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Summary

Since the beginning of space exploration, thousands of satellites have been launched
into Earth orbit. Over the years, however, the increasing number of artificial satel-
lites placed in orbit has been matched by an increase in the probability of collisions
between the satellites themselves. Such events would produce orbiting fragments,
each of which would exponentially increase the probability of further collisions
occurring in the future. The criticality of the Kessler Syndrome, acknowledged by
researchers since the 1980s, has led to the formation of a space debris belt around
Earth, particularly in Low Earth Orbits (LEO) below 2000 km.
This creates a severe threat to both the safety and functionality of space assets, as
collisions with space debris can cause substantial damage or complete destruction
of spacecraft; in recent decades, therefore, mission disposal operations have increas-
ingly become relevant. Notably congested regions include the Sun-Synchronous
Orbits (SSO) and Polar Orbits (PEO) at altitudes of 600-1200 km and inclinations
of 80-105 degrees, particularly around 800-900 km. These orbits, critical for Earth
observation, necessitate effective debris removal solutions for non-functional or
undesirable objects.

This paper proposes evaluating an optimal trajectory for a Space Debris Re-
moval (SDR) mission utilizing electric propulsion (EP) to remove debris from such
orbits. The indirect method is well suited for very high accuracy in solving the op-
timal EP trajectories, exploiting the Pontryagin’s minimum Principle and ensuring
minimum-propellant expenditure through the extremization of the Hamiltonian
and the application of bang-bang control. An essential aspect of SDR missions
is the capability for controlled de-orbit and re-entry into the Earth’s atmosphere
within 25 years, according to current space regulations.
The mission is divided into two key phases: 1) a propulsive phase, where the
spacecraft transitions from an initial parking orbit to the targeted debris using
low-thrust EP arcs, and 2) a de-orbiting phase, which involves a controlled spiral
descent and re-entry into Earth’s atmosphere at an altitude of 100 km, utilizing
the remaining propellant with the throttle set at 10%.
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The dynamic model is based on the two-body problem, accommodating addi-
tional perturbations such as Earth’s non-sphericity and atmospheric drag during
the de-orbiting phase.
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Chapter 1

Introduction

There are places where litter is
acceptable, and others where is not.

Alice Gorman

1.1 Preface
In the collective imaginary, the epic vision of a spacecraft forced to avoid dangerous
asteroids to achieve a specific mission objective is an indelible icon associated with
space and movies about it.

Cinephiles with sci-fi passion will undoubtedly recall such episodes in various
films or sagas devoted to adventures among the stars and planets. In Passengers,
Jennifer Lawrence and Chris Patt awaken from cryogenic sleep ninety years earlier
than expected due to the impact of their spaceship with a meteor shower field; in
Gravity, the protagonists find themselves in a race against time to get back into
their spacecraft before a wave of debris, caused by the chain destruction of some
satellites, overtakes them. Memorable, then, are the scenes in Star Trek in which
the Enterprise goes to great lengths to avoid debris and meteorites with extreme
maneuvers. Although such scenes take one’s breath away upon viewing them, a
competent viewer can look beyond the mere cinematic representation, as one is
aware that space travel is not exempt from real dangers of this kind.

Indeed, coming back to reality, it is clear how the topic of space debris is of
paramount importance in today’s frontier of space exploration and, unfortunately,
still too underestimated. In the minds of the average population, the idea of the
space race over the past seventy years, from the moon landing onward, might
seem almost like science fiction. However, for those who enjoy this discipline and
study its history, it is evident that modern technological limitations place today’s
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1.2. OPTIMIZATION CONCEPT IN SPACE MISSIONS

spacecraft in an unequal comparison with the Enterprise’s maneuvering capabilities
and performance. Similarly, if our beloved astronauts on the International Spce
Station (ISS) were to face a debris storm, it would be in the best interest of all of
us to prevent them from drifting into the solar system like Commander Kowalsky
played by George Clooney.

So, the conquest of space, though often portrayed in epic narratives, is not devoid
of real and serious challenges: testimony to this, aided by Hollywood filmography,
is the fact that the most famous phrase in space travel, even now is probably:

"Houston, we have a problem !"

Thus, the presence of such Micrometeorids and Orbital Debris (MMOD), whose
dangerousness has been repeatedly demonstrated, is a constant and insidious threat
to space missions, both present and future. In this introduction, an attempt will not
only be made to characterize this phenomenon but the crucial importance of their
monitoring and possible management will be explored, an issue that, if neglected,
could jeopardize not only space missions per se but also the understanding and
advancement of knowledge of the universe around us.

1.2 Optimization concept in space missions
Throughout the space programs, optimization has been the keystone, an art that
has proven to be as simple as incredibly elegant. Reflecting on how such concepts
fit into the context of a mission of any kind to space leads to the discovery of an
extraordinary symphony of precision and vision.

In the Golden Era of the space race in the 1960s and 1970s, one name stands out
with unquestioned mastery: the dominus aevi Wernher Von Braun (figure 1.1)1, the
one who indelibly branded that epoch. German engineer by profession, he emerged
as one of the leading figures in the development of rocketry during the period of
Nazi Germany, being the designer of the V2 rockets that bombed London during
World War II. At the end of the conflict, the Americans and Russians successfully
managed to reach the Peenemünde research center where he was located and gain
possession of Nazi knowledge. Along with 1,600 other engineers and scientists, Von
Braun and his team were deported to America and recruited by the government
through the secret Operation Paperclip, a program whose purpose was to give the
U.S. military an advantage over the Soviet one in the Cold War and the space race
(the Russians responded similarly with Operation Osoaviachim). After arriving at

1Source: Cortright, Edgar M., ed. Apollo expeditions to the Moon. Vol. 10. Scientific and
Technical Information Office, National Aeronautics and Space Administration, 1975, page 43.
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1.2. OPTIMIZATION CONCEPT IN SPACE MISSIONS

Figure 1.1: Dr. Wernher Von Braun standing next to one of the five engines at
the after end of the Saturn V vehicle’s first stage.

National Aeronautics and Space Administration (NASA), he was destined to make
history with the design and development of the Saturn V, the launcher that took
the Apollo missions to the Moon, the true crowning glory of all his scientific work.

If Von Braun, then, is the one who best identifies the idea of the space mission
and scientific revolution that has enabled mankind to arrive at the successes of today,
the link between him and the elementary concepts of optimization is personified
by the personage of Konstantin Ėduardovič Tsiolkovsky (figure 1.2)2. Counted
among the most brilliant Russian minds of all time and as one of the greatest
geniuses in scientific history, he is regarded as the father of spaceflight and a
pioneer of astronautics, a field in which he theorized several aspects in advance.
The distinctive formula for which he is remembered, and which precisely carries

2Source: Photographer Feodosius Andronikovich Chmil, catalog Photo documents about the
life and work of K.E. Tsiolkovsky, Kaluga, "Golden Alley", 2004, p.92-93.
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1.2. OPTIMIZATION CONCEPT IN SPACE MISSIONS

Figure 1.2: K.E. Tsiolkovsky in his office looking through magazines.

the name Tsiolkvsky’s equation (but also called the rocket equation), is the one that
links the mass of propellant required by the spacecraft to accomplish a specific
mission with the change in velocity ∆v that must be carried out by the engine:

∆v = c ln
(
m0

mf

)
⇐⇒ mf

m0
= e− ∆v

c (1.1)

with mp = m0 −mf = m0(1−e− ∆v
c ) mass of propellant expended and c = Isp ·g0

effective discharge velocity, assumed constant to obtain the (1.1) and a function
of sea-level gravitational acceleration g0 and specific impulse Isp

3. The latter is a
measure of how effectively the thruster is utilizing the propellant. Consequently, it
is clear that, in a mission, one always tries to maximize this parameter because it
will mean that the same useful effect can be achieved with less expense (or, dually,
a larger effect can be gained with the same propellant).

Thus, one can see how, from this simple and elegant expression, it is possible to
derive the first requirements to be fulfilled during a space mission. Of course, the
Isp cannot grow at will, but it is necessary to take into account the technological
and performance limitations of the various existing classes of thrusters, of which
the major ones are seen below:

• chemical propulsion, although it can release a large amount of energy in a
short time and is an easily scalable solution, has the primary drawback of

3Dimensionally it is a time, and from a physical point of view, it can be interpreted as the
time in which an assigned mass of propellant can provide thrust equal to its weight at sea level.
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1.2. OPTIMIZATION CONCEPT IN SPACE MISSIONS

having a moderately limited specific impulse. This is because the energy used
for acceleration is contained within the propellant and is, therefore, limited by
the choice of the same.
Currently, the best combination is the oxygen and cryogenic hydrogen reagents
for a liquid rocket engine, with an Isp = 300 − 450 s;

• in electric propulsion, by contrast, the energy source is separated from the
propellant and developed using a generator, which will require a certain
amount of power delivered by an electrothermal, electrostatic, or solar panel
generation system. Consequently, the Isp is considerably higher in orders
between 200 − 1000 s, up to 5000 s and even beyond, thus being able to use
less propellant for the same mission. However, from the expression of the
effective discharge velocity in the case of electric propulsion:

c = 2ηPE

T
=
√

2ηPE

ṁp

(1.2)

Where η is the efficiency denoting the fraction of thermal power developed.
From the equation, one can observe how, wanting to reduce the thrust T to
maximize Isp, the same ∆v will require longer times, going from accelerations
obtained in the order of seconds and minutes to hours, days, or even weeks.
In addition, the power generator has a certain weight, bulk, and cost, so it
cannot be as large as desired (to achieve high PE), imposing another limitation.
Moreover, since that class of propulsion has thrust-to-weight ratios that are
too low to allow takeoff (a rocket would require PE in the GigaWatt range,
which would be impossible to provide with simple solar panels, but nuclear
generators would be needed, which are banned for environmental issues), the
chemical counterpart is the only one currently used to make the ascent into
orbit.

It is clear how a simple expression such as (1.1) goes to significantly constrains
the requirements of a space mission. In the present thesis, electric propulsion will
take the lead, and the primary objective will be the maximization of the final
spacecraft mass mf or, conversely, minimizing the amount of propellant consumed.

From the above, an optimization problem that can maximize the mf fixed initial
mass m0 of the spacecraft must be solved.

This goal will be pursued through the use of a numerical method. In general,
for boundary value problems of this type, two different approaches have historically
been used: direct and indirect methods. Without going into too much detail,
for the sake of brevity, in general, it can be said that indirect methods describe

5



1.3. SPACE DEBRIS: POPULATION AND MITIGATION

the system with a set of differential equations with assigned boundary conditions
exploiting the principles of variational calculus (calculus that deals with the search
for and analysis of maxima and minima of functions whose, in turn, is a set of
functions). They introduce, in fact, a state vector and optimize the control variables
by changing their initial values. Then, the resulting problem is based on the calculus
of variations, and the optimal control law is formulated as a boundary problem at
the initial and final points. This approach requires the addition of certain variables,
called Lagrange multipliers (or co-state variables) equal in number to the state
variables and evolving along with the associated vector.

On the other hand, direct methods reduce the optimal control problem to a
parameter optimization one, dividing the trajectory into many shorter arcs/steps.
In this way, the solution of the system equations is obtained by integrating them
in each step but making the computational calculation very time-consuming. Such
methods, by the way, cannot be used for an orbital transfer problem, or rather,
they can be applied only in a few simple cases of little practical interest due to the
simplifications involved. The use of the indirect strategy for the optimal problem,
by contrast, allows high numerical accuracy and important theoretical content, but
they require high specificity and a solid background of knowledge for those who
use them.

A much more in-depth and comprehensive comparison is given in section (3.1).

1.3 Space Debris: population and mitigation
As could be understood from the preface, the conceptual core of this thesis concerns
the sensitive topic of MMODs and the key concepts involved in terms of the
problems and variety of methodologies to deal with it.

Consequently, it is incumbent in this context to reserve a section dedicated to
this topic, as it is crucial for fully appreciating the value and potential of the work
produced, grasping its full significance and any implications that may arise from it
within the scientific community.

1.3.1 What are space debris and why are they a problem?
Since the dawn of the space age in the 1950s, the various missions conducted by
humans beyond the Earth’s atmosphere have followed one another over time to the
present day in a wide variety of purposes and goals. The story of each of them can
be told in a thousand different ways: from the political and military background
surrounding space events to the great failures that cost the lives of brave men, to
the objects of the time (e.g., newspapers or postage stamps) to show how society
received the exploits of spaceships that plied the skies. The downside that is too
often not addressed, however, is that the more than 70 years of space launches and

6



1.3. SPACE DEBRIS: POPULATION AND MITIGATION

activities have led to an accumulating amount of anthropogenic objects orbiting
the Earth ranging from non-operational craf to smaller materials, including, for
example, discarded camera lens camp or propellant fuel. Let it be specified how
the term micrometeeroid refers to natural objects (metorites, dusts, comet pieces),
while space debris means any man-made object in space, which does not now, nor
in the foreseeable future, serve a useful purpose: from here on, only the latter will
be discussed.

Figure 1.3: A computer-generated image depicting the population and distribution
of space debris around Earth. Note the detail of the LEO object cloud on the right.

From figure (1.3)4 it can be seen that in addition to a kind of envelope around
the Earth, there is also an assemblage of waste on the Geostationary Earth Orbit
(GEO), characterized mainly by old satellites or fragments of them. Such an area
is not of interest here. The subject site of study where debris is most troublesome
is Low Earth Orbit (LEO)5, where there is a significant risk of impact with objects
orbiting at very high speeds. In detail, Sun-Synchronous Orbit (SSO) will be of
interest, and the reasons for this will be addressed later.

So, as one can clearly understand, the tragedy of debris in space is becoming
more and more evident as the years go by, unfortunately, and this can lead to
devastating consequences. Indeed, when such debris should reach a density such
that the probability of impact is higher than the likelihood of no impact/avoidance,
all space activities will be prevented. This cascading effect is known as Kessler’s

4Source: NASA image, Astromaterials Research & Exploration Science NASA ORBITAL
DEBRIS PROGRAM OFFICE, photo gallery.

5A LEO orbit is, as the name suggests, an orbit that is relatively close to Earth’s surface. It
is normally at an altitude of less than 1000 km but could be as low as 160 km above Earth.
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1.3. SPACE DEBRIS: POPULATION AND MITIGATION

syndrome, named after the first scientist who became interested in calculating the
critical population density. Upon reaching such a condition, fragment numbers will
increase exponentially due to mutual collisions, even without adding new objects
through launches. Analyses indicate that in some densely populated regions, the
critical density is only about 2 to 3 times the current population [1].

Thus, it is essential to study the phenomenon to comprehend it thoroughly, to
understand how to intervene through the proper techniques and procedures to
make sure that this critical situation is not reached in any orbital belt around our
planet, as will be briefly explained in the next section (1.3.2).

1.3.2 Debris Mitigation: strategies and policy
Considering the previous problems inherent in the space debris phenomenon, it
seems clear that this global problem can only be effectively solved by international
cooperation. Firstly, it is useful to understand how the critical issue can be
addressed: broadly speaking, three strategies that either mitigate debris generation
and/or adapt to collision risk are defined to follow.

• shielding: typically aimed at mitigating impact with debris, representing
design features in spacecraft (such as reinforcement with stronger materials)
that reduce both own damage risk and debris generation in collisions. A
well-known example is the protective shield called Whipple Shields covering
the exterior of the ISS, which absorbs the energy of an impact with debris.
Such a shielding system, however, is effective for protection from particles less
than 1 cm in diameter and also belongs to passive techniques, so it is not of
interest to this thesis.

• graveyarding capability: which enhances the possibility of safely and instantly
retiring spent vehicles to a high-altitude orbit (called precisely ’graveyard
orbit’). This strategy is not of interest here and, consequently, will not be
explored in depth. This is easily guessed for two reasons: first, as one is said
to be interested in analyzing debris on SSO orbits and thus, in an altitude
range of no more than 1,000 km altitude, it is not feasible to consider resigning
the vehicle by taking it to higher altitudes, as it would create problems with
functioning satellites operating in their proper orbits. In addition, the work
focuses on the so-called active removal of space debris, hence the design of
special missions using dedicated space cleaning vehicles, where the target
debris is to be considered no longer capable of maneuvering or operational
functionality.

• controlled reentry: will be the removal strategy used in the mission under
analysis, as the target debris is placed on a sufficiently low orbit. Therefore,
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after the first phase of approaching and capturing the decommissioned satellite,
it will be followed by a second phase of lowering its altitude to place it into
decaying orbit, allowing its controlled reentry into the atmosphere. An overview
of current state-of-the-art active technologies and their development status
can be found in [2] and not reported for the sake of brevity.

The controlled reentry option is also advantageous from a cost-benefit estimation
perspective on debris mitigation, as discussed interestingly by M.K. Macauley in
[3], which further justifies the preference for this option.

Whatever strategy one chooses, it goes without saying that it must be subject
to existing policies on debris mitigation. The main problem is that today’s in-
ternational space laws do not explicitly address the space debris issue: in fact,
they mainly speak of "regulations" of the various International entities, but these
do not constitute a de facto law and, therefore, may not even be recognized by
all, or interpreted differently. Instead, the constitution of space laws dedicated to
the topic could undoubtedly benefit the sustainability and management of space,
becoming a proper Code of Conduct to be adhered to from the very beginning in
the study and feasibility stage of a mission. Driven by these reasons, as early as
1986 the European Space Agency (ESA) created a section specifically dedicated
to this objective: the Space Debris Working Group (SDWG) with the mandate to
assess the various issues of space debris. The outcome of the work of this research
group is briefly summarized in [4] and not reported for the sake of brevity. The
useful notions to remember are the objectives that ESA’s Council decided to adopt
in 1989 after receiving the recommendations of the SDWG:

- to minimize the creation of space debris;

- to reduce the risk for manned and unmanned space flight;

- to reduce the risk on the ground due to the re-entry of space objects;

- to acquire data on the debris population as needed for the execution of its
programs;

- to study the legal aspects of space debris and, consequently, to approve activity
plans.

Pursuing and seeking to enhance these goals, the Space Debris Research Program
aims to take action in three main areas: knowledge of the debris and particulate
environment on Earth, the risk posed by space debris, and instating preventive
and protective measures. One of the most significant rules that ESA has decided
to impose toward its member states is the 25-year limit on the presence of debris
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in LEO, initially proposed in 2007 by the Inter-Agency Space Debris Committee
(IADC) Guidelines for Space Debris Mitigation [5] and is now adopted by a large
number of space agencies around the world, including the NASA. Compliance or
non-compliance with this constraint is the discriminating factor on the authorization
of a European mission by ESA, which requires that it be in line with this time
limit6. Hence, at the end of the generic satellite’s operational mission, the so-called
end-of-life phase takes over, in which one must properly passivate all onboard
systems, deplete the residual fuel, and, within 25 years, remove it from the orbit it
naturally or artificially occupies. In particular, ESA is considering a mission in this
field as part of the Clean Space project, within which this thesis work is sought to
be placed.

1.4 Motivations and Objectives
The availing of space trajectory optimization and design concepts in this thesis
aims to minimize the propellant required to pursue the chosen mission through the
use of electric propulsion in a fidelity dynamic model. The selected scenario, as
mentioned earlier, will place the focus on the topic of space debris, with particular
interest in the SSO region. The reason behind this specific scenario is the result
of an integrated assessment of various factors and issues, the matching of which
opened a window of analysis that this thesis sought to investigate.

Primarily, the choice to work on the issue of space debris arose from a careful
analysis of the current challenges related to it, as previously seen.

Interest in the work done in this thesis stemmed from a desire to contribute to
the search for solutions to counter the dangerous trend of the exponential increase
of debris in Earth’s orbit. This trend has been further fueled by the attention paid
to ESA major initiatives in this regard, including Clean Space. The tragic nature of
the phenomenon is visible from the figure(1.4)7, with an estimated number of about
36500 debris objects in orbit according to the latest ESA environmental report
updated as of December 06, 2023. The major Clean Space project aims, therefore,
to develop new technologies and new practices to be adopted and implemented to
limit the effect of the debris already present, to zero the generation of new ones by
future missions, and to try to capture the large debris unfortunately still present
in LEO.

6Actually, in recent years, there are even plans to make this limit more stringent by decreasing
the years, both because they are not few and to respond to the rate at which space activity is
growing.

7Source: ESA Space Debris Office, ESA’s Annual Space Environment Report, Revision 7.1,
September 12, 2023, page 4.
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Figure 1.4: Evolution over the years of the taxonomy of objects in the spatial
environment done according to debris type.

Precisely, such research falls into the latter branch of in-orbiting servicing,
through appropriate Active Debris Removal (ADR) techniques, which can undoubt-
edly benefit the space environment. Among all the potential areas of intervention
around the Earth, this work focuses on the range of LEO orbits, and the reasons
for this are presented next.

1.4.1 The situation in Low Earth Orbit (LEO)

The reason for analyzing a debris intervention mission in LEO orbit is perceptible.
First, low near-Earth orbits are functional for several purposes: they are the most
commonly used for satellite imaging (since proximity to the surface allows for high-
resolution images) or for communication purposes through a large combination or
constellation of multiple satellites to give a constant coverage. LEO orbit is also
used by the ISS since it is easier for astronauts to travel to and from it at a shorter
distance. The great potential offered by this range of orbits has long made them
the preferred target of the scientific and space community because of their ability
to support a wide range of purposes. Moreover, the combination of practicality
and speed in positioning satellites at such altitudes still enhances their appeal.
The counterbalance to all these advantages is caused by the various decades of
launches to such orbits have resulted in a significant accumulation of debris and
decommissioned satellites, making this space region dangerously congested and
seriously threatening its usability.
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This risk is readily apparent by looking at the figure (1.5)8, which shows not only
how densely crowded LEO orbits are, but also that there is an unquestionable and
imperative urgency to intervene with immediate actions to counter the phenomenon
and attempt to reverse the current trend.

Figure 1.5: Space sustainability urgency in Earth orbits.

The situation, as appreciable in the figure, is also quite critical for SSO orbits.
Several studies (e.g., [6]) prioritize the altitude region between 600 and 1000 km,
where the mass of debris is greater than 50 kg.

In detail, a significant debris peak was detected near the 800 km altitude, with
a range of inclination from 98◦ to 100◦ (figure 1.6)9, thus in the region of SSOs,

8Source: Pablo Carlos Budassi, An axonometric view displays various Earth orbits, illustrating
space debris and active satellites, Own work for Wikimedia Commons, August 9, 2023.

9Source: ESA Space Debris Office, ESA’s Annual Space Environment Report, Revision 7.1, 12
September 2023, page 58.
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which consequently fall among the typical targets for ADR missions proposed by
ESA (table intervention regions), according to [7].

Figure 1.6: Distribution of number of objects residing in LEO as a function of
inclination and perigee altitude.

The SSOs are of great interest and are the focus of this thesis work for two
main reasons: first, they are extensively used for Earth observation purposes due
to their peculiar property of transiting the same point on Earth at the same time
of day; second, any maneuver to deorbiting or reducing the operational lifetime of
a satellite placed on such an orbit is too expensive to be seriously considered, as
accurately described in [8].

Table 1.1: ESA Candidates Regions for ADR missions.

Region Altitude [km] Inclination[◦]
From To From To

1 900 1100 81 83
2 700 900 98 100
3 750 950 70 72
4 650 850 85 87

The second characteristic was the determining factor that gave rise to the mission
study presented here: since, once they reach their end of life, satellites in SSO
cannot be deorbited for the reason described earlier, the only strategy to remove
them is to carry out an ADR mission.

It is in this context, therefore, that this thesis is set. The scenario analyzed is
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emblematic of a debris removal mission in SSO orbit, articulated in two consequential
phases: the first phase involves the transfer of the spacecraft from the starting
orbit to the one containing the target debris; subsequently, the second phase will
be characterized by deorbit via a lowering of altitude such that reentry into the
atmosphere is possible. More specifically, during the analysis of the optimal mission
strategy, it turned out to be necessary to further subdivide the first phase into two
distinct sub-phases, in which an initial global variation of parameters is followed
by a rendezvous with the debris, as will be better discussed in Chapter 5.

In this thesis, the optimization of electric propulsion trajectories is carried out
with an indirect method based on the theory of optimal control and transforms the
propellant minimization problem into a multipoint boundary value problem. The
boundary value problem is then solved with an iterative single-shooting procedure
based on Newton’s method. Specifically, the study belongs to a particular subclass
of optimal control law problems called bang-bang controls, as will be explained
later.
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1.5 Dissertation Overview
A brief overview of the main contents of this thesis is summarized below.

Chapter 2 discusses the dynamic model within which the spacecraft will move
through time throughout the mission. The main reference systems that were worked
with and also how, through appropriate transformations and mathematical steps,
it is possible to move from one reference system to another will be discussed. In
addition, a summary of the basic concepts of astrodynamics is outlined.

Chapter 3 introduces the optimal control theory that frames the entire work.
After a brief introduction to understand the potential of this discipline, there
follows a comparison of the principal methods, direct and indirect, by which the
problem can be set up; and why, through a comparative analysis of pros and cons,
the latter rather than the former has been opted upon. The entire mathematical
treatment of optimal control theory and how it can be applied to the topic of space
trajectory optimization is then explained. Strategies to comply with the optimality
conditions and the fulfillment of Pontryagin’s Maximum Principle are here outlined
in detail, with a comprehensive discussion regarding thrust strategies, optimal
thrust directions, and switching functions.

Chapter 4 presents the debris removal problem that was decided to be tackled,
illustrating how it was set up and justifying the choices made in the analysis pro-
cess. The work done is retraced step by step, from how the implementation of the
problem started to the strategies and methodologies used to reach the convergence
of the solution.

Chapter 5 analyzes the results obtained from the various simulations, discussing
the solution of the optimal trajectory found. Detailed analysis of the switching
function defining the optimal thrust phases is performed.

Chapter 6, in conclusion, presents a summary of the most important results
achieved and proposes interesting insights on more in-depth studies that could be
conducted on some areas of the analyzed mission to improve its prediction and
overall accuracy. Finally, it is discussed how the work produced could potentially
help future research topics.
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Chapter 2

Dynamic model

The following chapter describes the dynamic model implemented to perform the
various optimization analyses of the ADR mission trajectory sought. The aim
is to provide a sufficiently intelligible overview of the physical and mathematical
concepts that form the basis of the applied model. After a brief reminder of the
principal reference systems used for the analysis and the transformations that
allow switching from one system to another, the 2BP Equations of Motions will be
presented, which constitute the heart of this chapter. To improve the fidelity of the
model and, consequently, of the outputs it produces, the most relevant perturbative
effects within it are also accounted for: the Earth’s non-sphericity and atmospheric
drag. Basic concepts of celestial mechanics, such as classical orbital elements and
some insights into SSO, complete the theoretical background contained in this
chapter of the thesis.

2.1 Reference systems
A generic Reference Frame (RF) is uniquely defined by:

• the origin of the system;

• a fundamental plane;

• an orthonormal right-handed triad, with the direction closing the triad per-
pendicular to the fundamental plane.

RFs defined in this way are generally referred to as detrended systems.
Depending, then, on the analysis a user wishes to perform, it may be convenient

to opt for an inertial or a non-inertial RF: the choice of one or the other could
have an impact as a benefit on the simplification of the equations of motion
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describing the system’s dynamics. The main discriminator between the two is the
presence/absence of additional pseudo-accelerations due to relative motion, such as
the Coriolis force or centrifugal acceleration. In an inertial RF, a body moves with
uniform or stationary motion in time since no external forces act on it. On the
other hand, in a non-inertial RF, a body is subject to external forces that cause it
to accelerate/decelerate concerning an inertial reference.

Since this work aims to characterize the motion of bodies orbiting the Earth,
opting for an inertial RF proves to be the most appropriate choice, allowing the use
of different coordinate systems that benefit the representation of bodies in space.
In detail, the three different reference systems used are described below and shown
in the figure (2.1)1.

Figure 2.1: EME2000
{
Î , Ĵ , K̂

}
, perifocal {p̂SC , q̂SC , ŵSC}, and ZEN {û, v̂, ŵ}

RF.

2.1.1 EME2000 RF
In this thesis, the geocentric-equatorial reference system coincides with the Earth
Mean Equator and Equinox of Epoch J2000 (EME2000) and is the one generally
used for a 2BP. The system is defined as originating in the center of the Earth,

1Source: Mascolo, Luigi. Low-Thrust Optimal Escape Trajectories from Lagrangian Points
and Quasi-Periodic Orbits in a High-Fidelity Model. PhD thesis, Diss. Tesi di dott. Torino:
Politecnico di Torino, 2023, page 14.
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while the fundamental plane corresponds to the equatorial one. Finally, the positive
direction of the z-axis that completes the right-hand triad is directed towards the
hemisphere containing Polaris (northern hemisphere), as shown in the figure (2.1).

The unit vectors
{
Î , Ĵ , K̂

}
are defined as follows:

• Î is aligned with the direction of the Vernal Equinox pointing towards the
Aries constellation;

• K̂ is perpendicular to the reference plane;

• Ĵ completes the right-handed triad.

Finally, it is worth specifying how the EME2000 RF represents a specific case
of the Earth-Centred Inertial (ECI) RF, which includes the nutation and libration
effects of the planet Earth and is generally exploited for the determination of
celestial bodies on a global scale in the field of radio astronomical observations.
Therefore, the EME2000 RF should be considered as a quasi-inertial reference
system. However, since the rotational offset between these two systems is of the
order of 0.01 arc second, this difference is neglected, allowing the EME2000 RF to
be considered an inertial system.

2.1.2 Perifocal RF
The motion of a satellite around a primary body can be described within the
perifocal reference system (2.2)2. This system is defined as follows:

• centred origin of the primary gravitational body, i.e. the Earth;

• fundamental plane containing the trajectory of the satellite;

• direction of the z-axis perpendicular to the fundamental plane to complete
the right-handed triad.

The triad of unit vectors of this plane {p̂SC , q̂SC , ŵSC} is denoted. In the perifocal
plane, the unit vector p̂SC is identified as having direction towards the periastrum
of the trajectory and parallel to the eccentricity vector e⃗, while q̂SC is parallel to
the direction individuated by the semilatus rectum p of the orbit. Finally, ŵSC

is normal to the plane containing p̂SC and q̂SC , directed in the direction of the
momentum vector h⃗ completing the right-handed triad.

2Source: Mascolo, Luigi. Low-Thrust Optimal Escape Trajectories from Lagrangian Points
and Quasi-Periodic Orbits in a High-Fidelity Model. PhD thesis, Diss. Tesi di dott. Torino:
Politecnico di Torino, 2023, page 15.
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Figure 2.2: Perifocal RF considering an orbit with eccentricity e = 0.4.

The perifocal reference system constitutes a crucial support point for carrying
out the analyses that allowed to reach the results in this thesis. In fact, during
the simulations, it was deemed necessary to implement a switch from the classical
orbital parameters used to characterize the initial and final orbits to the Cartesian
coordinates used to define the position vectors r̄ and velocity v̄ of the spacecraft
and debris. Given a point on the trajectory and the position vector r̄ defined, the
angle it forms with the axis of direction p is called the true anomaly ν. Depending
on the value of ν, the satellite will be at a specific position in the orbit with a
specific velocity:

r̄ = (r cos ν)p̂SC + (r sin ν)q̂SC (2.1)

v̄ = (ṙ cos ν − rν̇ sin ν) p̂+ (ṙ sin ν + rν̇ cos ν) q̂ (2.2)

with v̄ vector tangent to the trajectory. Using certain concepts and expressions
from orbital mechanics, not given here for the sake of brevity, it is possible to
redefine the two previous expressions in their respective components as follows:

r̄pqw =


r cos ν
r sin ν

0

 (2.3a)

v̄pqw =


−
√

µ
p

sin ν√
µ
p
(e+ cos ν)

0

 (2.3b)

By doing the scalar product, a significant relationship between the two quantities
can be derived:
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r · v = rv cos(90 − φ) = rv sin(φ) (2.4)

With φ flight path angle3.
From the relationship obtained, one can essentially observe that ϕ and ν have

the same sign, and this helps to understand where the satellite is along the orbit
at a generic instant:

• if rv > 0, φ > 0. The flight path angle is positive when the body moves from
the periastrum to the apoastro of the orbit, and the same is true for ν;

• If rv < 0, φ < 0. The flight path angle is negative when the body moves from
the apoastro to the periastrum of the orbit, and the same is true for ν.

Obviously, the information given so far cannot provide details on the orientation
and geometric shape of the orbit contained in the perifocal plane. This task
is performed by the classical Keplerian elements {a, e, i,Ω, ω, ν}, which will be
analyzed later in the section (2.4) and which allow an orbit to be univocally
characterized in space. In detail, only a subset of these parameters is sufficient for
perifocal representation by the conic equation:

r = a(1 − e2)
1 + e cos ν (2.5)

Where a is the semi-major axis and e is the eccentricity of the conic.

2.1.3 ZEN RF
A third reference system can be defined around the spacecraft orbiting the central
body: this is the Zenit-East-North (ZEN) RF. In relation to the figure (2.1)
it consists of a triplet of vectors {û, v̂, ŵ} that conventionally indicate the three
velocity components of the spacecraft in the radial, tangential, and normal directions,
respectively. In particular, this system has:

• origin in the center of mass of the spacecraft;

• radial direction û continuing the radius vector from the center of the Earth
pointing to the spacecraft;

3The flight path angle is defined as the angle between the velocity vector and the local horizon.
It provides information on how high the velocity vector is in relation to the horizon plane. Its
90 − φ complement is called the zenith angle and tells how much the velocity vector v̄ is inclined
with respect to the radial direction.
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• normal direction ŵ exiting the plane swept at that instant by the spacecraft,
coincident with the meridian of the celestial sphere;

• tangential direction v̂ found with the right-hand rule and coincident with the
parallel of the celestial sphere.

It should be carefully specified that none of the velocity components in such
a system coincides with or is parallel to the spacecraft’s velocity vector, which
is tangent to the orbital plane. In essence, such a reference system is not to be
confused with the Velocity-Normal-Conormal (VNC) RF4, with which it coincides
only in the case of circular orbits. The use of the ZEN RF is advantageous since
it allows for the absence of a velocity phase-shift component: whatever orbit is
considered, the tangential velocity v̂ and radial velocity û remain independent of
each other.

2.1.4 Time-invariant coordinate trasformation
This is a very important topic in the field of space flight mechanics in which the
geometry of spherical triangles is exploited. It makes it possible to perform a
transformation of co-ordinates by projecting them from one initial reference system
to another target, allowing the equations describing the dynamics to be simplified.
In general, to perform these transformations, matrices composed of a series of
elementary Direction Cosine Matrix (DCM) and called rotation matrices are used,
each of which has a dimension of 3x3. An example, written in matrix form, could
be the following, where a coordinate transformation is performed from Perifocal
RF to EME2000 RF:

rI

rJ

rK


ijk

=

 Î · p̂ Î · q̂ Î · ŵ
Ĵ · p̂ Ĵ · q̂ Ĵ · ŵ
K̂ · p̂ K̂ · q̂ K̂ · ŵ



rp

rq

rw


pqw

(2.6)

which in compact form is written as r̄ijk = Lr̄pqw. Since the reference systems
are then orthogonal, the rotation matrix L is orthogonal and its inverse is equal
to its transpose L−1 = LT . Consequently, the dual transformation r̄pqw = LT r̄ijk

applies.

4The VNC RF is a coordinate system commonly used in orbital dynamics to describe the
motion of a satellite around a central body and to analyze the forces and velocity variations along
the orbit. The V̂ -axis is aligned with the direction of the instantaneous velocity of the orbiting
object and is tangential to the trajectory; the N̂ -axis is perpendicular to the orbital plane and
points in the direction of the angular momentum h⃗ of the orbit (defined with the right-hand rule);
the Ĉ-axis is perpendicular to V̂ and N̂ and is contained in the orbital plane and points outwards
from the orbit.
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Figure 2.3: Transformation steps from the EME2000 RF
{
Î , Ĵ , K̂

}
to the Perifocal

RF {p̂SC , q̂SC , ŵSC}.

The scalar products constituting the matrix L are specified in more detail below:
first of all, the required transformation is carried out by means of the succession
of three elementary rotations called Euler rotations or also referred to as 3-1-3
rotations (this is why these angles are also called Euler angles).

Analysing them in detail:

1. Rotation of Ω around K̂: rotating Î and Ĵ by an angle equal to RAAN brings
them onto the n̂ and m̂ transition versors.

Figure 2.4: First Euler rotation.

In doing so, one has a rotation matrix LT
1 equal to:
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LT
1 =

 Î · n̂ Ĵ · n̂ 0
Î · m̂ Ĵ · m̂ 0

0 0 1

 −→ LT
1 =

 cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

 (2.7)

So with the first rotation one has r̄nmk = LT
1 r̄ijk.

2. Rotation of i around n̂: according to the study of the classical orbital parame-
ters that will be seen later, performing such a rotation means tilting the versor
K̂ by an angle i bringing it to ŵ.

Figure 2.5: Second Euler rotation.

The associated rotation matrix LT
2 to go from ˆnmk to ˆniw will be:

LT
2 =

1 0 0
0 m̂ · î K̂ · î
0 m̂ · ŵ K̂ · ŵ

 −→ LT
2 =

1 0 0
0 cos i sin i
0 − sin i cos i

 (2.8)

And so r̄niw = LT
2 r̄nmk.

3. Rotation of ω around ŵ: with this last rotation one operates on the line of
nodes n̂ by rotating it by an angle equal to the argument of the periastrum
w to identify the verse p̂ (pointing to the periastrum), while the verse i will
identify q̂.
The last rotation matrix LT

3 allowing the transition from ˆniw to ˆpqw will have
as its directing cosines:

LT
3 =

p̂ · n̂ p̂ · î 0
p̂ · n̂ q̂ · î 0

0 0 1

 −→ LT
3 =

 cosω sinω 0
− sinω cosω 0

0 0 1

 (2.9)
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Figure 2.6: Third Euler rotation.

And this consequently results in r̄pqw = LT
3 r̄niw.

Thus, at the end of it all, one obtains the complete rotation matrix LT , which al-
lows the transfer of coordinates from the perifocal reference system to the geocentric-
equatorial reference system EME2000 via the Euler rotations described:

r̄pqw = LT
3L

T
2L

T
1 r̄ijk −→ r̄pqw = LT r̄ijk (2.10)

with LT
3L

T
2L

T
1 = LT . The inverse rotations can be easily determined through

the transpose of LT being, as mentioned before, an orthogonal matrix.
In essence, with the procedures described, it is possible to move from defining

the state of the system as classical Keplerian parameters to a system of Cartesian
co-ordinates. In fact, having assigned the orbital parameters {a, e, i,Ω, ω, ν} and
determined the semilatus rectum p = a(1 − e2) and the equation of the conic
(2.5), one first derives the components of the vector radius r̄ and velocity v̄ in the
perifocal RF according to the expressions in (2.3a) and (2.3b). Having done this,
the three elementary rotations seen above are applied to these vectors, knowing
the values of Ω, ω and i, which allow the state to be derived in terms of positional
coordinates and velocity in the EME2000 reference system.

2.2 2-body problem
The 2BP two-body problem constitutes a sub-case of the N -body problem (when
N = 2) and represents one of the fundamental foundations of orbital mechanics. It
describes with a very good approximation the motion of two mutually attracting
objects according to Newton’s law of universal gravitation. In particular, this
problem makes it possible to analyse the orbits of satellites around planets, as well
as planetary motions around the Sun. The solution to the problem is obtained
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by reducing the system to a reduced mass and considering the centre of mass as
an inertial system, thus allowing equations for elliptical, parabolic and hyperbolic
orbits to be derived. This section provides a detailed description of the problem,
its solutions and applications in astrodynamics, as well as presenting a closed-form
analytical solution.

The spaceflight case under discussion here sees a relatively small body of mass
m (the spacecraft) under the influence of a very massive body M or primary (the
Earth), with M >> m, and subject only to the mutual force of gravitational
attraction. The presence of any other celestial body outside the primary and
secondary is neglected (the presence of a third body is therefore neglected). As a
simplifying assumption, one considers the two bodies under analysis as point-like,
homogeneous and constant masses.

To derive the equations describing the problem, one considers an inertial reference
system X, Y and Z.

Figure 2.7: System for defining 2BP.

Earth M and spacecraft m are shown, whose respective position vectors from
the origin of the system are denoted r⃗M and r⃗m. From Newton’s second law, the
gravitational forces between the two are equal and opposite, and directed along
their conjunction:

m¨⃗rm = −GmM
r2

r⃗

r
(2.11a)

M ¨⃗rM = +GmM
r2

r⃗

r
(2.11b)
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with G the universal constant of attraction. Since one is interested in studying
the motion of body m with respect to body M, one defines the relative distance
between the two by subtracting (2.11b) from (2.11a), obtaining:

¨⃗r = ¨⃗rm − ¨⃗rM = −Gm+M

r2
r⃗

r
(2.12)

According to the above, m << M , so it can be neglected by assuming m to be
approximately null and one has:

¨⃗r + GM

r2
r⃗

r
= 0 (2.13)

The GM parameter, by definition, is the gravitational parameter of the Earth
(in general of the primary body):

GM = µ⊕ (2.14)

with µ⊕ = 398600 km3/s2.
Substituting in the (2.13) one obtains:

¨⃗r + µ⊕

r2
r⃗

r
= 0 (2.15)

which represents the equation of motion of the secondary body m with respect
to the main body M in 2BP. This is a second-order vector differential equation
written with respect to the inertial reference system which, when integrated, allows
the position (and therefore the trajectory) of body m with respect to M to be
determined.

It can be shown that the solution of (2.15) shows the existence of two prime
integrals, called constants of motion, which remain unchanged along the orbit:

• Total specific energy

E = v2

2 − µ⊕

r
= cost = −µ⊕

2a (2.16)

The expression states that in a gravitational field the sum of kinetic energy
and potential energy, both referring to the unit mass of the spacecraft, is
constant (as one increases, the other decreases, and vice versa). In fact, the
relationship just written translates into decreases in velocity moving away
from the body and increases in velocity approaching it. It is assumed that
gravitational potential energy, defined minus a constant, is zero when the
distance from the primary body tends to infinity: in this condition, thus, the
integration constant is zero.
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The value of E determines the nature of the orbit under analysis: for closed
orbits E < 0, while for open orbits there is E = 0 for parabolic orbits and
E > 0 for hyperbolic orbits.

• Momentum angular momentum By vector multiplying (2.15) with the vector
r⃗, one can write:

r⃗ × ¨⃗r + r⃗ × µ⊕

r3 r⃗ = 0, (2.17)

which can be reformulated as

d

dt

(
r⃗ × ˙⃗r

)
= 0. (2.18)

Consequently, one has that the product within the derivative is constant:

h⃗ = r⃗ × v⃗ = constant (2.19)

Again, this is commonly expressed per unit mass. The quantity just obtained is
called the angular momentum h⃗ and is a constant vector in modulus, direction,
and direction. This means that the trajectory of the body m is contained in
the plane ( it is called a plane motion): being a central force, gravity does not
vary the angular momentum of the orbiting body.

At this point, integrating the equation of motion (2.15) yields the body’s
trajectory r⃗. Leaving aside the various mathematical steps, not given here for the
sake of clarity, it can be shown that the result following integration is:

r⃗ =
h⃗2

µ⊕

1 + B
µ⊕

cos ν
(2.20)

where B is a vector constant of integration. The expression obtained represents
the trajectory that the secondary body m follows with respect to the main body
M in a 2BP.

Analysing carefully what has been obtained, it is immediate to observe a
similarity between (2.20) and the equation of the conic in polar coordinates (2.5).
This essentially confirms Kepler’s first law, i.e. the body moves through space
tracing a trajectory that is nothing more than an ellipse.

In conclusion, the 2BP model just described is used in this thesis to determine
the optimal trajectory to reach the selected debris. It is specified, however, how in
the second part the model was made more faithful by the addition of perturbations,
which will be discussed later.
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2.2. 2-BODY PROBLEM

2.2.1 Equation of motion
Having introduced the dynamic model that will be used to describe the motion of
the bodies involved in the study, it is obviously necessary to present the equations
of motion that illustrate their evolution in terms of velocity and position throughout
the mission. The state of the spacecraft is described by the following set of ODEs,
written in an inertialRF centered on the Earth:

dr⃗

dt
= v⃗ (2.21a)

dv⃗

dt
= g⃗ + T⃗

m
+ a⃗p (2.21b)

dm

dt
= − T⃗

c
(2.21c)

Where (2.21a) and (2.21b) represent how the spacecraft’s position and velocity
vary, respectively. It can be seen that the derivative of the velocity vector is
generally given by the sum of the gravitational acceleration g⃗ and thrust T⃗ vectors,
to which the perturbative contribution a⃗p is added. Alongside these, one also
appends the (2.21c), which expresses the spacecraft’s mass variation and, thus,
allows a trace of the propellant consumption over time.

In general, other forces could be present, such as gravitational effects due to the
presence of additional bodies, but these are neglected in 2BP. The same equations,
but expressed in Cartesian coordinates used for the optimization, are given in
section (3.5).

2.2.2 Classical orbital parameters
The shape and orientation of the orbit are completely contained in the position
and velocity vectors of the body at an instant in time. However, using these
vectors is extremely impractical for identifying an orbit. Therefore, given an initial
instant, a Keplerian trajectory traced by the motion of a secondary body around a
primary body is univocally described by 6 parameters, which are called classical
orbital parameters and are listed in the table (2.1). These parameters are obviously
dependent on the position and velocity vectors and are directly calculable from
them.

Of the 6 parameters in the table (2.1), 4 of them are necessary for the 2-
dimensional problem: in particular, 3 parameters are required to describe the shape
and size of the orbit and the direction of the apsidal line (i.e., the position of
the periastrum); a fourth is required to locate the position of the secondary body
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Table 2.1: Classical orbital parameters.

a Semi-major axis
e Eccentricity
i Inclination
Ω RAAN
ω Argument of Periastrum
ν True Anomaly

along the orbit with respect to the periastrum at a given instant. Then, 2 more
parameters are essential in three-dimensional space to describe the orientation of
the orbit plane with respect to the chosen reference system.

Figure 2.8: Keplerian orbital elements.

With reference to the figure (2.8), the classical orbital parameter set is defined
as follows:

• Semi-major axis a
Defines the size of the orbit. For the ellipse, it is easy to identify, while for the
parabola it tends to infinity and for the hyperbola it takes on a negative value
and represents half the distance between the two periaxes of the mathematically
admissible orbits. The geometric significance for the hyperbola is unimportant,
as one of the two branches is not physically traversed. The semi-major axis
can be related, as seen in (2.16), to the energy content of the orbit:
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a = −µ⊕

2E
(2.22)

Having then E expression (2.16), if the energy is positive, in the case of the
hyperbola, when r goes to infinity the spacecraft has a certain velocity called
hyperbolic excess velocity:

v∞ =
√

2E (2.23)

If the energy is zero, in the case of the parabola, the hyperbolic excess velocity
is zero, i.e, one reaches infinity with zero velocity. If energy is negative, in the
case of the ellipse, the hyperbolic excess velocity is an imaginary number, so
infinity cannot be reached. As an alternative to the semi-major axis, when for
example it is infinite and undefined, the semilatus rectum p can be used:

p = h⃗2

µ⊕
(2.24)

This is related to the angular momentum of the orbit and geometrically
represents the distance between the primary body and the point on the orbit
where the true anomaly is 90◦ or 270◦.

• Eccentricity e
Defines the shape of the orbit. It can be expressed as:

e =

√√√√√1 + 2E

 h⃗

µ⊕

2

(2.25)

and its direction points towards the periastrum.

• Inclination i
Defined by the angle between the plane of the orbit and the normal to the
reference plane, in this case the equatorial plane. It is calculated as:

i = cos−1
(
hK

h

)
(2.26)

with hK being the component of h⃗ along the verse K̂.
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• Right Ascension of the Ascending Node (RAAN) Ω
Defined by the angle between the node line and the Î-axis in the fundamental
plane. The mathematical definition is:

Ω = cos−1
(
nI

n

)
(2.27)

with n̂ = K̂ × ĥ vector of the node line, pointing towards the ascending node.
It represents the point at which the satellite crosses the fundamental plane
from below to above.

• Argument of periastrum ω Defined by the angle between the node line and
the eccentricity vector (pointing towards the periastrum) measured in the
direction of the satellite’s motion. It is defined as:

ω = cos−1
(
n · e
en

)
(2.28)

• True Anomaly ν
Defines where the spacecraft is located along the orbit and is given by the
angle between the eccentricity vector and the position vector. It is defined
with a time reference t0 called the epoch (sometimes replaced by the time of
transition to periastrum T ). The mathematical definition is:

ν = cos−1
(
e · r
er

)
(2.29)

The orbital parameters a and e define the geometry of the orbit (shape and
size). The parameters i, Ω and ω define how it is oriented in space. Finally, the
parameters seen are not the only way to characterise an orbit, as there may be
conditions in which some of these elements are indeterminate: in this case, for
example, other sets of parameters, such as equinoctial parameters, can be used.

2.3 Sun-Synchronous Orbit
As discussed in Chapter 1, SSO orbits form the heart of this work, given the
importance of these orbits due to their particular characteristics as seen. Such
orbits, in fact, exploit in some way the precession of the line of nodes in a retrograde
manner (i.e., in the opposite direction of the Earth’s rotation) for purposes of Earth
surveillance, which must be done in a systematic manner. In detail, it is relevant
that the area in question is constantly and continuously monitored so that from a
possible comparison of the images obtained, a user is able to tell whether or not
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something has happened in the time between two observations (image processing
algorithms are used).

Since it is crucial to monitor the area concerned under the same lighting
conditions, SSO orbits prove purposeful for this task, presenting an inclination of
95-100 degrees on the equatorial plane and a variant altitude between 600-800 km
(being a particular LEO), with an orbital period of around 90-100 minutes.

For this to be feasible, the plane of the orbit is rotated by exploiting the
phenomenon of the precession of the line of nodes, which must rotate a certain
number of degrees per day for the orbital plane to have the exact incidence with
respect to the Earth-Sun conjunction. In essence, the precession velocity due to
the J2 perturbation will have to be:

Ω̇ = −3
2J2

(
R2

⊕
a2

)
cos i

(1 − e2)2

√
µ⊕

a3 (2.30)

This Ω̇ will be an input to the problem: the selection of orbital parameters
defining an SSO, in fact, is closely linked to mission objectives, which determine the
design requirements and constraints. If one wants to understand what the heats
of a and i of the satellite’s orbit on the SSO must be, one must impose Ω̇, which
will be given by the design requirement to meet the condition discussed earlier.
Specifically, the line of nodes will have to rotate 360◦ in a year, which means it
must make a daily variation of 0.9856 ◦/day, which corresponds to 1.991 · 10−7

rad/sec: this will be the mission target. By imposing this value in the (2.30), the
values of a and i of the SSO orbit in question are determined, knowing the values
of µ⊕, R⊕, and J2.

2.4 Perturbing accelerations
So far, when discussing celestial mechanics and orbits, one has considered ideal
Keplerian orbits, which are obtained through fairly simplifying assumptions, but
which are not possible. By conducting a more realistic treatment now, these
assumptions of the 2BP fall away, leading to actual orbits in which the results
obtained can still be maintained, but it must be admitted that there will certainly
be perturbative actions: one will in fact speak of perturbed Keplerian orbits.

The dynamic model used in the propagator for the deorbiting phase implements
two of the main perturbations affecting the motion of a satellite orbiting in the
LEO region: the Earth’s non-sphericity J2 and atmospheric drag D. Therefore, the
vectorial form of the cumulative combined perturbing acceleration from the system
in equation (2.21b) is:

a⃗p = a⃗j2 + a⃗D (2.31)
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These perturbations have been identified as the most significant ones in the LEO
environment. Obviously, for a more refined model and even more faithful results,
additional perturbative effects, such as lunar-solar attraction or solar radiation
pressure, could be implemented.

The perturbations that make up the vector (2.31) are discussed below.

2.4.1 Earth asphericity J2
The gravitational perturbation associated with the J2 coefficient is one of the most
relevant corrections in the study of orbits around the Earth and geodesy, necessary
to take into account its actual shape, which deviates from a perfect sphere. Indeed,
the Earth is an oblate ellipsoid, with a bulge at the equator due to its rotation.
This flattening at the poles, quantified by the parameter J2, introduces variations
in the gravitational field compared to that of a uniform sphere. Although potential
energy has previously been defined as:

U = −µ⊕

r
(2.32)

the fact that the Earth has a non-homogeneous mass distribution causes gravita-
tional anomalies to arise on its surface that will greatly influence the orbital motion
of the satellite. For this reason, the expression just written does not correctly
model the Earth’s potential: to this main contribution, it will be necessary to add
a series of terms that take into account various factors (e.g. flattening at the poles,
bulging at the equator, etc...). Therefore, the potential expression is broken down
into several terms, the quantitative value of which is the subject of geodesy studies.
The expression will be:

U = µ

r
{1 −

∞∑
l=2

Jl

(
R⊕

r

)l

Pl(sinϕ)+

+
∞∑

l=2

l∑
m=1

(
R⊕

r

)l

Pl,m(sinϕ) [Cl,m cos(mθLO) + Sl,m sin(mθLO)]}
(2.33)

Where Pl,m are the associated Legendre polynomials of degree n and order m,
while Cl,m and Sl,m are the coefficients of the spherical harmonics. The Earth’s
rotation speed is then assumed to be constant, neglecting nutation and precession.
The (2.33) shows the various contributions made to the Earth’s potential:

• Zonal harmonics, defined by polynomials of order zero (m = 0). The harmonics
of degree n even somehow represent the Earth’s symmetry with respect to
the equatorial plane, while those of degree n odd are indices of asymmetries.
Of all these, the most significant contribution that will be considered in the
study is the J2 term (n = 2, m = 0) that indicates the Earth’s flattening at
the poles and, therefore, its non-sphericity;
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• The tesseral harmonics, when n /= m and the sectoral harmonics, when n = m,
with n and m different from zero. All these harmonics are indices of the
variety of the Earth’s gravitational field. As order and degree increase, their
contributions become smaller and smaller and negligible.

The Earth’s longitude in the (2.33), then, is obtained as:

θLO(t) = θ − θG(t) = θ − [θGref + ωE (t− tref )] (2.34)

The reference time tref is the J2000 epoch, January 1, 2000 at 12:00:00 UTC
(51544.5 MJD), and θG0 = 280.46061837504 deg; ωE is evaluated assuming the
sidereal day equal to 86164.098903690351 s (no precession is considered).

Accelerations caused by Earth’s irregular gravitational field are obtained by
calculating the gradient of the potential function. In order to compute the pertur-
bations that deviate Earth’s potential function from that of a sphere (µ⊕/r), the
function that is partially derived is Φ = U + µ⊕/r; in the ZEN RF:

(aj)u = ∂Φ
∂r

(2.35a)

(aj)v = ∂Φ
∂θ

1
r cosφ (2.35b)

(aj)w = ∂Φ
∂φ

1
r

(2.35c)

The calculation of the first two derivatives with respect to r and θ is fairly
straightforward. The third derivative with respect to φ, on the other hand, re-
quires the derivation of the associated Legendre polynomials, which are obtained
recursively, exploiting the properties of Legendre polynomials.

The complexity of working with this derivative and the difficulty of implementing
it in the propagator are some of the reasons for choosing to work in Cartesian
coordinates in order to calculate the perturbative accelerations related to the
J2 contribution, and reported in section (5.2). The main effects related to this
perturbation that affect the orbital mechanics are:

• Regression of the satellite orbit node line: this is manifested through a variation
in time of the RAAN Ω, which will be negative in the case of direct orbits
and positive in the case of retrograde orbits. This means that, given the line
of nodes, if the satellite in its orbit is directed towards the east, the line of
nodes will move in the opposite direction towards the west.
The effect can be quantified by evaluating the rate of change of Ω:
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Ω̇ = −3πJ2

(
R⊕

p

)2

n0 cos i [rad/day] (2.36)

with n0 a parameter indicating how many revolutions there are in a day. It
can be seen from the relationship that the perturbative effect is greatest, in
absolute value, at low altitudes and inclinations. However, it is widely used in
mission analysis to save propellant: the different regression rate of two planes
at different altitudes and/or inclinations causes them to align after a certain
time interval.

• Precession of the apsides line: this phenomenon implies that if, for example,
the satellite is rotating eastwards, this line will also rotate in the same direction,
causing a change in the argument of the periastrum ω. It is therefore quantified
as:

ω̇ = 3
4

(
R⊕

p

)2√
µ⊕

a3 (5 cos i2 − 1) (2.37)

and the perturbation cancels out for two specific inclinations, i = 63.4◦ and
i = 106.6◦, with the former exploited by the Molniya orbits5.

2.4.2 Atmospheric Drag
Atmospheric drag D represents one of the main perturbations affecting the motion
of satellites in LEO and, at this point, on the satellite investigated in this thesis.
This phenomenon is due to the presence of the outermost layers of the Earth’s
atmosphere, which, although extremely rarefied at those altitudes, exert a resistance
force on the moving satellite (it vanishes completely around 100 km altitude). This
atmospheric resistance acts in the opposite direction to the satellite’s motion,
causing a gradual dissipation of orbital energy by changing its momentum.

a⃗D = −1
2cDρ

S

m
|v⃗rel|v⃗rel (2.38)

where velocity is evaluated in relation to the Earth’s rotational velocity as:

v⃗rel(t) = v⃗(t) − ω⃗E × r⃗(t) (2.39)

5These are highly elliptical orbits with an orbital period of half a sidereal day, allowing them
to cover the northern hemisphere for a long time.
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This force is resistive, which explains the presence of the sign ‘-’, as it decreases
the velocity; S represents the spacecraft’s exposed cross sectional area (which
depends on the attitude of the satellite); cD is the drag coefficient, and is typically
about 2 (so high because it is related to different mechanisms than those occurring
on Earth at sea level); ρ is the density of the atmosphere, which can vary depending
on solar activity.

The main effect of atmospheric drag is a decrease in orbital altitude over time,
resulting in a reduction in the semi-major axis of the orbit and hence the orbital
period. This leads to a progressive spiral towards Earth, which can culminate in
the atmospheric re-entry of the satellite if corrective manoeuvres are not applied.

Therefore, this perturbation represents a critical aspect for the design and
maintenance of satellite orbits, requiring the use of accurate atmospheric models
to predict orbital evolution. Within the developed propagator, the atmospheric
model implemented for the density is that of the exponential trend:

ρ(h) = ρsle
− h

H (2.40)

with H density factor of scale, representing the height at which the atmospheric
density decreases by a factor e (approximately 2.718), and depends on the compo-
sition and temperature of the atmosphere at those altitudes. The use of this model
makes it possible to simplify the calculation of perturbations due to atmospheric
drag for satellites in low orbits, giving a useful approximation for predicting orbital
decay, which is what we actually want to study by implementing this perturbation.
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Chapter 3

Optimal Control Theory

This chapter aims to illustrate the mathematical concepts that form the foundation
of the optimization problem related to space trajectories in the broadest sense,
briefly investigating the most common numerical methods used to solve it.

Firstly, it is interesting to understand why this discipline is now essential in the
feasibility study of a mission and is a cornerstone in the astrodynamics research
field. Since the dawn of space conquest, the various efforts to reach beyond the
Earth’s atmosphere have had as a common goal to carry a specific payload (manned
or unmanned) into orbit, necessary to accomplish a generic mission.

This purpose entails a cost from the point of view of the propellant that the
spacecraft will have to board: in fact, the propulsive effort mp to be carried out
will strictly depend on the specific mission to be achieved through the total It

impulse. A scenario may also arise in which, as analyzed in Section 1.2, in the
field of electric propulsion, to increase the specific impulse Isp, one goes to decrease
the thrust T : the same desired ∆V , therefore, will require longer times, and this
may conflict, for example, with time constraints imposed by the mission. In this
context, reducing the cost and time to access and use space without compromising
quality and safety becomes a key objective.

Thus, this is how trajectory optimization meets such needs. The subject can be
stated as the determination of a trajectory for a spacecraft that satisfies specific
initial and terminal conditions, i.e., that leads to the realization of the required
mission, while extremes a quantity of interest (maximizing or minimizing it).

The most common goal is the minimization of the demanded propellant or,
equivalently, the maximization of the payload fraction: doing so will accomplish
the same maneuver while spending less propellant mass, with an undoubted benefit
on the overall mission mass budget.

There are also spacecraft trajectory problems, as mentioned, where it is relevant
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to minimize flight time, which is helpful for human missions.
In both cases, the Optimal Control Problem (OCP) aims to find a control law

that extremes a specific index of merit by determining the inputs to the dynamical
system under analysis that will allow it, while satisfying any constraints imposed
on the system’s motion. In this thesis, maximizing the final mass of the spacecraft
was prioritized.

3.1 Compendium of Numerical Methods for OCPs
Numerical methods for solving optimal control problems date back as far as the
1950s, and from then until now, their complexity has undoubtedly increased, as
has the variety of applications in which they are used (this is also due to the
development of digital computers). Historically, low-thrust trajectory optimization
problems have been formulated as Continous Optimal Control Problems (COCPs).

This section will review the most common methods for solving them, highlighting
their differences and the reasons behind choosing one approach over another. For
the sake of brevity, a quick overview of them will be given here. In the reference
[9], Betts has published a detailed discussion of the various techniques available,
where the author analyzes OCP numerical techniques with boundary and path
constraints, giving an example of the general space applications.

All methods, however, aim to convert the low-thrust trajectory COCPs, which
are very complex and governed by a set of Ordinary Differential Equation (ODE)s
into a problem with a finite number of variables, by an operation called transcription.
As a rule, there are two different approaches: analytic and numerical. Although
the former provide closed-form resolution for the optimal trajectory, the possibility
of obtaining it is reduced to particular cases only and are rarely feasible for most
spacecraft trajectory optimization problems.

For these reasons, OCPs are mainly solved through numerical approaches, which
can be categorized into two main types:

• Direct Methods, based on Karush-Kuhn-Tucker (KKT) optimality conditions.
More informations can be found in [10];

• Indirect Methods, based on Pontryagin’s Maximum Principle (PMP) (for
a maximization problem, otherwise it is known as Pontryagin’s minimum
Principle, PmP) [11].

Interesting details on how such methods operate are described in references [12]
and [13]. Below, the paragraph briefly highlights the salient points of the two
approaches listed before.
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On the one hand, in a direct method, the optimal solution is sought by trans-
forming the infinite size optimization problem into a large size finite dimension
problem. In detail, the state and/or control of the COCP is discretized in some way
and the problem is transcribed into a Non Linear Programming (NLP) problem or
Non Linear Optimization Problem, solved by appropriate optimization techniques
in which the objective function is directly optimized. Such a transcription process
requires the discretization of the control variables in a time-grid. The goal of the
NLP will next be to determine a vector of unknown variables that satisfy a set
of nonlinear constraints, including the equality and inequality conditions. The
optimal solution of the NLP must satisfy first-order necessary optimality conditions,
known as KKT conditions.

On the other hand, indirect methods solve the problem indirectly (hence the
name) by converting the OCP into a Multi Point Boundary Values Problem
(MPBVP): as a consequence of this, the solution of the optimality problem will
be determined by solving a system of differential equations satisfying endpoint
and/or interior point conditions. This approach, in essence, relies on the principle
of Calculus of Variations (CoV) to find the first-order optimality conditions of the
original OCP to be satisfied. Unlike the previous one, in the indirect method, a
vector of co-states of the same size as the vector of states (to which these added
variables are associated) is introduced, which respects the Euler-Lagrange equations.
The problem, then, reduces to finding the initial values of the co-state vector to
match the optimality necessary conditions, respecting the algebraic constraints by
introducing Lagrange multipliers into the index of merit.

Anticipating already what will be covered in this chapter, the necessary condi-
tions for optimality are obtained by setting the first derivative of the merit index
to zero. The results come through the imposition of three systems:

1. Euler-Lagrange equations, which define the evolution of the co-states, i.e., the
added variables;

2. Transversality conditions, translatable as algebraic conditions that define, ex-
plicitly or implicitly, the value that states and co-states take on the boundaries
of the trajectory;

3. Optimality conditions for controls, namely, algebraic equations linking control
variables with states and co-states at each time.

3.1.1 Comparison: Direct versus Indirect Methods
The references [14-15], recommended for a more comprehensive point of view,
provide an exhaustive comparison of the two methods. The main difference between
the two methods, as seen, is the introduction of the added variables associated
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with the states. In a very general line, one could say that in a direct approach, the
OCP is first discretized and then optimized; conversely, indirect techniques involve
first the derivation of the optimal condition and only then the discretization of the
problem.

Direct methods are straightforward to code because there is no need to know
Optimal Control Theory (OCT). In fact, the user has the advantage of not needing
to derive the necessary first-order conditions. As a result, they are easy to initialize
because of the large convergence domain and the fairly immediate physical meaning
that the optimization variables take on.

However, to obtain an accurate solution, the mesh defining the discretized do-
main must be sufficiently dense, and this implies a conspicuous number of discrete
nodes/points that greatly aggravate the computational cost. Therefore, related
to this problem, and as a result of the large number of variables involved, is the
slowness of solving the problem, and in addition, the results only approximate the
solution (often referred to as suboptimal solution). Nevertheless, direct methods
have been widely used in recent years because of their robustness/tolerance to a
poor initial guess and the ability to easily handle complex control or state con-
straints.

On the other hand, indirect methods guarantee the fulfillment of first-order
optimality conditions and offer an interesting theoretical insight into the physical
and mathematical characteristics of the problem. To these must be added the
fundamental strength of such approaches: the high accuracy with which the solution
is obtained, even at minimal computational cost and time when compared with the
direct counterpart. However, they are not as flexible methods as the previous ones,
since one has to derive analytically and explicitly the expressions of the necessary
optimum conditions and the equations of the required controls and co-states, which
can be very complicated.

A skilled and experienced user is therefore required since this operation depends
on the OCP considered, but not only that. Indeed, the convergence region of
the solution is narrow, which is why they are highly sensitive to the initial guess
of the solution (they are not very robust), and it is often necessary to know a
priori the sequence of constrained and unconstrained arcs. All these details make
indirect methods unsuitable for solving highly constrained spacecraft trajectory
optimization problems, nor problems where flexibility and robustness are desired.
In conclusion, it is intuitive how direct methods primarily need cost and time to
be applied, while indirect methods require much specificity from users. Table (3.1)
briefly summarizes the characteristics of the two approaches seen.

An interesting list of the various software programs that implement one method
rather than the other can be found at [15]. What one observes is that, since their
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Table 3.1: Direct vs. Indirect methods: advantages and problems.

Method Robustness Flexibility Optimality
Direct

Indirect

inception, the working philosophy of the two methods has led to a dichotomy in
the optimal control community: researchers who focus on indirect methods are
more interested in differential equation theory, while those who invest in direct
methods look more to optimization techniques.

Although at first glance they seem unrelated, the two approaches have much
in common. In recent years, researchers have deepened the connections between
indirect and direct forms, so much so that in many recent applications it is not
unusual to apply an indirect technique downstream of a direct one to solve a
problem. Therefore, it is anticipated that these two methods classes will merge as
time goes on.

3.2 Optimal Control Theory
The OCP may be interpreted as an extension of the NLP problem to an infinite
number of variables, and thus as an extension of CoVs.

Indeed, it is well known how the CoV deals with maximizing (or minimizing)
a functional, that is, a function of functions that then associates a value with
a function. The most classic example of CoV is the determination of geodesics,
i.e., minimum-length curves between two points. The emergence of the CoV is
typically associated with Johann Bernoulli’s 1696 problem of the brachistochrone
curve [16], namely, the search for a curve that allows a particle with a certain mass
to move from an initial to a final point in the shortest possible time. Since the last
century, one has begun to apply such OCT principles to space trajectory OCPs
with increasing attention, becoming an intensively studied topic in the literature
with a long and interesting history, exhaustively reported in [17].

As anticipated above, the OCP is concerned with the determination of the
control law, among the existing ones, that evolves the system by optimizing a
specific functional: in the domain of interest of space trajectories, the problem will
determine the trajectory of the spacecraft within a dynamic model that satisfies
specific initial and final conditions, which is conducting a required mission, while
minimizing a quantity of interest. In this work, the object to be minimized is
the required propellant or, equivalently, the fraction of the spacecraft that is not
devoted to propellant is maximized.
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Generally, the OCP is described by a control system consisting of a set of
first-order ODEs written in the form:

˙⃗x = f⃗(x⃗(t), u⃗(t), t) (3.1)

which describes the evolution of the state variables vector of the system x⃗(t) ∈ Rn

between initial time t0 and final time tf , where u⃗(t) ∈ Rm is the control variables
vector, containing m different control variables. Please note that the time t ∈ [t0, tf ]
represents the independent time variable, of which both x and u are functions,
with t0 and tf extremal Boundary Conditions (BCs) at the beginning and the end
of the trajectory: defined in this way, the problem in the previous equation is a
Two Point Boundary Value Problem (TPBVP). In addition to time constraints,
the problem could also have some initial conditions x⃗(t0) = x⃗0 and some terminal
conditions x⃗(tf ) = x⃗f specified, thus having to satisfy q-dimensional BCs specified
by the constraint vector

X⃗ (x⃗0, x⃗f , t0, tf ) = 0 (3.2)

where X⃗ : [Rn,Rn,R,R] → Rq.
The vector of controls u⃗ could also be constrained: depending on the controls

chosen, some of them could be bounded in a specific range or assume a minimum
and maximum value. As will be seen later, it will appropriately shrink u⃗ ∈ U .
To evaluate the optimality of an OCP, one then needs a cost functional, which
associates a cost with each possible behavior of the dynamic system considered. For
a given initial data (t0, x⃗0), the behaviors are parameterized by control functions u:
thus, the cost functional assigns a cost value to each admissible control. In this
thesis, the terms merit index and cost functional are sometimes used interchangeably
and denoted J .

The goal of optimization is to find the optimal trajectory x⃗∗(t) among the
admissible ones, subject to the optimal controls u⃗∗(t), that extremes the value of
J , which can be written in the Bolza form as:

J = φ(x⃗0, x⃗f , t0, tf ) +
∫ tf

t0
[Φ(x⃗(t), u⃗(t), t)]dt (3.3)

Note that the objective function is entirely determined by the input function u,
for a given dynamical system and initial conditions.

The one just posed is no more than a variational calculus problem, i.e., an
optimization problem in which the unknown is a function instead of simply an
unknown variable. A particular input/control u⃗∗(t) is optimal if J (u⃗∗) ≥ J (u⃗), for
every u⃗ ∈ U , respecting the BCs. The expression of J in equation (3.3) is composed
by the sum of two main terms: the integral of the Lagrangian formulation, which
considers the progress of the state and control throughout the interval between
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t0 and tf , and the scalar of the Mayer formulation, which calculates the values
obtained from the state at a final time tf . One often refers to these two quantities
as running cost and terminal cost, respectively, and it is always possible to switch
from one formulation to the other with the help of auxiliary variables : the equation
(3.3) can then be rewritten either in Lagrange’s formulation with φ = 0 or in
Mayer’s formulation with Φ = 0. The latter formulation will be used in the thesis.

From here onward, the following notation is introduced for the sake of brevity:

φ ≜ φ(x⃗0, x⃗f , t0, tf ), (3.4)
X ≜ X⃗ (x⃗0, x⃗f , t0, tf ). (3.5)

Next, manipulation of the equation (3.3) is carried out, which will allow the
optimality problem to be posed in a different but mathematically equivalent way,
so that the indirect methods principles can be applied.

Considering a simple problem with a single phase, the optimality conditions
are found with the use of the Lagrande multipliers µ⃗ by imposing an augmented
performance index J ∗, which includes a measure of how much constraints and state
quantities are respected. In addition to these Lagrange multipliers µ⃗ associated
with the BCs, λ⃗(t) multipliers, referred to as adjoint or costate variables and
associated with the state variables x⃗(t), also appear in the formulation. Due to the
above, it is obvious that λ⃗ ∈ Rn and µ⃗ ∈ Rm.

With such formulation, the augmented performance index J ∗ can be written as:

J ∗ = φ+ µ⃗T X⃗ +
∫ tf

t0

[
Φ + λ⃗T (f⃗ − ˙⃗x)

]
dt (3.6)

Intuitively, from the (3.6) it follows that when BCs (3.2) and differential equation
(3.1) are satisfied, then X⃗ = 0 and f⃗ = ˙⃗x (the solution is feasible): consequently
J = J ∗ for any choice of λ and µ.

Manipulating the (3.6) by integrating by parts1, it is possible to eliminate the
derivative of states ˙⃗x and obtain a simpler expression:

1The integration by parts formula states:

∫ b

a

f(x)g′(x)dx =
[
f(b)g(b)

]
−
[
f(a)g(a)

]
−
∫ b

a

f ′(x)g(x)dx
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∫ tf

t0
−
(
λ⃗T ˙⃗x

)
dt = −

[
λ⃗T

f x⃗f

]
−
[
−λ⃗T

0 x⃗0
]

−
∫ tf

t0
−
( ˙⃗
λT x⃗

)
dt =

= −
[
λ⃗T

f x⃗f

]
+
[
λ⃗T

0 x⃗0
]

+
∫ tf

t0

( ˙⃗
λT x⃗

)
dt

(3.7)

Therefore, substituting in the (3.6) the (3.7) gives:

J ∗ = φ+ µ⃗T X⃗ +
[
λ⃗T

0 x⃗0 − λ⃗T
f x⃗f

]
+
∫ tf

t0

[
Φ + λ⃗T f⃗ + ˙⃗

λT x⃗
]
dt (3.8)

Then, it is useful to group some of the terms that appear in the (3.8) to define
a fundamental function that will come in handy later: the Hamiltonian H of the
system

H = Φ + λ⃗T f⃗ (3.9)

that depends on x⃗, u⃗, t (although not always explicitly) through f⃗ and the
costates λ⃗T 2.

The behavior of J ∗ can be analyzed through the first-order expansion of the
functional: in particular, the necessary condition for optimality requires that the
functional J ∗ be stationary and, therefore, null. The problem is thus to choose
x⃗0, t0, the control law u⃗(t) and tf , when considering the end-point constraints
(constraints), which cancel the variation δJ ∗:

δJ ∗ =
(
∂φ

∂t0
+ µ⃗T ∂χ⃗

∂t0
− H0

)
δt0+ (3.10a)

+
(
∂φ

∂tf
+ µ⃗T ∂χ⃗

∂tf
+ Hf

)
δtf+ (3.10b)

+
(
∂φ

∂x⃗0
+ µ⃗T ∂χ⃗

∂x⃗0
+ λ⃗T

0

)
δx⃗0+ (3.10c)

+
(
∂φ

∂x⃗f

+ µ⃗T ∂χ⃗

∂x⃗f

− λ⃗T
f

)
δx⃗f+ (3.10d)

+
∫ tf

t0

[(
∂H
∂x⃗

+ ˙⃗
λT
)
δx⃗+ ∂H

∂u⃗
δu⃗
]
dt, j = 1, ..., np (3.10e)

2Since Mayer’s formulation will be used in this paper, in the written expression Φ will be null.
Consequently, the Hamiltonian reduces to the product between the vector of adjoint variables
and the dynamics of the system: H = λ⃗T f⃗ .
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with np number of subarcs into which the trajectory was split.
The expression (3.10) allows the optimization problem to be stated in a general

way as follows: the functional J is maximal and has an admissible (i.e., valid)
solution if an infinitesimal variation of it δJ is less than or equal to zero for every
admissible variation of the state variable dx⃗.

δJ ≤ 0 ∀dx⃗ −→ J = Jmax

In this thesis work, the boundary condition of δJ = 0 will be considered for
the functional to be maximal, for any perturbation of the initial conditions δt0,
δtf , δx⃗0, δx⃗f , δx⃗, and δu⃗ controls while respecting the constraints X⃗ = 0 (3.2).
Cancellation of δJ is ensured through appropriate choice of the adjoint variables λ
and Lagrange multipliers µ. Equation (3.10), moreover, makes it possible to derive
a set of conditions useful in the search for the optimum.

Since δJ must be null, when the multiplicative coefficients of (3.10a) and (3.10b)
are null, one derives the so-called transversality conditions, that is, two algebraic
conditions at the initial and final times. The nulling, on the other hand, of (3.10c)
and (3.10d) returns the optimality conditions in number equal to 2n (one algebraic
equation per each state quantity both at initial and final bounds), which allow
special conditions to be placed on the co-state λxi from the known values of the
xi-th variable, as will be discussed in more detail in the next section. Finally,
cancellation of the cofficient δx⃗ in (3.10e) returns the Euler-Lagrange equations,
i.e., n-ODEs that govern the evolution of the adjoint variables, while m algebraic
equations for the controls are obtained by placing δu⃗ = 0 in the same line of the
expression. Thus, the three necessary systems governing the resolution of the
problem and allowing the search for the optimal solution among the existing ones
were obtained, which will now be analyzed.

3.2.1 Transversality and Optimality conditions

Previously, expressions of the equation (3.10 defining the boundary conditions for
optimality were introduced. In detail, they are compounded by a set of ODEs that
control how times (2 transversality conditions) and states (2n optimality conditions)
at the trajectory extremal points should behave [18].

By nullifying the respective multiplicative coefficients and reformulating the
expressions, one obtains:
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H0 = ∂φ

∂t0
+ µ⃗T ∂X⃗

∂t0
(3.11a)

Hf = − ∂φ

∂tf
− µ⃗T ∂X⃗

∂tf
(3.11b)

λ⃗T
0 = ∂φ

∂x⃗0
+ µ⃗T ∂X⃗

∂x⃗0
(3.11c)

λ⃗T
f = − ∂φ

∂x⃗f

+ µ⃗T ∂X⃗
∂x⃗f

(3.11d)

First, an initial or final parameter is said to be free if it does not appear in
the end-point constraint X⃗ . From the two transversality equations (3.11a - 3.11b)
particular conditions on the Hamiltonian are obtained depending on whether time
t is constrained or not. At the point when time is constrained, i.e., t ∈ X⃗ , it is
desired that it does not change with respect, so the derivatives at the initial and
final times are zero. Consequently, equations (3.11a) and (3.11b) do not exist/can
not be written: therefore, having nothing to associate with H, the Hamiltonian is
said to be free and subject to optimization. Conversely, when time is admitted to
be free and allowed to vary, it becomes an unconstrained variable and thus t /∈ X⃗ .
If it does not even appear in φ (but in this paper, it will always be considered
φ = mf ), both derivatives cancel, the Hamiltonian is zero at that point, both for
initial and final times, and the value of t is the object of optimization.

A useful example to understand this may be that of a mission in which there is
a requirement to produce a given thrust T in a constrained time window ∆t: since
both the initial epoch t0 and the final epoch tf = t0 + ∆t are fixed, it follows from
(3.11a) and (3.11b) that H0 /= 0 and Hf /= 0 respectively. Dually, if the presented
scenario requires the same thrust T but without imposing a constraint on the time
t at which it is to be supplied by the engine, t0 is assigned (instant at which to
start thrusting) and thus H0 free, while Hf = 0 because tf is unconstrained and
the object of optimization.

Similarly, one reason for optimality conditions (3.11c) and (3.11d), which repre-
sent the variation of the merit function and constraints with respect to states, and
λ⃗ also appear in them. If a constraint is imposed on the generic state variable xi,
it is wanted not to vary relative to any state x of the system, so the corresponding
adjoint variable λxi

is undefined and free (there is nothing to be associated with
it in the equation). Otherwise, if the considered state is not assigned (xi /∈ X⃗ )
and does not appear in φ, both derivatives in the expression cancel out, and it is
inferred that the associated adjoint variable is λxi = 0 at that point. A scenario
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that often recurs and helps to understand this is a Hohmann transfer from initial
radius r0 and final radius rf , both fixed by mission requirements. As a consequence,
one would have the respective λri and λrf free variables.

Considering, for example, the final radius bound rf ∈ X⃗ from (3.11d) one has:

λrf
=
�
�
���

0
∂mf

∂rf

+ µr0

�
�
��7

0
∂r0

∂rf

+ µθ0

�
�
��7

0
∂θ0

∂rf

+ ....+ µrf

�
�
��7

1
∂rf

∂rf

+ ... = µrf
(3.12)

In which a spherical coordinate system was considered.
Since µrf

is an optimization object value, λrf
is a free variable. Once the solution

has reached convergence, and thus the λ⃗ have been determined, ideally, one can find
out what the Lagrange multipliers were that would have allowed the equations to
be solved at the beginning. If, on the other hand, the radius is unconstrained and
subject to optimization, the derivative ∂rf/∂rf would also be zero since rf /∈ X⃗ ,
and thus the associated λrf

= 0. Finally, it is essential to make a remark about
the equations analyzed. (3.11c) and (3.11d) are multiple equations, so they will
each be equal in number to those of the states of the system under consideration.
Expressions (3.11a) and (3.11b), instead, are scalars: in fact, the Hamiltonian is
nothing but a number derived as (3.9).

3.2.2 Controls and adjoint variables equations
The cancellation of the multiplicative coefficients in line (3.10e) of the equation
(3.10) allows the extraction of the set of ODEs that close the necessary optimal
conditions. Specifically, from the annulment of the δx coefficient, one derives the
Euler-Lagrange equations for the adjoint variables:

dλ

dt
= −

(
∂H
∂x

)T

(3.13)

These equations express how the adjoint variables evolve over time t. Since they
are uniquely associated with the states x of the problem, and since x ∈ Rn, the
(3.13) will also be equal in number to n: hence λ̇ ∈ Rn. The newly derived set of
ODEs will be coupled to the equations of dynamics (3.1). The adjoint variables
play a crucial role in solving the OCPs: in fact, the pivotal problem of indirect
methods is precisely to find the λ, which represent the accelerators of the state
variables associated at the beginning of the trajectory (always remaining in the
context of space trajectories optimization)3.

3A costate variable is akin to a Lagrange multiplier and, as such, it is in the nature of a
valuation variable, measuring the shadow price of an associated state variable.

47



3.2. OPTIMAL CONTROL THEORY

However, understanding what initial values the costates take and, subsequently,
how they evolve over time along the trajectory itself is very difficult, partly because
it is not always possible to make a physical association with λ. These numerical
problems are elegantly summarized in the following quote from [19]:

The main difficulty with these methods is getting started; i.e., finding a first
estimate of the unspecified conditions at one end that produces a solution

reasonably close to the specified conditions at the other end. The reason for this
peculiar difficulty is the extremal solutions are often very sensitive to small

changes in the unspecified boundary conditions. ... Since the system equations and
the Euler-Lagrange equations are coupled together, it is not unusual for the

numerical integration, with poorly guessed initial conditions, to produce “wild”
trajectories in the state space. These trajectories may be so wild that values of x(t)

and/or λ(t) exceed the numerical range of the computer!

In the same row as the (3.10), by canceling the δu coefficient, one finds the
equations for the controls:

(
∂H
∂u

)T

= 0 (3.14)

Since the controls u ∈ Rm, then there will exist m algebraic equations of the
type (3.14). As mentioned previously, there may be cases of problems in which a
constraint is placed on the control variable u, such as the restriction u(t) ∈ U for all
t ∈ [0, T ], where U denotes some bounded control set. The control set can in fact
be a closed, convex set and this means that corner solutions can be admitted: for
example, a specific control variable u must be kept in a range of umin ≤ u ≤ umax

limit values, as might be the case for a satellite attitude angle or thrust T, which
cannot take on negative values.

In the thesis work presented, u ∈ U is considered. In this scenario, the optimal
control u∗ ∈ U for the desired trajectory is the one that, per each point in the
trajectory, extremizes the Hamiltonian in equation (3.9) in that specific point
[20]. Such a concept is known as Pontryagin’s Maximum Principle (PMP) (for a
maximization problem, otherwise it is known as Pontryagin’s minimum Principle
(PmP), which is a particular Mayer problem. PMP is a collection of conditions that
must be satisfied by solutions of an OCP, and it unifies many classical necessary
conditions from the calculus of variations.

An overview of this principle is well described in [21]. Furthermore, the principle
is valid whether the control is restricted within a region of validity U or not. In either
case, the value of the optimal control must always be such that the Hamiltonian is
maximized at every point on the trajectory so that the functional J is maximized,
hence:
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- If the control is bounded within a domain of admissibility U , the law of the
optimal control is that returned by the (3.13) equation;

- If the control is unbounded, the optimal value will be forced to be one of the
two extremes of the interval U (either the maximum or the minimum).

Depending then on whether the H in equation (3.9) is linear or affine (i.e.,
first-order) with the control, the solution of (3.14) leads to two different case
studies:

∂H

∂ui

=
Kui

if H is affine with u
f(ui) otherwise

(3.15)

Where Kui
is a constant. If the Hamiltonian depends linearly on ui, the

latter disappears from the expression (3.14): the system is indeterminate and
gives no information about the optimal control (except in the case where Kui

= 0).
Conversely, one would like to obtain an equality by which it is possible to understand
how u should vary over time, but this is not possible when affine to u: the problem,
therefore, becomes bang-bang and is precisely the case arising in the implemented
OCP. Specifically, when Kui

/= 0, to comply with the PMP, the optimal control is
extremized to maximize the Hamiltonian: if Kui

> 0 then the maximum allowable
control ui = Ui,max is placed; while the minimum allowable control ui = Ui,min is
chosen when Kui

< 0. The case that will be analyzed in section (3.5) will see the
Hamiltonian affine to the thrust control variable T : deriving H with respect to T
will result in a constant. Thus, bang-bang control is used where T will be allowed
to vary between its maximum value Tmax (maximum propulsive effort suppliable
by the spacecraft engine) and minimum value Tmin (i.e., 0, corresponding to the
condition of engine off and coasting phase, since in space there is no concept of
"retro-thrust", so T cannot be negative). The Kui

discriminant, which will ensure
maximization of the Hamiltonian by the optimal control, would be the so-called
Switching Function (SF ).

The limit scenario Kui
= 0 will not be treated in this thesis for the sake of

brevity and because it is not of interest. However, it can be said that this condition
involves singular arcs and more details can be found in [13].

3.3 Multi-Point Boundary Value Problem
A MPBVP arises when it is necessary to impose constraints on the internal points
of the trajectory (by fixing, for example, a thrust arc rather than a coasting arc)
to segment the general problem into a series of smaller, easily solved sub-problems.
Consequently, converting from a TPBVP to a MPBVP has the undoubted benefit of

49



3.3. MULTI-POINT BOUNDARY VALUE PROBLEM

improving convergence and increasing the robustness of the code, thereby facilitating
the computational model. This transition is performed by subdividing the trajectory
into a number np of subintervals, commonly known as arcs (or phases), along which
the variables are continuous. The subdivision is conveniently performed to set
discontinuities and constraints of the computational domain at the edges between
two adjacent arcs. Operating according to this procedure, the problem described in
the equations by (3.1, 3.2, and 3.3) is converted into a MPBVP, whose schematic
representation of the distribution domain is shown in the figure (3.1)4.

Figure 3.1: Trajectory discretization in np intervals in a MPBVP.

As can be seen, the j-th arc begins at t(j−1)+ and ends at t(j)− and has a generic
time extension of ∆tj, usually unknown and subject to optimization, which may
also be different between one arc and another. Coincident with the same edges are
the extremes of the vector of state variables in the form x(j−1)+ and x(j)− , where
the notation + and - is used to indicate their values before and after a generic
edge, respectively, while their values are continuous within each arc. However, it is
important to emphasize once again that discontinuities may occur in the internal
boundaries between two arcs.

Consequently, however, it is necessary to determine the vector of BCs equations
on each border between a pair of adjacent arcs, as it can be a function of both
state and time variables. This vector, which includes not only the internal points
but also the external boundaries of the domain, can be reformulated as:

X
(
x⃗(j−1)+ , x⃗(j)− , t(j−1)+ , t(j)−

)
= 0, j = 1, ..., np (3.16)

and are Non-Linear (NL) and mixed conditions, in general. Similarly, the merit
index introduced in (3.3), in a MPBVP takes the form:

4Source: Luigi Mascolo, Low-Thrust Optimal Escape Trajectories from Lagrangian Points and
Quasi-Periodic Orbits in a High-Fidelity Model, PhD Thesis for Politecnico di Torino, 03 February
2023, page 93.
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J = φ
(
x⃗(j−1)+ , x⃗(j)− , t(j−1)+ , t(j)−

)
+

np∑
j=1

∫ t(j)−

t(j−1)+

[Φ(x⃗(t), u⃗(t), t)]dt (3.17)

Note that the term associated with the Mayer formulation φ now depends on the
values that the variables and time take on each border from jp = 0 to jp = np, both
for the complete trajectory and for each arc. The sum of the integrals representing
Lagrange’s formulation remains identical to before, continuing to depend on the
time evolution of the state variables, controls, and time itself: now, it takes into
account how the solution evolves arc by arc.

The augmented index of merit of (3.6) in a MPBVP will be written as:

J ∗ = φ+ µ⃗T X⃗ +
np∑

j=1

∫ tj−

t(j−1)+

[
Φ + λ⃗T (f⃗ − ˙⃗x)

]
dt (3.18)

and intergrating by parts gives:

J ∗ = φ+µ⃗T X⃗ +
np∑

j=1

(
λ⃗T

(j−1)+ x⃗(j−1)+ − λ⃗T
j−x⃗j−

)
+

np∑
j=1

∫ tj−

t(j−1)+

[
Φ+λ⃗T f⃗+ ˙⃗

λT x⃗
]
dt (3.19)

Since the objective always remains the extremisation of J ∗ through the applica-
tion of the first-order necessary condition for optimality dJ ∗ = 0, one has, for each
arc:

δJ ∗ =
(

∂φ

∂t(j−1)+

+ µ⃗T ∂χ⃗

∂t(j−1)+

− H(j−1)+

)
δt(j−1)++ (3.20a)

+
(
∂φ

∂tj−

+ µ⃗T ∂χ⃗

∂tj−

+ Hj−

)
δtj−+ (3.20b)

+
(

∂φ

∂x⃗(j−1)+

+ µ⃗T ∂χ⃗

∂x⃗(j−1)+

+ λ⃗T
(j−1)+

)
δx⃗(j−1)++ (3.20c)

+
(
∂φ

∂x⃗j−

+ µ⃗T ∂χ⃗

∂x⃗j−

− λ⃗T
j−

)
δx⃗j−+ (3.20d)

+
np∑

j=1

∫ tj−

t(j−1)+

[(
∂H
∂x⃗

+ ˙⃗
λT
)
δx⃗+ ∂H

∂u⃗
δu⃗
]
dt, j = 1, ..., np (3.20e)

Nullifying (3.20) one obtains again the transversality conditions (4.19 a and b)
and the optimality conditions (4.19 c and d) which, in the MPBVP domain, are
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Figure 3.2: Detail on generic j − th edge of the domain.

more efficient to express in relation to the j − th border. Adopting the notation in
the figure (3.2), (3.11) can be written as:

Hj+ = ∂φ

∂tj+

+ µ⃗T ∂X⃗
∂tj+

j = 0, ..., np − 1 (3.21a)

Hj− = − ∂φ

∂tj−

− µ⃗T ∂X⃗
∂tj−

j = 1, ..., np (3.21b)

λ⃗T
j+ = ∂φ

∂x⃗j+

+ µ⃗T ∂X⃗
∂x⃗j+

j = 0, ..., np − 1 (3.21c)

λ⃗T
j− = − ∂φ

∂x⃗j−

+ µ⃗T ∂X⃗
∂x⃗j−

j = 1, ..., np (3.21d)

Note how relations (3.21c and 3.21d) refer to the boundaries after and before an
interval: when several sub-arcs are present, they are also valid at the intervals of the
arcs and become continuity equations. Furthermore, time t is never present in (3.21c
and 3.21d): when they are time-independent and the final time is assigned, (3.21a
and 3.21b) are meaningless (do not exist/can not be written) and, consequently,
the Hamiltonian is free. When, on the other hand, even for a single arc, the time is
allowed to vary (tf /∈ X ), it means that it is subject to optimization by the code:
equations will have to be added, which will be derived from (3.21a and 3.21b),
because in the differential system, there is no constraint that indicates how the
time varies optimally, so the Hamiltonian is null.

A note worthy of attention, moreover, is the following: equations (3.21c and
3.21d) are multiple because they are one for each state variable. Thus, if, for
example, the state of the problem is described by seven variables (considering for
illustrative purposes a spherical reference system r, θ, ϕ, u, v, w, m), then there
will be seven equations in (3.21c) and seven equations in (3.21d). Expressions
(3.21a) and (3.21b), on the other hand, are scalar since the Hamiltonian H is a
scalar number, analogous to what was seen in section (3.2.1). The considerations
on the Euler-Lagrange equations for added variables and controls formulated in
section (3.2.2) also hold true in the MPBVP.
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3.4 Boundary Value Problem implementation
This section will outline the implementation of the Boundary Value Problem
(BVP), under the OCT, also highlighting the techniques used to cope with the
computational complexity. The problem of a low-thrust spatial trajectory subject to
gravitational influence in a more or less articulated model requires the application
of precise control and optimization procedures of the indirect method, so that an
adequate robustness of the code can face possible numerical instabilities that may
arise and thus achieve convergence of results.

The problem, therefore, is highly non-linear in nature. To avoid these criticalities,
a BVP is formulated using OCT: in detail, the initial BVP is converted into an
augmented dual one in which some values of the initial state may be unknown.
Although this strategy leads to the formulation of a dimensionally more complex
problem, it allows, on the other hand, the imposition of the conditions previously
seen to guarantee the optimality of the solution. Accordingly, the initial state
vector is identical to before but extended with the vector of adjoint variables:

y∗
0 =

{
(x∗)T (λ∗)T

}T
(3.22)

Generally speaking, solving the BVP consists in using an indirect single-shooting
method that, through an iterative generation of a series of initial guesses, determines
the optimal initial conditions of the state variables (3.22) that allows reaching the
desired final state y∗

f (obviously within a certain numerical tolerance), respecting
all BCs, both the imposed and the optimality ones. As is immediately apparent,
the result will depend heavily on the initial guesses, a typical feature of indirect
methods, which is why care must be taken to guide the solution correctly to
avoid errors in convergence. First of all, since the time extension ∆t between
two arc boundaries is unknown, it is convenient to introduce a new independent
non-dimensional time variable to fix the extremes of the integration interval of each
j-th arc:

tε = j − 1 + t− tj−1

tj − tj−1
= j − 1 + t− tj−1

∆tj
(3.23)

where:

∆tj ≜ tj − tj−1 j = 1, ..., np (3.24)

With ∆tj unknown and subject to optimization. This strategy simplifies the
solution of the problem by making it more flexible and robust. The generic form of
the complete set of ODEs of the indirect method is reformulated as:

ẏ = {f (y(t), t)} (3.25)
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which is written in the dimensionless form:

˙̆y = f (y̆(tε), tε) (3.26)

including state and adjoint variables. An OCP may also contain some constant
variables. Therefore, a new vector is introduced:

z⃗ =
{
y⃗T c⃗T

}
(3.27)

to account for the vector of constants c⃗. Through (3.23), the set ODEs can be
reformulated as:

˙̆z = dz̆

dtε
= f (z̆(tε), tε) (3.28)

with

˙̆c = dc̆

dtε
= 0 (3.29)

The new set of BCs will be satisfied if

X (s̆) = 0 (3.30)

with s̆ vector containing the value of the variables at both the inner and outer
edges in the discretized domain,

ŝ =
{
y̆0

T y̆T
1 .... y̆T

np−1 y̆T
np

c̆T
}

(3.31)

Once the problem has been set, therefore, it is necessary to determine the optimal
guesses that allow the desired final state to be reached within the constraints
imposed: the single-shooting procedure, thus, must find the optimal initial state
q̆∗

0 that satisfies the BCs X (q̆∗) = 0. This will be performed iteratively. Having
fixed a generic initial guess q̆r = z̆0 as the initial vector of variables, at each r-th
iteration, the deviation on the BCs X (q̆r) = Xr will be calculated (from now on,
this less burdensome notation will be used).

The aim is to annul this difference to obtain the desired final state. This was
done using a differential correction through a first-order truncated Taylor series
expansion of the vector of constraints, thanks to which it was possible to update
the initial state:

Xr+1 = Xr + ∂Xr

∂q̆r+1
(q̆r+1 − q̆r) (3.32)

The BCs at the next iteration, therefore, from (3.32), are a function not only
of the BCs at the previous step but also of the state vector at the previous r-th
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one. In (3.32), in particular, there appears the partial derivative of the constraints
vector concerning the forward in-time free-variable vector called Jacobian matrix J̆

(henceforth referred to as 3.33). This matrix is no more than a partial mapping of
the derivative of the constraints Xr with respect to the variables of the problem
qr+1, explicitly stated in (3.34).

J̆ (Xr) ≜ J̆ (Xr, q̆r+1) (3.33)

J̆ =



∂X1
∂q01

∂X1
∂q02

∂X1
∂q03

∂X1
∂q04

∂X1
∂q05

∂X1
∂q06

∂X1
∂q07

∂X2
∂q01

∂X2
∂q02

∂X2
∂q03

∂X2
∂q04

∂X2
∂q05

∂X2
∂q06

∂X2
∂q07

∂X3
∂q01

∂X3
∂q02

∂X3
∂q03

∂X3
∂q04

∂X3
∂q05

∂X3
∂q06

∂X3
∂q07

∂X4
∂q01

∂X4
∂q02

∂X4
∂q03

∂X4
∂q04

∂X4
∂q05

∂X4
∂q06

∂X4
∂q07

∂X5
∂q01

∂X5
∂q02

∂X5
∂q03

∂X5
∂q04

∂X5
∂q05

∂X5
∂q06

∂X5
∂q07

∂X6
∂q01

∂X6
∂q02

∂X6
∂q03

∂X6
∂q04

∂X6
∂q05

∂X6
∂q06

∂X6
∂q07

∂X7
∂q01

∂X7
∂q02

∂X7
∂q03

∂X7
∂q04

∂X7
∂q05

∂X7
∂q06

∂X7
∂q07



(3.34)

Understanding this matrix is crucial to fully grasp how differential correction
operates, as it linearly traces final variations to initial conditions, or vice versa, and
multiplies the term (q̆r+1 − q̆r). Thus, it offers significant insights, both quantitative
and qualitative, into how little variations in q̆r can affect the evolution of the
problem and, consequently, the guess correction at each iteration.

If a solution exists, then Xr+1 = 0 and the iterative solution takes the form

Xr + [J̆ (Xr)](q̆r+1 − q̆r) = 0 (3.35)

and, by inverting, one determines the state of the design vector qr at each
iteration and the update value of the constraint vector Xr

q̆r+1 = q̆r − [J̆ (Xr)]−1Xr (3.36)

in which the Jacobian matrix is computed by a forward finite difference approx-
imation as

J̆ (Xr) = X p
r − Xr

∆ (3.37)

where X p
r represents the vector of constraints associated with the perturbation

vector qp (the notation p stands for perturbed), while ∆ is the magnitude of the
perturbation, in this work set to a value of ∆ = 1 × 10−7.
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Xir
p ≜ X (qir

p) (3.38a)

qir
p ≜ qir + ∆ (3.38b)

Inevitably, the differential correction procedure described introduces a certain
level of approximation in the calculation of the solution, but it is a compromise
that one is willing to accept to make the analysis faster and more flexible and,
above all, it helps to have some stability in a problem where one is varying the
initial conditions with different constraints and BCs.

At this stage, the OCP thus formulated as a TPBVP can be resolved by deter-
mining the optimal initial state z∗

0 that allows the trajectory to evolve towards the
desired final state z∗

f (z∗
0(t), t), respecting the BCs. For this purpose, a simultaneous

integration of the set of system principal ODEs, given below, is performed:

ż = f (z(t), t) (3.39)

The integration of the 3.39) took place numerically in a Python environment
thanks to the utilization of the LSODA package precompiled in C++ [22], which
implements the Adams-Moulton method of order 13 (adaptive step with variable
order from 1 to 13). This choice is based on the pursuit of an optimal balance
between code efficiency and calculation speed was pursued: since the integration
part takes place in a precompiled code, a percentage improvement over the execution
time of the scipy.solve ivp package of 59510.7% was estimated (approximately 60
thousand times faster) while still maintaining the flexibility and simplicity of the
Python environment.

Finally, it was mentioned earlier how the iterative procedure of differential
correction can induce divergences and compromise the convergence of the solution.
Two strategies involving the application of two relaxation factors were used to
refine the calculation process and avoid these criticalities, as described below:

1. A relaxation factor k1 introduced during the update of the new guess initial
condition at each iteration, which ensures the convergence of the solution:

zr+1 = zr − k1 · [J (Xr)]−1 Xr (3.40)

Where k1 = [0.1 − 1]. Typically, low values of k1 are set during the first
row guess for unknown values, while high values of k1 are suitable when the
solution is reasonably close to the optimum.
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2. A control factor k2 on the subsequent error with respect to the errors on the
boundary conditions of the previous step:

Emax,r+1 < k2Emax,r (3.41)

Where Emax = normi(Xi) is the code required accuracy and k2 = [2 − 3],
but if the error should become significantly high then a bisection method is
performed on the correction of k2 up to 5 times, and the (3.41) is not satisfied.
This parameter is suitable for helping the first step of the iterative process to
converge, establishing the correct direction of optimality in the search space.
It is essential to note how the correction is performed on the error norm.

The table (3.2) summarises the values used in the calculation procedure.

Table 3.2: Parameters used in the calculation procedure.

Integrator LSODA
Factor k1 0.01
Factor k2 2
Delta ∆ 1 × 10−7

3.5 OCP for spacecraft trajectory optimization
This section shows how the OCT discussed above applies to the trajectory opti-
mization problem of a spacecraft. Considering the latter in a 2-body system in the
absence of perturbative accelerations, its dynamic is described by the following set
of ODEs:

dr⃗

dt
= v⃗ (3.42a)

dv⃗

dt
= g⃗ + T⃗

m
(3.42b)

dm

dt
= − T⃗

c
(3.42c)

Which explicitly written by projecting them along the three Cartesian axes of
an Earth-Centred Earth-Fixed (ECEF) RF become:
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dx

dt
= vx (3.43a)

dy

dt
= vy (3.43b)

dz

dt
= vz (3.43c)

dvx

dt
= − µ⊕

r3/2x+ Tvx

m
(3.43d)

dvy

dt
= − µ⊕

r3/2y + Tvy

m
(3.43e)

dvz

dt
= − µ⊕

r3/2 z + Tvz

m
(3.43f)

dm

dt
= −T

c
(3.43g)

with µ⊕ gravitational parameter of the Earth. At this point, the OCT aims to
integrate the (3.43) to derive the optimal control law that allows maximizing the
objective index, i.e., the final mass of the spacecraft (and thus minimize propellant
consumption) at the end of the mission under study. This is because, as already
mentioned, Mayer’s formulation was preferred in this thesis, setting the Lagrangian
term Φ in Bolza’s general definition (3.3) to zero:

J = φ = mf (3.44)
Starting from the definition of the state vector, although it is convenient to use

the classical orbital parameters (and thus the Gauss planetary equations)

xkepl = {a, e, i,Ω, ω, ν}T (3.45)
from the perspective of targeting the desired orbits, this choice would prove to

be mathematically unsuccessful since it is unknown how the target on an orbital
parameter translates as a condition on the adjoint variables λ. Hence, one opts for
the definition of a state vector x(t) ∈ Rn expressed in Cartesian coordinates:

xcart = {x, y, z, u, v, w,m}T (3.46)
which proves to be more efficient for targeting transversality, withm the mass of

the spacecraft. Let xcart ≜ x(t) be denoted henceforth for simplicity of notation.
It is known, then, from OCT that each of the variables in (3.46) is associated

with its corresponding adjoint variable, thus being able to define the augmented
state vector y(t) ∈ R2n:
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y =
{
x, y, z, u, v, w, λx, λy, λz, λvx , λvy , λvz , λm

}T
(3.47)

From the explicit set of ODEs (3.43) the derivation of the Hamiltonian H is
immediate:

H = λ⃗T f⃗ =
2n∑
i=1

λifi = λxu+ λyv + λzw+

+λu

[
− µ⊕

r3/2x+ T

m

λvx

λV

]
+

+λv

[
− µ⊕

r3/2y + T

m

λvy

λV

]
+

+λw

[
− µ⊕

r3/2 z + T

m

λvz

λV

]
+

+λm
T

c

(3.48)

This can be rewritten in compact form by grouping the thrust-to-mass ratio
terms to define what is referred to as the Switching Function (SF ) (whose expression
is given in 3.50), which plays a crucial role in optimal trajectory control:

H = λvxu+ λvyv + λvzw − µ⊕

r3/2 (xλu + yλv + zλw) + TSF (3.49)

SF = λ⃗V

m
− λm

c
(3.50)

Note in (3.50) the presence of the term λ⃗V which groups the adjoint variables
associated with the three velocity components:

λ⃗V =


λvx

λvy

λvz

 , λV = ∥λ⃗V ∥. (3.51)

and called primer vector, which is useful for defining the optimal thrust direction.
The result of Lawden’s work in 1963 [23], tells how the costates velocity vector
must be aligned (parallel) to the velocity state vector, i.e. it finds a correlation
between the norm of λvx , λvy , and λvz and the norm of u, v, w. Basically, the
optimal thrust angle will always be a function of the λ of velocities; in particular,
the optimal thrust direction is that which maximizes the SF in (3.50), which in
turn maximizes the Hamiltonian H in equation (3.49).
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The control vector u⃗(t) is composed of the magnitude of the thrust T and its
direction u⃗(t) = T, α. From this, the importance of SF is evident. In fact, from
the (3.49) it is clear how the Hamiltonian is affine with the control T, i.e., deriving
H with respect to the thrust, one obtains a constant and has no information on
how T should vary since the control is linear.

∂H
∂T

= 0 → 0 + 1
m

(
λT

V − λm

c
m

)
− 0 = 0 (3.52)

The problem that arises, therefore, is a bang-bang one, i.e., to comply with PMP,
the optimal control u⃗∗ is the one that maximizes the Hamiltonian H and the index
of merit for the trajectory. In this context of maximization, the importance of SF

manifests itself: when SF > 0, then the thrust will be maximum T = Tmax, while
it will be null T = 0 when SF < 0 in that ∆t integration interval, which will be
called the coasting arc.

The switching function in (3.50) can then be rewritten in compact form as:

SF = λV − λm
m

c
(3.53)

As regards the control of thrust angles, with reference to the figure (3.3), two
angles are defined: an αt angle denoting the direction of T in the orbital plane and
a βt angle defining the component in the direction perpendicular to the plane. On
this basis, the thrust T can be rewritten by decomposing it into its components
along the three directions:

Figure 3.3: Thrust angles in the Cartesian reference frame.
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T⃗ =


Tvx

Tvy

Tvz

 = T


sinαT

cosαT cos βT

cosαT sin βT

 , T = ∥T⃗∥. (3.54)

One wants to find the optimal values of αt and βt that maximize the Hamiltonian
H. Accordingly, the first derivative of the latter with respect to the two angles is
determined and set equal to zero, obtaining:

∂H
∂αT

= 0 = λvx cosαT −
(
λvy cos βT + λvz sin βT sinαT

)
(3.55a)

∂H
∂βT

= 0 = −λvy sin βT + λvz cos βT (3.55b)

By manipulating (3.55) appropriately, αt and βt are made explicit:

sinαT = λvx

λV

(3.56a)

cosαT cos βT = λvy

λV

(3.56b)

cosαT sin βT = λvz

λV

, (3.56c)

which are the cosine directors of the primer vector and also correspond to the
components of the thrust vector described in the equation (3.54).

Through (3.56), therefore, the in-plane and out-of-plane angles for the optimum
thrust direction are determined. The control equations of the problem are thus
derived. Finally, the relationships for the adjoint variables specific to the case
study are derived through the Euler-Lagrange equations, partially deriving the
Hamiltonian as seen in the (3.13), and given in the appendix (A).

As posed, the problem is completely defined. Although its nature may seem
relatively straightforward, one must take into account any discontinuities in the
thrust that may occur in a moderately complex dynamic model. This could lead to
very slight fluctuations around zero in the sign of the switching function, causing
cascading numerical instability problems. Although this was not the case, given the
relative simplicity of the adopted 2-body model and the modelised gravitational
field, one way of dealing with such a critical issue could be to pre-set the structure
of the SF a priori. By pre-assigning a sequence of thrust and coasting arcs,
obviously, with due rationality and experience, it is possible to improve stability
and aid convergence, increasing the robustness of the code. However, handling
push discontinuities is a typical and frequent drawback of indirect optimization.
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3.6 Reduced Transversality conditions
Based on the various critical points discussed above, a long-standing challenge in
optimal guidance for space trajectories is how to reduce the transversality conditions
in an OCP. The reasons for doing this are mainly twofold:

• such a reduction would eliminate Lagrange multipliers (even unknown ones)
from the problem, which significantly weaken the robustness of the code;

• such transversality conditions involving Keplerian parameters would allow for
better and smoother targeting of orbits during trajectories, as mentioned in
the previous section.

More details on this reduction can be found in [24]. Basically, taken the vector
of Keplerian orbital parameters:

K⃗ = {a, e, i,Ω, ω, ν}T ∈ R6 (3.57)
Given the Ki − th free element that does not appear in the constraint vector, in

the case of Ki = ν, at the final time tf it will be:

∂ψ

∂Ki

= ∂ψ(S⃗f )
∂S⃗f

∂S⃗f

∂Ki

= 0, i ∈ I (3.58)

With S⃗f final state obtained from the vector of Keplerian orbital elements, ψ
vector of constraints and I is the set of indices of the Ki free elements. Applying
these reduced to optimal conditions in equation (3.11d), one introduces a vector y⃗
such that: ∂ψ(S⃗f )

∂S⃗f

 y⃗ = 0 (3.59)

With yi a set of linearly independent solutions of the system and i = 1, ...., n
and n number of free K. Equation (3.11d) can then be rewritten as

y⃗(xf ) · λ⃗f = 0 (3.60)
and obtain (6 − n) reduced transversal conditions:

∂S⃗f

∂Ki

· λ⃗f = 0 (3.61)

A solution for a free-time, free-attachment orbital insertion must include the
seven initial costates, the time to maneuver and the final true anomaly. Nine total
unknowns require 9 boundary conditions, which are:
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• Maximum final mass, from the optimality condition in equation (3.11d):

λmf
= 1 (3.62)

• Free-time, from the transversality conditions in equation (3.11b):

Hf = 0 (3.63)

• Free-attachment, from the reduce transversality conditions (3.61):

v⃗f · λ⃗rf
− µ

r3
f

r⃗f · λ⃗vf
= 0 (3.64)

• Final state BCs:

r⃗f = r⃗∗
f (3.65a)

v⃗f = v⃗∗
f (3.65b)

where r⃗∗
f and v⃗∗

f indicate the desired final state, obtained by updating the
required final keplerian elements with a new final true anomaly in every new
iteration.
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Chapter 4

Case study: LEO debris
retrieval mission in 2BP

Chapter 4 illustrates the case study selected in this thesis, presenting the as-
sumptions underlying the analyses performed and justifying these choices with
appropriate criteria. In detail, in addition to discussing the succession of ideas
according to which the mission’s target debris was selected, the logical principles
that guided the decisions in the problem definition phase will be set out, both in
terms of the spacecraft’s propulsive parameters and the assumptions regarding
the dynamic model. The discussion will also extend to the strategies adopted
to determine and optimize the trajectory, which made it possible to establish
an effective methodological path. This approach facilitated the achievement of
the desired results by maintaining a relatively simple calculation model without
significantly increasing processing times or the complexity of the code developed.

4.1 Debris selection progress
Section 1.4 has already presented the reasons that led to the selection of the SSO
orbital belt as the region of investigation for an ADR mission and will not be
reported here for the sake of brevity. Coupled with this research opportunity
was the intention to align with the current requirements of the major companies
in the sector, with the aim of giving the work produced practical relevance and
preparing it as a basis for future feasibility analysis. Therefore, it has been decided
to contextualize this thesis within the ESA Clearspace-1 initiative, which foresees
the development of the first mission dedicated to the removal of a space debris
fragment from its orbit by rendezvous, capture, and subsequent safe atmospheric
re-entry. The debris in question is a Vega Secondary Payload Adapter (VESPA)
weighing around 100 kg, which was used for the release of satellites into space
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after launch aboard the Italian Vettore Europeo di Generazione Avanzata (Vega)
launcher in 2013. The mission is scheduled to be launched by 2026 and will have
a demonstration character for the removal of space debris, thus representing a
significant step towards the creation of a sustainable commercial space ecosystem.
It was precisely these potential implications in terms of space sustainability and
consequent reductions in risks for access to space that were decisive in the selection
of this debris.

The orbital parameters for the debris were extracted from SpaceTrack’s (SATellite
CATalog (SATCAT) [25]. Since these parameters vary over time, it was necessary
to establish a specific date from which to start the transfer simulation. This date,
together with other information relevant to characterizing the state of the debris,
is given in the table (4.1). It also includes data on the mass and dimensional
characteristics of the debris, retrieved by consulting the ESA DISCOSweb database
[26], and helpful for the analysis concerning re-entry.

Table 4.1: VESPA Upper Part Debris characteristics.

DISCOS ID 39159
Name VESPA Upper Part
SATNO 39162
Object Class Rocket Mission Related Object
Mass 100 kg
Maximum Cross Section 4.41 m2

Date 2024 Jul 08 - 13:29:48.829

It should be noted that, within the 2BP model, the debris was modelled as a
point mass equivalent to the real one, despite its specific geometric characteristics.
Its maximum cross-section was considered to be equal to that indicated in the
table. Its Keplerian parameters will then represent the final state to be reached by
the spacecraft (figure 4.1).

4.2 Boundary conditions
4.2.1 Spacecraft propulsion system
This section analyses the propulsive characteristics of the spacecraft, considered
within the dynamic model in which it moves as a point mass, similar to the debris.
Furthermore, important considerations are made regarding the thrusters equipped
by the spacecraft, which will determine the amount of thrust required to execute
the orbital transfer maneuver. Section (1.2) of Chapter 1 examined in detail the
potential benefits of using electric propulsion to overcome the physical limitations
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Figure 4.1: Debris Orbit.

imposed by conventional chemical propulsion systems. These benefits are associated
with high specific impulses (Isp), which can reach the order of thousands of seconds,
although this results in lower thrusts and, consequently, longer mission times.
However, since the main objective of the work is to save propellant, it was decided
to opt for electric propulsion (EP), as the efficiency of the thruster is a crucial
element for mission success.

For this reason, different types of electric propulsion were analyzed in order
to identify the most suitable one for the mission in question; however, none of
them have been selected as their performance allowed only rather limited maneuver
corrections. Consequently, in order to ensure the completion of the mission within
a reasonable timeframe, an electrostatic thruster with optimistic performance was
chosen. Firstly, with the aim of remaining in the low-thrust domain, it has been
decided to operate with a thrust ratio Tratio of 25 mN per 150 kg, which allows
acceleration values in the order of magnitude between [10−4 − 10−6] m/s2 while
maintaining a decent level of efficiency. Therefore, the thrust set is T = 0.08 N,
obtained assuming a configuration of four thrusters of 0.02 N each. The available
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energy allows the mission to be completed, taking into account that the thrusters
are only used during the approach phase to the debris when the batteries are
fully charged. The specific impulse was set at a value of Isp = 1800 s. All these
assumptions discussed are summarised in the table (4.2), which also shows the
initial mass of the spacecraft. All these assumptions discussed are summarised in
the table (4.2), which also shows the initial mass of the spacecraft.

Table 4.2: Spacecraft characteristics.

Propulsion type Electric propulsion
Tratio 25 mN per 150 kg
Thrust T 0.08 N (4 x 0.02 N)
Specific Impulse Isp 1800 s
Mass 60 kg

Thrust and specific impulse are considered constant throughout the duration
of the mission (assumed total absence of throttling), resulting in the bang-bang
control discussed in Section 1.2. The assumption of a relatively small spacecraft
mass is justified by the specific type of mission envisaged. In fact, since the main
task consists of capturing the debris and then deorbiting it by atmospheric re-entry,
it does not carry any significant payload (such as advanced chambers or special
sensors) except for a debris recovery system and a camera capable of providing
information on the relative position of the two bodies. These elements do not
significantly affect the overall weight.

In this regard, it is essential to make an important observation: in the current
study, no debris removal system is assumed. At the current time, no solution
has really emerged. However, not specifying a removal system does not change
the current study, as it focuses primarily on the transfer to debris and not the
actual de-orbiting operation. Lastly, for simplification, eclipse conditions are not
considered. They increase the complexity of the transfers and generally affect the
power system, and in the case of solar electric propulsion, it is typically not possible
to thrust during eclipse phases.

4.2.2 Initial conditions
In order to ensure the correct execution of the transfer under analysis, it is necessary
to appropriately define the initial state (starting conditions) and final state (arrival
conditions) of the spacecraft. While the final conditions are well known and will be
discussed in the next section, the determination of the initial conditions represents
one of the main challenges of the optimization method. However, in this thesis,
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during the pre-simulation phase, the initial state, consisting of the three position
components and the three velocity components, was defined as an equivalent state
described by the six classical orbital parameters, which allows for more accurate
orbit targeting. In particular, the orbit used in study [27] was adopted as the
starting orbit, as its orbital elements are advantageously close to the initial orbit
of the selected debris, both of which are shown below.

Table 4.3: Initial Keplerian elements of spacecraft and debris.

Orbit a [km] e [/] i [◦] Ω [◦] ω [◦] ν [◦]
Initial S/C R⊕+700.14 0.00 97.89 121.50 36.98 346.67
Initial debris R⊕+784.50 0.0090889 98.7245 121.42 16.57 58.8-237.67

with R⊕ mean Earth radius. Concerning the orbital parameters of the starting
orbit, a clarification should be made: the Right Ascension of the Ascending Node
(RAAN) shown in the table (4.3) differs from the one given in the reference
paper [27], whose value is 268.18°. This variation was introduced to reduce the
computational load and avoid excessive complexity in the calculations. The RAAN
variation maneuvers, in fact, imply an orbital plane rotation, which not only
requires a considerable propulsive effort but is also exceedingly time-consuming.
Consider, for example, that to vary the orientation of the orbital plane by just 15°,
it would require 270 days. For this reason, as there were not enough computational
resources available to analyze a scenario with a variation of RAAN equal to
∆Ω = 268.18◦ − 121.42◦ = 146.76◦, it was decided to slightly modify the initial
orbit, opting for a RAAN that would allow for easier optimization, as shown in the
figure (4.2).

A further related comment concerns the exact point at which the spacecraft will
be released from the launcher. The problem lies in the fact that the entity respon-
sible for transporting the payload into space will inevitably have other payloads to
release into orbit. Generally, the practice is to calculate the arithmetic mean of the
required RAANs and leave the payload in an intermediate position. However, if the
release occurs in the vicinity of one of the extreme RAANs, maneuvers to change the
RAAN would be particularly onerous. Thus, it is reasonable to hypothesize that,
at a stage prior to the study presented here, a preliminary analysis of the satellite’s
commissioning phase may have been carried out, during which it drifted to the
desired RAAN by exploiting the J2 perturbation due to the Earth’s non-sphericity,
thanks to the precession phenomenon illustrated in the section 2.4.1.

In addition to the initial state of the spacecraft given in the table (4.3), which
results in a set of initial positions and velocities in Cartesian coordinates through
the transformations illustrated in the section (2.1.4), it is also necessary to assign
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Figure 4.2: Comparison between original and modified departure orbit after ∆Ω.

the associated initial costates, i.e the additional variables of the problem that
characterize the indirect method:

Λ0 = {λx, λy, λz, λu, λv, λw, λm}T (4.1)

For convergence to be optimally achieved, it is essential to provide sufficiently
plausible and consistent initial guesses. The values determined, which resulted in
the convergence of the solution in both mission scenarios, can be found in Chapter
5 and are not reported here to avoid redundancy. As discussed in Chapter 3, the
initial guess is somewhat of an accelerating factor for the associated state variables.
For example, the position constants quantify the influence of positional coordinates
on the evolution of the trajectory, and the values in the three directions x, y,
and z indicate the tendency of the spacecraft to move in a specific direction in
the dynamic model. The variables associated with velocity, on the other hand,
indicate whether the spacecraft is accelerating (positive values) or decelerating
(negative values) during a phase of the orbital journey; their modulus represents
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the magnitude of acceleration in the specific direction. Of the three, the one with
the highest modulus will determine the main direction of thrust, which will be
prioritized over the others.

The optimal quantities to be taken by the constates are not known a priori and,
therefore, must be determined iteratively by trial and error. As initial guesses,
non-zero values of less than unity, generally around 10−2, are entered and then
gradually refined to facilitate convergence of the solution. The last costate of the
expression is associated with the mass trend. Since the mission involves thrust
phases, it is to be expected that the propellant mass will decrease from its initial
value. Consequently, λm will be between [0 ÷ 1] and not too far from unity, since
the mission objective is a transfer with minimum propellant consumption (values
too far from unity would, in fact, indicate high consumption). Due to the fact
that the transfer has been divided into two phases, the above considerations are
valid for both phases, with the final state of the first one constituting the initial
conditions of the second one. However, as the manoeuvring strategy changes in
the second phase to allow the approach to the debris, costates will be different,
although the conceptual observations described above will remain the same.

4.2.3 Terminal conditions
The final position to be reached by the spacecraft will, predictably, correspond
to the orbit of the debris, and the transfer phase will be considered complete
when these final conditions are met. In such a scenario, this will indicate that
the spacecraft will have completed insertion into the desired orbit and completed
rendezvous with the debris.

Figure 4.3: Changes in the orbital elements of the debris during the year 2024.
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A note regarding debris parameters refers to the significant variations they
undergo over time, as evidenced by the figure (4.3). For the complete definition of
the state of the debris within the model, the 08 July 2024 date was chosen as the
reference, where the Keplerian parameters of the debris are as shown in the table
(4.3). For simplification, it was assumed that the target was in this configuration
at the initial starting time t0. This assumption is not particularly restrictive since,
by observing the trends shown in the figure (4.3), the orbital parameters show a
certain cyclicity and constancy over time, with the exception of eccentricity and
semi-major axis, which are decreasing. However, considering that the mission would
take some time to complete, slight variations in the calculations were taken into
account. In fact, in parallel with the optimization of the trajectory, a Keplerian
propagation of the parameters shown in the table (4.3) was performed for a period
equal to that required for the spacecraft to approach the debris. The new final
condition is summarised in the following table (4.6) and plotted in figure (4.4) and
(4.5) for both the first and second convergence phases, as will be detailed in the
next chapter.

Table 4.4: Final debris orbital elements after propagation.

Orbit a [km] e [/] i [◦] Ω [◦] ω [◦] ν [◦]
Final debris 1 R⊕+783 0.009085 98.7250 121.418 16.40 233.25
Final debris 2 R⊕+782.663 0.009068 98.7245 121.418 16.33 72.08

This analysis revealed that, during the ascent and approach phase of the space-
craft to the target, the latter undergoes a slight loss of altitude, with a reduction in
the semi-major axis of about 2 km. The other parameters remain almost unchanged,
with the exception of a minor change in the periapsis argument ω. Since the mission
completion times differ for the two convergence phases studied, it is to be expected
that the arrival anomalies, i.e., the time at which the satellite will intercept the
debris, will be different. As an anticipation of what will be discussed later, the
approach adopted for the study, through the reduced transversality conditions
described in section 3.6, provided that the final arrival anomaly, νf , was treated as
a free parameter, allowing the code to determine the final insertion point optimally.

The choice of initial guess time tguess is also non-trivial. If this is too low,
the spacecraft will not have enough time to reach the targeted orbit and, as a
result, the code will most likely return an all-positive SF in the output, meaning
that although thrust is maintained throughout the imposed duration, the goal
of reaching the debris is not achieved. On the other hand, if the tguess is too
high, then it would result in mission times longer than necessary, which would
perhaps involve additional thrust phases or excessive coasting phases that would
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Figure 4.4: Debris propagation first convergence.
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Figure 4.5: Debris propagation second convergence.
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not make the mission as a whole efficient. What can be done a priori, then, is to
set the thrust T and carry out the mission with continuous thrust until the target
is reached. The time taken to trace this ‘spiral’ will constitute the lower limit of
the mission: for example, if this strategy takes ten days to reach the debris, the
real mission cannot last less since, in reality, there will surely be coasting phases
that will dilute the total time. Once this lower limit is determined, one can slowly
increase it by trying to converge the solution to lower the SF overall by coasting.

As can be deduced from these last observations, there were two strategies on
which the code was played to arrive at a result:

• Free time - free ν strategy: used for first row guesses to figure out around
which time tguess the code would be placed to seek convergence, as well as at
which anomaly the spacecraft would try to fit into the final orbit. Under these
conditions, the Jacobian matrix will have dimension 9x9;

• Fixed time -free ν strategy: implemented once the tguess tends to settle around
a particular value. Essentially, the spacecraft has reached the target, but the
code is too sensitive to converge with both parameters free. Then, by fixing
the time, it is allowed to search for the optimal true anomaly for insertion
into the target orbit. In this second case, as there is no need to compute the
final Hamiltonian having fixed the time, the size of the Jacobian matrix will
scale to an 8x8, losing the last row and column.

Further information on these two strategies can be found in [28].
During the search for the solution, however, a severe problem arose in connection

with numerical stability and convergence times, which were the result of the
reasonable simplicity of the code developed. The limited computing power and
robustness, in fact, did not allow the entire trip to be analyzed: the high sensitivity
due to the proximity to Earth and the delicacy of the maneuvers made it necessary
to divide the trip into two distinct phases. As mentioned above, the first phase of
orbit raising with variation of the global parameters was followed by a second phase
in which the inclination and eccentricity of the orbit were varied very carefully.
It was precisely the variation of the latter, during the various simulations, that
turned out to be what made convergence very sensitive and slow, together with
the variation of RAAN (the way in which it was dealt with, however, has already
been discussed in the previous section).

As a result, the problem was converted from a TPBVP to an MPBVP, with
the two phases described representing two distinct mission arcs. This operation
proved to be extremely useful for the reasons described and for the computational
advantages derived from it, as well as favoring a greater understanding of the code’s
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response to the input, making it plainer.

Finally, the last remark concerns the perturbations that have been included in
the dynamic model described in the chapter 2. The issues addressed up to this point
have already shown that the code developed is extremely sensitive to more or less
complex variations from initial to final state. This led to the decision not to include
the perturbations related to the non-sphericity of the Earth and atmospheric drag,
at least as far as the part of the study concerning the optimization of the transfer is
concerned, since this would considerably complicate the differential equations and,
not having suitable computing power available, compromise the achievement of a
solution. In essence, the problem was approached as a 2BP without perturbations.

Once, however, the debris has been captured, and the de-orbiting of the spacecraft
plus debris system is to begin, then these perturbations can be included without
any problems. In fact, as will be better addressed in the next chapter, the re-entry
will be characterized by a thrust T reduced to 0.02 N continuously directed in the
opposite direction to the velocity. Since nothing needs to be optimized at this stage,
the equations of motion straightforwardly need to be integrated so the inclusion
of the two perturbations within them does not create numerical problems of any
kind (they are merely additional terms in the spacecraft dynamics equations). The
resulting trajectory will be a constant downward spiral until the reaching of a
threshold altitude of 100 km (chosen as the point of final atmospheric re-entry)
after a given number of days. On the other hand, including atmospheric drag in
the re-entry analysis is advantageous, as it is a term that plays into the goal of
lowering the system’s orbit.

4.3 Non-dimensionalizing values adopted
This subsection discusses the adimensionalization strategy adopted to lighten the
code in the calculation process due to the quite marked differences between the
various quantities within the Jacobian matrix. If within this matrix there are
significant discrepancies between the orders of magnitude of the elements that
compose it (for example, between the positions and the velocities) when the rows
and columns of the Jacobian are perturbed to operate the differential correction
method, this can cause high numerical instability. Instead, dimensionalizing the
state variables present to reduce them to numbers with orders of magnitude
comparable between them undoubtedly benefits the robustness of the code. In
detail, the dimensionless quantities used in the 2BP are:

Referring to the table (4.5), the Earth radius is used to dimensionless render
the satellite position components, while the velocity, obviously, is used for the
respective three components and evaluated as:
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Table 4.5: Non-dimensionalizing values.

Physical constant Value
Length unit 6378 km
Mass unit 60 kg
Time unit 806.785 s
Velocity unit 7.90545 m/s

vadim =
√

µ⊕

ladim

(4.2)

and corresponds to the first cosmic velocity (since ladim ≡ R⊕).
The time, instead, is calculated according to the expression:

tadim = ladim

vadim

(4.3)

The dimensionless mass, finally, is equal to the initial one, so that the dimen-
sionless value that it can assume is between 0 and 1, with the first representing
the case of complete consumption of propellant, while the second with mass is
unchanged compared to the starting condition. A sought result will be to try to
stay close to the unit to have a low consumption.

4.4 Straightforward LEO transfer example
The example reported here serves to make what was said above understandable
and has the purpose of illustrating the results that the method allows to obtain. In
particular, a satellite of equal mass to that supposed for the studied ADR mission
has been considered, which must make a transfer between two circular orbits in
low LEO characterized by the Keplerian parameters:

Table 4.6: Initial and final orbital parameters LEO transfer orbits example.

Orbit a [km] e [/] i [◦] Ω [◦] ω [◦] ν [◦]
Departure R⊕+450 0 0 0 0 0
Target R⊕+460 0 0.01 0 0 112.53

Also, the engine performances in terms of specific impulse Isp and thrust T
remained unchanged compared to the case under analysis. The strategy to pursue
the convergence, then, is the same as that described in section (4.2.3), fixing the
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time at a certain point and leaving the true anomaly free to allow the optimal
insertion on the target orbit.

The results obtained are shown below.

The figure (4.6) shows the trends for the first three parameters. First of all, it
is specified that the blue sections indicate a phase in which the engine is on and is
pushing with a constant thrust T ; the red sections, instead, indicate a coasting
phase in which the engine is off. In fact, it is observed how there is a rise of the
semi-major axis and an increase in the inclination right along the blue sections,
while the eccentricity will vary because it is entering more or less eccentric transfer
trajectories. However, it is noteworthy to observe how the developed code is able
to bring the final eccentricity back to zero, recirculating the orbit again. During
the red coasting section, on the other hand, it is clearly seen how the parameters
do not undergo variations.

The SF trend is indicative of the thrust and coasting phases just observed: it
is immediately noticeable how the mass decreases during the former and remains
constant during the latter, but the overall reduction is minimal. The graphs of
α and β angles are interesting to analyze. The in-plane thrust angle α has an
excursion between ±55◦ approximately, meaning that the spacecraft always pushes
to climb, with the thrust not aligned with the speed to have short maneuver times.
However, the fact of having maneuvers with an average zero α confirms that one
is climbing, and this is correct due to increasing the semi-axis and, therefore,
the altitude of the orbit. On the other hand, the out-of-plane thrust angle β
assumes positive or negative values, approximately ±180◦, depending on where the
spacecraft is located: this means that there is a vector composition of the thrust
components that is always vertical, useful for changing the inclination. Following
this, it is expected that formally similar trends will also be obtained in the case
study.

Finally, in the figure (4.9), the entire trajectory performed in this illustrative
example is reported.
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Figure 4.6: Semi-major axis, eccentricity and inclination during the LEO transfer.
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Figure 4.7: SF , mass, α and β angles during the LEO transfer.
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Figure 4.8: RAAN, Argument of Periapsis and true anomaly during LEO transfer.

80



4.4. STRAIGHTFORWARD LEO TRANSFER EXAMPLE

Figure 4.9: Transfer trajectory between the two LEO orbits example.
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Chapter 5

Results

Chapter 5 describes all the results of the optimal trajectories obtained from the
analysis described in the previous chapter. All trajectories shown below are
determined using the 2BP Equations of Motions presented in Chapter 2. Two main
sections will be illustrated: the first phase of actual debris targeting and the second
phase of debris de-orbiting. Then, in both, two possible convergences of the solution
from the periastrum or apoasto of the respective orbits were analyzed. It should
be noted in particular, as mentioned earlier, that the first phase of the mission was
investigated without accounting the perturbations illustrated in Chapter 2, while
the re-entry includes them.

5.1 Trajectories from departure to debris orbit
First of all, the results obtained for the first part of the mission are outlined: by
departing from the initial orbit, the target orbit of the debris is reached. For both
cases, in addition to the corresponding graphs, the adjoint variables vector of the
initial state variables that allowed convergence to be achieved are shown.

The analysis of two scenarios with departures from the two extremes of the line
of the apsides derives from the intention to investigate, albeit in a preliminary form,
which is the optimal starting point for the beginning of the transfer maneuver.
These two specific points were chosen because, in line with the principles of orbital
mechanics, it is known that the periastrum represents the position at which the
spacecraft reaches maximum velocity, while the apoastro corresponds to the point
of minimum velocity. From this perspective, the choice of starting from one or the
other could have a significant impact on the overall deltaV required for the transfer
maneuver. Similarly to what was mentioned in Chapter 4, in the graphs below,
the blue strokes indicate a thrust arc, while the red ones indicate a coasting arc
where the engine is off.
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5.1.1 Case 1: departure from the perigee

Global orbital parameter variation

This first sub-stage of the transfer is characterized by a maneuver whose purpose is
to raise the semi-major axis to the target value, coupled with an analogous variation
of the RAAN and the periastrum argument, both of which will be reduced to the
final values of the debris orbit to be reached. The transfer is summarised in the
following table, showing the initial and final parameters of this first sub-phase.

Table 5.1: Initial Keplerian elements of spacecraft and debris case 1.

Orbit a [km] e [/] i [◦] Ω [◦] ω [◦] ν [◦] m [kg]
Departure R⊕+700.14 0.00 97.89 121.50 36.98 346.67 60
Intermediate R⊕+783 0.001 98.31 121.42 16.39 225 59.74

The costates values of the state variables that allowed the transfer to be optimally
calculated in the table (5.1) are as follows:

Λ0 = {0.100278, 0.360076, 0.079338, 0.476474, 0.136241, 0.252503, 0.994497}T

It is interesting to point out that among these, the highest value is assumed
by λu: in essence, at this stage, when a large variation of the orbit semi-major
axis a (gaining approximately 83 km) must be performed, the code prioritizes the
acceleration along the outgoing radial direction. This will serve to raise the altitude
of the spacecraft. On the other hand, the thus reduced λz indicates that, at least
in this first mission segment, no importance is given to pushing in the z-direction,
or at least it is done to a lesser extent than in the others.

Pushing along z would mean changes in the orbital plane, which, as will be seen,
will be emphasized more in the second sub-phase. It is no coincidence, indeed, that
fairly modest variations in eccentricity e and inclination i are initially obtained, as
can be seen in the figure (5.1).
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Figure 5.1: Keplerian elements first sub-phase case 1.

The figure (5.1) also confirms what was said in the section (4.4) on the expected
trends of the α and β thrust angles, which were discussed in the aforementioned
section and not shown here for the sake of brevity. The argument of periastrum
and the RAAN, on the other hand, decreases to the final target values.

Rendezvous phase

At the end of the first sub-phase, when the spacecraft has reached the desired
altitude, the second one of approaching the debris to capture it takes place. It is
specified how, of course, the engagement of the debris will require a certain amount
of time for its completion. However, since it is not the purpose of this thesis to
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study the way this operation takes place, this detail is neglected, assuming that
by the time the spacecraft reaches the debris, this activity will be completed in a
reasonably short time. The final parameters to be reached are those in the first
row of the table (4.6). The maneuver will act on the orbital parameters of the
spacecraft as shown in the figure (5.2).

Figure 5.2: Keplerian elements second sub-phase case 1.

Thus, starting from the initial state of the previous sub-step, the method realizes
that to obtain the desired eccentricity e and inclination i variations, it needs to
change its transfer strategy. In fact, the in-plane α and out-of-plane β thrust angles
not only have different trends than before (e.g., β now remains positive until the
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rendezvous is complete), but also the ranges of values they assume during the
thrust phase differ from what was seen previously. A cross-check of the SF thrust
arcs with the trend of the true anomaly shows how the thrust phases are located
at the periastrum and apoastro, which is typical when a maneuver characterized
by a large eccentricity variation must be performed.

Then, it is interesting to note the behavior of the semi-major axis a: even
though the mission target value has already been reached, the code realizes that
it is necessary to maneuver with small altitude overshoots for the spacecraft to
vary eccentricity and inclination (and at the same time insert itself at the optimum
anomaly ν in the final orbit). These small variations, for the same reason, also
affect the RAAN and the argument of periastrum.

The vector of adjoint variables, in this case, will obviously be different:

Λ0 = {−0.487872,−0.348960, 0.249497,−0.185183,−0.345693, 0.311743, 0.992669}T

Figure 5.3: Case 1 transfer trajectory.

and notice how importance is also given to the direction of thrust along z, so as
to tilt the orbital plane of the trajectory to the desired value. Focusing precisely on
velocities, it is evident from the figure (5.4) that the performed rendezvous allowed
the debris to be reached with the same velocity components, rightly intercepting it.
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Figure 5.4: Evolution u, v, w during strategy case 1.

Finally, the complete trajectory that the spacecraft followed in this first conver-
gence is shown in the figure (5.3)1, although one is aware that the plot is not very
exhaustive as the spirals of the trajectory are nested together.

Appendix B then shows the complete graphs of the entire mission with the two
sub-phases executed in sequence. Finally, the trend of the spacecraft’s vector radius
with respect to the debris radius has also been plotted (5.5): it is suggestive to
observe how, as the spacecraft gradually intercepts the debris, with the trajectories
overlapping qualitatively in a similar way to the velocities in the figure (5.4).

1Please note how, to visualize the trajectory minimally more clearly, a scaling factor along z
of value zscale = 55 was applied to "stretch" the nested spirals.
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Figure 5.5: Spacecraft case 1 vector radius trend.

The total travel time for Case 1 is t1 = 177843.12157 s = 49.40087 h.

5.1.2 Case 2: departure from the orbit apogee
Global orbital parameter variation

In the second case, the procedure remains the same as before, so for the sake of
brevity and clarity, it is avoided to repeat the same observations as above. Starting
now from the apoastro of the departure orbit, however, the spacecraft is slower
on average than before: it is therefore expected that the code will search for a
different transfer strategy from the previous one, downstream of which it is then
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possible to make a comparison between them. In this case, therefore, the transfer
is summarised by the table (5.2) below.

Table 5.2: Initial Keplerian elements of spacecraft and debris case 2.

Orbit a [km] e [/] i [◦] Ω [◦] ω [◦] ν [◦] m [kg]
Departure R⊕+700.14 0.00 97.89 121.50 36.98 160 60
Intermediate R⊕+783 0.0015 98.35 121.42 16.39 34.39 59.72

It is readily apparent that since the mission strategy is different, the final
propellant mass will also be different. The initial costates by which convergence
was achieved for this sub-phase are:

Λ0 = {−0.064272,−0.301608,−0.041476,−0.461037,−0.196718,−0.180862, 0.994332}T

What instantly stands out are the negative values of the adjoint variables
associated with the positional coordinates x, y, and z and the three velocity
components. In summary, the code realizes that the starting position, compared to
the first convergence, is not advantageous, so it immediately tries to find a more
convenient position from which to raise the semi-major axis of the orbit. This can
also be seen from the radically different trends of the two thrust angles α and β,
shown in the figure (5.6), together with the trends of the other parameters.
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Figure 5.6: Keplerian elements first sub-phase case 2.

Except for the two angles, the trends follow the same philosophy as described
above, with the only notable difference being the rather abrupt way in which the
argument of the periastrum is brought down, undergoing a sharp reduction.

5.1.3 Rendezvous phase
As before, once the first sub-phase is completed, the outputs produced are entered
as initial conditions for carrying out the second sub-phase leading to the debris.
Again, the time required for the effective capture of the debris is disregarded.

The final parameters to be achieved are those shown in the second row of the
table (4.6).
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Figure 5.7: Keplerian elements second sub-phase case 2.

The figure (5.7) shows what was seen for the rendezvous sub-phase of the first
convergence: to be able to vary eccentricity and inclination, the code is forced to
gently modify the semi-axis to maneuver, this time decreasing it slightly with each
impulse. The argument of the periastrum and the RAAN follow the same trends,
while the in-plane angle α and the out-of-plane angle β vary entirely from the
previous strategy, with the latter always being negative when the engine is turned
on. In this case, the costates vector found iteratively is as follows:

Λ0 = {0.372786, 0.270152, 0.083657, 0.466328, 0.049123, 0.207423, 0.994669}T

The values are markedly different from those associated with the first convergence,

91



5.1. TRAJECTORIES FROM DEPARTURE TO DEBRIS ORBIT

demonstrating the difference between the two mission strategies pursued by the
code by simply varying the starting point with the same end conditions to be
achieved and propulsive performance. Again, the trends of the three velocity
components with their gradual overlap with the debris velocity components are
plotted in the figure (5.8), indicating the correct completion of the rendezvous.

Figure 5.8: Evolution u, v, w during stratergy case 2.

The complete trajectory of the transfer determined by the second convergence
is shown in the figure (5.9).
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Figure 5.9: Case 2 transfer trajectory.

The trend of the spacecraft vector radius compared with that of the debris (5.10)
is also formally identical to that seen before.
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Figure 5.10: Spacecraft case 2 vector radius trend.

The total travel time for Case 2 is t2 = 190150.005943 s = 52.81944 h. Appendix
C shows the graphs obtained by running the two codes in succession with each
other to plot the complete mission trends.

5.2 Deorbit manoeuvre from debris orbit
Once the spacecraft has intercepted the debris, the second part of the mission takes
over, namely that of deorbiting it, following the various regulations discussed in
Chapter 1. First of all, it should be noted that the altitude to which the debris
must be reduced for it to be considered re-entered into the atmosphere has been
set at 100 km.
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As mentioned earlier, moreover, this final stage does not involve optimization of
any kind, which is why the determination of the trajectory will be the product of a
simple integration of the problem’s equations of motion. In addition, however, there
will be perturbative contributors related to the non-sphericity of the Earth J2 and
the atmospheric resistance D, both of which do not complicate the computational
calculation. Therefore, the respective acceleration components that are added to
those already present in the system are given here: for J2, one has

aJ2x = 3
2J2µ⊕

r2

r̄4 tx

aJ2y = 3
2J2µ⊕

r2

r̄4 ty

aJ2z = 3
2J2µ⊕

r2

r̄4 tz

dove:

r̄ =
√
x2 + y2 + z2

tx = x

r̄

(
5z2

r2 − 1

)

ty = y

r̄

(
5z2

r2 − 1

)

tz = z

r̄

(
5z2

r2 − 3

)

Whereas for drag D one has:

aD = −1
2 · vrel · v̄rel · ρ · CD · A

m

with vrel relative velocity of the spacecraft with respect to the Earth’s rotational
velocity at the point where it is located and v̄rel the norm of relative velocity. In
addition, there are two other coefficients within the expression:

• The drag coefficient CD, which is a dimensionless parameter used to quantify
the drag of an object moving within a fluid. A typical reference value of 2.2
was chosen;
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• The area of the exposed front surface A. In this case, the maximum cross-
section of the debris of 4.41 m2 was selected as the reference value. In reality,
the contribution of the area of the spacecraft should also be taken into account
in this term, but it is modeled here as a point mass: as a first approximation,
since the mass of the debris is higher than the spacecraft one, this assumption
can be considered valid.

Thus, for the de-orbiting analysis, the information needed is summarised in the
table (5.3).

Table 5.3: Parameters characterising de-orbiting.

Case 1 Case 2
CD 2.2 2.2
A 4.41 m2 4.41 m2

Deorbiting altitude 100 km 100 km
Initial mass 159.48 kg 159.50 kg

Perturbations J2 and D J2 and D

Finally, since there is no interest from either a fuel economy or a timing point
of view in deorbiting the debris in the immediate future, the thrust value T of the
motor was lowered from 0.08 N to 0.02 N. Therefore, the direction of T is kept
constantly in the opposite direction to the velocity, allowing for a braking effect:
as a result, the kinetic energy of the spacecraft will decrease and the orbit, overall,
will lower, losing energy.

5.2.1 Case 1: departure from the orbit periastrum
Assuming that the initial state of the system consists of the debris plus spacecraft
combination, one first case is studied in which the deorbiting Deltav is given at
the periastrum of the orbit. The motivation behind this is similar to that described
for the first part of the mission: namely, to investigate whether the different initial
velocity at the time of the first maneuvering impulse can subsequently define one
strategy better than another. By setting the propagator with the information and
data discussed in the previous section, the results obtained are reported below.
Since the time required to reach the lower limit altitude is longer than in the first
part of the mission, the trends of the orbital parameters in the figure (5.11) will
be intricate and cannot be clearly distinguished. The figure (5.12) zooms in on
these trends to better show the fluctuations that the elements undergo due to both
deorbit and the influence of perturbations.
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Figure 5.11: Keplerian elements during case 1 deorbiting.
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Figure 5.12: Zoomed Keplerian elements during case 1 deorbiting.

Due to the contribution of drag, the semi-major axis gradually decreases with
small oscillations. Eccentricity is also subject to quite noticeable fluctuations that
initially keep it roughly constant at the starting value. Later, when the drag
contribution becomes significant at the lower altitudes, the trajectory decays much
more rapidly and turns strongly eccentric, which explains the immediate vertical
asymptote at the end of the graph. Interesting to observe, then, the influence of
J2 on the trends of RAAN and periastrum argument: net of slight fluctuations
for both, the effects of regression of the node line are evident, as the periastrum
argument decreases globally, and that of the precession of the line of the apsides,
with the RAAN increasing (no longer having control over how the orbital plane
should be oriented in space, this will vary uncontrollably under the effect of the
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forces present within the dynamic model). All this leads to a rather intricate and
somewhat complex deorbiting trajectory in the figure (5.13).

Figure 5.13: Deorbit trajectory case 1.

The 100 km altitude at which the debris is considered to have re-entered the
Earth’s atmosphere is reached approximately 26 days after departure. In the figure
(5.14) it is shown how, cyclically, during this time interval, the periastrum and
apostro of the orbit will gradually lower until they even take on a negative value,
signifying that a suborbital ellipse has been reached, which will lead the system to
crash into the ground in the future.
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Figure 5.14: Periastrum and apoastro trend during case 1 deorbiting.

In a qualitatively similar way, the same trend associated with the altitude of
the orbit can be traced, as shown in the figure (5.15).

Figure 5.15: Spacecraft plus debris altitude during case 1 deorbiting.

Thus, the spacecraft plus debris system gradually loses more and more altitude
until a sudden decay below 300 km, where the density begins to be higher, and the
braking contribution from atmospheric drag becomes increasingly relevant.
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5.2.2 Case 2: departure from the orbit apoastro

The dual case to the previous one is now studied: always assuming the system to
be composed of spacecraft plus debris, the deorbiting trajectory is investigated this
time if the ∆v impulse to do so is initially given at the orbit apoasto, where the
system is slower. All other conditions being equal, the evolution to reach the target
altitude will be slightly different from the former. Propagating the equations of
motion, the trends of the orbital parameters for this second case are as shown in
the figure (5.16), with (5.17) showing a zoom in detail to capture the fluctuations
related to the perturbations.

Figure 5.16: Keplerian elements during case 2 deorbiting.
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Figure 5.17: Zoomed Keplerian elements during case 2 deorbiting.

The patterns shown are formally identical to those (5.11), and the same con-
siderations are valid, which are not shown here to avoid repetition and confusion.
There are also no significant observations to be made for the trajectory derived
from integration, as it is very similar to that seen for case 1.
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Figure 5.18: Deorbit trajectory case 2.

Even with this strategy, the debris will return to the atmosphere after a period of
approximately 26 days. Consequently, this result showed that case 1 and case 2 are
interchangeable in terms of timing, with neither proving to be advantageous over
the other. This is also evident from the behavior of the periastrum and apoastro
over time (5.19) and of the altitude of the spacecraft plus debris system (5.20),
which are essentially identical to those of case 1.

Figure 5.19: Periastrum and apoastro trend during case 2 deorbiting.

103



5.2. DEORBIT MANOEUVRE FROM DEBRIS ORBIT

Figure 5.20: Spacecraft plus debris altitude during case 2 deorbiting.

The same considerations as above apply to both.
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Chapter 6

Concluding remarks

This thesis serves as a starting point or preliminary study for a possible feasibility
analysis of an Active Debris Removal (ADR) mission to the Sun-Synchronous
Orbit (SSO) region through the formulation of a low-thrust minimum-propellant
trajectories problem in a discretely simple 2-body dynamical model. The growing
interest of the scientific community in the potential of exploiting SSO orbits is one
of the aspects of interest in the work produced. Together with this, the potential
of this work, if applied, in contributing to the creation and realization of an en-
vironmentally sustainable space environment and improving the sustainability of
access to space is one of its main strengths.

Downstream of the results obtained and the analyses performed, the primary
objective of the work carried out to develop an optimization and propagation code
in the Python language, based on the use of an indirect method, can be regarded
as widely achieved. Precisely, this class of numerical methods proved to be the
most appropriate for solving the Hamiltonian Boundary Value Problem (HBVP)
arising from the application of the Optimal Control Theory (OCT) to the space
trajectory optimization problem. Pontryagin’s Maximum Principle (PMP) was
instrumental in defining the optimal control strategies necessary for minimizing
propellant consumption. Given the particularly delicate nature of indirect methods,
this criticality was addressed by strengthening the analysis, which was achieved by
dividing the mission into two phases and defining a Multi Point Boundary Values
Problem (MPBVP). In this context, the initial attempt values were determined
through an iterative procedure, with the primary objective of maximizing the final
mass of the spacecraft, thereby minimizing the propellant consumption required to
complete the proposed mission.

Considering the pioneering nature of the topic under discussion, it is evident
that in order to fully understand the potential of a mission scenario towards a SSO,
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such as the one examined, in-depth analysis and study of the dynamics of such
orbits and missions is indispensable. This approach is fundamental not only to
acquire a deeper awareness of the specific characteristics of these trajectories but
also to refine and perfect the optimization methodologies of the trajectories aimed
at reaching this orbital region, with the goal of improving the overall efficiency of
the mission and guaranteeing the optimal use of available resources.

The study conducted showed, based on the two convergences obtained for the
ascent phase towards the target debris, how both allow the mission to be completed
while respecting all the constraints and boundary conditions imposed. Both mission
case 1 and mission case 2 investigated lead to substantially identical propellant
consumption, with the former characterized by a final mass of 59.48 kg and the
latter by a final mass of 59.50 kg: from the consumption point of view, neither
strategy prevails over the other. In detail, however, scenario 1, where the first
∆v is delivered at the departure orbit periastrum, leads to the completion of the
targeting phase in a time of about 49 h. The dual scenario with departure at the
apoastro, on the other hand, takes slightly longer, lasting around 53 h to reach
the final orbit of the selected debris. From a mission timing perspective, therefore,
Case 1 would seem to be the optimal one to pick.

Even from the deorbiting standpoint, there is no difference in choosing a de-
parture from the periastrum rather than from the apoastro of the orbit since, in
both solutions, the system consisting of debris plus spacecraft will decay into the
atmosphere at an altitude of 100 km in about 26 days, with the same propulsive
performance of the chosen engine. Obviously, according to the section analyzing
this phase, optimizing propellant consumption for deorbit is not of interest, which
is why the final mass with which the system will arrive at the threshold altitude
will not be a discriminating factor in choosing one strategy over the other. Deeper
analysis, perhaps, might reveal the convenience of when and where to initiate the
deorbiting maneuver, taking into account a possible phasing with an uninhabited
zone to which the system will re-enter.

6.1 Future research
Although the objectives set before this thesis work were broadly achieved, after
the study was completed, various possibilities for further developments were in-
vestigated, thanks to which the analysis carried out could be improved further.
First of all, it was realized during the development of the code and the subsequent
convergence study that one of the main limitations was the reduced computing
power available to perform the various analyses, which stretched the time required
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to find a solution, as well as not allowing the implementation of a more complex
and faithful dynamic model than the one used. Consequently, it is immediately
apparent that with higher computing power, together with the use of correct nu-
merical stability techniques, there would have been no need to split the trajectory
into two sub-phases, but it would have been possible to simulate and optimize the
entire journey. This would have allowed a discrete reduction in the time required
to find the initial guesses for convergence, as only one set of initial guesses had to
be determined in this hypothesis.

From the dynamic model’s point of view, on the other hand, this also translates
into the possibility of analyzing the transfer starting from the initially set RAAN
before adopting the trick seen, simulating the commissioning phase to arrive at
the actual RAAN from which to depart with the first mission ∆v. Linked to
this, the possible stiffening and stabilization of the code would have opened up
the possibility of including additional perturbations within the dynamic model,
such as solar radiation pressure or the effect of the third body, to increase its fidelity.

Finally, observations can also be made concerning re-entry, which can be used as
a starting point for further investigation. In particular, once the 100 km altitude at
which the return had been set has been reached, two strategies could be pursued:

1. Feasibility study on other possible debris that can be reached with the residual
propellant in the vicinity of the orbital region where the system decays at an
altitude of 100 km. If this strategy were to be followed, then one would speak
of a multi-retrieval debris mission;

2. De-orbiting the spacecraft into the atmosphere together with the captured
debris. This rather delicate phase must be carefully investigated to comply
with international regulations on satellite re-entry, which must take place
over unpopulated areas. An interesting tool that could be used to conduct
this study would be ESA Debris Risk Assessment and Mitigation Analysis
(DRAMA).
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Appendix A

Euler-Lagrange equations

dλx

dt
=
(
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r5/2 x
2
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Appendix B

Transfer Case 1
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Appendix C

Transfer Case 2
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