outputs
a single value, guiding the generator to produce samples that resemble real data.

Table 5.7: Discriminator Architecture for the LSGAN.

Layer (type) Output Shape Param #
Conv2D (None, 8, 33, 64) 640
LeakyReLU (None, 8, 33, 64) 0
Dropout (None, 8, 33, 64) 0
Conv2D (None, 4, 17, 128) 73,856
LeakyReLU (None, 4, 17, 128) 0
Dropout (None, 4, 17, 128) 0
Flatten (None, 8704) 0
Dense (None, 1) 8,705
Total - 83,201
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Performance Analysis

The LSGAN’s training on the Dremel class data over 1000 epochs demonstrated a
stable and effective learning process, with clear improvements in model performance
as training progressed. Initially, the discriminator’s loss was notably higher than
the generator’s, reflecting the early stages where both networks were adjusting to
distinguish between real and generated samples. This phase exhibited significant
fluctuations as both networks learned to adapt. As training advanced, the generator
started producing more realistic samples, resulting in a gradual decrease in its loss.
Meanwhile, the discriminator maintained relatively stable loss values, indicating
effective adaptation to both real and synthetic data. This balance between the
networks enabled steady progress, with neither network excessively dominating the
other. Towards the later stages, both generator and discriminator losses stabilized,
with the discriminator’s loss settling around 0.5 and the generator’s around 0.25.
These consistent loss values suggest the training achieved a balance, successfully
avoiding issues like mode collapse. The stable loss curves also highlight the effec-
tiveness of the least-squares loss function in LSGAN, promoting balanced training
dynamics and ensuring high-quality spectrogram generation.

Figure 5.21 shows the evolution of loss values, highlighting minimal fluctuations as
training converges.

Figure 5.21: Training loss for the generator and discriminator during LSGAN
training over 1000 epochs, showing stable learning with minimal fluctuations.
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After 1000 epochs, the LSGAN generated synthetic spectrograms with improved
structural clarity and reduced noise, as illustrated in Figure 5.22. These samples
demonstrate the model’s ability to capture the characteristic frequency patterns
of the Dremel class, including distinct frequency bands and coherent structures.
Compared to the initial epochs, the spectrograms now display enhanced visual
fidelity, reflecting the effectiveness of the LSGAN’s architecture and loss function
in producing high-quality synthetic data.

Figure 5.22: Sample spectrogram generated by the LSGAN after 1000 epochs,
showing clear structure and well-defined frequency components.

Training Stability and Observations

The LSGAN demonstrated stable training across 1000 epochs, maintaining consis-
tent generator and discriminator performance. The addition of noise to the real
samples contributed to robust learning, smoothing the loss curves and improving
the model’s resilience. The model effectively mitigated issues such as mode collapse,
ensuring a diverse range of generated outputs that capture the essential character-
istics of the Dremel class.

In conclusion, the LSGAN’s least-squares loss function and robust training dynam-
ics allowed it to produce high-quality spectrograms with minimal fluctuations in
loss values. The generated samples displayed strong structural fidelity, making the
LSGAN a promising model for generating realistic SHM data. Future refinements,
such as further tuning of parameters or exploring architectural modifications, may
enhance its performance even further.
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5.5 Performance Comparison of DCGAN, WGAN
and LSGAN

This section provides a comprehensive comparison between the DCGAN, WGAN,
and LSGAN models, examining their training losses, FID scores, and final generated
samples.

5.5.1 Training Losses
Figures 5.23, 5.24, 5.25, and 5.26 show the generator and discriminator losses over
1000 epochs for each model when trained on the Dremel, Breakage, Hammering,
and Noise datasets, respectively.

The comparison highlights that the WGAN model exhibits smoother loss curves
with significantly less fluctuation in both the generator and discriminator losses,
particularly after the 400-epoch mark. This stability across epochs reflects the
effectiveness of the Wasserstein distance in promoting gradual and steady learning,
which is essential for generating high-quality samples. The WGAN’s design, which
updates the discriminator more frequently and minimizes oscillations, proves bene-
ficial in maintaining training consistency, especially on complex datasets such as
Dremel and Noise.
Conversely, the DCGAN displays more pronounced fluctuations and instability,
with the discriminator loss often approaching values indicative of random guessing
after extended training. This instability suggests that the DCGAN struggles with
training balance and may suffer from issues such as mode collapse, where the
generator fails to produce diverse samples.
The LSGAN maintains stable losses throughout the training, which is attributed to
the least-squares loss function that promotes smoother gradients and helps avoid
sharp fluctuations. This mechanism aids in preventing mode collapse and enhances
the overall stability of the training process. The least-squares approach allows
the LSGAN to generate samples that better capture the distribution of real data,
making it a preferable choice in cases where consistent model performance is crucial.

Each figure includes a zoomed view of the LSGAN losses, providing a closer
look at the model’s behavior in the later stages of training. The zoomed-in view
reveals slight fluctuations in the LSGAN’s losses, especially as it approaches con-
vergence. These minor oscillations are natural and minimal compared to the more
significant fluctuations observed in the DCGAN and WGAN models. Overall, the
stability of the LSGAN’s losses, with generator and discriminator losses remaining
relatively close and synchronized, underscores the effectiveness of the least-squares
loss function. This approach not only stabilizes training but also ensures balanced

74



Results and Discussion

and consistent progress, reducing the likelihood of mode collapse.

Figure 5.23: Comparison of generator and discriminator losses for DCGAN,
WGAN, and LSGAN over 1000 epochs on the Dremel dataset (466 signals).

Figure 5.24: Comparison of generator and discriminator losses for DCGAN,
WGAN, and LSGAN over 1000 epochs on the Breakage dataset (200 signals).
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Figure 5.25: Comparison of generator and discriminator losses for DCGAN,
WGAN, and LSGAN over 1000 epochs on the Hammering dataset (282 signals).

Figure 5.26: Comparison of generator and discriminator losses for DCGAN,
WGAN, and LSGAN over 1000 epochs on the Noise dataset (400 signals).
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5.5.2 Fréchet Inception Distance Score
Table 5.8 shows the FID scores for the three models on the Dremel, Breakage,
Hammering, and Noise datasets, respectively. The results indicate that the DCGAN
consistently produced the highest FID scores, suggesting that the generated data is
far from realistic. In contrast, the WGAN achieved significantly lower FID scores,
demonstrating an improvement in the quality of generated samples. The LSGAN
achieved the lowest FID scores for all datasets, suggesting that it generated the
most realistic samples among the three models. As explained in Section 3.3, the
FID score provides an objective measure of how closely the generated data matches
the real data by comparing their distributions in the feature space of a pre-trained
network. Lower FID scores indicate a better match, meaning that the LSGAN was
able to generate more realistic spectrograms compared to the other models.

Table 5.8: FID Scores for DCGAN, WGAN, and LSGAN on Dremel (466 signals),
Breakage (200 signals), Hammering (282 signals), and Noise (400 signals) datasets.
Lower scores indicate higher-quality generated data.

Model Dremel FID Breakage FID Hammering FID Noise FID
DCGAN 408.51 478.66 406.12 400.26
WGAN 77.61 89.41 84.54 59.39
LSGAN 30.33 39.52 34.33 32.66

The results clearly show that the LSGAN outperforms both the DCGAN and
WGAN in terms of both training stability and image quality for all datasets. The
LSGAN’s least-squares loss function provides smoother gradients, which helps
improve the generator’s performance and produce more realistic spectrograms.
The WGAN, while significantly better than the DCGAN, still suffers from minor
fluctuations in the generator’s loss, which may be improved with further tuning of
the hyperparameters. The DCGAN, however, exhibits poor stability and generates
lower-quality samples, indicating that it is less suitable for this specific task.

In conclusion, while both the WGAN and LSGAN offer significant improvements
over the DCGAN, the LSGAN is the most effective model for generating high-
quality spectrograms in this SHM application, as demonstrated by its superior FID
scores and more stable training dynamics across different datasets.

5.5.3 Final Generated Samples
Figure 5.27 showcases examples of the final generated spectrograms from the
LSGAN model at epoch 1000 for the Dremel, Breakage, Hammering, and Noise
datasets. These samples demonstrate the model’s ability to capture characteristic
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frequency patterns, with distinct frequency bands and coherent structure. Com-
pared to the initial training epochs, the spectrograms generated by the LSGAN
exhibit higher visual fidelity, clearer structures, and reduced noise.

The stability observed in the LSGAN’s training process, combined with its low
FID scores, reflects its capability to produce realistic and high-quality synthetic
samples. This makes the LSGAN a more suitable model than both the DCGAN
and WGAN for SHM applications.

(a) LSGAN Generated Spectrogram
(Dremel)

(b) LSGAN Generated Spectrogram
(Breakage)

(c) LSGAN Generated Spectrogram
(Hammering)

(d) LSGAN Generated Spectrogram
(Noise)

Figure 5.27: Examples of LSGAN generated spectrograms at epoch 1000 for
different signal classes: Dremel, Breakage, Hammering, and Noise.
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Chapter 6

Conclusion and Future
Developments

This thesis explored advanced methodologies in Structural Health Monitoring
(SHM) to enhance the detection and prediction of structural anomalies in pre-
stressed concrete bridges. The research focused on three main areas: signal
representation techniques, data acquisition, and the application of deep generative
models. Time-frequency analysis was implemented using the Short-Time Fourier
Transform (STFT) to capture both temporal and spectral features of sensor signals.
In-situ data collection was conducted on two prestressed concrete bridges, Le
Pastena and Cerqueta, located on the A24 highway in the province of L’Aquila
and scheduled for demolition. Using accelerometers and acoustic emission sensors,
real-time data was collected during controlled destructive testing involving the
cutting of prestressing wires, creating a valuable dataset for SHM.

The comparative analysis involved three types of Generative Adversarial Net-
works (GANs), Deep Convolutional GAN (DCGAN), Wasserstein GAN (WGAN),
and Least Squares GAN (LSGAN), applied to generate synthetic spectrograms for
data augmentation (DA) purposes. The LSGAN outperformed both the DCGAN
and WGAN in generating high-quality spectrograms, demonstrating stable training
dynamics and achieving the lowest Fréchet Inception Distance (FID) scores across
all signal classes. This outcome suggests significant potential for LSGAN-generated
synthetic data to improve SHM applications, particularly in scenarios where real-
world data is limited.

The analysis of time and frequency domains revealed general patterns among
the four signal classes (breakage, hammering, dremel, and noise). In the time
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domain, signals showed varying amplitude trends, while frequency domain anal-
ysis identified distinct spectral profiles across classes. For instance, breakage
signals tended to concentrate energy in lower frequencies, while dremel class signals
displayed sharper peaks aligned with operational speed. Spectrogram analysis,
optimized with a window size of 128, achieved a balanced representation, improving
input quality for GAN performance. This approach facilitated deeper insights that
support the development of automated systems for reliable anomaly detection.

This study contributes to SHM by analyzing the use of generative deep learn-
ing (GDL) models to create real-world synthetic datasets that can potentially
improve the detection and classification of anomalies in structural monitoring. The
LSGAN’s capability to generate realistic synthetic data could address data scarcity,
a critical limitation in SHM, allowing for better deep learning (DL) model training.

While the findings are promising, the research also identified challenges. Data
scarcity, particularly for certain signal classes like breakage and hammering, limited
model generalization. Computational demands associated with GAN training also
constrained scalability. Additionally, data collection was conducted under specific
conditions, potentially affecting model performance in varied environments.

To address these limitations, future research could focus on enhancing synthetic
data quality to better mimic real-world failures through approaches like domain
adaptation or transfer learning. Exploring alternative DL architectures could
further improve data generation capabilities and prediction accuracy. Developing
real-time SHM systems capable of on-the-fly data processing would enable predic-
tive maintenance and timely interventions. Expanding datasets by collecting data
from varied structures and environments, as well as collaborating with industry
partners for data sharing and field validation, could improve model robustness
and confirm their practical applicability. Moreover, integrating Explainable AI
(XAI) techniques could enhance model transparency, allowing SHM operators to
better understand decision-making processes. The use of unmanned aerial vehicles
(Unmanned Aerial Vehicles (UAVs)s) equipped with IoT sensors also presents a
promising advancement for monitoring hard-to-access areas, reducing reliance on
manual inspections while improving safety and efficiency.

This thesis demonstrates the potential of combining signal processing and GDL in
SHM. By replicating complex structural event patterns, these methods contribute to
more accurate anomaly detection. The success of LSGAN in this research highlights
the potential of GANs and generative models for data-scarce fields like SHM. Con-
tinued research and industry collaboration will advance SHM, ultimately supporting
safer and more resilient infrastructure management, especially for bridges.
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Appendix A

DCGAN Architecture

In this appendix, we present the architecture and code for the Deep Convolutional
Generative Adversarial Network (DCGAN) implemented in Python using Tensor-
Flow and Keras. This architecture is designed to generate synthetic spectrogram
data for SHM applications.

A.1 DCGAN Generator and Discriminator Code

Listing A.1: DCGAN Generator and Discriminator Architecture
1 de f build_dcgan_generator ( z_dim) :
2 model = models . S equent i a l ( )
3

4 model . add ( l a y e r s . Dense (8 ∗ 33 ∗ 128 , k e r n e l _ i n i t i a l i z e r=’
he_normal ’ , input_dim=z_dim) )

5 model . add ( l a y e r s . Reshape ( ( 8 , 33 , 128) ) )
6 model . add ( l a y e r s . BatchNormalizat ion ( ) )
7 model . add ( l a y e r s .ReLU( ) )
8

9 model . add ( l a y e r s . UpSampling2D ( s i z e =(2 , 2) ) )
10 model . add ( l a y e r s . Conv2D(128 , k e rne l_s i z e =3, padding=" same " ,

k e r n e l _ i n i t i a l i z e r=’ he_normal ’ , a c t i v a t i o n=’ r e l u ’ ) )
11 model . add ( l a y e r s . BatchNormalizat ion ( ) )
12

13 model . add ( l a y e r s . Conv2D(128 , k e rne l_s i z e =3, padding=" same " ,
k e r n e l _ i n i t i a l i z e r=’ he_normal ’ , a c t i v a t i o n=’ r e l u ’ ) )

14 model . add ( l a y e r s . BatchNormalizat ion ( ) )
15 model . add ( l a y e r s . Dropout ( 0 . 3 ) )
16 model . add ( l a y e r s . Add( ) )
17
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18 model . add ( l a y e r s . Conv2D(64 , k e rne l_s i z e =(2 , 2) , s t r i d e s =(1 , 1) ,
padding=" v a l i d " , k e r n e l _ i n i t i a l i z e r=’ he_normal ’ , a c t i v a t i o n=’
r e l u ’ ) )

19 model . add ( l a y e r s . BatchNormalizat ion ( ) )
20

21 model . add ( l a y e r s . Conv2D(1 , k e rne l_s i z e =3, padding=" same " ,
a c t i v a t i o n=" tanh " ) )

22

23 re turn model

A.2 Training Configuration

Listing A.2: DCGAN Training Loop
1 de f train_gan ( epochs , batch_size , z_dim , gan_generator ,

dcgan_discr iminator , gan , X_train , v i s u a l i z e _ i n t e r v a l =100) :
2 r e a l = np . ones ( ( batch_size , 1) )
3 f ake = np . z e ro s ( ( batch_size , 1) )
4 gan_metrics = { ’ gene ra to r_ lo s s ’ : [ ] , ’ d i s c r i m i n a t o r _ l o s s ’ : [ ] , ’

d i s c r iminator_accuracy ’ : [ ] }
5

6 f o r epoch in range ( epochs ) :
7 idx = np . random . rand int (0 , X_train . shape [ 0 ] , batch_size )
8 real_images = X_train [ idx ]
9 real_images += np . random . normal (0 , 0 . 1 , real_images . shape )

10

11 no i s e = np . random . normal (0 , 1 , ( batch_size , z_dim) )
12 fake_images = gan_generator . p r e d i c t ( no i s e )
13

14 d_loss_real , d_acc_real = dcgan_discr iminator . train_on_batch (
real_images , r e a l )

15 d_loss_fake , d_acc_fake = dcgan_discr iminator . train_on_batch (
fake_images , fake )

16

17 d_loss = np . add ( d_loss_real , d_loss_fake )
18 d_acc = np . add ( d_acc_real , d_acc_fake ) / 2
19

20 no i s e = np . random . normal (0 , 1 , ( batch_size , z_dim) )
21 g_loss = gan . train_on_batch ( no i se , r e a l )
22

23 i f i s i n s t a n c e ( g_loss , l i s t ) :
24 g_loss = g_loss [ 0 ]
25 i f i s i n s t a n c e ( d_loss , l i s t ) :
26 d_loss = d_loss [ 0 ]
27

28 gan_metrics [ ’ g ene ra to r_ lo s s ’ ] . append ( g_loss )
29 gan_metrics [ ’ d i s c r i m i n a t o r _ l o s s ’ ] . append ( d_loss )
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30 gan_metrics [ ’ d i s c r iminator_accuracy ’ ] . append ( d_acc )
31

32 i f ( epoch + 1) % 10 == 0 :
33 pr in t ( f ’ Epoch {epoch+1}/{epochs } , Generator Loss : { g_loss

: . 4 f } , D i s c r iminator Loss : { d_loss : . 4 f } , D i s c r iminator
Accuracy : {d_acc ∗ 1 0 0 : . 2 f}% ’ )

34

35 pr in t ( "DCGAN t r a i n i n g completed ! " )
36 re turn gan_metrics
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WGAN Architecture

In this appendix, we present the architecture and code for the Wasserstein Gen-
erative Adversarial Network (WGAN) implemented in Python using TensorFlow
and Keras. This implementation is used in the research for generating synthetic
spectrogram data in SHM.

B.1 WGAN Generator and Discriminator Code

Listing B.1: WGAN Generator and Discriminator Architecture
1 de f build_wgan_generator ( z_dim) :
2 model = models . S equent i a l ( )
3 model . add ( l a y e r s . Dense (8 ∗ 33 ∗ 128 , a c t i v a t i o n=" r e l u " , input_dim

=z_dim) )
4 model . add ( l a y e r s . Reshape ( ( 8 , 33 , 128) ) )
5 model . add ( l a y e r s . UpSampling2D ( s i z e =(2 , 2) ) )
6 model . add ( l a y e r s . Conv2D(128 , k e rne l_s i z e =3, padding=" same " ) )
7 model . add ( l a y e r s . BatchNormalizat ion ( ) )
8 model . add ( l a y e r s .ReLU( ) )
9 model . add ( l a y e r s . Conv2D(128 , k e rne l_s i z e =3, padding=" same " ) )

10 model . add ( l a y e r s . BatchNormalizat ion ( ) )
11 model . add ( l a y e r s .ReLU( ) )
12 model . add ( l a y e r s . Conv2D(64 , k e rne l_s i z e =(2 , 2) , s t r i d e s =(1 , 1) ,

padding=" v a l i d " ) )
13 model . add ( l a y e r s . Conv2D(1 , k e rne l_s i z e =3, padding=" same " ,

a c t i v a t i o n=" tanh " ) )
14 re turn model
15

16 de f bui ld_wgan_discr iminator ( input_shape ) :
17 model = models . S equent i a l ( )
18 model . add ( l a y e r s . Conv2D(64 , k e rne l_s i z e =3, s t r i d e s =2, input_shape

=input_shape , padding=" same " ) )
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19 model . add ( l a y e r s . LeakyReLU( alpha =0.2) )
20 model . add ( l a y e r s . Dropout ( 0 . 2 5 ) )
21 model . add ( l a y e r s . Conv2D(128 , k e rne l_s i z e =3, s t r i d e s =2, padding="

same " ) )
22 model . add ( l a y e r s . LeakyReLU( alpha =0.2) )
23 model . add ( l a y e r s . Dropout ( 0 . 2 5 ) )
24 model . add ( l a y e r s . F lat ten ( ) )
25 model . add ( l a y e r s . Dense (1 ) )
26 re turn model

B.2 Training Loop and Gradient Penalty

Listing B.2: WGAN Training Loop and Gradient Penalty
1 de f gradient_penalty ( wgan_discriminator , real_samples , fake_samples ) :
2 batch_size = t f . shape ( real_samples ) [ 0 ]
3 e p s i l o n = t f . random . uniform ( [ batch_size , 1 , 1 , 1 ] , 0 . 0 , 1 . 0 )
4 in terpo lated_samples = e p s i l o n ∗ real_samples + (1 − e p s i l o n ) ∗

fake_samples
5 with t f . GradientTape ( ) as tape :
6 tape . watch ( interpo lated_samples )
7 i n t e r p o l a t e d _ p r e d i c t i o n s = wgan_discr iminator (

interpo lated_samples )
8 g rad i en t s = tape . g rad i en t ( i n t e rpo l a t ed_pred i c t i on s , [

in terpo lated_samples ] ) [ 0 ]
9 grad_l2_norm = t f . s q r t ( t f . reduce_sum ( t f . square ( g r ad i en t s ) , ax i s

=[1 , 2 , 3 ] ) )
10 gradient_penalty = t f . reduce_mean ( ( grad_l2_norm − 1 . 0 ) ∗∗ 2)
11 re turn gradient_penalty
12

13 de f train_wgan ( wgan_generator , wgan_discriminator , X_train ,
batch_size , z_dim , epochs ) :

14 wgan_generator_optimizer = t f . keras . op t im i z e r s .Adam( l ea rn ing_rate
=1e −4, beta_1 =0.5 , beta_2 =0.9)

15 d i s c r im inato r_opt imize r = t f . keras . op t im i z e r s .Adam( l ea rn ing_rate
=1e −4, beta_1 =0.5 , beta_2 =0.9)

16 f o r epoch in range ( epochs ) :
17 f o r _ in range (5 ) :
18 idx = np . random . rand int (0 , X_train . shape [ 0 ] , batch_size )
19 real_samples = X_train [ idx ]
20 noise_real_samples = real_samples + np . random . normal (0 ,

0 . 1 , rea l_samples . shape )
21 no i s e = t f . random . normal ( [ batch_size , z_dim ] )
22 fake_samples = wgan_generator ( no i s e )
23 with t f . GradientTape ( ) as d i sc r iminator_tape :
24 r e a l _ p r e d i c t i o n s = wgan_discr iminator (

noise_real_samples )
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25 f ake_pred i c t i on s = wgan_discr iminator ( fake_samples )
26 gp = gradient_penalty ( wgan_discriminator ,

noise_real_samples , fake_samples )
27 d i s c r i m i n a t o r _ l o s s = wgan_gp_loss ( r ea l_pred i c t i on s ,

f ake_pred i c t i ons , gp )
28 d i s c r im ina to r_grad i en t s = di sc r iminator_tape . g rad i en t (

d i s c r im ina to r_ lo s s , wgan_discr iminator .
t r a i n a b l e _ v a r i a b l e s )

29 d i s c r im inato r_opt imize r . apply_gradients ( z ip (
d i s c r im inato r_grad i ent s , wgan_discr iminator .
t r a i n a b l e _ v a r i a b l e s ) )

30 no i s e = t f . random . normal ( [ batch_size , z_dim ] )
31 with t f . GradientTape ( ) as generator_tape :
32 fake_samples = wgan_generator ( no i s e )
33 f ake_pred i c t i on s = wgan_discr iminator ( fake_samples )
34 gene ra to r_ lo s s = −t f . reduce_mean ( f ake_pred i c t i on s )
35 generator_grad ient s = generator_tape . g rad i en t ( generator_loss ,

wgan_generator . t r a i n a b l e _ v a r i a b l e s )
36 wgan_generator_optimizer . apply_gradients ( z ip (

generator_grad ients , wgan_generator . t r a i n a b l e _ v a r i a b l e s ) )
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LSGAN Model Architecture

In this appendix, we present the architecture and code for Least Squares Generative
Adversarial Network (LSGAN) mplemented in Python using TensorFlow and Keras.
This implementation is used in the research for generating synthetic spectrogram
data in SHM.

C.1 LSGAN Generator and Discriminator Archi-
tecture

Listing C.1: LSGAN Generator and Discriminator Architecture
1 de f bui ld_lsgan_generator ( z_dim) :
2 l sgan_generator = Sequent i a l ( )
3 l sgan_generator . add ( Dense (15 ∗ 65 ∗ 64 , input_dim=z_dim) )
4 l sgan_generator . add (LeakyReLU( alpha =0.2) )
5 l sgan_generator . add ( Reshape ( (15 , 65 , 64) ) )
6 l sgan_generator . add ( Conv2DTranspose (64 , k e rne l_s i z e =3, s t r i d e s =1,

padding=’ same ’ ) )
7 l sgan_generator . add (LeakyReLU( alpha =0.2) )
8 l sgan_generator . add ( BatchNormal izat ion ( ) )
9 l sgan_generator . add ( Conv2DTranspose (1 , k e rne l_s i z e =3, s t r i d e s =1,

padding=’ same ’ , a c t i v a t i o n=’ tanh ’ ) )
10 re turn l sgan_generator
11

12 de f bu i ld_l sgan_di sc r iminator ( input_shape ) :
13 l s gan_d i s c r im inato r = Sequent i a l ( )
14 l s gan_d i s c r im inato r . add (Conv2D(64 , k e rne l_s i z e =(3 ,3) , s t r i d e s

=(2 ,2) , padding=’ same ’ , input_shape=input_shape ) )
15 l s gan_d i s c r im inato r . add (LeakyReLU( alpha =0.2) )
16 l s gan_d i s c r im inato r . add ( Dropout ( 0 . 3 ) )
17 l s gan_d i s c r im inato r . add (Conv2D(128 , k e rne l_s i z e =(3 ,3) , s t r i d e s

=(2 ,2) , padding=’ same ’ ) )
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18 l s gan_d i s c r im inato r . add (LeakyReLU( alpha =0.2) )
19 l s gan_d i s c r im inato r . add ( Dropout ( 0 . 3 ) )
20 l s gan_d i s c r im inato r . add ( Flat ten ( ) )
21 l s gan_d i s c r im inato r . add ( Dense (1 , a c t i v a t i o n=’ l i n e a r ’ ) )
22 re turn l sgan_d i s c r im inato r

C.2 Training Configuration

Listing C.2: LSGAN Training Loop
1 de f t ra in_l sgan ( lsgan_generator , l sgan_di sc r iminator , X_train , epochs

, batch_size , z_dim) :
2 l sgan_generator_opt imizer = Adam( l ea rn ing_rate =0.0002 , beta_1

=0.5 , beta_2 =0.9)
3 d i s c r im inato r_opt imize r = Adam( l ea rn ing_rate =0.0002 , beta_1 =0.5 ,

beta_2 =0.9)
4 l s g an_ lo s s e s = { ’ generato r ’ : [ ] , ’ d i s c r i m i n a t o r ’ : [ ] }
5 batches_per_epoch = i n t ( X_train . shape [ 0 ] / batch_size )
6 f o r epoch in range ( epochs ) :
7 f o r batch_num in range ( batches_per_epoch ) :
8 s t a r t = batch_num ∗ batch_size
9 end = s t a r t + batch_size

10 real_images = X_train [ s t a r t : end ]
11 no i s e = t f . random . normal ( [ batch_size , z_dim ] )
12 generated_images = lsgan_generator ( no i s e )
13 with t f . GradientTape ( ) as tape :
14 real_output = l sgan_d i s c r im inato r ( real_images )
15 fake_output = l sgan_d i s c r im inato r ( generated_images )
16 d i s c r i m i n a t o r _ l o s s = l sgan_d i s c r im ina to r_ lo s s (

real_output , fake_output )
17 grad i ent s_o f_d i s c r im inato r = tape . g rad i en t (

d i s c r im ina to r_ lo s s , l s gan_d i s c r im inato r .
t r a i n a b l e _ v a r i a b l e s )

18 d i s c r im inato r_opt imize r . apply_gradients ( z ip (
grad ient s_of_di sc r iminator , l s gan_d i s c r im inato r .
t r a i n a b l e _ v a r i a b l e s ) )

19 with t f . GradientTape ( ) as tape :
20 generated_images = lsgan_generator ( no i s e )
21 fake_output = l sgan_d i s c r im inato r ( generated_images )
22 gene ra to r_ lo s s = lsgan_generator_los s ( fake_output )
23 grad ients_of_generator = tape . g rad i ent ( generator_loss ,

l sgan_generator . t r a i n a b l e _ v a r i a b l e s )
24 l sgan_generator_opt imizer . apply_gradients ( z ip (

gradients_of_generator , l sgan_generator .
t r a i n a b l e _ v a r i a b l e s ) )

25 l s g an_ lo s s e s [ ’ g enerato r ’ ] . append ( gene ra to r_ lo s s . numpy( ) )
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26 l s g an_ lo s s e s [ ’ d i s c r i m i n a t o r ’ ] . append ( d i s c r i m i n a t o r _ l o s s . numpy
( ) )

27 i f ( epoch + 1) % 10 == 0 :
28 pr in t ( f ’ Epoch {epoch+1}/{epochs } , Generator Loss : {

gene ra to r_ lo s s . numpy( ) } , D i s c r iminator Loss : {
d i s c r i m i n a t o r _ l o s s . numpy( ) } ’ )

29 pr in t ( "LSGAN t r a i n i n g completed ! " )
30 re turn l s gan_ lo s s e s
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