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Abstract

With the proliferation of IoT and other distributed systems, securing embedded
devices against physical attacks has become increasingly important. Conven-
tional techniques such as storing secret keys in non-volatile memory have been
shown to be vulnerable to invasive attacks, highlighting the need for new meth-
ods of protecting such systems and reliably authenticating devices.

This thesis explores Physical Unclonable Functions (PUFs) as a security
primitive to ensure that secret keys and identifiers are not available to potential
attackers. Specifically, the focus is on SRAM PUFs, which use memory start-up
values to generate unique IDs for manufactured devices. SRAM is present on
virtually all modern embedded systems, and its volatile nature means that keys
are not stored in the device while it is powered down but can be recreated each
time it is powered on.

To qualify for use in security-critical applications, the produced keys must
be truly random and unique to each device. Therefore, a set of metrics to
quantify the strength of the keys is presented and used to evaluate a data
set extracted from a custom test chip. The experiments compare a reference
standard SRAM against a memory that has been modified to allow fast erasure
and fast initialization by destabilizing the cells. This modification enables
rapidly performing multiple evaluations of the memory to reduce the noise
present in the PUF response.

Results show that the modifications have some negative impact on the secu-
rity metrics of the resulting keys, meaning it is advisable to implement privacy
amplification techniques before using the PUF in security applications.
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Chapter 1

Introduction

Modern embedded devices often run applications requiring secure authentica-
tion to ensure system integrity. Achieving this is increasingly complicated by the
proliferation of embedded systems into new applications in which devices must
operate autonomously in areas where potential attackers could gain physical
access to the device. Since user input such as passwords can not be relied upon
as a root of trust in these applications, the current solution to this problem is to
store secret keys in non-volatile memory (NVM) [1]. This method is, however,
subject to invasive physical attacks where an attacker may extract the secret
keys through techniques such as board-level probing [2]. Protecting against this
kind of attack requires additional circuitry to detect and prevent tampering,
which is often expensive in terms of both cost and area and relies on the system
being continuously powered, leaving the potential attack vector of powering
down the device. Storing the key in volatile memory instead would mitigate this
vulnerability but would significantly hamper the autonomous operation of the
device by requiring manual intervention to re-provision the key(s) if power is
lost temporarily.

To address these shortcomings of current methods, novel technologies al-
lowing secure authentication, autonomous operation, and physical integrity are
needed. One promising contender is the Physical Unclonable Function (PUF),
based on the naturally occurring variations in the semiconductor manufacturing
process [1]. Minor differences between manufactured dies can provide a unique
fingerprint for each device resulting from random variations, making the identi-
fier unclonable. PUF keys are only present in the device while powered, making
them harder to extract by invasive attacks.

Since PUFs rely on variance in the physical characteristics of a die, they are
also subject to noise from environmental factors such as temperature, voltage,
and age. To overcome this issue, most current implementations of PUF rely on
error correction. This is done by programming error-correcting codes into each
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Introduction

device before deployment, in a stage known as enrollment. This enrollment
phase introduces costs and potential security issues into the deployment process
for embedded devices [3].

This thesis is developed as part of an internship at CEA Grenoble. CEA (Com-
missariat à l’énergie atomique et aux énergies alternatives), or the French Alternative
Energies and Atomic Energy Commission, is a public research institution for
fundamental and technology research headquartered in Paris with sites across
France. At its Innovative Functions for Mixed Circuits Laboratory (LFIM) in
Grenoble, it researches novel uses for integrated circuits, including PUFs.

A prototype PUF implementation has previously been developed at CEA,
and this thesis aims to characterize and improve upon this implementation.
Additionally, we will investigate the feasibility of error correction-free PUFs by
using post-processing techniques to reduce or eliminate noise in PUF responses,
removing the need for an enrollment phase. This would reduce the time required
to deploy embedded systems containing PUFs and potentially increase security
as there is no need to store error correction helper data in non-volatile memory.
The thesis findings will inform the future development of a PUF IP block.

Chapter 2 contains the required background information on PUFs and intro-
duces a system of binary notations, which will be used throughout this thesis.
Lastly, it defines the quality metrics by which PUFs are evaluated. Next, chapter
3 presents previous works on the subject, which will guide the development
work of this thesis, including technologies that will be core to the design of PUF
key extraction functions.

Chapter 4 describes the tools used in the development work and the experi-
ments conducted, whose results are presented in chapter 5. Finally, conclusions
and future recommendations are presented in chapter 6.

2



Chapter 2

Background

Authenticating participants in communications or transactions is a daily occur-
rence in the modern world, from inputting passwords or biometrics to showing
identity documents. This also extends into computer networks, where authen-
tication typically occurs using cryptographic keys, which must be kept secret
from potential attackers. In distributed systems such as IoT or Wireless Sensor
Networks (WSN), this poses a significant challenge since attackers could gain
physical access to the devices, meaning secret keys have to be protected from
invasive attacks [4].

With full access to a device, many attacks could be performed to extract secret
information, such as microprobing or fault injection [2]. Defending against these
attacks can be difficult and costly, inspiring the need for novel security primitives
that enable secure authentication in insecure environments.

This chapter presents the Physically Unclonable Function (PUF), including
its history and construction. To evaluate the qualities of a PUF, we need to
define some metrics by which it can be assessed. In section 2.3, five metrics for
analyzing PUF quality are defined, but before that, a system of binary notations
will be introduced, which will be used for the rest of this thesis.

2.1 Physical Unclonable Functions

Physical unclonable functions (PUF), first introduced by R. S. Pappu [5], are
functions that are based upon the unique physical properties of an object and
can not be reproduced systematically, except by the object itself. Unlike normal
deterministic functions, where the result is expected to be the same no matter
where the function is evaluated, each PUF is expected to have its unique re-
sponse. Unlike a truly random function, a PUF is expected to give the same
response each time it is evaluated. PUFs are unclonable because the function’s
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parameters are not determined by design but by natural variations. Therefore,
reliably predicting or reproducing the function should not be possible, even
with complete knowledge of its design and manufacturing method.

The initially proposed architecture to achieve such a function was to shine a
laser through an epoxy wafer implanted with silicon spheres and measure the
resulting light scattering to obtain a unique object fingerprint [5]. Gassend et al.
[6] later introduced the silicon-based PUF using the naturally occurring process
variations in semiconductor manufacturing, such as random dopant fluctuations
(RDF) or variance in capacitance and signal propagation delay. For silicon PUFs,
the original proposal was to use signal delay variations in a self-oscillating loop
circuit to produce a unique device signature [6]. The SRAM-based PUF was
introduced by Guajardo et al. [7] in 2007 and is the focus of this project.

WL

BL BL

P

Q

Figure 2.1: 6T-SRAM cell

Figure 2.1 shows a standard 6T-SRAM cell made from two cross-coupled
inverters forming a bi-stable circuit. If this circuit is ideally perfectly balanced,
the initialization value of the cell is a truly random outcome at each new circuit
power-on. However, because of RDFs introduced at manufacturing time, the
threshold voltage of the transistors will fluctuate from one cell to another, mak-
ing each cell biased towards one state. This characteristic makes SRAM, present
on virtually all modern embedded systems, feasible as the basis for a PUF.

To be useful for authentication purposes, PUFs have to be time-invariant
and provide sufficiently random patterns to represent a unique fingerprint
for a given object. Literature on the subject distinguishes between so-called
strong and weak PUFs, differentiated by the number of Challenge-Response Pairs
(CRP) that they can support. These CRPs are part of a protocol where an agent
seeking to authenticate a device issues a challenge, which is then used by the
device to generate a response from its unique physical properties [1]. Weak
PUFs can generate only a few or even just a single such response, whereas
strong PUFs can support many CRPs. The full PUF protocol consists of an
enrollment phase before deployment and an authentication stage during use.
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Conventionally, for strong PUFs, the devices undergo an enrollment phase where
a large set of CRPs are recorded. During operation, the CRPs are consumed as
they are used since an attacker could record the responses [1]. Weak PUFs are
conventionally used together with cryptographic functions such as Hash-based
Message Authentication Code (HMAC) where the response is kept secret since
they only support a small number of CRPs [1].

In addition to using the PUF response directly to authenticate a die, other
applications have also been proposed. The PUF can be used as a root of trust,
where provisioned keys are wrapped using the PUF root key to be stored safely
in NVM [8]. The keys are then intrinsically tied to the device, which can unwrap
and utilize them. In their original paper on silicon PUFs, Gassend et al. [6]
describe the potential to use PUFs for software licensing, tying code to a specific
device to mitigate software piracy. Guajardo et al. [7] similarly describe using
PUFs for IP protection in FPGAs by encrypting the bit-stream to prevent cloning.
Since most PUFs are inherently noisy, they can also be used as true random
number generators by isolating the noise they produce [9].

2.2 Binary Notations

In the case of digital circuits and algorithms, one uses words that are built using
bits, i.e., symbols taken from the binary alphabet 0, 1.

The following text refers to the notation developed in [10], where PUF keys
of length L are measured S times on D different devices. For each dimension
(key length, number of samples, number of devices) the correspondent index is
the lowercase index l, s or d.

For a word B of length L, we denote as bl the value ∈ {0, 1} of the l-th bit,
with 1 f l f L. An SRAM word being repeatedly measured S times will have
thus S different samples of the same word, denoting as bs,l the value ∈ {0, 1} of
the l-th bit, with 1 f l f L, at the s-th measurement, with 1 f s f S . Finally, we
will denote with bs,l,d the value ∈ {0, 1} of the l-th bit, with 1 f l f L, at the s-th
measurement, with 1 f s f S , on d-th device, with 1 f d fD.

Indexes will be dropped when not significant. For instance, the number of
bits being equal to one in a word B is given by

n1(B) =

L
∑

l=1

bl = L×HW (B) (2.1)

where the last equation defines the Hamming Weight of a word.
In general, given two words B and C having common length L, one indicates

5



Background

the number of bits by which they differ as Hamming Distance or HD(B, C):

HD(B, C) =

L
∑

l=1

bl · cl = L× f HD(B, C) (2.2)

where the last equation defines the fractional HD between two words and the ·
operator indicates the XOR logical operation.

Indicating the null word composed of 0s only as ∅, one has combining 2.1
and 2.2:

L×HW (B) =

L
∑

l=1

bl =

L
∑

l=1

bl · 0 =HD(B, ∅) = L× f HD(B,∅) (2.3)

In the most general way, one can write a word measurement by developing
its bits:

Bs,d = bs,1,d bs,2,d · · ·bs,L,d (2.4)

Once S measurements have been done, the best possible estimation for the
probability of each bit to initialize to 1 is

βl,d =
1

S

S
∑

s=1

bs,l,d βl,d ∈ [0, 1] (2.5)

Once S measurements have been carried out on word Bd , one can apply Tem-
poral Majority Voting to determine which is the golden value of this word, simply
finding for each bit which is its most probable value b̂l,d ∈ {0, 1}, depending on
which value occurred with the highest frequency. With the current notation, it is
straightforward to obtain the following relationship:

b̂l,d = floor(0.5+ βl,d) =















0 if βl,d < 0.5

1 if βl,d g 0.5
(2.6)

Using this notation, the golden (or TMV) word for device d will be indicated as
b̂d and its l-th bit as b̂l,d .

It is important to assess the average properties of a TMV word. For this
purpose, we might calculate its average value

¯̂bd =
1

L

L
∑

l=1

b̂l,d (2.7)
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while the average over different words (devices) of a single bit will be expressed
with bra and ket parenthesis:

< b̂l >=
1

D

D
∑

d=1

b̂l,d (2.8)

Combining 2.7 and 2.8 yields the so-called bit uniformity Unif :

Unif =< ¯̂b >=
1

L

L
∑

l=1

< b̂l >=
1

D

D
∑

d=1

¯̂bd (2.9)

2.3 Quality Metrics

To evaluate the results of experiments and make them comparable to other
research on PUFs, we require a standardized set of metrics. In this section,
the metrics Uniformity, Aliasing, Auto-correlation, Uniqueness and Reliability
are presented, which were formalized by researchers at Virginia Polytechnic
Institute and State University (Virginia Tech) [11].

2.3.1 Uniformity

The number of possible combinations of a set of symbols depends on the propor-
tions of each symbol in the word. In the case of binary words, this means the
proportion of ones to zeros. Suppose the device systematically produces only
ones or only zeroes. In that case, there is just one possible combination, while the
maximum number of possible combinations is attained when the distribution is
even. If one could learn that a class of devices systematically produces a higher
proportion of any symbol, this would reduce the security of the identifier as
there are fewer possible combinations that the key could take. Hamming Weight
(HW), which from equation 2.3 can be defined as the fHD to the all-zero word,
can be used to quantify this property and should ideally be close to 1

2 .

HW (B̂d) = f HD(B̂d ,∅) =
1

L

L
∑

l=1

b̂l,d ∀d ∈ [1..D] (2.10)

2.3.2 Aliasing

While uniformity examines whether the PUF response is biased towards any
symbol, it does not reveal whether any of the individual bits in the response
is biased, meaning the bit at some position often or always takes a particular
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value. To examine this property, we define aliasing as the Hamming Weight of
the golden value in each bit position l across all devices. If there is no correlation
between devices, then the aliasing in each bit position should be near 1

2 .

aliasing(l) =< b̂l >=
1

D

D
∑

d=1

b̂l,d ∀l ∈ [1..L] (2.11)

2.3.3 Auto-correlation
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Figure 2.2: Auto-correlation of example patterns

Even together, uniformity and aliasing cannot detect recurring patterns in the
PUF responses where bits in the response are related. To detect this, we define
auto-correlation as the average relation between bits at a distance/lag j . If there
is no correlation, this value should be close to 1

2 . A value close to zero implies a
positive correlation, and a value close to one indicates a negative correlation.

auto-correlation(j) =
1

D(L− j)

D
∑

d=1

L
∑

l=j+1

b̂l,d · b̂l−j,d ∀j ∈ [1..L− 1] (2.12)

Figure 2.2 shows this metric applied to two example patterns. In the checker-
board example, the auto-correlation coefficient at each odd number is one,
showing negative correlation, since each bit is the opposite of all bits at an odd
distance. Similarly, each coefficient at an even distance is zero, showing positive
correlation, since all bits at an even distance are the same. In the stuck example
where each key contains only one symbol, all coefficients are zero since all bits
are positively correlated.
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2.3.4 Uniqueness (inter-PUF fHD)

The identifier generated by a PUF must be unpredictable and uniquely tied to
a specific device, meaning it must avoid systematic bias toward taking certain
values. If devices of the same design and manufacture produce a similar signa-
ture, then the security of the device identifier is significantly reduced, as the
knowledge of a single device can be used to extrapolate the signature of other
devices of the same class. The fractional Hamming Distance (fHD) is used to
evaluate this property, which measures the proportion of bits that differ between
binary words of length L. If the signatures B̂ produced by two devices d1 and d2
of the same class are indeed uncorrelated, then the fHD between them should
be close to 1

2 . This metric is referred to as the inter-class or inter-PUF fHD.

f HD(B̂d1, B̂d2) =
1

L
HD(B̂d1, B̂d2) =

1

L

L
∑

l=1

b̂l,d1 · b̂l,d2 (2.13)

2.3.5 Reliability (Intra-PUF fHD)

For a PUF to function as a device signature, it has to be reliable over time,
meaning we can extract the same output from the device at each evaluation.
Reliability for embedded devices means reproducing the same output under all
operating conditions in which the device is expected to function. Virtually no
PUFs are 100% reliable over time, which means tolerating some error between
evaluations is necessary. Since cryptographic applications require the same input
each time to produce the same output, this tolerance usually implies some form
of error correction.

Error Correcting Codes (ECC) such as Hamming Codes are well studied and
already widely used in modern integrated circuits [12]. These methods rely
on storing some additional helper data to recreate the target output from an
erroneous input, which in the case of PUFs would imply storing this data in
NVM for recreating the key. Storing this helper data in NVM negatively impacts
security, as it can give away some information about the key itself. The size
of the needed helper data depends on how many bits it is necessary to correct,
meaning that a more reliable PUF requires less helper data, which in turn leaks
less information about the key.
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The metric best suited to characterize reliability depends on the application.
For some applications, the average fHD between responses s1 and s2 from the
same device d, called the intra-class or intra-PUF fHD, is used. This measure
should ideally be as close to zero as possible. In other applications, reliability is
measured as how often the PUF produces an expected/golden response. We will
use the distance to the expected/golden response B̂ for our purposes.

f HD(Bs,d , B̂d) =
1

L
HD(Bs,d , B̂d) =

1

L

L
∑

l=1

bl,s,d · b̂l,d ∀{s,d} (2.14)

Some publications also refer to this metric as the Bit Error Rate (BER), al-
though this term is more commonly used in digital transmission.

We will also refer to the proportion of times the PUF produces the expected/-
golden response with no errors, calculated as the complement of the proportion
of responses with an error.

pzero err = 1−
1

D × S

D
∑

d=1

S
∑

s=1

+f HD(Bs,d , B̂d), (2.15)
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Chapter 3

Related Work

This chapter will introduce scientific works on Physical Unclonable Functions,
informing the research and development process described later in this thesis.
In addition to the academic works that will be presented, it is also worth high-
lighting that PUF technology has already been successfully commercialized and
is available in several products that will be presented.

3.1 Environmental Effects

Since being proposed as a basis for a PUF, SRAM spontaneous initialization has
been extensively studied, with results overwhelmingly confirming that SRAM
initialization values can produce unique and reliable identifiers. While the raw
SRAM initialization values have been found to be highly correlated over time,
significant noise is also present between initializations. Several factors have been
found to contribute to this noise:

3.1.1 Manufacturing

The process used to manufacture the SRAM has been shown to impact the
quality of the PUF, with researchers at Broadcom [13] finding that using a
FinFET process yields better randomness than a planar process. Clark et al. [14]
also find in a study that the process corner impacts PUF operation. The authors
demonstrate that the slow-PMOS slow-NMOS (SS) process corner exhibits the
lowest intra-PUF fHD and has the most stable bits, followed by the typical-
PMOS typical-NMOS (TT) corner and the fast-PMOS fast-NMOS (FF) process
corner having the worst PUF performance. Lastly, Holcomb et al. [9] find that
standalone SRAM chips are more reliable as PUFs than embedded SRAMs.
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The material used in the manufacturing could also impact the noise levels in
the PUF. O’uchi et al. [15] demonstrate in a paper that SRAM cells manufactured
using polysilicon as channel material are, on average, more stable than those
made using crystal silicon, showing an improvement in inter-PUF fHD by a
factor of 3.4. The poly-Si devices are shown to have approximately three times
the number of completely stable bits compared to the crystal-Si devices.

3.1.2 Voltage & Temperature

During deployment, the SRAM operation is also affected by its operating con-
ditions: In a study by Selimis et al. [4] on the effect of operating conditions on
SRAM, the authors find that while the final operating voltage of the circuit has
little impact on noise levels, the voltage ramp up time has a significant effect on
the SRAM initialization. These results are confirmed in a study published by
the University of Naples [16] examining SRAM in two commercially available
embedded micro-controllers (STM32F3 & STM32F4).

Both studies show an increase in the average fHD of intra-die responses
as the voltage ramp-up time increases, and there is also an increase in the
die-to-die spread, indicating that sensitivity to supply voltage variations is
die-dependent. Another study on voltage ramp-up effects by Carnegie Mellon
University [17] shows that when compared to a reference bitmap, the noise levels
increase with the distance to the ramp-up time in which the reference map was
generated, whether higher or lower. This highlights the importance of ensuring
a reproducible voltage ramp-up for the SRAM when used as PUF.

Selimis et al. [4] also study the effects of temperature on initialization values,
demonstrating that it has a large impact on reliability. Changing the operating
temperature raises the average fHD between initializations from around 3%
at room temperature (20°C) to around 7% at 60°C or around 14% at -40°C.
Again, the spread between dies increases markedly when changing tempera-
tures, demonstrating that response to temperature changes is also strongly die
dependent.

3.1.3 Age

The phenomenon of Negative Bias Temperature Instability (NBTI) [18] in MOS-
devices cause the SRAM-cells to change their characteristics when held in any
state for an extended period of time, and this aging is accelerated when subjected
to high voltages and/or temperatures. This poses a problem for SRAM as PUFs
since they could change their properties over time, and PUFs must be time-
invariant. For this reason, SRAM, which is used as PUF, should ideally not be
used to store data during normal operation, as it could affect the PUF response.
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This effect has also been used by researchers at Carnegie Mellon University
to improve the reliability of SRAM [17] by intentionally reinforcing a particular
state during enrollment in a procedure referred to as Directed Accelerated
Ageing (DAA). The researchers report achieving a 40% reduction in bit error rate
when applying the equivalent of 0.8 years of aging under nominal conditions.
They accelerate this aging by operating the circuits at increased voltage and
temperature for 120 hours. A drawback of this procedure is that it requires a
significant amount of time between manufacture and deployment, as well as
specialized equipment for voltage and temperature control, making it a costly
procedure when applied at scale.

3.2 PUF Enrollment

Before a PUF is deployed, it goes through an enrollment phase where the chal-
lenge/response pairs (CRPs) are recorded into a database [3]. For weak PUFs
during this stage, the helper (ECC) data is computed and programmed into the
device. If this ECC computation is done off-device, a path must exist to extract
the raw PUF data from the device, which could be exploited by an attacker.
This path could be destroyed after enrollment by fuses or laser cuts. However,
methods have been demonstrated to restore such paths [17].

Using ECC directly to correct errors in PUF potentially introduces leakage
into the system, as the ECC helper data could reveal information about the key.
To address this issue, a security primitive called a fuzzy extractor [19] is typically
used to reconstruct keys from PUFs or other noisy sources such as biometric
data. This mechanism allows for the reconstruction of keys from noisy data in
such a way that the helper data does not reveal information about the key itself.

While PUFs traditionally rely on error correction to account for variations
between initializations, some methods have been proposed to authenticate dies
without requiring ECC. Researchers at the University of Massachusetts Amherst
[9] have proposed using the expected mismatch in Hamming Distance (HD)
between inter- and intra-PUF responses. In the proposed method, the response
from the entire population of dies is recorded (referred to as the known finger-
print) in the enrollment phase. During operation, the fingerprint (referred to
as latent fingerprint) is compared to each known fingerprint and is assumed to
belong to the die which it has the smallest HD to. The authors report achieving
an accuracy of 100% when employing this method using a 64-bit fingerprint and
96% when using a 32-bit fingerprint. How many bits are required to identify
a population reliably depends on the size of the population and the number of
reliable bits in the response.
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A similar method has been proposed by researchers at Arizona State Univer-
sity [14]. In this proposed method, the response is accepted if it has a HD less
than some threshold. While these methods enable die identification without er-
ror correction, they are unsuitable for cryptographic applications as they require
a completely stable key to function.

3.3 Fast Erase / Fast Initialization

A limiting factor of SRAM start-up values as identifiers is that the PUF data is
only available immediately after powering it on. It is also subject to changes
in voltage ramp-up time during startup, which as mentioned in 3.1 can have
a significant impact on startup values. Re-initializing the array by powering
down the SRAM also takes a prohibitively long time due to data remanence
[20], where data remains in volatile memory for some time, even after powering
down. To overcome this limitation, a modified SRAM circuit has been proposed
by researchers at Arizona State University [21] for use in PUFs, where the cell
state {P,Q} can be destabilized to a metastable state {0,0} or {1,1}. This process
immediately erases the data in the cell, eliminating any remanence issue, and
mimics the state at power-on, meaning the cells can be re-initialized simply by
releasing them from this metastable state. The necessary circuit changes for this
Fast Erase / Fast Initialization (FEFI) method are area-free and do not affect the
normal operation of the memory.

In their original paper proposing this solution, the ASU researchers [21] show
that when using this method, the cells have a strong preference for initializing
to ’1’. However, in subsequent papers by ASU [14], and Intel [22] using this
technique, this issue does not seem to appear.

A version of this technology has been implemented at CEA Grenoble [23]
as a countermeasure to tamper events by quickly erasing sensitive data. This
technology will be important in developing PUF post-processing strategies later
in this thesis.

3.4 Existing Commercial Solutions

SRAM PUF IP blocks for ASICs or FPGAs are currently available from Synopsys
[24] and have been deployed in commercial products such as Intel’s Stratix
FPGAs or microcontrollers from NXP. This product is the most similar in operat-
ing principle to the implementation discussed in this thesis and will be used as
a reference point of comparison.
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Other types of PUFs are also available, for example, in the Zynq UltraScale
FPGA from AMD [25], which features a ring oscillator PUF design licensed from
Verayo (defunct). Maxim Integrated markets their ChipDNA PUF [26], while
EMemory offers a "Quantum Tunneling PUF" IP called NeoPUF [27], which
is based on comparing transistor pairs to see which has the higher quantum
tunneling current. All of these products rely on error correction to account
for variations between PUF responses, requiring an enrollment phase before
deployment to calculate and store helper data.

15



Chapter 4

Methodology

This chapter presents the methodology and tools for developing and evaluating
PUF post-processing methods. To develop algorithms for reliable PUF key
generation, it is necessary to evaluate them using a large set of data to assess
their properties under various conditions. A data set of SRAM initializations
from a test chip is available and will be used to assess the methods in a known
realistic scenario. The proprietary SRAM PUF CyberPUF simulation tool will
be used to further evaluate the methods under different conditions, and its
general working principle will be explained in this chapter. The combination
of measured and simulated data will be used to assess the quality of the key
generation methods, however to assess performance (speed) an RTL model will
also be implemented.

4.1 Flow

To extract keys from the SRAM array, we will be examining two forms of algo-
rithms using Multiple Evaluation (ME), namely Temporal Majority Voting (TMV)
and Memory Cell Classification (MCC). These key generation methods will first
be tested in Matlab/CyberPUF to determine their qualities before being imple-
mented in hardware to determine their clock cycle performance. For functional
verification of the PUF module, a pipeline has been established to automatically
compare the resulting key in RTL simulation using QuestaSim [28] and the key
generated by the corresponding Matlab implementation of the algorithm. Figure
4.1 shows the intended workflow.
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The algorithms are tested on a dataset of measurements from a custom ASIC
featuring a reference SRAM designed by Synopsys and a modified version of
the same memory with the FEFI capabilities described in 3.3. The memories
are 128 bits by 128 lines, with sixteen cuts for each type. The available data is
taken from a single test chip mounted on a custom board. For each cut, 1000
measurements have been taken at three different voltages at a constant ambient
temperature of 25°C. The test chip is manufactured in Global Foundries’ 22 nm
FDSOI process.

Test
Chip

CyberPUF

RTL

=

Measurements Quality Performance Verification

Figure 4.1: Development flow

With the dataset, containing 3000 initializations per cut, we can combine
multiple initializations to create a key. Each combination of the same memory
section will be referred to as a trial. How many trials we can make using
the dataset depends on how many initializations are used per trial. For most
experiments, each initialization is used only once, without replacement. When
this is not the case, it will be made clear. Some experiments are conducted using
synthetic data from simulation; again, it will be made clear when this is the case.

4.2 CyberPUF
The CyberPUF tool is a Matlab package developed at CEA Grenoble, which can
be used both to characterize measured data from SRAM initializations and to
synthesize new data for testing purposes. It also contains functions to asses the
quality metrics described in section 2.3.

SRAM initialization data is stored in CyberPUF as three-dimensional matrices
with dimensions representing [initializations, rows,columns]. From this data,
the characteristics of the SRAM array, such as the TMV value of cells and the
Hamming Weight, can be calculated. Key data from PUF responses is also stored
in three-dimensional matrices with dimensions representing [trials,keys,bits],
from which we can use the package functions to asses PUF qualities such as inter-
and intra-PUF fHD or auto-correlation.

17



Methodology

The package also contains features to synthesize new SRAM data based on
given characteristics. This feature is useful for extending the available data and
evaluating the tested methods using SRAM which differs from the available data
set while having the same statistical properties. To synthesize new initializations
of an existing array, the package uses the probability of each cell initializing to
’1’, combined with noise from a uniform random number generator. The package
starts from a distribution of cell probabilities to synthesize new SRAM arrays.
Both of these concepts are explained further in the following sections.

Prior to this work, no documentation was produced for the CyberPUF pack-
age. Therefore, a description of the package functions used in this work is
included in appendix A.

4.2.1 Probability Matrix
The probability of a cell at index l to initialize to ’1’ can be calculated from
equation 2.5, over S initializations and where bs,l,d is the bit value at initialization
s of the cell l in device d. By finding this probability for all cells in an array, we
can create a probability matrix (P-matrix) that characterizes the array and can
be used to simulate the spontaneous initialization of the cells. Figure 4.2 shows
an example P-matrix of an array. The matrix is visualized in gray-scale where
white cells always initialize to ’1’ and black cells always initialize to ’0’. Grey
cells are unstable, and their intensity represents the probability of initializing to
’1’. To simulate the spontaneous initialization of the array, we generate a series
of uniformly random numbers between zero and one and compare them against
the cell probability to determine whether to initialize the cell to ’1’ or ’0’.

bl,d =















1, RNG(0,1) f βl,d
0, else

(4.1)
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Figure 4.2: Example probability-matrix of a 32x32-bit SRAM array
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4.2.2 Probability Distribution

From the probability matrix, we can calculate a distribution of probabilities that
characterizes the array, containing a discrete part with cells always initializing to
’0’ or ’1’ and a continuous part consisting of cells with a probability 0 < β < 1 of
initializing to ’1’. Figure 4.3 shows the probability distribution of an SRAM array
with discrete components represented as points at the edges of the distribution
and a histogram of continuous components aggregated into 50 bins. From this
distribution, we can synthesize probability matrices with the same characteristics
as measured arrays or arbitrarily designed characteristics that are spatially
different.
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Figure 4.3: Example probability distribution

Synthetic probability-distributions in CyberPUF are characterized by three
parameters [α,∆,δp]:

• α: The proportion of completely stable bits (β = 0 or β = 1). Shown as
points in figure 4.3.

• ∆: Asymmetry between completely stable bits. The proportion of bits
stable at ’0’ is (α +∆)/2, and the proportion of bits stable at ’1’ is (α −∆)/2.

• δp: The proportion of bits that are part of the decaying "bumps" emanating
from the edges of the distribution. The integral of the bump emanating
from ’0’ will be (α+∆)×δp/(2α), while the integral of the bump emanating
from ’1’ will be (α −∆)× δp/(2α)

The remaining portion of bits (1−α−δp) is uniformly distributed in the range
0 < β < 1. The example distribution shown in figure 4.3 is synthesized with
parameters [0.5,0.03,0.4].
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4.2.3 Workflow
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Figure 4.4: Process for characterizing data using CyberPUF

To extract information about the characteristics of a measured data set, it
must be imported into Matlab in the CyberPUF format ([initializations, rows,
columns]). Depending on how the data is stored, this could be achieved by the
CyberPUF function hexFile2mem or the standard Matlab readtable function. If the
data is not compatible with either of these functions, a parser must be written.
Once the data is loaded into Matlab, the calculatepMatrix CyberPUF function can
be used to find the spontaneous initialization probabilities, and calcPDistribution
can be used to find the characteristics of the data. This process is depicted in
figure 4.4.

P-distribution

0 10.5

Synthetic
P-matrices

Simulated
initializations

Figure 4.5: Process for synthesizing data using CyberPUF

To create synthetic data, one must obtain a probability distribution using
either calcPDistribution or createMixedPDistribution. From this distribution, one
or more probability matrices can be obtained using getPmatrixFromMixedPDistr,
where each p-matrix represents a unique SRAM array. To simulate spontaneous
initializations we use the simulateMatrices function. Figure 4.5 shows this process.
The resulting data can be used directly within Matlab or exported as hex files
using writeHex. The resulting hex files can then be used in RTL simulation using
QuestaSim.
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4.3 Hardware Implementation

While reading SRAM to generate a key could be implemented in software, this
would present security issues as an attacker with physical access to the device
could execute code to read out the SRAM content and extract the key. Therefore,
the section of memory that will be used for key generation is protected from
read or write access except when the access is generated by a dedicated hardware
key generation module. This module will be implemented as an instruction
generator for near-memory computing (NMC) vector co-processor developed at
CEA Grenoble [29] referred to as Computational-SRAM (C-SRAM).

Using the C-SRAM co-processor, the PUF data does not have to be transferred
over the system bus where potentially malicious devices could be listening. Using
a vector processor also allows for the evaluation of many cells in one instruction.
Further security measures of the implementation, such as tamper detection and
deployment of the key in cryptographic applications, will not be discussed in this
work as they are beyond the scope of this thesis. The PUF module is integrated
into the C-SRAM as a privileged instruction generator that can generate read
operations to sections of the memory not accessible by externally generated
operations, visualized in figure 4.6. To initiate the key generation procedure, the
CPU must send a PUF key generation instruction to the C-SRAM.

System Bus

Scalar
CPU

PUF
ModuleCSRAM

VPU

PUF
SectionSRAM

Figure 4.6: System architecture
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The C-SRAM is a SIMD-like vector processor that features a six-stage pipeline
and a 128-bit architecture that can process 32, 16, or 8-bit words. It uses a custom
ISA with instructions for accelerating security primitives/algorithms such as
AES. The key benefit of using the NMC architecture is reduced traffic on the
system bus, which saves both clock cycles and energy. The C-SRAM also has a
wide 128-bit connection to its memory, meaning it needs to make fewer requests
to the memory to access the same data compared to using the much narrower
system bus.

4.3.1 RTL Simulation

The C-SRAM project already has an established RTL simulation environment
using QuestaSim, which is also used in this work. To simulate the spontaneous
initialization of the SRAM array, the environment has been extended to detect
re-initialization events and load a hex file into the memory. This is accomplished
using the commands when and mem load [30].

When is used to detect events in simulation, in our case, a signal from the
PUF FSM which tells the SRAM to re-initialize. Once such an event is detected,
mem load is used to fill the memory with data dumped from CyberPUF using
writeHex. Another flag in the FSM signals that it has finished, at which point the
key is extracted using examine. The key is then automatically compared to the
key produced in Matlab using the same input to verify that the RTL is correct.
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Chapter 5

Experimental results

As previously discussed, there is significant noise present between different
SRAM initializations, requiring helper functions in order to stabilize the PUF
response. From this stabilized PUF response, which consists of a large array of
data, a key/identifier of some fixed length must be extracted.

5.1 Quality

5.1.1 Nominal
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Figure 5.1: Nominal fHD of reference memory (a) and custom memory (b)

As a baseline to compare the quality of these helper functions against, we
examine the inter- and intra-PUF fHD of the test memories without any helper
functions when considering each 128-bit line of memory a unique PUF, shown in
figure 5.1. The golden bitmaps are created from the TMV over all initializations.
As can be seen from this figure, the custom memory has a slightly lower average
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intra- and inter-PUF fHD, which is likely related to the average HammingWeight,
which is 0.48 for the reference and 0.43 for the custom memory.

The probability distributions show that the custom memory has more bits
that are stable at ’0’ and slightly fewer bits that are stable at ’1’ compared to
the reference. Both memories consistently show more stable bits at ’0’ than ’1’.
Figure 5.2 shows the probability distribution of the first cuts of both memories,
which are representative of the types. The average cell probability for the
reference memory is 48.2% and 45.6% for the custom memory.
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Figure 5.2: P-distribution of reference memory (a) and custom memory (b)

Reference memory Custom memory
0.7V 0.8V 0.9V Mixed 0.7V 0.8V 0.9V Mixed

Intra-PUF 6.17% 6.10% 6.01% 6.59% 5.58% 5.81% 5.57% 6.4%
Inter-PUF 49.94% 49.90% 49.99% 49.91% 47.07% 48.29% 47.47% 47.57%

Table 5.1: Nominal average fHD

When comparing measurements taken at different voltages (shown in tables
5.1, 5.2 & 5.3), we observe that there is little difference between PUF quality
metrics at the different voltages. The reference memory displays better qualities
across all metrics, deviating the least from the ideal 1

2 , likely due to the better
average Hamming Weight.
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Uniformity Aliasing Auto-correlation
Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

0.7V 0.34 0.48 0.65 0.46 0.48 0.52 0.49 0.50 0.51
0.8V 0.33 0.48 0.63 0.45 0.48 0.51 0.49 0.50 0.51
0.9V 0.34 0.48 0.66 0.45 0.48 0.51 0.49 0.50 0.51
Mixed 0.33 0.48 0.65 0.45 0.48 0.51 0.49 0.50 0.51

Table 5.2: Nominal quality metrics for reference memory

Uniformity Aliasing Auto-correlation
Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

0.7V 0.12 0.41 0.61 0.39 0.41 0.44 0.46 0.47 0.49
0.8V 0.16 0.46 0.65 0.42 0.46 0.48 0.47 0.48 0.51
0.9V 0.13 0.43 0.62 0.40 0.43 0.46 0.46 0.47 0.49
Mixed 0.13 0.43 0.61 0.41 0.43 0.46 0.46 0.47 0.49

Table 5.3: Nominal quality metrics for custom memory

5.1.2 Temporal Majority Voting

A conceptually trivial method of reducing noise is simply finding the temporal
majority value for each cell. This requires re-initializing the array an odd
number of times and keeping the value that appears most frequently. It is also
possible to impose minimum requirements for cell stability in order to qualify
for use as key material. In [15], the authors demonstrate how increasing TMV
voting windows reduce intra-PUF Hamming Distance. This form of voting does,
however, require counters for each evaluated cell to keep track of initialization
values, which can be implemented in software as in [15] or in hardware as in [22].
A hardware implementation is preferable in terms of speed but is also costly as
it requires additional circuitry. A software implementation is more cost-effective
but has significant performance overhead as the evaluation of each cell requires
operations beyond simple bitwise operations.

To reduce the complexity of calculating which value appeared most fre-
quently in a given number of initializations, we choose a voting window equal to
2n− 1, where n is some positive integer. This way, when we use an n-bit counter,
the TMV value of the cell will be equal to the value of the MSB in the counter.
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Figure 5.3: Average intra-PUF fHD with TMV (mixed voltage)

Figure 5.3 shows how increasing the TMV voting window reduces the average
intra-PUF fHD from around 6.5% without TMV down to around 0.7% using 127
re-initializations. The results show diminishing returns as the voting window
increases, from an improvement of more than one percentage point when going
from TMV3 to TMV7 to an improvement of less than half a percentage point
when going from TMV63 to TMV127. It is, however, noteworthy that at TMV127,
the average fHD is less than 1/128, meaning in a 128-bit identifier, one can expect
an average Hamming Distance of less than one.
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Figure 5.4: fHD of reference memory (a) and custom memory (b) with TMV127

By using each 128-bit line of memory as a unique PUF, we can evaluate this
theory. Figure 5.4 shows that the most commonly occurring intra-PUF fHD
when using each 128-bit line as an identifier is 0, which occurs around 40% of
the time for both memory types.

26



Experimental results

Uniformity Aliasing Auto-correlation
Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
0.13 0.43 0.60 0.40 0.43 0.46 0.46 0.47 0.49

Table 5.4: Quality metrics for custom memory using TMV127

Table 5.4 shows that the quality metrics of the custommemory using TMV127
is nearly identical to the nominal metrics (table 5.3) when using mixed voltage.
The averages are across the board lower than ideal, and in the case of uniformity,
the minimum is concerningly low. With these metrics, it is likely necessary to
implement some kind of privacy amplification to produce stronger keys.

5.1.3 TMVWith Stability Requirements

As previously mentioned, TMV also allows imposing minimum stability require-
ments on cells, which excludes cells that are too unstable from being used as
key material. When using 2n − 1 votings, we can simplify the comparison into a
bitwise operation by examining if the first m MSBs are equal. For example, if
four bits are used to count (TMV15) and the first two MSBs are ’1’, then the cell
initialized to ’1’ at least 12/15 times, and if both are ’0’, then the cell initialized
to ’1’ at most 3/15 times. Expanding the number of bits to compare (m) will
increase the threshold for stability required to be used as key material. When
m = n the cell would have to always initialize to the same value in order to be
considered as key material, this case will be considered separately in section
5.1.4.

Using an n bit counter (2n − 1 votings) and comparing the first m bits for
equivalence, we can get the following threshold pTh to accept a cell as key
material where cells in the range 1− pTh < β < pTh are rejected:

pTh =
2n(1− 2−m)

2n − 1
{n,m} ∈N > 1;m < n (5.1)

Table 5.5 shows the tested cases and their stability requirements.

n\m 2 3 4 5 6
4 (TMV15) 80% 93.3% - - -
5 (TMV31) 77.4% 90.3% 96.8% - -
6 (TMV63) 76.2% 88.9% 95.2% 98.4% -
7 (TMV127) 75.6% 88.2% 94.5% 97.6% 99.2%

Table 5.5: Stability requirement pTh for n bit counter and m bit equivalence
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Since this process excludes some bits from being used as key material, it
is also necessary to define some method of assembling the remaining bits into
an identifier. A simple method of creating an identifier of some fixed length L
is to just take the first L stable bits found. A drawback of this method is that
misidentifying a bit as stable or unstable will shift all subsequent bits left or
right by one position, meaning we can expect a larger spread in intra-PUF fHD
compared to methods where a miss identification only affects one bit. Testing
shows that this method creates such a large spread in the intra-PUF fHD that
the average is not comparable to the other discussed methods.

Instead, we can define a method of column-wise selection, where we keep
the first bit in each column to meet our stability criteria. This way, a miss
classification of a cell only affects one column. Table 5.6 shows the average
inter-PUF fHD when applying this method. Results show that increasing the
stability threshold decreases the reliability, and this method performs worse
than TMV alone, regardless of the threshold.

n\m 2 3 4 5 6
4 (TMV15) 2.70% 3.76% - - -
5 (TMV31) 1.85% 2.25% 3.49% - -
6 (TMV63) 1.30% 1.56% 2.07% 2.68% -
7 (TMV127) 0.90% 1.10% 1.40% 1.92% 2.95%

Table 5.6: Average intra-PUF fHD using TMV + pTh

5.1.4 Memory Cell Classification

As mentioned in section 5.1.2, there is a special case where only cells that are
completely stable are accepted as key material. While this can be achieved by
counters like in regular TMV, it turns out that it is not necessary to keep track of
how many times each cell initialized to ’1’. Researchers from the University of
Sevilla [31] have presented a method by which cells can be labeled as stable or
unstable without counting, referred to as memory cell classification.

In this method, visualized in figure 5.5, the first initialization of the cells is
recorded, and all subsequent initializations are compared to the first. All cells
have a label that is initially "stable" (’S’), and if the comparison with the first
initialization is ever a mismatch, the label is updated to "unstable" (’U’). During
key generation, we only consider cells that are labeled ’S’. This method requires
only bitwise operations, meaning a large set of cells can be evaluated at once
and requires memory, which is equal to twice the number of cells that are being
evaluated. A drawback of this method is that a large number of cells is likely to
be excluded from use as key material, meaning more memory is needed to find
enough key material.
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Initialize memory

Compare PUF to first init

First init?
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Store PUF values
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Figure 5.5: Process for memory cell classification as described in [31]

Again, we require methods of assembling a key from the cells labeled ’S’.
Like in TMV, simply using the first L stable bits as the key would result in a
huge spread in the intra-PUF fHD, as each misclassification would affect all
subsequent bits. We, therefore, again turn to column-wise bit selection, by
which we achieve the results shown in figure 5.6. These results continue the
trend shown in TMV with stability thresholds, where higher thresholds are less
reliable.
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Figure 5.6: Average intra-PUF fHD when using memory cell classification &
column-wise bit selection (without replacement, mixed voltage)
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Interestingly the Intra-PUF fHD (figure 5.7 ) appears less Gaussian than
nominal and TMV results, though it is unclear what the reason for this is.
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Figure 5.7: fHD of reference memory (a) and custom memory (b) with MCC127
& column-wise bit selection

The quality metrics for MCC, shown in table 5.7, are worse than the nominal
quality metrics and of TMV, with lower averages and minimums. Using this
method, some form of privacy amplification to ensure strong keys is even more
necessary.

Uniformity Aliasing Auto-correlation
Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
0.11 0.41 0.57 0.30 0.41 0.54 0.44 0.47 0.59

Table 5.7: Quality metrics for custom memory using MCC127 & column-wise
bit selection

While these results may be worse than TMV at an equivalent number of ini-
tializations, they also show that it is significantly less computationally complex
and allows the evaluation of more cells per instruction. The exact difference in
terms of time to generate the key will be discussed in section 5.2. Because the
time to generate the key is likely lower at an equivalent number of initializations
we can use a larger number of initializations compared to TMV without increas-
ing the time necessary to create the key. So far, all results have been obtained by
using each measured initialization from the dataset only once. However, when
using large windows, it becomes necessary to use each one multiple times. In
the following results, we therefore choose at random n initializations taken from
the 3000 available, with replacement.
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Results from this experiment, shown in figure 5.8, demonstrate that even at
2047 initializations, this method is still less reliable than TMV at 127 initial-
izations. Unlike in TMV the results improve at an accelerating rate when the
number of initializations increase by an order of magnitude, however since this
is not the case when using small windows it seems likely that this is just an
artifact of using the dataset with replacement.
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Figure 5.8: Average intra-PUF fHD when using memory cell classification &
column-wise bit selection (with replacement, mixed voltage)

Again the intra-PUF fHD (figure 5.9) is less Gaussian than in MCC and
nominal results. The method produces the expected result with no error around
20% of the time for both memories.
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Figure 5.9: fHD of reference memory (a) and custom memory (b) with MCC2047
& column-wise bit selection
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The quality metrics for MCC, shown in table 5.8, seem to improve when
using a larger voting window, both in terms of averages and minimums.

Uniformity Aliasing Auto-correlation
Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.
0.34 0.44 0.55 0.39 0.47 0.57 0.45 0.50 0.54

Table 5.8: Quality metrics for custom memory using MCC2047 & column-wise
bit selection

An interesting question regarding this method is how many lines of memory
are required to find enough key material. By selecting bits column-wise, we are
relying on finding at least one stable bit in each column and are likely discarding
a large number of stable bits as we already selected a bit in that column. In
a memory cell array where a proportion α of cells are stable, we can assume
that the probability of any randomly sampled cell being stable is also α. When
looking at L columns, we could estimate to find L ·α new bits for each row and
requiring 1/α lines to fill all columns. However, this does not account for the
chance of new bits being found in columns that are already filled. Instead, we
can estimate the probability P∅ of having found no stable bits in a column after
examining n rows to be:

P∅ = (1−α)n (5.2)

And when considering L number of columns, we can estimate the number of
columns C∅ where no stable bits have been found after n rows to be:

C∅ = L · (1−α)n (5.3)

As n increases, C∅ will tend towards but never reach zero. Since columns being
filled or not is a discrete event, we can round down to zero once we go below one
in order to find the number of lines where we expect to have filled all columns,
or Lines To Key (LTK):

LTKexpected =
−log(L)

log(1−α)
(5.4)
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Since all the available data sits somewhere around 55% stable bit probability
(α), we use CyberPUF to simulate SRAM arrays with lower stable bit probability.
Figure 5.10 shows a scatter of simulated 256×128-bit arrays with parameters
[α,0,α/2] and the model as a dashed line. In these simulations, the model seems
to give a good picture of how many lines of memory will be required on average
to produce a key.
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Figure 5.10: Expected lines to key vs stable cell probability

The expected Hamming Weight of this method is the number of bits stable at
’1’ divided by all stable bits. As shown in figure 5.2 both memories have more
bits stable at ’0’ than ’1’. For the reference memory, this proportion comes out to
0.47, and for the custom memory, it is 0.43. The actual average HW produced by
the algorithm is 0.47 and 0.41 for the reference and custom memory, respectively.

5.1.5 Column-wise Parity

The fact that Memory Cell Classification using column-wise bit selection requires
an unknown amount of memory to produce a key can pose a challenge, as it is
hard to predict how long it will take to produce a key or even if an array contains
enough stable bits to produce a key or not. Therefore, we propose another
method of assembling our labeled cells into a key, namely column-wise parity.
In this method, we utilize the labels themselves instead of the underlying cell
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value by calculating the column-wise parity of the labels in some fixed number
of rows. We refer to the memory section that is considered as a page, with a
page size of n rows. Again, the probability of any cell being stable is α, and
stable cells are labeled with a ’1’ while unstable cells are labeled with ’0’. The
probability of a column parity being ’1’ is the cumulative probability of finding
an odd number of stable cells in n rows or the complement of the cumulative
probability of finding an even number of stable cells:

HWexpected = 1−

+n/2,
∑

k=0

(

n

2k

)

α2k(1−α)n−2k n ∈N (5.5)

Using this method, we require larger pages the further α is from 50% in order
to have an expected Hamming Weight of 0.5. Figure 5.11 shows the expected
HW vs page size for five different α. The results are symmetric around 0.5
with respect to the difference 0.5 − α, so, for example, HWexpected(α = 0.6) =
1−HWexpected(α = 0.4).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Page size

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
x
p

e
c
te

d
 H

a
m

m
in

g
 W

e
ig

h
t

, = 40%
, = 30%

, = 20%

, = 10%

, = 5%

Figure 5.11: Expected Hamming Weight vs page size for different α
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Page \n 255 511 1023 2047
2 7.45% 6.50% 5.25% 2.55%
4 13.73% 12.09% 9.91% 4.96%

Table 5.9: Average intra-PUF fHD (reference memory) using MCC and column-
wise parity

Results using column-wise parity (table 5.9) shows an increase in inter-PUF
fHD compared to column-wise bit selection, but also an improved intra-PUF
fHD (figure 5.12). The average Hamming Weight also increases compared to
column-wise bit selection, from 0.47 to 0.50 in the reference memory and from
0.41 to 0.495 in the custom memory when using a two-line page. For memories
that have a strong skew in stable cells towards ’1’ or ’0’, this method could be
effective at increasing the entropy. However, increasing the page size, which is
needed to increase HW, also decreases reliability meaning this method is most
suited for memories with an α near 50%.
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Figure 5.12: fHD of reference memory (a) and custom memory (b) with
MCC2047 and column-wise parity (page size 2)

Uniformity Aliasing Auto-correlation
PageSize Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

2 0.38 0.50 0.63 0.47 0.50 0.54 0.49 0.50 0.56
3 0.38 0.50 0.61 0.42 0.50 0.55 0.47 0.50 0.52
4 0.38 0.50 0.62 0.44 0.50 0.55 0.49 0.50 0.52

Table 5.10: Quality metrics for custom memory using MCC2047 & column-wise
parity

The quality metrics using this method (table 5.10) are significantly improved
compared to both of the previous methods. The averages are ideal even using a
page size of only two, and minimums & maximums are also generally better.
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5.2 Hardware Implementation

5.2.1 Memory Cell Classification

For the hardware implementation, we begin with the Memory Cell Classification
method, as it is the simplest to implement. The algorithm (algorithm 1) requires
two helper memory sections, map, and copy, where both are of the same size as
the section of memory we want to analyze. Copy stores the first initialization
of the PUF, to which all subsequent initializations will be compared, while map
stores the labels for stable cells (’S’) or unstable cells (’U’) for all cells. For
simplicity, we use ’0’ to denote ’S’ and ’1’ to denote ’U’ and initialize map to
’0’. This makes it simple to update the labels with the result of the comparison
without needing to invert.

Algorithm 1Memory Cell Classification:

Initialize PUF
for i ∈ [1...size] do

mapi ← 0
copyi ← PUFi

end for
for r ∈ [1...n] do

Initialize PUF
for i ∈ [1...size] do

mapi ← (PUFi · copyi)(mapi
end for

end for

The C-SRAM pipeline (figure 5.13) accesses memory in three of its stages
(DEC, RD1 &WB) but has only a single port memory. Therefore, it is not possible
to issue new instructions each cycle, and any interleaving must be carefully
aligned to avoid attempting two memory accesses in one cycle. This structural
hazard is highly limiting in terms of performance as new instructions can, at
most, be issued every three cycles. To partially address this issue, the C-SRAM
features an internal register of the same width as the memory lines (128-bit),
which can be used as a source and/or destination for operations, reducing the
number of memory accesses per instruction and allowing more efficient use of
the pipeline. Using the internal register for intermediate results reduces the
required cycles per PUF line from six to four.
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DEC RD1 RD2 EX1 EX2 WB

DEC RD1 RD2 EX1 EX2 WB

DEC RD1 RD2 EX1 EX2 WB

DEC RD1 RD2 EX1 EX2 WB

DEC RD1 RD2 EX1 EX2 WB

DEC RD1 RD2 EX1 EX2 WB

DEC RD1 RD2 EX1 EX2 WB

intermediate = PUF XOR copy

map = intermediate OR map

reg = PUF XOR copy

map = map XOR reg

Two instructions per line of PUF, intermediate result written to memory

Two instructions per line of PUF, intermediate result written to internal register

Figure 5.13: Instruction alignment in pipeline

It turns out, however, that there is another way of optimizing the number
of cycles required per line. The C-SRAM has the ability to perform a "masked"
write to the memory, where only the bit positions specified in the mask are
affected. This effectively implements the following logical function:

dest← ((src1 OP src2)'mask)( (dest '¬mask)

Where OP can be any of the available operations in the C-SRAM (bit-wise or
not). By using the result of the operation as the mask and data at the same time,
we can use this feature to implement in a single instruction the logical function:

dest← (src1 OP src2)( dest

This change requires only a small change to the write-back stage of the C-SRAM
and brings the number of cycles required per PUF line down to three. Performing
Memory Cell Classification on p lines of PUF using n initialization then takes
approximately n(3p + t) clock cycles, where t is the number of cycles required to
re-initialize the memory.
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To assemble the labeled bits into a key through column-wise bit selection, we
use a supporting variable f ollow which keeps track of which columns have been
filled. This process is described in algorithm 2.

Algorithm 2 Column-Wise Bit Selection:

f ollow← 0
key← 0
i← 1
while f ollow , 0xf f ..f f do

key← (¬(mapi ( f ollow)' copyi)( key
f ollow←mapi ( f ollow
i← i +1

end while

The column-wise bit selection process takes 14 · l clock cycles, where l is
the number of lines required to find a key. The total time needed to find the
key is dominated by the Memory Cell Classification for a realistic number of
initializations (n), and we, therefore, want to optimize the parameters of this
process. The number of cycles this process takes depends strongly on the size of
the memory that is being examined.

As was shown in figure 5.10, we can expect that only a small portion of the
memory is necessary to find enough stable bits to produce a key. Therefore,
we don’t have to perform the Memory Cell Classification on the entire 128-line
memory. However, evaluating the memory one line at a time will lead to high
overheads in re-initializing the memory. We, therefore, divide the memory into
pages of p number of lines, where if a key is not found within a page, we move
on to the next.
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Figure 5.14 shows the number of clock cycles needed to find a key for com-
binations of lines needed to create the key (l) and various page sizes with and
without FEFI (assuming 100 CCs to re-initialize without FEFI). When using
FEFI, it is, in most cases, better to use a small page size as the overhead of
re-initializing memory is rather negligible. However, without FEFI, it is better
to use a medium or large page size as the cost of re-initializing is substantially
higher.
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Figure 5.14: Clock cycles to key using MCC with (a) and without (b) FEFI

5.2.2 Temporal Majority Voting

To implement TMV in the C-SRAM, we need to arrange the counters in memory
in such a way that we can utilize the vectorialization functionality optimally.
The minimum data size of the C-SRAM is 8 bits, so we will be using this size for
the counters. However, the method could be extended to larger counters at the
cost of performance.

Using 8-bit counters, we require 8 lines of memory for each line of PUF we
evaluate, and we can count up to 255 initializations. In the 128-bit C-SRAM, we
can evaluate 16 cells at once. The counters will be arranged such that the first
line of helper memory stores the counters for each eighth bit starting from one
(b1, b9, ...); the second line stores the counters for each eighth bit starting from
two (b2, b10, ...) and so on. This arrangement is shown in figure 5.15 .
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Figure 5.15: TMV counter arrangement

These groupings of cells will be evaluated together. To perform the counting,
described in algorithm 3, we shift the PUF line so that the cells we are evaluating
are located in the first bit of each byte in the 128-bit word and mask out all other
bits. Each byte will now contain a word representing either one or zero and can
be added directly to the counters.

Algorithm 3 Temporal Majority Voting:

for i ∈ [0...7] do
countersi ← 0

end for
for r ∈ [1...n] do

Initialize PUF
for i ∈ [0...7] do

countersi ← countersi + ((PUFk i)' 0x01..01)
end for

end for

When using the C-SRAM, we require three instructions per line of counters,
and if using the internal register to store intermediate results, we need four
cycles between starting each line. With eight lines of counters, this means we
require 32+t clock cycles per initialization, where t is the number of cycles
to reinitialize the memory. This holds for up to 255 initializations, which is
the maximum we can count using 8-bit data size. To go beyond this would
require expanding to 16-bit counters meaning only half as many cells can be
evaluated per instruction, which would double the number of cycles required
per initialization.
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5.3 Quality and Performance Comparison

With the quality metrics extracted using CyberPUF and the clock cycle per-
formance from the hardware implementation, we can compare the proposed
methods. The quality metrics for temporal majority voting have been demon-
strated to be superior to memory cell classification at an equivalent number
of initializations. However, it was previously hypothesized that using memory
cell classification would be faster for the same number of initializations since
more cells can be evaluated simultaneously. But on the contrary, results from
the hardware implementation show a lower number of cycles being required for
TMV compared to MCC. The reason for this is that more memory needs to be
examined in MCC since we exclude a large number of cells from being used as
key material.

Implementation on the C-SRAM is severely hampered by the use of single
port memory preventing issuing new instructions at every clock cycle. Since
the co-processor accesses memory in three of its six stages, using three-port
(2R1W) memory could improve the performance of MCC by nearly a factor of
three. TMV would not see the same gain with this bandwidth upgrade since it
is more limited by the number of required instructions than by the number of
memory accesses. Even with this speedup in MCC, it is not so clear that it would
be preferable over TMV since reliability at the same number of initializations is
significantly worse. Figure 5.16 shows the quality and clock cycle performance
of the current implementations for a range of re-initializations.
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Figure 5.16: Intra-PUF fHD & Clock cycles to key (Reference memory)
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There are few available implementations to compare against which list the
clock cycle performance of their solutions. However, one point of comparison
is the PUFKY ring-oscillator PUF [32]. In their paper, the authors state that
their designed PUF takes 4.59ms to produce a 128-bit output (regardless of clock
speed) and 55k cycles to perform error correction/fuzzy extraction. To do TMV
with 127 initializations, the proposed implementation takes 4623 clock cycles.
With the C-SRAM operating at 100 MHz this means it would take 46.23µs to
produce a 128-bit key.

But the most relevant point of comparison would be the Synopsys PUF IP,
which is SRAM-based like our implementation. Synopsys does not currently
publish time to key numbers. However, their PUF IP originates from their acqui-
sition of Intrinsic ID, which previously marketed the product QuiddiKey-100. In
a product brief for this product [33], Intrinsic-ID states that the time to root key is
49k-68k cycles, which likely includes error correction/fuzzy extraction. In terms
of reliability, the proposed solution is not comparable to implementations using
error correction, which can likely attain reliability that is better by many orders
of magnitude. However, as previously discussed, this requires an enrollment
phase, which can be costly and potentially present security issues.
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Chapter 6

Conclusion

In this thesis, we have examined the TMV and MCC methods of improving
the reliability of SRAM-based Physical Unclonable Functions to investigate the
feasibility of eliminating the need for an enrollment phase. Out of the methods
for PUF response stabilization examined in this thesis, it is clear that Temporal
Majority Voting provides more reliable results and better performance. Both
methods tested demonstrate good average quality metrics but can, in some cases,
produce unbalanced keys with bad uniformity. To use these methods for security
purposes, it is likely necessary to employ some form of privacy amplification to
increase the strength of the keys.

Within the voting windows which could be tested with the available dataset,
temporal majority voting produced no error around 40% of the time (see figure
5.4), taking around five thousand clock cycles. While this reliability is not ideal,
the time to produce a key is significantly lower than comparable solutions, which
take around fifty thousand cycles, meaning there is room to increase the voting
window for more reliability. However, the gains in reliability seem to diminish
as the voting window increases, making it unclear what kind of numbers can be
obtained by this technique. Memory cell classification yielded worse reliability
and performance than TMV in the current configuration. If the SRAM were
swapped for three-port memory, the required clock cycles would be lower than
that of TMV. Increasing the voting window above 255 would also significantly
reduce the performance of TMV, as the counter size would have to be increased
to 16-bit.

Whether it is feasible to eliminate error correction and enrollment in SRAM
PUFs using this technique comes down to the reliability required and how much
time is available to reconstruct the key. A limiting factor of the experiments
conducted is that all available data is taken at a single temperature, making it
hard to say whether the results represent in-field reliability. How chip aging will
affect reliability has not been addressed in this work.
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Conclusion

Future work on this subject should include a study on privacy amplifica-
tion techniques that can make consistently stronger keys. Since this requires
extracting a larger number of bits from the PUF to be compressed into a key, it
will likely negatively impact reliability and performance. Performing tests in a
larger set of conditions will also be important in qualifying the PUF for use in
embedded applications. This will include extracting data from the memory at
a broader range of voltages and temperatures. Lastly, it could be interesting to
investigate compliance with standards on the subject, such as ISO/IEC 20987
and NIST SP 800-90.
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Appendix A

CyberPUF Function Descriptions

bits2Bytes
1 byteCompressedElement = bits2Bytes(element)

Converts a bit matrix (one cell per index) to a byte matrix (8 cells per index).
Effectively reduces the number of columns by a factor of 8. If the number of
columns in the input is not a multiple of 8 then padding with zeroes will be
applied on the right side of the matrix.

byte2Bits
1 bitExpandedElement = byte2Bits(element)

Converts a byte matrix into a bit matrix, expanding the number of columns by 8.

calculatepMatrix
1 pMatrix = calculatepMatrix(restartBitmaps, delay, figNr)

Finds the average of each cell based on a set of bit matrices. Optional delay
argument can be used for timing accurate simulation, while figNr is used for
plotting the resulting P-matrix.

calcPDistribution
1 [vxDecale, ivyN, sigma, discretey, alpha, beta, gamma] =

calcPDistribution(pMatrix, nBins, figNr, nRestarts,

dlabel)

Returns the p-distribution properties (see createMixedPDistribution of a given
p-matrix. Takes as input and number of bins. Optional arguments are used for
plotting.
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CyberPUF Function Descriptions

createMixedPDistribution

1 [vxDecale,composite,discretey,cf] =

createMixedPDistribution(nBins, alpha, DELTA, deltap,

sigmaP, figNr)

Creates a probability distribution with discrete (p=0 or p=1) and continuous
(0<p<1) parts. Alpha is the proportion of bits in the discrete part and delta delta
is the asymmetry in the discrete part. The proportion of bits with p=0 will be
(alpha + delta)/2 and the proportion of bits with p=1 will be (alpha − delta)/2.
DeltaP is the proportion of bits which are part of the decaying "bumps" at the
edges of the distribution, which has a spread of sigmaP. The remainder of the
bits (1 − alpha − deltaP) will be uniformly distributed in the continuous part.
Note: if sigmaP is 0, then deltaP is set to 0

displayBitmap

1 displayBitmap(figNr, TMV, mode)

Displays a given bitmap. Three available modes: 0-Black and white. 1-Grayscale,
2-White/Gray/Red.

dumpAISTPufPerf

1 dumpAISTPufPerf(LenID, NumID, BitIteration, pufResult,

fout2, verb)

Dumps AIST PUF performance data (see getAISTPufPerf) to a file.

findTMV

1 TMV = findTMV(pMatrix, figNr)

Rounds a given p-matrix to obtain a Temporal Majority Vote bitmap. Optional
figNr argument to plot.

fractionalHD

1 delta = fractionalHD(bitmap, refBitmap)

Returns the fractional Hamming Distance between two bitmaps.

50



CyberPUF Function Descriptions

getAISTPufPerf

1 [pufResult, retArray] = getAISTPufPerf (storeAllPUF, verb)

Returns the quality results of PUF data as described by AIST. The input is a
three-dimensional matrix with dimensions [trials,keys,bits].

getPmatrixFromMixedPDistr

1 combA = getPMatrixFromMixedPDistr(M, N, vxDecale,

continuous, discretey, verb)

Creates a M by N probability matrix based on a mixed P-distribution. Takes as
arguments the rows and columns of the output matrix, and the properties of the
target distribution (see createMixedPDistribution).

hexFile2mem

1 matrix = hexFile2mem(path)

Reads the target .hex file into memory as a bit matrix.

initCyberPUF

1 initCuberPUF

Script to initialize the CyberPUF package. NOTE: clears all variables in the
workspace and closes all figures when executed.

mapBitmap2PhysicalArray

1 ret = mapBitmap2PhysicalArray(bitmap, muxf)

Rearranges a bitmap from [rows,cols] to [rows/muxf ,cols ·muxf ]. Can be used
to reconstruct data read from a bus which is narrower than the array.

printPUFInfo

1 [nbOfKeys, keyLength, nTrials] = printPUFInfo(storeAllPUF,

verb)

Returns the number of keys, word length, and number of trials in a dataset
arranged as [trials,keys,bits].
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CyberPUF Function Descriptions

selectOneBitmap

1 ret = selectOneBitmap(array,index)

Returns the bitmap at index from array.

simulateMatrices

1 [combA, vxCheck2, vyCheck2, discyCheck2, alphaCheck2,

uLevelCheck2, deltaPCheck2] = simulateMatrices( pMatrix

, nRestarts, nBins, figNr)

Simulates SRAM initializations based on a probability matrix. Takes as argu-
ments the target P-matrix and the number of restarts to simulate. Optional
arguments are used to plot the distribution. Returns a set of bit matrices and the
properties of the resulting distribution (see createMixedPDistribution).

writeHex

1 status = writeHex (fname, B, Baddr, verb, headerFilePath)

Exports a byte matrix (see bits2Bytes) as a .hex file. Takes as argument a path
including the file name for the output, and a byte matrix. Optional argument
include a list of addresses to output (default is 0...Nrows-1), verbosity, and a
path to a header to include in the output file. Loading the hex file in Questasim
requires a header specifying the format, addressradix, dataradix, version, and
wordsperline. Returns the status of the operation (0 if successful, else -1).
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