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Abstract

This study explores the potential of Explainable Artificial Intelligence (XAI)
algorithms, with a particular focus on the SHapley Additive Explanations algorithm
(SHAP), for providing novel insights into the complex dynamics of turbulence.
Turbulence is a highly non-linear and chaotic phenomenon, which presents significant
challenges in terms of prediction and modelling. It is often the case that traditional
methods are unable to adequately capture the intricate details of turbulent flows,
thereby necessitating the exploration of advanced computational techniques.

In this study, we utilise convolutional neural networks (CNNs) in conjunction
with the SHAP algorithm to analyse and predict turbulent flow patterns in an
axisymmetric jet. The CNNs are trained on experimental data with the objective
of identifying and learning the underlying patterns of turbulence. The objective of
integrating the SHAP algorithm is to enhance the interpretability of the neural
network outputs, thereby facilitating a more comprehensive understanding of the
physical phenomena that govern turbulence.

The findings of the study demonstrate that the SHAP algorithm is an effective
method for identifying the most influential features that contribute to the neu-
ral network’s predictions. This provides valuable insights into the mechanics of
turbulent flows. This enhanced interpretability not only facilitates the validation
of the model’s predictions but also contributes to the field of fluid dynamics by
uncovering so far obscured aspects of turbulence.
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Chapter 1

Introduction

The objective of this study is to invetigate the potential of algorithms for Explainable
Artificial Intelligence (XAI), with a particular focus on the SHAP algorithm, to
provide novel insights into turbulence dynamics.

The turbulence dynamics is an open problem of very large scientific interest
this is because of the complexity of fluid flow. Turbulence is highly non-linear
phenomenon. This means that small changes in the initial conditions can lead to
drastically different outcomes, making it difficult to predict and model accurately.
Turbulent flows involve a wide range of spatial and temporal scales. Capturing
all these scales simultaneously in a single simulation is computationally expensive
and often impractical. The Navier-Stokes equations are the fundamental governing
equations for fluid flow, including turbulence. However, solving these equations
analytically for turbulent flows is not possible.

The complexity of turbulence necessitates the use of advanced mathematical
tools, computational methods, and experimental techniques, so that new approach
are costantly being developed to tackle turbulence.

Despite the challenges, turbulence remains a fascinating and intellectually
stimulating field for mathematicians, physicists, engineers, and other scientists
and unraveling its mysteries promises significant advances in various scientific and
engineering disciplines.

A classical example of turbulent flow is the axisymmetric jet that is a fluid
flow developing in the absence of walls. The absence of a wall is the defining
characteristic of the jet, which is inherently turbulent. This is in contrast to other
canonical flows developing in the presence of walls, such as those in a channel or
on a flat sheet, which may not be turbulent.

In recent years, many resercher are using the machine learning for investigate
aerodyanmics problems because of their advantages respect to the traditional CFD.
In particular many authors propose convolutional neural networks (CNN) for the
turbulent flow prediction.
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Introduction

These neural networks are image-to-image translation networks, which means
that the neural network takes images as input and generates an output image. In
such instances, the image may be represented by the velocity field of fluid motion
at a specific instant, t, while the output image may contain the velocity field at
the subsequent instant, t + ∆t.

K. Portal-Porras, U. Fernandez-Gamiz et. al. [1] proposed the development
of a neural networks to obtain the flow field in the wake of a 2D cylinder. They
have developed a CNN with U-Net architecture that take as input the free stream
velocity, the lift coefficient at time t and at time t − 1 and a function called
SDF (x, y) that is equal to zero where in the contour of the cylinder, is less than
zero inside the cylinder geometry an greater than zero outside the cylinder. At
the output of the network we have the velocity field u, v at the istant t and the
pressure filed at the same istant. The results indicated that the training phase had
been highly effective, with an accuracy level of approximately 5% error on the lift
coefficient and Strouhal number compared to the traditional CFD with a reduction
of 192.4 times the required computational time.

A significant shortcoming of these neural networks is their lack of interpretability,
which hinders the ability to comprehend the underlying rationale behind their
outputs. In other words the problem is that whan we give an input at a pretrained
model it will give us an output but the model is a black box so we can’t se and we
can’t understand in any way why the model generate that specific output. This
phenomenon is particularly evident in the context of increasingly complex and
deep neural networks, which render them unreliable. This is because it is often not
possible to utilise the output of such models in applications that require a high
degree of reliability, precisely because it is not possible to estimate the level of
reliability of the output.

Consequently, recent research in the field of Artificial Intelligence (AI) has
focused on addressing these issues. The field of explainable artificial intelligence
(XAI) has emerged as a key area of study in this regard, aiming to develop new
methods for enhancing the interpretability of AI models.

Following the training of a convolutional neural network for the prediction of a
turbulent flow, the objective is to apply an XAI algorithm to the trained model in
order to ascertain whether these algorithms can provide insights into the underlying
physics of fluid dynamics.

In this instance, the Kernel-SHAP algorithm will be employed, which is a
game-theoretic algorithm formulated by Shapley.[2] This algorithm can be used to
calculate the distribution of winnings among a coalition of players based on their
contributions to the game. The objective of our study is to identify a turbulent
structure and to understand its impact on the prediction of turbulent flow performed
by the implemented neural network.

Applying this algorithm to the CNN that predicts the flow of an axisymmetric

2



Introduction

jet means finding turbulent structures in the predicted flow and calculating the
relevance of these structures. Subsequently, the objective is to conduct a statistical
analysis of these structures, encompassing both the physical attributes of the
turbulent structures and their Shapley values. This analysis aims to ascertain
whether insights can be gleaned about turbulence dynamics through such an
approach.
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Chapter 2

How a CNN work

As previously indicated in the introduction, convolutional neural networks (CNNs)
are employed to predict turbulent flow. CNNs represent a specific type of neural
network designed for image classification. Subsequently, they have been utilized to
generate images from another image, a process known as image-to-image translation.

Artificial neural networks are computational models inspired by the way the
human brain works. The brain is made up of billions of neurons, nerve cells
that transmit electrical signals to each other through connections called synapses.
Each neuron receives inputs from other neurons and produces an output based on
an activation function. The brain is able to learn from experience and perform
cognitive tasks because of synaptic plasticity, or the ability to change the strength
of connections based on signals received.

Artificial neural networks consist of computational units called nodes or artificial
neurons, which are connected to each other by synaptic weights. Each node receives
inputs from other nodes or external sources and produces an output based on an
activation function. Artificial neural networks can learn from data and perform
classification, regression, generation, etc. tasks by updating synaptic weights based
on an error function.

Artificial neural networks can be organised in different ways, depending on the
number of layers, the type of connections and the activation function. Some of the
most common architectures are feedforward networks, recurrent networks, convolu-
tional networks and generative adversarial networks. Each of these architectures
has specific characteristics and applications in the field of artificial intelligence.

CNNs are analogous to traditional Artificial Neural Networks (ANNs): each
neuron receives an input and performs a mathematical operation. The main
difference between ANNs and CNNs is that the latter are used to encode images
because, due to their structure, classical ANNs require higher computational
complexity to compute image data, making them very expensive to use.

5



How a CNN work

2.1 A look at the human brain
The nervous system of humans can be represented by a block diagram consisting
of three main subsystems: receptors, neural network, and effectors. The receptors
receive stimuli from the external world and convert them into electrical impulses.
These electrical signals are then transmitted to the neural network, which processes
the information from the receptors and produces another electrical signal. This
signal is then transmitted to the effectors, which produce a response in our body.

Receptors Neural Net Effectors ResponseStimulus

Figure 2.1: Block diagram representation of human nervous system [3]

The neural network of our nervous system is represented by the brain, that could
be described as composed from neurons that are the structural components of the
brain and the synapses that are the interconnection between neurons. Traditionally
it’s used to describe the neural organization assuming that synapses is a simple
connection that can impose the excitation or inhibition state of neurons, but not
both states.

The brain develops by adapting to environmental stimuli through the plasticity
of synaptic connections. In the adult brain plasticity may be accounted for by two
mechanism:

• creation of new synaptic connection between neurons;

• modification of existing synapses.

Axons (the transmission lines) and dendrites (receptive zones) can be distin-
guished because of their morphological differences: axons have a smoother surface
and are longer than dendrites, which have an irregular surface. Neurons can vary
in shape and size depending on their location in the brain.

As previously discussed, neurons encode their outputs through a series of brief
electrical pulses known as action potentials or spikes. These originate near the cell
body of neurons and propagate across individual neurons with a constant velocity
and amplitude.

Axons is very long and thin and they are characterized by an electrical resistance
and capacitance, so the axon can be modeled as a RC transmission line. The
analysis of this propagation mechanism reveals that when a voltage is applied at
one end of the axon, it decay exponentially with the distance.

As will be demonstrated, artificial neural networks are accurately represented
by emulating the structural characteristics of the human brain. The receptors
are conceptualised as input layers, which are responsible for receiving inputs and

6



2.2 – Artificial neural networks

transforming them into computable signals for neurons. The neural net is defined
as the collective of all neurons that are interconnected in a manner analogous to
that observed in the artificial neural network. Finally, the effectors, which are
responsible for generating a response in the body, constitute the output layer of
the artificial neural network.

Additionally, the training process, which in the context of artificial neural
networks refers to the identification of an optimal neuron weight value to achieve a
desired output, is analogous to the human brain’s analogous process. As previously
discussed, during the learning of a new concept or process, the plasticity of synapses
enables their modification, thus enabling the acquisition of new knowledge or skills.

2.2 Artificial neural networks
As seen in the introduction, artificial neural networks are computational objects
inspired by the human brain, and their development began in the mid-20th century.
In 1943, W.S. McCulloch and Walter Pitts proposed a single neuron model capable
of computing simple Boolean functions.

Later, in 1958, the mathematician John von Neumann, in his work "The Com-
puter and the Brain" [4], examined the models proposed up to that point and
highlighted their lack of accuracy in performing complex operations.

In the same year, the psychologist Frank Roselblatt proposed the implementation
of a neural network consisting of a single neuron, together with input and output
nodes, which he called perceptrons. The neuron receives input from the input nodes
via axons containing weights. An activation function characterises the neuron that
processes the input and returns an output:

y = f

A
b +

nØ
i=1

wi · xi

B
(2.1)

where:

• f is the activation function;

• b is the bias, that is an external parameter of artificial neuron;

• wi is the i-th weigth of the neural network;

• n is the total number of the input.

The activation function defines the output of the neuron. There are several
types of activation function, the most common are:

• Rectified Linear Unit: ReLU(x) = max(0, x);

7



How a CNN work

Figure 2.2: Perceptron scheme

• Hyperbolic Tangent: tanh(x) = ex−e−x

ex+e−x ;

• Sigmoid: σ(x) = 1
1+e−x .

Figure 2.3: Rectified
Linear Unit activation
function

Figure 2.4: Hyperbolic
tangent activation func-
tion

Figure 2.5: Sigmoid
activation function

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of ANN where the input layer
is an image, so the architecture of this NN has been specified to process images.

If we want the NN to deal with normal images, we should use hidden layers
with their neurons organised in three dimensions, the first two dimensions being
the height and width of the image and the last and width of the image, and the
last dimension is the number of layers in which the colours are discretized. For
example a full HD image with 1920x1080 pixels will be a tensor of 1920x1080x3
elements. These networks can work also with "fake image", that means matrix with

8



2.3 – Convolutional Neural Networks

numbers that dont’t represent properly an image, but it don’t know becaue what
is important for the network is the form of the input. Also exists CNNs that can
take as input tensor of four dimensios, that is a simple extension of the concept of
CNNs for images, but it is very useful in fluid dynamic applications because we
often deal with three-dimensional motion field, overall with turbulent flow that are
always 3D.

One of the first application of CNNs was for the image classification, that means
the neural network take as input an image and elaborate it to have as output a
descriprion of what the image represent. For example Y. LeCun, B. Boser et. al. in
1989 [5] proposed a CNN that was able to recognise handwritten characters. This
was then used to automate the reading of bank cheques.was used to automatize
the reading of bank cheques.

Figure 2.6: Simple scheme of a CNN architecture [6]

Usually, CNNs a re composed of four types of layer: the input layer, convolutional
layers, pooling layers, and fully connected layers, as shown in Figure 2.6 [6].

The input layer is responsible for receiving the input data and transforming
it into a matrix of numbers that the computer can process. This matrix is then
transferred to the convolutional layers.

Convolutional layers apply filters, called kernel, at the input data. Convolutional
is a mathematical operation defined as:

(f ⋆ g)(t) =
Ú +∞

−∞
f(t)g(t− τ)dτ (2.2)

where f represent the input function and g the kernel function. For each convolu-
tional layer, an activation function is applied to the output. Convolutional layers
have many parameters to set such as the kernel dimension that difine the number o
learnable parameter of the layer, or the padding that is uswful in order to regulate
the dimensions of the output and so one. The aforementioned settings have the
potential to impact the efficiency of the network, with the specific choice of settings
depending on the nature of the work to be performed by the network.
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Following the convolutional layers, there are pooling layers, which can rapidly
reduce the output dimension, thereby reducing the computational cost required to
obtain the desired output size. The final layers are fully connected layers, which
link all the artificial neurons of the preceding layers in order to obtain the final
output of the NN.

This is the standard architecture of convolutional neural networks. However,
depending on the purpose of the network’s operation, it can be modified and
integrated with the desired output. As seen in chapter 1 we need a CNN that takes
as input an instantaneous velocity field and elaborates it to predict the velocity
field at the subsequent instant. For these goals the more ertinent architecture are
the U-Net CNN, such as proposed from Hou Yuqing and Li Hui et. al. [7] for the
prediction of flow around a submarine.

The U-Net architecture is composed by two branches: the firts perform the
down-samplig of the input image, and the last one perform the upscaling of the
output to obtain an image of the desired size (usually the same size of the input
image). The term "U-Net" is derived from the shape of its block diagram, which is
represented by a U-shaped structure. This is illustrated in Figure 2.7.

Figure 2.7: Scheme of a CNN with U-Net atchitecture [1]

This architecture is particularly suitable for the prediction of temporal data
this is because of we used this type of CNN. In fact these architecture allow to
"remember" data from the peceeding information thank so the presence of skip
connection, that are link of the informations of different layers of the networks
represented by the line the links parallel blocks of the scheme in Figure 2.7.

The training of these networks is frequently challenging due to their high
sensitivity to input data noise and the vanishing gradient problem. In fact, we
typically train these networks with experimental data (PIV images) or CFD
data. Both types of data may be affected by noise due to errors resulting from
measurement or calculation errors, so we introduce in the networks an intrinsic
error which effects all outputs produced.

The phenomenon of a vanishing gradient occurs when the gradient is too small
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so that the adjustment of neuron’s weights is negligible, so that the network wont
learn anymore and this don’t allow the network to learn long terms information.
To circumvent this issue, it is imperative to exercise caution when selecting the
activation function, modify the learning rate during the training phase, use the skip
connection in order to permit the gradient transfer between the network’s layers.
But the most efficient strategy to avoid the vanishing gradient is to add Long Short-
Term Memory (LSTM) layers. The structure of these layers enables the network to
recall the most significant long-term dependencies, which is why integrating these
layers into CNNs for the prediction of turbulent flows can significantly enhance
performance[1].

2.4 Residual Net
As will be demonstrated subsequently, a parametric study of the U-architecture
revealed that the structure exhibiting optimal functionality was the simplest, thus
comprising only a single Down block. Consequently, a convolutional neural network
with a residual network (ResNet) architecture was implemented, as it exhibited
a structural similarity to the U-Net with a single Down block. This was done to
assess the efficiency of the CNN in predicting the jet flow.

ResNets were developed with the objective of circumventing the conventional
issues associated with CNNs, namely vanishing and exploding gradients. As
illustrated in the case of the U-Net, the utilisation of skip connections represents a
means of addressing these challenges. The architecture is constituted by a specific
number of residual blocks. The number of convolutions performed by the neural
network is contingent upon the dimensions of the residual block. Furthermore,
each convolutional layer is connected to the subsequent layer in a skip structure as
shown in Figure 2.8 where two subsequential residual block are schematized.

As previously stated, the structure of these neural networks is notably simple.
They all begin with an initial convolution, which increases the number of filters in
the image without reducing the original image dimensions. This differs from the
approach taken with the U-Net, where the number of filters was reduced. Following
this, we have the residual blocks, which perform a specific number of convolutions
with constant number of channels, so the depth don’t increase.

2.5 Learning process
The training process of a neural network is the modification of the neuron’s weights
and bias with the objective of minimising a loss function that measure the distance
between the desired output with the real output of the NN.
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Figure 2.8: Structure of two consecutive residual blocks [8]

Training algorithms can be divided into numerous categories. The first of these
is the distinction between supervised and unsupervised learning algorithms.

The batch size during the training of a CNN is a significant hyperparameter
that directly influences the model’s learning process. It determines the number
of training samples that will be processed before the model’s internal parameters
are updated. A smaller batch size can lead to faster training iterations, as less
computational memory is required, and it can also help the model to generalize
better by providing a more regularized approach. However, smaller batches may
result in a less accurate estimation of the gradient, which can affect the convergence
of the model. On the other hand, larger batch sizes offer a more accurate estimate
of the gradient direction but can be computationally expensive and may lead to
overfitting if not managed correctly. Therefore, the choice of batch size is a balance
between computational efficiency and the quality of the gradient estimation, which
ultimately impacts the model’s performance on new, unseen data. It’s a critical
decision that can affect the speed of training, the convergence behavior, and the
overall success of the CNN’s training process.

Supervised training algorithms for CNNs represent a fundamental component of
contemporary deep learning, particularly in contexts involving image recognition
and classification. The process commences with the provision of a labelled dataset,
wherein each input (frequently an image) is associated with a correct output
label. The CNN learns to map the input data to the correct labels through a
series of layers that extract and transform features from the data. The initial
layer, the convolutional layer, employs a variety of filters to process the input,
thereby generating feature maps that emphasise particular aspects of the data.
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Subsequently, the feature maps undergo downsampling through the incorporation
of pooling layers, which serve to reduce the dimensionality and computational
complexity of the data while maintaining the integrity of the information.

Subsequently, the features undergo further refinement and abstraction in the
subsequent layers, with fully connected layers at the network’s conclusion making
decisions based on the abstracted features. The training process comprises two key
stages: forward propagation, whereby input data is processed by the network to
generate an output, and backpropagation, whereby the network adjusts its weights
and biases to minimise the discrepancy between its output and the correct labels.
This adjustment is achieved through the use of optimisation algorithms, such as
stochastic gradient descent, which iteratively updates the network’s parameters with
the aim of reducing the loss function, which serves as a measure of the network’s
performance on the training data.

Regularisation techniques, such as dropout and weight decay, are frequently
utilised to avert overfitting, thereby ensuring that the network exhibits effective
generalisation capabilities with respect to novel, unobserved data. Furthermore,
contemporary CNNs may employ techniques such as batch normalization to enhance
stability of the learning process and accelerate convergence rates. Once trained,
CNNs are capable of performing tasks such as image classification with high
accuracy. Furthermore, they can be fine-tuned with additional data or adapted to
new tasks through transfer learning.

In contrast, unsupervised learning pertains to unlabeled data. The algorithm
must be capable of discerning patterns and relationships within the data without any
external guidance or correction. This is analogous to self-directed learning, whereby
the learner is required to identify structure within the information presented to
them independently. Typical tasks for unsupervised learning algorithms include
clustering and association. The objective in these cases is to group similar data
points together or to identify rules that describe large portions of the data.

The decision between supervised and unsupervised learning is contingent upon
the nature of the problem at hand and the type of data available. Supervised
learning is frequently employed when the intended result is known and the objective
is for the model to learn to predict or classify new data based on past examples.
The utility of unsupervised learning lies in its capacity to facilitate the exploration
of data, thereby uncovering hidden structures and patterns.

In practice, these two types of learning can also be combined in what is known
as semi-supervised learning, whereby a small amount of labelled data is used
in conjunction with a larger set of unlabeled data. Alternatively, reinforcement
learning may be employed, whereby an agent learns to make decisions by receiving
rewards or penalties.

Each method has its own particular strengths and limitations. Supervised
learning can achieve high accuracy when a substantial amount of labelled data
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is available; however, obtaining such data can be costly and time-consuming.
Unsupervised learning can be applied to unlabeled data, which is often more readily
available, but it may yield less precise results due to the lack of clear guidance
during training. In summary, supervised learning algorithms learn from examples
with known outcomes to make predictions or classifications, while unsupervised
learning algorithms explore data to find patterns without prior knowledge of the
results. The choice between them is dictated by the specific requirements and
constraints of the machine learning task at hand.

The choice of the learning algorithm and loss function are often connected
because some algoritmh perform better with a certain loss function.

The RMSprop algorithm Root Mean Square Propagation (RMSprop) is an
optimisation algorithm employed in the training of NNs. The RMSprop algorithm
is based on the Stochastic Gradient Descent (GSD) algorithm, but with certain
modifications that enhance the stability and convergence velocity of the algorithm.
The first step of this algorithm is to compute the loss function’s gradient, it give an
indication on the direction in wich the NN’s parameters should be update to reduce
the error. Then, based on the RMS value of the gradients of the previous training’s
epoch, it estimate the local gradient for each parameter. The Equation 2.3 is the
formula for compute new value of the j − th weight at the t + 1− th epoch.

θj
t+1 = θj

t −
γñ

vj
t + ε

A
∂Ej

∂wj

B
t

(2.3)

dove

• γ: is the learning rate;

• ε: is a small value that is added to prevent the denominator from being zero.

vj
t is:

vj
t = γvj

t−1 + (1− α)
A

∂Ej

∂wj

B2

t

(2.4)

where α is a factor that indicate a fraction of the gradient decay.
This solution uses the partial derivative of the loss function in the j-th weight to

correct the step size of the gradient descent. The algorithm 1 shows the operation
of the RMSprop algorithm implemented in the PyTorch library [9].

As we noted before, the advantages of this algorithm are the stability and the
convergence velocity. In general this emprove the algorithm’s efficiency, but it’s
heavly influenced by the learning rate γ choice.

Another algorithm largely used for the weights optimization of this NN’s is the
Adaptive Moment Estimation (Adam) algorithm. It combines the advantages of
two optimizations algorithm: the Gradient Discent with Momentum (GDM) and
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Algorithm 1 RMSprop optimizer
1: procedure RMSprop(α, γ, θ0, f, λ, µ)
2: ▷ Initializes parameters
3: v0 ← 0
4: b0 ← 0
5: gavg

0 ← 0
6: for t=1 to ... do
7: gt ← ∇θf (θt−1)
8: if λ /= 0 then
9: gt ← gt + λθt−1

10: end if
11: vt ← αvt−1 + (1− α) g2

t

12: ṽt ← vt

13: if centered then
14: gavg

t ← gavg
t α + (1− α)gt

15: ṽt ← ṽt − (gavg
t )2

16: end if
17: if µ > 0 then
18: bT ← µbt−1 + gT

(√
ṽt+ε)

19: θt ← θt−1 − γbt

20: else
21: θt ← θt−1 − γgt

(√
ṽt+ε)

22: end if
23: end for
24: return θt

25: end procedure

the RMSprop. The GDM algorithm, using momentum µ to accelerate the learning
process. The momentum is a parameter that takes into account the gradient of
the previous iterations to damp the oscillations and thus drive the parameters to a
more stable minimum. The algorithm update the exponential moving averages mt

and vt, respectively of the gradient and the sqared gradient using the parameters
β1 and β2 that control the exponential decay. This averages are initized to zero,
so that in the first training’s epoch, are nearest to zero . Based on the moving
averages, the weights are updated with the following formula:

θt = θt−1 − γ
m̂t√
v̂t + ε

(2.5)

The advantages of this algorithm are:
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• Efficiency: Adam algorithm converge faster than other algorithm such as
GDM or SGD, so the training process require fewer iteratons to minimize the
loss function;

• Stability: Adam algorithm is less prone to oscillation of the gradient than
other algorithms;

• Scalability: Adam algorithm is well suited to models also with much many
parameters;

• Ease of use: Adam algorithm require only few parameter to set, i.e. the
damping parameters and the initial learning rate.

2.5.1 Weights initialization
Weights initialization before the training process begin, could be very important, in
fact an appropriate inizialization of the neural network’s parameter can enormously
reduce the necessary training’s epoch to reach the convergence, otherwise if the
weights has random value the network may have difficulty learning, or may converge
to a non optimal solution and begin to oscillate around it without converge to it.
local minimum. So an appropriate weight initialization garantees us that the NN’s
training start from a favourable point to reach fast and accurate minimum value
and also can help to avoid the vanishing gradient. The conventional approach is to
initialize parameters with a standard distribution, fixing the standard deviation.
However, in certain applications, this initialization hinders convergence, and the
deeper the model, the more challenging it is to achieve convergence.

To avoid these problems, several weight initialisation methods have been devel-
oped in the history of AI, such as the Xavier initialisation or the Xe initialisation,
each with its own peculiarities depending on the activation function used.

The selection of the initialisation method is contingent upon the intended
application of the neural network and the activation function of each layer. For
instance, He et al. [10] have demonstrated that the Xavier initialisation is not
optimal solution and begin to oscillate around it without converge to it. when
utilising the ReLU activation function.

In this work we use the Kaiming initialization proposed in the reference [10].
This was already implemented in PyTorch environment [9] in the function named
kaiming_normal_. This function assign to the neural network’s weights tensor a
value from a normal distribution with standard deviation:

std = gain√
fan_mode

(2.6)
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where fan_mode define if we want a constant variance of the weights in the
forward process (with fan_mode = fan_in) or in the bckward process (with
fan_mode = fan_out).

In this work we initialize the weights of convolutional layers with the Kaiming
initialization, meanwhile for the BatchNormalization layers the weights has been
intialized with a simple normal distribution with constant variance and the bias
parameters has been initialized to a constant null value.

2.5.2 Setting up the learning rate
In the context of machine learning, the value of the learning rate represents a
hyper-parameter of fundamental relevance for the training efficiency. In fact, it
determines the rate of change of the model’s parameters during the training process,
significantly influencing the convergence and the quality of the model.

Setting the learning rate too high could lead to the phenomenon of overshoot,
which occurs when the network overtakes the optimal solution and begins to oscillate
around it without converging to it. Conversely, if the learning rate is too low, the
gradient may decay slowly and inefficiently, prolonging the model’s training times
and preventing it from reaching an optimal solution.

To avoid these problems scheduler has been implemented. Scheduler are function
that update te value of the learning rate during the training process. This technique
consists of dynamically varying the value of the learning rate according to various
criteria, such as the number of epochs completed, the error reduction rate or the
size of the gradient. This adaptive approach balances the learning rate with the
accuracy of the model, optimising the training process.

In conclusion, the learning rate plays a key role in the training of neural networks,
influencing both the speed and quality of learning. By ensuring that the learning
rate is correctly set and that adaptation techniques are employed, it is possible to
obtain optimal models in a reasonable time.

For these reason, during the training preocess, scheduler are setted up to vary
the learning rate according to optimize the learning process of the neural network.

The choise the scheduler function adopted is driven by the behaviour of the
model during the training. In this work we have tested two type of scheduler, the
CosineAnnilingLR e il CyclicLR both implemented in the PyTorch environment [9].

The CosineAnnilingLR brings down the learning rate as the cosine in a certain
number of epochs:ηt = ηmin + 1

2 (ηmax − ηmin)
è
1 + cos

1
Tcur

Tmax
π
2é

Tcur /= (2k + 1)Tmax

ηt+1 = ηt + 1
2 (ηmax − ηmin)

è
1 + cos

1
1

Tmax
π
2é

Tcur = (2k + 1)Tmax

(2.7)

where:
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• ηmax is the initial value of the learning rate;

• Tmax is the max number of iterations of the scheduler;

• ηmin is the minimum value of the learning rate to be achieved;

• Tcur is the number of epoch after the last warm restart.

In Figure 2.9 is reported the trend of this scheduler.
The last scheduler tested is the CyclicLR scheduler, this causes the learning

rate to fall linearly for a number of epochs, after which it rises again. Its trend is
showed in Figure 2.10.

Figure 2.9: Trend of the CosineAn-
nilingLR scheduler

Figure 2.10: Trend of the CyclicLR
scheduler

2.6 Conditional Generative Adversarial Networks
The proposed neural network is part of the image-to-image translation networks,
i.e. generative networks that from one image generate a different one, in this case
from the image of a velocity field of the flow of an axisymmetric jet generate the
image of the same field at the next instant.

Classical CNNs during the training process decrease the value of the loss function,
which is a function that provides a measure between the predicted and actual image.
This learning process is automatic and for the learning process to be effective, it is
essential to select the most appropriate loss function in order to tell the process
which is the target to be minimised. For example, selecting the Euclidean distance
between the generated and real pixels as the target to be minimised can lead the
CNN to generate blurred images, this happens because the Euclidean distance is
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minimised by averaging all possible outputs, it is often not easy to select the right
target for the intended purpose and this requires some experience.[11]

Conditional Generative Adversarial Networks (cGANs), represent an advanced
architecture of artificial neural networks used for the generation of realistic data from
conditional data. Unlike standard GANs, cGANs integrate additional information
into the generation process, resulting in more controlled and realistic results.

A cGAN is constituted of two neural networks that are in conflict with one
another:

• Generative network: A generative network is a CNN that has been trained
to learn the conditional distribution of data and to generate new data that is
similar to the real data, but with specific characteristics that are determined by
the input conditions. The structures of the new data are perfectly equivalent
to those seen previously.

• Discriminator network: The discriminator network is also a CNN trained
to distinguish between data that is real and data that has been generated by
the generator. The objective of the discriminator is to correctly classify the
data as either real or generated.

CGANs offer significant advantages over standard GANs. Firstly, they offer
greater control over generation because the conditioning information allows data
with specific desired characteristics to be generated, thereby improving the con-
trollability of the generation process. Secondly, the results are more realistic than
those generated by standard GANs. Indeed, as illustrated by U. Demir and G.
Unal [12], these networks are capable of generating images with greater definition,
which could potentially yield more precise velocity field values in the case study.

The discriminator network receives as input the images generated by the gener-
ator that have been identified as ’fake’ and the real images. The objective of the
discriminator is to ascertain which images have been generated and which are the
real images. In doing so, the discriminator attempts to deceive the system, thereby
generating images that are increasingly similar to the real images.

In mathematical terms the loss function can be espressed as:

LcGAN(G, D) = Ex,y [logD(x, y)] + Ex,z [log(1−D(x, G(x, z)))] (2.8)

where x are the input data, y are the generated data and z is the Gaussian noise.
A recent study has demonstrated that combining the traditional GAN objective

with the L1 loss function enhances the visual quality of the generated images
while simultaneously reducing the occurrence of blurring. So the final objective is
expressed as:

G∗ = arg min
G

max
D
LcGAN(G, D) + λLL1(G) (2.9)
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Figure 2.11: Flow chart of the raining diagram of a cGAN network [13]

The L1 loss function represents a criterion that quantifies the mean absolute
error between each element in the predicted images and the corresponding elements
in the real images.

The elimination of Gaussian noise from the data enables the network to learn a
mapping from x to y, thereby facilitating the generation of less stochastic results.
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Algorithm 2 Adam optimizer algorithm.
1: procedure Adam(γ, β1, β2, f, θ0, amsgrad, maximize)
2: ▷ α is the stepsize
3: ▷ β1, β2 ∈ [0, 1) are the exponential decay rates for the moment estimates
4: ▷ f (θ) is the objective function to optimize
5: ▷ θ0 is the initial vector of parameters which will be optimized
6: ▷ Initialization
7: m0 ← 0 ▷ First moment estimate vector set to 0
8: v0 ← 0 ▷ Second moment estimate vector set to 0
9: t← 0 ▷ Timestep set to 0

10: ▷ Execution
11: for t=1 to ... do
12: ▷ Gradients are computed w.r.t the parameters to optimize
13: ▷ using the value of the objective function
14: ▷ at the previous timestep
15: if maximize then:
16: gt ← −∇θft (θt−1)
17: else:
18: gt ← ∇θft (θt−1)
19: end if
20: if λ /= 0 then
21: gt ← gt + λθt−1
22: end if
23: mt ← β1 ·mt−1 + (1− β1) · gt

24: vt ← β2 · vt−1 + (1− β2) · g2
t

25: ▷ Bias-correction of estimates
26: m̂t ←

mt

1− βt
1

27: v̂t ←
vt

1− βt
2

28: if amsgrad then:
29: v̂t

max ← max(v̂t
max, v̂t)

30: θt ← θt−1 − γ · m̂t√
v̂t + ϵ

31: else:
32: θt ← θt−1 − γ · m̂t√

v̂t + ϵ
33: end if
34: end for
35: return θt ▷ Optimized parameters are returned
36: end procedure
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Chapter 3

Axisymmetric jet flow

A jet is defined as a flow generated when a fluid exits an orifice into another ambient
medium, where it is assumed that the jet is made by the same fluid that exits the
orifice. If the orifice has a circular geometry, the jet is axisymmetric. The jet falls
into the family of free shear flows, which are inhomogeneous flows whose main
velocity gradient develops in the absence of walls. These flows have been much
studied because they involve many of the natural and engineered processes, such
as combustion or contrails.

As is the case with all turbulent flows, the field of motion of the jet is three-
dimensional. However, for the sake of simplicity, this work considers only two
dimensions: the streamwise direction and the radial one.As all the fluid dynamics
problems, the physics of axisymmetric jet is well described by the Navier-Stokes
equations that derived from the conservation law of mass, momentum and anergy:

∂ρ

∂t
+∇ ·

1
ρV⃗
2

= 0
∂V⃗

∂t
+
1
V⃗ · ∇

2
V⃗ = −∇p + F⃗ + µ∇2V⃗

∂(ρE)
∂t

+∇ ·
1
EρV⃗

2
= −∇ ·

1
pV⃗
2

+ µ∇ · τ̄ + ρg⃗ · V⃗ −∇ · q⃗

(3.1)

The motion field of the jet is characterised by the presence of four mean regions,
as schematically illustrated in Figure 3.1:

• Potential core: the potential core is a conical region of the motion field that
is characterised by costant velocity and equal to the fluid’s velocity at the exit
of the nozzle U∞;

• Mixing region: this region envelops the potential core and extends across
the entire width of the potential core. In this regions there is a velocity decay
due to the viscous effects;
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• Transition region: in the transition region, there are no points at which the
velocity is equal to the free-stream velocity, U∞. This is because the viscous
effects on each point of the motion field result in a parabolic trend in the
velocity profile u(r).

• Self-similar region: from a certain distance x2 until the total exhaustion of
the flow, if we normalise the velocity profiles by considering an appropriate
length, we observe a perfect equality between these. The normalization that
show the similarity of vleocity profile is:

u(x, r)
Umax(x) = f

A
r

ru=0.5Umax(x)

B
(3.2)

Figure 3.1: Scheme of the jet flow’s regions [15]

The velocity on the axis of the jet, U(x,0), is observed to decline in accordance
with an exponential law, showed in Equation 3.3:

Umax(x)
U0

= k

(x/D)n
(3.3)

Thus far, the motion field has been observed in time-averaged space. However,
turbulence is characterised by rapid fluctuations in time of the physical quantities,
which necessitates an extension of the temporal perspective to fully comprehend
its dynamics.

The study of turbulence dynamics has a history of some 160 years, beginning
with the first investigations by Hermann von Helmholtz in 1858. Despite this long
history, turbulence dynamics remains a subject of great scientific interest, with
many open problems still to be solved due to its inherent complexity.
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Turbulence is a chaotic motion of fluid in the motion field, this is because
turbulence is a state of continuous instability, so the fluid organises itself into
vortices to seek stability. This causes large temporal variations in the physical
quantities describing the fluid motion, and therefore turbulent motion is very
difficult to predict because the variation is arbitrary.

Given the inherent variability of turbulent flows, their characterisation is typically
conducted in terms of statistical quantities, which can be reproduced through ex-
perimental means through measurement methods characterised by a high frequency
response, such as hot wire anemometry or optical techniques.

Entrainment in axisymmetric jet flow refers to the process by which a fluid
jet, issuing from a nozzle into a quiescent or moving ambient fluid, incorporates
surrounding fluid into its flow structure. This phenomenon is crucial for under-
standing how jets mix with their environment, which has implications for various
applications, from industrial processes to environmental science. In an axisymmet-
ric jet, the entrainment occurs as the jet’s momentum causes it to spread radially,
creating a shear layer where the jet fluid and ambient fluid interact. This interaction
leads to the entrainment of ambient fluid, which is then mixed into the jet due to
turbulence. The dynamics of this process are complex, involving factors such as
the jet’s velocity profile, the density difference between the jet and the ambient
fluid, and the presence of any external turbulence. Recent studies have shown that
external turbulence can significantly affect the entrainment process by altering the
topology of the scalar turbulent/turbulent interface (TTI), which differs from the
traditional turbulent/non-turbulent interface (TNTI). The TTI is characterized
by a greater thickness and an increased function of the background turbulence
intensity, which suggests that large-scale engulfment plays a more significant role
in the entrainment process under these conditions. Additionally, the presence of
ambient turbulence can lead to the formation of concentration ’holes’ within the in-
terfacial layer and detached jet patches, or ’islands,’ indicating intense detrainment
events. These phenomena contribute to the overall complexity of the entrainment
process in axisymmetric jet flows and highlight the need for further research to
fully understand the interplay between jet dynamics and ambient conditions. [16]

The Reynolds number plays a pivotal role in the entrainment process of jet
flows, serving as a dimensionless parameter that characterizes the flow’s regime.
It is defined as the ratio of inertial forces to viscous forces and is used to predict
the transition from laminar to turbulent flow. In the context of jet entrainment, a
higher Reynolds number typically indicates a more turbulent flow regime, which is
associated with increased mixing and entrainment due to the presence of larger and
more energetic eddies. These eddies enhance the entrainment of ambient fluid into
the jet, contributing to its growth and the mixing of substances within the flow.
Studies have shown that as the Reynolds number increases, there is a decrease in the
centerline axial velocity decay rate and reduced turbulence intensities, suggesting

25



Axisymmetric jet flow

a more efficient mixing process. The jet spread rate, however, is observed to
be independent of the Reynolds number, indicating that factors other than the
Reynolds number also influence the spread of the jet. Additionally, high Reynolds
number jets experience an early transition to a turbulent regime, which can lead to
a more rapid mixing and entrainment of the surrounding fluid. This early transition
is characterized by an early potential-core collapse, which is the point where the
maximum velocity within the jet decreases sharply due to the increased mixing
with the ambient fluid. The dynamics of jet entrainment are complex and are
influenced by a multitude of factors, including the initial velocity profile of the
jet, the density difference between the jet and the ambient fluid, and the level
of ambient turbulence. Understanding the role of the Reynolds number in jet
entrainment is crucial for optimizing industrial processes such as fuel injection in
combustion engines and for environmental applications like pollutant dispersion in
the atmosphere. [15]

Figure 3.2: Close-up views of the shear layer of jets at different Reynolds number,
red arrows highlight entrainment zones [17]

3.1 Momentum and energy
Applying the principle of momentum conservation to the jet flow:

M = 2π
Ú +∞

0
ρu2dr (3.4)
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The costant momentum along the axis of an axisymmetric jet flow is predomi-
nantly attributable to the absence of external forces acting upon the fluid. This
implies that external pressures and forces that could disrupt the flow are absent,
allowing the momentum to remain constant. Furthermore, the absence of dissipa-
tive forces, such as wall shear stress, is of great consequence. In numerous fluid
dynamics scenarios, wall shear stress can markedly dissipate the momentum of the
fluid by introducing frictional forces that impede the flow. However, in the case of
an axisymmetric jet, the absence of such boundaries ensures that the momentum
is conserved along the axis.

E = dEc

dt
= 1

2Gu2 = π
Ú +∞

0
ρu3rdr (3.5)

In the potential core of an axisymmetric jet flow, the kinetic energy is maintained
at a constant value due to the absence of viscous effects. This region is distinguished
by an inviscid flow, wherein the fluid particles are observed to move without internal
friction, thereby enabling the conservation of kinetic energy. The potential core
is typically located in the vicinity of the jet’s exit, where the velocity profile is
uniform and the effects of viscosity are negligible.

Conversely, as the fluid moves away from the potential core into the shear layers
and the outer regions of the jet, the effects of viscosity become increasingly evident.
In these regions, the interaction between fluid layers of disparate velocities gives
rise to the formation of shear stresses. The viscous forces exerted upon the fluid
cause it to experience friction, which results in the dissipation of kinetic energy.
The energy lost due to viscous dissipation is converted into thermal energy, which
results in a reduction in the overall kinetic energy of the fluid as it moves further
from the jet axis.

The dissipation function is defined as:

ε = δH

δV
(3.6)

where δH is the internal thermal energy and δV is the element’s volume. In this
case the dissipation function will be:

ε = 1
2ν

A
∂u

∂z
+ ∂w

∂x

B2

(3.7)

In the field of fluid dynamics, the dissipation function represents a conceptual
framework that elucidates the manner in which the mechanical energy inherent to
fluid flows is transformed into thermal energy as a consequence of viscous effects.
This function is of particular significance in the study of turbulent flows, where
the viscosity of the fluid results in a continuous conversion of flow kinetic energy
into thermal energy, thereby reducing the flow’s mechanical energy. In essence,
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the dissipation function serves to quantify the rate of this energy conversion. It
is a pivotal element in the energy equilibrium of a fluid system, influencing the
behaviour of the flow in significant ways, particularly in engineering contexts
where heat generation and energy efficiency are paramount considerations. An
understanding of the dissipation function can assist engineers in the design of
systems that either minimise energy loss due to dissipation or exploit the heat
generated by the process.

3.2 Turbulence dynamics in axisymmetric jet
flow

The most significant structures are those of a small scale, as they are typically
defined as concentrated regions of high enstrophy with a lifetime exceeding the
characteristic time scale of the flow. These structures are the most responsible for
energy dissipation. In recent years, the growth of computational capabilities has
enabled a comprehensive investigation of these structures.

These structures appear to share some universal features, such as the preferential
alignment of the vorticity vector with the direction of the mean principal strain,
and their average radius is about five times the Kolmogorov length scale. [18]

The Kelvin-Helmholtz (KH) mechanism has long been employed to describe
coherent structures in both transitional and turbulent planar shear layers and jets.
This mechanism is fundamental to the field of fluid dynamics and plays a crucial
role in understanding the behaviour of various flow systems. It should be noted
that the KH mechanism is not defined in isolation; rather, it is defined in the
context of parallel or quasi-parallel laminar shear layers. In these contexts, the
mechanism is well characterised by the spatial stability theory, in which the KH is
identified as an unstable modal solution with an associated spatial growth rate.[19]

In the context of jets, the KH mechanism manifests in a distinct manner. The
solution is typically a convective instability, whereby disturbances grow as they
are convected downstream. This is in contrast to absolute instabilities, whereby
disturbances grow in situ. As the jet propagates, the initially growing wave, which
oscillates at a fixed frequency, will eventually become neutral and begin to decay.
The transition from growth to decay is influenced by the spreading of the flow and
the changing conditions within the jet.

The KH mechanism’s capacity to elucidate these coherent structures is of
paramount importance for forecasting and regulating flow behaviour in a plethora
of engineering applications, including aerodynamics, meteorology, and even astro-
physics. An understanding of this mechanism facilitates the design of more efficient
systems and the mitigation of the adverse effects of turbulent flows.

The study of Tissot G. et. al [20] supports the presence of the Orr mechanism
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in the downstream region of jets, where disturbances grow nonmodally in response
to nonlinear forcing. The Orr mechanism is a transient energy growth mechanism
proposed by Orr [21], who demonstrated that the perturbation energy of a given
velocity field can grow transiently in time as the perturbation field, initially tilted
upstream, is gradually tilted downstream by mean shear.[22]

Figure 3.3: Spatial Orr solution [Re(u)] with inflow calibrated to the jet wave
packet response δq̃ at x/D = 6. The red point indicates the position where the
conditions from the PSE (shear, mean flow velocity, inflow profile and local wave
number) are used to construct the Couette flow approximation. The dashed line is
the line where the PSE and the Orr model are compared.[20]

3.3 Large scale vortices
The presence of streamwise vortices gives rise to the formation of streaks through
the lift-up mechanism, which constitutes a significant aspect of jet dynamics. The
streamwise vortices are defined by their vorticity, which is a measure of the local
rotation of the fluid. The interaction of these vortices with the surrounding fluid
results in the generation of a secondary flow, which in turn drives the lift-up
mechanism. Furthermore, the lift-up mechanism can be viewed as an outcome of
the proliferation of specific flow instabilities. Such instabilities can extract energy
from the mean flow and convert it into the kinetic energy of the streaks.

The process commences with the emergence of streamwise vortices. Such
structures are characterised by a rotational motion aligned with the direction of
the main flow. In a turbulent jet, these vortices can be generated by a variety
of instabilities and interactions within the flow. As these vortices move through
the fluid, they induce a secondary flow that is perpendicular to the main flow
direction. This secondary flow lifts low-momentum fluid from the jet’s core region
and transports it outward towards the higher-momentum regions near the edges of
the jet. The lift-up mechanism is crucial for the redistribution of energy within the
flow. By lifting low-momentum fluid into high-momentum regions, the mechanism
enhances mixing and promotes the transfer of kinetic energy from the mean flow
to the turbulent structures.

Streaky structures in turbulent jets are characterized by their elongated, band-
like shape. These bands can extend several diameters downstream from the nozzle
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exit, making them prominent features in the flow. These structures consist of
alternating regions of high and low momentum fluid. The high-momentum streaks
are typically faster-moving fluid, while the low-momentum streaks are slower-moving
fluid. The streaks are aligned with the direction of the main flow (streamwise
direction). This alignment is a result of the lift-up mechanism, which stretches the
fluid elements in the direction of the flow.

As discussed earlier, the lift-up mechanism is central to the formation of streaky
structures. Streamwise vortices lift low-momentum fluid from the jet’s core and
transport it outward, creating the streaks. These structures play a significant role in
the redistribution of kinetic energy within the jet. By transporting low-momentum
fluid into high-momentum regions, they enhance mixing and energy transfer. The
streaky structures are often associated with the growth of certain flow instabilities.
These instabilities can extract energy from the mean flow and convert it into the
kinetic energy of the streaks.

The streaky structures interact with smaller-scale turbulent eddies, influencing
the overall turbulence dynamics. This interaction is crucial for understanding the
mixing and spreading of the jet. Spectral analysis reveals that streaky structures
dominate the low-frequency range of the flow. This indicates their large spatial
extent and slow temporal evolution compared to smaller-scale turbulence. [23]
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Chapter 4

Methodology

This chapter is dedicated to the comprehensive exploration of the methodologies that
have been employed in our investigation of turbulence dynamics using Explainable
AI (XAI) techniques. Our primary focus is on the application of Convolutional
Neural Networks (CNNs) and the SHAP (SHapley Additive exPlanations) algorithm,
both of which have been instrumental in analyzing and predicting turbulent flow
patterns.

We begin this chapter by providing a detailed description of the dataset that
forms the backbone of our research. This dataset comprises images of the motion
field of an axisymmetric jet, which were meticulously obtained through the Particle
Image Velocimetry (PIV) technique. The PIV technique is a powerful tool in fluid
dynamics, allowing us to capture two- or three-dimensional velocity fields in fluid
flows by taking advantage of the light scattered by tiny particles within the fluid.

Following the discussion on the dataset, we outline the structure and training
process of the neural networks used in our study. We delve into the architecture of
the CNNs, discussing the various layers and their functions. We also touch upon
the importance of hyperparameter optimization in the training process, explaining
how the right choice of hyperparameters can significantly improve the performance
of the neural networks.

In the latter part of the chapter, we explore the role of the SHAP algorithm in
our research. The SHAP algorithm is a game-theoretic approach to explain the
output of any machine learning model. In our study, it provides interpretative
insights into the predictions made by the neural networks. By doing so, it enhances
our understanding of the underlying physical phenomena governing turbulence,
making our research not just about prediction, but also about understanding.

This chapter serves as a bridge between the theoretical foundations laid out
in the previous chapters and the results that will be presented in the upcoming
chapters. It is our hope that the methodologies discussed herein will provide a clear
understanding of the tools and techniques used in our research, thereby paving the

31



Methodology

way for the interpretation of the results in the context of turbulence dynamics.

4.1 Dataset description
The dataset utilised for the training of the neural networks contains images of
the motion field of an axisymmetric jet, obtained experimentally by the Particle
Image Velocimetry (PIV) 2D2C technique. This technique involves measuring two
velocity components on a plane of the motion field. Figure 4.1 schematises the
experimental setup.

Figure 4.1: Experimetal setup of the PIV tecnique to obtain the dataset[24]

The dataset comprises 8451 instantaneous snapshots, each of which contains
the w components, which represent the streamwise component of the velocity, and
the u components, which represent the radial component.

The spatial mesh grid has 67× 51 points spaced in both direction of ∆z = ∆x =
0.268mm. Meanwhile the time resolution is ∆t = 0.01ms so that the the turbulence
temporal micro-scale is about seven times greater then the ∆t. In Figure 4.2 there
is the time-averaged velocity field.
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Figure 4.2: Time-averaged velocity field

In the case of bidimensional flow the vorticity field as only one component that
is orthogonal to the velocity field:

ω⃗ = ∇× V⃗ =
A

∂w

∂x
− ∂u

∂z

B
ĵ (4.1)

Reynolds 21000
Inlet velocity 66 m/s

Taylor Micro-Scale 327 µm
Temporal scale 0.07 ms

Table 4.1: Jet data [25]

In order to facilitate the training process, the dataset has been normalised using
the minmax method, as outlined in reference [26]. This has resulted in the generic
dimensional physical quantity, denoted by the symbol x, becoming:

ϕ = x−min(x)
max(x)−min(x) (4.2)

where:

• x: are the values of velocity fluctuations;

• min(x): is the minimum value of the velocity for each point;
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• max(x): is the maximum value of the velocity for each point.

In order to ensure that all datasets contain velocity values that have been
normalised between 0 and 1.

It is essential to implement a standardisation process for the values in order
to maintain data consistency and to prevent excessive high velocities from over-
whelming lower fluctuations. This is crucial when algorithms necessitate a uniform
distribution of the data or when employing methods that are sensitive to scale
variation, such as clustering algorithms or gradient-based optimisation algorithms
in the training of the CNN.

4.2 Neural Networks
As we have seen the CNN with U-Net architecture can be structured with many
layers of deepness. How many layers the network has influence its work and its
cost.

If the network has too much deep layers, we could encour to the overfitting
phenomenon during the training, such as the neural network will learn too well the
snapshots in the training dataset, meanwhile it will tend to decrease its capability
to predict the flow field at a random istant. Also in this case wi will have too many
parameters in the CNN so it will be very big and so will require high computation
performance.

In the event that the network lacks an adequate number of parameters, it will
be unable to accurately predict the motion field. So that when we construct the
CNN we must do a parametrical analysis of the structure of the CNN.

So we have trained six CNN with U architecture, changing the deepness of the
network and the number of convolution for each layer. In Figures A.1, A.2 and
A.3 there are the schemes of the structure of the netowrks analyzed with different
deepness layers, in order we have one, two and three deepness layers.

As we have seen in section 2.3 for each deepness layer of the network a certain
number of convolutions are performed, so we have tested the network also changing
this hyper-parameter to optimize the CNN workings.

The blocks of the neural network were constructed with reference to the method-
ology employed by D. Schmekel, F. Alcántara-Ávila et. al. [27] as shown in
Figure 4.3

As illustrated, the convolutional layer is followed by batch normalization and the
activation function. The batch ormalization is a mathematical operation defined
as:

y = x− E[x]ñ
V ar[x] + ε

γ + β (4.3)

where:
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Figure 4.3: Diagram of the convolutional blocks [27]

• E[x] is the averaged x;

• V ar[x] is the variance of x;

• ε is a very small value necessary for not having 0 in the denominator (default
ε = 1 × 10−5 in PyTorch library);

• γ and β are learnable parameters that the model acquires during the training
process.

The purpose of having batch normalisation layers is to reduce the training time
and improve the performance of the model.

Subsequently, the activation function determines the output value of the neuron
based on its input, introducing a non-linearity that allows the network to learn
complex relationships between data. The selection of an activation function is
contingent upon the nature of the problem to be solved and the attributes of the
input and output data.

The implemented U-Net is composed of three main blocks. The first block
performs the convolution in the straight branch of the U, followed by batch
normalisation and the ReLU activation function. The block receives as input the
number of channels of the input tensor, the number of channels at the output of
that block and the number of convolutions to be performed. In Figure 4.4 is shown
a functional scheme of this block.

The subsequent stage is to implement the down blocks, which are those blocks
that perform the downsampling of the image, thus representing the descent part of
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Figure 4.4: Functional diagram of the convolutional block

the U. The down function accepts as input the image tensor from the preceding
block, along with the numbers of channels of the input and output tensors and
the number of convolutions in the straight part of the U. The downsampling is
performed by the function MaxPool2D, implemented in the Pytorch environment[9].
The kernel size was set to 2× 2, resulting in a halving of the image size.

Figure 4.5: Functional schme of the downsampling block

Lastly is necessary to implement the block wich perform the upsampling of image
to obtain as final output the desired image. The Upsampling function receives
as input the output tensor from the previous block and the output tensor of the
downsampling block at the corresponding depth level. Also receives as input the
channel’s number of the output and input tensors, and the number of convolution to
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perform in the straight part of the U. A transposed convolution is then performed
with a 2× 2 kernel dimension in order to duplicate the image dimension, until the
output size does not return to the original dimension.

Figure 4.6: Functional schme of the upsampling block

As demonstrated below, the more efficient trained U-Net was the simplest, that
is the U-Net with only one deepth layer. So we’ve traied to train also some Residual
Networks (ResNet), illustreted in section 2.4, that is another type of architecture
for convolutional neural network but simplest than U-Net.

As previously stated, the structure of these neural networks is notably simple.
They all begin with an initial convolution, which increases the number of filters in
the image without reducing the original image dimensions. This differs from the
approach taken with the U-Net, where the number of filters was reduced. Following
this, we have the residual blocks, which perform a specific number of convolutions
(dependent on the size of the residual block) with skip connections, as illustrated
in Figure 4.7.

4.2.1 Conditional generative adversarial netwok
The trained cGAN employs a U-Net with a single convolutional layer as its generator.
This network was identified as the optimal choice for predicting jet flow, and the
objective of the cGAN was to enhance the quality of the predicted velocity field,
thereby obtaining more precise velocity values.

In this model, the discriminator was of the convolutional variety. The initial
convolutional layer, with a kernel size of 2, was designed to capture local patterns
in the input data. Subsequently, the model incorporated a 2D batch normalization
layer. This batch normalization layer was instrumental in stabilizing and accel-
erating the training process by normalizing the activations of the previous layer.
Finally, a LeakyReLU activation function was applied. The LeakyReLU activation
function introduced a small slope for negative values, which mitigated the issue of
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Figure 4.7: ResNet block diagram

dying neurons and ensured that the model could learn more effectively from the
data.

4.3 SHAP algorithm
Neural networks, in particular deep neural networks, are often considered as "black
boxes". This metaphor is attributed to several factors inherent to the structure of
neural networks:

• Complexity: deep neural networks are composed of many interconnected
artificial neurons organised in multiple layers. The intricate weave of these
connections makes it difficult to trace the flow of information within the
network and understand how it arrives at its decisions;
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Figure 4.8: Discriminator block diagram

• Lack of interpretability: in contrast to traditional statistical models, neural
networks do not provide explanations for their decisions. This means that it
is not possible to ascertain with certainty the characteristics of the input that
led the network to classify it in a certain category or generate a certain output.
This makes verification and validation of the results challenging. Consequently,
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the results provided by these systems are not as reliable as they could be;

• Training data: Neural networks learn from training data, which can be
affected by distortions and errors of various kinds. If the data are not accurate
or representative of reality, the neural network may learn incorrect patterns
and generate unreliable results;

• Lack of control: once a neural network has been trained, it is challenging to
modify its behaviour. The parameters of the network are optimised during
the learning process, and subsequent alterations to these parameters can have
unpredictable effects that are difficult to control;

• Debugging problems: the identification of the source of an error in a neural
network is often a challenging endeavour. The intricate nature of the network
makes it challenging to identify the source of the error and to devise an effective
corrective measure.

Nevertheless, research on interpretable artificial intelligence is developing novel
techniques to enhance the interpretability and reliability of neural networks, thereby
overcoming the current limitations of neural networks. The SHAP (SHapley Addi-
tive exPlanations) algorithm represents a tool for explainable artificial intelligence.

The technique in question is that of interpreting the decisions made by a model by
assigning each input variable an importance value (Shapley value), which indicates
the extent to which that variable contributed to the final result. This method can
thus enhance confidence in the model by facilitating an understanding of how the
model arrived at its result, or by improving the efficiency of the model.

The Shapley value is a concept from cooperative game theory, named after
the American mathematician Lloyd Shapley. It provides a fair distribution of the
total gains (or costs) among the players in a coalition based on their individual
contributions. This method is particularly useful in situations where the collective
effort of a group leads to a certain outcome, and it is necessary to determine how
to fairly allocate the resulting benefits or costs among the participants.

To calculate the Shapley value, we consider all possible permutations of the
players and determine the marginal contribution of each player to every possible
coalition they can join. The Shapley value for each player is then the average
of these marginal contributions across all permutations. This ensures that each
player is rewarded in proportion to their contribution to the overall success of the
coalition.

ϕ(i, v) = 1
|N |!

Ø
π∈ΠN

v[B(π, i) ∪ {i}]− v[B(π, i)] (4.4)

where:

• ϕ(i, v) is the reward due to the i-th player;
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• v is the characteristic function;

• ΠN is the set of all permutations of the elements N;

• B(π, i) is the set of players preceding the i-th player in the considered permu-
tation.

This formula takes into account the different ways players can contribute to
various coalitions, ensuring a fair and equitable distribution of the total value
generated by the coalition.

The Shapley value has applications in various fields, including economics, political
science, and network theory. It is used to solve problems related to cost-sharing,
resource allocation, and voting power, among others. By providing a systematic and
fair method for distributing gains, the Shapley value helps to ensure cooperation
and stability within groups.

An analogue formulation for the Equation 4.4 could be:

ϕ(i, v) =
Ø

S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |! [v (S ∪ {i})− v (S)] (4.5)

where:

• N is the set of coalition participants;

• S is the set of permutations that don’t contain i;

• [v (S ∪ {i})− v (S)] is the term of the marginal contributions of the i − th
partecipant;

• |S|!(|N |−|S|−1)!
|N |! is the probability that the i− th partecipant will be part of the

coalition S.

This formulation is beneficial in facilitating a more comprehensive comprehension
of the utilisation of the Shap algorithm for XAI.

The objective of applying this algorithm to neural networks for the prediction
of turbulent flows is to identify the physical phenomena that govern the fluid
motion under analysis and to assign weights to them. The network will also return
the importance that each of the physical phenomena considered had in the result
generated by the network[28].

The SHAP value of each event, designated as Φe, is calculated by summing the
contributions of each turbulent structure that is related to the e-th event. The
greater the SHAP value attributed to a given phenomenon, the more influential it
is in the reconstruction of the turbulent flow.

In the case study, with the Equation 4.5 as a point of reference, the function v
will be taken to represent the neural network, and the term [v (S ∪ {e})− v (S)]
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will be understood to represent the contribution of the event in question. The
subset S of events under consideration will be contrasted with the total set of
events N .

The precise calculation of SHAP values is not immediately apparent; therefore,
the typical approach is to approximate them with the kernel-SHAP method, which
integrates SHAP values with the Local Interpretable Model-agnostic Explanations
(LIME) method:

L(f, g, πx) =
Ø

q′∈Q
[f (hx(q′))− g(q′)]2 πx(q′) (4.6)

πx(q′) = |Q| − 11
|Q|
|q′|

2
|q′|(|Q| − |q′|)

(4.7)

where |q′| is the number of structures, hx represents a mask function that tranforms
the binary space of q′ into the space of the input of the model. The LIME equation
has been resolved by means of a linear regression, with the resulting error being
(f − g)2O(10−7).

The LIME method involves the interpretation of individual model predictions
based on the approximation of the model in question at a local level, situated in
proximity to the given prediction. It has been demonstrated by Riberio et. al. [29]
that this method can provide an explanation for generative models with a precision
rate exceeding 90%.

In the work of A. Cremades, S. Hoyas, R. Deshpande et. al. [28] neural network
was constructed to predict flow in a channel, taking into account the phenomena of
sweep, inward interaction, ejection and outward interaction. In this work, XAI has
been used to quantify the importance of these phenomena, in particular it has been
seen that in flows in a channel with fully developed turbulence, the most important
structures governing the fluid motion governing the fluid motion are ejection and
sweep, this coincides with the current knowledge of the physics of flow, therefore
one can consider the the result of the U-net. So on the bases of this result our
purpose is to exploit the capabilities of this algorithm to capture information on
the physics of turbulent flows, in this case we use a dataset of PIV images of an
axisymmetric jet flow.

In order to compute the Shap values, the Kernel-SHAP method, implemented
in the SHAP library [30] , was employed. Kernel SHAP combines Shapley values
from game theory with linear regression to compute feature importance, ensuring
local accuracy, missingness, and consistency.

The method circumvents the heuristic choices inherent to LIME through the
utilisation of a bespoke loss function, a weighted kernel, and a regularisation term,
thereby facilitating the recovery of Shapley values.
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4.3.1 Application of the Kernel-SHAP algorithm
The first step to apply the kernel-SHAP algorithm to study the importance of
turbulent structure in the prediction of the motion field is to identify them. In this
study, we have identified the turbulent structures in each photogram by searching
the vorticity field for zones with a value greater than a specified threshold. It
is important to note that the choice of threshold value can influence the results
obtained, as different structures may be identified if the value is altered.

Figure 4.9: Flow chart of the implemented algorithm to apply Kernel-SHAP at
our model

The flowchart in Figure 4.9 illustrates the methodology employed to apply the
Kernel-SHAP technique to our model. The process entails loading the optimal
model, which has been trained for flow prediction, and the validation dataset. Then,
for each photogram we compute the vorticity field that in this case is defined as
shown in Equation 4.1.

The vorticity values must be normalised for an accurate and

ω∗ = ωD

Ue

(4.8)

where D is the diameter of of the jet outlet and Ue is the exit velocity of the jet.
Next the structures in the photogram are individuated setting an opportune

threshold with functions in the measure class in the skimage library [31]. This
process yields a mask image with a True value where the normalized vorticity
exceeds the specified threshold and a False value in all other instances. So this
mask is passed to the labels function that enumerate areas with True. An example
of he outcome of this phase is illustrated in Figure 4.10 for purposes of illustration.
In this case the algorithm has individuated 6 structures.

Following the completion of this procedure, the Shapley value for each structure
can be calculated. In order to achieve this, it is necessary to pass the image in
question, excluding the i-th structure, to the network. In order to achieve this, the
structure’s portion of the field has been replaced with the mean field. Subsequently,
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Figure 4.10: Example of individuated structure in a snapshot

the novel field is conveyed as an input to the model, thereby enabling it to undertake
a prediction. For example in Figure 4.11 the field of velocity fluctuations without
the first structure identified in the snapshot, i.e. the region labeled 1 in Figure 4.10.

Figure 4.11: Example of reconstructed motion field after structure removal

Ultimately, a comparison of the network output for the true field with the output
for the field without the structure, using a kernel-SHAP explainer, allows the SHAP
value of the structure to be computed, thus providing insight into its contribution
to the prediction of the motion field.
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Chapter 5

Results

In this pivotal chapter, we delve into the comprehensive analysis of the results
obtained from the the hyperparametric study during the training of neural networks,
alongside a detailed examination of the SHAP analysis and statistical scrutiny of
turbulent structures. The neural networks, trained with precision, have yielded
insights that are critical in understanding the complex dynamics at play. The
SHAP analysis, a novel approach in our study, has provided an interpretative
power to the neural network’s predictions, offering a new dimension to the data’s
explanatory depth.

5.1 Training of the neural networks
The first step, after building the neural networks as described in section 4.2 is to
train the networks. So, as we discussed earlier, we trained six CNNs with U-Net
architecture and three with the ResNet architecture.

The training phase involved randomly splitting the dataset, with 60% of the
total images designated for training, testing, and validation. The training process
was conducted with a batch size of 256 images on a Nvidia GeForce RTX 3080®

with 12 GB of memory. The high batch size was possible given the relatively small
image dimensions. As seen in section 2.5 the batch size parameter refers to the
number of training examples used in one iteration of model training, its choice
can have a significant impact on the training and consequently on the final model
performance.

It is crucial to evaluate the network’s performance and the actual trend of
weight optimisation during training in order to ascertain the network’s ability to
process images that differ from those in the training dataset. Furthermore, error
computation on images that have not been previously encountered is essential
for assessing the network’s generalisation capabilities. This is the reason why the
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dataset was divided into a training and a validation set.

Figure 5.1: Trend of the loss function
value during the training of the U-Nets

Figure 5.2: Trend of the loss function
value during the validation of the U-Nets

Figure 5.1 illustrates the evolution of the loss value throughout the training
epoch. It can be observed that the final loss value is relatively low for all networks.
However, it is notable that as the network complexity (and consequently the
number of learnable parameters) increases, the final loss value decreases. This
suggests that the network with three depth layers and two convolutions may be
the most performant. Nevertheless, as previously stated, it is essential to examine
the validation dataset to gain a deeper understanding of the network’s behaviour.

Upon examination of the validation loss value trend during the training process,
as illustrated in Figure 5.2, it becomes evident that the circumstances are in fact
quite distinct. In particular, it can be observed that the second and third networks
exhibit a loss value that is approximately equivalent, while the first network displays
a slightly higher loss value. In all other networks, it can be seen that the loss value
tends to increase more or less rapidly at a specific epoch number. This is likely
due to the networks experiencing the overfitting phenomenon, which prevents them
from accurately predicting the motion field. The trained network has therefore
been saved at the epoch at which the minimum value of the validation loss was
observed.

A comprehensive analysis of the results obtained from all the networks, including
an assessment of the quality of the generated images (see Appendix A), reveals
that the U-Net with a single layer depth and two convolutions exhibits superior
performance. This is why we’ve tried to train ResNet as anticipated in section 2.3

A review of the training loss value trend in Figure 5.3 reveals that the loss
value at the conclusion of the training process for the ResNets is approximately
4 × 10−5, which is comparable to that of the U-Net. In this instance, the overfitting
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5.1 – Training of the neural networks

Figure 5.3: Trend of the loss function
value during the training of the ResNet

Figure 5.4: Trend of the loss function
value during the validation of the ResNet

phenomenon cannot be observed. However, as illustrated in section A.2, the output
images exhibit a lack of definition when compared to those produced by the U-Net
model.

The trained cGAN has the potential to yield favourable outcomes, but its full
potential will only be realised through further refinement. It is evident that the
training process of our cGAN is not yet optimised, as evidenced by the observations
presented in Figure 5.5 and Figure 5.6. There is a sudden increase in the loss
function for the generator, followed by a shift in the overall trend for both the
generator and the discriminator. This indicates the necessity for modifications to
the training hyperparameters, such as the learning rate or the λ, as illustrated in
Equation 2.9.

Furthermore, during the validation phase, a comparable surge in the loss function
is observed as showed in Figure 5.7, resulting in a less accurate estimation of velocity
values. This presents a significant challenge when attempting to derive physical
insights from the predicted data.

As illustrated in Figure 5.9, the predicted field accurately represents the actual
flow field, as evidenced by the comparison with the real field in Figure 5.8. However,
the predicted image has a lower definition than the actual image. Moreover, the
percentage error remains too high to permit its use in the physics analysis of
turbulent structures.

47



Results

Figure 5.5: Trend of the loss function
of the generator value during the training
of the cGAN

Figure 5.6: Trend of the loss function of
the discriminator value during the train-
ing of the cGAN

Figure 5.7: Trend of the loss function during the validation of the cgan

5.2 Sensitivity analysis of the implemented algo-
rithm for the detection of turbulent struc-
tures

As seen in subsection 4.3.1, the implemented akgorithm for the identification of
the turbulent structures in the jet flow was very sensitive to the selected threshold
for the normalized vorticity ω∗. Accordingly, a sensitivity analysis of the algorithm
at the vorticity threshold was deemed essential.

A Python script is used to load the validation dataset employed in the training
process and the most optimised trained network. Each snapshot is then passed
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Figure 5.8: Real velocity field,
on the left there is the radial com-
ponent, at the right the stream-
wise component

Figure 5.9: Predicted velocity
field from the cGAN, on the left
there is the radial component, at
the right the streamwise compo-
nent

Figure 5.10: Percerntage error
on the velocity prediction, at the
right the streamwise component

as input to the network in order to obtain the consecutive snapshot from which
the vorticity is computed and normalised. Finally, the turbulent structures are
identified.

In Figure 5.11 is shown the trend of the number of individuated turbulent
structures in all the snapshots with the value of the threshold on the normalised
vorticity.

With a mean of about six individuated structures for each photogram, the
threshold value with more absolute individuated turbulent structures was ω∗ =
0.354.
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Figure 5.11: Trend of the number of structures finded by the algoithm with the
normalized vorticity threshold value

5.3 Statistical analysis of the individuated turbu-
lent structures

Once the threshold for the normalised vorticity has been selected, it is possible to
analyse the identified structures using the kernel-SHAP algorithm, as detailed in
subsection 4.3.1.

A plot of the Shapley values against the areas of the turbulent structures showed
in Figure 5.12 reveals a trivial result: the more important structures are those with
the largest areas. This is an obvious consequence of the fact that the greater the
area of a turbulent structure, the greater the amount of information deleted from the
data input. Consequently, the network will produce a worse result, and the Shapley
value will increase. Furthermore, an examination of the physical information reveals
no noteworthy insights when considering the relationship between the Shapley
values and the integral mean of the normalised vorticity on a structure’s area
showed in Figure 5.13.

For these reasons, the Shapley values φ computed by the kernel-Shap algorithm
implemented in the shap library [30] was normalised as following:

Φ = |φ/A|
max(|φ/A|) (5.1)

where A is the area of the finded turbulent structure. The objective of this
standardisation was to establish a methodology for the decoupling of the value and
importance of a given structure from its size. Subsequently, the values were scaled
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5.3 – Statistical analysis of the individuated turbulent structures

Figure 5.12: Shapley values against the
areas of the turbulent structures

Figure 5.13: Shapley values against
the the integral mean of the normalised
vorticity on a structure’s area

for convenience, with all values subsequently expressed as a proportion between 0
and 1.

From the analysis with the kernel-SHAP algorithm of finded turbulent structure,
for each structure we have saved, the photogram and structure’s indexes, the
velocity field of the structure, the position of the centroid of the structure in the
phortogram and the Shap value. Upon completion of the analysis with the kernel-
SHAP algorithm, we shall proceed with the statistical analysis of the individuated
structures.

5.3.1 Geometry of the individuated structures
The first our curiosity was to see the geometry of the structures. In frist istance
we’ve done a sample check to see the shape of the structures to see that there
wasn’t structures with strange geometry like that one seen in Figure 4.10, in that
case we should have added some filters in the algorithm that in the algorithm that
delete too small structures and small holes in the structures in order to ensure that
any that are present are joined by a significant number of pixels, in order to ensure
that the structures are physically sound.

The areas of the structures is very variagate, but to avoid to have very small
structures we’ve added a filter on the minimum number of pixels of the individuated
structures. As will be seen in subsequent graphs there are very small structures
characterised by an area of just a few squared millimeters, meanwhile the The
largest structure occupies approximately half of the total area of the frame.

As exibith in Figure 5.14 where is the power density function of the areas of the
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Figure 5.14: Statistical distribution of
the area of all identified structures

Figure 5.15: Probability density func-
tion of the shape factor of the turbulent
structures

structures, the majority of the identified structures exhibit relatively limited area.
In Figure 5.15 is also illustrated the probability denity function of the shape

factor of the individuatedstructures defined as length/width where length is the
dimension in the streamwise direction, and width is the dimension in the radial one.
We can see that the structures identified are elongated in the streamwise direction,
and this makes sense with the physics knowledge. In fact it is established that the
large-scale structures that emerge in the high-momentum fluid trail the vortical
structures.

5.3.2 Shapley values
In the course of our investigation, we examined the normalised Shapley values as
illustrated in Equation 5.1 for the reason explained before.

As illustrated in Figure 5.16, the larger structure exhibits a relatively low
normalised Shap value. However, it should be noted that the normalisation was
conducted with reference to the structure’s area, which aligns precisely with our
intended objective. Furthermore, it is evident that there are additional structures
that may be perceived as more significant, despite their smaller size. This is
potentially attributed to the influence of vorticity value, which is likely to be higher
in smaller structures. Consequently, it can be inferred that the presence of greater
vorticity within a structure is indicative of a higher degree of physical information
content.

It is also important to consider the structure with normalised Shap value Φ = 1.
It seems to be the most important structure individuated and it has also a "normal"
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5.3 – Statistical analysis of the individuated turbulent structures

Figure 5.16: Distribution of the normalised Shapley values with the structure’s
areas

area’s value so it can’t influence the normalisation. The problem with this structure
is the high values of vorticity inside the structure, in fact we shall see that the
< ω∗ > has an anomalous value.

It is similarly crucial to contemplate the structure with a normalised Shap
value of 1. It appears to be the most significant structure identified, and it also
exhibits a typical area value, indicating that it cannot influence the normalisation
process. The issue with this structure is the elevated values of vorticity within the
structure itself. Indeed, it will be demonstrated that the < ω∗ > has an anomalous
value. The structure with a more effectively high Shap value is that with a value of
approximately Φ = 0.8, as some of these structures are characterised by a normal
value of areas and < ω∗ >.

Figure 5.17 illustrates the probability density function of the normalised Shap
values, represented by the function Φ. The majority of the structures exhibit a
value within the range of 0 to 0.5. Only a few structures display a normalised Shap
value exceeding 0.5, although a number of these cases are characterised by the
presence of some form of error, which will be discussed in greater detail later in
the presentation of appropiate results.

Figure 5.18 depicts the scatter graph of the integral mean of the normalised
vorticity, represented by the variable < ω∗ >, on the surface of the turbulent
structure in relation to the normalised Shapley values.
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Figure 5.17: Probability density function of the normalised Shapley value Φ of
the individuated structures

< ω∗ >= 1
A

Ú
A

ω∗dσ (5.2)

From this graph, it is possible to discern the rationale behind the tendency for
Shap values to be excessively high for for some turbulent structures. It is evident
that there are several outliers, both in the case of the < ω∗ > value and the value
of the function itself. The reason for their presence is due to the occurrence of
spikes in velocity values at some points within the frames of the dataset.

Subsequently, the < ω∗ > and Φ data were subjected to a k-means cluster anal-
ysis in order to ascertain the degree of similarity between the identified structures.

The K-Means algorithm is a clustering algorithm employed in the field of data
analysis. This algorithm clusters data by separating it into n groups of equal
variance, thereby minimising a criterion known as the sum of squares of inertia.
In order for this algorithm to function correctly, the desired number of clusters
must be specified. It is particularly well suited to a large number of samples and
has been used in a wide range of applications in many different fields. From a
dataset D the algorithm will randomly select k data objects as the initial centroid
of the clusters. Then the Euclidean distance between each data object di and the k
cluster’s centroid is computed:

d(xi, yi) =
öõõô nØ

i=1
(xi − yi)2 (5.3)

54



5.3 – Statistical analysis of the individuated turbulent structures

Figure 5.18: Cluster K-Means of the individuated structures

Now, on the basis on this distance the algorithm assign the di object at the
nearest cluster. For each cluster the centroid must be recalculated. The process to
compute the distance of each point from centroid and to associate it at the neraest
cluster will will be repeated until the position of the centroids no longer varies.[32]

In this case, based on what we see on the graph, we thought it appropriate
to to find three clusters. Obviously we were expecting exactly what we’ve got,
there are two clusters with the < ω∗ > greater and less than zero and it seems
to be very symmetric respect to the zero value. In Figure 5.18, the colormap of
the point represent the cluster identification, the firt cluster in purple is that one
with < ω∗ > less than zero and in red wi can see the cluster with positive values of
vorticity’s mean intgral.

Following the cluster analysis, the conditioned structures of each cluster were
examined to ascertain whether there was a similarity in the structures.

The conditioned structures are the average of all the structures, in this case
belongings the i− th cluster. So for each indivituated cluster we have summed the
structures’ field making their centers match, and then dividing by the number of
the structures in the cluster. It is evident that the velocity and the physical plane
of the conditioned structures are not realistic, and thus the values are not realistic.
Consequently, it is only possible to ascertain whether the structures in the cluster
are coherent and to identify what they are.

Figure 5.19 illustrates the conditioned structures of the positive cluster, which
are highlighted in red Figure 5.18. It can be observed that the average of these
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Algorithm 3 Algorithm implemented to sum the turbulent structures to obtain
the conditional mean

1: procedure sum_with_padd(x, y)
2: ▷ The function pads the arrays to the same size, ensuring that their centres

are aligned, and then sums the arrays.
3: ▷ x, y are the arrays to be summed
4: target_shape← max(x.shape, y.shape)
5: padded_array1← pad_to_same_size(x, max_shape)
6: padded_array2← pad_to_same_size(y, max_shape)
7: summed_array ← padded_array1 + padded_array2
8: return summed_array
9: end procedure

structures yielded a notable outcome. This result can be interpreted as an indication
that the structures within the cluster are coherent with one another.

Figure 5.19: Conditioned structures of the red cluster

Similarly, the same average can be performed on the negative cluster, indicated
in purple in Figure 5.18 and shown in Figure 5.20. As with the previous cluster, the
structures exhibit coherence, and an anti-symmetry is evident due to the opposite
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sign of the integral mean of the vorticity. This results in the structures being
classified as counterclockwise vortices, in contrast to the first cluster, which was
identified as a clockwise vortex.

Figure 5.20: Conditioned structures of the purple cluster

5.3.3 Physical quantities
As illustrated in Figure 5.18, the PDF of < ω∗ > exhibits two peaks. These peaks
are associated with the clusters of positive and negative structures, respectively.
The aforementioned peaks display a high degree of symmetry; however, the PDF’s
highest peak suggests a little prevalence of negative structures.

From the joint PDF of < ω∗ > and normalised shap values Φ showed in
Figure 5.22, is possible to see that both the positive and negative structures have
the same importance, the central cluster should be more invistigated because these
structures has also the same importance of these but as we’ve seen before from our
investigation it seems to be very different.

Figure 5.25 illustrates the trend of the maximum streamwise velocity on the axis
of the jet. The points represent the experimental values of the maximum streamwise
time-averaged velocity on the axis of the jet, while the straight line represents their
interpolation with the empirical law presented in Equation 3.3. It can be observed

57



Results

Figure 5.21: Probability density function of < ω∗ > of the individuated structures

that the time-averaged streamwise velocity decreases from approximately 0.6 times
the jet velocity to approximately 0.45. This information is of interest in that it
allows us to ascertain whether the velocity values displayed in the graph presented
in Figure 5.23 were significant. Given that they are comparable, we can consider
the results obtained to be reliable.

The symmetry you see in all graph demonstrates that clockwise and counter
clockwise vortex are similar wich is expected from symmetry consideration thus
lends confidence to the results from the kernel-SHAP analysis.

From the joint probability density function of the normalised Shap values Φ and
the integral mean of the normalised vorticity in Figure 5.22 we can see once again
the simmetry in the individuated structures. The positive and negative structures
are of equal significance and occur at a similar frequency. Meanwhile, the structures
with < ω∗ > around zero are distinguished by normalised Shap values within a
comparable range to the first, but are less probable than these.

5.3.4 Dissipation function
Moreover, an analysis was undertaken of the dissipation function. In the initial phase
of the process, the dissipation function was calculated for each of the snapshots.
Subsequently, the dissipation was calculated for each individualised structure, solely
within the confines of the structure itself.

The integral mean of the dissipation function on the structure’s surface was
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Figure 5.22: Joint PDF of normalised
shap values Φ and < ω∗ >

Figure 5.23: Joint PDF of velocity’s
streamwise component normalised with
the jet’s velocty U∞, and < ω∗ >

Figure 5.24: Joint PDF of velocity’s
radial component normalised with the
jet’s velocty U∞, and < ω∗ >

normalized with the integral mean of the entire dissipation function’s field. Fig-
ure 5.26 show the probability density function of the normalized integral mean
of the dissipation function. We can see that the most part of the individuated
structures are responsible of all the energy dissipation in the field.

This is in accordance with the physics knowledge that small-scale vortices are
the primary agents of turbulent energy dissipation. As previously observed in
chapter 3, the typical dimensions of these vortices are approximately five times the
Kolmogorov length scale. However, due to the insufficient spatial resolution of the
images, it was not feasible to discern these scales in this particular dataset.
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Figure 5.25: Trend of the time-averaged streamwise velocity on the axis of the jet

Figure 5.26: Probability density function of the integral mean of the dissipation
function

In Figure 5.27, the joint PDF of the normalised Shapley values is presented
with contour lines of a darker shade, which evidence that the higher the Shapley
values, the greater is the dissipation within the structure. Therefore, this structure
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is likely to play an important role in the physics of the jet flow.

Figure 5.27: Joint PDF of the normalised dissipation function and the normalised
Shapley values is illustrated in the dark lines of the contour. Joint PDF of the
normalised dissipation function and the integral mean of the normalised vorticity
is displayed in the light contour lines.
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Chapter 6

Conclusion

In this study, we have explored the intricate dynamics of turbulent structures
through the lens of Explainable Artificial Intelligence (XAI) using the SHAP
(SHapley Additive exPlanations) algorithm. Our analysis has provided valuable
insights into the study of behavior and characteristics of turbulence, which are
often complex and difficult to interpret, through the XAI lens.

By leveraging the SHAP algorithm, we were able to demystify the underlying
mechanisms driving turbulent phenomena. This approach not only enhanced our
understanding of turbulence but also demonstrated the potential of XAI techniques
in making complex models more interpretable and transparent.

Our findings highlight several key points:

• Enhanced Interpretability: The SHAP algorithm effectively elucidated the
contributions of various factors to the turbulent structures, offering a clearer
picture of their formation and evolution.

• Model Transparency: The application of SHAP in this context underscored
the importance of transparency in AI models, particularly in fields where
understanding the model’s decision-making process is crucial.

• Practical Implications: The insights gained from this analysis can inform
the development of more precise predictive models and facilitate the creation of
models that can offer novel insights into turbulence dynamics. The analysis has
demonstrated that it is feasible to extract more pertinent data on the physics
of turbulent structures, which can be employed to enhance understanding of
physical phenomena in a turbulent flow .

In conclusion, the integration of SHAP with turbulence analysis represents a
significant step forward in the application of XAI for the understanding on the
physical phenomena that drive turbulent flows. This study sets a precedent for
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future research in applying explainable AI techniques to complex scientific problems.
As we continue to refine these methods, the potential for XAI to transform our
understanding of intricate phenomena remains vast and promising.

6.1 Future development
The prenested techniques are a recent development in this scientific field, and
therefore there is considerable scope for further progress.

The preliminary approach is to refine the cGAN predictions, as the generated
images show considerable promise but are not yet fit for purpose due to the
high error rate on the velocity values. The underlying theory suggest that these
networks have the potential to produce more accurate images. However, further
improvements are necessary for their utilisation in physical analysis.

A potentially fruitful avenue for elucidating the utility of XAI in turbulence
dynamics is to trace the evolution of turbulent structure over time and to examine
how these patterns fluctuate in conjunction with the Shap values. This approach
could offer insights into the significance of specific structural patterns over time,
and whether their importance fluctuates or remains constant.

Another interesting analysis could be to investigate others methods or algorithms
to find turbulent structures in the motion field that could be more interesting and
also tell us something more on the turbulence dynamics finding different turbulent
structures from these. It could be interesting also to use other dataset, more
complete and with also the other motion regions of the axisymmetric jet in order
to to ascertain whether the algorithm is capable of detecting structures of varying
types.
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Appendix A

Analysis of the output image
of the implemented neural
networks

The implemented networks were subjected to an in-depth analysis, with a particular
focus on the hyperparameters. The objective of this analysis was to elucidate the
impact of these parameters on the network operation and to identify the optimal
configuration, which would facilitate the most accurate prediction of the turbulent
flow under consideration. In this context, the term "hyperparameters" refers to the
number of convolution layers and the depth of the network.

A.1 U-Net
As previously discussed in section 4.2, CNNs with a U-shaped architecture can
have varying depth levels. The inclusion of numerous depth levels in a network
increases its complexity, leading to a proportional increase in computational cost.
Therefore, it is essential to identify an optimal depth level that accurately predicts
the flow while avoiding the overfitting problem.

A total of six networks with a U-Net architecture were trained for the purpose
of evaluating their quality:

• One layer deep and one convolution;

• One layer deep and two convoplutions;

• Two layers deep and one convolution;

• Two layers deep and two convolutions;
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Analysis of the output image of the implemented neural networks

• Three layers deep and one convolution;

• Three layers deep and two convolutions;

One layer deep and one convolution This network consists of a single convo-
lution followed by an output convolution with a kernel size of 1 and an activation
function Sigmoid. The initial convolution layer is responsible for extracting essential
features from the input data, while the output convolution layer, with its kernel
size of 1, adjusts the number of channels to match the desired output format.
The Sigmoid activation function is applied to the output layer to ensure that the
predicted values are within a specific range, typically between 0 and 1.

Figure A.5 shows images of one of the motion fields predicted by the network in
the last validation epoch and its comparison with the real image in Figure A.4. This
comparison provides a clear visual representation of the network’s performance,
allowing for an assessment of the accuracy and quality of the predicted images. It
can be observed that the predicted image is highly accurate, closely resembling the
real image. This high level of accuracy indicates that the network is effectively
learning and generalizing from the training data.

As evidenced by the image and the data presented in Figure A.6, the average
error on the images is relatively low, with isolated instances where the error reaches
approximately -7%. This low average error suggests that the network is performing
well overall, with only a few instances where the predictions deviate significantly
from the true values. In this instance, the overfitting phenomenon cannot be
observed, as the number of parameters is sufficiently adequate. Overfitting occurs
when a model performs well on the training data but fails to generalize to new,
unseen data. The absence of overfitting in this case indicates that the network has
a good balance between complexity and generalization.

However, the percentage error illustrated in Figure A.6 is unacceptably high.
This high percentage error highlights areas where the network’s predictions are not
as accurate as desired. Consequently, it is imperative to augment the learnable
parameter quantity by incorporating additional convolution or deep layers, with
the objective of reducing the error in the predicted image. Adding more layers can
increase the network’s capacity to learn complex patterns and improve its ability
to make accurate predictions.

To address the high percentage error, several strategies can be considered. One
approach is to increase the depth of the network by adding more convolutional layers.
This can enhance the network’s ability to capture intricate details and improve
the accuracy of the predictions. Another strategy is to experiment with different
hyperparameter settings, such as learning rate, batch size, and the number of epochs,
to find the optimal configuration for the network. Additionally, implementing
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A.1 – U-Net

regularization techniques, such as dropout or weight decay, can help prevent
overfitting and improve the model’s generalization capabilities.

In summary, while the network’s current configuration demonstrates high ac-
curacy in predicting the vector fields, the high percentage error indicates areas
for potential improvement. By augmenting the learnable parameter quantity and
optimizing the network’s architecture and training process, the performance of the
network can be enhanced, ensuring it produces high-quality, accurate outputs.

One layer deep two convolutions The network comprises two convolutions in
sequence, followed by an output convolution as previously described. This sequence
of operations is designed to progressively refine the input data, extracting relevant
features and enhancing the network’s ability to make accurate predictions. The
initial convolutions serve to capture essential patterns and details from the input,
while the final output convolution adjusts the data to the desired format.

Figure A.8 illustrates the predicted velocity field, with the radial component
displayed on the left and the streamwise component on the right. This visualization
provides a clear representation of the network’s output, allowing for a detailed
comparison with the true velocity field. By examining these components, we can
assess the network’s performance in capturing the dynamics of the velocity field.

A comparison of the predicted field with the true field in Figure A.7 reveals
that the predicted images are highly precise. The close alignment between the
predicted and true fields indicates that the network is effectively learning and
generalizing from the training data. This precision is crucial for applications that
require accurate velocity field predictions, as it ensures that the network’s outputs
are reliable and can be used for further analysis or decision-making.

Notably, the error on the velocity field, as illustrated in Figure A.9, is reduced
in comparison to the preceding network. This reduction in error signifies an
improvement in the network’s performance, highlighting the effectiveness of the
current configuration. The lower error rate suggests that the network is better at
capturing the underlying patterns in the data, leading to more accurate predictions.

The observed improvements can be attributed to several factors, including the
specific arrangement of convolutions and the overall architecture of the network.
The sequential convolutions likely enhance the network’s ability to extract and refine
features, while the output convolution ensures that the final predictions are well-
aligned with the true values. Additionally, the training process and hyperparameter
settings may have been optimized to further enhance the network’s performance.

In summary, the network’s architecture, comprising two convolutions in sequence
followed by an output convolution, has demonstrated a high level of precision in
predicting the velocity field. The comparison with the true field and the reduced
error rate underscore the network’s effectiveness and reliability. These results
highlight the potential of the current configuration to deliver accurate and precise
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predictions, making it a valuable tool for applications requiring detailed velocity
field analysis.
Ciao

Two layers deep one convolution This network consists of a down block and
an up block, as described in section 4.2. Within these blocks, a series of operations
are performed to process the input data. Initially, downsampling is conducted,
which reduces the spatial dimensions of the input tensor while increasing its depth.
This step is followed by a convolution operation, which helps in extracting features
from the downsampled data. The purpose of downsampling is to capture more
abstract and high-level features by reducing the resolution of the input image.

After the downsampling and convolution operations, the data is passed through
an upsampling process. Upsampling restores the spatial dimensions of the tensor to
their original size, effectively reversing the downsampling process. This is followed
by another convolution operation, which refines the features extracted during the
downsampling phase. The final convolution is performed with a kernel size of 1,
which adjusts the number of channels to match the desired output format.

Despite these sophisticated operations, a slight reduction in the definition
of the predicted image is observed. This reduction in image clarity indicates
that the network is not fully able to reconstruct the fine details of the input
image. Additionally, the percentage error remains approximately consistent with
the previous case, suggesting that the network’s overall performance has not
significantly improved.

The consistent error rate, coupled with the reduction in image definition, suggests
that the network in question exhibits poorer performance compared to other
configurations. This could be due to several factors, such as the complexity of
the task, limitations in the network architecture, or insufficient training data.
The observed performance issues highlight the need for further investigation and
optimization.

To address these challenges, it may be necessary to revisit the training process
and consider augmenting the dataset to include more diverse examples. This can
help the network learn to generalize better and improve its performance on unseen
data. Experimenting with different hyperparameter settings, such as learning
rate, batch size, and the number of epochs, can also help identify the optimal
configuration for the network.

Additionally, implementing advanced techniques like data augmentation, regu-
larization, and fine-tuning of the model can contribute to better performance. Data
augmentation can introduce variability in the training data, making the network
more robust to different types of input. Regularization techniques, such as dropout
or weight decay, can prevent overfitting and improve the model’s generalization
capabilities. Fine-tuning the model by adjusting the architecture or training process
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can also lead to better performance.
In summary, while the network’s architecture includes sophisticated operations

such as downsampling, upsampling, and convolutions, the reduction in image
definition and the consistent error rate indicate areas for potential improvement.
By addressing these factors through careful analysis and optimization, the network’s
performance can be enhanced, ensuring it produces high-quality, accurate outputs.

Two layers depp two concolutions The configuration of this network is
analogous to that observed in the preceding case; however, in this instance, two
convolutions are conducted in succession within both the up and down blocks. This
modification aims to enhance the feature extraction and reconstruction capabilities
of the network by allowing it to process more complex patterns and details. The
down blocks reduce the spatial dimensions of the input tensor while increasing
the depth, capturing more abstract features. Conversely, the up blocks restore
the spatial dimensions while reducing the depth, reconstructing the original image
from the learned features.

Despite these architectural enhancements, we observe a further reduction in
resolution and a notable increase in the percentage error in the velocity values.
This reduction in resolution suggests that the network is struggling to maintain the
same level of detail and precision as before. The consecutive convolutions within
the up and down blocks may be introducing additional complexity that the network
is unable to handle effectively, leading to a loss of critical spatial information.

The increase in the percentage error in the velocity values indicates a deterio-
ration in the network’s ability to accurately predict these values. This could be
due to several factors, including insufficient training data, suboptimal hyperpa-
rameter settings, or the inherent complexity of the task. The observed decline in
performance highlights the need for further investigation and optimization.

To address these issues, it may be necessary to revisit the training process and
consider augmenting the dataset to include more diverse examples. This can help
the network learn to generalize better and improve its performance on unseen data.
Experimenting with different hyperparameter settings, such as learning rate, batch
size, and the number of epochs, can also help identify the optimal configuration for
the network.

Additionally, implementing advanced techniques like data augmentation, regu-
larization, and fine-tuning of the model can contribute to better performance. Data
augmentation can introduce variability in the training data, making the network
more robust to different types of input. Regularization techniques, such as dropout
or weight decay, can prevent overfitting and improve the model’s generalization
capabilities. Fine-tuning the model by adjusting the architecture or training process
can also lead to better performance.

In summary, while the configuration of the network includes enhancements
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such as consecutive convolutions within the up and down blocks, the reduction in
resolution and the increase in percentage error in the velocity values indicate areas
for potential improvement. By addressing these factors through careful analysis
and optimization, the network’s performance can be enhanced, ensuring it produces
high-quality, accurate outputs.

Three layers deep and one convolution In this instance, the addition of
both a down block and an up block is observed. The down block is responsible
for reducing the spatial dimensions of the input tensor while increasing the depth,
allowing the network to capture more abstract features. Conversely, the up block
restores the spatial dimensions while reducing the depth, aiming to reconstruct the
original image from the learned features. Despite these architectural enhancements,
it is evident that the predicted images exhibit a further reduction in definition
compared to the actual images.

This reduction in image definition suggests that the network is struggling to
accurately reconstruct the finer details of the input images. The down block may
be losing critical spatial information during the dimensionality reduction process,
which the up block is unable to fully recover. Additionally, there is a discernible
increase in the error percentage, which is indicative of a deterioration in the quality
of the predicted images. This increase in error percentage could be due to several
factors, including insufficient training data, suboptimal hyperparameter settings,
or the complexity of the images being beyond the current capacity of the network.

The observed decline in image quality and the rise in error percentage highlight
the need for further investigation and optimization. One potential approach is to
review the training data to ensure it is comprehensive and representative of the
target domain. Augmenting the dataset with more diverse examples could help
the network learn to generalize better. Another strategy is to experiment with
different hyperparameter settings, such as learning rate, batch size, and the number
of epochs, to find the optimal configuration for the network.

Additionally, implementing advanced techniques like data augmentation, regular-
ization, and fine-tuning of the model could help improve the network’s performance.
Data augmentation can introduce variability in the training data, helping the
network become more robust to different types of input. Regularization techniques,
such as dropout or weight decay, can prevent overfitting and improve the model’s
generalization capabilities. Fine-tuning the model by adjusting the architecture or
training process can also lead to better performance.

In summary, while the addition of both a down block and an up block represents
a significant architectural enhancement, the reduction in image definition and
the increase in error percentage indicate areas for potential improvement. By
addressing these factors through careful analysis and optimization, the network’s
performance can be enhanced, ensuring it produces high-quality, accurate outputs.
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Three layers and two convolutions In this instance, although the structure
remains identical to the previous iteration, with two convolutions per block, there
is a notable reduction in the clarity of the images produced by the network. This
deterioration in image quality is accompanied by a significant increase in the
percentage error rate. The consistency in the network’s architecture indicates that
the observed decline in performance may be attributed to other factors, such as
alterations in the training data, modifications in the hyperparameters, or potential
overfitting.

The reduction in image clarity suggests that the network is struggling to maintain
the same level of detail and precision as before. This could be due to changes
in the training data, which might not be as representative or diverse as needed.
Variations in the hyperparameters, such as learning rate, batch size, or the number
of epochs, could also be contributing to the decline in performance. Additionally,
overfitting might be occurring, where the model performs well on the training data
but fails to generalize to new, unseen data.

These issues underscore the necessity for continuous monitoring and fine-tuning
of the model to guarantee optimal performance and accuracy. Regular evaluation
of the training data is essential to ensure it remains representative of the target
domain. Experimenting with different hyperparameter settings can help identify
the optimal configuration for the network. Implementing regularization techniques,
such as dropout or weight decay, can mitigate overfitting and improve the model’s
generalization capabilities.

Moreover, it is crucial to analyze the network’s performance metrics regularly to
identify any trends or anomalies that might indicate underlying issues. By doing
so, adjustments can be made promptly to address any problems and maintain
the network’s performance. This iterative process of monitoring, evaluating, and
fine-tuning is vital for achieving and sustaining high levels of accuracy and image
quality.

In summary, while the network’s architecture remains consistent, the decline
in image clarity and the increase in error rate highlight the need for ongoing
optimization. By addressing factors such as training data quality, hyperparameter
settings, and potential overfitting, the network’s performance can be enhanced,
ensuring it produces high-quality, accurate outputs.

A.2 ResNet
It was therefore decided to train some residual networks, for the reasons previously
outlined, as illustrated in section 2.4. In particular, three distinct configurations
were trained, each comprising two residual blocks. However, the number of channels
in the convolutional layers and the number of convolutions within the residual
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blocks were varied in order to investigate the impact of these hyper-parameters on
the performance of the network:

• 16 channels, 4 convolutions;

• 32 channels, 4 convolutions;

• 32 channels, 8 convolutions.

Network with 16 channels, 4 convolutions The initial convolution is executed
with a kernel size of 1, primarily to augment the channel number of the images
from 2 to 16. This step is crucial as it prepares the data for more complex
processing by increasing the dimensionality of the feature space. Thereafter, the
novel tensor is conveyed to the residual block, which comprises four convolution
layers for each block. These residual blocks are designed to facilitate deeper network
architectures by allowing gradients to flow through the network more effectively,
thereby improving learning and performance.

Subsequent to the residual blocks, the information is transmitted to a convolu-
tional layer. This layer is responsible for restoring the images from 16 channels
back to their original dimension. This step ensures that the output of the network
is in the same format as the input, making it suitable for further processing or
evaluation.

As evidenced by the results presented in Figure A.24, while the percentage error
is relatively low, the generated images exhibit a lack of definition. This indicates
that although the network is performing well in terms of error metrics, the quality
of the images is not satisfactory. The lack of definition in the images could be due
to several factors, such as insufficient training data, suboptimal hyperparameter
settings, or the inherent limitations of the network architecture.

To address these issues, it may be necessary to revisit the training process and
consider augmenting the dataset to include more diverse examples. Additionally,
experimenting with different hyperparameters, such as learning rate, batch size, and
the number of epochs, could help improve the network’s performance. Implementing
advanced techniques like data augmentation, regularization, and fine-tuning of the
model could also contribute to better image quality.

In summary, while the network’s architecture and error metrics are promising,
the lack of definition in the generated images highlights the need for further
optimization and refinement. By addressing these factors, it is possible to enhance
both the accuracy and the visual quality of the network’s output.

Network with 32 channels, 4 convolutions The network structure is identical
to that of the previous one. However, the input tensor is transformed into 32
channels in the first convolutional layer. This transformation significantly increases
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the number of learnable parameters within the network, particularly in the residual
blocks. The increase in channels from the initial 2 to 32 allows the network to
capture more complex features and patterns from the input data, enhancing its
ability to learn and generalize.

The residual blocks themselves remain unchanged in terms of their architecture,
but the number of channels has been increased to 32. This modification means
that each convolutional layer within the residual blocks now processes a higher-
dimensional tensor, which can lead to more detailed and nuanced feature extraction.
The increased number of channels contributes to a richer representation of the
input data, potentially improving the network’s performance.

As evidenced by the results presented in Figure A.27, while the percentage error
is marginally higher, the generated images exhibit greater definition. This suggests
that the U-Net performs even better in terms of visual quality, despite the slight
increase in error rate. The enhanced image definition indicates that the network
is able to produce more detailed and accurate reconstructions, which is a crucial
aspect of its overall performance.

The observed improvements in image quality can be attributed to the increased
capacity of the network, allowing it to learn more complex representations. However,
the marginally higher error rate may indicate that the network is also more sensitive
to variations in the input data, which could be addressed through further fine-tuning
and optimization.

In summary, the modifications to the network, specifically the increase in the
number of channels, have led to a notable improvement in the definition of the
generated images. While the percentage error has slightly increased, the overall
performance of the U-Net is enhanced, demonstrating its capability to produce
higher-quality outputs. Continuous monitoring and adjustments will be essential
to balance the trade-off between error rate and image quality, ensuring the network
achieves optimal results.

Network with 32 channels, 8 convolutions In this network, the initial
convolution layer is responsible for transforming the image into a 32-channel tensor.
This transformation establishes the foundation for subsequent processing by the
network. Subsequently, two residual blocks comprising eight convolution layers
each are employed. The residual blocks are designed to enhance feature extraction
and improve the network’s capacity to learn complex patterns. Notwithstanding
the maintenance of this structure, a reduction in image definition is apparent. This
decline in clarity is accompanied by a slight increase in the error rate.

The observed deterioration in image quality and the concomitant increase in
errors suggest the presence of potential issues that may require attention. These
issues may have their origin in a number of factors, including alterations to the
training data, fluctuations in the hyperparameters, or the potential for overfitting.
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Overfitting occurs when the model demonstrates high performance on the training
data set but exhibits poor generalization to new, unseen data. This emphasises
the necessity for continuous monitoring and fine-tuning of the model in order to
guarantee optimal performance and accuracy.

In order to address these issues, a number of potential strategies can be con-
sidered. One potential solution is to conduct a review of the training data and, if
necessary, implement modifications to ensure its representativeness of the target
domain. Another strategy is to conduct experiments with different hyperparameter
settings with the objective of identifying the optimal configuration for the network.
Furthermore, the incorporation of regularisation techniques, such as dropout or
weight decay, can assist in the mitigation of overfitting and the enhancement of
the model’s generalisation capabilities.
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Figure A.1: Structure of the
CNN with only one deep layer Figure A.2: Structure of the

CNN with two deep layers

Figure A.3: Structure of the
CNN with three deep layers
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Figure A.4: Case deep1 and
1conv: Real velocity field, on the
left there is the radial component,
at the right the streamwise com-
ponent

Figure A.5: Case deep1 and
1conv: Predicted velocity field,
on the left there is the radial com-
ponent, at the right the stream-
wise component

Figure A.6: Case deep1 and
1conv: Percerntage error on the
velocity prediction, at the right
the streamwise component
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Figure A.7: Case deep1 and
2conv: Real velocity field, on the
left there is the radial component,
at the right the streamwise com-
ponent

Figure A.8: Case deep1 and
2conv: Predicted velocity field,
on the left there is the radial com-
ponent, at the right the stream-
wise component

Figure A.9: Case deep1 and
2conv: Percerntage error on the
velocity prediction, at the right
the streamwise component
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Figure A.10: Case deep2 and
1conv: Real velocity field, on the
left there is the radial component,
at the right the streamwise com-
ponent

Figure A.11: Case deep2 and
1conv: Predicted velocity field,
on the left there is the radial com-
ponent, at the right the stream-
wise component

Figure A.12: Case deep2 and
1conv: Percerntage error on the
velocity prediction, at the right
the streamwise component
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Figure A.13: Case deep2 and
2conv: Real velocity field, on the
left there is the radial component,
at the right the streamwise com-
ponent

Figure A.14: Case deep2 and
2conv: Predicted velocity field,
on the left there is the radial com-
ponent, at the right the stream-
wise component

Figure A.15: Case deep2 and
2conv: Percerntage error on the
velocity prediction, at the right
the streamwise component
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Figure A.16: Case deep3 and
1conv: Real velocity field, on the
left there is the radial component,
at the right the streamwise com-
ponent

Figure A.17: Case deep3 and
1conv: Predicted velocity field,
on the left there is the radial com-
ponent, at the right the stream-
wise component

Figure A.18: Case deep3 and
1conv: Percerntage error on the
velocity prediction, at the right
the streamwise component
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Figure A.19: Case deep3 and
2conv: Real velocity field, on the
left there is the radial component,
at the right the streamwise com-
ponent

Figure A.20: Case deep3 and
2conv: Predicted velocity field,
on the left there is the radial com-
ponent, at the right the stream-
wise component

Figure A.21: Case deep3 and
2conv: Percerntage error on the
velocity prediction, at the right
the streamwise component
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Figure A.22: Network with 16
channels, 4 convolutions: real ve-
locity field, on the left there is the
radial component, at the right the
streamwise component

Figure A.23: Network with 16
channels, 4 convolutions: pre-
dicted velocity field, on the left
there is the radial component, at
the right the streamwise compo-
nent

Figure A.24: Network with 16
channels, 4 convolutions: percern-
tage error on the velocity predic-
tion, at the right the streamwise
component
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Figure A.25: Network with 32
channels, 4 convolutions: real ve-
locity field, on the left there is the
radial component, at the right the
streamwise component

Figure A.26: Network with 32
channels, 4 convolutions: pre-
dicted velocity field, on the left
there is the radial component, at
the right the streamwise compo-
nent

Figure A.27: Network with 32
channels, 4 convolutions: percern-
tage error on the velocity predic-
tion, at the right the streamwise
component
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Figure A.28: Network with 32
channels, 4 convolutions: real ve-
locity field, on the left there is the
radial component, at the right the
streamwise component

Figure A.29: Network with 32
channels, 4 convolutions: pre-
dicted velocity field, on the left
there is the radial component, at
the right the streamwise compo-
nent

Figure A.30: Network with 32
channels, 4 convolutions: percern-
tage error on the velocity predic-
tion, at the right the streamwise
component
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