
POLITECNICO DI TORINO
Master’s Degree in Degree in Computer Engineering

Master’s Degree Thesis

Inference optimization of Large Language
Models on RISC-V HPC platforms

Supervisors

Prof. Daniele Jahier PAGLIARI

Dr. Alessio BURRELLO

Phd. Mohamed Amine HAMDI

Phd. Cyril KOENIG

Prof. Luca BENINI

Candidate

Javier Jesus POVEDA RODRIGO

October 2024

Abstract

Over the past decade, there have been significant improvements in Artificial
Intelligence (AI), more particularly in the area of natural language processing
(NLP) thanks to the emergence of Large Language Models (LLMs). These models
are empowering many deep learning applications such as translation, text and
image generation and many others. These transformer-based models bring to the
table new challenges from a computational point of view, due to its characteristic
attention mechanism and embeddings.

Even though these types of workloads are typically offloaded to GPUs, there are
several applications and use cases that require CPU as the workhorse because of
its reduced cost and bigger flexibility and expandability in memory terms. These
increasingly relevant CPU-based solutions have been developed in more classical
ISAs such as x86 and ARM and extensive research is being conducted to enhance
AI applications on these platforms, aiming to fully unlock the already available
high computational power. Recently, RISC-V many-core SoCs are arising as an
open-source alternative. Despite being capable of performing High Performance
Computing (HPC) workloads, lack reliable support in their toolchains and libraries,
not properly targeting the different Hardware platforms or not displaying the level
of optimization compared to x86/ARM counterparts.

For instance, Basic Linear Algebra Subprograms (BLAS) libraries, core in AI-
centric workloads, are not optimal for RISC-V and lack support for different Vector
extension versions. Most of the available alternatives such as auto-vectorization
are not reliable enough or not supported for vector enabled RISC-V cores.

Thus, the main target of this thesis is to analyze and address the current status
of the toolchains and the critical bottlenecks in LLMs inference, trying to improve
the performance of inference with LLMs with the state-of-the-art models and
frameworks on RISC-V multi-core CPUs, which is increasingly gathering interest
for its potential for HPC applications.

This thesis builds upon the llama.cpp open-source inference framework and its
ggml tensor library backend. Our work relies on performing several many-core-
aware modifications and optimizations on top of LLAMA.cpp, such as NUMA-
aware thread dispatch and tuning of thread spawning based on the computation.

i

Additionally, we propose a new GEMM and GEMV implementations, able to exploit
vector extensions and other basic optimization techniques (e.g. loop unrolling and
weight sharing), through which we avoid incurring substantial overheads and are
able to achieve improved performances.

We carried out experiments on the MILK-V PIONEER, a system based around
the RISC-V CPU Sophon SG2042. The SG2042 chip features a Network-on-Chip
(NoC) architecture with 64 T-Head C920 cores distributed in 16 clusters with 4
NUMA memory regions and three levels of cache memory. Each core is clocked up
to 2GHz and is built around the Base Instruction set IMAFDC, with a 9 to 12 stages
pipeline with multiple advanced functionalities, including the support of the RISC-
V vector instruction extension on its draft version 0.7.1. In summary, this work
leverages several strategies to improve inference, exploring its multi-dimensional
nature for optimization and performance bottlenecks. It aims to demonstrate
the potential of RISC-V systems in modern HPC workloads, particularly in LLM
inference tasks.

ii

Acknowledgements

First of all, I must thank my tutors, Daniele and Alessio. You trusted me, provided
key guidance, and gave me the opportunity to learn and work on such a complex
and cutting-edge research project. Huge thanks to Amine and all the dedication,
advice, and help that you provided; without it, this project would not have been
possible at all. All three of you showed me how exceptional you are, not only with
your technical expertise but also with your passion and care for your team and
colleagues. Also, thanks to the whole Lab 4, I could not have felt more comfortable
in such a great working atmosphere and an incredible group of people.

I would like to especially mention my parents and sister, who supported me
in these two hard years, during which distance was always felt. Without their help
and aid, I would have never been capable of doing this journey.

A big thanks to my all time friends, that made the distance feel a bit smaller with
our calls and always welcomed me with excitement, gossip and some beers.

Also, I can’t forget of all the friends, master colleagues and people that I have met
during this two-year experience in Southampton and Torino. You all made this
experience completely life-changing and I know I will keep good friends for many
years to come, with many anecdotes and share experience to laugh about.

Finally, I would like to dedicate these words to the person who has been my
partner during this journey and had to put up with me during the whole process
of this thesis. Amore, this is just another opportunity to be grateful to have you in
my life, being my light and bringing fun and smiles to my day-to-day. I will never
be able to express how lucky I feel to have met you (on a random day, in a random
town, in a random country) and that you are now a central part of my life. Also, I
will not be able to thank you enough for all the support and patience you gave me
during this harsh period, being my safe space in the hardest moments and loving
me despite feeling unloveable. Muchas gracias por ser una bellísima persona y ser
como tú eres, no podría haber elegido una mejor pareja para caminar en este largo

iii

y complicado camino, y lo mucho que nos queda por delante. La distancia no ha
sido nuestra mejor amiga, pero si tengo que elegir a alguien con quien resistirla, lo
haría contigo, una y mil veces, esperándote con ilusión y cariño en la estación de
tren, y dejándote entre lágrimas al despedirnos. Grazie di cuore per tutto, T’estime
moltíssim mi vida <3

“Cuando quieres algo, todo el Universo conspira para que realices tu deseo.”
El Alquimista, Paulo Coelho

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xiv

1 Introduction 1

2 Background 3
2.1 NLP and AI . 3

2.1.1 History of ML for NLP . 3
2.1.2 Transformers and LLMs . 7

2.2 RISC-V ISA . 9
2.2.1 Main characteristics . 9
2.2.2 Vector extension . 13

2.3 Compilers . 14
2.3.1 Structure of a compiler . 14

2.4 Multi-core platforms and parallelissim 16
2.4.1 NUMA regions . 18

2.5 Basic Linear Algebra Subprograms 19
2.5.1 Development and basic elements 19

3 Related Work 24
3.1 HPC Platforms . 24

3.1.1 Manticore . 24
3.1.2 Xuantie 910 . 26
3.1.3 Milk-V Pioneer . 28

3.2 Inference frameworks . 29
3.2.1 llama.cpp and ggml . 31

3.3 Compilers for RISC-V . 34
3.3.1 GCC . 34

vi

3.3.2 CLANG/LLVM . 35
3.4 LLM models . 36

3.4.1 Meta LLAMA . 36
3.5 BLAS Libraries . 37

3.5.1 OpenBLAS . 38

4 Methods 40
4.1 Exploiting hardware architecture 40

4.1.1 Available compilers for the platform and support 40
4.1.2 Effect on core mapping and NUMA regions 43

4.2 LLMs inference analysis . 46
4.2.1 Inference Bottlenecks . 46
4.2.2 Matrix multiplication: BLAS libraries and vectorized kernels 47
4.2.3 Kernel development and integration 50

5 Results 58
5.1 Inference bottleneck analysis . 58
5.2 Micro-benchmarks results . 61
5.3 Inference results . 63

5.3.1 Single Core . 63
5.3.2 Multi-threaded performance 64

6 Conclusion and Future Work 70

A Kernel Source Code 72

Bibliography 76

vii

List of Tables

4.1 Numa Node/Region latency relative to each other, obtained using
numactl tool . 45

4.2 Example of result of matrix multiplication during inference using
llama-2-7b.Q4_0, with the prompt "Once upon a time", generating
20 tokens. 51

5.1 LLama.cpp default timing results for the one token generation with
the model Llama-2-7B-GGUFllama-2-7b.Q4_K_M.gguf, with 64
threads and interleave NUMA control policy on MILK-V Pioneer . 59

5.2 Performance of OpenBLAS in matrix-matrix multiplication (4096X4096
X 4096X128) with different data types inside of benchmark_matmul.c 62

5.3 Compilers used for testing and the different CFLAGS and CXXFLAGS
during multithreading and compiler comparison 65

5.4 Perf basic metric of running . 69

viii

List of Figures

2.1 History and relevant developments in NLP and languaje models.
Extracted from [1]. 4

2.2 RNN (Recurrent Neural Network) simplified diagram with the dif-
ferential feedback (yellow) compared to standard Feedfoward Neural
Networks. 5

2.3 Diagram for a one-unit RNN (left) to unfold version (right). From
bottom to top: input state (x), hidden state (h), output state (o).
U, V, W are the weights of the network.Extracted from [5]. 5

2.4 Diagram of the Sequence to Sequence (seq2seq) model. From bottom
to top: output (Yt), input (Xt), hidden states from the RNN includ-
ing past information (Ht). t represents each time step. Extracted
from [3]. 6

2.5 Attention Mechanisms examples. Left: : Example of an Alignment
matrix of “L’accord sur la zone économique européen a été signé en
août 1992” (French) and its English translation “The agreement on
the European Economic Area was signed in August 1992”[10].Lighter
colors indicate stronger correlations. Right: Self-attention pattern
in a GPT-2 model, where color opacity represents the strength of
attention relationships . 7

2.6 Model architecture of the Transformer. Extracted from [11]. 9
2.7 The architecture of an encoder block of Scale Dot-Product Attention

(SDPA) and the workflow of the attention module. Extracted from
[12]. 10

2.8 Self-attention on the encoder and decoder sides. Each line connects
an input and an output of the self-attention model, indicating a
dependency of an output state on an input state. For encoder self-
attention, the output at any position is computed by having access
to the entire sequence. By contrast, for decoder self-attention,the
output at position is computed by seeing only inputs at positions
up to i. Extracted from [13]. 10

ix

2.9 Evolution of RISC-V processors. Extracted from [16]. 11
2.10 Summary diagram of extension lifecycle. Extracted from [17] 12
2.11 Summary diagram of RISC-V ISA. Extracted from [16]. 12
2.12 Diagram of the different elements and outputs of language-processing

systems. Extracted from [19]. 15
2.13 Phases of a compiler with intermediate outputs of translation. Mod-

ified version of original extracted from [19]. 16
2.14 Evolution of number or Transistors, Logical Cores, Power consump-

tion, Frequency and Single-Thread Performance since 1970 to 2021.
Extracted from [22]. 17

2.15 Simplified diagram of UMA (left) and NUMA (right) architectures
in a multicore system . 19

2.16 Summary of functions and name of BLAS Subprograms. Prefix
letters I, S, D, C, Q denote the data type of the operation being
integer,single-precision, double-precision, (single-precision) complex
and extended precision, respectively. Extracted from [24]. 20

2.17 "Left: The GotoBLAS algorithm for matrix-matrix multiplication
as refactored in BLIS. Right: the same algorithm, but expressed as
loops". Extracted from [29]. 23

3.1 "Conceptual floorplan of the package. Arrangement of the chiplets
and HBM on the interposer. Each chiplet has its own, private, 8 GB
HBM. Chiplets interconnect via die-to-die serial links". Extracted
from [30] . 25

3.2 "Conceptual floorplan of an individual chiplet. Arrangement of
individual cluster quadrants, interconnects, L2 memory, HBM2 con-
troller, PCIe controller, and quad-core Ariane RV64GC system".
Extracted from [30] . 25

3.3 "Left: baseline simplified RISC-V implementation, with address
calculation and pointer increment omitted for brevity.Right: SSRs
implementation with memory loads encoded as reads from stream
registers; additional stream configuration instructions required ahead
of the loop.". Extracted from [30] 26

3.4 "Left: implementation with loop bookkeeping using baseline RISC-V
instructions. Right: implementation with an frep hardware loop,
with all bookkeeping to occur implicitly in the hardware". Extracted
from [30] . 26

3.5 Diagram of XT-910 multi-core cluster (4-core configuration). Ex-
tracted from [34]. 27

3.6 12-stage pipeline in XT-910 core. Extracted from [34] 28
3.7 Pipelined Vector operation architecture. Extracted from [34] 28

x

3.8 Milk-V Pioneer motherboard and main hardware characteristics.
Extracted from [37]. 29

3.9 SG2042 Mesh architecture and main components. Extracted from [38]. 30
3.10 GCC execution diagram with front, middle and back ends and

intermediate representations. Extracted from [40]. 35
3.11 LLVM execution diagram with front, middle and back ends and

intermediate representations. Extracted from [41]. 36
3.12 " Training of Llama 2-Chat: This process begins with the pretraining

of Llama 2 using publicly available online sources. Following this,
we create an initial version of Llama 2-Chat through the application
of supervised fine-tuning. Subsequently, the model is iteratively re-
fined using Reinforcement Learning with Human Feedback (RLHF)
methodologies, specifically through rejection sampling and Proximal
Policy Optimization (PPO). Throughout the RLHF stage, the accu-
mulation of iterative reward modelling data in parallel with model
enhancements is crucial to ensure the reward models remain within
distribution". Extracted from [43]. 38

3.13 "SGEMM performance in multiplications per second, using SiFive
RV64GCSU core and ARM Cortex-A9. Extracted from [46]. 39

4.1 Basic diagram of cross-compilation. 41
4.2 Example of simple loop addition and assignment missed by auto-

vectorization with Xuantie GCC compiler.Top: code, Bottom: GCC
compilation information . 43

4.3 Hierarchy and elements of the whole system of the MILK-V Pioneer,
obtained with the tool "lscpu" and "lstopo". L# refers to logic ID
and PU# Processing Unit ID and P# is the Physical ID 44

4.4 All core Physical IDs of all the 4 NUMA regions (nodes), its assigned
RAM memory, and obtained with the "numactl" tool. 45

4.5 Diagram with different hardware metrics, counter, events and trace-
points that the tool "perf" can measure. 46

4.6 Time breakdown of the Bert-base model on a 64core ThunderX2
server. Ran using PyTorch 2.0.0 with BLIS as the backend. Ex-
tracted from [50]. 47

4.7 Diagram of kernel strategy where green elements are multiplied and
accumulated in the same most inner loop and we move through the
rows to generate 2 results (blue colour) with Q4 matrix and Q8
vector (or column of matrix) . 55

5.1 Square Matrix multiplication benchmark single core results, variating
LMUL, a blocked strategy of 16x16 and OpenBLAS with 910V . . . 59

xi

5.2 SGEMM scalability performance with OpenBLAS with 910V config-
uration evaluate with and without NUMA thread migration enabled
(-numa refers to disabled) . 60

5.3 Square matrix vs non-regular matrix multiplication benchmark single
core results, varying the non-regular dimension, with Xuantie GCC
10.4 compiler . 61

5.4 Square matrix vs vector multiplication benchmark single core results,
varying the vector the dimension, with Xuantie GCC 10.4 compiler 62

5.5 Token generation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom"
single core results, varying the sequence length generated, compiled
with Xuantie GCC 10.4 . 63

5.6 Prompt evaluation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom"
single core results, varying the vector the dimension, compiled with
Xuantie GCC 10.4 . 64

5.7 Prompt evaluation performance with llama.cpp with model llama-2-
7b.Q4_0 and prompt "Once upon a time, there was a kingdom" multi-
core, multi-threaded, varying the number of cores, compiled with
Xuantie GCC 10.4, GCC 13.2 Vanilla, Clang 17 Ruyisk customization
and Clang 19. Refer to Tab. 5.3 for the specific flags used. 65

5.8 Token generation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom"
multi-core, multi-threaded, varying the number of cores, compiled
with Xuantie GCC 10.4, GCC 13.2 Vanilla, Clang 17 RuyiSDK
customization and Clang 19. Refer to Tab. 5.3 for the specific flags
used. 66

5.9 Token generation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom"
multi-core, multi-threaded, varying the number of cores, compiled
with Clang 19. Refer to Tab. 5.3 for the specific flags used. 67

5.10 Prompt evaluation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom"
multi-core, multi-threaded, varying the number of cores, compiled
with Clang 19. Refer to Tab. 5.3 for the specific flags used. 67

5.11 Inference performance with llama.cpp with model llama-2-7b.Q4_0
and prompt "Once upon a time, there was a kingdom" multi-core,
32 threads, varying stragegy for numa-awareness, NUMA balacing
or none, compiled with Clang 19. Refer to Tab. 5.3 for the specific
flags used. 68

xii

Acronyms

AI
Artificial Intelligence

BPTT
Backpropagation Through Time

BRNN
Bidirectional Recurrent Neural Network

BLAS
Basic Linear Algebra Subprograms

CPU
Central Processing Unit

CRS
Control and Status Register

DNN
Deep Neural Network

FNN
Feedfoward Neural Network

FPU
Floating-Point Unit

GRU
Gated Recurrent Unit

xiv

GPT
Generative Pre-trained Transformer

GEMM
General Matrix Multlication

HPC
High Performance Computing

HBM
High Bandwidth Memory

ISA
Instruction Set Architecture

LLM
Large Language model

LSTM
Long Short-Term Memory Unit

MLP
Multi-Layer Perceptron

NLP
Natural Language Processing

NN
Neural Network

NLM
Neural Language Model

NUMA
Non-Uniform Memory Access

NoC
Network-on-Chip

xv

RISC
Reduced Instruction Set Computing

RISC-V
Reduced Instruction Set Computing on its fifth version

RNN
Recurrent Neural Network

SLM
Statistical Language Model

TLB
Translation Lookaside Buffer

xvi

Chapter 1

Introduction

Artificial intelligence has become a transformative element of contemporary society,
driven by unprecedented advancements in the area of NLP (Natural Language
Processing). At the forefront of this revolution are the LLMs (Large Language
models), such as ChatGPT, Claude or Gemini, which showcased remarkable ca-
pabilities in tasks such as complex language understanding and text generation.
Recent advances integrate multi-modality, evolving from pure text to audio and
image integrated into a single model. These exceptional results of LLMs (Large
Language models) have led to an explosion in the area of artificial intelligence,
being able to integrate in many industries, utilities, and daily life.

In parallel, the landscape of HPC (High Performance Computing) has rapidly
grown due to the increasing demands of scientific simulation, data analytics and
even the recent development of these gigantic language models. In this sphere of
computing, x86 architectures became the dominant ones at the hands of multi-
national companies such as Intel and AMD for decades. Despite the maturity of
x86, other architectures have gained significant traction to compete in this area,
mainly ARM and RISC-V. The excellent results of ARM-based supercomputers,
like the Fugaku in Japan, have highlighted the viability also for RISC architectures
to achieve exascale performance while improving power profiles.

In this context, RISC-V crops up as an attractive alternative, with its open-
source ISA (Instruction Set Architecture) and flexibility to incorporate custom
extensions and specialised instructions tailored for these highly demanding com-
puter tasks. Despite its maturity in other areas related to simpler architectures like
microcontrollers and custom ASICs, is continuously improved to become a crucial
node also in more complex systems such as CPUs. Many efforts are targeting this
archiecture as the European Processor Initiative and hardware developments in
multiple research institutions and companies aim to escalate this technology and
make this open-source ISA (Instruction Set Architecture) a competitive alternative.

1

Introduction

Therefore, due to its fresh perspective and high potential for fine-grained optimiza-
tion, RISC-V has positioned as a promising platform for tackling the challenges
posed by AI workloads in HPC environments.

This thesis addresses the challenge of adapting current inference frameworks in
order to exploit the full functionality of state-of-the-art models with HPC capable
RISC-V platforms. Therefore, this piece of main contrivutions are as follows:

• Exploration of hardware architecture and capabilities with current best prac-
tices on multi-core RISC-V CPUs and the current software ecosystem.

• Custom implementation of llama.cpp open source inference framework with
inclusion of novel kernel-level optimisations and higher-level improvements in
execution such as NUMA awareness.

All of these are carried out in practice, with real hardware execution and a mul-
tidimensional approach that tackles the several problems or improvement points
that current setups utilize for this not-so-explored usage of RISC-V when used as
an HPC platform. The thesis is organized in the following sections: Chapter 2
provides background context on the developments of NLP and AI, the basics of
RISC-V ISA and the main components related with the thesis and HPC. Chapter
3 describes the hardware used as RISC-V HPC platform and introduces specific
tools and software modules used during the execution of this thesis. Chapter 4
gives an overview of the different methodologies used and the logical steps taken,
considering the relevant new information also obtained, through the different sec-
tions and difficulties endured. Chapter 5 focuses on visualizing and analyzing the
most significant results achieved during this project, describing in an organized
manner from the most simple ones in exploitation and single core to multi-threaded
operation. Chapter 6 is dedicated to providing concluding remarks and discussing
future work.

2

Chapter 2

Background

2.1 NLP and AI
Language is the foundation of knowledge storage and knowledge exchange, being
a key element in humanity. Due to its huge importance, many efforts have been
directed towards providing machines with the capability of comprehending and
interacting with natural language seamlessly as humans. The first efforts to achieve
this goal can be traced back to the early beginnings in the 1990s.

2.1.1 History of ML for NLP
The first attempts to tackle this challenge took a probabilistic statistical perspective
with the SLMs (Statistical Language Models) [1]. However, these early approaches
were hampered by their limited context due to storage limitations, as each word
could only relate to its first one or two preceding words, resulting in a reduction in
accuracy.

The rapid development of NNs (Neural Networks) and deep learning during
the 2000s made these statistical models evolve. This new paradigm brought new
tools such as the first versions of word embeddings techniques, which represented
words as fixed-dimensional vectors. These dimensions and the angles between
words aimed to capture the semantic relationships between them. This behavior
can be showcased with the example of the very first widely spread tool at the
time, Word2Vec [2], where vector(”King”)− vector(”Man”) + vector(”Woman”)
results in the vector equivalent to "Queen". This NLMs (Neural Language Models)
also integrated a key architectural development of neural networks, activation
functions. Inside of the hidden layers of the models, which recieve as input the
word vectors, they used these activation functions, typically a sigmoid or a tanh,
to resemble the behavior of biological neurons. After the different hidden layers
operations, the final vector undergoes the Softmax function, producing an output

3

Background

Figure 2.1: History and relevant developments in NLP and languaje models.
Extracted from [1].

vector containing the probability distribution assigned to each word over the
entire vocabulary of the model. Furthermore, new neural network architectures
appeared and became the de facto standard for the field, more in particular RNN
(Recurrent Neural Network). These architectures enable to extend the functionality
of Feedfoward Neural Networks (or MLPs (Multi-Layer Perceptrons)) by adding a
time dimensionality with a feedback element (as shown in Fig. 2.2), being able to
take into account previous inputs in the execution flow [3].

Although this new approach brought better performances it suffered from a
crucial problem, the vanishing or exploding gradient. This causes the contribution
of states that took place before that the current time steps can tend to stop
(vanishing) or can weigh too much and provoke heavy changes (exploding) [4].
This led to the inclusion of the BPTT (Backpropagation Through Time), which
adapts the feedback algorithm for RNNs, unfolding them constructing traditional
Feedfoward Neural Networks as shown in figure 2.3.

Mainly two new improvements were included to deal with these limitations.The
LSTMs (Long Short-Term Memory Units) firstly introduced in 1997 [6] and its
lighter version the GRU (Gated Recurrent Unit) brought up the concept of memory
cells, units of computation that replace the traditional nodes in the hidden layers
of a network. Its main function is to help the network determine whether the
inputs should go into a memory state or not and if the content of the memory state
should have contributed to the output of the model [7]. The other big architectural
improvement also comes from a paper of 1997 [8] with the BRNNs (Bidirectional

4

Background

X1

Xn

X2

Feedback

Y

Input

Hidden layers

Output

Figure 2.2: RNN (Recurrent Neural Network) simplified diagram with the differ-
ential feedback (yellow) compared to standard Feedfoward Neural Networks.

x

h

o

U

V

W
Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V..

Figure 2.3: Diagram for a one-unit RNN (left) to unfold version (right). From
bottom to top: input state (x), hidden state (h), output state (o). U, V, W are the
weights of the network.Extracted from [5].

Recurrent Neural Networks), in which the information from the preceding time
steps (past) and the subsequent time steps (future) can be used to influence the
output at any point of the input sequence, contrasting the previous approaches
that only considered the past input as relevant for the output result. Both of these
proposals were even combined to have to outperform the current state of the art in
different tasks.

In 2014, the NLP field experienced a major breakthrough with the introduction
of the sequence-to-sequence (seq2seq) [9] architecture. It used an encoder-decoder

5

Background

architecture, where the encoder processes with different RNNs a variable-length
sequence as input generating an intermediate hidden state. Subsequently, it is
processed by the decoder, whose task is to work as a conditional language model,
using the encoded hidden state as input and the past context to predict the
subsequent output [7].

Figure 2.4: Diagram of the Sequence to Sequence (seq2seq) model. From bottom
to top: output (Yt), input (Xt), hidden states from the RNN including past
information (Ht). t represents each time step. Extracted from [3].

The main bottleneck of this architecture was the Encoder Vector (also known
as the context information), as it encapsulates all the necessary information from
the input sequence in a fixed-lenght vector. This constraint proved to be specially
problematic for long sequences, resulting in a loss of information and degradation
of performace at more complex tasks. Attention Mechanism was introduced to
adresss this limitaion.

The Attention Mechanism generally takes two sequences and transforms them
into a matrix where each sequence element (such as words or tokens) corresponds
to a row or a column. In this particular matrix the values represent the relevant
context or correlations between these sub-elements. Two examples of usage of this
mechanism are shown in figure 2.5 where in the left image, lighter colors represent
a stronger correlation, while in the right one the stronger the opacity of the color,
the higher the relationship established by the attention calculation.

This mechanism became the core element of the next most disruptive architecture
up to date, the Transformer [11]. This groundbreaking model relies only on

6

Background

Figure 2.5: Attention Mechanisms examples. Left: : Example of an Alignment
matrix of “L’accord sur la zone économique européen a été signé en août 1992”
(French) and its English translation “The agreement on the European Economic
Area was signed in August 1992”[10].Lighter colors indicate stronger correlations.
Right: Self-attention pattern in a GPT-2 model, where color opacity represents
the strength of attention relationships

the attention mechanisms and feedforward neural networks, in contrast with the
dependency on Recurrent Neural Networks of previous models, utilizing the encoder-
decoder architecture and improving the performance by utilizing self-attention for
dealing with global or long contexts and dependencies. Its ability to parallelize
computation and capabilities with larger contexts led to unprecedented performance
improvements, becoming the de facto standard for many NLP tasks. This success
turn it the key component of more complex and advanced models, such as the
state-of-the-art LLMs (Large Language models).

2.1.2 Transformers and LLMs
First introduced in 2017 in the paper "Attention is all you need" [11], the Transformer
introduced several innovative design that included several differences with previous
approaches.

The Transformer employs a general encoder-decoder framework, similar to other
sequence to sequence models. The encoding structure is composed of several
identical encoder modules (e.g. in [11] six encoder components are used). Each
module or layer has two sub-layers(or sub-blocks). The first is the attention
sub-layer, which performs a multi-headed self-attention operation over the inputs.
The second is a classic, position-wise fully connected feed-forward network. The

7

Background

decoding structure is also composed of the same stack of layers but in between
it adds an extra attention block, which performs a multi-head attention over
the output of the encoder structure. As an input for both structures, it uses
learned word embeddings to generate the input fixed-dimension vectors from the
tokens/words for the two structures. Additionally, since the model doesn’t use
recurrence and neither convolution, there is no information about the order of the
sequence and thus it is added a "positional encoding" to include this information in
the input vectors. A general overview of the described architecture is reflected in
Figure 2.6.

The self-attention mechanism is composed of the so-called "Scaled dot-product
attention" which uses a query (Q), key (K) and value (V) vectors, the softmax
operation and the scaling by the dimensionality of the key and query vectors (dk).
These vectors are the result of projecting the embedding of with the positional
encoding input(X) with the different pre-trained weights of the model (W). These
operation is described in Equation 2.1 and 2.2 and its architecture in Figure 2.7.

Q = X ×Wq, K = X ×Wk, V = X ×Wv (2.1)

Attention(Q, K, V) = softmax((opt)Mask(QKT)√
dk

)V (2.2)

As can be seen in the equation 2.2, there is an optional masking operation. This
represents the difference between the self-attention in the encoding and decoding
stacks. While in the encoding stage, all the sub-tokens contribute to each other, in
the decoding process, this step is used to prevent positions from using subsequent
elements in the calculation, therefore influencing the current output.

As a final element of its revolutionary design is the parallelization thanks to
the Multi-headed Attention. As shown at figure 2.7, several heads are working in
parallel with the same input (noted as "h" in Figure 2.7 and "N" in Figure 2.6). This
allows the model to explore jointly from different sub-spaces at different positions.
This not only boosts performance computationally but also improves the overall
performance of the model.

LLMs and pre-trained language models build upon this flexible and powerful
architecture and are trained on massive text corpora, allowing them to "learn"
through its billions of parameters the fundamental language structures such as
vocabulary, syntax semantics and logic [1]. Most of these early implementations
added different variations to the original Transformer, like only decoder models like
Bert [14] or GPT (Generative Pre-trained Transformer)[15] and all of its evolutions
by the hand of OpenAI. The complexity has increased dramatically in the last years,
together with new advances like Mixture-of-Experts techniques, multimodality and
improving in several areas from both performance and capabilities points of view,
becoming a key point of today’s technology.

8

Background

Figure 2.6: Model architecture of the Transformer. Extracted from [11].

2.2 RISC-V ISA

2.2.1 Main characteristics
The landscape computer architecture panorama as been shaped over time by
various ISAs (Instruction Set Architectures), each with different characteristics
and applications. Dominant proprietary architectures such as x86 or the newer
ARM have long histories and extensive ecosystems. However, RISC-V has emerged

9

Background

Figure 2.7: The architecture of an encoder block of Scale Dot-Product Attention
(SDPA) and the workflow of the attention module. Extracted from [12].

Figure 2.8: Self-attention on the encoder and decoder sides. Each line connects
an input and an output of the self-attention model, indicating a dependency of
an output state on an input state. For encoder self-attention, the output at any
position is computed by having access to the entire sequence. By contrast, for
decoder self-attention,the output at position is computed by seeing only inputs at
positions up to i. Extracted from [13].

as the most popular open ISA, grounded in the RISC (Reduced Instruction Set
Computing) principles, developing and evolving since its first inception at the
University of California, Berkeley in 2010. In contrast to the proprietary ISAs this
architecture is completely royalty-free and open-source, establishing a baseline of
core instructions that can be further expanded with different extensions [16]. The
modularity and extensibility has contributed enormously to its popularity, being
able to tailor specific applications and domains. Besides its maturity in the field of
embedded processors, in other areas such as high-performance computing or cloud
computing it is still under heavy development with newer extensions and improved
ecosystem support.

10

Background

Figure 2.9: Evolution of RISC-V processors. Extracted from [16].

The standardisation and approval of the developments are overseen by the RISC-
V International Foundation. This organization is in charge of the key process for
taking non-custom extensions, evaluating them, reshaping them through standard-
ization and eventually ratifying them. This whole process is transparent and open
to the public, involving several organizations, public (e.g. Linux Foundation) and
private in different management roles. This whole process allows for a continued
and organized evolution of the RISC-V ISA.

Extensions are classified as either privileged and unprivileged, depending on
the usability across all the different privilege levels within the architecture, whose
design can vary. This can be subdivided into standard and non-standard, if they
are more generic and designed to not conflict with any other preexisting extension
or if they are more specialised and can generate conflicts or overlapping with other
extensions.

The base functionality includes a minimal set of instructions, with many
base specifications for 32-bit/64-bit/128-bit specifications (defined as "RV32I/E,
RV64I/E and RV128I"). There are many standard extensions ratified that extend
the base functionality such the the "M" the integer multiplication and division or
"B" for bit manipulation. When a piece of hardware is compliant with one of this
extensions signifies that is incorporates the underlying hardware in order to fully
support the instructions related with these extensions. An example of this are
arithmetic operations with 16-bit floating point numbers (half-precision). If the
CPU or MCU incorporates the "F" extension for single-precision Floating-point but
it doesn’t the "Zfh" for half-precision extension, inside of a code (e.g C language

11

Background

Figure 2.10: Summary diagram of extension lifecycle. Extracted from [17]

Figure 2.11: Summary diagram of RISC-V ISA. Extracted from [16].

file) that requires to operate with half-precision numbers supported by the pro-
gramming language, the compiler (e.g. GCC) will utilize the compliant extensions,
in this case, it would promote the numbers and operate in single precision, making
more steps than what the direct execution if the extension "Zhf" is supported, and
therefore the specific instructions and hardware would be used. All of the currently

12

Background

supported extensions with their versions and specifications can be found in the
RISC-V Instruction Set Manual (Volume I and II) [18].

2.2.2 Vector extension
One of the most important extensions that has become stable in the last years is
the "V" Vector Operations extension. It is intended to provide support for general
data-parallel execution with a small number of instructions compared to other
typical packed-SIMD alternatives. It is an open standard for potentially increasing
the computational power with the adoption of vector units in RISC-V Cores.

Version evolution: from v0.7 draft to v1.0 stable

The first draft specification the draft spec 0.7 and its first revision for software
development 0.7.1 in June of 2019. It aimed to capture the basic required vector
functionalities and how some of this will be implemented as vector instructions.
This first approch defined a stable enough version in order to settle the bases for
developing functional simulators, toolchains and initial implementations of the
individual features described. Its realtive stability and generic aproach allowed that
some CPUs to be manufactured and desinged implement it, such as the Xuantie
C910 (it will be further explained in the following chapters). This settles the
basis for the following v0.8, v0.9 and v0.10 preliminary stable releases before the
definite v1.0 frozen and ratified version in September of 2021. Despite sharing many
features, the hardware supporting version 0.7.1 and the version itself is not directly
compatible with the stable version v1.0. The main differences can be summarized
int the following list:

• CRSs (Control and Status Registers) required: while the 1.0 uses seven
unprivileged CRSs (vstart, vxsat, vxrm, vcsr, vtype, vl, vlenb), the 0.7 only
uses five (vstart, vxsat, vxrm, vtype, vl).

• Vector register grouping: The extension allows for multiple registers to
be grouped together so that with a single vector instruction it can operate
on many registers at once. The 0.7 specifications only allowed grouping or a
vector length multiplier value (LMUL) greater than 1, in this case, 2, 4, 8.
On the other hand, the newer specification also establishes values of LMUL
smaller that 1 or fractional, in order to increase the number of effective usable
vector register groups when operating on mixed-width values. With the old
specification values could only be allocated in a vector register using at least
one whole register, however, the newest provides more flexibility and better
potential efficiency.

13

Background

• Extended instructions and encoding: over the three intermediate versions
more functionalities were extended in order to give as much support and
optimized instructions. One of these changes is in the core instruction used for
configuring the vector unit, vsetlv. This instruction utilizes 3 parameters: the
proposed amount of data that is going to be processed for (Application Vector
Length) which gets corrected (the specification sets some restrictions) and by
establishing the actual number of elements that would be processed vl and
the vtype argument which encodes the size of the individual elements in bits
(8,16,32 or 32) and the LMUL value (e.g. for v1.0: 1/8,1/4,1/2,1,2,4,8). The
v1.0 specification does not only allow to use of immediate versions (having
three in total, compared to the two of the 0.7) of this instruction but also uses
2 extra bits in the instructions encoding "tail" and masking information.

2.3 Compilers
Compilers are key software tools in computer science that are capable of translating
high-level programming languages into machine code so it can be executed. With
the current paradigm of increasing abstraction and higher-level programs, compilers
and their translation task and different optimisations become more and more
relevant. Despite being a core element in a language-processing system, it usually
doesn’t work alone. Before the compiler’s execution, the preprocessor takes the
source program and generates a modified version for the compiler combining several
sources or doing expansions of macros into source language statements. After the
Compiler generates the target assembly program, two more actors come into place,
the assembler, which produces relocatable machine code and the linker, which, if
needed, can put together different relocatable machine codes, resolving any external
memory addresses referring to other files. Finally, the loader merges all executable
files into memory for execution.

2.3.1 Structure of a compiler
A compiler is composed of two main types of tasks: analysis and synthesis. In the
front-end or analysis, the source code is decomposed into tokens and a grammatical
structure is imposed. During this process also the correctness of the source code is
checked according to the language rules. Another extra step during the analysis
process is the collection of information about the source program such as variable
names, that are stored in a symbol table. This process consists of four basic steps:

• Lexical Analysis or scanner: this first phase analyses the input source
code as a stream of characters and groups the sub-strings into meaningful
elements called "lexemes". For each of these sub-divisions are output different

14

Background

Figure 2.12: Diagram of the different elements and outputs of language-processing
systems. Extracted from [19].

tokens. A token can represent operations, like multiplication or assigning, or
keywords, but also variables or constants, in which case there is an attribute
value also included.

• Syntax Analysis or parsing: during this step, a tree-like intermediate
representation that represents the grammatical rules is generated. One of the
most common is the "syntax tree", where the children of each node represent the
arguments of that specific operation and the depth of the order or dependencies
between operations (nodes).

• Semantic analysis: through this process, the semantic analyser checks the
consistency with the programming language definition of the source code from
the syntax tree and the symbol table. One of the key tasks is type checking,
where the compiler makes sure that the operands used are correct for the
operations(e.g. in C language array indexes must be integers).

• Intermediate code generation: many compilers generate a machine-like
or low-level (e.g. assembler) intermediate representation that would be fed
into the optimization process. These representations are required to be easy
to produce and translate into target machine code. One example is the LLVM
software, which utilizes a specific Intermediate Representation (IR) created by
them.

15

Background

Following, the intermediate code is processed by the back-end section of the
compilers. In this part the code/representation is optimized and tuned for a specific
micro-architecture. This whole module encapsulates two main processes:

• Intermediate Code Optimization: This is a machine-independent process
that seeks to improve the intermediate code. These optimizations can have
different targets, such as size or speed.

• Code Generation: the software takes the optimized intermediate represen-
tation and maps it into the target language. In the case of machine code, the
different variables used have to be mapped into the different types of registers
or memory, and the specific instructions available by that specific hardware
targeted.

Figure 2.13: Phases of a compiler with intermediate outputs of translation.
Modified version of original extracted from [19].

2.4 Multi-core platforms and parallelissim
During a great period in computer architecture and manufacturing history in the
CMOS era, the performance of improvements came from the miniaturization of
transistors and the consequent increase in number and the increase in the working
speed or clock speeds. Despite this strategy having proven its feasibility increasing

16

Background

at almost an exponential rate the number of transistors and the speed, in the last
two decades, newer challenges have encouraged newer designs and architectures.

Problems like the "heat wall" [20] due to power dissipation and power density
hinder the advance in this direction and are a challenge for newer generation
processors. Another related problem is the slower pace of developments in memory
systems such as DRAM (DRAM delay and latency only improved year-over-year a
10% and 20% while the CPU performance since 1986 a 60% [21]). These problems
resulted in barriers that potentiated other approaches, like the increase of cores in
CPUs, as shown in Figure 2.14.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Year

50 Years of Microprocessor Trend Data

Figure 2.14: Evolution of number or Transistors, Logical Cores, Power consump-
tion, Frequency and Single-Thread Performance since 1970 to 2021. Extracted
from [22].

Parallelization can be achieved at different levels:

• Instruction-Level Parallelism (ILP): this first level represent the most
fine grain level of parallelization. It utilizes the capability of the processor
to execute multiple instructions from a single thread. Some of the hardware
techniques that allow this level are multi-stage pipelining, superscalar execution
or Out-of-order execution.

• Thread-Level Parallelism (TLP): at a higher level, this approach focus

17

Background

on the threads containing multiple instructions. This approach can be ac-
complished by simultaneous Multi-threading (SMT), where multiple threads
utilize the same core and share its resources. Also, it can utilize multi-core
architectures to offload and spread different threads in different cores. This
complex task brings up new potential problems like tread interference (e.g.
cache corruption or synchronization) the balancing of the different tasks and
the synchronization among threads in bigger tasks and the possible overheads
that can appear from them. Software platforms have been developed over
the years to better support and give developers more control and tools when
trying to archive this kind of parallelism. Some popular and open examples
are OpenMP or Clink.

• Data or Vector Parallelism: this level utilizes instruction or more exactly
data level granularity in order to perform one operation over multiple data
elements simultaneously. This kind of parallelism requires comprehensive
hardware support such as architectures capable of executing Single Instruction,
Multiple Data (SIMD) instructions. Furthermore, Graphic Processing Units
(GPUs) exploit this concept with massively parallel data interfaces and vector
processing units capable of operating at great speed and efficiency with huge
bandwidths. This level combines some of the problems of ILP and TLP but
enables a new degree of freedom that makes it another powerful improvement
for computing systems creating its own paradigm.

2.4.1 NUMA regions
Memory storage is one of the key components in modern computing systems due
to its direct impact on computing power causing possible bottlenecks or enabling
further improvements. Complex multi-core systems require memory modules of
different sizes and access for optimal performance. However, the way these modules
are connected to the rest of the system can vary. Shared memory architectures
describe how the processors and the main memory units are placed, having two
main strategies, uniform and non-uniform memory access. Uniform Memory Access
(UMA) architecture defines a type of interconnection in which the memory access
time is the same across all processors. Meanwhile, NUMAs (Non-Uniform Memory
Accesss) shared memory architecture, the access time of the different Processing
units is different as they possess their local memory that can be directly accessed
but they can also access other memory modules that are local to other cores. These
different architectures are showcased in Figure 2.15.

NUMA systems have proven in the recent years its advantages improving
average case access time in hierarchical shared memory [23]. But this more complex
architecture leads to potential problem when managing performance in NUMA
sytems, the core affinity and the data placement.

18

Background

Figure 2.15: Simplified diagram of UMA (left) and NUMA (right) architectures
in a multicore system

Due to the nature of operating systems and multi-threaded executions, a sched-
uler that is capable of assigning new tasks/threads to the different cores is required.
This assignment can be ruled by other objectives, such as load balancing (spreading
the threads among the system) or thread concentration (assigning threads to a
few cores and putting the rest to low-power states). In NUMA systems the same
hardware design imposes new properties such as the affinity among cores or their
relative latency to neighbouring memory units.

In the case of load balancing, one of the most common and default policies,
thread migration can not take into account the local memory allocations and
therefore generating a great potential overhead in data migration of access of
the compared to the original location. This also reflects the importance of data
placement and memory allocation. In scenarios where a multi-threaded application
spawns more threads from the main one, the allocation of new memory can be
crucial for the application’s performance. There exist ways to define affinity and
memory policies related to the core libnuma library for Linux and other APIs such
as OpenMP.

2.5 Basic Linear Algebra Subprograms
Many computer applications in the realm of science, data science or graphics among
others, rely heavily on linear algebra operations for many of its tasks. Therefore,
there is a need for subroutines that are capable of doing this task in a reliable and
efficient way so that more complex applications can be built on top of them with
the complexity of supporting different software and hardware platforms.

2.5.1 Development and basic elements
Firstly born in the 1970s, the development of BLAS saw its first appearance as a
unified work in "Basic Linear Algebra Subprograms for Fortran Usage" [24]. The

19

Background

improvement in computer science and the increasing complexity of programs at the
time provoked industry software developers and researchers to develop low-level
subroutines for these operations. This research work had the aim of unifying and
standardising how these subroutines should be defined (Fig. 2.16), speeding up
the software development process and generating portable structures and concepts
that could be applied to other languages and platforms.

Figure 2.16: Summary of functions and name of BLAS Subprograms. Prefix letters
I, S, D, C, Q denote the data type of the operation being integer,single-precision,
double-precision, (single-precision) complex and extended precision, respectively.
Extracted from [24].

Another key aspect of this first implementation is the programming language
of choice, Fortran. This language, unlike C language, uses column-major storage
which affects how the algorithms and their implementation. In subsequent years,
the BLAS concept gained great popularity and expanded through the research
world, being integrated in a library called LINPACK and standardised by the BLAS
Technical Forum. The next step up in this direction was the extended capabilities
with matrix-related operations. BLAS define 3 different levels of operations:

• Level 1: defined in the original paper it consists of vector-vector and vector-
scalar operations:

y ← αx + y

20

Background

x, y being vectors and α a constant value.

• Level 2: the first expansion of the original work included more complex
operations [25], based on matrix-vector operations, including general product,
symmetric or Hermitian products, and triangular matrix-vector product. For
the most relevant incorporation, the general matrix-vector product there exist
3 possible implementations depending on the value of the parameter "TRANS"
given the function GEMV:

if TRANS = ’N’, y ← αAx + βy

if TRANS = ’T’, y ← αAT x + βy

if TRANS = ’C’, y ← αA
T
x + βy

x, y being vectors, α,β constant values, and A a matrix.

• Level 3: this final level targets the more complex matrix-matrix operations,
providing a portable yet efficient implementation for computations such as
matrix-matrix products, rank-k and rank-2k updates of symmetric matrix or
triangular matrices operations [26]. Similarly to level 2, it provides specific
implementations for the different possibilities of the main matrix-matrix
product or more specifically multiply-add operation:

C ← αAB + βC

C ← αAT B + βC

C ← αABT + βC

C ← αAT BT + βC

A,B,C being matrices and α, β constant values

With the introduction of level 2 and level 3 expansions in 1988 and 1990, relevant
topics in high-performance computing were brought up like optimization of data
movement in hierarchical memory systems and parallel processing of workloads.
With these implementations included in the LINPACK library, many relevant
companies developed versions for the computer architecture x86 with Intel MKL or
IBM ESSL. LAPACK appeared as an open library that exploits the developments
in BLAS in libraries such as LINPACK but its main target was running efficiently
on shared-memory and hierarchical systems and even vector/parallel processors,
unlike LINPACK or EISPACK (another popular BLAS library). This new library
was also developed in Fortran and offered APIs in C standard language to be used
in different scenarios.

21

Background

Automatically Tuned Linear Algebra Software (ATLAS) [27] at the end of the 90s
tackled the problem of generalizing the BLAS implementations to different hardware
while being aware of their deep memory hierarchies, generating automatically
optimized code for level 3 BLAS implementations (mostly for DGEMM). This
automation seeks to reduce the time of modifying the already existing libraries
for Linear Algebra to better suit a great variety of architectures and hardware
types, outperforming the vendor-provided code in many cases, at that time. This
strategy not only relied on hardware knowledge beforehand but also empirically
tested different elements of the underlying silicon. Different code versions (e.g.
loop reordering, different tiling sizes) at a high level are tested to then obtain the
optimal parameters to specifically tune an on-chip multiply that can be used to
build a complete matrix-matrix multiply.

The next biggest achievement and what became one the foundations of many
modern BLAS and HPC libraries, such as OpenBLAS or Intel MKL, was the
appearance of the GotoBLAS algorithms in the revolutionary paper "Anatomy of
high-performance matrix multiplication" [28]. This paper took all the previous
knowledge to the moment and created a set of algorithms that used layering
and tiling with specific hardware-aware sizes of different level memories (that
in this case had to be predefined) together high low-level optimized kernels for
the most inner loops of execution. It highlighted the importance of higher-level
cache utilization and data locality and continuity as well as the importance of
register-level sizes for the dimension of the specialised inner kernels. The knowledge
of all of these properties and the different layers of optimization can be seen in
Fig. 2.17. This optimization also included multi-thread execution and awareness
in order to potentiate the performance in more complex machines.

22

Background

Figure 2.17: "Left: The GotoBLAS algorithm for matrix-matrix multiplication as
refactored in BLIS. Right: the same algorithm, but expressed as loops". Extracted
from [29].

23

Chapter 3

Related Work

3.1 HPC Platforms
The field of HPC has been in the focus of many companies and research due to
the increasing demand of cloud computing and heavy computational loads such as
data analytics, machine learning or scientific simulations. With this in mind, over
time different options have emerged trying to leverage the benefits of RISC-V to
push the limits of computation.

3.1.1 Manticore

In 2020, one of the most ambitious projects related to RISC-V cores and high
performance with efficiency saw the light, the Manticore chiplet [30]. This work
develops a 4096-core RISC-V chiplet architecture with a focus on ultra-efficient
Floating-point Computing. This project focused on two pivotal points:

Chiplet architecture

This novel design used the chiplet structure to improve the cost and yield of the
manufacturing cost. For a single full chip, it uses 4 different chiplets, each of
them composed of 32 clusters with eight 32-bit RISC-V processor cores based
of the Snitch [31] design. Furthermore, every chiplet includes a 64-bit RISC-V
Ariane/CVA6 [32] cores for management, 27MB of shared L2 memory, a HBM
(High Bandwidth Memory) controller, a 16x PCIe endpoint for host communication
and a private 8GB HBM. There exist also in-package chip-to-chip links, one to each
sibling for inter-die synchronization and chiplet-to-chiplet NUMA (Non-Uniform
Memory Access).

24

Related Work

Figure 3.1: "Conceptual floorplan
of the package. Arrangement of the
chiplets and HBM on the interposer.
Each chiplet has its own, private, 8 GB
HBM. Chiplets interconnect via die-to-
die serial links". Extracted from [30]

Figure 3.2: "Conceptual floorplan of
an individual chiplet. Arrangement of
individual cluster quadrants, intercon-
nects, L2 memory, HBM2 controller,
PCIe controller, and quad-core Ariane
RV64GC system". Extracted from [30]

Custom ISA Extensions

The cores used in the design include the basic RISC-V base and general extensions
with single and double-precision floating-point arithmetic and two fully custom ISA
extensions in order to improve the utilization and performance of the floating-point
unit. The Stream Semantic Registers (SSRs) extension target is to reduce the
large number of loads/stores instructions by explicitly encoding memory accesses
as register/read writes, which requires to give a subset of the processor core’s
registers stream semantics [30] [33]. The second of these extensions is the Floating-
Point Repetition (frep) which implements a FPU (Floating-Point Unit) exclusive
hardware loop where "hot" micro-loops can be executed in a sequence buffer
that works independently of the main Snitch cores. This accelerates this kind of
very common sub workloads like in vector-matrix dot product with floating-point
numbers [30]. Fig. 3.3 and Fig. 3.4 showcase an examples of the optimizations and
implementation of both SSRs and frep and how they can improve the execution of
the baseline RISC-V instructions.

With all of this elements, the Manticore project accomplished to compete with
NVIDIA V100 GPU in performance efficiency for DNN training tasks such as
Convolution reaching more than 50 GFLOP/s per Watt [30], even outperforming
many high-end high-performance CPUs such as the Intel i9-9900K or the Neoverse
N1.

25

Related Work

Figure 3.3: "Left: baseline simpli-
fied RISC-V implementation, with ad-
dress calculation and pointer increment
omitted for brevity.Right: SSRs imple-
mentation with memory loads encoded
as reads from stream registers; addi-
tional stream configuration instructions
required ahead of the loop.". Extracted
from [30]

Figure 3.4: "Left: implementation
with loop bookkeeping using baseline
RISC-V instructions. Right: implemen-
tation with an frep hardware loop, with
all bookkeeping to occur implicitly in
the hardware". Extracted from [30]

3.1.2 Xuantie 910
Presented in paper "Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline
Out-of-Order 64-bit High Performance RISC-V Processor with Vector Extension"
[34] this newer CPU architecture builds upon the academic work of other RISC-V
CPUs such as BOOM [35] and other simpler cores like RI5CY [36] and other
industrial work from vendors such as SiFive or Microsemi in order to create a
high-performance multicore CPU based on 64-bit RISC-V. The company Alibaba
T-Head is the designer of this hardware that uses a multi-cluster architecture,
where each single cluster can have 1,2 or 4 cores. Each of these cores is based on
the XT-910 architecture running at up to 2.5GHz and supports a 32/64 KB L1
instruction and data cache. Then each cluster shares a 8/16 way associated L2
cache with up to 8MB of memory capacity.

XT-910 core architecture

The XT-910 architecture developed for this CPU is compliant with the RISC-V
specification RV64GC, the Vector extension on its 0.7.1 version and other non-
standard extensions. The main elements of the core are:

• 12-stage Out-of-order pipeline: the "front end" is composed by 7 stages,
including instructions fetch, decode and Issue. Then we find 4 different
branches for execution: branch jump pipe, two scalar floating point units and
two vector execution unit, one dual-issue out-of-order load & store unit. The
out-of-order issue engine can pass up to eight instructions.

• Vector Unit and Extension: The vector execution pipeline present in this
architecture is based on the draft stable release version 0.7.1 of the RISC-V

26

Related Work

Figure 3.5: Diagram of XT-910 multi-core cluster (4-core configuration). Ex-
tracted from [34].

Vector specification. It is composed of multiple identical 64-bit scalar pipelines
that support 8-bit to 64-bit vector integer operations, half-precision/single-
precision/double-precision floating. This pipelines are divided in vector slices,
which have a complete 64-bit data path, 64-bit vector physical register file
and two out-of-order vector integer and floating-point units. This results on a
total of 256-bit operation results in one clock cycle and a 128-bit vector/load
store operation.

• Memory management: The architecture includes a SV39 MMU being
compliant with RISC-V Linux specification. It includes also support for
huge-page mapping and multi-size (4K,2M and 1G) entry at all levels of TLB
(Translation Lookaside Buffer), allowing for a iterative process through the
different sizes to reduce page misses.

• Custom extensions:in order to improve performance, T-Head designed
different non-standard custom extensions that add more than 50 non-standard
instructions. These accelerate domain-specific tasks and include arithmetic
operations, load & store, TLB, bit manipulation, cache operations, expanded
MMU management.

Along with these specifications and novel hardware, Alibaba T-Head developed
a software ecosystem that includes a full compilation toolchain based on the
official GNU tools and an IDE that enables RISC-V graphical trace, profiling and
instruction accurate simulation with JTAG online debug. This allows for a better

27

Related Work

Figure 3.6: 12-stage pipeline in XT-
910 core. Extracted from [34]

Figure 3.7: Pipelined Vector operation
architecture. Extracted from [34]

matching between hardware and software as these toolchains have been developed
to support all the hardware characteristics and optimise software execution to them.
All in all, the Xuantie 910 established itself as a commercial competitor to similar
64-bit cores with other more classical ISAs such as the popular ARM cortex A
series (compared in [34] with the ARM Cortex-A73) and a flagship design inside of
the RISC-V high-performance cores world.

3.1.3 Milk-V Pioneer
Many companies have emerged in the last years with the developments on RISC-V
and newer hardware platforms. Milk-V is one of this companies that is committed
to provide new RISC-V products, embracing its open-source and community-based
philosophy. Among its broad catalogue one of the most powerful platforms is
the Milk-V Pioneer, which targets to make native RISC-V development possible
through a high-performance CPU equipped with state-of-the-art complementary
hardware and enabling possible expansions as can be seen in Fig. 3.8. At the centre
of this platform we can find the Sophon SG2042, a cutting-edge multi-core CPU
based on RISC-V.

Sophon SG2042

The Sophon 2042 represents a big step forward in the commercially available
mass-produced CPUs based on RISC-V Cores. It utilises 16 multi-core Xuantie
C920, clusters composed by 4 cores, organised and connected into a mesh network

28

Related Work

Figure 3.8: Milk-V Pioneer motherboard and main hardware characteristics.
Extracted from [37].

architecture or NoC (Network-on-Chip) architecture, displayed in the diagram of Fig.
3.9. Each system Level Cache is 4MiB in size totally and 16 of them are connected
in the network, corresponding to 64MiB system level L3 cache. Additionally it
includes four DRAM controllers) (supporting DDR4 UDIMM/SODIMM/RDIMM
up to 3200MT/s with ECC byte) located on the left and right side respectively,
accessible by all masters in the network. Finally thre are two more components, the
PCI devices and the System CoProcessor, whose task is to coordinate and initialize
basic platform elements such as the DRAM controller, PCIe Controller or mesh
setup. All of these components and the extra CCIX ports for 2 sockets mode are
represented in Figure 3.9. The Xuantie 920 utilizes pretty similar configurarions and
characteristics of its open-source companion, the C910. The main characteristics
of this core are:

• 64-bit core implementing the standard extensions IMAFDC.

• Incorporates the RISC-V vector extension in its stable draft version 0.7.1.

• Runs at operation frecuency of 2.0GHz

• Uses a 64KiB L1 I-Cache and 64KiB L1 D-Cache per core configuration and
1MiB unified L2 cache per cluster

3.2 Inference frameworks
The deployment and execution of LLMs require a piece of software capable of
interpreting the model format and adding a computational structure, these are

29

Related Work

Figure 3.9: SG2042 Mesh architecture and main components. Extracted from
[38].

the inference frameworks. Machine Learning models are built and require tensor
libraries as an efficient and flexible way to provide fundamental data structures
and operations necessary in ML. These building blocks encapsulate tensor (multi-
dimensional arrays) operations and optimised versions for linear algebra, including
sometimes hardware-specific implementations. Built atop tensor libraries, we can
find training and inference frameworks that provide high-level APIs and tools to
interact with the models.

Training frameworks include functionalities for designing, training and evaluating
the performance and evolution of the models. For these tasks, it is common to find
an array of tools that are not typically available in specialized inference frameworks.
These may include optimization algorithms, automatic differentiation, as well as
utilities for dataset management, pre-processing, and augmentation, among others.
On the other hand, the specific inference frameworks focus on performance and
resource efficiency. Here, for a definitive model different optimizations can be done

30

Related Work

at the graph level such as operation fusion, in the implementation level, providing
a code that performs the node’s task with a hardware-specific version or even
improving memory bandwidth thanks to quantization techniques. These tools are
not exclusive and there exist all-in-one or more complete solutions.

3.2.1 llama.cpp and ggml
Two notable open-source repositories that gained notable attention recently in this
field are llama.cpp and GGML. Generative Generalized Machine Learning (GGML)
is the backbone tensor library that llama.cpp utilizes to provide fast inference with
full flexibility and simplicity provided in C/C++.It comes by default with many
implementations for more established CPUs and ISAs such as x86 and ARM, as
well as support to their vector extensions by specific implementations. Furthermore,
the only optimized targets are not desktop CPUs, during the building process it
can include other backends such as CUDA, BLAS libraries or Vulkan to target
GPUs or make hybrid computation offloading certain layers to other hardware.

GGML main elements

As described previously, GGML library defines the different data structures and
operations that comprise ML models and their execution. Inside this library we
can observe the definition of the most elemental data element inside GGML as
shown in the code fragment 3.1 .

Listing 3.1: simplified ggml_tensor definition extracted from ggml.h [39]
1 s t r u c t ggml_tensor {
2 enum ggml_type type ;
3 s t r u c t ggml_backend_buffer ∗ b u f f e r ;
4 . . .
5 int64_t ne [GGML_MAX_DIMS] ; // number o f e lements
6 s i z e_t nb [GGML_MAX_DIMS] ; // s t r i d e in bytes :
7 // nb [0] = ggml_type_size (type)
8 // nb [1] = nb [0] ∗ (ne [0] / ggml_blck_size (type)) + padding
9 // nb [i] = nb [i −1] ∗ ne [i −1]

10 // compute data
11 enum ggml_op op ;
12 // op params − a l l o c a t e d as int32_t f o r al ignment
13 int32_t op_params [GGML_MAX_OP_PARAMS / s i z e o f (int32_t)] ;
14 int32_t f l a g s ;
15 . . .
16 // source t enso r and o f f s e t f o r views
17 s t r u c t ggml_tensor ∗ view_src ;
18 s i z e_t view_of f s ;
19 void ∗ data ;
20 char name [GGML_MAX_NAME] ;

31

Related Work

21 void ∗ extra ; // extra th ing s e . g . f o r ggml−cuda . cu
22 } ;

Inside this structure, there are many parameters with different functions but the
essential ones are:

• ggml_type: this enumeration defines the type of data of the individual
elements that will be contained in the tensor. Some classic datatypes like
single-precision floating-point are represented as "GGML_TYPE_F32" but
more complex types are also included, as different quantized data types
for different lengths (e.g. 8-bit quantization GGML_TYPE_Q8_0 vs 4-
bit quantization GGML_TYPE_Q4_0) or different quantization methods
(e.g. 8-bit k-quants GGML_TYPE_Q8_K vs 8-bit "type-1" quantization
GGML_TYPE_Q8_1).

• ne: it refers to the number of elements in different dimensions. This element
allows to calculation of indices and moves through the tensors. GGML, as C
language, uses row-major ordering, therefore the value of "ne[0]" will correspond
to the number of elements in each row, "ne[1]" will store the column size and
this structure goes on up to "GGML_MAX_DIMS", which in ggml is equal
to 4.

• nb: in this variable is stored the stride in bytes between numbers inside of
each of the same dimensions. This is a complex variable as depending on the
number format the stride can vary largely. It can be computed in the following
as specified in lines 7-9 of code fragment 3.1

nb[0] = ggml_type_size(type)
nb[1] = nb[0]× (ne[0]/ggml_blck_size(type)) + padding

nb[i] = nb[i− 1] ∗ ne[i− 1]
(3.1)

For classic non-quantized datatypes with no special padding, and a classic
tensor, all the strides to navigate through the tensor can be obtained with
the first and last equations. But quantized models use the concept of blocks,
for which the numerical quantized values have to be dequantized before being
used in order to obtain the true value. These extra required parameters are
usually also stored as part of the tensor and therefore, there is the necessity
of differentiate between intra-block (where values are contiguous with their
own stride depending on the datatype) and inter-blocks (considering the extra
bytes of non-values).

• op: the operation parameter defines which will be the use of the tensor.
When a new tensor operation is required, the result tensor is created with the

32

Related Work

operation encoded and the sources of data included through the src pointers
in the structure.

Despite the apparent complexity of the core parameters in the tensors, they provide
significant benefits, mainly allowing the storage of non-continuous tensors and
simplification of tasks like transposition and permutation, which only require
pointers resignation, but not actual data movement.

The library offers the freedom to the user to generate its own functions using
available tensor operations. The functions are represented internally as computation
graphs and each of the operations inside of the graph corresponds to a node. Once
the different steps in the computation are defined through the ggml tensors and
the inputs are defined it can be executed. For the sake of clarity in the code 3.2
is showcased the example of how a function corresponding to the mathematical
expression f(x) = a ∗ x2 + b is created and executed using the ggml library:

3.1
Listing 3.2: modified example of definition and execution of function f(x) =
a ∗ x2 + b , extracted from ggml.h [39]

1 {
2 s t r u c t ggml_init_params params = {
3 . mem_size = 16∗1024∗1024 ,
4 . mem_buffer = NULL,
5 } ;
6

7 // memory a l l o c a t i o n happens here
8 s t r u c t ggml_context ∗ ctx = ggml_init (params) ;
9

10 s t r u c t ggml_tensor ∗ x = ggml_new_tensor_1d (ctx , GGML_TYPE_F32
, 1) ;

11

12 ggml_set_param (ctx , x) ; // x i s an input v a r i a b l e
13 // D e f i n i t i o n o f the t e n s o r s that w i l l p a r t i c i p a t e in the

f u c t i o n s and i t s r e l a t i o n s h i p with the input va lue s
14 s t r u c t ggml_tensor ∗ a = ggml_new_tensor_1d (ctx ,

GGML_TYPE_F32, 1) ;
15 s t r u c t ggml_tensor ∗ b = ggml_new_tensor_1d (ctx ,

GGML_TYPE_F32, 1) ;
16 s t r u c t ggml_tensor ∗ x2 = ggml_mul (ctx , x , x) ;
17 s t r u c t ggml_tensor ∗ f = ggml_add (ctx , ggml_mul (ctx , a , x2) ,

b) ;
18

19 s t r u c t ggml_cgraph ∗ g f = ggml_new_graph (ctx) ;
20 ggml_build_forward_expand (gf , f) ;
21

22 // s e t the input v a r i a b l e and parameter va lue s
23 ggml_set_f32 (x , 2 . 0 f) ;
24 ggml_set_f32 (a , 3 . 0 f) ;

33

Related Work

25 ggml_set_f32 (b , 4 . 0 f) ;
26

27 // Execution o f the contructed computation
28 ggml_graph_compute_with_ctx (ctx , &gf , n_threads) ;
29

30 p r i n t f (" f = %f \n" , ggml_get_f32_1d (f , 0)) ;
31 } ;

3.3 Compilers for RISC-V
A key component in computer science are compilers, doing the crucial task of
translating high-level programming languages, that we humans can use more easily
into machine code that can be executed by computers and processors.

Two of the most popular compilers worldwide currently are GCC C and Clang
when we talk about C, one of the most important and used languages in the history
of computer science. GCC C belongs to the GNU Compiler Collection, while Clang
is part of the LLVM project. Both of them have support for multiple computer
architectures and even custom extensions for better usage in the underlying hard-
ware. Both of them are part of community-based development and are completely
open-source, but they have many differences.

3.3.1 GCC
In 1984 the GNU project was given birth to become a UNIX-like open-source
software system. Inside of this group of tool there were some of the ones that
today constitute part of the backbone of the GNU/Linux ecosystem such as GlibC,
GDB, Make or GCC. Originally born as a C compiler evolved as a full collection of
compilers to support other languages like Fortran or Objective-C. The development
of GCC has been slow, suffering from the split in effort during of its early years
between the GCC and GNU system, in 2015 with GCC-5.0, the policy and rhythm
of development changed radically, being now a priority to develop a competitive
compiler that would deliver a major version release each year, in order to keep up
with the newer alternatives.

The architecture of GCC follows the structure of a monolithic compiler with
several elements and representations working tightly together. GCC utilises several
intermediate representations with different levels of optimisation. Firstly, the code
is turned into a an standard generic abstract syntax tree (AST). This representation,
due to language differences, can change in format but the AST is turned into a
unified form called generic. After the end of the front end, the generic representation
is converted into the GIMPLE form, which focuses on high-level elements and
it is useful for optimization of the source code. Then, it is turned into a static

34

Related Work

single assignments (SSA) representation. In this form, several optimizations and
versions of the variables depend on their usage, operation and possible branches.
In this shape, GCC performs more than 20 different optimisations. After all the
optimizations the SSA shape is transformed back to GIMBLE representation.

At the lowest level of optimizations and representations, this GIMBLE rep-
resentation is turned into an RTL tree representation. In this form, which is
hardware-based and utilizes the abstract target architecture, further improvements
are produced. And finally, the GCC back end generates the assembly code necessary
to generate the machine code to run on a specific architecture.

All of these steps can be visualized at the diagram of Fig. 3.10.

Figure 3.10: GCC execution diagram with front, middle and back ends and
intermediate representations. Extracted from [40].

3.3.2 CLANG/LLVM
Born in 2003, the Low-Level Virtual Machine (LLVM) was developed as a modular
and flexible framework for developing compilers. Upon this software infrastructure,
Clang was born as an alternative to GCC C compiler, improving in many areas
that GCC was lacking behind. LLVM allows developers to separate the two main
sections, the front end and the back end.

This allows higher-level optimization and while being easy to support different
architectures. Another big improvement compared to GCC, is the improved
diagnostics included in the same compiler. This allows for faster development and
debugging for the developers. The next differentiating factor is extensibility, LLVM
was written to ease the development of new extensions and support for newer
modules that can integrate easily.

Regarding the execution and structure itself, it is also quite different compared to
GCC. The main difference and distinct element of LLVM is the LLVM Intermediate

35

Related Work

Representation (IR). This is a mid-level representation that can also come from an
AST representation. This mid-representation is also based on SSA representation
and uses a specific language and structure that focuses on supporting lightweight
runtime optimizations and restructure transformations among others. This inter-
mediate representation is the one over which the optimizations are performed as
shown in Fig. 3.11.

Figure 3.11: LLVM execution diagram with front, middle and back ends and
intermediate representations. Extracted from [41].

All in all, LLVM is a modern compiler that has proven in different computer
architectures to be able to extract more performance, showing a better performance
in many comparisons to GCC.

3.4 LLM models
After the appearance of the Transformers architecture in 2017, bigger and bigger
models, trained in billions of data have been developed and have pushed the
capabilities of Deep neural networks in the field of natural language processing
(NLP). At the front of this revolution, some companies such as OpenAI with its
GPT family and Google models like BERT paved the way for newer and more
powerful models, with larger massive datasets and increased training times. This
race towards bigger models and improved training is still nowadays a reality that
involves many research facilities and companies.

3.4.1 Meta LLAMA
In February of 2023 Meta AI published a revolutionising paper called "LLaMA:
Open and Efficient Foundation Language Models" [42]. This paper brought to
the table a new perspective, providing a new collection of foundation language
models ranging from 7 billion to 65 billion parameters. At the time, OpenAI’s

36

Related Work

GPT-3 and Google’s PaLM already showcased impressive and state-of-the-art
results. LLaMa models not only proof a competitive performance in comparison
but also a significant reduction in size and resources. Its approach relied on more
specialized training completely over open source datasets like CommonCrawl or
Wikipedia. Its main architectural characteristics and inspirations are:

• Pre-normalization: inpired by GPT3, it searched to improve training
stability.

• SwiGLU activation function: Unlike the commonly used ReLu non-linear
function, for these models it was replaced by the SwiGLU, as with the PaLM
model but with a slightly different dimension.

• Rotary Embeddings: in this novel architecture it was used rotary positional
embedding (RoPE) at each layer of the network, instead of the traditional
absolute positional embeddings.

Meta AI released in an open-source manner the weights of their four models with
7B, 13B, 33B, and 65B parameters. This led to a huge world of opportunities for
research and the open public as customizations and fine-tuning was now available for
everyone on these models. Due to the worldwide success of LLaMa, Meta introduces
in July of 2023 LLaMa 2 [43], in 3 different sizes (7B, 13B, and 70B parameters).
The new improved generation followed the same philosophy of its predecessors and
was open-source with commercial and research licences for complete usability and
adaptability to other applications or explorations. New models included two main
architectural novelties compared to the previous generation: the increased context
length and the grouped-query attention (GDA).

One of the main targets, due to the new trends, was the option of having
fine-tuned model versions that could be specialised in dialogue use cases. This
led to the birth of the Llama-2-Chat collection of models. Based on the Llama 2
models, these models went through a specific fine-tuning involving human feedback
and reinforced learning. The detailed process is explained in Fig. 3.12.

3.5 BLAS Libraries
Modern heavy computational workloads, especially those related to HPC, require
extracting most of the performance with maximum efficiency from the hardware
it runs on. From the exploitation of vector instructions to optimize data access
in complex hierarchical memory systems. One of the most important operations
that is the core of many applications such as AI or digital processing is matrix
multiplication. This central operation and other close ones like vector-related
operations have been the centre of many developments.

37

Related Work

Figure 3.12: " Training of Llama 2-Chat: This process begins with the pretraining
of Llama 2 using publicly available online sources. Following this, we create an
initial version of Llama 2-Chat through the application of supervised fine-tuning.
Subsequently, the model is iteratively refined using Reinforcement Learning with
Human Feedback (RLHF) methodologies, specifically through rejection sampling
and Proximal Policy Optimization (PPO). Throughout the RLHF stage, the accu-
mulation of iterative reward modelling data in parallel with model enhancements
is crucial to ensure the reward models remain within distribution". Extracted from
[43].

3.5.1 OpenBLAS

OpenBLAS represents the most important and spread open-source implementation
of BLAS and LAPACK libraries. It provides APIs for level 1,2 and 3 routines in
commonly single-precision and double-precision floating-point routines. Further-
more, it supports most of the main computer architectures with many CPU-specific
optimizations.

In 2011, a team from the State Key Lab of Computing Science, Chinese Academy
of Sciences in Beijing proposed an improved algorithm based on the GotoBLAS
algorithm and LAPACK routines to boost the performance and give support to
the Loongson 3A CPU, based on the MIPS64 microarchitecture [44]. To scale
GEMM performances other memory-related optimizations are used. For instance,
Cache and Register blocking, loop unrolling and reordering instructions and 128-
bit memory accessing instructions, available in the Loongson 3A, and software
prefetching. These memory optimizations can be performed thanks to the data
stored in the core/architecture definitions, including the different sizes of memories
number of DTB entries and line size as shown in the code snippet 3.3.

Listing 3.3: Information about LoongSon 3R3, 3A, 3B cache size and memory
data, in get_target.c

38

Related Work

1 #i f de f ined FORCE_LOONGSON3R3 | | de f in ed FORCE_LOONGSON3A | | de f i ned
FORCE_LOONGSON3B

2 #d e f i n e FORCE
3 #d e f i n e ARCHITECTURE "MIPS"
4 #d e f i n e SUBARCHITECTURE "LOONGSON3R3"
5 #d e f i n e SUBDIRNAME " mips64 "
6 #d e f i n e ARCHCONFIG "−DLOONGSON3R3 " \
7 "−DL1_DATA_SIZE=65536 −DL1_DATA_LINESIZE=32 " \
8 "−DL2_SIZE=512488 −DL2_LINESIZE=32 " \
9 "−DDTB_DEFAULT_ENTRIES=64 −DDTB_SIZE=4096 −DL2_ASSOCIATIVE=4 "

10 #d e f i n e LIBNAME " loongson3r3 "
11 #d e f i n e CORENAME "LOONGSON3R3"
12 #e l s e
13 #e n d i f

This project was open-sourced and exposed to the community to as OpenBLAS,
forked from the original GotoBLAS2-1.13 BSD version[45]. With time, community
and research centres have further expanded the specific hardware support, with
handmade customized assembler kernels. As up to date, it supports, Intel and
AMD x86/x86-64, MIPS32/64, ARMv6/v7, multiple versions of the ARM64 mi-
croarchitecture, PPC/PPC64, IBM zEnterprise System and some RISC-V cores. It
even includes the option of auto-recognizing the system architecture to choose the
correct implementation. Furthermore, its native implementation of multi-threading,
makes it suitable not only for single-core applications but for larger systems where
concurrency and awareness about the problems of scalability are being tackled.
This made it a real competitor even for less mature architectures such as ARM
and RISC-V, as shown in real cases with different evaluations as the one example
displayed in Fig. 3.13.

Figure 3.13: "SGEMM performance in multiplications per second, using SiFive
RV64GCSU core and ARM Cortex-A9. Extracted from [46].

All of these options, open-source character and competitive performance make
OpenBLAS a real viable option for many CPUs and architectures, with community
support and constant maintenance.

39

Chapter 4

Methods

In the current chapter, we’ll delve into the main objectives of this work, getting a
better understanding of the tasks developed and the reasons behind them. This
chapter will be divided into sections based on the different technical aspects and
developments to improve the inference process in a RISC-V high-performance
platform. The targeted HPC platform has been the MILK-V Pioneer computer,
provided by the research team of Integrated Systems of ETH, equipped with the
Sophon SG2042 CPU and its 64 RISC-V C920 Alibaba T-Head cores. This product
marks one of the first major releases in the RISC-V HPC field. It provides cutting-
edge high performance in a classical mainframe computer format. This computer
runs a full-fledged Linux Desktop distribution, in this case, Fedora, with all the
default available tools and software.

4.1 Exploiting hardware architecture
In the following sections we explain the two main areas that affect the efficiency
and performance when working with the RISC-V cutting edge hardware used. The
first subsection focuses on software ecosystem that is can be used natively in the
machine, mostly compilers. Secondly we explore the hardware architecture through
different the software tools avaliable in Linux and give crucial information for the
usage of this complex machine.

4.1.1 Available compilers for the platform and support
One of the most important software elements to optimize the deployment and
execution of a program is the compilation toolchain. Many companies search for the
optimal framework and its configuration, to squeeze out every single performance
capability out of their software. Due to the nature of RISC-V and its mature

40

Methods

state in other embedded systems, the most common approach is cross-compilation
instead of native compilation.

Most of the RISC-V embedded systems and even low-power CPUs systems like
SBC systems, lack the memory requirements or the computational power to be
able to compile code for their own platform, or in some cases, it is not the preferred
choice due to impracticality. Cross-compilers allow the use of a different platform,
commonly with a completely different architecture with respect to the target
hardware, to execute all the compilation processes. Therefore, cross-compilation
can be used to generate machine code executable by the target platform through
the use of another machine. This process allows faster and better compilation and
the cost of needing a bigger setup for the compiler due to the dependencies and
extra libraries required. Our system, on the other hand, meets all the requirements

Figure 4.1: Basic diagram of cross-compilation.

to be able to compile code natively. The Linux distribution is also set up with
a preinstalled GCC 13. However, this compiler tool-chain not optimal to exploit
wholly the MILK-V Pioneer hardware resources. GCC 13 is in fact yet too naive
and doesn’t feature support for the vector extension version of the hardware, in this
case, the 0.7.1. Other than vectorization support GCC 13 doesn’t grant access also
to several specific CPU optimizations, and finally also several vendor extensions.
Thus it was necessary to find and build a tool-chain capable of exploiting the whole
potential of the platform.
The manufacturing company of the core C920 design, Xuantie, developed its
customized version of the GNU toolchain based on the GCC compiler that fully
supported all the extensions and characteristics of its designs. Unfortunately, due
to the main usage of the Xuantie and T-Head RISC-V cores in embedded systems,
the only pre-compiled versions available were for some reduced number of Linux

41

Methods

distributions and the x86 platform. Because of this, a non-trivial initial challenge
stands in the building and compilation process of a compiler from source code.

Noteworthy, building GCC can generate several errors and issues, spanning from
path settings to multi-threading issues during the compilation(e.g. concurrency for
the tmp folder between the compiler thread workers). Due to the lack of informative
documentation, other problems appeared during the different tries to build this
code. This included missing or not finding key libraries and headers like GMP,
MPFR or MPC in the system or failing to perform the different staged building,
being able to successfully perform compilations and optimizations through stages 1
and 2 but causing errors in the final stage to have the definitive build. After several
errors and corrections, and contacting other research teams, it was possible to have
a working version of the Xuantie GCC compiler that could natively compile in the
MILK-V machine.

Other alternatives that also required a specific native compilation for the machine
was a custom version of the LLVM, more specifically the C/C++ language compilers,
under development by RuyiSDK [47]. This alternative was based on an older version
of LLVM has progressively included different T-head extensions to the compiler to
better support this family of platforms. LLVM showcased in other works [48] its
superior characteristics and potential performance for RISC-V HPC architectures
with respect to GCC. However, in none of their version, the vector extension draft
was supported, whereas in older versions of GCC such as 8.x or 10.x provided
minimum support for the 0.7.1 vector extension version.

A way to overcome this limitation is by compiling the code into an assembler
using the support of version 1.0 and finally parsing the assembler instructions to
convert the incompatible instructions and formats (1.0 instructions and structure
are not completely retro-compatible with 0.7.1). Therefore, the priority is to use
0.7.1 standard, instructions and C intrinsics, as it is natively supported by the
vendor compiler, leaving this more hand-craft and costly proccess of integrating
1.0 into 0.7.1 for cases where it is the only option as an exception.

Auto-vectorization support for RISC-V on either GCC and LLVM is not complete
and is usable only for very simple and trivial cases. For instance, GCC can auto-
vectorize only data accesses, while for any other operation, the compiler showcases
its limitations (example of missing simple vectorization opportunities in Fig. 4.2).
LLVM prevails more on this front, but still lacks proper and reliable support for
this fundamental part, pushing any optimization tentative to the use of manually
written vectorized code.
Regarding the inference framework, in this thesis we employed llama.cpp frozen
at commit 5ca0944. This is due to its open-source approach, transparency, and
flexibility of being written mostly in C/C++ for both its underlying ggml library
and higher-level APIs. After successfully compiling it, llama.cpp provides a main
program interface that allows the inference of pre-downloaded models in the

42

Methods

Figure 4.2: Example of simple loop addition and assignment missed by auto-
vectorization with Xuantie GCC compiler.Top: code, Bottom: GCC compilation
information

supported formats, in this case, GUFF. This parameter-based execution inference
program allows the user to decide many important aspects of the application such
as the number of threads, model file, way of interacting (single run vs interactive
continuous execution), number of tokens to predict, and the context size among
others. Llama.cpp also provides extra tools to ease the testing of LLMs inference as
extra examples for bench-marking inference and matrix multiplication performance.

4.1.2 Effect on core mapping and NUMA regions
CPUs like the Sophon SG2042, are not only multi-core but also are composed of
many cores with different memory levels and NUMA regions. Therefore, they face
specific problems when trying to parallelize memory-intensive workloads. While
trying to utilize all the cores, correctly distributing the workload and the data as
a consequence is crucial to achieve good scalability. Thanks to the Linux open
tools, we explored the internal configuration of the CPU and how the Operating
System (OS) was aware of this division in sub-regions and clusters. Also these
tools, despite the limited support for RISC-V 64-bit Linux platforms, illustrated
more information about the relative speed of communication between regions and
their affinity with cores.

As shown in Fig.4.3, the platform is comprised of 4 NUMA regions, each with
an assigned memory section of approximately a quarter of the total RAM, each
composed of 16 cores.

Contrary to what expected internal ordering, the cores assignments are not
completely contiguous inside of a single region, but rather in blocks of 8 cores, as

43

Methods

Figure 4.3: Hierarchy and elements of the whole system of the MILK-V Pioneer,
obtained with the tool "lscpu" and "lstopo". L# refers to logic ID and PU#
Processing Unit ID and P# is the Physical ID

shown in the figure 4.4. For instance, the cores from 0 to 7 and from 16 to 23
integrate the NUMA region 0, while the region 1 is composed of cores from 8 to 15
and from 24 to 31.

Due to the nature of NUMA systems and to better understand the best con-
figuration for multicore workloads, it is important to understand how the regions
relate to each other in terms of data exchange speed. Tab.4.1 reflects the different
relative latencies between the regions. It is clearly seen that there’s more affinity
between the groups of regions 0 and 1 on one part and 2 and 3 on the other. This
provided a clear map of how different cores relate to each other and should be used
for parallelization of the workloads.

There are several ways to exploit this information in general applications, one
of these is OpenMP core mapping. However our llama.cpp baseline only supported
one customization method for thread allocation and mapping, using the Linux tool
numactl. This software offers the user the control to define and establish processes

44

Methods

Figure 4.4: All core Physical IDs of all the 4 NUMA regions (nodes), its assigned
RAM memory, and obtained with the "numactl" tool.

NUMA Node 0 1 2 3
0 10 15 25 30
1 15 10 30 25
2 25 30 10 15
3 30 25 15 10

Table 4.1: Numa Node/Region latency relative to each other, obtained using
numactl tool

NUMA scheduling or memory placement policies. These policies affect not only
the main program but also all of its children.

The capability of forcing a certain NUMA policy overwriting the default behavior
of Linux OS. This conventional behavior is typically based on the strategy of NUMA
balancing, which is convenient for consumer usage when multiple applications run
on a single machine. But this same policy can hinder in great measure high-
performance applications that run standalone consuming most of the machine
resources [49].

Numactl in combination with the execution of llama.cpp allowed to provide
some simple directives about direct core-thread allocation mapping or memory
allocation strategies such as interleaving with round-robin across NUMA regions.
Both of these alternatives (the core/memory binding, matching NUMA regions
and adapting to the number of threads, and the interleave strategy) have been
evaluated and compared, also in combination with the disabling or the NUMA
balancing default policy.

Another important evaluation during this exploration was the usage of the “perf”

45

Methods

tool, to better understand the effect of a certain NUMA policy and its impact on
memory usage. This profiling tool allows also us to evaluate the impact of the
optimizations accomplished by the different compilers. "Perf" uses near-hardware
level counters, tracepoints, and events to provide key metrics such as cycles of
execution, number of instructions, and page/cache misses at different levels and is
a key tool in computer science for benchmarking the performance of programs as
shown in the Fig.4.5.

Figure 4.5: Diagram with different hardware metrics, counter, events and trace-
points that the tool "perf" can measure.

4.2 LLMs inference analysis
Following, we’ll dive deep into llama.cpp details and its execution process step-
by-step. This process allows to achieve improvements at the framework level that
could better fit the underlying hardware micro-architecture. For instance, for the
Xuantie CPU by exploiting the vector unit. This require understanding how the
inference process is carried out by llama.cpp and the usage of different functions in
the ggml back-end library.

4.2.1 Inference Bottlenecks
The inference process of a modern LLM incurs a lot of compute and memory-
intensive operations. The main target of this optimization is the attention mech-
anism as experiments, such as the one of Fig.4.6, showcase that most of the

46

Methods

computational time is spent during the attention blocks. One of the main prob-

Figure 4.6: Time breakdown of the Bert-base model on a 64core ThunderX2
server. Ran using PyTorch 2.0.0 with BLIS as the backend. Extracted from [50].

lems is the bottleneck caused by memory accesses, as the computational speed is
higher than memory in memory-bound problems. Memory-bound problems are
characterized by their low Arithmetic intensity in which the loaded data are used
in a few operations, while the cost of bringing them to the CPU registers from
most probably external DRAM or in better cases, internal cache memories, is
not compensated. Following this, it’s possible to evaluate the time spent during
each inference operation. In fact, llama.cpp allows for more fine-grained profiling
through an additional compile-time flag. This is achieved by including counters
for each operation and activating them through compile-time directives. Finally,
the results are shown, not only after each inference run but after the processing of
each token generation, showcasing a full execution for generating a token.

The analysis performed reveals that, as expected, the operation that incurs in
most of the computational time is the matrix multiplication, as shown in Tab.5.1.
In fact, this operation takes approximately 91% of the total inference time. This is
completely in line with the theoretical response and highlights the importance of
having efficient data movement and optimized implementations that can improve
this operation.

4.2.2 Matrix multiplication: BLAS libraries and vectorized
kernels

Since GEMM operations are fundamental, it is key to observe the performance
of different implementations. To evaluate a pure matrix behaviour a custom test
environment was developed to simplify the analysis and have better control over
the test-bench and implied variables.

47

Methods

Our test environment is a custom variation of a public matrix-multiplication
repository used for Cornell University subject CS 5220 [51]. This repository was
modified by improving the flexibility of the tested matrix multiplications by having
more tunable dimensions to increase the dimensions capabilities. Furthermore, the
corresponding Makefile to include the Xuantie GCC compiler build in the system,
add extra configurable flags, and even have the possibility of executing it using
the OpenBLAS options, shown in listing 4.1. All of these options allowed us to
automate the testing task through bash scripts.
Listing 4.1: Makefile used to include the Xuantie GCC and the required opti-
mizations for the C920 core

1 BUILDS= intr_m1 intr_m2 intr_m4 intr_m8
2

3 # C and Fortran compi l e r s
4 CC=/sc ra t ch / t o o l s / compi l e r s / xuantie_gcc / bin / r i s cv64 −unknown−l inux −gnu

−gcc
5 FC=g f o r t r an
6 LD=/sc ra t ch / t o o l s / compi l e r s / xuantie_gcc / bin / r i s cv64 −unknown−l inux −gnu

−gcc
7

8 # Compiler opt imiza t i on f l a g s .
9 TARGET= −mcpu=c920

10 OPTFLAGS= −O3 −f t r e e −v e c t o r i z e −fopt−in fo −vec−a l l −f t r e e −slp−
v e c t o r i z e

11

12 C_INC_PATHS= −I / s c ra t ch / t o o l s / compi l e r s / xuantie_gcc / l i b / gcc / r i s cv64 −
unknown−l inux −gnu /10 . 4 . 0/ in c lude −I / s c ra t ch / t o o l s / compi l e r s /
xuantie_gcc / l i b / gcc / r i s cv64 −unknown−l inux −gnu /10 . 4 . 0/ inc lude −f i x e d

13 CFLAGS=$ (TARGET) $ (C_INC_PATHS)
14

15 LD_PATHS= −L/ sc ra t ch / t o o l s / compi l e r s / xuantie_gcc / l i b / −L/ sc ra t ch /
t o o l s / compi l e r s / xuantie_gcc / l i b 6 4 /

16 LD_FLAGS= $ (TARGET) $ (LD_PATHS)
17

18 # Add −DDEBUG_RUN to CPPFLAGS to cut down on the ca s e s .
19 CPPFLAGS= "−DCOMPILER=\" $ (CC) \ " " "−DTARGET=\" $ (TARGET) \ " " "−

DC_INC_PATHS=\" $ (C_INC_PATHS) \ " " "−DOPTFLAGS=\" $ (OPTFLAGS) \ " "
20

21 # Compile a C ve r s i on :
22 LIBS = −lm −l r t
23 OBJS = matmul . o
24

25 # L i b r a r i e s and inc lude f i l e s f o r BLAS
26 LIBBLAS=−lopenb la s
27 INCBLAS=−I / sc ra t ch / jpoveda / s imp l e_vec to r i za t i on /

OpenBlas_910V_No_Fortran/ inc lude /

Considering this, adding other implementations that could generate great results

48

Methods

in the platform has been the goal. Despite the lack of any specific work that
used the C920 and BLAS libraries directly, other works targeting also related
hardware, such as the Xuantie C910 or the C906, used OpenBLAS as the BLAS
library [52]. OpenBLAS specifically supports Level 1,2,3 BLAS implementations
with customized vector kernels for the C910 hardware, which makes it a perfect
candidate to be used with our hardware.

On the other side, it was interesting to compare it with how the vector unit
would work with different Vector register grouping (LMUL) values. Despite being
more flexible as vector register assignment is simpler, using small or non-grouping
could lead to slower performances and a reduced memory bandwidth [53] according
to other experiments and the underlying hardware micro-architecture. To achieve
a comparison between the GEMM (General Matrix Multlication) implementation
of OpenBLAS and the potential performance with the usage of the vector unit we
developed a single precision version of SGEMM with vector C intrinsics as depicted
in the listing 4.2.

Listing 4.2: Basic vectorized version of sgemm kernel, using vector grouping of 4
, using RVV 0.7.1 C intrinsics, prerforming operation on one row and one column

1 void sgemm_vec(s i z e_t size_m , s i z e_t size_n , s i z e_t size_k ,
2 const f l o a t ∗a , // m ∗ k matrix
3 s i z e_t lda ,
4 const f l o a t ∗b , // k ∗ n matrix
5 s i z e_t ldb ,
6 f l o a t ∗c , // m ∗ n matrix
7 s i z e_t ldc) {
8 s i z e_t v l ;
9 f o r (s i z e_t m = 0 ; m < size_m ; ++m) {

10 const f l o a t ∗b_n_ptr = b ;
11 f l o a t ∗c_n_ptr = c ;
12 f o r (s i z e_t c_n_count = size_n ; c_n_count ; c_n_count −= vl) {
13 v l = vsetvl_e32m4 (c_n_count) ;
14 const f l o a t ∗a_k_ptr = a ;
15 const f l o a t ∗b_k_ptr = b_n_ptr ;
16 vfloat32m4_t acc = vle32_v_f32m4 (c_n_ptr , v l) ;
17 f o r (s i z e_t k = 0 ; k < size_k ; ++k) {
18 vfloat32m4_t b_n_data = vle32_v_f32m4 (b_k_ptr , v l) ;
19 acc = vfmacc_vf_f32m4 (acc , ∗a_k_ptr , b_n_data , v l) ;
20 b_k_ptr += ldb ;
21 a_k_ptr++;
22 }
23 vse32_v_f32m4 (c_n_ptr , acc , v l) ;
24 c_n_ptr += vl ;
25 b_n_ptr += vl ;
26 }
27 a += lda ;
28 c += ldc ;

49

Methods

29 }
30 }

4.2.3 Kernel development and integration
Having analyzed matrix multiplication implementations, the following part is the
integration into llama.cpp. The first approach tried to integrate OpenBLAS as the
computing backend of llama.cpp, an option minimally affected and supported by
the repository. After successfully building it, it was noticed that the performance
during inference was minimally affected by this change. According to the previous
test, this didn’t correspond to the expected behavior, as OpenBLAS and its specific
implementations is superior to any scalar performance. The reason for this can be
found inside of the code corresponding to the ggml implementation of the function
"ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst)" (listing
4.3).

Listing 4.3: ggml.c in function ggml_compute_forward_mul_mat_use_blas()
with added comments in the execution of a quantized Q4 model for clarity

1 // NOTE: with GGML_OP_MUL_MAT_ID we don ’ t want to go through the
BLAS branch because i t w i l l dequant ize (to_f l oa t)

2 // a l l the expe r t s f o r each batch element and the p ro c e s s i ng
would become i n c r e d i b l y slow

3 // TODO: f i n d the optimal va lue s f o r these
4 i f (dst−>op != GGML_OP_MUL_MAT_ID && // kind o f operat i on to be

performed
5 ggml_is_contiguous (s r c0) && // matrix 1 t y p i c a l type i s Q4_0

i f model i s Q4_X quant ized
6 ggml_is_contiguous (s r c1) && // matrix 2 t y p i c a l type i s FP32
7 // src0−>type == GGML_TYPE_F32 &&
8 src1−>type == GGML_TYPE_F32 && // datatype o f matrix 2
9 (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { // dimensions o f

matrix in & out
10

11 re turn true ;
12 }

This function is in charge of deciding if llama.cpp has been built with any alternative
BLAS backend, whether it is convenient and worth using the external BLAS
implementation with selection criteria based on the dimensions of the matrices if
the source matrices are contiguous in memory, the data type of the operand and
heuristics. Whenever these conditions are not met, llama.cpp will continue with its
default strategy and default ggml implementations.
To better understand how each criterion affects the usage of OpenBLAS, we
expanded llama.cpp with more profiling. The additional profiling data revealed

50

Methods

that the dimensionality criteria was the most common issue. Further exploration
into the ggml approach for matrix multiplication and internal operations was
required. For this reason, we developed a Python script to parse all the data
that we outputted to a text file on every matrix multiplication operation thanks
to further modifications in the llama.cpp source code. This allowed an in depth
analisys even of the dimensions used during inference and in the whole inference as
is seen in the Tab. 4.2.

Dimensions
(shared x dst_0 x dst_1) Count Percentage

’4096 x 4096 x 1’ 11904 41.6%
’4096 x 11008 x 1’ 5964 20.8%
’11008 x 4096 x 1’ 2982 10.4%

’32 x 128 x 1’ 2496 8.7%
’128 x 32 x 1’ 2496 8.7%
’64 x 128 x 1’ 480 1.7%
’128 x 64 x 1’ 480 1.7%

’4096 x 4096 x 6’ 384 1.3%
’4096 x 4096 x 2’ 384 1.3%
’4096 x 11008 x 6’ 186 0.7%
’4096 x 11008 x 2’ 186 0.7%
’4096 x 32000 x 1’ 99 0.3%

’32 x 128 x 6’ 96 0.3%
’32 x 128 x 2’ 96 0.3%
’128 x 32 x 6’ 96 0.3%
’128 x 32 x 2’ 96 0.3%

’11008 x 4096 x 6’ 93 0.3%
’11008 x 4096 x 2’ 93 0.3%

Table 4.2: Example of result of matrix multiplication during inference using
llama-2-7b.Q4_0, with the prompt "Once upon a time", generating 20 tokens.

The results showed that most matrix multiplications performed during an LLM
execution are performed mainly as matrix-vector multiplications. The weights
are stored as a matrix while the other operand is instead a tall-and-skinny ma-
trix(TSMM) usually. Therefore, as the criteria already pointed out, smaller matrixes
can greatly affect the performance of BLAS-like approaches to matrix multiplication.

This problem, defined as the Skinny and Tall matrix multiplication [54], related

51

Methods

to non-regular dimensions for matrices requires a different approach than regular
BLAS tiling and micro-kernel approach, as the typical size of these kernels requires
a minimum dimension of 8x8 or 4x16 to fully utilize the personalised kernels and
memory awareness loading.
Llama.cpp and ggml process of choosing a matrix implementation and execution flow
depends on the hardware support, the data types, and the dimensions. Furthermore,
the data types during execution are not the same, as OpenBLAS and other BLAS
libraries support most commonly only single, and double precision floating point
arithmetic, while the default implementation can work using integer arithmetic
and after that use conversion on the result, as shown in algorithm 1.

Algorithm 1 Psedo-code algorithm for llama.cpp, ggml quantized matrix multipli-
cation decision making with BLAS build

1: if Source tensors are contiguous & Dimensionality is correct then
2: Dequantize input tensors
3: Cast to Float
4: Perform fp32 BLAS matrix multiplication ▷ Result is already in float
5:
6: else if Supported Platform and Quantization type then
7: Execute custom matrix-matrix multiplication
8: ▷ Q4 and fp32 matrixes (fp32 is quantized to Q8), widening integer opera-

tions, final cast to fp32
9:

10: else ▷ Default quantized matrix multiplication
11: Division in chunks on the input
12: Quantization and operation in integer data ▷ The data type increases to

maintain precision
13: Cast to float and storage of result
14: end if
15:

This behaviour makes BLAS libraries have to make more compute-intensive
casting operations as weight tensors are bigger square matrices, while the output
is usually a vector as we have seen previously. Therefore the casting into float
operation is order of magnitude higher for BLAS workflow (e.g. for LLAMA 2 and
its design dimensions the embedding and weights have dimension 4096x4096 vs a
single result vector row of 4096 values).

As a result of this analysis and the overhead brought by the use of operations in
floating point precision, our proposal stands in the definition of a kernel targeting one
of the most popular quantization techniques, Q4_0. Noteworthy, this proposal can
be further expanded to support each data type to obtain even more throughput. We

52

Methods

tackled Q4_0 quantization due to its balance between model performance/behaviour
and model size, as well as its simpler storage scheme. The latter is based on blocking
and scaling. Q4_0 quantization utilizes blocks of 32 weights, coupling 2 int4 values
in 1 int8 that has to be divided during the dequantization process. These values
share a scale factor stored in a half-precision floating point and the quantization
follows the following formula:

weight(fp32) = weight(int4)× scalefactor(fp16)

Dequantization formula for Q4_0 quantization and storage datatypes
Thus, model data is not only the weight themselves but also their scale factor,

all stored in the same blocks. Current implementations for specific hardware, due
to the template common to all of them, only allow processing one weight block
at a time, therefore having very little room for optimizations except the usage of
vectorized kernels and specific instructions.

Initially, to get a direct vectorized baseline with llama.cpp default computing
flow, a simple kernel doing basic operations(unpacking int4 into int8, and multiply
and add operations) has been developed. This implementation has been placed
inside the ggml_vec_dot_q4_0_q8_0 function, which gets used by llama.cpp to
perform vector multiplication between a Q4_0 vector and a Q8_0 one. The kernel
has 4 different sections that can be also obseverd in the code snippet 4.4:

• Loading: It is loaded with one set of 16 int8 values that contain the Q4
values and then two blocks of 16 to have a total of 32 Q8 values.

• Split and reinterpret: There are used masks to obtain the upper lower Q4
and shifting for the upper Q4. Later this unsigned values are modified to be
reinterpreted as int8 operands even if they are only int4.

• Calculation: We use half of the Q8 (y0) to multiply against one of the Q4
vector(v0) while widening the operation to int16 to maintain precision. After
that, the result is accumulated with the result of the multiplication among
the other half of the Q8 (y1) and the other Q4 vector (v1). The final result is
a vector of 16 elements in int16. These values have to be added to each other.
Therefore is used the reduction by addition using a zero vector, resulting in a
final result in int32 as this operation is also widened.

• Scale: The result of the multiplication is casted to a single precision floating
point, as well as the scale factors of x and y and they are all multiplied and
accumulated to whay would be at the end of the loop iteration a final result.

53

Methods

Listing 4.4: function ggml_vec_dot_q4_0_q8_0() with vectorized implementa-
tion with added comments, in ggml_quants.c

1 void ggml_vec_dot_q4_0_q8_0 (. . .) {
2 . . .
3 const i n t qk = QK8_0; \\ 32
4 const i n t nb = n / qk ; \\Number o f b locks to p roce s s
5 . . .
6 const block_q4_0 ∗ r e s t r i c t x = vx ;
7 const block_q8_0 ∗ r e s t r i c t y = vy ;
8 . . .
9 f l o a t sumf = 0 . 0 ;

10 // f i r s t impl −> c u r r e n t l y NB must be even
11 s i z e_t v l = vsetvl_e8m1 (qk /2) ;
12 a s s e r t (v l == qk /2) ;
13 f o r (i n t i = 0 ; i < nb ; i++) {
14 // LOADING
15 // load 32 Q4 elements in 16 in t8
16 vuint8m1_t tx = vle8_v_u8m1 (x [i] . qs , v l) ;
17 // load 32 Q8 elements in 2 16 v a r i a b l e s
18 vint8m1_t y0 = vle8_v_i8m1 (y [i] . qs , v l) ;
19 vint8m1_t y1 = vle8_v_i8m1 (y [i] . qs+vl , v l) ;
20 //SPLIT AND REINTERPRET
21 // Extract Q4 with lower mask and s h i f t i n g
22 vuint8m1_t x_a = vand_vx_u8m1(tx , 0x0F , v l) ;
23 vuint8m1_t x_l = vsrl_vx_u8m1 (tx , 0x04 , v l) ;
24 vint8m1_t x_ai = vreinterpret_v_u8m1_i8m1 (x_a) ;
25 vint8m1_t x_l i = vreinterpret_v_u8m1_i8m1 (x_l) ;
26 vint8m1_t v0 = vsub_vx_i8m1 (x_ai , 8 , v l) ;
27 vint8m1_t v1 = vsub_vx_i8m1 (x_li , 8 , v l) ;
28 //CALCULATION
29 // F i r s t we mult ip ly widening to in t16 and obta in r e s u l t s
30 vint16m2_t vec_mul1 = vwmul_vv_i16m2(v0 , y0 , v l) ;
31 //Then we mult ip ly accuu la te widening to in t32 to obta in r e s u l t s
32 vint16m2_t sum_vector = vwmacc_vv_i16m2(vec_mul1 , v1 , y1 , v l) ;
33 vint32m1_t vec_zero = vmv_v_x_i32m1(0 , v l) ;
34 vint32m1_t mask = vmv_v_x_i32m1(0 x f f f f f f f f , v l) ;
35 //We reduce the f i n a l vec to r o f r e s u l t s adding a l l o f them
36 vint32m1_t vs4 = vwredsum_vs_i16m2_i32m1 (mask , sum_vector ,

vec_zero , v l) ;
37 //We ex t r a c t the r e s u l t
38 i n t sumi = vmv_x_s_i32m1_i32 (vs4) ;
39 //SCALE
40 //We mult ip ly by the s c a l i n g f a c t o r s o f x and y , and acumulate
41 sumf += sumi∗GGML_FP16_TO_FP32(x [i] . d) ∗GGML_FP16_TO_FP32(y [i] . d)

;
42 }
43 ∗ s = sumf ; //We save the r e s u l t

With the baseline kernel version, we tried to continue with this methodology by

54

Methods

developing more refined kernels, although still wrapped into the default llama.cpp
flow. More in detail, this meant that no additional change to higher-level chunking
and multi-threading policies have been modified. However, these tentative kernels,
added levels of complexity to the kernel that impacted negatively the performance,
which seemed counter-intuitive. The likely cause of this lack of performance
enhancement has been attributed to llama.cpp default chunking, which doesn’t
allow for bigger improvement margins.

This, and other limiting factors, such as the vector-vector usage instead of a
matrix-vector or matrix-matrix one, encouraged us to develop a more complete
solution that is used instead of the default approach if certain criteria are met. For
instance, our proposed approach focuses, as previously stated, on Q4_0 versus
Q8_0 tensors. Other criteria refer to the even dimensionalities and the contiguous
memory storage of the tensors.

Our implementation aims to improve data re-usage and register utilization, by
unrolling the kernel over 2 rows of the matrix. Another optimization that increases
data re-usage, is the use of 2 data blocks at a time in each row. By moving through
the whole row dimension of the weights 2 results in single-precision floating point
are generated as shown in Fig.4.7.

Figure 4.7: Diagram of kernel strategy where green elements are multiplied and
accumulated in the same most inner loop and we move through the rows to generate
2 results (blue colour) with Q4 matrix and Q8 vector (or column of matrix)

The strategy used reduces the loading of the Q8 data in half due to the loop
unrolling and increases the arithmetic intensity of the operation, increasing sig-
nificantly the utilization of vector registers compared to the RVV 0.7.1 kernel.
However, due to less efficiency obtained with the Xuantie Compiler, we used the
newer GCC 14.2 with the xtheadvector extension to generate an assembly function
that could be embedded into the ggml framework for the matrix multiplication.

55

Methods

Further analysis of the kernel compilation with the C vector intrinsics, in the first
iterations, revealed that the Xuantie GCC compiler for C, even compiling the
kernel as an external function, did not use all the immediate functions available,
doing extra loadings, and performing extra crrs instructions that with simpler, less
unrolling, even if the same structure was used, generating extra instructions and
being less optimal. This showed a successful result but probably due to the extra
loading and storage of the intermediate floating-point results, the performance was
slightly less than expected.

Therefore, a more complex version integrated the most-inner look through the
rows and the storage of the final 2 results of each iteration into a more efficient
assembly function. In fact, the latter is more aware of the whole picture for greater
optimization. The usage of each version could be toggled with an external flag
"Velorisk_complex", seen in code fragment 4.5, as well as a general flag to use our
kernels or the default behaviour.
Listing 4.5: function ggml_vec_dot_q4_0_q8_0() with vectorized implementa-
tion with added comments, in ggml.c

1 f o r (i n t k=0 ; k<ne1 ; k++) { //Number o f columns output
2 f o r (i n t h=0 ; h<ne0 ; h+=2) //number o f rows matrix , and we

u n r o l l the matrix 2 t imes
3 {
4 const block_q8_0 ∗ r e s t r i c t y = ((const block_q8_0 ∗) wdata) + k ∗

n_blocks_q8 ;
5 const block_q4_0 ∗ r e s t r i c t x_0 = ((const block_q4_0 ∗) src0−>data)

+ h ∗ n_blocks ;
6 const block_q4_0 ∗ r e s t r i c t x_1 = ((const block_q4_0 ∗) src0−>data)

+ (h+1) ∗ n_blocks ;
7 #i f de f ined (VELORISK_COMPLEX)
8 kernel_complex (ne01 , ne0 , x_0 , x_1 , y , dst_temp , k , h , n_blocks) ;
9 #e l s e

10 f l o a t sumf_0 = 0 . 0 ; //Temporary r e s u l t
11 f l o a t sumf_1 = 0 . 0 ; //Temporary r e s u l t
12 f o r (i n t i = 0 ; i < n_blocks ; i +=2) //number o f b locks to

process , u n r o l l 2 2 t imes
13 ke rne l (. . .) ;
14 ∗(dst_temp+h+k∗ne0) = sumf_0 ; // Storage o f r e s u l t s
15 ∗(dst_temp+(h+1)+k∗ne0) = sumf_1 ; // Storage o f r e s u l s
16 #e n d i f
17 }
18 }

The next natural step was integrating multi-threading into our kernel. Llama.cpp
uses an internal variable that variates depending on the thread that it corresponds
to called ith and stores the total number of threads in an execution in the variable
nth. This variable allows us to parallelize our refined implementation in most inner
loop if we exclude the one included in this version of the kernel across the unrolling

56

Methods

of the rows of the matrix as displayed in 4.6.

Listing 4.6: Multithreaded loop modification with added comments in ggml.c
1 f o r (i n t k=0 ; k<ne1 ; k++) { //Number o f columns output
2 f o r (i n t h=i t h ∗2 ; h<ne0 ; h+=2∗nth) //number o f rows and we

u n r o l l the matrix 2 t imes
3 {
4 . . .
5 }
6

Using these integrated global variables, allows us to include in our kernel up to
the number of thread defined by the user, without the requirement of PRAGMAS
or any external library that is not already used by llama.cpp.

57

Chapter 5

Results

The following chapter will illustrate and provide an analysis of the most rele-
vant results obtained during the experiments carried during this thesis. The
RISC-V HPC platform used, as explained previously, is the MILK-V PIONEER
one, with the CPU Sophon SG2042 and a configuration of 128GB of DRAM in
a single stick. This machine is running Fedora Linux 38 (Workstation Edition)
with a kernel version of Linux 6.1.13 for the riscv64 architecture. For the infer-
ece, we used the publicly available repository of llama.cpp frozen at the commit
5ca0944a153b65724d51b2f484139aa25ccb7a8b, with date of 4 of June of 2024.

5.1 Inference bottleneck analysis
Using llama.cpp as the inference framework, allowed performing an internal analysis
of the underlying operations and the time used during inference. When running
an inference with this build configuration, llama.cpp will rely on internal counters
to output the timing of each operation. An example of this is showcased in Tab.
5.1, where in the left column there are defined the main types of operations used
during inference and their corresponding time.

These results confirmed one of the main bottlenecks in our machine, the matrix
multiplication, where it usually takes more than 90% of the time during the inference
execution.

Additionally to this profiling, we also explored how the different vector grouping
affected the matrix multiplication performance in this machine. Also, we analyze
how its performance could compare to OpenBLAS when using the custom matrix-
multiplication test-bench described in sub-chapter 4.2.2. The results in Fig.5.1
report the importance of choosing the correct register grouping and the superiority
that OpenBLAS has with its GOTOBLAS Algorithm, multi-level tiling, and
specialised kernels.

58

Results

Perf ggml
operation

Total time
(ms)

ADD 5.07
MIL 3.66
RMS_NORM 2.51
MUL_MAT 297.048
CPY 2.755
CONT 0.508
RESHAPE 0.279
VIEW 0.55
PERMUTE 0.271
TRANSPOSE 0.139
GET_ROWS 0.045
SOFT_MAX 3.208
ROPE 11.183
UNARY 7.446

Table 5.1: LLama.cpp default timing results for the one token generation with the
model Llama-2-7B-GGUFllama-2-7b.Q4_K_M.gguf, with 64 threads and interleave
NUMA control policy on MILK-V Pioneer

Figure 5.1: Square Matrix multiplication benchmark single core results, variating
LMUL, a blocked strategy of 16x16 and OpenBLAS with 910V

59

Results

As part of our test-bench, we also evaluated the scalability of the most powerful
matrix multiplication with the most powerful algorithm for fp32, OpenBLAS, and
the effect of the NUMA thread migration policy that is enabled by default in our
Linux and in general. The results in Fig.5.2 illustrate how the algorithm scales
efficiently with multi-threading and the impact that thread migration generates
when using an increased number of threads.

Figure 5.2: SGEMM scalability performance with OpenBLAS with 910V configu-
ration evaluate with and without NUMA thread migration enabled (-numa refers
to disabled)

Finally, to better understand how the matrix multiplication operation on the
llama.cpp inference framework bottleneck worked, we ran 2 different state-of-the-art
LLMs LLAMA 2 7B and Microsoft Phi-3 mini both Q4 and with a short prompt
with 5 tokens and a longer one with 69 tokens. The results of the dimension analysis
showcased that in 94% of matrix multiplications during inference the output had
one dimension 1, thus being effectively a vector-matrix multiplication, as expected
in auto-regresive inference, and the rest of the cases were 3% implied a matrix
output with dimensionality 2 for the rows (very close to a vector-matrix operation)
and final 3% is related with the input tokens number.

This completely matches the analysis of the criteria during BLAS decision usage,
as was approximately 3/4 for LLAMA 2 and 2/3 for Phi-3 of the times exclusively
because of dimensionality problems, as the second operand is too small, usually
a vector or a matrix with 2 rows and the minumum established by the heuristics
criteria is 32 rows to use BLAS implementations in matrix multiplication. While,
the rest was due to dimensionality and contiguity (tensors not stored sequentially
in memory) problems. The contiguity problem can be due to the llama.cpp strategy,
in which, when a tensor is required to be transposed, only nb and ne variables

60

Results

of the tensor are changed but the data itself is not moved, which can generate
mismatches from the actual layout in memory and the characteristics of the tensor.

5.2 Micro-benchmarks results
After evaluating the performance in external matrix multiplication, we focused on
the quantized models, in particular Q4_0 as it reduces the memory footprint of the
model and can offer a balance between precision and size, and is fully integrated
into the llama.cpp framework.

Our first test related to inference regarded the efficiency of the different alterna-
tives when performing the Q4_0_Q8_0 matrix multiplication. This experiment
was run using a modified version of the benchmat-matmul.c example included in
the llama.cpp repository and the Xuantie GCC compiler with the configuration
optimization for the C920 core and maximum level of optimization (-O3), running
in a single-thread environment.

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 32 64 128 256 512 1024 2048

GO
PS

NON-SQUARED MATRIX SECOND DIMENTION

Q4_0 MATRIX -MATRIX MULTIPLY
Llama Default

Vectorized base Q4

Ours Q4

Ours Refined Q4

OpenBLAS SGEMM

Ours fp32fp32

Figure 5.3: Square matrix vs non-regular matrix multiplication benchmark single
core results, varying the non-regular dimension, with Xuantie GCC 10.4 compiler

As reflected in Fig.5.3, our more refined implementation is capable of outper-
forming all the existing options. It is on average 4.36 times faster than the default
llama.cpp implementation and gathers a 38% speed-up with respect to the vector-
ized baseline we developed. Noteworthy, OpenBLAS and the other fp32 version
performances when using smaller dimensions are dramatically low. While with
bigger tensors they can outperform our proposed implementation. To get these
last results and analysis we bypassed the criteria. checking when llama.cpp is built
with OpenBLAS in order to have a full execution with this library, if not, it would

61

Results

use the default kernel.
The lower performance can be caused by the dequantization of the Q4_0

weights matrix. As shown in Tab.5.2 the weights dimensions are the same and the
dequantization will consume a constant time.

Types of matrixes Q4xfp32 Q8xfp32 fp32xfp32

Performance (GOPS) 5.52 5.72 5.95
Time (ms) 778.2 750.2 723.1

Table 5.2: Performance of OpenBLAS in matrix-matrix multiplication (4096X4096
X 4096X128) with different data types inside of benchmark_matmul.c

According to these results, in the case of a matrix 4096x4096 the time that it
adds would be around 55ms, which will be constant. To put this into perspective,
the time it takes to perform a matrix-vector multiplication with baseline vectorized
kernel with dimensions 4096x4096 x 4096x1 is approximately 7ms to accomplish
a performance of 7.87GOPS. This element added to the poor performance of
OpenBLAS SGEMM for tall and skinny matrixes makes it a non-viable option for
operations with more "regular" dimensions.

This problem is also evident when we observe the results in matrix-vector
multiplication as can be seen in Fig.5.4. In this figure, we benchmarked the
performance of the alternatives in a square matrix vs vector multiplication where
we variate the shared dimension.

0

1

2

3

4

5

6

7

8

64 128 256 512 1024 2048 4096

GO
PS

SQUARED MATRIX DIMENTION

Q4_0 MATRIX -VECTOR MULTIPLY
Llama Default

Vectorized base
Q4
Ours Q4

Ours Refined Q4

OpenBlas SGEMM

OpenBlas SGEMV

Figure 5.4: Square matrix vs vector multiplication benchmark single core results,
varying the vector the dimension, with Xuantie GCC 10.4 compiler

62

Results

In order to make a fair comparison we used the BLAS level 2 routine (GEMV)
that is specifically designed for this kind of operation. Despite being noticeable the
performance improvement by the usage of GEMV routine compared to SGEMM
OpenBLAS both are really far from the performance shown by our implementation.
The best-performing kernel is our implementation version for Q4_0 for each case
tested for matrix-vector with a peek performance of 7.5GOPS with the dimensions
(2048x2048 x 2048x1).

5.3 Inference results
After some exploratory work and related work, we focused on the impact that
this information and our knowledge about the different bottlenecks and expected
performance from the different alternatives could have.

5.3.1 Single Core
The boosted in performance showcased by is also observed when running inference
with our modified versions on the llama-2 model with 7 billion parameters with
a Q4_0 quantization in Fig. 5.6 and Fig. 5.5. The performance reaches up to 4
times the performance for token generation and 4.7 times for prompt processing
improvement compared to the default performance. These improvements are only
accomplished with our most refined implementation. Whereas, in comparison,
the vectorized baseline or the simple version behave similarly. In fact, the vector-
ized version has an edge of around 2.9% in prompt processing while our simple
implementation performs token generation a 6%.

0.
40

1

0.
39

3

0.
38

3

0.
37

9

0.
27

1

0.
27

5

0.
28

1

0.
26

8

0.
26

3

0.
26

1

0.
25

7

0.
25

4

0.
10

1

0.
10

2

0.
10

1

0.
10

2

20 80 140 200

TO
K/

S

SEQUENCE LENGTH

TOKEN EVALUATION PERFORMANCE
Ours Refined Q4 Ours Q4 Vectorized base Q4 Llama Default

Figure 5.5: Token generation performance with llama.cpp with model llama-2-
7b.Q4_0 and prompt "Once upon a time, there was a kingdom" single core results,
varying the sequence length generated, compiled with Xuantie GCC 10.4

63

Results

0.
52

2

0.
52

5

0.
51

7

0.
52

3

0.
32

5

0.
33

7

0.
33

9

0.
33

8

0.
34

3

0.
34

5

0.
34

6

0.
34

4

0.
11

1

0.
11

3

0.
11

3

0.
11

4

20 80 140 200

TO
K/

S

SEQUENCE LENGHT

PROMPT PROCESSING PERFORMANCE
Ours Refined Q4 Ours Q4 Vectorized base Q4 Llama Default

Figure 5.6: Prompt evaluation performance with llama.cpp with model llama-2-
7b.Q4_0 and prompt "Once upon a time, there was a kingdom" single core results,
varying the vector the dimension, compiled with Xuantie GCC 10.4

The performance accomplished by OpenBLAS, by also bypassing all the mini-
mum size checks, so the execution reveled to be in the range of 0.009 tok/s (one
order of magnitude less than default) for token evaluation and 0.08 for prompt
processing, making clear the necessity of limiting the usage of OpenBLAS to when
the conditions allow to extract the most of its complexity.

5.3.2 Multi-threaded performance
Scalability, compilers and NUMA

After the single-core performance and testing, which demonstrated the capabilities
of our implementation, the next test involved scalability by increasing the number
of threads and comparing the level of performance that the different compilers built
to do native compilation in our hardware. Due to the core limit, and that they
don’t possess the ability to run more than one thread per core (as in contrast to
Intel’s Hyperthreading), we escalate from 1 to 64 threads doubling it each time.

Also the available compilers are the default GCC 13.2 that is preinstalled
with our Linux distribution, the Xuantie toolchain that includes the customized
GCC 10.4 and the two versions of clang/clang++. The first one is the upstream
LLVM/CLANG 19.0.0 while the other one is a customization of the version 17.0.0
to add more theadvector functionalities and better support this extension, done
for the RuyiSDK by the same community. The Tab. 5.3 describe the compilation
options/flags used with each of these compilers to run the test and the inference
results showcased in Fig. 5.7 and Fig. 5.8.

In Tab. 5.3 it’s clear that there is only one compiler that fully supports the

64

Results

Compiler Flags C/C++

Xuantie GCC 10.4 -mcpu=c920 -O3
GCC 13.2 -O3

Clang 19
-march=rv64gc_zfh_xtheadba_xtheadbb_xtheadbs

_xtheadcmo_xtheadcondmov_xtheadfmemidx_xtheadmac
_xtheadmemidx_xtheadmempair_xtheadsync -O3

Clang 17 Ruyisk
-march=rv64gc_zfh_xtheadba_xtheadbb_xtheadbs

_xtheadcmo _xtheadcondmov_xtheadfmemidx_xtheadmac_xtheadmemidx
_xtheadmempair_xtheadsync _xtheadvector_xtheadzvamo -O3

Table 5.3: Compilers used for testing and the different CFLAGS and CXXFLAGS
during multithreading and compiler comparison

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64

TO
K/

S

NUMBER OF THREADS

PROMPT PROCESSING PERFORMANCE
Xuantie GCC 10.4

GCC 13.2 Vanilla

Clang 17 Ruyisk

Clang 19

Figure 5.7: Prompt evaluation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom" multi-core,
multi-threaded, varying the number of cores, compiled with Xuantie GCC 10.4,
GCC 13.2 Vanilla, Clang 17 Ruyisk customization and Clang 19. Refer to Tab. 5.3
for the specific flags used.

specific CPU microarchitecture, the Xuantie GCC. For the rest we add all the
extra extensions that are supported by the compiler and that our chip is compliant
with, except for GCC 13.2 that is used as baseline with its default configuration for
the machine. In this test, in accordance with other multiple tests and evaluations
of as previously mentioned, clang showcases its superiority and even is capable of
outperforming and make a better job than the vendor-customized GCC for token
generation and most of cases.

Inside this competition, we can observe that, even if the customized version of
Clang has some support for the vector instructions, leading to the possibility of

65

Results

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64

TO
K/

S

NUMBER OF THREADS

TOKEN GENERATION PERFORMANCE
Xuantie GCC 10.4

GCC 13.2 Vanilla

Clang 17 Ruyisdk

Clang 19

Figure 5.8: Token generation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom" multi-core,
multi-threaded, varying the number of cores, compiled with Xuantie GCC 10.4,
GCC 13.2 Vanilla, Clang 17 RuyiSDK customization and Clang 19. Refer to Tab.
5.3 for the specific flags used.

auto-vectorization optimizations, the upstream Clang is capable of outperform it
in most of cases generating the best performance for token generation and prompt
processing. With these results, we chose Clang 19 upstream version to further
explore the capabilities of this hardware for inference as it was capable of generating
the best results in both categories and mostly in token evaluation. The highest
performance accomplished with this strategy is 2.79 tok/s for token generation and
2.96 tok/s for prompt processing.

The next exploration involved numa-awareness policies using the tool numactl
in combination with the deactivation of the NUMA balancing policy of Linux. For
this testing, we used two different strategies, one limiting the cores used, binding
the execution to specific cores in the same NUMA region to reduce the latency
in communication and data shared and the numactl interleave policy that uses
a round-robing thread allocation strategy among the NUMA regions specified.
The addition of the NUMA-aware execution completely changes the scalability of
the system as shown in the Fig. 5.10, where the prompt processing continues to
improve with the the increase in threads and in Fig. 5.9 where it also improves
until 32 threads for token generation.

66

Results

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64

TO
K/

S

NUMBER OF THREADS

TOKEN GENERATION PERFORMANCE
Clang 19
No NUMA-Aware

Clang 19 No balancing
 + Binding

Clang 19 No balancing
 + Interleave

Figure 5.9: Token generation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom" multi-core,
multi-threaded, varying the number of cores, compiled with Clang 19. Refer to
Tab. 5.3 for the specific flags used.

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64

TO
K/

S

NUMBER OF THREADS

PROMPT PROCESSING PERFORMANCE
Clang 19
No NUMA-Aware

Clang 19 No balancing
 + Binding

Clang 19 No balancing
 + Interleave

Figure 5.10: Prompt evaluation performance with llama.cpp with model llama-
2-7b.Q4_0 and prompt "Once upon a time, there was a kingdom" multi-core,
multi-threaded, varying the number of cores, compiled with Clang 19. Refer to
Tab. 5.3 for the specific flags used.

67

Results

Here, the best results are accomplished by disabling the NUMA balancing policy
and allowing numactl to apply its interleave policy around all NUMA regions
with a bigger number of threads, providing a maximum of 5.93 tok/s for token
generation and 13.66 tok/sec for prompt processing. These results improve the
previous Non-numa-aware best performances for token generation by 2.13 times
and 4.61 times in the case of prompt processing.

In-depth analysis

Further exploration of the effect of NUMA awareness was done in order to obtain
more in-depth knowledge about the effect of the policies and how they impact the
execution in the machine. We used the case of 32 threads and analysed 5 different
strategies: no numa-awareness (base), Disabling NUMA balancing policy, Disabling
NUMA balancing and binding the cores to the NUMA regions 2 and 3, also binding
to the same NUMA regions memory, and finally using the numaclt interleave across
all regions. The results for token generations and prompt processing are shown in
Fig. 5.11 where the performance is progressively improving with its modification in
the strategy. During these executions, we also monitored with the Linux perf tool
the inference metrics from the system. Tab. 5.4 reflects the corresponding values
for the task time, context-switches, CPU migrations and page faults.

0

1

2

3

4

5

6

7

8

9

10

TOKEN GENERATION PROMPT PROCESSING

TO
K/

S

INFERENCE 32 THREADS PERFORMACE
Base

No Balancing

No balancing
+ Bind: {C,M} 2,3
No balancing
+ Bind: {C} 2,3
No balancing
+ Interleave

Figure 5.11: Inference performance with llama.cpp with model llama-2-7b.Q4_0
and prompt "Once upon a time, there was a kingdom" multi-core, 32 threads,
varying stragegy for numa-awareness, NUMA balacing or none, compiled with
Clang 19. Refer to Tab. 5.3 for the specific flags used.

The effectiveness of disabling the NUMA balancing is apparent as all the metrics,
except execution time itself, get reduced by an order of magnitude. The core binding

68

Results

Perf metrics task-clock (ms) context-switches cpu-migrations page-faults

Base 1,248,106 42,203 2,748 186,148
No Balancing 1,110,044 5,351 629 75,395
No balancing
+ Bind: {C,M} 2,3 978,231 4,704 9 77,083

No balancing
+ Bind: {C} 2,3 970,779 4,568 10 77,349

No balancing
+ Interleave all 441,827 3,172 84 75,529

Table 5.4: Perf basic metric of running

is clearly reflected in the number of CPU migrations, as they reduce dramatically.
But besides these step-by-step improvements, the round-robin interleave policy
reduces the context switches even more. This happens despite increasing the CPU
migrations and not having a better number of page faults than just disabling the
NUMA balancing policy. These results showcase the complexity in a system like
the MILK-V Pioneer and the different metrics that play a role in various cases.

69

Chapter 6

Conclusion and Future Work

The current landscape of HPC is gaining more and more importance with the inclu-
sion of complex computational task like the execution of LLMs and making these
revolutionary technologies available for everyone. RISC-V is rapidly catching up as
high-performance architecture, thriving thanks to its openness and customization
possibilities that many initiatives worldwide try to exploit.

The inference process of LLMs is a great challenge nowadays due to its novelty
and high demand of computational power and memory requirements. These
problems added to the lack of maturity of RISC-V in more capable systems makes
it even greater challenge.

During this thesis, we could observe the multi-dimensionality of these problems.
Starting from the optimization in a heterogeneous computing system with vector
capabilities such as the SG2042 at a single core level. Generating custom kernels
that can target specific architectures and specific extensions such as the RISC-V
Vector 0.7.1 specification extension lead to significant improvemts compared to
scalar implementations, and even simpler vectorized implementations showed its
superior performance. On the next upper hardware level, our work reflected the
importance of the knowledge of the hardware organization, such as considering
NUMA regions and their affinity and the Linux operating system optimizations.
Current complex computing systems with hierarchical memories and sub-regions
require a more in-depth awareness and combination with the actuall workflow of
execution, and as the disabling of the NUMA balancing default Linux policy shown,
the default configuration or execution can be far from the optimal setup for best
performance. Finally, at a software ecosystem level it was displayed the difference
among compilers so popular as GCC or LLVM/Clang and their customizations and
the support of the RISC-V and RISC-V vector extensions, highlight the superiority
in performance and optimization of LLVM/Clang. Other pieces of software that
helped in the development were the numaclt, extensively used to gain more control
over the thread allocation policy showing great utility of its built-in interleave more

70

Conclusion and Future Work

elaborated policy, and perf, key to obtain the metric that give significance to the
changes in performance.

This multi-level approach allowed us to improve the performance of the machine
progressively and analyse the effect of the different alternatives that could be used
when targeting HPC tasks such as the inference with LLMs. These achievements
were favoured by the availability of an open-source and efficient inference framework
like llama.cpp. During this work, the different manners in which internal information
can be obtained from modifying and analysing the inference framework played a
crucial role in a better understanding on how the optimization should be targeted
and carried.

All in all, we showcased the viability of inference with state-of-the-art models
with a great performance and adapting to the current trends towards quantized
models and only CPU execution. All of this is in a machine fully using a many-core
CPU based only in RISC-V cores with a high level of complexity and relatively low
support from a software ecosystem compared to classical computer architectures
and HPC platforms.

This thesis could be extended by improving several areas of our testing. A
customized thread allocation policy while being NUMA-aware to further improve
the control over the multi-threading execution without the usage of the numactl
tool. Other system-level optimization could include the usage of Hugepages to test
the potential improvements of bigger pages as the hardware is compliant with it.
Following, besides the hardware and operating system generic improvements, the
inclusion of more efficient techniques during the inference related with the model,
such as flash attention or more operation fusion could improve significantly the
performance due to the important memory bottleneck that this hardware suffers
from. One important improvement would be creating vectorized versions for the
quantizing and dequantizing operations that are needed during the inference of
quantized models. Finally, our implementation should also be adapted to the other
quantization types.

71

Appendix A

Kernel Source Code

Listing A.1: function ggml_compute_forward_mul_mat() with added comments
in ggml.c

1

2

3 #inc lude <r i s cv_vec to r . h>
4 #inc lude <s t d i o . h>
5 #inc lude <s t r i n g . h>
6

7 #d e f i n e QK8_0 32
8 typede f s t r u c t {
9 _Float16 d ; // de l t a

10 int8_t qs [QK8_0] ; // quants
11 } block_q8_0 ;
12

13 #d e f i n e QK4_0 32
14 typede f s t r u c t {
15 _Float16 d ; // de l t a
16 uint8_t qs [QK4_0 / 2] ; // n i b b l e s / quants
17 } block_q4_0 ;
18

19 i n l i n e f l o a t ggml_compute_fp16_to_fp32_zfh (const _Float16 h) {
20 _Float16 tmp ;
21 memcpy(&tmp , &h , s i z e o f (_Float16)) ;
22 re turn (f l o a t)tmp ;
23 }
24

25

26 void kernel_complex (i n t ne01 , i n t ne0 , const block_q4_0 ∗x_0 , const
block_q4_0 ∗x_1 , const block_q8_0 ∗ y , f l o a t ∗ dst_temp , i n t k ,
i n t h , i n t n_blocks) {

27 f l o a t sumf_0 = 0 . 0 ;
28 f l o a t sumf_1 = 0 . 0 ;

72

Kernel Source Code

29 f o r (i n t i = 0 ; i < n_blocks ; i +=2){
30 const i n t v l = __riscv_vsetvl_e8m1 (32/2) ; //QK4_0/2 = qk = 32
31 // kerne l_in (ne01 , x_0_1 , x_0_0 , x_1_0 , x_1_1 , y_0 ,y_1 , &sumf_0

, &sumf_1 , x_00_d , x_01_d , x_10_d , x_11_d , y_0_d , y_1_d) ;
32 vuint8m1_t tx_0_0 = __riscv_vle8_v_u8m1 (x_0 [i] . qs , v l) ; //32

in t4 va lue s weights
33 vuint8m1_t tx_0_1 = __riscv_vle8_v_u8m1 (x_0 [i +1] . qs , v l) ;
34 vuint8m1_t tx_1_0 = __riscv_vle8_v_u8m1 (x_1 [i] . qs , v l) ; //32

in t4 va lue s weights
35 vuint8m1_t tx_1_1 = __riscv_vle8_v_u8m1 (x_1 [i +1] . qs , v l) ;
36 vint8m1_t y0_0 = __riscv_vle8_v_i8m1 (y [i] . qs , v l) ; //16 in t8

va lue s
37 vint8m1_t y0_1 = __riscv_vle8_v_i8m1 (y [i] . qs +16, v l) ; //16 in t8

va lue s
38 vint8m1_t y1_0 = __riscv_vle8_v_i8m1 (y [i +1] . qs , v l) ; //16 in t8

va lue s
39 vint8m1_t y1_1 = __riscv_vle8_v_i8m1 (y [i +1] . qs +16, v l) ; //16 16

in t8 va lue s
40

41 //DEQUANTIZING
42 //SPLITING THE INT8 INTO 2 INT4
43 vuint8m1_t x_a_0_0 = __riscv_vand_vx_u8m1(tx_0_0 , 0x0F , v l) ;
44 vuint8m1_t x_l_0_0 = __riscv_vsrl_vx_u8m1 (tx_0_0 , 0x04 , v l) ;
45 vuint8m1_t x_a_0_1 = __riscv_vand_vx_u8m1(tx_0_1 , 0x0F , v l) ;
46 vuint8m1_t x_l_0_1 = __riscv_vsrl_vx_u8m1 (tx_0_1 , 0x04 , v l) ;
47 vuint8m1_t x_a_1_0 = __riscv_vand_vx_u8m1(tx_1_0 , 0x0F , v l) ;
48 vuint8m1_t x_l_1_0 = __riscv_vsrl_vx_u8m1 (tx_1_0 , 0x04 , v l) ;
49 vuint8m1_t x_a_1_1 = __riscv_vand_vx_u8m1(tx_1_1 , 0x0F , v l) ;
50 vuint8m1_t x_l_1_1 = __riscv_vsrl_vx_u8m1 (tx_1_1 , 0x04 , v l) ;
51

52 // Re in t e rp re t
53 vint8m1_t x_ai_0_0 = __riscv_vreinterpret_v_u8m1_i8m1 (x_a_0_0

) ;
54 vint8m1_t x_li_0_0 = __riscv_vreinterpret_v_u8m1_i8m1 (x_l_0_0

) ;
55 vint8m1_t x_ai_0_1 = __riscv_vreinterpret_v_u8m1_i8m1 (x_a_0_1

) ;
56 vint8m1_t x_li_0_1 = __riscv_vreinterpret_v_u8m1_i8m1 (x_l_0_1

) ;
57 vint8m1_t x_ai_1_0 = __riscv_vreinterpret_v_u8m1_i8m1 (x_a_1_0

) ;
58 vint8m1_t x_li_1_0 = __riscv_vreinterpret_v_u8m1_i8m1 (x_l_1_0

) ;
59 vint8m1_t x_ai_1_1 = __riscv_vreinterpret_v_u8m1_i8m1 (x_a_1_1

) ;
60 vint8m1_t x_li_1_1 = __riscv_vreinterpret_v_u8m1_i8m1 (x_l_1_1

) ;
61

62 vint8m1_t vxa_0_0 = __riscv_vadd_vx_i8m1 (x_ai_0_0 , −8, v l) ;

73

Kernel Source Code

63 vint8m1_t vxl_0_0 = __riscv_vadd_vx_i8m1 (x_li_0_0 , −8, v l) ;
64 vint8m1_t vxa_0_1 = __riscv_vadd_vx_i8m1 (x_ai_0_1 , −8, v l) ;
65 vint8m1_t vxl_0_1 = __riscv_vadd_vx_i8m1 (x_li_0_1 , −8, v l) ;
66 vint8m1_t vxa_1_0 = __riscv_vadd_vx_i8m1 (x_ai_1_0 , −8, v l) ;
67 vint8m1_t vxl_1_0 = __riscv_vadd_vx_i8m1 (x_li_1_0 , −8, v l) ;
68 vint8m1_t vxa_1_1 = __riscv_vadd_vx_i8m1 (x_ai_1_1 , −8, v l) ;
69 vint8m1_t vxl_1_1 = __riscv_vadd_vx_i8m1 (x_li_1_1 , −8, v l) ;
70

71 //Now that the have the weights we do in t8 ∗ in t8 widening and
then we accumunate

72 vint16m2_t vec_mul_0_0 = __riscv_vwmul_vv_i16m2 (vxa_0_0 , y0_0
, v l) ;

73 vint16m2_t vec_macc_0_0 =__riscv_vwmacc_vv_i16m2 (vec_mul_0_0 ,
vxl_0_0 , y0_1 , v l) ;

74 vint16m2_t vec_mul_0_1 = __riscv_vwmul_vv_i16m2 (vxa_0_1 , y1_0
, v l) ;

75 vint16m2_t vec_macc_0_1 =__riscv_vwmacc_vv_i16m2 (vec_mul_0_1 ,
vxl_0_1 , y1_1 , v l) ;

76

77 vint16m2_t vec_mul_1_0 = __riscv_vwmul_vv_i16m2 (vxa_1_0 , y0_0
, v l) ;

78 vint16m2_t vec_macc_1_0 =__riscv_vwmacc_vv_i16m2 (vec_mul_1_0 ,
vxl_1_0 , y0_1 , v l) ;

79 vint16m2_t vec_mul_1_1 = __riscv_vwmul_vv_i16m2 (vxa_1_1 , y1_0
, v l) ;

80 vint16m2_t vec_macc_1_1 = __riscv_vwmacc_vv_i16m2 (vec_mul_1_1
, vxl_1_1 , y1_1 , v l) ;

81

82 const vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1 (0 ,16) ;
83

84 // In RVV 0 . 7 . 1 IT IS REQUIRED A MASK
85 //We add a l l the r e s u l t s (the r e s u l t s are spread in 1 vec to r

r e g i s t e r) o f the same Quantized b locks in 1 number
86 vint32m1_t v_res_0_0 = __riscv_vwredsum_vs_i16m2_i32m1 (

vec_macc_0_0 , vec_zero , v l) ;
87 vint32m1_t v_res_0_1 = __riscv_vwredsum_vs_i16m2_i32m1 (

vec_macc_0_1 , vec_zero , v l) ;
88

89 vint32m1_t v_res_1_0 = __riscv_vwredsum_vs_i16m2_i32m1 (
vec_macc_1_0 , vec_zero , v l) ;

90 vint32m1_t v_res_1_1 = __riscv_vwredsum_vs_i16m2_i32m1 (
vec_macc_1_1 , vec_zero , v l) ;

91

92 i n t sumi_0_0 = __riscv_vmv_x_s_i32m1_i32 (v_res_0_0) ;
93 i n t sumi_0_1 = __riscv_vmv_x_s_i32m1_i32 (v_res_0_1) ;
94 i n t sumi_1_0 = __riscv_vmv_x_s_i32m1_i32 (v_res_1_0) ;
95 i n t sumi_1_1 = __riscv_vmv_x_s_i32m1_i32 (v_res_1_1) ;
96

97 // Y dequant i z ing weight upsca l i ng

74

Kernel Source Code

98 f l o a t y_d_0 = ggml_compute_fp16_to_fp32_zfh (y [i] . d) ;
99 f l o a t y_d_1 = ggml_compute_fp16_to_fp32_zfh (y [i +1] . d) ;

100

101 //We mult ip ly each r e s u l t , by i t s dequant i z ing s c a l e o f x (4
b locks) and y (2 b locks)

102 sumf_0 += sumi_0_0∗ggml_compute_fp16_to_fp32_zfh (x_0 [i] . d) ∗
y_d_0 + sumi_0_1∗ggml_compute_fp16_to_fp32_zfh (x_0 [i +1] . d) ∗y_d_1 ;

103 sumf_1 += sumi_1_0∗ggml_compute_fp16_to_fp32_zfh (x_1 [i] . d) ∗
y_d_0 + sumi_1_1∗ggml_compute_fp16_to_fp32_zfh (x_1 [i +1] . d) ∗y_d_1 ;

104 } //nb = number o f bytes per row
105 // F i n a l l y data s to rage
106 ∗(dst_temp+h+k∗ne0) = sumf_0 ;
107 ∗(dst_temp+(h+1)+k∗ne0) = sumf_1 ;
108 }

75

Bibliography

[1] Zhibo Chu, Shiwen Ni, Zichong Wang, Xi Feng, Min Yang, and Wenbin
Zhang. History, Development, and Principles of Large Language Models-An
Introductory Survey. arXiv:2402.06853 [cs]. 2024. url: http://arxiv.org/
abs/2402.06853 (visited on 08/14/2024) (cit. on pp. 3, 4, 8).

[2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Esti-
mation of Word Representations in Vector Space. 2013. arXiv: 1301.3781
[cs.CL]. url: https://arxiv.org/abs/1301.3781 (cit. on p. 3).

[3] Robin M. Schmidt. Recurrent Neural Networks (RNNs): A gentle Introduction
and Overview. 2019. arXiv: 1912.05911 [cs.LG]. url: https://arxiv.org/
abs/1912.05911 (cit. on pp. 4, 6).

[4] Gang Chen. A Gentle Tutorial of Recurrent Neural Network with Error
Backpropagation. 2018. arXiv: 1610.02583 [cs.LG]. url: https://arxiv.
org/abs/1610.02583 (cit. on p. 4).

[5] Wikimedia Commons. Recurrent Neural Network Unfold. Accessed: 2024-08-
24. 2021. url: https://commons.wikimedia.org/wiki/File:Recurrent_
neural_network_unfold.svg (cit. on p. 5).

[6] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-Term Memory». In:
Neural Comput. 9.8 (1997), pp. 1735–1780. issn: 0899-7667. doi: 10.1162/
neco.1997.9.8.1735. url: https://doi.org/10.1162/neco.1997.9.8.
1735 (cit. on p. 4).

[7] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. https://D2L.ai. Cambridge University Press, 2023 (cit. on
pp. 4, 6).

[8] M. Schuster and K.K. Paliwal. «Bidirectional recurrent neural networks». In:
IEEE Transactions on Signal Processing 45.11 (1997), pp. 2673–2681. doi:
10.1109/78.650093 (cit. on p. 4).

[9] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning
with Neural Networks. 2014. arXiv: 1409.3215 [cs.CL]. url: https://
arxiv.org/abs/1409.3215 (cit. on p. 5).

76

http://arxiv.org/abs/2402.06853
http://arxiv.org/abs/2402.06853
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1912.05911
https://arxiv.org/abs/1610.02583
https://arxiv.org/abs/1610.02583
https://arxiv.org/abs/1610.02583
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://D2L.ai
https://doi.org/10.1109/78.650093
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215

BIBLIOGRAPHY

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. 2016. arXiv: 1409.
0473 [cs.CL]. url: https://arxiv.org/abs/1409.0473 (cit. on p. 7).

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL]. url: https://arxiv.org/abs/
1706.03762 (cit. on pp. 6, 7, 9).

[12] Xiao Fu, Weiling Yang, Dezun Dong, and Xing Su. «Optimizing Atten-
tion by Exploiting Data Reuse on ARM Multi-core CPUs». In: Proceed-
ings of the 38th ACM International Conference on Supercomputing. ICS
’24. Kyoto, Japan: Association for Computing Machinery, 2024, pp. 137–
149. isbn: 9798400706103. doi: 10.1145/3650200.3656620. url: https:
//doi.org/10.1145/3650200.3656620 (cit. on p. 10).

[13] Tong Xiao and Jingbo Zhu. Introduction to Transformers: an NLP Perspective.
2023. arXiv: 2311.17633 [cs.CL]. url: https://arxiv.org/abs/2311.
17633 (cit. on p. 10).

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL]. url: https://arxiv.org/abs/1810.
04805 (cit. on p. 8).

[15] Alec Radford and Karthik Narasimhan. Improving Language Understanding
by Generative Pre-Training. 2018. url: https://api.semanticscholar.
org/CorpusID:49313245 (cit. on p. 8).

[16] Enfang Cui, Tianzheng Li, and Qian Wei. «RISC-V Instruction Set Archi-
tecture Extensions: A Survey». In: IEEE Access 11 (2023), pp. 24696–24711.
doi: 10.1109/ACCESS.2023.3246491 (cit. on pp. 10–12).

[17] RISC-V International Foundation. RISC-V Specification Lifecycle Guide.
Accessed: 2024-09-01. 2024. url: https://riscv.org/specifications
(cit. on p. 12).

[18] RISC-V International. The RISC-V Instruction Set Manual Repository. 2024.
url: https://github.com/riscv/riscv-isa-manual (cit. on p. 13).

[19] V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers principles,
techniques & tools. pearson Education, 2007 (cit. on pp. 15, 16).

[20] Fred J. Pollack. «New microarchitecture challenges in the coming genera-
tions of CMOS process technologies (keynote address)(abstract only)». In:
Proceedings of the 32nd Annual ACM/IEEE International Symposium on
Microarchitecture. MICRO 32. Haifa, Israel: IEEE Computer Society, 1999,
p. 2. isbn: 076950437X (cit. on p. 17).

77

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3650200.3656620
https://doi.org/10.1145/3650200.3656620
https://doi.org/10.1145/3650200.3656620
https://arxiv.org/abs/2311.17633
https://arxiv.org/abs/2311.17633
https://arxiv.org/abs/2311.17633
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://doi.org/10.1109/ACCESS.2023.3246491
https://riscv.org/specifications
https://github.com/riscv/riscv-isa-manual

BIBLIOGRAPHY

[21] Daniel Etiemble. «45-year CPU evolution: one law and two equations». In:
arXiv preprint arXiv:1803.00254 (2018) (cit. on p. 17).

[22] Karl Rupp. Microprocessor Trend Data. https://github.com/karlrupp/
microprocessor-trend-data. Accessed: 2024-09-19. 2024 (cit. on p. 17).

[23] Intel Corporation David Ott. Optimizing Applications for NUMA. Accessed:
2024-06-05. 2011. url: https://www.intel.com/content/dam/develop/
external/us/en/documents/3-5-memmgt-optimizing-applications-
for-numa-184398.pdf (cit. on p. 18).

[24] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. «Basic Linear
Algebra Subprograms for Fortran Usage». In: ACM Trans. Math. Softw. 5.3
(1979), pp. 308–323. issn: 0098-3500. doi: 10.1145/355841.355847. url:
https://doi.org/10.1145/355841.355847 (cit. on pp. 19, 20).

[25] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson.
«An extended set of FORTRAN basic linear algebra subprograms». In: ACM
Trans. Math. Softw. 14.1 (1988), pp. 1–17. issn: 0098-3500. doi: 10.1145/
42288.42291. url: https://doi.org/10.1145/42288.42291 (cit. on p. 21).

[26] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. «A set
of level 3 basic linear algebra subprograms». In: ACM Trans. Math. Softw.
16.1 (1990), pp. 1–17. issn: 0098-3500. doi: 10.1145/77626.79170. url:
https://doi.org/10.1145/77626.79170 (cit. on p. 21).

[27] R.C. Whaley and J.J. Dongarra. «Automatically Tuned Linear Algebra
Software». In: SC ’98: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing. 1998, pp. 38–38. doi: 10.1109/SC.1998.10004 (cit. on
p. 22).

[28] Kazushige Goto and Robert A. van de Geijn. «Anatomy of high-performance
matrix multiplication». In: ACM Transactions on Mathematical Software 34.3
(2008), pp. 12–. doi: 10.1145/1356052.1356053 (cit. on p. 22).

[29] Jianyu Huang and Robert A. van de Geijn. BLISlab: A Sandbox for Optimizing
GEMM. 2016. arXiv: 1609.00076 [cs.MS]. url: https://arxiv.org/abs/
1609.00076 (cit. on p. 23).

[30] Florian Zaruba, Fabian Schuiki, and Luca Benini. Manticore: A 4096-core
RISC-V Chiplet Architecture for Ultra-efficient Floating-point Computing.
2020. arXiv: 2008.06502 [cs.AR]. url: https://arxiv.org/abs/2008.
06502 (cit. on pp. 24–26).

78

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
https://www.intel.com/content/dam/develop/external/us/en/documents/3-5-memmgt-optimizing-applications-for-numa-184398.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/3-5-memmgt-optimizing-applications-for-numa-184398.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/3-5-memmgt-optimizing-applications-for-numa-184398.pdf
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/42288.42291
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/77626.79170
https://doi.org/10.1109/SC.1998.10004
https://doi.org/10.1145/1356052.1356053
https://arxiv.org/abs/1609.00076
https://arxiv.org/abs/1609.00076
https://arxiv.org/abs/1609.00076
https://arxiv.org/abs/2008.06502
https://arxiv.org/abs/2008.06502
https://arxiv.org/abs/2008.06502

BIBLIOGRAPHY

[31] Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini. «Snitch: A
Tiny Pseudo Dual-Issue Processor for Area and Energy Efficient Execution of
Floating-Point Intensive Workloads». In: IEEE Transactions on Computers
70.11 (2021), pp. 1845–1860. issn: 2326-3814. doi: 10 . 1109 / tc . 2020 .
3027900. url: http://dx.doi.org/10.1109/TC.2020.3027900 (cit. on
p. 24).

[32] F. Zaruba and L. Benini. «The Cost of Application-Class Processing: Energy
and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core
in 22-nm FDSOI Technology». In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 27.11 (2019), pp. 2629–2640. issn: 1557-9999.
doi: 10.1109/TVLSI.2019.2926114 (cit. on p. 24).

[33] Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini. «Stream
Semantic Registers: A Lightweight RISC-V ISA Extension Achieving Full
Compute Utilization in Single-Issue Cores». In: IEEE Transactions on Com-
puters 70.2 (2021), pp. 212–227. doi: 10.1109/TC.2020.2987314 (cit. on
p. 25).

[34] Chen Chen et al. «Xuantie-910: A Commercial Multi-Core 12-Stage Pipeline
Out-of-Order 64-bit High Performance RISC-V Processor with Vector Ex-
tension : Industrial Product». In: 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA). 2020, pp. 52–64. doi:
10.1109/ISCA45697.2020.00016 (cit. on pp. 26–28).

[35] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, and
Krste Asanović. BOOM v2: an open-source out-of-order RISC-V core. Tech.
rep. UCB/EECS-2017-157. EECS Department, University of California, Berke-
ley, 2017. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/
EECS-2017-157.html (cit. on p. 26).

[36] Andreas Traber, Michael Gautschi, and Pasquale Davide Schiavone. RI5CY:
User Manual. Licensed under the Solderpad Hardware License, Version 0.51.
Micrel Lab, Multitherman Lab, University of Bologna, Italy, and Integrated
Systems Lab, ETH Zürich, Switzerland. 2019. url: http://solderpad.org/
licenses/SHL-0.51 (cit. on p. 26).

[37] Milk-V. Pioneer Overview. Accessed: 2024-06-20. 2024. url: https://milkv.
io/docs/pioneer/overview (cit. on p. 29).

[38] Chao Wei. CPU Sophon SG2042 Technical Reference Manual. Technical
Reference Manual. Sophon. 2024 (cit. on p. 30).

[39] Georgi Gerganov. llama.cpp: LLM inference in C/C++. https://github.
com/ggerganov/llama.cpp. Accessed: 2024-09-12. 2023 (cit. on pp. 31, 33).

79

https://doi.org/10.1109/tc.2020.3027900
https://doi.org/10.1109/tc.2020.3027900
http://dx.doi.org/10.1109/TC.2020.3027900
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/TC.2020.2987314
https://doi.org/10.1109/ISCA45697.2020.00016
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html
http://solderpad.org/licenses/SHL-0.51
http://solderpad.org/licenses/SHL-0.51
https://milkv.io/docs/pioneer/overview
https://milkv.io/docs/pioneer/overview
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp

BIBLIOGRAPHY

[40] GNU Community. GNU C Compiler Internals. Wikibooks, 2024. url: https:
/ / en . wikibooks . org / wiki / GNU _ C _ Compiler _ Internals (visited on
06/11/2024) (cit. on p. 35).

[41] Yafan Huang. Getting Started with LLVM. https://hyfshishen.github.
io/tutorial-01-llvm.html. Accessed: 2024-08-01. 2024 (cit. on p. 36).

[42] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models.
2023. arXiv: 2302.13971 [cs.CL]. url: https://arxiv.org/abs/2302.
13971 (cit. on p. 36).

[43] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models.
2023. arXiv: 2307.09288 [cs.CL]. url: https://arxiv.org/abs/2307.
09288 (cit. on pp. 37, 38).

[44] Zhang Xianyi, Wang Qian, and Zhang Yunquan. «Model-driven Level 3 BLAS
Performance Optimization on Loongson 3A Processor». In: 2012 IEEE 18th
International Conference on Parallel and Distributed Systems. 2012, pp. 684–
691. doi: 10.1109/ICPADS.2012.97 (cit. on p. 38).

[45] OpenBLAS Team. OpenBLAS FAQ. Retrieved 2024-10-11. 2024. url: https:
//github.com/OpenMathLib/OpenBLAS/wiki/Faq (cit. on p. 39).

[46] Christian Fibich, Stefan Tauner, Peter Rössler, and Martin Horauer. «Evalu-
ation of Open-Source Linear Algebra Libraries targeting ARM and RISC-V
Architectures». In: 2020 15th Conference on Computer Science and Informa-
tion Systems (FedCSIS). 2020, pp. 663–672. doi: 10.15439/2020F145 (cit. on
p. 39).

[47] RuyiSDK: Integrated Development Environment for RISC-V. https://ruyi
sdk.org/. Accessed: 2024-10-11 (cit. on p. 42).

[48] Nick Brown, Maurice Jamieson, Joseph Lee, and Paul Wang. «Is RISC-V ready
for HPC prime-time: Evaluating the 64-core Sophon SG2042 RISC-V CPU».
In: Proceedings of the SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis. Vol. 2021. SC-
W 2023. ACM, Nov. 2023, pp. 1566–1574. doi: 10.1145/3624062.3624234.
url: http://dx.doi.org/10.1145/3624062.3624234 (cit. on p. 42).

[49] Gurbinder Gill and Ramesh V. Peri. «Measure the Impact of NUMA Mi-
grations on Performance». In: Intel Corporation (2019). Accessed: 2024-09-
14. url: https :/ / www. intel . com / content /www / us/ en /developer /
articles/technical/measure-the-impact-of-numa-migrations-on-
performance.html (cit. on p. 45).

80

https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals
https://en.wikibooks.org/wiki/GNU_C_Compiler_Internals
https://hyfshishen.github.io/tutorial-01-llvm.html
https://hyfshishen.github.io/tutorial-01-llvm.html
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1109/ICPADS.2012.97
https://github.com/OpenMathLib/OpenBLAS/wiki/Faq
https://github.com/OpenMathLib/OpenBLAS/wiki/Faq
https://doi.org/10.15439/2020F145
https://ruyisdk.org/
https://ruyisdk.org/
https://doi.org/10.1145/3624062.3624234
http://dx.doi.org/10.1145/3624062.3624234
https://www.intel.com/content/www/us/en/developer/articles/technical/measure-the-impact-of-numa-migrations-on-performance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/measure-the-impact-of-numa-migrations-on-performance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/measure-the-impact-of-numa-migrations-on-performance.html

BIBLIOGRAPHY

[50] Xiao Fu, Weiling Yang, Dezun Dong, and Xing Su. «Optimizing Attention
by Exploiting Data Reuse on ARM Multi-core CPUs». In: Proceedings of the
38th ACM International Conference on Supercomputing. 2024, pp. 137–149
(cit. on p. 47).

[51] David Bindel. Matrix Multiplication Optimization. https://github.com/
cs5220-f20/matmul-project. Accessed: 2024-06-15. 2024 (cit. on p. 48).

[52] Francisco Igual, Luis Piñuel, Sandra Catalán, Héctor Martínez, Adrián
Castelló, and Enrique Quintana-Ortí. «Automatic Generation of Micro-kernels
for Performance Portability of Matrix Multiplication on RISC-V Vector Pro-
cessors». In: Proceedings of the SC ’23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis.
SC-W ’23. Denver, CO, USA: Association for Computing Machinery, 2023,
pp. 1523–1532. isbn: 9798400707858. doi: 10.1145/3624062.3624229. url:
https://doi.org/10.1145/3624062.3624229 (cit. on p. 49).

[53] Github) Anonymous(camel-cdr. The Milk-V Pioneer: Performance Analysis
and Benchmarking. https://example.com/milk- v- pioneer. Accessed:
2024-05-02. 2024 (cit. on p. 49).

[54] Jieyang Chen et al. «TSM2: optimizing tall-and-skinny matrix-matrix multi-
plication on GPUs». In: Proceedings of the ACM International Conference
on Supercomputing. ICS ’19. Phoenix, Arizona: Association for Computing
Machinery, 2019, pp. 106–116. isbn: 9781450360791. doi: 10.1145/3330345.
3330355. url: https://doi.org/10.1145/3330345.3330355 (cit. on p. 51).

81

https://github.com/cs5220-f20/matmul-project
https://github.com/cs5220-f20/matmul-project
https://doi.org/10.1145/3624062.3624229
https://doi.org/10.1145/3624062.3624229
https://example.com/milk-v-pioneer
https://doi.org/10.1145/3330345.3330355
https://doi.org/10.1145/3330345.3330355
https://doi.org/10.1145/3330345.3330355

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	NLP and AI
	History of ML for NLP
	Transformers and LLMs

	RISC-V ISA
	Main characteristics
	Vector extension

	Compilers
	Structure of a compiler

	Multi-core platforms and parallelissim
	NUMA regions

	Basic Linear Algebra Subprograms
	Development and basic elements

	Related Work
	HPC Platforms
	Manticore
	Xuantie 910
	Milk-V Pioneer

	Inference frameworks
	llama.cpp and ggml

	Compilers for RISC-V
	GCC
	CLANG/LLVM

	LLM models
	Meta LLAMA

	BLAS Libraries
	OpenBLAS

	Methods
	Exploiting hardware architecture
	Available compilers for the platform and support
	Effect on core mapping and NUMA regions

	LLMs inference analysis
	Inference Bottlenecks
	Matrix multiplication: BLAS libraries and vectorized kernels
	Kernel development and integration

	Results
	Inference bottleneck analysis
	Micro-benchmarks results
	Inference results
	Single Core
	Multi-threaded performance

	Conclusion and Future Work
	Kernel Source Code
	Bibliography

