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Abstract

This thesis aims to describe the Flight Path Reconstruction (FPR) process based
on flight test data of a new lightweight, multi-purpose helicopter. FPR is a proce-
dure that must be performed during the system identification process to increase
the quality of measured data and ensure a more reliable aerodynamic parame-
ter estimation. The thesis aims to determine an error model for several aero-
dynamic sensors by comparing the measured aerodynamic parameters with the
reconstructed flow angles.

The first phase of the project involved pre-processing the available flight test
data. First, it was necessary to select which signals, among all that were recorded,
were of interest to the project. Subsequently, those signals have been converted
into MATLAB tables as all the scripts used are written in MATLAB language.
Some signals required additional conversion as they were coded in ARINC 429 pro-
tocol. The next step of the work involved slicing data from every flight into single
manoeuvres, these were then categorised based on the type, speed and altitude.

The second part of the thesis focuses on Flight Path Reconstruction, a lengthy
and iterative process that makes extensive use of the Output Error Method.

The project was conducted during an exchange program at ZHAW (Zurich
University of Applied Sciences) in Winterthur, Switzerland, from April to June
2024. This thesis is part of a wider project whose main goal is to develop a high-
fidelity simulation model.
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Chapter 1

Introduction

1.1 WHeSI

TheWHeSI (White-box Helicopter System Identification) project is a collaboration
between the Swiss helicopter manufacturer Kopter and the Centre for Aviation
(ZAV) of the Zurich University of Applied Sciences (ZHAW). The project’s scope
is to develop a high-fidelity simulation model of Kopter ’s brand new helicopter,
AW09.

The model will then be used to support the rotorcraft’s design and certification,
reducing the time and costs associated with flight testing. In order to achieve
the fidelity level required for such an application, a fully physics-based, non-linear
model is required, whose parameters are estimated with an innovative time domain
system identification approach [9].

The thesis is the result of the work done in collaboration with the flight me-
chanics department of the ZAV within the framework of this project.

1.2 Thesis scope

Aircraft system identification is a lengthy and complex process. Starting from raw
flight test data, several steps must be completed to check for any incompatibility
between the recorded signals [1]. This enables us to increase the data quality and
check for any errors that could invalidate subsequent analyses, mainly, parameter
estimation.

One technique, called Data Compatibility Check or Flight Path Reconstruction
(FPR), consists of comparing the measured aerodynamic signals with the flow
angles obtained from the numerical integration of a set of kinematic equations. The
inputs of these equations are the signals recorded by the inertial measurement unit,
considered more reliable than the aerodynamic signals. This comparison enables
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us to determine any systematic instrument error of the aerodynamic sensors [2].
The scope of this master’s thesis is to perform a preliminary Flight Path Re-

construction on the data obtained in several flight tests conducted during 2024.
The FPR framework of the ZAV was already tested for fixed-wing aircraft dur-
ing previous theses ([3] and [4]), this work aims to adapt and update the existing
framework to the new rotary-wing project.

The end goal of the thesis is to obtain an estimate of the error models of
the aerodynamic sensors mounted on the helicopter. The results obtained from
the work will then be used as a starting point for a more detailed flight path
reconstruction on future flight test campaigns.
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Chapter 2

Test Aircraft and instrumentation

2.1 Kopter AW09

Kopter’s AW09 is an innovative single-engine helicopter capable of carrying up to
8 passengers and 1 pilot, thanks to its composite structure it has a Maximum Take-
Off Weight of about 3000 kg. The light weight, combined with the single turbine
engine, results in remarkable performances in terms of range and endurance as
reported in table 2.1. The mounted engine is the Safran Arriel 2K turbine engine,
capable of producing 1000 shaft horsepower, the propulsive system also features
a dual channel FADEC system for improved performance and engine monitoring.
Noise levels and vibrations are reduced thanks to the 5-blade composite main rotor
and the 10-blade shrouded tail rotor, which also increases safety during ground
operations. The avionic system is of the latest generation with a full glass cockpit
equipped with Garmin G3000H. The AW09 is suited for a broad range of missions,
such as utility, passenger transport, Emergency Medical Services and security. The
modular design of the cabin allows for quick conversion from one configuration to
another [10][11].

The aircraft involved in the flight test campaign from which all the data was
derived is registration HB-ZXD, based in Mollis airport in the Canton of Glarus,
Switzerland (figure 2.1).

2.2 Flight Test Instrumentation

2.2.1 Air Data Boom

Aerodynamic signals were measured through an Air Data Boom (ADB) attached
to the cockpit structure on the lower front part. The positioning allows to obtain
measurements not affected by the downwash of the main rotor, especially during
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Figure 2.1: Test helicopter HB-ZXD [Kopter ]

forward flight when the rotor wake is transported backwards by the relative wind.
A standard 5-hole probe measures static and total air pressure, as well as the

differential pressures needed for the computation of the Angle of Attack and the
Angle of Sideslip. A separate sensor measures the Total Air Temperature. The
raw data is then fed to a microprocessor that computes the aircraft’s altitude,
airspeed and rate of climb. Table 2.2 describes the ranges and accuracies of the
Air Data Boom.

The ADB assembly can be seen in figure 2.2. The probe is mounted at the
end of a supporting structure connected to the cockpit through an adjustable
bracket, allowing for incidence variation. Two lateral rods support the main one
maintaining the probe in the symmetry plane of the helicopter.

2.2.2 Inertial Measurement Unit

Linear accelerations, rotational rates and Euler angles were measured by the
IMU of the ADAHRS unit, located almost in the symmetry plane of the heli-
copter. Other inertial measurements were collected for comparison from the Elec-
tric Standby Instrumentation System and the Garmin equipment.

4



Figure 2.2: Air Data Boom assembly [Leonardo]

Feature Value Unit

Length 13.3 m
Height 3.74 m
Rotor diameter 10.96 m
MTOW 2850 kg
MTOW with external load >3000 kg
Power 750 kW
Range 800 km
Endurance 5 h
Maximum speed 260 km/h
Capacity 8+1 -

Table 2.1: Summary table of AW09 characteristics

Parameter Range Unit Accuracy

Static pressure 238-1080 hPa < 0.2% FS
Calibrated Airspeed < 350 kn < 0.5% FS
Angle of Attack ±25 ◦ < 0.5◦

Angle of Sideslip ±25 ◦ < 0.5◦ above 60 kn CAS
< 0.3◦ above 100 kn CAS

Table 2.2: Air Data Boom characteristics
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Chapter 3

Theoretical background

3.1 System Identification

In the broad realm of the mathematical modelling problem, system identification
is the discipline that aims to obtain a model of the real physical system based on
measured inputs and outputs of the system itself. The goal of the identification
process is to obtain a mathematical model of the physical system, usually written
as: {

ẋ = f(x(t), u(t)|Θ)

y = g(x(t), u(t)|Θ)
(3.1)

where x, y and u are the state, output and input vectors respectively, f and g are
the mathematical functions and Θ is the unknown parameter vector.

Mathematical models can be classified into white-box or behavioural models
and black-box or phenomenological models, the term grey-box model is often used
when the two approaches are combined. Behavioural models are derived from the
system’s physics and result in a set of differential equations whose parameters
represent the system’s real physical characteristics. Phenomenological models in-
stead describe the system’s behaviour as a set of cause-effect relationships and the
system parameters are not related to any physical entity.

Once the mathematical model is obtained, the unknown parameters Θ can
be estimated by comparing the measurements z (from the real system) with the
outputs y, computed by numerical simulation of the mathematical model given the
inputs u. Depending on the fidelity level of the model and the errors affecting the
measurements, z and y are different to some extent as a perfect correspondence is
impossible.

After parameter estimation, the model must be validated to determine if the
requirements are met, if not, the process must be repeated [2].
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3.1.1 Aircraft system identification

In the aeronautical sector, mathematical modelling is used during the design and
certification phases of the project, as well as during training. Time, costs and
risks associated with these processes are greatly reduced if an adequate level of
modelling and simulation is involved.

When applied to fixed-wing and rotary-wing vehicles, the system identification
framework integrates the following three disciplines [2] [5]:

• instrumentation and filters needed to acquire flight data;

• flight test techniques aimed at exciting all the aircraft’s dynamic response
modes;

• analysis of flight test data to accurately estimate the aircraft parameters.

The so-called ‘Quad-M’ requirements are then defined (figure 3.2):

• the input time history must be adequate to excite all modes of the aircraft’s
dynamic Motion;

• the type of the aircraft must be studied to define the structure of the math-
ematical Model;

• instrumentation and filters must produce high-quality Measurements;

• data analysis must be done through proper identification Methods.

3.2 Data compatibility check

The availability of good quality flight test data is crucial to perform a successful
aircraft parameter estimation. First, the flight test campaign must be carefully
planned to enable the extraction of the maximum amount of data from the least

Figure 3.1: System identification scheme, based on [2]
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Figure 3.2: ‘Quad-M’ architecture, based on [2]

amount of flying hours, reducing at the same time costs and risks associated with
testing. The instrumentation must be correctly installed, calibrated and tested
beforehand, to ensure that the data is affected by the minimum amount of cor-
ruption possible. During the tests, the flight crew must perform a predetermined
set of manoeuvres with adequate input signals, while the engineers must check the
data for any problem that may arise and invalidate the tests. A visual inspection
of the data plots is always performed after each flight to spot any major issues,
like wrong sign conventions, data dropouts and excessive noise levels that could
indicate the deterioration of the flight test instrumentation.

After the test campaign is over, compatibility checking aims to improve the
quality of the data by exploiting the redundancy of measurements of the same
variable. The goal is to determine if any systematic errors, like scale factors,
time delays and sensor biases, are present in the measurement instruments. In
particular, aerodynamic variables are compared to the ones reconstructed from
the integration of the kinematic equations of motion to determine the aerodynamic
sensors’ error models. This process is called kinematic compatibility checking (or
Flight Path Reconstruction).
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3.2.1 Kinematic compatibility checking

Aerodynamic sensors have been historically affected by errors of much greater
magnitude than inertial sensors. Starting from measured linear accelerations and
rotational rates, it is possible to integrate the aircraft kinematic equations of mo-
tion (equation 3.2) and reconstruct the aerodynamic variables.

u̇ = (rv − qw)− g sin θ + ax

v̇ = (pw − ru) + g sinϕ cos θ + ay

ẇ = (qu− pv) + g cosϕ cos θ + az

ṗ = −Jz−Jy
Jx

qr + L
Jx

q̇ = −Jx−Jz
Jy

pr + M
Jy

ṙ = −Jy−Jx
Jz

pq + N
Jz

ϕ̇ = p+ q sinϕ tan θ + r cosϕ tan θ

θ̇ = q cosϕ− r sinϕ

ψ̇ = q sinϕ
cos θ

+ r cosϕ
cos θ

ẋ = u cosψ cos θ + v(cosψ sin θ sinϕ− sinψ cos θ)+

+w(cosψ sin θ cosϕ+ sinψ sinϕ
ẏ = u sinψ cos θ − v(sinψ sin θ sinϕ− cosψ cosϕ)+

+w(sinψ sin θ cosϕ− cosψ sinϕ)

ḣ = −u sin θ + v cos θ sinϕ+ w cos θ cosϕ

(3.2)

In detail, the measurements of the rotational rates (p, q, r) and the linear acceler-
ations (ax, ay, az) obtained by the IMU are used to reconstruct the flow velocities
(u, v, w), the Euler angles (ϕ, θ, ψ) and the position of the aircraft (x, y, h). The
state vector must be initialised, either from actual measurements or state estima-
tion. The navigation equations for ẋ and ẏ are decoupled and can be omitted for
simplicity. This was also done because the GNSS measurements were unreliable
and therefore it was impossible to compare the reconstructed position with the
actual one.

Once the state vector is derived, the aerodynamic variables are computed
through:

V =
√
u2 + v2 + w2

α = arctan
w

u

β = arcsin
v

V

q̄ =
1

2
ρV 2

(3.3)

where:
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• V is the airspeed;

• α is the angle of attack (AoA);

• β is the angle of sideslip (AoS);

• q̄ is the dynamic pressure.

• ρ is the air density, computed from static pressure ps and static temperature
Ts:

ρ =
ps
RTs

(3.4)

For each aerodynamic variable, a sensor error model can be written [2]:

ym = Ky(t− τ) · y + by (3.5)

where the subscript “m” stands for “measured” and:

• Ky is the scale factor;

• τ is the time delay;

• by is the bias.

The goal of FPR is to find a value for these parameters that is valid throughout the
entire aircraft envelope. However, the results of FPR are subject to the test data
itself, so the error models will be dependent on the manoeuvres performed during
the test campaign. In this thesis, the time delay τ is assumed to be negligible for
the studied sensors and therefore will not be estimated.

Returning briefly to the state estimation, some assumptions and corrections
must be made. Flow velocities (u, v, w) are estimated from linear accelerations
(ax, ay, az) and rotational rates (p, q, r). However, this is true only if we assume
that the wind is constant both in direction and magnitude as these variables are
defined in the two different reference frames: aerodynamic for (u, v, w) and inertial
for (ax, ay, az) and (p, q, r). Furthermore, linear accelerations must be computed
at the centre of gravity (CoG) as they are measured at the IMU:

ax,CoG = axm,IMU + (q2 + r2)dx,IMU + (pq − ṙ)dy,IMU − (pr + q̇)dz,IMU

ay,CoG = aym,IMU − (pq + ṙ)dx,IMU + (p2 + r2)dy,IMU − (qr − ṗ)dz,IMU

az,CoG = azm,IMU + (pr − q̇)dx,IMU + (qr + ṗ)dy,IMU − (p2 + q2)dz,IMU

(3.6)

where (dIMU
x , dIMU

y , dIMU
z ) are the distances between the IMU and the CoG. The

variables (ṗ, q̇, ṙ) are derived through numerical differentiation of the rotational
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Figure 3.3: Inertial Measurement Unit reference frame

rates (p, q, r). Any sensor misalignment should also be accounted for, however,
it is assumed that any offset is negligible, both for the Inertial Measurement Unit
and the Air Data Boom. In the first case, it is usually possible to achieve a good
level of accuracy during installation while for the ADB, it is virtually impossible
to estimate the misalignment as it is highly correlated with sensor bias. Kopter
already accounts for a misalignment in the symmetry plane of the helicopter that
results in a correction in the Angle of Attack, as shown in figure 3.5. Finally, the
flow velocities estimated at the CoG must be computed at the ADB:

uADB = u− rdy,ADB + qdz,ADB

vADB = v − pdz,ADB + rdx,ADB

wADB = w − qdx,ADB + p · dy,ADB

(3.7)

where (dADB
x , dADB

y , dADB
z ) are the distances between the ADB and the CoG. Finally,

the measurement equations, comprehensive of the error models, are as follows:

Vm =
√
u2 + v2 + w2 (3.8)

αm,ADB = Kα arctan

(
wADB

uADB

)
+ bα (3.9)

βm,ADB = Kβ arcsin

(
vADB√

u2ADB + v2ADB + w2
ADB

)
+ bβ (3.10)

11



Figure 3.4: Air Data Boom reference frame

In conclusion, FPR aims to find the parameters of the error models, the problem
is analogous to parameter estimation and can be solved either with a deterministic
or a stochastic approach, depending on the assumptions made. If the noise in the
input variables is considered negligible, which is the case for accelerometers and
gyros used in this case, a deterministic approach can be used and the states are
estimated through numerical integration of the kinematic equations. The error
models’ parameters are instead estimated through the Output Error Method by
incorporating them into the state-space model:{

ẋ = f(x(t), u(t)|Θ) x(t0) = x0

y = g(x(t)|Θ)
(3.11)

where:

• x = [u, v, w, ϕ, θ, ψ, h]T is the state vector;

• u = [ax, ay, az, p, q, r]
T is the input vector;

• y = [V, α, β, ϕ, θ, ψ, h]T is the output vector;

• Θ = [bα, bβ, bq̄, Kα, Kβ, Kq̄]
T are the unknown parameters to be estimated.

When the noise in the input variables is not negligible a stochastic approach is
preferred involving the Extended Kalman Filter (EKF).

12
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Figure 3.5: Angle of Attack correction

3.3 Output Error Method

The Output Error Method (OEM) is widely used in aircraft parameter estimation
and thus, in Flight Path Reconstruction. The model’s parameters are computed
iteratively to minimise the error between the real measurements and the estimated
outputs (figure 3.6). An optimisation algorithm updates the parameters at every
step, meaning that the process has a high computational cost [2] [5].

3.3.1 Maximum likelihood principle

Among the algorithms that aim to solve the optimisation problem posed by the
OEM, the maximum likelihood principle makes use of probability theory by defin-
ing a likelihood function:

p(z|Θ) =
N∏
k=1

p(zk|Θ) (3.12)

where zk is a vector containing the set of measurements made at timestamp tk, Θ
is the parameter vector and p(z|Θ) is the probability of obtaining z given Θ. The
maximum likelihood method aims to find the vector Θ̂ML that maximises p(z|Θ).

Most probability density functions are exponential so the logarithm of the
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Figure 3.6: Output Error Method scheme, based on [2]

likelihood function can be exploited to achieve the same solution:

Θ̂ML = arg
{
min
Θ

[ln p(z|Θ)]
}

(3.13)

To find Θ̂ML, the gradient of the logarithm must be zero, so a set of nonlinear
equations is obtained:

∂ ln p(z|Θ)

∂Θ
= 0 (3.14)

Depending on the assumptions on p(z|Θ), a cost function J is obtained by
expanding the left term of 3.14. If a Gaussian density probability is assumed, it
can be written as:

J(Θ|R) = 1

2

N∑
k=1

[z(tk)− y(tk)]
T R−1 [z(tk)− y(tk)] +

N

2
ln [det (R)] +

Nny

2
ln (2π)

(3.15)
where:

• z(tk) is the measurement at time tk;

• y(tk) is the estimated output at time tk;

• R is the covariance matrix;
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• N is the number of observations;

• ny is the dimension of the measurement vector.

The value of Θ that gives the highest probability of obtaining the measurements
z is the one that minimises the cost function J [2].

One method used to solve these nonlinear problems is the Gauss-Newton al-
gorithm. After having obtained an expression for the cost function, equation 3.14
can be written as:

∂J(Θ)

∂Θ
= 0 (3.16)

Expanding now the left term through Taylor approximation:(
∂J(Θ)

∂Θ

)
i+1

≈
(
∂J(Θ)

∂Θ

)
i

+

(
∂2J(Θ)

∂Θ2

)
i

∆Θ (3.17)

where ∆Θ is the parameter change vector, given by:

∆Θ = −
[(

∂2J(Θ)

∂Θ2

)
i

]−1(
∂J(Θ)

∂Θ

)
i

(3.18)

The problem is now linear and can be written as:

Θi+1 = Θi +∆Θ F∆Θ = −G (3.19)

where F is the Hessian or information matrix and G is the gradient vector.

3.3.2 Fitlab

During this thesis, Flight Path Reconstruction was implemented through Fit-
lab, a MATLAB tool developed by the German Aerospace Research Centre DLR
(Deutsches Zentrum für Luft- und Raumfahrt).

Fitlab takes as input:

• aerodynamic measurements;

• inertial measurements, such as linear accelerations and rotational rates;

• the set of kinematic equations of motion of the aircraft;

• the vector parameter to be estimated

The vector parameter is initialised setting the biases to 0 and the scale factors to
1 while the states are initialised from the measurements. The state equations are
then numerically integrated and the aerodynamic measurements are estimated,
the Gauss-Newton method is used to compute the parameter change vector ∆Θ
to reduce the error between measurements and the reconstructed aerodynamic
variables. The process is repeated until the maximum number of iterations is
reached or until the relative change of the cost function is below a certain threshold.
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Figure 3.7: Sign conventions

3.4 Conventions

This thesis follows the same conventions as the WHeSI project, which are consis-
tent with standard helicopter flight mechanics [6]. Figure 3.7 shows the reference
frames used and the resulting sign conventions.

As per the control inputs, the AW09 has a clockwise rotating main rotor, so a
positive pedal input ηp must create a clockwise yawing moment to counteract the
counterclockwise torque of the main rotor. The remaining controls have standard
sign conventions, positive collective increases the pitch of the blades and results
in a gain of altitude, positive longitudinal cyclic pitches the aircraft forward while
positive lateral cyclic induces a right-hand roll.
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Chapter 4

Data processing

In the first half of 2024, Kopter conducted a test campaign around Mollis Airport
with HB-ZXD. During each flight, the telemetry was transmitted in real-time to
the ground station where it was stored in TDMS files. A test log was also manually
updated with the tasks performed by the helicopter.

As the test campaign was not conducted for system identification purposes, only
some tests contained useful data for Flight Path Reconstruction. After reviewing
the test logs, 12 flights were selected based on the manoeuvres performed in each.

Once the data was received, several tasks were carried out to prepare it for
Flight Path Reconstruction. The FPR framework is coded entirely on MATLAB
so the files were first converted to MATLAB timetables and then broken down
into short segments each containing a single manoeuvre.

4.1 Conversion from TDMS to MATLAB

timetable

4.1.1 TDMS files

Technical Data Management Streaming (TDMS) is a file format developed by
National Instruments (NI) that allows for consistent and organised data storage
[12].

TDMS files are hierarchically organised into three levels, at the top there is
an object that holds information about the file, like the title or the author. The
data is then categorised into groups (second level) and each signal is stored in a
channel (third level). A path can be used to access the signals, it consists of a
unique string that contains the names of the group and the channel. Each level
has several objects that can store useful information, such as the sample rate, the
number of samples or the data format.
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Figure 4.1: TDMS file internal structure

Using DIAdem (NI software), the TDMS files were analysed to determine how
the signals were grouped and which signals were useful to the purpose of this thesis.
By discarding the unwanted signals it was possible to reduce significantly the size
of the files and the time needed for conversion. Only the channels whose names
contained these keywords were kept:

• ‘ADAHRS’, ‘ESIS’ and ‘GIA’ for inertial measurements coming respectively
from the Air Data Attitude Heading Reference System, Electronic Standby
Instrument System and the Garmin G3000 instruments;

• ‘NB’ for aerodynamic measurements recorded by the Nose Boom;

• ‘HC’ for weight and balance parameters;

• ‘CNT’ for control inputs measured as collective, cyclic and pedal deflections.

Note that the signals coming from the ESIS and the Garmin G3000 were selected
only as references for the ADAHRS as a means of preliminary data compatibility
check [5] but were not used for FPR purposes.

Two files were available for each test flight, one labelled as ‘raw’ and the other
as ‘processed’. In the latter, the signals were upsampled and some corrections
were applied, introducing time delays that could impact subsequent analysis, on
the other hand, some of the selected channels were present exclusively in this
file. Because of the possible corruption of the ‘processed’ data, it was decided to
use the ‘raw’ file whenever possible and extract only the missing signals from the
‘processed’ file.

Tables A.1.1 to A.1.6 show the extracted signals and their parameters.
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Figure 4.2: ARINC 429 binary (BNR) data structure

4.1.2 ARINC decoding

Special attention was given to some signals coming from the ESIS and the Garmin
instruments, labelled as ‘ESIS/GIA1/2 ARI LABEL XXX RAW’, where XXX is
a three-digit label. As the name suggests, these signals were encoded through the
ARINC 429 protocol and had to be decoded prior to use. All useful signals were
binary coded (BNR) in a 32-bit sequence (figure 4.2) with the following format [7]:

• bits 1 to 8 when converted to the octal base yield the three-digit label of the
signal;

• bits 9 and 10 are the source/destination identifiers (SDI) bits;

• bits 11 to 28 contain the data;

• bit 29 is the sign bit;

• bits 30 and 31 are the status bits;

• bit 32 is a parity bit to detect any error.

The latter is the most significant bit so the sequence must be flipped before de-
coding.

The encoded data is stored in N significant bits (with N varying among differ-
ent signals) and must be converted from binary to decimal base. Once a decimal
number is obtained, it must be multiplied by the value of the least significant bit
vLSB, also called the resolution of the signal. This value depends on the range of
values R that the signal may adopt and the number of significant bits N according
to the following relationship:

vLSB =
R

2N
(4.1)

A brief example of the decoding process will now be presented for one times-
tamp of the channel ‘GIA2 ARI LABEL 325 RAW’ :

1 00 1 111111001110000000 00 10101011
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first, the label must be verified, flipping the last 8 digits and converting to octal
base:

10101011 ⇒ 110101012 ⇒ 3258 (4.2)

which is correct and according to the label-to-signal table in [7], 325 is the label
assigned to the roll angle ϕ. Moving on to the data sequence, again the bits must
be flipped and converted to the decimal base:

111111001110000000 ⇒ 0000000111001111112 ⇒ 185510 (4.3)

this value must be scaled to account for range (R = 180◦ for roll angle) and
significant bits (N = 14):

|ϕ| = 1855 · 180
◦

214
= 20.38◦ (4.4)

The sign bit is 1 (negative) so the roll angle at the instant of measuring is ϕ =
−20.38◦.

4.1.3 Conversion to MATLAB timetable

Once all the signals were in a consistent format, the script TDMStoMAT.m was
executed to create a single MATLAB timetable containing all channels. The first
step of the process aimed to sync the various signals as start and end times varied
slightly among channels and each piece of equipment has a different sample rate.
A master time vector was then created, starting at the latest start time and ending
at the earliest finish time, rounded respectively up and down to the nearest second.
The sample rate was set to 100 Hz (the same as the ADAHRS signals) and each
signal was linearly interpolated and added to the master timetable.

After the conversion process, it was possible to perform a preliminary data
compatibility check through visual inspection. As stated in chapter 3, this is a
quick and easy way to spot any major discrepancy, like different sign conventions
or units of measurement. The ESIS and Garmin instrumentation measurements
were of particular use as they were used for comparison, figure 4.3 shows the
attitude measurements for the three channels.

4.2 Flight test data slicing

As it will be clear in chapter 5, dividing each flight into single manoeuvres is
necessary to perform FPR. This process was performed by manually comparing
the flight logs to the plots of the extracted signals. The start and end timestamps
of each manoeuvre were then stored in an Excel datasheet (Manoeuvre Cut.xslx),
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Figure 4.3: Attitude measurements of ADAHRS, ESIS and GARMIN instruments

as well as the name of the manoeuvre and the speed and altitude at the beginning
of the flight segment. This task was performed for each flight obtaining a total of
196 manoeuvres, a summary of which can be seen in table 4.1.

A MATLAB function (cutToManoeuvres.m) was then used to break down the
data from an entire flight test into single segments following the timestamps listed
in the spreadsheet Manoeuvre Cut.xslx. A 2-second offset was applied both to
the start and end of the segment for better visualisation, this parts were however
not included in the FPR process.

Each manoeuvre was stored in a file, named to include several information,
such as the flight test number, an incremental manoeuvre ID, the name of the ma-
noeuvre and the initial speed and altitude. This allowed to filter effectively the ma-
noeuvres later on in the FPR process. For example, FID 107.MID 0025.Alt 4000.

S 110.Mnvr BtB.m is a MATLAB timetable of a bank-to-bank manoeuvre per-
formed during flight 107 at 4000 ft and 110 kt, this is the 25th identified manoeuvre
of the flight.

After analysing the data, the following manoeuvres were identified:

• Bank-to-bank rolls usually from 30◦/45◦ to −30◦/−45◦;

• Collective and cyclic frequency sweeps;

• Lateral directional modes oscillations;
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Manoeuvre Keyword Amount Cumulative time

Bank-to-bank BtB 9 00:09:57
Collective sweeps ColSw 2 00:00:56
Lateral cyclic sweeps LatSw 2 00:00:57
Lateral-directional oscillations LDO 51 00:29:35
Longitudinal cyclic sweeps LngSw 2 00:01:13
Steady Heading Steady Sideslip SHSS 46 00:20:55
Turn Trn 68 00:54:09
Turn on one control (cyclic) To1cCy 8 00:06:56
Turn on one control (pedal) To1cPd 8 00:04:28

Total 196 02:09:06

Table 4.1: Summary of identified manoeuvres

• Steady heading steady sideslip flight;

• Turns, including steady-state, windup and on one control (pedal or lateral
cyclic).

Figure 4.4 shows the plots of various signals from a lateral cyclic frequency
sweep manoeuvre.
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Figure 4.4: Manoeuvre example (frequency sweep)
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Chapter 5

Flight Path Reconstruction

5.1 FPR workflow

The Flight Path Reconstruction process is iterative and consequently requires
much time and computational power. The error model parameter estimation is
performed for one type of manoeuvre at a time, at each step, the new values are
estimated starting from the results obtained for the previous manoeuvre. If the
parameters change significantly, the process must be restarted until an adequate
fit of all manoeuvres is reached. The chosen sequence is shown in figure 5.1. First,
climb segments and Steady Heading Steady Sideslip manoeuvres are reconstructed
to explore a good range of AoA and AoS. Subsequently, manoeuvres with a higher
dynamic content are analysed: lateral-directional oscillations, turns on one con-
trol and control input frequency sweeps. For each manoeuvre, one error model is
estimated at a time, first for α, then β and finally TAS. After several tries, it
was deemed necessary also to implement an error model for the accelerometer to
match the measurements better.

Figure 5.1: Manouevres sequence
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5.2 Error models

5.2.1 AoA correction

The angle of attack error model is straightforward, it is supposed that the AoA
sensor has a bias b and a scale factor K:

αm = Kααc + bα =⇒ αc =
αm − bα
Kα

(5.1)

5.2.2 AoS correction

The error model for the angle of sideslip is analogue to the one of the AoA:

βm = Kββc + bβ =⇒ βc =
αm − bα
Kα

(5.2)

5.2.3 TAS correction

On aircraft, true airspeed is not measured directly but computed from pressure
measurements. The error model is therefore applied to the dynamic pressure,
once the measurement is corrected, the true airspeed can be computed from the
corrected Mach number:

Mc =

√
2

γ − 1

[(
q̄c
ps

)
+ 1

] γ−1
γ

− 1 =⇒ TASc =
Mc

c
(5.3)

Once the dynamic pressure measurement is corrected, the true airspeed can be
computed from the corrected Mach number:

q̄m = Kq̄ q̄c + bq̄ =⇒ q̄c =
q̄m − bq̄
Kq̄

(5.4)

5.2.4 Linear accelerations measurement

The error model of the accelerometer only includes biases:
ax,m = ax,c + bax,m =⇒ ax,c = ax,m − bax,m
ay,m = ay,c + bay,m =⇒ ay,c = ay,m − bay,m
az,m = az,c + baz,m =⇒ az,c = az,m − baz,m

(5.5)
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Figure 5.2: Filter effect on IMU measurements

5.3 FPR process

As already stated in chapter 3 the parameter estimation was carried out through
Fitlab, a MATLAB tool developed by the DLR for aircraft parameter estimation.

The input vector contains the linear accelerations and rotational rates, both
measured by the IMU inside the ADAHRS unit.

u = [ax, ay, az, p, q, r] (5.6)

These variables were preventively filtered through a low pass filter to reduce high-
frequency noise that could invalidate the numerical integration, figure 5.2 shows
the filter’s effect.

The output vector contains the aerodynamic variables, the Euler angles and
the altitude:

y = [TAS, α, β, ϕ, θ, ψ, h] (5.7)

The parameters of the error models are in the vector Θ:

Θ =
[
bα, Kα, bβ, Kβ, bq̄, Kq̄, bax , bay , baz

]
(5.8)

First, the aircraft kinematic equations are initialised from aerodynamic mea-
surements. True Air Speed, AoA and AoS are corrected by applying the inverse

26



formula of 5.1, 5.2 and 5.4:

αc =
αm − bα
Kα

βc =
βm − bβ
Kβ

q̄c =
q̄m − bq̄
Kq̄

=⇒ Mc =

√
2

γ − 1

[(
q̄c
ps

)
+ 1

] γ−1
γ

− 1 =⇒

TASc =
Mc

c

(5.9)

Flow velocities at the Air Data Boom are then computed through simple trigono-
metric relations: 

uADB = TASc cosαc cos βc

vADB = TASc sin βc

wADB = u tanαc

(5.10)

To initialise the state vector, the flow velocities must be computed at the centre
of gravity. The inverse formula of equation 3.7 must be applied:

uCoG = uADB + r · dy,ADB − q · dz,ADB

vCoG = vADB + p · dz,ADB − r · dx,ADB

wCoG = wADB + q · dx,ADB − p · dy,ADB

(5.11)

The altitude is also initialised from the static pressure measurement, meanwhile the
Euler angles are initialised from ADAHRS measurements. For each measurement,
the mean of the first 5 samples of each variable is computed to obtain the initial
condition vector.

x0 = [u0,CoG, v0,CoG, w0,CoG, ϕ0, θ0, ψ0, h0] (5.12)

Once the state vector is initialised, linear accelerations are corrected for their
biases and the kinematic equations of motion (equation 3.2) are integrated through
the forward Euler numeric method, obtaining the state vector estimation for the
duration of the selected manoeuvre. The estimated velocities need to be computed
at the ADB: 

uADB = uCoG − r · dy,ADB + q · dz,ADB

vADB = vCoG − p · dz,ADB + r · dx,ADB

wADB = wCoG − q · dx,ADB + p · dy,ADB

(5.13)
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The aerodynamic variables are then obtained from trigonometric relations:
TAS =

√
u2ADB + v2ADB + w2

ADB

α = arctan wADB

uADB

β = arcsin vADB

TAS

(5.14)

To compare the measured and estimated aerodynamic variables, the error model
must be applied again:

αr = Kαα + bα

βr = Kββ + bβ

M =
TAS

c
=⇒ q̄ = ps

[(
1 +

γ − 1

2
M2

) γ
γ−1

− 1

]
=⇒

q̄r = Kq̄ q̄ + bq̄ =⇒ Mr =

√
2

γ − 1

[(
q̄r
ps

)
+ 1

] γ−1
γ

− 1 =⇒ TASr =Mr · c

(5.15)
Once the reconstructed variables vector is computed, the Output Error Method

is applied and an iterative optimization algorithm adjusts the unknown parameters
until the error between measurements and reconstructed variables is minimised.
The algorithm is stopped when the relative change in cost J is below 1e− 06, the
maximum amount of iterations was set to 50, but it was never reached.

5.4 Results

5.4.1 Error models

The error models’ parameters for angle of attack, angle of sideslip, true airspeed
and linear accelerations are shown in tables 5.1, 5.2, 5.3 and 5.4.

Parameter Value

bα -1.4316◦

Kα 0.913

Table 5.1: Angle of Attack error model parameters

Figures 5.3 to 5.6 show the variables’ match and their residuals before and after
applying the error model for one of each manoeuvre.
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Parameter Value

bβ -4.2417◦

Kβ 0.792

Table 5.2: Angle of Sideslip error model parameters

Parameter Value

bq̄ 236.34 Pa
Kq̄ 0.615

Table 5.3: Dynamic pressure error model parameters

Parameter Value

bax 0.505 m/s2

bay 0.019 m/s2

baz -0.049 m/s2

Table 5.4: Accelerometer error model parameters

5.4.2 Climbs

During climbs the helicopter gains altitude while in a trimmed condition. The
pitch is maintained constant and the bank angle is almost zero. Figure 5.7 shows
the difference between measured and reconstructed variables for five climbs. As
expected, the estimated Euler angles match perfectly, while the reconstruction
accuracy of the aerodynamic variables varies. Overall, TAS reconstruction is
solid, but the same can’t be said for AoA and AoS, whose reconstruction presents
a drift in almost every manoeuvre. Altitude gain ∆h is reproduced with adequate
fidelity.

5.4.3 Steady Heading Steady Sideslips

During a Steady Heading Steady Sideslip manoeuvre the pilot maintains a con-
stant sideslip by pointing the helicopter’s nose at an angle to the relative wind.
FPR results for this manoeuvres are visible in figure 5.8. The model fails to prop-
erly reconstruct the angle of sideslip β, showing an almost constant drift in one
direction or the other, depending on the sign of the AoS. AoA and TAS fits are
mostly adequate, with some exceptions. Climbing and descending SHSS manoeu-
vres are shown in figure 5.9 and 5.10, the same comments can also be applied to
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these conditions. In some cases, where the absolute values of β are lower, the
reconstruction is better. The model also struggles to reproduce altitude loss.

5.4.4 Lateral-directional oscillations

LDOs were performed almost exclusively during climbs, the pilot induced the
oscillations through a sinusoidal lateral cyclic input to excite the dutch roll mode
and evaluate the aircraft’s handling capabilities. As can be seen in figure 5.11, the
reconstructed angle of sideslip and angle of attack match the measured flow angles
for most of the cases but some amplitude damping can be seen for β. For TAS,
the overall trend seems to be reproduced correctly, while high frequency variations
are not.

5.4.5 Turns on one control

To achieve a coordinated turn, the pilot must input both lateral cyclic and pedal.
If this is not the case, a sideslip angle β is developed. Flight path reconstruction of
turns on one control (figure 5.12) is adequate for AoS while AoA oscillations seem
to be amplified. The last manoeuvre is an outlier for every variable, indicating
that external conditions may be the reason for the bad match.

5.4.6 Control input frequency sweeps

Two sets of cyclic and collective frequency sweeps were performed during the test
campaign. In these manoeuvres, the pilot increased the frequency of one input at a
time to evaluate the aircraft’s response. A plot containing the FPR results is shown
in figure 5.13. The angle of sideslip reconstruction is good in some cases, while
AoA oscillations are amplified as was the case for the previous manoeuvre. TAS
has a constant negative drift, all the frequency sweep manoeuvres were recorded
during the same flight, this could indicate that external factors are the cause of
the anomalous behaviour.
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Figure 5.3: Matching plot without error model, blue: measured, red: reconstructed
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Figure 5.4: Residuals plot without error model
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Figure 5.5: Matching plot with error model, blue: meas., red: recon.
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Figure 5.6: Residuals plot with error model
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Figure 5.7: Matching plot for climbs, blue: meas., red: recon.
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Figure 5.8: Matching plot for SHSS, blue: meas., red: recon.
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Figure 5.9: Matching plot for climbing SHSS, blue: meas., red: recon.
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Figure 5.10: Matching plot for descending SHSS, blue: meas., red: recon.
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Figure 5.11: Matching plot for LDOs, blue: meas., red: recon.
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Figure 5.12: Matching plot for To1C, blue: meas., red: recon.
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Figure 5.13: Matching plot for frequency sweeps, blue: meas., red: recon.
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Conclusion

As already stated, flight path reconstruction is a crucial step in aircraft test data
analysis and system identification. The objective of this thesis was to build a
solid base for future FPR activities, not to find a perfect fit, practically impossible
nevertheless. Considering that system identification was not the main goal for the
test campaign, that the ADAHRS is designed as part of the flight instrumentation,
not as a flight test data recording unit, and finally, that the wind is supposed
constant, the fit achieved can be considered satisfactory.

Attempts were made to further refine the model by including cross-dependency
between the variables, however, they were unsuccessful. Future works regarding
FPR on new test data of the Kopter AW09 will be conducted with more accurate
and suited instrumentation that will certainly help to fill the gaps that are left
from this work.
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Appendix

A.1 Signals

Channel name Signal Unit Sample rate

‘ADAHRS ARI ACC HCX’ Long. accel. g 100 Hz
‘ADAHRS ARI ACC HCY’ Lat. accel. g 100 Hz
‘ADAHRS ARI ACC HCZ’ Vert. accel. g 100 Hz
‘ADAHRS ARI ANG MAGHEAD’ Heading (magn.) ◦ 50 Hz
‘ADAHRS ARI ANG PIT’ Pitch angle ◦ 100 Hz
‘ADAHRS ARI ANG ROL’ Bank angle ◦ 100 Hz
‘ADAHRS ARI ARR PIT’ Pitch rate °/s 100 Hz
‘ADAHRS ARI ARR ROL’ Roll rate °/s 100 Hz
‘ADAHRS ARI ARR YAW’ Yaw rate °/s 100 Hz

Table A.1.1: ADAHRS signals

Channel name Signal Unit Sample rate

‘ESIS ARI ANG PITCH’ Pitch angle ◦ 41.67 Hz
‘ESIS ARI ANG ROLL’ Bank angle ◦ 41.67 Hz
‘ESIS ARI ANG MAGHEAD’ Heading (magn.) ◦ 41.67 Hz
‘ESIS ARI LABEL 326 RAW’ Pitch rate °/s 83.33 Hz
‘ESIS ARI LABEL 327 RAW’ Roll rate °/s 83.33 Hz
‘ESIS ARI LABEL 330 RAW’ Yaw rate °/s 83.33 Hz
‘ESIS ARI LABEL 331 RAW’ Long. accel. m/s2 83.33 Hz
‘ESIS ARI LABEL 333 RAW’ Lat. accel. m/s2 83.33 Hz

Table A.1.2: ESIS signals
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Channel name Signal Unit Sample rate

‘GIA1 ARI LABEL 324 RAW’ Pitch angle ◦ 20 Hz
‘GIA1 ARI LABEL 325 RAW’ Roll angle ◦ 20 Hz
‘GIA2 ARI DST RADALT’ Altitude (radar) ft 10 Hz
‘GIA2 ARI LABEL 103 RAW’ Heading (GNSS) ◦ 10 Hz
‘GIA2 ARI LABEL 313 RAW’ Heading ◦ 10 Hz
‘GIA2 ARI LABEL 315 RAW’ Wind speed m/s 10 Hz
‘GIA2 ARI LABEL 316 RAW’ Wind angle ◦ 10 Hz
‘GIA2 ARI LABEL 324 RAW’ Pitch angle ◦ 10 Hz
‘GIA2 ARI LABEL 325 RAW’ Roll angle ◦ 10 Hz
‘GIA2 ARI LABEL 326 RAW’ Pitch rate °/s 10 Hz
‘GIA2 ARI LABEL 327 RAW’ Roll rate °/s 10 Hz
‘GIA2 ARI LABEL 331 RAW’ Long. accel. g 10 Hz
‘GIA2 ARI LABEL 332 RAW’ Lat. accel. g 10 Hz
‘GIA2 ARI LABEL 333 RAW’ Vert. accel. g 10 Hz

Table A.1.3: Garmin signals

A.2 Bank-to-bank rolls

FPR was also tried for bank-to-bank rolls but without success. The manoeuvre
usually starts at values of ϕ up to 30° or 45°, the pilot then inputs lateral cyclic
and a constant roll rate is achieved, the roll is stopped once the opposite extreme
in bank angle is reached. The model fails to properly reconstruct this type of
manoeuvre and both AoA and AoS fit are inadequate (figure A.2.1). A correlation
between high bank angles and β divergence can be spotted, this issue will be
investigated in the future when more data will be available.
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Channel name Signal Unit Sample rate

‘NB ARI ALT HBARO’ Corr. barometric altitude m 50 Hz
‘NB ARI ALT HP’ Pressure altitude m 50 Hz
‘NB ARI ALT HP COR CALC’ Corr. pressure altitude m 50 Hz
‘NB ARI ANG AOA’ Angle of Attack (AoA) ◦ 50 Hz
‘NB ARI ANG AOA COR CALC’ Corr. angle of attack ◦ 50 Hz
‘NB ARI ANG AOS’ Angle of Sideslip (AoS) ◦ 50 Hz
‘NB ARI PRS PS’ Static pressure hPa 50 Hz
‘NB ARI PRS PS COR CALC’ Corr. static pressure hPa 50 Hz
‘NB ARI PRS PT’ Total pressure hPa 50 Hz
‘NB ARI PRS QC’ Dynamic pressure hPa 50 Hz
‘NB ARI PRS DP AOA’ Differential pressure (AoA) hPa 50 Hz
‘NB ARI PRS DP AOS’ Differential pressure (AoS) hPa 50 Hz
‘NB ARI VEL TAS’ True Air Speed (TAS) m/s 50 Hz
‘NB ARI VEL TAS COR CALC’ Corr. TAS m/s 50 Hz
‘NB ARI VEL CAS’ Calibrated Air Speed (CAS) m/s 50 Hz
‘NB ARI VEL CAS COR CALC’ Corr. CAS m/s 50 Hz
‘NB ARI VEL MACH’ Mach - 50 Hz
‘NB ARI VEL ROC’ Rate of Climb m/s 50 Hz
‘NB ARI TMP IAT’ Indicated air temperature ◦C 50 Hz
‘NB ARI TMP SAT’ Static air temperature ◦C 50 Hz
‘NB ARI TMP TAT’ Total air temperature ◦C 50 Hz

Table A.1.4: Noseboom signals

A.3 Other error models

At first, the error model in the linear accelerations was not considered, in this case,
TAS matching is significantly worse (figure A.3.1).

Another try was made using a different error model for α:

αm = Kααc + bα +Kαβ
βc (A.16)

the reconstruction (figure A.3.2 and A.3.3) was overall worse than the model shown
in chapter 5. Parameters values are shown in table A.3.1.
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Channel name Signal Unit Sample rate

‘HC MAS TOT CALC’ Weight kg 32 Hz
‘HC CG X LAT CALC’ CoG lat. coord. m 32 Hz
‘HC CG Y LNG CALC’ CoG long. coord. m 32 Hz
‘HC CG Z VERT CALC’ CoG vert. coord. m 32 Hz
‘HC MOI IXX CALC’ MoI long. axis kgm2 32 Hz
‘HC MOI IYY CALC’ MoI lat. axis kgm2 32 Hz
‘HC MOI IZZ CALC’ MoI vert. axis kgm2 32 Hz
‘HC POI IYZ CALC’ PoI (YZ) kgm2 32 Hz
‘HC POI IXZ CALC’ PoI (XZ) kgm2 32 Hz
‘HC POI IXY CALC’ PoI (XY) kgm2 32 Hz

Table A.1.5: Weight and balance signals

Channel name Signal Unit Sample rate

‘CNT ANG COL’ Collective deflection % 64 Hz
‘CNT ANG CYCLIC LAT’ Lat. cyclic deflection % 64 Hz
‘CNT ANG CYCLIC LNG’ Long. cyclic deflection % 64 Hz
‘CNT ANG PED’ Pedal deflection % 64 Hz

Table A.1.6: Control inputs signals

Parameter Value

bα -1.6517◦

Kα 0.983
Kαβ

0.034

bβ -4.584◦

Kβ 0.324

bq̄ 0.08 Pa
Kq̄ 0.797

Table A.3.1: Error model parameters, with Kαβ
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Figure A.2.1: Matching plot for bank-to-banks, blue: meas., red: recon.
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Figure A.3.1: Matching plot without accelerometer error model, blue: meas., red:
recon.
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Figure A.3.2: Matching plot with different error model, blue: meas., red: recon.
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Figure A.3.3: Residuals plot with different error model
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