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Abstract

Nowadays, spacecrafts are employed for a wide variety of missions: Earth’s observation and

monitoring, deep universe investigation, communication and much more. For the success of these

missions, it is essential that the satellite is correctly oriented during space flight and maintains

this orientation with high pointing accuracy in spite of various perturbations. This objective

is pursued by Attitude Determination and Control Systems (ADCS), which is responsible to

determine the true attitude and to control the actuators to track desired orientation.

In contemporary space missions, the design of ADCS is complicated by the fact that modern

satellites are equipped with different large devices featuring low stiffness and moving parts, such

as antennas and solar arrays. In this case, the effects of these devices on the overall system

dynamics must be taken into account and the rigid-body model of attitude dynamics must

be dismissed. Indeed, the coupling between the flexibility of the structure and the attitude

dynamics causes vibrations of the flexible bodies and the internal torques acting on the satellite

which disturb the attitude dynamics.

Hence, the object of this work is the design of a three-axis Attitude Control System (ACS)

to adequately handle the coupling effects due to the flexible appendages. The satellite model is

based on ICEYE-X1, which was launched in January 2018 and consisted in a proof-of-concept

satellite mission of the Finnish startup ICEYE, whose aim is a Synthetic Aperture Radar

(SAR) equipped commercial constellation of 48 satellites. The simplified structural model of

the spacecraft has been built in MSC Patran and consists of a main rigid body to which the

flexible appendages are attached. Next, a Finite Element Method (FEM) analysis is performed

by solver MSC Nastran to evaluate natural modes of the structure. The latter are the used

to build an appropriate mathematical model for flexible spacecraft attitude dynamics, that

captures the coupling effects between structural dynamics and attitude dynamics. Different

spacecraft configurations are analysed and the above mathematical model is derived for each

of them. This allows to establish the parameters which mainly impact the magnitude of the

coupling effects between flexible and attitude dynamics. The comprehension of these aspects

is crucial for generalising the procedure for estimating the significance of the coupling effect in

other types of satellites.

The second part of this thesis is focused on the design of a robust attitude control technique,

i.e the Quaternions Feedback Control (QFC), to handle external perturbations and dynamics

uncertainties. The control strategy is tested in a three degree-of-freedom orbital simulator

including the mathematical model for attitude dynamics of the flexible spacecraft and the control

algorithm. Extensive numerical simulations are performed in Matlab/Simulink environment to

study the realization of inertial pointing maneuvers with different spacecraft configurations.
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The results show that SAR panels heavily influence the dynamics response of the spacecraft

during the attitude maneuvers. This is most evident in the first seconds of simulation, when the

transient excites the coupling between attitude and flexible dynamics and vibrations reaching

their maximum values. However, the QFC controller proves its ability to counteract and nullify

these disturbances by providing appropriate attitude control actions.
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Chapter 1

Introduction

1.1 Introduction to space missions

The advent of modern space satellite missions has marked a profound revolution in our under-

standing and utilisation of space, thus inaugurating a new era of technological advancement

and scientific discovery. The objectives of these missions are diverse, encompassing scientific re-

search, Earth observation, telecommunications, navigation, and global positioning systems. The

deployment of sophisticated satellites equipped with advanced sensors and instruments enables

scientists and engineers to monitor environmental changes, track weather patterns, and study

cosmic phenomena in unprecedented detail. The vast quantity of data collected has proved in-

valuable in addressing a number of global challenges, including climate change, natural disasters

and resource management.

The monitoring of the Earth has become one of the most critical functions of modern satel-

lite missions, representing a significant advancement in Earth observation technology. Satellites

equipped with remote sensing technologies provide uninterrupted, comprehensive, and high-

resolution images of the Earth’s surface, offering a detailed and continuous representation of

the planet’s surface. Such images facilitate the monitoring of deforestation, urban expansion

and agricultural productivity. Moreover, satellites are of significant value in the context of

disaster management, offering real-time data during natural disasters such as hurricanes, earth-

quakes and floods. This allows for a more rapid and effective response to such occurrences. A

significant technological advancement in the domain of Earth observation has been the devel-

opment and deployment of Synthetic Aperture Radar (SAR) antennas. In contrast to optical

imaging systems, SAR antennas are capable of capturing high-resolution images irrespective of

meteorological conditions or the time of day. This attribute is especially beneficial for monitor-

ing regions that are frequently obscured by clouds or experience extended periods of darkness,

such as the polar areas. SAR technology enables comprehensive surface analysis, including to-

pographical mapping, soil moisture estimation, and the detection of subtle ground movements,

which are vital for investigating geophysical processes and mitigating natural hazards.

Moreover, satellites play an integral role in our daily lives, as they facilitate global com-

munications. They facilitate internet connectivity, broadcasting services, and real-time com-

munication across continents, thereby reducing the digital divide and ensuring that even the
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CHAPTER 1. INTRODUCTION

most remote regions of the planet have access to information and services. Furthermore, the

incorporation of satellite technology into the global economy has facilitated enhancements to

transportation systems, improvements to logistics, and the provision of support to critical in-

frastructure.

The advent of innovative technologies and international collaborations has facilitated the

development of more efficient, cost-effective, and multi-functional satellites. The deployment

of small satellite constellations has gained considerable interest due to their capacity to pro-

vide comprehensive coverage and rapid data transmission. Furthermore, the involvement of

the private sector in space exploration has facilitated accelerated advancements, resulting in a

reduction in costs and an increase in the frequency of launches.

1.2 ICEYE-X1 Satellite

Figure 1.1: ICEYE-X1 mission logo.

Credits: ICEYE [1]

In order to create a mathematical model that is as rep-

resentative as possible of real satellites and to develop

a valid attitude control and dynamics control system

(ADCS), it was decided that an operational satellite

should be chosen as the basis for the model. The satel-

lite selected for this purpose is the ICEYE-X1, devel-

oped by ICEYE Ltd [1], a Finnish startup established

in 2014 from a university nanosatellite group, Aalto-1.

The ICEYE-X1 was the proof-of-concept microsatellite

mission with a SAR sensor payload, and the first satel-

lite successfully launched by the team on 12 January

2018. Furthermore, it was the inaugural satellite in the

world to utilise SAR technology weighing less than 100 kilograms. Additionally, it was the first

satellite to be launched by a Finnish commercial enterprise, enabling the generation of radar

images of the Earth even when obscured by clouds or darkness. The objective of the mission

was firstly to validate the in-orbit performance of the spacecraft and secondly to commence

operations with ICEYE customers. The available data can be used for a wide variety of cases,

including sea ice monitoring for maritime navigation or environmental changing studies, marine

oil spills tracking, helping to prevent illegal fishing. Moreover, another ICEYE’s objective is

to improve Earth’s catastrophes monitoring, like wildfires and flooding, immediately getting

clarity about their impacts. These types of operations are possible thanks to the near-real-time

insight ICEYE is able to provide, ensuring efficient risk management.

ICEYE-X1 was launched by a Polar Satellite Launch Vehicle (PSLV-C40), one of the launcher

of the Indian Space and Research Organisation (ISRO), at the Satish Dhawan Space Centre

in India. The satellite was deployed in a sun-synchronous orbit (SSO) with an altitude of 505

km and an inclination of 97.55○. In June 2018, ICEYE Ltd announced the successful ending of

ICEYE-X1’s mission and the conclusion of its operation.

A proof of ICEYE’s SAR technology is shown in fig. 1.2, where in a preliminary flood analysis,

ICEYE-X1 combined and processed the data of an European satellite, which is Sentinel-1 by

2



CHAPTER 1. INTRODUCTION

Figure 1.2: ICEYE-X1 preliminary flood analysis exercise image. [2]

European Space Agency (ESA), to foresee potential changes. The figure features the Seine river

and Paris Orly Airport, at the beginning of 2018.

ICEYE-X1 spacecraft

ICEYE-X1 has been developed and integrated by ICEYE. The platform is a three-axis stabi-

lized spacecraft with a total mass of 85 kg. The electric power is provided by one fixed solar

array and battery packs. ICEYE-X1 falls into micro satellite category, and its size in launch

configuration is 70 cm in height × 60 cm in width. The SAR antenna has a total length of 3.25

meters instead. The spacecraft lifetime has been estimated in about two or three years.

One of the objective of the ICEYE team is the implementation of as more as possible of Com-

mercial Off The Shelf (COTSs) components, in order to reduce cost and development time. The

main technical specifications of the spacecraft bus are presented in table 1.1 [2].

1.3 Thesis outline

The objective of this study is to design a three-axis Attitude Control System (ACS) that can

effectively handle the coupling effects resulting from the flexible appendages. A simplified

structural model of the spacecraft has been created in MSC Patran and consists of a main rigid

body to which the flexible appendages are attached. Subsequently, a Finite Element Method

(FEM) analysis is conducted using the solver MSC Nastran, with the objective of evaluating the

natural modes of the structure. The latter are employed to develop an appropriate mathematical

3



CHAPTER 1. INTRODUCTION

Feature ICEYE Satellite

Average unit mass 85 [kg]

Imaging and polarization X-band SAR, VV polarization

Resolution 20x20/ 3x3/ 1.5x1.5/ 1x1 [m]

Dynamic range 16 [bit]

Imagining mode 180 s per orbit/120 s continuous

Communication (downlink) X-band radio, 100+ [Mbit/s]

ADCS Reaction wheels, magnetorquers,

star trackers

Propulsion Ion thrusters

Table 1.1: Technical capabilities of ICEYE satellite

Figure 1.3: ICEYE-X1 launch render, Credits: ICEYE [1]

model for flexible spacecraft attitude dynamics, which captures the coupling effects between

structural dynamics and attitude dynamics. Different spacecraft configurations are analysed,

and the previously described mathematical model is derived for each of them. This allows

the parameters that mainly impact the magnitude of the coupling effects between flexible and

attitude dynamics to be established. An understanding of these aspects is crucial for generalising

the procedure for estimating the significance of the coupling effect in other types of satellites.

The second part of this thesis is concerned with the design of a robust attitude control

technique, i.e. the Quaternions Feedback Control (QFC), which is capable of handling external

perturbations and dynamics uncertainties. The control strategy is tested in a three-degree-of-

freedom orbital simulator that includes the mathematical model for attitude dynamics of the

flexible spacecraft and the control algorithm. Extensive numerical simulations are performed

in the Matlab/Simulink environment with the objective of studying the realisation of inertial

pointing manoeuvres with different spacecraft configurations.

4
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The results demonstrate that SAR panels exert a significant influence on the dynamics

response of the spacecraft during attitude manoeuvres. This is most evident in the initial

seconds of the simulation, when the transient excites the coupling between attitude and flexible

dynamics and vibrations, reaching their maximum values. However, the QFC controller is shown

to possess the capacity to counteract and nullify these disturbances by providing appropriate

attitude control actions.

To sum up, this thesis is organized as follows: First the elements for attitude analysis

are introduced, with a focus on attitude kinematics and dynamics presentation in sections 2.1

and 2.2. Additionally, the flexible spacecraft dynamics are introduced in this section. Subse-

quently, in section 2.3, the finite element method is described and analysis performed in this

work is provided. In section 2.4, the generalities of Guidance-Navigation-Control system are

given, along with an explanation of the rationale behind the choice of controller. The results of

FEM analyses performed in MSC Patran/Nastran and the numerical simulations performed in

Matlab/Simulink environment are in chapter 3. For each of the simulation scenarios described

in section 2.3 and section 2.4, graphs of the most significant results obtained are provides, ac-

companied by comments and highlighting salient aspects. Finally, Conclusions are drawn in

chapter 4.

5



Chapter 2

System mathematical model

This chapter describes the attitude of the satellite, introducing reference frames, parameters

and elements to properly describe it. Then, the torques acting on the satellite are evaluated to

understand how they manipulate the attitude dynamics, also a section will be regarded to a brief

comparison between passive and active stabilization and the actuators needed. Moreover, the

flexible-rigid coupling is introduced and described through the coupling matrix δ, which links

attitude and flexible dynamics. In addiction, the main orbital perturbations are described.

Then an overview about finite element method (FEM) and control laws is given, introducing

the type of analysis performed and the control algorithm used for the orbital simulator.

2.1 Elements for spacecraft attitude analysis

The attitude of a spacecraft is its orientation in space as properly described in [7]. The problem

of determining the orientation is crucial for every kind of space mission, from the Earth’s

observation missions to the deep space observation ones. To cope with attitude determination

problem, it’s firstly necessary to present the reference frames often used in spacecraft attitude

analysis. Also, it’s important to introduce the elements that allow the description of the attitude,

i.e. the relative orientation between two reference frames.

2.1.1 Reference frames

The attitude of any spacecraft is usually described by relative orientation of a frame attached

to the satellite and a second reference frame. Several frames can be used to express satellite

orientation and position with respect to Earth [8], but only the most relevant for the goal of

this thesis will be discussed here. To properly define a reference frame, the position of the origin

and the orientation of the coordinate axes are needed.

Body Frame

The body frame is the reference system attached to the spacecraft. It is defined by an origin

located at a specific point on the body and by three Cartesian axes.

6
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A common simplification in attitude analysis is to make the body frame coincident with the

central axes of inertia, in this way the satellite inertia tensor is diagonal. However, in real appli-

cation, launch environment stresses, thermal gradients in orbits and displacements of satellite’s

appendages make difficult to properly characterize the behaviour of the center of mass and main

axes of inertia.

Due to these reasons, it’s common to first assume that the spacecraft is a rigid body, and then

to add some uncertainties based to the case study.

Earth-Centered Inertial (ECI) frame

The Earth-Centered Inertial frame (ECI) is often used in spacecraft attitude analysis because

many satellites are used for inertial pointing, this means that the orientation of such spacecraft

with respect to the ECI frame must be kept constant. The Earth-Centered inertial frame has

the ecliptic plane, i.e. the plane of Earth’s revolution motion around the Sun, as fundamental

plane. The fundamental axes are defined from the point where the ecliptic and equatorial plane

cross. In particular, the origin of the frame coincide with Earth’s center of mass and the XI

axis is defined at the vernal equinox with the positive direction pointing the Aries constellation.

The ZI , instead, is perpendicular to the equatorial plane and points towards the North Pole.

Finally, YI completes the right tern.

Figure 2.1: ECI and Body frames representation. Credits: [3]

A representation of both the body frame FB and ECI frame FI is given in Figure 2.1.
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2.1.2 Quaternions and Euler angles definition

It has already been told that there are many ways to represent the attitude of a spacecraft. To

properly conduct an attitude analysis, rotation matrices must be defined, because they specify

the rotation that allows one reference frame to coincide with the other. For this purpose, a

minimum of three parameters must be defined for a 3D rotation analysis. In the following, two

attitude representations selected for this thesis are introduced. Finally, an appropriate method

to evaluate attitude error is described.

Euler Angles

A common set of parameters used in attitude analysis is the Euler angles set.

As in [7], these angles express a rotation from an initial reference frame F1, with ortho-normal

set of unit vectors F1i , with i = (x, y, x), to a second reference frame F2, defined by another

set of ortho-normal unit vectors F2i , as the product of three different rotations. It has to be

underlined that those rotations are not commutative, so the rotation sequence influences the

final configuration.

The rotation (ψ,θ,φ), also named 3-2-1 rotation or Tait Bryant rotation, is a commonly used

rotation in aerospace. Three elementary rotations are applied as follows to let the frame F2 be

aligned to F1:

1. Rotation ψ: positive rotation about Z2, anti clockwise. An intermediate frame F
′

2 is

defined

2. Rotation θ: rotation about Y
′

2 . Another intermediate frame is defined as F
′′

2

3. Rotation ϕ: rotation about X
′′

2 . Finally, F1 is obtained

In all rotation right handed reference frame are assumed. A representation of 3-2-1 rotation is

shown in fig. 2.2.

Figure 2.2: Tait-Bryant rotation representation

Each of the three rotations can be described by the following matrix formulation:

[Ψ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8
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[Θ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[Φ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 cos(ϕ) −sin(ϕ)

0 sin(ϕ) cos(ϕ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The complete rotation matrix, for successive rotations, can be obtained by multiplying the

rotation matrix in the reverse order of the rotation:

A21(Ψ,Θ,Φ) =
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(θ)cos(ψ) cos(ϕ)sin(ψ) + sin(ϕ)sin(θ)sin(ψ) sin(ϕ)sin(ψ) − cos(ϕ)sin(θ)cos(ψ)

−cos(θ)sin(ψ) cos(ϕ)cos(ψ) − sin(ϕ)sin(θ)sin(ψ) sin(ϕ)cos(ψ) + cos(ϕ)sin(θ)sin(ψ)

sin(θ) −sin(ϕ)cos(θ) cos(ϕ)cos(θ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Quaternions

Even though the Euler’s angles represent an intuitive way to describe the space orientation of a

spacecraft, they could lead to many singularities. In the previous section, the 3-2-1 rotation has

been introduced. For this set of angles, a singularity occurs when the Euler basis vectors are

not linearly independent, so the orientation can not be unambiguously expressed (gimbal-lock).

To avoid any kind of singularity, it can be necessary to add a redundant parameter to describe

the rotation matrix. Quaternions allow to adopt a fully algebraic expression and allows to solve

the singularity problem. The definition of the quaternions is based on the Euler’s Theorem,

which states that a fixed frame FI can be rotate to any frame FB by a rotation α, called

Euler’s angle, about an axis â, called Euler’s axis, that is fixed in both frame [7]. Euler’s axis

and Euler’s angle are shown in fig. 2.3.

Figure 2.3: Euler’s axis and rotation angle
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Now, Euler’s parameters, or quaternions, can be defined as follows.

Quaternions consist in a scalar part q0 and in a 3D vectorial part qv = [q1, q2, q3]
T , as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0 = cosα/2

q1 = a1 sinα/2

q2 = a2 sinα/2

q3 = a3 sinα/2

(2.1)

The quaternion QI=(1,0,0,0)
T is usually referred to as the unit quaternion, and it represents

the situation where the body frame is aligned with the inertial frame. This formulation is useful

not only to avoid any singularity, but also because it represents a high computational efficiency

method as it is purely algebraic and no trigonometric functions are used.

The rotation matrix of the previous subsection can be also given in quaternion terms as

A21 = (q
2
0 − q

T
v ⋅ qv) I3 + 2qvq

T
v − q

x
v ;

where:

- I3 is the 3x3 identity matrix

- qxv is the skew matrix defined as follows:

qxv =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −qv3 qv2
qv3 0 qv1
−qv2 −qv1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In this thesis the Quaternions Feedback Control (QFC) is chosen as control law (section 2.4),

so the quaternion error should be introduced. Since quaternions have a matrix representation,

the quaternion error can not be computed as a simple difference, but it must be determined with

matrix operations. Indeed, assuming that the current attitude of the spacecraft is indicated as

qtrue, while the desired orientation is given by qDes, the attitude error is defined as follows:

qerr = q
−1
Des⊗qtrue, (2.2)

where ⊗ identifies the quaternion multiplication and the quaternion inverse is computed as:

q−1 =
q∗

∣∣q∣∣2
=
[q0,−q1,−q2,−q3]

T

(q20 + q
2
1 + q

2
2 + q

2
3)
, (2.3)

where q∗ is the quaternion conjugate, and ∣∣q∣∣ = 1 due to the properties of attitude quaternions.

2.2 Attitude kinematics and dynamics

This section explores the attitude kinematics by performing the time derivatives of the attitude

representations defined in the previous section. The equations for attitude kinematics express

the time evolution of satellite attitude, and are focused on rotational motion without considering

any torques. If torques are introduced, the field of study moves from attitude kinematics to

attitude dynamics, and the satellite’s angular momentum plays a fundamental role in relevant

equations. Firstly, the assumption of rigid body is adopted and dynamics equations will be

10
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derived as in [9]. Then, the flexibility of satellite appendages will be introduced according to

the model proposed in [10]. Hence, the flexible-rigid coupling effect must be introduced and the

mutual interaction between rigid and flexible dynamics must be analyzed, in order to perform a

rigorous dynamics analysis. In the last subsection, the external disturbances considered in the

model will be described.

2.2.1 Attitude kinematics

This subsection presents the time derivatives of Euler Angles and quaternions, introduced in

subsection 2.1.2. The reference frames defined in subsection 2.1.1 are used for this purpose.

Let define:

- ωe: angular velocity of FB frame, with respect to the objective frame FD, in FB coordi-

nates

- ωB: angular velocity of FB relative FI , in FB coordinates

- ωD: angular velocity of an objective frame FD relative to FI , in FD coordinates

From the rule of composition of angular rates is known that they are additive, so ωe can be

obtain as:

ωe = ωB −A
T
21(Θe)ωD, or ωe = ωB −A

T
21(qe)ωD (2.4)

Now the kinematics in terms of attitude representation can be described.

Attitude kinematics for Euler angles

Time evolution in terms of Euler angles for a 1-2-3 rotation is as follow:

Θ̇e =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ̇e

θ̇e

ψ̈e

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
1

cos(θe)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cψe −sψe 0

cθesψe cθecψe 0

−sθecψe sθesψe cθe

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ωe =B(((Θe)))ωe (2.5)

Where cx and sx are cosine and sine of the angle reported in the subscript ”x”, respectively.

The kinematics relationship in eq. (2.5) is not linear and the components are coupled. However,

for small attitude errors Θe ≈ 0, B(((Θe))) ≈ I3 can be considered, which realizes a linear model

for attitude kinematics.

Attitude kinematics for quaternions

The time evolution of the attitude error in terms of quaternions for a 1-2-3 rotation is as follow:

q̇e =
1

2

⎛

⎝
qe0I4 +

⎡
⎢
⎢
⎢
⎣

0 qTeν
qeν q×eν

⎤
⎥
⎥
⎥
⎦

⎞

⎠

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

ωe1
ωe2
ωe3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.6)

Like in the previous subsection, the kinematics equations are coupled, but with the hypothesis

of small attitude error, i.e qe ≈ (1,0,0,0)
T , eq. (2.6) reduces to the following linear equation:

q̇ei =
1

2
ωei ; i = x, y, z (2.7)
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2.2.2 Attitude dynamics

This subsection aims to underline the fundamental role of the angular momentum in attitude

dynamics analysis, as in [9]. Moreover, the rotational dynamics of the rigid spacecraft will be

presented by deriving relations between the time evolution of the angular rate of the satellite

and internal or external forces and torques. Firstly, definitions of angular momentum and

center of mass of a collection of mass points are given. Then, the attitude dynamics of the

rigid spacecraft, referring to the body frame as defined in section 2.1.1 is analyzed. Since the

control laws in this work consider the momentum exchange devices (reaction wheels RWs), a

short description of those actuators will be included in this subsection.

Angular momentum

We consider a spacecraft to be made up of a collection of n point masses. The angular momen-

tum with respect to the origin 0 of an inertial coordinate frame is defined in terms of masses

mi, position ri0 and velocities vi0 = ṙi0 of a certain point to 0 as follow:

H0
=

n

∑
i=1

ri0 ×miv
i0 (2.8)

Figure 2.4 show the center of mass c and two representative mass point. From Newton’s second

Figure 2.4: Center of mass representation

law, considering an inertial frame, the derivative equation from eq. (2.8) is:

Ḣ0
I =

n

∑
i=1

ri0I ×F
i
I =

n

∑
i=1

ri0I ×
⎛

⎝

n

∑
j=1

F ij
I +F

i−ext
I

⎞

⎠
(2.9)

Where F ij
I is the force exerted on mass point i by mass point j and F i−ext

I is the force exerted

on i by everything external to the system of mass points. In the assumption of force between

two mass points acting only along the line between them, the cross product vanishes and

Ḣ0
I =

n

∑
i=1

ri0I ×F
i−ext
I = T 0

I (2.10)
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where T 0
I is the net torque about 0 exerted on the collection of mass points by all external

forces. The center of mass of n mass point is defined as:

rc0 =
∑
n
i=1mir

i0

M
(2.11)

where M = ∑
n
i=1mi is the total mass of the collection of mass points. From that definition

follows:
n

∑
i=1

mir
ic
=

n

∑
i=1

mi (r
i0
− rc0) = 0 (2.12)

Using this result and its derivative in eq. (2.8) we can obtain:

H0
=

n

∑
i=1

mi (r
ic
+ rc0) × (vic + vc0) =Hc

+ rc0 ×Mvc0 (2.13)

This equation states that the angular momentum about a point 0 can be written as the sum of

the angular momentum about the center of mass and the angular momentum of the center of

mass motion [9]. The net torque can similarly be written as:

T 0
= T c

+ rc0 ×F (2.14)

where F is the net external force on the mass points. Finally, in an inertial frame, we have

FI =M v̇c0I , so putting eq. (2.13) and eq. (2.14) in eq. (2.10), we obtain the Euler’s Equation:

Ḣc
I = T

c
I (2.15)

This is the fundamental equation of the attitude dynamics.

Rigid body dynamics

We now focus on the rigid body dynamics. A rigid body is defined by a body frame FB, where

all the vectors ricB previously defined are constant. We consider a body frame centred in the

center of mass and with the axes aligned with the central axes of inertia. Then, the angular

momentum in FB frame is:

H = [J]BωB (2.16)

where [J]B ∈ R3x3 is the inertia tensor in FB, and is defined as follow:

[J]B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Jxx 0 0

0 Jyy 0

0 0 Jzz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The hypothesis of rigid body allows to consider [J]B = const. The attitude dynamics of a rigid

spacecraft is described by Euler’s equation for the rotational dynamics and its form depends on

the type of actuators installed on board. If the satellite has not momentum exchange device,

the total angular momentum H is as in eq. (2.16), and its time derivative is:

ḢB = JBω̇B (2.17)

Then we can write the Euler’s equation for rotational dynamics for rigid body as:

JBω̇B =m − ωB × JBωB (2.18)

13
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where m = d + u is the external torque acting on the spacecraft, consisting of both orbital

disturbances d and control torques u. Devices providing an external torque, like thruster or

magnetorquers, are named reaction actuators, they control spacecraft attitude by modifying

the overall angular momentum of the system. Momentum exchange device will be described

deeper in next subsection, now let us focus in writing dynamics equation when reaction wheels

are equipped.

The total angular momentum is given by the sum of the angular momentum of the rigid

body (eq. (2.16)) and the angular momentum of the wheels relative to the body hRW :

H = JBωB + hRW (2.19)

In the design of attitude control algorithms we consider three reaction wheels aligned with the

three central axes of inertia. The conservation of angular momentum in an isolated system let

us consider:

ḢB = JBω̇B + ḣRW (2.20)

allowing to obtain the Euler’s equation in case of reaction wheels device as:

JBω̇B =m − ωB × (JBωB + hRW ) − ḣRW (2.21)

Reaction wheels

Reaction wheels (RWs) secure three-axis stabilisation without thruster or any other kind of

external torques generators, and provide an high precision control. They allow to control space-

craft attitude by re-distributing angular momentum between the wheels themselves and the

main body. In this subsection, the assumptions in [12] are considered: no reaction type actua-

tors (u=0), free from orbital perturbations (d=0), thus to have m=0 in eq. (2.21) and H=const.

Moreover, let us assume that the initial conditions of the system are ω0 = 0 and hRW0 = 0, so

H(t) = 0 ∀t. These assumptions lead to the following relation:

JBω(t) = −hRW (t) ∀t (2.22)

This equation reveals that if an electric motor is switched on to power the wheel to which it is

linked, then the spacecraft body begins to counter-rotate for conservation of angular momentum.

This is illustrated in fig. 2.5.

Reaction wheels certainly give many benefits, as the already underlined high pointing ac-

curacy, the saving costs due to avoiding propellant, which also allow a significant reduction for

payload fraction, and the autonomous active three-axis stabilization. On the other hand, there

are some issues regarding the performances that RWs can offer. The maximum rotational rate

of the wheel, which is linked to the maximum angular momentum hRW ∈ R stored into a wheel,

depends on structural constraints. Secondly, the torque exchanged between the wheels and

the spacecraft is developed by an electric motor. Therefore, the torque is related to electrical

power required to sustain the motor, this leads to a saturation value τ on the maximum torque

supplied. These consideration lead to the conclusion that control laws must ensure specific

conditions in order to avoid saturation:

τi ∈ [−τ , τ], hRWi ∈ [−hRW , hRW ]; i = x, y, z. (2.23)
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Figure 2.5: Attitude control scheme with reaction wheels actuator

The angular momentum saturation condition consists in the impossibility to store any more

angular momentum. Considering the eqs. (2.22) and (2.23), also recalling the assumption in [12]

allows to decouple the three channels of attitude dynamics equations, the angular momentum

saturation is avoided if the following hold:

hRW ≤ (JBω)i ≤ hRW Ô⇒

Ô⇒ −(J−1B (hRW13))i = −ωi ≤ ωi ≤ ωi = (J
−1
B (hRW13))i (2.24)

In real application, RWs are used not only to manoeuvre the spacecraft, but also to balance

external perturbations to maintain the desired attitude. This lead to a surplus of angular

momentum absorbed by RWs and may cause saturation. To this end, spacecrafts with RWs

devices must be equipped with reaction-type actuators too, for de-saturation process.

2.2.3 Flexible spacecraft

This subsection introduces the problem of flexibility in lightweight structures. Now a days,

spacecrafts are usually equipped with lightweight, flexible, store-able and deploy-able antennas,

solar panels or booms [13]. These flexible appendages represent a challenge in control perfor-

mance since they introduce many uncertainties. Firstly, the flexible dynamics equations are

introduced and linked with the attitude dynamics through the coupling matrix δ. Then, the

attitude dynamics equations are integrated with the contributions due to structure-flexibility.

Flexible dynamics

The elastic deformations of such large appendages result in a disturb for satellite bus attitude,

but are also influenced by it. This thesis considers the rigid-flexible coupling effect using the

hybrid-coordinates method, as proposed in [10], that considers a combination of discrete coordi-

nates and the modal superposition to define a mathematical model for the flexible appendages.
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Consequently, a modal FEA is needed, and it is crucial to compute the modal shapes as better

as possible.

The main assumption to properly obtain the equations of motion is the small deformation

hypothesis. Another important aspect of this thesis is the modelization of the flexible structure,

consisting in the four SAR panels of the satellite defined in section 1.2, as a collection of

n elastically interconnected, discrete and rigid sub-panels. The next step is evaluating the

natural modes through the FEM modal analysis, obtaining the natural frequencies and the

relative eigenvectors associated to each mode. These data are used to compute the δ matrix

for every panels taken into account. A better explanation about the finite element method and

analyses is given in section 2.3. The general equations of motion for an undamped structure

are expressed as a function of the stiffness matrix K and the mass matrix M as follows:

Mν̈ +Kν = 0, (2.25)

where ν stands for the flexible displacement vector. In a linear system, where the free vibrations

are harmonic, ν is defined as:

ν = ΦeiΩt = Φη, (2.26)

where Φ is the matrix of eigenvectors, Ω are the natural frequencies and η is the modal coordinate

vector.

The eigenvectors and the frequencies are linked to a specific natural mode. Substituting the

eq. (2.26) in eq. (2.25) and doing the necessary algebraic passages, the classical eigenvalue

problem is obtained, and the equation becomes:

(K − λM)Φ = 0, (2.27)

where λ is the eigenvalue for each mode.

In this thesis FEM software Patran/Nastran was used to solve the eq. (2.27). Also, under

the assumption of small deformation, the dynamics equation of the modal coordinate vector η

for the flexible appendage attached to the spacecraft is as follows:

η̈ +Dη̇ +Kη = −δω̇, (2.28)

where K,D ∈ RN×N , with N the number of natural modes considered to build Φ, and η ∈ RN is

the modal coordinate vector. The stiffness matrix K is diagonal matrix and it is composed by

model natural frequencies, so it is as:

K =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω2
1 . . . 0

⋮ ⋱ ⋮

0 . . . Ω2
n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

since the dumping effect is hard to consider without empirical test, the dumping matrix D is

calculated from the stiffness matrix by a scalar factor α, so D = α ⋅K.

Equation (2.28) shows that the dynamics response depends on a term proportional to angular

acceleration ω̇ of the system by the coupling matrix δ.

In the following section, the effects of structure flexibility in angular momentum pf the spacecraft

are presented.
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Coupling matrix δ

The coupling matrix δ expresses the interaction between rigid body attitude dynamics and

flexible appendages. The assumption of uncoupled attitude and structure dynamics, frequently

used in many case studies, is not suitable when structures are not stiff enough. Therefore,

the coupled equations must be compared to Euler’s equation defined above. At this aim, this

paragraph is focused to the definition and computation of the matrix δ. As in [10], the coupling

matrix δ ∈ RN×3 is as follow:

δ = −ΦTM (Σ0I −ΣI0R̃ − r̃ΣI0) (2.29)

where:

- Φ is a matrix composed by sub-panels eigenvectors

- M is the mass matrix composed as follows:

Mi =
⎡
⎢
⎢
⎢
⎣

msubI 0

0 msubI

⎤
⎥
⎥
⎥
⎦

with I 3 × 3 identity matrix and msub mass of the sub-panel

- ΣI0 and Σ0I are R6N×3 operator defined as:

Σ0I =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Σ0Ii

⋮

Σ0In

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; ΣI0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΣI0i
⋮

ΣI0n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Σ0Ii=[03; I3], ΣI0i=[I3;03], with 03, I3 ∈ R3×3 null and identity matrices, respec-

tively.

- R is the vector between the center of mass of the rigid hub and the flexible appendages

interface. The ∼ stands for the skew-symmetric 3 × 3 matrix. A visualization is given in

fig. 2.6a.

- r is the vector between the flexible appendage interface and the COM of each sub-panels,

as better defined in fig. 2.6b.

Attitude dynamics

Now it is possible to modify the eq. 2.19 in order to derive the attitude dynamics equation for

the flexible satellite. It can be demonstrated that the flexibility of the appendages adds a term

to the total angular momentum, that is:

HFlex = δ
T η̇, (2.30)

thus the total angular momentum becomes:

H = Jω + hrw + δ
T η̇ (2.31)

Finally, the complete attitude dynamics equation is obtain from eq. 2.20 by determining

the time derivative of the equation 2.31 above, this results in:

Jω̇ =m − ω × (Jω + hrw + δ
T η̇) − ḣrw − δ

T η̈ (2.32)
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(a) Visualization of R vector

(b) Visualization of sub-panels division and r vector

definition

Figure 2.6: Visualization of different elements in δ matrix

2.2.4 Orbital disturbances

This subsection aims to introduce the main orbital disturbances usually considered in attitude

and orbit control system, for further information refer to [4, 9]. Orbital perturbation has been

considered in the previous equations as the disturbance torque d, but indeed it is composed

by many terms, and they arise from the environment in which the spacecraft operates. In an

Earth mission scenario the most relevant perturbation torques are the magnetic torque, the

solar radiation pressure torque, the aerodynamic drag torque and the gravity gradient torque.

These orbital disturbances are implemented in orbital simulator as external torques, applying

the models described in the following sections. A summary of orbital perturbations based on

mission profiles are illustrated in figure 2.7.

Gravity gradient torque

Any non-symmetrical rigid body in a gravity field is subject to a gravity gradient torque, which

is due to the quadratics decrease of Earth gravitational force with the distance from its center.

Therefore, not all parts of a spacecraft experience equal force, this results in a disturbance effect.

The gravity gradient torque increases with the angle between the local vertical and spacecraft’s

principal axes, trying to align the minimum principal axis with the local vertical. A simplified

expression for the gravity gradient torque for a spacecraft with the minimum axis aligned to

local vertical is:

dg =
3µ

∣r∣5
r × Jbr (2.33)

where:

- µ is Earth gravitational parameter

- r is the orbital position of the spacecraft center of mass
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Figure 2.7: Effects of major environmental disturbances on spacecraft attitude control system

design [4]

- JB is the spacecraft inertia matrix

Magnetic Torque

The magnetic torque derives from the interaction between the Earth’s magnetic field and the

equivalent magnetic dipole of the satellite, resulting from electronic devices on board. When the

spacecraft dipole is not aligned with the local magnetic field, it experiences a magnetic torque

that try to align the magnet to the local field. Earth’s magnetic field modeling is complex,

because it is asymmetric, not aligned with Earth’s spin axis, varies with both geographical

movement of the dipole and changes in solar particle flux. However, for attitude determination

and control system (ADCS) we can consider it as a dipole and determinate the maximum

possible value for a certain orbit altitude. The disturbance torque is:

dm =m × b (2.34)

where:

- m is the spacecraft magnetic dipole moment

- b is the Earth’s magnetic field
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Solar radiation pressure torque

Sunlight has momentum, and therefore it exerts pressure on those objects it strikes. If an object

absorbs all the sunlight incising on it, then all of its momentum is absorbed too. This causes

a certain pressure force directed towards the optical center of pressure of the satellite and it

produces a torque around the center of mass of the spacecraft if this one does not coincide with

the optical center of pressure. Moreover, if the spacecraft completely reflects the sunlight, this

pressure is twice as much as the first case. The magnitude of solar radiation changes due to Solar

activity, due to seasonal variations according to Sun’s cycles, ans it must be consider in high

orbits (≥ 800 km), since in low-Earth orbits (LEO) aerodynamics is usually dominant, while it

is zero when the spacecraft orbits in shadow condition. Now let us consider the spacecraft in

sun’s light, the torque ds can be obtained as follow:

ds = −p [cps∫
Sla

(n ⋅ s)dS] × s, (2.35)

where:

- p is the solar radiation pressure

- Sla is the spacecraft lit area normal to sun unit vector

- s is the sun unit vector directed from the sun towards the spacecraft

- cps is the distance between body center of mass and optical center of pressure

However, as underlined in [9], this formulation has several limitations, first of all because the

Sun is not the only source of radiation, and in many case the light from Earth and Moon,

namely albedo, can be significant; secondly the thermal radiation emitted from the spacecraft

(to assure long-term energy balance) has been ignored. Anyway, for this study the formulation

in eq 2.35 is accurate enough.

Aerodynamic drag torque

The atmospheric density is an exponential decaying function of altitude, so generally only

spacecraft in LEO encounter enough particles to cause relevant disturbances. When the center

of mass of the satellite and the center of atmospheric pressure, determined by the area exposed

to the atmosphere in the direction of orbital velocity, are not aligned, a torque dA results,

namely aerodynamic torque. It can be estimated as:

dA = cpa × (−ρAν ∫
Sfa
(n ⋅ ν)dS) (2.36)

where:

- ν is the impact velocity between molecules and satellite, and it is assumed equal to the

satellite’s translation velocity

- Sfa is the spacecraft surface facing the flow

- n is the unit vector normal to the surface element dS

- ρA is the atmospheric density

- cpa is the distance between the center of mass and the center of aerodynamic pressure.
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2.3 Finite element method and analysis

In this section an overview about finite element method (FEM) and analysis (FEA) is given.

The latter are effective tools for validating the design before entering the production phase.

FEM is a mathematical model made of nodes and element that can be scalar, 1D, 2D and

3D. The goal of modeling is to obtain a model as representative as possible of the physics one.

Therefore, this chapter first gives an overview on the generalities of finite element method. Then

it details the elements, constraints and the type of finite element analysis used in this thesis

for modeling the flexible structure. Finally, the FEM model is presented with its geometry,

material properties, mesh and hinge modeling for any spacecraft configuration studied. Then

the analysis parameters will be introduced.

2.3.1 Introduction to Finite Element Method

The Finite Element Method (FEM) is a numerical technique used to find approximate solutions

to complex problems governed by differential equations, particularly in areas like structural

analysis, heat transfer, fluid dynamics, and electromagnetism. In this thesis the structural

analysis is considered. In this case, it works by breaking down a continuous domain, such as a

physical structure, into smaller, discrete subdomains called finite elements. These elements can

take various shapes, including triangles, quadrilaterals, tetrahedra, or hexahedra, depending on

the problem’s dimensionality. Each element is associated with nodes, specific points at which

the governing equations are evaluated. The relationship between these nodes is defined through

interpolation functions, often referred to as shape functions, which approximate the solution

across the element. The governing equations, typically in the form of differential equations,

are converted into an algebraic system using techniques like the Galerkin method or weighted

residuals. This process is known as discretization [14, 15]. A key strength of FEM lies in its

ability to model complex geometries, as the mesh of elements can conform to irregular shapes

and boundaries. Additionally, FEM can handle varying material properties within the domain,

apply different types of boundary conditions, and work effectively in multi-physics scenarios

(e.g., coupled thermal-structural analyses). Once the problem is discretized, the resulting system

of equations is typically large but sparse, which can be efficiently solved using numerical methods

like direct solvers (LU decomposition) or iterative solvers (conjugate gradient method).

The FEM solution process involves several steps

1. Pre-processing

2. Formulation

3. Assembly

4. Solving

5. Post-processing

FEM’s precision depends on the size and quality of the mesh. A finer mesh generally yields more

accurate results but at the cost of increased computational effort. Adaptive meshing, where the

mesh is refined in regions of high gradients, can improve accuracy while keeping computational

demands manageable.
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Figure 2.8: CQUAD4 element geometry and coordinate systems. [5]

Figure 2.9: PSHELL bulk data entries. [5]

To sum up, FEM is a versatile and efficient tool for solving a wide range of physical and

engineering problems, offering flexibility in modeling complex structures and materials under

various conditions. Now, an overview about finite element method has been proposed, so the

model used in this thesis can be presented.

The spacecraft model is constituted by 2D elements. In the following, the various 2D

elements available in MSC Patran/Nastran are defined:

- CSHELL: these elements can be further divided in two groups, based on the number

of points they are composed of: CQUAD and CTRIA. The former can be defined as

CQUAD4 or CQUAD8, while the latter as CTRIA3 or CTRIA6. The number stands for

the grid points defined for each element, it is usually more difficult to mesh CQUAD8

and CTRIA6 elements, so they are not commonly used. Moreover, CTRIA elements are

used to mesh irregular shapes. These elements allow to simulate any type of plates trough

the definition of the right properties. The material properties for CQUAD and CTRIA

elements are specified with the PSHELL or PCOMP entries, where PCOMP is only used

for composite. The Bulk Data entry for PSHELL element is reported in fig. 2.9, where

the MID entries stand for material identification:

1. MID1: material identification number for the membrane

2. MID2: material identification number for bending

3. MID3: material identification number for transverse shear

4. MID4: material identification number for membrane-bending coupling

- CSHEAR: these elements can be used when the bending and axial stiffness of the plate

are negligible. CSHEAR elements can only handle in-plane loads, therefore they are

usually implemented to simulate thin skin panels
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Name Description m

RBE2

This MPC, only a single master node can be

defined, while it is possible to have multiple

slave dependent ones. It is used to simulate

a rigid connection. The independent degrees

of freedom are the six components of motion

at the grid point. The dependent degrees of

freedom at the other grid point can be selected

by the user instead.

m≥1

RBE3

This kind of elements defines a constraint in

which motion at a specific grid point is the

least square weighted average of the motion of

other grid points [5].

1≤m≤6

RBAR
Simulate a rigid bar connection with six de-

grees of freedom at each end.
1≤m≤6

EXPLICIT

it is the most customarily by the user. It is

a rigid body connection to an arbitrary num-

ber of grid points. Furthermore, the indepen-

dent and dependent degrees of freedom can be

freely selected.

m≥1

Table 2.1: MPCs element in MSC Nastran

Since the panels in a satellite’s structure must face the harsh space environment and internal

and external loads, the CSHELL element are chosen. Since, the geometry of ICEYE-X1 is

composed by regular prism, CQUAD4 elements type have been used.

Another important aspect of this thesis is the modeling of the link between the rigid hub

and SAR panels. In the real scenario, panels are linked trough hinges, which allow the correct

deployment of the antenna. Multi-Point-Constraints (MPC) are the main solution that can be

used in FEM to simulate these devices. Basically, MPC allows to de-couple a specific DOF from

others, while defining a relation between two or more DOFs. At this aim, it is necessary to

define the main node(s), usually called master, and the secondary one(s), usually called slave.

According to this master-slave relationship, many MPCs can be defined and different number

of constraint equations (m) are generated. A summary is reported in table 2.1.

2.3.2 Modal Analysis

Modal analysis of flexible structure is one of the most common applications of finite element

modeling. This analysis is one of the most important in space industry, because it evaluates the

natural frequencies and the mode shapes of the structures, allowing to verify if any resonance

phenomenon occurs and to determine the response of the body when subjected to dynamic

loads. Modal analysis can be done in various conditions, basing on the needs of the user. In

this thesis, a free-free condition is considered in order to determine natural frequencies when no

loads or constraints are considered [17].
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The frequencies obtained from the FEM analysis when considering a free and non-damped

system (i.e F (t) = 0 and ζ = 0) are called natural frequencies. In this situation, the inertial

forces and the elastic ones are perfectly balanced. The deformation that the body is subjected

to when vibrating at one of those frequencies, is called mode shape. In particular, a mode shape

is associated to each natural frequency.

Natural frequencies and mode shapes can be easily illustrated by considering the equivalent

mass-spring system in fig. 2.10.

For this system, the equation of motion can be written as:

Figure 2.10: Example of a mass-spring system

mẍ(t) + kx(t) = F (t) (2.37)

The solution of the differential equation eq. (2.37) is the sum of a particular solution xp(t) and

the solution of the associated homogeneous equation x0(t), i.e. x(t) = x0(t) + xp(t) with:

x0(t) = A sinωt +B cosωt (2.38)

Substituting eq. (2.38) into eq. (2.37) and considering F (t) = 0, it is obtained as follows:

−mAω2 sinωt −mBω2 cosωt + kA sinωt + kB cosωt = 0 Ô⇒

Ô⇒ A(k −mω2
) sinωt +B(k −mω2

) cosωt = 0 (2.39)

From eq. (2.39), natural frequency can be defined:

ωn =

√
k

m
(2.40)

In finite element method, modal analysis is conducted by resolving the eq. (2.37) in matrix

form, as introduced in chapter 2, eq. (2.25):

[M]{ẍ} + [K]{x} = 0 (2.41)

It has been already said that this system allows harmonic solution, as:

{x(t)} = {Φ}eiωnt (2.42)
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Therefore, eq. 2.41 can be rewritten as:

−λ[M]{Φ}eiωnt + [K]{Φ}eiωnt = 0, (2.43)

where λ = ω2
n is the eigenvalue and {Φ} the associated eigenvector or mode shape.

Finally, the classic eigenvalue problem can be presented:

([K] − λ[M]){Φ} = 0 (2.44)

It is possible to define the physical displacement as a combination of all its normal modes as:

{x} = ∑
i

(Φi)ξi (2.45)

Assuming that [M],[K] ∈ RN×N and both symmetric, so that the properties reported in

table 2.2 hold. Therefore, the ith generalized mass and stiffness can be defined. The first two

Property

1. {Φi}
T [M]{ΦJ}=0 if i≠j

2. {Φi}
T [K]{ΦJ}=0 if i≠j

3. {Φi}
T [M]{ΦJ}=mi if i=j

4. {Φi}
T [K]{ΦJ}=ki=ω2mi if i=j

Table 2.2: Normal mode’s proprieties

relation in tab. 2.2 are known as the orthogonality property of normal modes, ensuring that each

mode is distinct from all other, that means that each mode shape can not be obtained through

a linear combination of any other mode shapes [5]. While the other lead to the Rayleigh’s

equation, which is used to compute natural frequencies in MSC Nastran solver.

ω2
i =
{Φi}

T [K]{Φi}

{Φi}T [M]{Φi}
(2.46)

2.3.3 FEM Model and Analysis setting

Since the main goal of this thesis is to develop an orbital attitude simulator, the satellite needs

to be modelled in its operative configuration, with all the SAR’s panels deployed. Furthermore,

the model wants to simulate the satellite during its space flight, so when no constraint conditions

are present. For this reason the modal analysis has been considered in free-free condition. The

initial idea for this thesis was to evaluate if any difference occurs when the flexible appendages

are considered as monolithic panels and when a connection interface is modeled. Indeed, the

hinges, that guarantee the correct deployment sequence, leave specific DOF free to allow the

relative motion between the various parts of the satellite’s structure.

Firstly, let introduce the geometry and proprieties of the model without any interface be-

tween the rigid hub, the flexible panels, and these panels themselves. In this way, the -y face

(according to MSC Patran reference frame) is composed by the base of the main structure and

the four flexible SAR’s panels, as shown in fig. 2.11. As said in section 1.2, the launch configu-

ration is 70 cm in height × 60 cm in width, so the third dimension is not given. However, after
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many investigation of similar satellite configuration and micro-satellite class, a deep of 40 cm

has been assumed.

The model has been realized with 2D CSHELL QUAD4 elements, since the shapes of various

components are regular and easy to mesh with this kind of elements. The typical materials for

satellite’s structure are aluminium alloy, in particular Al 5062, 6061 and 7075. In a production

process, it is important to take into account various parameters basing on the mission purpose,

some purely mechanic while others relative to manufacturability or thermal behaviour. Since

in this project the objective is not to produce a satellite, the most common alloy was chosen for

modeling ICEYE-X1 structure, which is Aluminium 7075 alloy, whose features are in table 2.3.

Figure 2.11: FEM model without hinge model

Property Value

E 70 [GPa]

ν 0.33

G 210 [GPa]

ρ 2.81e−3 [kg/m3]

Table 2.3: Aluminium 7075 alloy mechanical properties

where E, ν, G, ρ are the Young’s modulus, Poisson’s ratio, Shear Strength and density, respec-

tively.

Now, let introduce the proprieties of SAR’s panels. Antennas are usually built using composite

materials, allowing to reduce the total weight while guarantee enough stiffness still.

The ICEYE-X1 SAR panels have been modeled as a laminate with three layers, two aluminium

external skin and a central honeycomb core made of NOMEX. The information about the lam-

inate, the properties and the dimensions for the panels are as in [20, 21], because a similar

spacecraft model has been here discussed.

It is important to underline that MSC Patran is an a-dimensional pre-processor, so when the

length unit is fixed, others quantities must be consider in specific units. The geometrical di-

mensions of the model are considered in millimeter to better handle decimal values, so the E

must be expressed in [MPa] and the density in [ton/mm3].

To quantify the impact of the flexible-rigid coupling effect, various configurations of the model

just presented have been considered. The reason behind this choice is trying to establish a
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Layer Properties Thickness

1. Aluminium skin As seen in tab. 2.3 0.2 [mm]

2. Core Nomex orthotropic:

- E11: 2.5 [GPa]

- E12: 1.3 [GPa]

- ν11: 0.2

- ν12: 0.3

- G11: 0.7 [GPa]

- G12: 0.6 [GPa]

- ρ: 0.72e−3 [kg/m3]

6 [mm]

3. Aluminium skin As seen in tab. 2.3 0.2 [mm]

Table 2.4: SAR laminate composition

standard procedure separate from the geometry of the satellite. A parametric study of the

length of the flexible panels have been conducted, moreover a scaled model of a factor γ = 1.5

has been analyzed. The different configurations considered are reported in tab. 2.5.

Variant Length of the panel Total length of the SAR sensor

Real model 1.4 [m] 3.4 [m]

Var. A 2.0 [m] 4.6 [m]

Var. B 2.5 [m] 5.6 [m]

Var. C 3.0 [m] 6.6 [m]

Table 2.5: Configurations of ICEYE-X1 satellite

Now that the base model is defined, it is possible to introduce the MPC links to simulate

the hinges between the rigid hub and panels themselves. In MSC Patran reference frame the

Figure 2.12: FEM Model with MPCs

rotation for the deployment sequence occurs around the z axis, so the DOF which must be

not constraint is the one about this axis. In this primary design of the model, according to

MSC Nastran user’s guide [5], the RBAR element seems suitable for the goal. In fig. 2.13,

the hinge connection occurs between nodes 2-3, which must be coincident. The independent

27



CHAPTER 2. SYSTEM MATHEMATICAL MODEL

Figure 2.13: RBAR hinge model. [5]

node is the node 2, and all of its DOF (the three translation and the three rotations) are

independent, while the node 3 has the five out of six DOF dependent from node 2, the only

DOF left free is the rotation around the z axis. Although this situation is exactly the condition

wanted to be modeled, various issues occur. Indeed, RBAR elements must be defined between

CBAR elements, which are 1D element. Support 1D elements were considered at the beginning,

however since each MPC have to be defined between every CBAR grid points, a 1D element

should be defined for every mesh nodes considered, so this solution has been discarded.

The Explicit multi-point constraint type is chosen instead. This MPC allows to define an

arbitrary number of independent and dependant nodes, and the relationships about DOFs are

also user’s choice. As in fig. 2.12, the hinge rotation axis in the model is the z axis, so in

the definition of the explicit constraint, the independent nodes are constrained in each of them

DOF, the dependant nodes have only the rotation about the selected axis left free instead, the

first five DOFs depend on the displacement of independent nodes. A difference that can be

noticed between the model in fig. 2.12 and fig. 2.11 is that the first one has four different panels

to model the SAR array, while the second needs only two panels to properly model the antenna.

Analysis definition

Now that the structure model specification, the various configuration considered and the mod-

eling of hinges connection by MPC elements have been presented, it is possible to proceed to

the modal analysis needed. In MSC Nastran the modal analysis corresponds with the SOL103,

the default settings for this solution regard the extraction method, the number of desired roots

and the normalization method for eigenvectors, and are listed below:

- Extraction method: Lanczos

- Number or desired roots: 10

- Normalization method: Mass

The Lanczos method provides an efficient solutions for symmetric matrices and take advantage

of the sparsity of the matrix, in fact when a matrix is large and sparse, Jacobi eigenvalue

algorithm and other convergence-based iterative methods result computationally inefficient. A

detailed view on the Lanczos algorithm is given in [22]. The number of desired roots stand

for the number of eigenvalues that will be computed, since the models are free in space, the
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number of rigid modes have to be taken into account, in particular for the model with MPC,

where the presence of the hinge model adds degree of freedom. In addiction, to evaluate the

differences between the order of truncation of δ matrix, for each configuration at least 5, 8 and 10

eigenvalues (excluding the rigid modes) have been considered. Finally, to avoid any singularity

problem when the eigenvectors are considered in the orbital simulator, the normalization method

selected is based on the maximum value. Finally, the updated analysis settings are as follow:

- Extraction method: Lanczos

- Number or desired roots for each configuration: 10, 15, 20

- Normalization method: Maximum

Figure 2.14: The first eight modes expected for the flexible spacecraft

The expected results are shown in fig. 2.14, while the actual results and the relative comments

are reported in the first section of chapter 3.

2.4 Control laws

This section will present an overview of the general principles of a Guidance-Navigation-Control

(GNC) system. Each aspect will be discussed in turn, with a particular focus on the control

element. Subsequently, the control law selected in this thesis will be introduced, accompanied

by an analysis of its distinctive features and the factors that led to its selection.

2.4.1 Guidance, Navigation, Control System

The Guidance, Navigation and Control System consists in the whole components used for

position management and the components used by Attitude Determination and Control System

(ADCS) [23]. Let introduce the three main parts of GNC:

- Guidance: consists of determining the desired position/orientation of the satellite, com-

paring them with the estimated actual values and then providing the reference for the

controller to follow.
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Figure 2.15: Guidance, Navigation and Control scheme

- Navigation: consists of evaluating the position/orientation of the satellite at a given time

from the input of sensors, which can determinate the orientation of the satellite with

respect to specific reference.

- Control: refers to the algorithms that calculate the necessary control forces and torques

basing on the both the actual and desired position and orientation.

A complete scheme of a GNC system is reported in fig. 2.15. The ADCS system includes all

the sensors for the navigation function, such star trackers, sun sensors, horizon sensors, and

the actuators for providing the correction torques such reaction wheels, momentum wheels,

thrusters. Finally, the plant includes the attitude dynamics and kinematics equations and the

orbital perturbations. In real application, the actual orientation of the satellite is difficult to

evaluate resulting in further complexity in ADCS modeling. For this reason the orientation of

the satellite is considered totally known, which allows to omit the navigation function. Even

with this strong hypothesis, the design of the ADCS results in an hard task due to non-linearity

of the system, various uncertainties and a limited and fixed actuation power.

Control techniques are divided in two main category: the open-loop or feed-forward and the

closed-loop or feedback approaches. The main and most relevant difference of these methods

is the dependence of an input signal u(t) from the output signal y(t). In open-loop schemes,

u(t) is not dependent from y(t), so they require a pre-determined pointing maneuver and are

determined using optimal control techniques. They are sensitive to uncertainties and unexpected

disturbances, furthermore, it is not possible to stabilize an unstable system. On the other hand,

in closed-loop schemes, the signal u(t) takes into account the output signal, so they can handle

parameters uncertainties and external disturbances, providing a more robust design method.

In fig. 2.16 schemes of both open and closed control approaches are visualized, where r(t) is a

generic reference value and d stands for disturbances.

Quaternion feedback control

Satellites are often re-oriented by performing successive rotation around the control axis in

order to achieve the desired orientation. However, this solution is not time nor fuel consumption

optimal, although is very simple to be executed. The Quaternion feedback control provides a

nearly-optimal orientation control, with a control law slightly more complex. Since quaternions
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(a) Feed-forward control technique

(b) Feedback control technique

Figure 2.16: Open and closed loop design

can be easily computed by modern ADCS, a closed-loop control is easily implemented onboard

for autonomous maneuver.

The feedback control law employing the quaternion error qe is:

Tc = −Kpqe −Kdωb (2.47)

where qe ∈ R
3 is the quaternion error vector defined in chapter 2, while Kp and Kd are gain

matrices, tuned by trial-and-error method by the user. The control law in eq. (2.47) globally

asymptotically stabilizes thee satellite into any arbitrary desired attitude for a wide choice of

the gain matrices.

Let assume that qdes = [1,0,0,0]
T , in the hypothesis of fixed desired attitude. In this case, the

inertial reference frame coincides with the desired attitude, so qe = qv, with qv is the vectorial

part of the true quaternion. In this case the control law become:

Tc = −sign(qd0)Kpqv −Kdωb (2.48)

where the sign function allow to consider both unit quaternions q1 = [±1,0,0,0]
T , while the

scalar value of qd0 express the magnitude of the rotation. Basing on the definition of the gain

matrices, various QFC controllers can be defined, among these the simplest are:

- Controller 1

● Kp=k1

● Kd=diag(d1, d2, d3)

- Controller 2

● Kp=
k

q3true0
1

● Kd=diag(d1, d2, d3)

- Controller 3

● Kp=k⋅sign(qtrue0)1

● Kd=diag(d1, d2, d3)

- Controller 4

● Kp=[αI + β1]
−1

● Kd=diag(d1, d2, d3)
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where k, di, α, β are positive scalar constants and 1, I ∈ R3×3 are the identity and inertia

matrix, respectively. It can be noted that controller 1 is a particular case of controller 4 for

α = 0.

Before introducing how the tuning of gain matrices impacts the control action, some control

entities of a second order system must be introduced.

Figure 2.17: Time domain response [6]

where:

- y∞ is the steady-state error, which correspond to the stationary value of the response

- ts is the rise time from the 10% to the 90% of y∞

- ta is the settling time, and it considers a range of ±5% around the value of y∞

- ymax is the peak value of the response

- ŝ =
ymax − y∞

y∞
is the relative overshoot

Since there is not a fixed rule for tuning Kp and Kd, a general guide based on a large number

of tests is reported in tab. 2.6. From this table it can be noted that an increasing of Kp matrix

entries leads to decrement of the overall stability, while the increasing of the Kd coefficient gives

an improvement of the stability of the system. The guidelines is not absolute and there is not

certainty that by only increasing Kd values is possible to stabilize the system, it is a trade-off

study problem that must be analyzed for the specific case study by trial-and-error method as

said before, but the suggestions in tab. 2.6 are some of the best ways to start the tuning process.

The fundamental characteristics of QFC and its corresponding modelling schemes have now

been introduced, thereby establishing a clear justification for the selection of this specific con-

32



CHAPTER 2. SYSTEM MATHEMATICAL MODEL

Rise time Overshoot Settling time Steady-state error

Increasing Kp decrease increase small increase decrease

Increasing Kd small decrease decrease decrease minor change

Table 2.6: Tuning gain matrices guidelines

troller. The selection of Controller 4 for the orbit simulator employed in this work is particularly

justified due to its optimal compatibility with the reaction wheels model, which represents a

critical component of the system. This controller has been identified as the optimal choice

among the alternatives considered, in terms of achieving the desired performance and stability.

Furthermore, the selection of various system parameters, which are critical for the successful

operation of the controller, was achieved through an iterative process of trial and error. This

approach was necessary to fine-tune the parameters in a way that ensures a stable and reliable

system under the operating conditions considered. The following section 3.1.2 will present these

parameters in detail, along with their implications for system performance.
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Chapter 3

Numerical simulations and results

This chapter presents the findings of the FEM analysis introduced in section 2.3.3 and the

simulation presented in section 2.4 are finally shown. Initially, the orbital simulator realized

in Simulink is presented, with its sub-systems and key parameters for the tunig process of

controller. Then, the modal analysis results will be visualized and commented, with particular

consideration given to the differences between the various configuration under consideration.

Subsequently, the eigenvectors will be reported and the process for computing the coupling

matrix δ will be introduced. Finally, the results of the ACS simulation will be presented.

3.1 Orbital simulator

This section presents the orbital simulator developed in Matlab/Simulink environment in each

of its part, in order to understand how various sub-systems are linked together. All fixed

input data are here presented and the final parameters adopted to have a stable system are

listed. Furthermore, the reaction wheels model adopted is presented with also the simplification

considered for the the orbital perturbations.

3.1.1 Reaction Wheels model

In Simulink, the reaction wheels can be modeled as a combination of a first order low pass filter

and saturation. The filter is composed of a transfer function while the saturation establishes the

maximum value of the actuation torque. ICEYE-X1 satellite is a three-axis stabilized spacecraft

but no further information about reaction wheels configuration are reported so a pyramidal one

is considered. A filter and saturation blocks are needed for each reaction wheel, in fig. 3.1 is

possible to count four reaction wheels, with three wheels are the nominal operation wheels while

the fourth is for redundancy, however it has to be considered in the simulator. For this reason

a rotation matrix is needed to convert the control torque in four components and then back to

three components.

The terms of low pass filter are the numerator and denominator coefficients. Denominators

is composed of a term (τRW + 1), the value of τRW express the actuation torque defined in

section 2.2. The saturation block limits the maximum torque that actuators should provide,
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Figure 3.1: Reaction wheels pyramidal configuration

Reaction Wheels parameters

τRW 5e-3 [Nm]

UmaxRW
0.01 [Nm]

Table 3.1: Reaction wheels parameter values

the parameter is UmaxRW
and the effective range is [UmaxRW

;−UmaxRW
]. The values has been

determined after many trial-and-error iterations, the final ones are reported in table 3.1.

Figure 3.2: Reaction wheel model in Simulink

Finally, the RWs simulator receives the control output as input and giving the control torque

MRW as output.

3.1.2 QFC modeling

As introduced in sections above, the QFC controller evaluates the state error vector in terms of

quaternions and angular rate to compute the control torque. It receives as inputs the quaternion

vector and the angular velocity ωb, and gives as output the correction torque needed. It’s

connected to the plant and to the reaction wheels block. The type 4 controller has been chosen

and its parameters are reported in tab. 3.2, where d1, d2 and d3 are the diagonal entries of the

Kd gain matrix. In accordance with the prevailing literature, the values for α and β have been

selected. The computation of Kp involves the inertia matrix, as defined in the previous chapter.

Consequently, its entries change for every configuration under consideration. It was therefore

considered unnecessary to report every Kp matrix, given that its variation is reflected in the

final results of simulations.
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QFC parameters

α 0

β 30

d1 0.9

d2 0.9

d3 0.9

Table 3.2: Quaternion feedback control parameter

3.1.3 Flexible dynamics torque modeling

In this thesis, the flexibility of the SAR panels is considered trough the equations introduced in

subsec. 2.2.3. The flexible dynamics block in the simulator is composed of dynamics for each

panels considered, so in the model with MPC constraint the block consider each of four panel

individually, computing its participation factor and the summing all of them to determinate the

global flexible momentum. In the model without MPC only two panels are considered instead,

because the absence of connection allows to consider a unique panel as long as the two distinct

panel. The input of this block is the angular acceleration vector ω̇b.

Figure 3.3: Example of the flexible dynamics block in Simulink

3.1.4 Orbital perturbations modeling

Orbital perturbations introduced in subsec. 2.2.4 applies torques on the system, so they have to

be taken into account if a robust GNC system is desired. They have little effect on the system,

but it must be consider in order to build a complete orbit simulator. The disturbance torques

have been consider along the three axis of the spacecraft and have been modeled as harmonic

function, considering the effects on each orbit period, exception for the solar radiation pressure.

The parameters defined for each perturbation are reported in tables 3.3a to 3.3c [12].
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(a) Orbital disturbances sub-system

(b) Example of harmonic function for aerodynamic

drag

Figure 3.4: Orbital perturbations model in Simulink

Sine wave specification

Amplitude 1

Bias 1

Frequency π/200

Phase 3π/4

(a) Aerodynamic drag

Sine wave specification

Amplitude 1

Bias 1

Frequency π/300

Phase π/2

(b) Gravity Gradient

Sine wave specification

Amplitude 1

Bias 1

Frequency π/150

Phase π/4

(c) Magnetic torque

Table 3.3: Orbital perturbations model parameters

3.2 FEM analysis results

This section presents the results of the finite element method (FEM) analysis in terms of modal

modes, frequencies and eigenvector components. Subsequently, a further subsection introduces

the computation of the coupling matrices and shows the results, which are later used in the

orbital simulator.

3.2.1 Real model results

The first set of results are those of the first variant, as detailed in table 2.5, which has no MPC

element and the actual dimension of ICEYE-X1 spacecraft. The results about the first ten

modal shapes and the eigenvectors of the first three modal modes are shown in figs. 3.5 and 3.6,

respectively. Additionally the natural frequencies used for the delta matrix are reported in
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table 3.4. In the figs. 3.6a to 3.6c, the ID POINTs from 913 to 924 refer to centroid of sub-

λ λ

1 0.85874 [Hz] 6 5.69583 [Hz]

2 0.99482 [Hz] 7 14.85316 [Hz]

3 5.31319 [Hz] 8 14.87343 [Hz]

4 5.35647 [Hz] 9 17.63231 [Hz]

5 5.68142 [Hz] 10 17.63767 [Hz]

Table 3.4: Natural frequencies of first case study

panels of one antenna panel, while the ID POINTs from 925 to 936 refer to the other SAR

panel, since in this variant the FEM model considers only two panels for the SAR array.

The results in fig. 3.5 are similar to the ones expected and shown in fig. 2.14, however while

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

in the latter only flexible modes are observed, the results of this case study show also torsional

behaviour, specifically in mode 5, 6, 9 and 10. For this case only, a more comprehensive analysis

was performed, specifically focusing on the extracted roots, i.e. eigenvalues, which are three,

five and ten. This was done to evaluate the impact of considering a larger number of modes in

the orbital simulator.
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(g) Mode 7 (h) Mode 8

(i) Mode 9 (j) Mode 10

Figure 3.5: First ten modal shapes of the first spacecraft variant

3.2.2 MPC model results

In the the model with MPC, only the first three modal modes are taken into account. Therefore,

in the following a detailed comparison will be conducted between the models with and with-

out MPC, with particular attention paid to the distinctions in their dynamic behaviour. The

eigenvalues and corresponding eigenvectors have been computed and are presented in figs. 3.7

and 3.8, while the frequency for this case are provided in table 3.5.

The results reveal sharp differences between the two models, particularly with regard to both

the modal frequencies and the corresponding modal shapes. Specifically, the frequencies in the

MPC model are observed to be an order of magnitude higher compared to the model without

MPC. Additionally, an significant distinction can be observed in the nature of the first non-

rigid modes: in the MPC-based model, these modes show torsional behaviour, whereas in the

model without MPC, they demonstrate flexible behaviour. This outcome is somewhat counter-

intuitive, as the inclusion of additional degrees of freedom would typically be expected to reduce

the global stiffness of the system. The increased stiffness observed in this case, however, can

be attributed to the rigidity of the chosen MPC elements. It is important to note that the

λ

1 5.29184 [Hz]

2 5.30608 [Hz]

3 11.0332 [Hz]

Table 3.5: Natural frequencies of MPC model

stiffness properties of the MPC elements in this model are not customisable by the user, which

represents a limitation in the context of this study. As a result, the selected solution may not be

the most suitable for accurately capturing the effects of hinges or flexible connections within the
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(a) Eigenvector for λ1

(b) Eigenvector for λ2

(c) Eigenvector for λ3

Figure 3.6: First three eigenvectors for first case study
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system. Nevertheless, the separation of degrees of freedom (DOFs) around the z-axis, enabled

by the MPC formulation, offers the advantage by allowing the structural panels to behave as

independent entities. This decoupling of the panels aligns with one of the primary objectives of

this thesis, which aimed to model the panels independently while accounting for their dynamic

interactions.

Given the specific goals of this work, particularly the need to achieve independent panel

behavior, the MPC-based approach has been retained despite its limitations. Although the

rigid nature of the MPC elements might not fully capture the flexibility introduced by hinges,

the overall framework provides a sufficient representation of the system’s dynamics for the

purposes of this investigation.

(a) Mode 1 (b) Mode 2

(c) Mode 3

Figure 3.7: MPC model modal shapes

3.2.3 Results of variant A, B and C

The results of the remaining analysed variants are here presented. In order to estimate the

effect of larger flexible panels in rigid-flexible coupling, the panels of the three variants are

progressively longer, while the rigid hub remains unchanged. All of these configurations consider

the model without MPCs, and the specifications of each variant are reported in table 2.5.

Moreover, the results of an additional variant that implements a scale factor for the entire

structure are also introduced here.

For each of these case studies, only the first three modal modes are considered. As the modal

shapes are comparable to those of the initial configuration, only the natural frequencies and

eigenvectors will be reported, as they are directly utilised for the orbital simulator, in table 3.6

and in figs. 3.9 to 3.11, respectively.
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λ

1 0.42231 [Hz]

2 0.57004 [Hz]

3 2.60653 [Hz]

(a) Variant A

λ

1 0.27070 [Hz]

2 0.42142 [Hz]

3 1.66691 [Hz]

(b) Variant B

λ

1 0.18842 [Hz]

2 0.33677 [Hz]

3 1.15734 [Hz]

(c) Variant C

Table 3.6: Natural frequencies of variant configurations

Scaled model

As introduced in section 2.3.3, an additional variant is studied. This one differs from the others

since it applies a scale factor γ = 1.5 across the whole structure rather than only to flexible

panels. This decision is driven by the objective of evaluating the implications of using flexible

appendages in smaller satellite classes.

To quantify the effect of the scale factor on the dimensions of the model, the corresponding

values are presented in the following table.

Scale factor γ = 1.5

Height 46.67 [cm]

Length 40.00 [cm]

Depth 26.67 [cm]

Panels’ length 46.67 [cm]

Total mass 56.67 [kg]

Table 3.7: Dimensions of the scaled model

The modal shapes are again equivalent to those of the original model, so only the first natural

frequencies and corresponding eigenvectors are reported.

λ

1 1.94289 [Hz]

2 2.26938 [Hz]

3 11.9989 [Hz]

Table 3.8: Natural frequencies of scaled model

3.2.4 Coupling matrix determination

In order to compute the requisite δ matrices, a Matlab script has been developed. Given the

necessity to consider a variety of configurations, it is essential that the code be as generic as

possible. This approach allows the matrix for each case to be obtained with minimal modifica-

tion of the data inputs.

This approach involves consolidating the entire process into a single script designed to handle

multiple case studies, with each case study represented by its own section. In each section,

only two key parameters - the length of the antenna panel and the mesh size - are modified
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to reflect the specific configuration of the spacecraft variant being analysed. Once these two

parameters have been updated, the script is able to automatically calculate the main charac-

teristics of the system, such as the mass of the panel, moments of inertia and other essential

physical characteristics. However, the only exception to this approach is the stiffness matrix

K, which requires manual input for each variant of the spacecraft. The stiffness matrix must

be provided for each individual configuration because, together with the damping matrix D,

it reflects the mechanical properties and structural behaviour of the spacecraft in each case,

and both matrices are essential for the calculation of the δ matrix. Furthermore, the rotational

transformations necessary to align the sub-panels’ local frames with the spacecraft’s body frame

remain consistent across all configurations, as the reference frame used in Patran remains un-

altered. In order to facilitate the implementation of these transformations, a custom MATLAB

function has been written. The function is responsible for calculating the rotation matrix, rep-

resented by L = Rz ×Ry ×Rx. Moreover, another MATLAB function is utilised to derive the

skew-symmetric matrix from a given 3x1 vector. By automating these processes with dedicated

functions, the code becomes more modular, reducing redundancy and improving readability,

while ensuring that the transformations and matrix manipulations are consistent and accurate

across all configurations.

The final matrices are now ready for reporting. The matrices for all the variants without MPC

elements are presented first, followed by the matrices for the model with MPC.

Delta matrices for the first case study (first three modes)

δ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 −0.3568

0.00 0.00 −0.2488

0.00 0.00 0.2066

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.3568

0.00 0.00 −0.2488

0.00 0.00 −0.2066

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Delta matrices for the first case study (first five modes)

δ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 −0.3568

0.00 0.00 −0.2488

0.00 0.00 0.2066

0.00 0.00 0.1873

0.00 0.00 0.00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.3568

0.00 0.00 −0.2488

0.00 0.00 −0.2066

0.00 0.00 0.1873

0.00 0.00 0.00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Delta matrices for the first case study (first ten modes)

δ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 −0.3568

0.00 0.00 −0.2488

0.00 0.00 0.2066

0.00 0.00 0.1873

0.00 0.00 0.00

−0.0072 −0.0062 0.00

0.00 0.00 −0.1115

0.00 0.00 −0.1031

0.00 0.00 −0.00

0.0024 0.0020 0.00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.3568

0.00 0.00 −0.2488

0.00 0.00 −0.2066

0.00 0.00 0.1873

0.00 0.00 0.00

−0.0072 0.0062 0.00

0.00 0.00 0.1115

0.00 0.00 −0.1031

0.00 0.00 −0.00

0.0024 −0.0020 0.00

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Delta matrices for the variant A

δ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.5038

0.00 0.00 0.2169

0.00 0.00 −0.2956

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 −0.5038

0.00 0.00 0.2169

0.00 0.00 0.2956

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Delta matrices for the variant B

δ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 −0.6244

0.00 0.00 −0.1154

0.00 0.00 0.3690

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.6244

0.00 0.00 −0.1154

0.00 0.00 −0.3690

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Delta matrices for the variant C

δ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 −0.7429

0.00 0.00 0.0393

0.00 0.00 0.4415

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.7429

0.00 0.00 0.0393

0.00 0.00 −0.4415

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Delta matrices for the scaled model

δ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 −0.1051

0.00 0.00 −0.0706

0.00 0.00 0.0610

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.1051

0.00 0.00 −0.0706

0.00 0.00 −0.0610

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Delta matrices for the MPC model

δ1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.00

−0.0039 −0.0033 0.00

0.00 0.00 −0.2470

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.00

−0.0039 −0.0111 0.00

0.00 0.00 0.3487

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.00

−0.0039 0.0033 0.00

0.00 0.00 −0.2470

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

δ4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.00 0.00 0.00

−0.0039 0.0111 0.00

0.00 0.00 0.3487

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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3.3 Simulation results

This section will present and analyse the results obtained from the orbital simulator presented

in section 3.1 for an inertial pointing manoeuvrer. The results include comprehensive diagrams

and figures that illustrate the main entities, such as the actuation torque required for successful

manoeuvring and the corresponding time needed to achieve a stable orbital condition or the

perturbation given by the flexible panels. The analysis will encompass the dynamics of the

spacecraft during its transition to stability, with particular attention paid to key factors such as

torque magnitudes, the timing of manoeuvres, and any perturbations encountered throughout

the process. In the following series of results, the selected integrator is ode4 with a fixed step

size of 0.01 seconds. The simulation time was set according to the time required to reach a

stable condition.

As was done in the previous section, the present section will be divided into sub-sections, thus

facilitating a more accurate visualisation of the results obtained in each case study. Firstly, the

model representing the actual dimensions of the ICEYE spacecraft is presented. Subsequently,

for a more comprehensive and rapid comparison, the model with multi-point constraint is re-

ported to determine the effect of the hinge model on the control strategy. Finally, the results

of the other case study will be displayed.

3.3.1 Real model simulation results

In order to evaluate how the modal base is a function of the number of normal modes considered,

a series of simulations was conducted using three distinct modal configurations: three modes, five

modes, and ten modes. The primary focus of this analysis is to understand how the number of

modes influences key system parameters. In particular, the main outcomes relate to the angular

velocities of the system, the perturbation momentum generated by the flexible appendages, and

the control torque required to achieve and maintain the desired orientation. By comparing

these results across the different modal sets, the aim is to identify how increasing the number

of normal modes impacts the overall system dynamics, basing on the participation factor of

higher order modes, including the control effort needed for stabilization and maneuvering. This

analysis provides insights into the trade-offs between computational complexity and performance

in systems with flexible components.

As illustrated in fig. 3.13, the main disturbance of angular velocities is observed along the

z-axis, due to the flexible behaviour exhibited by the first three modal modes, highlighted by the

flexible torque acting only around z-axis showed in fig. 3.14. This results in the occurrence of

vibration phenomena throughout the duration of the simulation. It is evident that the residual

error remains uncorrected, as it is of an equivalent order of magnitude to the control action. In

fig. 3.16 the evolution of quaternions is shown, demonstrating the successful achievement of the

desired orientation. Finally, the torque given by reaction wheels are reported in fig. 3.15. Once

again, it possible to notice that the main action is performed by the wheel aligned with z-axis.

Now the other sets of results for five and ten modes will be reported in figs. 3.18 to 3.22 and

figs. 3.23 to 3.27, respectively.
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These results indicate that only the most energetic modes, specifically the first five or so

modes, have a significant impact on control effort. This suggests that beyond these dominant

modes, the influence on control effort becomes negligible, meaning that focusing on them is

sufficient to achieve effective control. The less energetic modes contribute very little, if anything,

to the overall control dynamics, allowing a more efficient and targeted approach to the design

of control strategies.

3.3.2 MPC model simulation results

For MPC model, the simulation results are shown in figs. 3.28 to 3.32. As demonstrated in

fig. 3.28, the stability of quaternions is achieved. This confirms the functionality of the orbital

simulator. The trends for angular velocities are similar to those observed in the absence of

MPC, exhibiting a persistent error in the component oriented along the z-axis. The initial three

modes of the MPC case study, as seen in fig. 3.7 , include the first two modes with torsional

behaviour, resulting in the perturbation momentum acting on all three axes, as illustrated in

fig. 3.30. This contrasts with the observations made in the case study without MPCs and only

three modes considered. Finally, in fig. 3.32 the modal coordinates of each SAR panels are

shown.

The effect of hinge model based on MPCs can be immediately noted in a more stable

evolution for angular velocities and control torques, but mostly in the perturbation momentum

by the flexible panels, as show in fig. 3.30. This figure shows an effect around the x and y

axes due to the torsional behaviour of the first two modal modes. Unlike the case without the

MPC elements, where the flexible perturbation momentum is zero throughout the simulation,

in this case it is present, although with a magnitude of 10−7. Further evidence of the effect of

the MPCs can be seen in the modal coordinates, which show a symmetrical evolution for the

couples of panels 1-3 and 2-4. In this case, the evolution around the x-axis is zero, because the

panel oscillation occurs around the hinge axis, with no perturbation along this axis.

3.3.3 Simulation results of other variants

In conclusion, the simulation results for the remaining variants of the model without MPC

elements are presented. As previously, the results include the evolution of quaternions and

angular velocities, the magnitude of external and flexible perturbation momentum, and the

modal coordinates for flexible appendages. It should be noted that the specifications of these

variants are reported in table 2.5. The main difference between variants A, B and C and the

base model is the total length of SAR panels. In contrast, for the scaled model, the scale factor

is applied to the entire structure.

The results for variants A, B and C are firstly presented in figs. 3.33 to 3.37, figs. 3.38 to 3.42

and figs. 3.43 to 3.47, respectively. Then, the results for scaled model are in figs. 3.48 to 3.52.

Despite the progressive increase in panel length, which results in an overall increase in

the system’s total mass, as evidenced by the observed decline in frequencies in table 3.6, in

accordance with the eq. (2.40), the evolution observed in the various results remain consistent

across all variants under consideration and with the actual model. However, it must be noted
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that the oscillation on angular rates, as shown in fig. 3.44b, while the perturbation momentum

by the flexible appendages around the z-axis showed an increase in oscillation. This is easily

explained by the increasing size of the panels, which logically increases the amount of disturbance

generated.
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(a) Eigenvector for λ1

(b) Eigenvector for λ2

(c) Eigenvector for λ3

Figure 3.8: First three eigenvectors for MPC Model
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(a) Eigenvector for λ1

(b) Eigenvector for λ2

(c) Eigenvector for λ3

Figure 3.9: First three eigenvectors for variant A
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(a) Eigenvector for λ1

(b) Eigenvector for λ2

(c) Eigenvector for λ3

Figure 3.10: First three eigenvectors for variant B
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(a) Eigenvector for λ1

(b) Eigenvector for λ2

(c) Eigenvector for λ3

Figure 3.11: First three eigenvectors for variant C
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(a) Eigenvector for λ1

(b) Eigenvector for λ2

(c) Eigenvector for λ3

Figure 3.12: First three eigenvectors for scaled model
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(a) Angular velocities trend

(b) Zoom on ωbz

Figure 3.13: Trends of angular velocities considering three modal modes

Figure 3.14: Perturbation momentum around z-axis
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Figure 3.15: Control torque considering three modal modes

Figure 3.16: Quaternions’ trend considering three modal modes

(a) Panel 1 (b) Panel 2

Figure 3.17: Modal coordinates of panels in standard model considering three modal modes
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Figure 3.18: Quaternions for the standard model considering five modes

Figure 3.19: Angular velocities evolution for the standard model considering five modes

Figure 3.20: Control torque for the standard model considering five modes
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Figure 3.21: Perturbation momentum by flexible panels for the standard model considering five

modes

(a) Panel 1 (b) Panel 2

Figure 3.22: Modal coordinates of panels for the standard model considering five modes

Figure 3.23: Quaternions for the standard model considering ten modes

56



CHAPTER 3. NUMERICAL SIMULATIONS AND RESULTS

Figure 3.24: Angular velocities evolution for the standard model considering ten modes

Figure 3.25: Control torque for the standard model considering ten modes

Figure 3.26: Perturbation momentum by flexible panels for the standard model considering ten

modes
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(a) Panel 1 (b) Panel 2

Figure 3.27: Modal coordinates of panels for the standard model considering ten modes

Figure 3.28: Quaternions trend for MPC model

Figure 3.29: Angular velocities of MPC model
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Figure 3.30: Perturbation moment given by the four flexible panels

Figure 3.31: Control torques in MPC model
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(a) Panel 1 (b) Panel 2

(c) Panel 3 (d) Panel 4

Figure 3.32: Modal coordinates of flexible panels in MPC model

Figure 3.33: Quaternions trend for variant A
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Figure 3.34: Angular velocities of variant A

Figure 3.35: Perturbation moment given by the flexible panels in variant A

Figure 3.36: Control torques in variant A
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(a) Panel 1 (b) Panel 2

Figure 3.37: Modal coordinates of flexible panels in variant A

Figure 3.38: Quaternions trend for variant B

Figure 3.39: Angular velocities of variant B
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Figure 3.40: Perturbation moment given by the flexible panels in variant B

Figure 3.41: Control torques in variant B

(a) Panel 1 (b) Panel 2

Figure 3.42: Modal coordinates of flexible panels in variant B
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Figure 3.43: Quaternions trend for variant C

(a) Angular velocities trend

(b) Zoom on ωbz

Figure 3.44: Trends of angular velocities for variant C
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Figure 3.45: Perturbation moment given by the flexible panels in variant C

Figure 3.46: Control torques in variant C

(a) Panel 1 (b) Panel 2

Figure 3.47: Modal coordinates of flexible panels in variant C
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(a) Angular velocities trend

(b) Zoom on ωbz

Figure 3.48: Trends of angular velocities for scaled model

Figure 3.49: Perturbation momentum around z-axis for scaled model
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Figure 3.50: Control torque for scaled model

Figure 3.51: Quaternions’ trend for scaled model

(a) Panel 1 (b) Panel 2

Figure 3.52: Modal coordinates of panels in scaled model
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Conclusions

This concluding chapter will provide a comprehensive reflection on the research presented

throughout this thesis. This concluding chapter will revisit the key findings, discuss the signifi-

cance of the methodologies employed, and examine the broader implications of the study in the

context of attitude control systems for flexible satellites. In doing so, it will provide a synthesis

of the work’s contribution to the field. The final section will conclude with a forward-looking

discussion addressing potential avenues for future research.

The initial stage of the study involved the introduction and detailed description of all the

elements required for the definition and analysis of attitudes. This was followed by an explana-

tion of the hybrid coordinate method for the rigid-flexible coupling in flexible structure studies.

The attitude dynamics are studied with the use of Euler’s equation, taking into account the

perturbation resulting from the presence of flexible appendages and the reaction wheel torque

model.

Subsequently, a concise overview of the finite element method (FEM) is provided, with a partic-

ular focus on the fundamental principles upon which this method is based. One of the objectives

of this project is to evaluate the effect of flexible structures in different types of spacecraft. To

this end, a series of finite element models have been developed and analysed using modal anal-

ysis in MSC Patran and Nastran. Particular attention has been paid to the interface between

the rigid hub of the satellite and the panels. In order to verify how this connection impacts

modal behaviour and control strategies, a model with MPC elements has been realised. The

natural frequencies and eigenvectors obtained have been imported into Matlab and Simulink for

designing an appropriate orbital simulator which takes into account the flexible panels’ model.

The design of the orbital simulator includes all the different subsystems that are necessary for

an appropriate simulation of an inertial pointing manoeuvre, which is defined as the reaching of

the desired attitude orientation. In order to address the challenges posed by orbital perturba-

tions, which are typical of the harsh space environment, and internal disturbances deriving from

the flexible panels, a QFC controller is selected and tuned to ensure the successful execution of

the manoeuvre.

The results for all the configurations under consideration have been collated and compared,

with the use of graphs, images and detailed observations. While the results demonstrate that

the desired attitude has been successfully achieved in all of the case studies, there are a few

areas that require further attention: firstly, the progressive increment of panels’ length results
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in similar evolution in simulation results, with a progressive reduction of oscillation in angu-

lar rates; then, the FEM analysis results show a counter intuitive behaviour, better explained

in the following. The MPC-based methodology does not fully capture the uncertainties and

flexibility introduced by the presence of hinges in the model, so the studied model results with

a more rigid behaviour, as the higher natural frequencies suggest. However, in light of the

specific objectives of this project, particularly the necessity for autonomous panel behaviour,

the MPC-based methodology has been retained despite its inherent limitations and the overall

framework provides a sufficient representation of the system’s dynamics for the purposes of this

investigation.

From this analysis, it is evident that future work should prioritise the refinement of the

selection of MPC elements or the investigation of alternative modelling approaches to more

accurately account for hinge flexibility. Furthermore, given that the modifications made to the

spacecraft model do not significantly impact attitude dynamics, a methodology could be devel-

oped to eliminate the necessity of FEM analysis during parametric studies, thereby reducing

the workload.
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