
POLITECNICO DI TORINO

Master’s Degree in Aerospace Engineering

Multi-fidelity training for data-driven
thermal turbulence models

Supervisors:
Prof. Jacopo Serpieri
Dr. Matilde Fiore

Candidate:
Valerio Di Domenico

OCTOBER 2024

Abstract
In new-generation nuclear reactors, liquid metals are used to cool down the reacting
core. Due to the opacity of liquid metals and their harsh operating conditions, a digital
design approach based on CFD simulations is useful to study the thermal-hydraulics
conditions.

In a recent study (Fiore, Koloszar, Fare, et al., 2022), a new data-driven thermal
turbulence model based on Artificial Neural Networks (ANNs) was developed to
improve the modelling of heavy liquid metals, characterized by very low Prandtl
numbers. The model was trained with high-fidelity averaged DNS data for a wide
range of Prandtl numbers (Pr=0.01-0.71) and several flows of academic interest. The
model validation showed remarkable accuracy for simple flows inside and outside the
training range; however, the current training database seems too limited to extend its
application to simulate nuclear reactors, which are characterized by a variety of flow
regimes and a wide range of Reynolds numbers.

Given the limited availability of high-fidelity data in nuclear engineering flows, a
multi-fidelity modeling methodology is proposed. This approach leverages existing
RANS models to provide reference conditions for scenarios where high-fidelity data
is insufficient. With the use of ANNs and multi-fidelity modelling, this approach
could capture the most important trends predicted by current RANS models in a wider
range of flows and enrich the learned relationship with the knowledge provided by
the high-fidelity data.

2

Contents
1 Introduction 8

1.1 Low Prandtl number flows . 9
1.2 Low Prandtl number turbulence modeling 12

1.2.1 Eddy diffusivity models . 13
1.2.2 Explicit algebraic models . 14

1.3 Current availability of high-fidelity data 15
1.4 Motivation for the current project . 16

2 Machine learning for fluid dynamics 17
2.1 Introduction . 17

2.1.1 Unsupervised learning . 18
2.1.2 Semi-supervised learning . 20
2.1.3 Supervised learning . 20

2.2 Neural networks . 20
2.2.1 Neural network training . 22

2.3 Single fidelity data-driven turbulence model for the turbulent heat flux 23
2.3.1 Mathematical formulation . 24
2.3.2 Structure of the neural network 25
2.3.3 Training process . 26
2.3.4 Performance . 27

3 Multi-fidelity modeling 31
3.1 Introduction . 31

3.1.1 Model’s fidelity . 31
3.1.2 Relationship between data of different fidelity levels 32

3.2 multi-fidelity modeling via composite neural network 32
3.3 Toy problems . 34

3.3.1 Forrester function . 34
3.3.2 Forrester function with a discontinuity 36
3.3.3 Continuous function with nonlinear correlation 39

3.4 Towards multi-fidelity turbulent heat flux modeling 42

4 RANS/DNS input comparison 43
4.1 Introduction . 43
4.2 Channel flows . 43

4.2.1 RANS channel database description 43
4.2.2 DNS channel database description 44

3

4.3 Impinging jet . 45
4.3.1 DNS impinging database description 45
4.3.2 RANS impinging database description 46

4.4 Physical quantities comparison . 47
4.4.1 Channel flow . 47
4.4.2 Impinging jet . 48

4.5 Model’s invariants comparison . 52
4.6 Principal Component Analysis . 54

4.6.1 Components’ analysis . 54

5 Multi-fidelity model for the turbulent heat flux 59
5.1 Introduction . 59
5.2 Requirements and constraints . 59

5.2.1 Loss function . 60
5.2.2 Training . 61
5.2.3 Uncertainty quantification . 62

5.3 GGD sum model (S1) . 64
5.3.1 Results . 64

5.4 SGD + GGD additive model (S5) . 74
5.4.1 Results . 74

5.5 SGD + GGD multiplicative model (S7) 80
5.5.1 Results . 80

5.6 Impinging jet results . 85

6 Conclusions and future works 87

4

List of Figures
1.1 Typical momentum (𝛿𝑚) and thermal (𝛿𝑡) boundary layers in reactor

applications. Reproduced from (Shams et al., 2020). 9
1.2 Turbulent heat diffusivity for the turbulent channel flow at 𝑅𝑒𝜏 = 180

for various 𝑃𝑟. Reproduced from (Bricteux et al., 2012). 10
1.3 Streamwise (solid line) and wall normal (dashed line) components of

the turbulent heat flux for the 𝑅𝑒𝜏 = 180 and different Prandtl number
channel flow from (Kawamura et al., 2000). 10

1.4 Maximum absolute value reached by the wall-normal turbulent heat
flux for different flow conditions. 11

1.5 Three dimensional energy spectra 𝐸𝑇(𝑘) for temperature fluctuation in
forced channel flows. 12

2.1 Schematic overview of various machine learning techniques. Taken
from Mendez et al., 2023. 18

2.2 Neural network diagram, reproduced from Bishop, 2006. 21
2.3 3D space view of the error function 𝐸(𝑤) 22
2.4 Example of gradient descent method on the function 𝑦 = 2𝑥2 − 5𝑥 + 6,

starting from 𝑥 = −2. 23
2.5 Single fidelity neural network structure. 26
2.6 Turbulent heat flux prediction for the Single Fidelity Neural Network

(SFNN) for 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.025. 27
2.7 Turbulent heat flux prediction for the Single Fidelity Neural Network

(SFNN) for 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01 . 28
2.8 Turbulent heat flux prediction for the Single Fidelity Neural Network

(SFNN) for higher Reynolds numbers. 29
2.9 Turbulent heat flux prediction for the Single Fidelity Neural Network

(SFNN) for higher Reynolds numbers. 30

3.1 multi-fidelity neural network . 33
3.2 Forrester function and sampled data points. 34
3.3 Multi-fidelity prediction of the Forrester function. 36
3.5 Data sampling for the discontinuous test function. 37
3.6 Results for the second toy problem using the same neural network as

the one used for the first toy problem. 38
3.7 Discontinuous function prediction with the multi-fidelity strategy. . . 38
3.8 Training statistics, 𝒩𝒩ℋ1 and 𝒩𝒩ℋ2 contribution in the discontinuous

function prediction with the multi-fidelity strategy. 39

5

3.9 Third toy function. 40
3.10 Training statistics, 𝒩𝒩ℋ1 and 𝒩𝒩ℋ2 contribution in the continuous

function prediction with the multi-fidelity strategy. 40
3.11 multi-fidelity fitting of the continuous function with non linear correlation. 41
3.12 Single fidelity fitting of the continuous functionwith non linear correlation. 41

4.1 RANS channel flow geometry and boundary conditions. 44
4.2 Computational setup for the impinging jet. Taken from (Duponcheel &

Bartosiewicz, 2021). 45
4.3 Velocitymagnitude in theRANS impinging jet flowwith𝑅𝑒 = 5700, 𝑃𝑟 =

0.01. 46
4.4 Normalized temperature field in the RANS impinging jet flow with

𝑅𝑒 = 5700, 𝑃𝑟 = 0.01. 46
4.5 Various turbulent quantities for the channel flow along the channel

height for 𝑅𝑒𝜏 = 395 and 𝑃𝑟 = 0.025. 47
4.6 Thermal variance 𝑘𝜃 along the channel height for 𝑅𝑒 = 395 and 𝑃𝑟 = 0.025. 48
4.7 Peak relative error for the overlapping DNS/RANS channel simulations. 49
4.8 Impinging jet sampling locations. 50
4.9 Reynolds stresses and turbulent heat flux in the impinging jet with

𝑅𝑒 = 5700, 𝑃𝑟 = 0.01 at 𝑥/𝐵 = 1. 50
4.10 Reynolds stresses and turbulent heat flux in the impinging jet with

𝑅𝑒 = 5700, 𝑃𝑟 = 0.01 at 𝑥/𝐵 = 5. 51
4.11 b-only related invariants along the channel height for 𝑅𝑒 = 395 and

𝑃𝑟 = 0.025. 52
4.12 Non b-only related invariants along the channel height for 𝑅𝑒 = 395 and

𝑃𝑟 = 0.025. 53
4.13 Thermal-related invariants along the channel height for 𝑅𝑒 = 395 and

𝑃𝑟 = 0.025. 53
4.14 Ratio of explained variance for each component and cumulative sum of

the variance over the components. 54
4.15 First three principal components and their loading in terms of the origi-

nal variables. 55
4.16 RANS/DNS datasets in the PC1-PC2 space. 56
4.17 RANS/DNS datasets in the PC1-PC2 space. 57

5.1 Typical training and validation loss functions when coupled with the
SWAG algorithm. 62

5.2 Multi Fidelity structure S1 . 64
5.3 S1 turbulent heat flux prediction for the 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.025 channel

flow. 65
5.4 S1 turbulent heat flux prediction for the 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.025 channel

flows. 66
5.5 S1 turbulent heat flux prediction for the 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01 channel

flows. 66

6

5.6 Effect of the loss function terms on S1’s turbulent heat flux prediction
for the 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01 channel flows. 67

5.7 Effect of added loss function terms at 𝑅𝑒𝜏 = 1020, 𝑃𝑟 = 0.01. 68
5.8 Comparison of turbulent heat flux prediction between Single Fidelity

Neural Network (SFNN) and Multi Fidelity Neural Network (MFNN-
S1) for 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01. 69

5.9 Comparison of turbulent heat flux prediction between Single Fidelity
Neural Network (SFNN) and Multi Fidelity Neural Network (MFNN-
S1) for higher Reynolds numbers. 70

5.10 𝐷𝐿𝐹 (left) and 𝐷𝐻𝐹 (right) components for the 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01
case. 71

5.11 S1 low fidelity streamwise turbulent heat flux component prediction. . 71
5.12 Uncertainty quantification for the loss functionwithout themixed terms.

𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01 flow. 72
5.13 Mean squared error comparison between the SFNN and the MFNN (S1). 73
5.14 Multi Fidelity structure S5 . 74
5.15 S5 model’s performance for 𝑅𝑒𝜏 = 1020, 𝑃𝑟 = 0.01. 75
5.16 S5 model’s output for 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01. 76
5.17 S5model’s uncertainty quantification for the loss functionwith nomixed

terms. 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01 flow. 77
5.18 Mean squared error comparison between the SFNN and the MFNN (S5). 78
5.19 S5 ”feedback” phenomenon for 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01. 79
5.20 Absence of ”feedback” phenomenon for 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01 in the S5

model. 79
5.21 Multi Fidelity structure S7 . 80
5.22 S7 predictions for 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01. 81
5.23 S7 predicted wall-normal component 𝑣𝜃 for the 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01 case. 81
5.24 S7 predictions for high 𝑅𝑒𝜏 and low 𝑃𝑟. 82
5.25 Uncertainty quantification for the S7 model. 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01 . . 83
5.26 S7 prediction for the 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01 case. Model trained using

the mixed terms. 83
5.27 Mean squared error comparison between the SFNN and the MFNN (S7). 84
5.28 Multi-fidelity model prediction of 𝑢𝜃 for 𝑥/𝐵 = 1. 85
5.29 Multi-fidelity model prediction of 𝑢𝜃 for 𝑥/𝐵 = 5. 86
5.30 Multi-fidelity model prediction of 𝑢𝜃 for 𝑥/𝐵 = 9. 86

7

Chapter 1

Introduction
The first grid-connected nuclear power plant dates back to 1954, when, in the ”Science
City” of Obninsk, the APS-1 Obninsk started to produce electricity. From those early
days, nuclear power has lived through varying levels of media attention and public
acceptance. Nevertheless, the scientific research has gone on, exploring different design
solutions to improve efficiency, sustainability and safety of nuclear reactors.
It is now standard to describe developments in terms of the following generations of
technology (Nuttall, 2022):

• Generation I: early prototypes dating back to the 1950s and 1960s.

• Generation II: commercial power reactors from the 1970s and 1980s, mostly be-
longing to the Pressurised Water Reactor (PWR), Boiling Water Reactor (BWR)
or Advanced Gas-cooled Reactor (AGR) families.

• Generation III: reactors matured in the late 1990s, belonging to the Advanced
Light Water Reactors.

• Generation IV: reactors currently under research and development, with 8 clear
technological goals to be achieved. Those 8 goals are concerned with the sustain-
ability (with regards to pollutants and nuclear waste), safety, reliability, physical
protection and economics of the reactors.

A critical area of such research is the design and analysis of the cooling system,
which has a key role in both the power efficiency and the safety of the reactor.
One of the main elements in the cooling system is the coolant, meaning the fluid used to
absorb the heat generated by the reactor and to generate power by either transferring
it to a secondary circuit or directly moving a turbine (boiling water reactors). The
common choice for nuclear reactor coolant has been, and still is, water, due to its large
availability and heat capacity. Using water as the primary coolant comes with some
drawbacks, such as the necessity to pressurize the reactor to raise the boiling point,
thus raising safety, maintenance and technical challenges.

Another option, devised by E.Fermi and W.H. Zinn in 1944 at Los Alamos, is to use
liquid metals as coolant. The usage of liquid metals allows better steam quality and an
increase in electrical efficiency of around 30% when compared to light water reactors
(Wydler, 2005). Low coolant pressure and high thermal inertia are two very important

8

properties for liquid metals, as they act as passive safety measures. In fact, having high
coolant pressure increases the chance of loss-of-cooling accidents that, mixed with
low thermal inertia typical of gas/water cooled reactors, can lead to core melting. The
liquid metals under consideration are sodium, lead and lead-bismuth; the Sodium Fast
Reactor is the most mature of all the Generation IV technologies.

Despite their advantages, liquid metals still have some disadvantages such as the
need for corrosion control systems and careful seismic design due to the higher density;
however from a purely fluid dynamic point of view the main concerns are:

• Their opacity and chemical composition makes inspection and experimental cam-
paigns more difficult, as special measurement techniques are necessary.

• They have very low Prandtl numbers, in the order of 10−2.

This last point is a critical one for turbulence modeling and is a central matter in this
project.

Before delving into the details of data-driven turbulence modeling, some fundamen-
tal notions regarding low-𝑃𝑟 turbulent phenomenology will be given in the following
sections.

1.1 Low Prandtl number flows

Figure 1.1: Typical momentum (𝛿𝑚) and thermal (𝛿𝑡) boundary layers in reactor appli-
cations. Reproduced from (Shams et al., 2020).

The Prandtl number 𝑃𝑟 is a dimensionless quantity defined as the ratio of momentum
diffusivity 𝜈 to thermal diffusivity 𝛼:

𝑃𝑟 =
𝜈
𝛼 =

𝑐𝑝𝜇
𝑘 (1.1)

9

0.00 0.25 0.50 0.75
y
δ

0

10

20

α
t/
α

Pr = 1

Pr = 0.1

Pr = 0.01

Figure 1.2: Turbulent heat diffusivity for the turbulent channel flow at 𝑅𝑒𝜏 = 180 for
various 𝑃𝑟. Reproduced from (Bricteux et al., 2012).

The effect of the Prandtl number on the relationship between the thermal boundary
layer 𝛿𝑡 and the momentum boundary layer 𝛿𝑚 is shown in Figure 1.1. For near unity
Prandtl numbers the velocity and temperature fields are similar, with the two boundary
layers having around the same thickness. Not only the velocity and temperature
fields are geometrically similar, but their statistical features also are closely matched.

0.0 0.5 1.0

y/H

0

2

4

6

hu
+ i
θ+
i

Pr = 0.025

Pr = 0.71

Figure 1.3: Streamwise (solid line) and
wall normal (dashed line)
components of the turbu-
lent heat flux for the 𝑅𝑒𝜏 =
180 and different Prandtl
number channel flow from
(Kawamura et al., 2000).

At lower 𝑃𝑟 values, the molecular heat con-
duction is at least of the same order of mag-
nitude than that transported by the turbulent
structures and thus propagates easier into the
bulk of the flow. This leads to a modifica-
tion of the thermal boundary layer, that loses
the similarity with the momentum boundary
layer characteristic of near-unity 𝑃𝑟 and sees
a thickening of the conductive sublayer.

The turbulent heat diffusivity 𝛼𝑡 can be de-
fined as:

𝛼𝑡 =
−𝑣𝜃

𝑑𝜃/𝑑𝑦
(1.2)

where 𝑣𝜃 is the turbulent heat flux, with 𝑣
representing the velocity fluctuation and 𝜃 the
temperature one.

In Figure 1.2 the ratio 𝛼𝑡/𝛼 is computed from
DNS data of a turbulent channel at 𝑅𝑒𝜏 = 180
for different 𝑃𝑟 values. The figure shows that,
for the lower Prandtl numbers, 𝛼𝑡/𝛼 decreases
by an order of magnitude for the same 𝑦/𝛿 coordinate, meaning that the heat flux is

10

dominated by its molecular part (Bricteux et al., 2012). A similar analysis carried out in
(Grötzbach, 2013) showed how for 𝑃𝑟 = 0.025 the ratio 𝛼𝑡/𝛼 = 1 for Reynolds numbers
beyond 𝑅𝑒 = 60000, therefore coming to the conclusion that many applications end up
in the range between conduction dominated and convection dominated turbulent heat
transport.

A consequence of low Prandtl numbers is the smearing of the thermal gradients and
the creation of large coherent structures, which introduce non-local effects; this leads
to a significant modification of the turbulent heat flux components.

An example is shown in Figure 1.3, in which the streamwise and wall normal turbu-
lent heat flux components are shown for two DNS of channel flows at 𝑅𝑒𝜏 = 180 𝑃𝑟 =
0.71 and 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.025. In the 𝑃𝑟 = 0.025 case it’s clear how the difference in
magnitude between the two components is much smaller than the case with 𝑃𝑟 = 0.71
and they have comparable magnitude. At the higher Prandtl number, the streamwise
component is clearly dominant.

200 400 600

Re

10−1

100

M
ax
hv

+
θ+
i

Pr = 0.025

Pr = 0.71

Pr = 0.01

Figure 1.4: Maximum absolute value reached by the wall-normal turbulent heat flux
for different flow conditions.

Another relevant feature of low Prandtl flows is the increased influence of the
Reynolds number at constant Prandtl number. An example of this behavior is shown
in Figure 1.4, where the maximum absolute value reached in different channel flows
by the wall-normal turbulent heat flux component is shown. The figure shows how at
lower Reynolds number, the peak turbulent heat flux is heavily influenced by the value
of the Prandtl number; in other words the flows with lower 𝑃𝑟 values incur in greater
variations when the Reynolds number is lowered than their higher 𝑃𝑟 counterpart.
Conversely, when the Reynolds number is increased, the maximum values show less
of a difference between each other.

The effect of the interplay between the Prandtl number and the Reynolds number
can also be looked at from the energy spectra point of view. As shown in Figure 1.5, at
𝑃𝑟 ∼ 1 the velocity fluctuations energy spectra and the temperature fluctuation energy
spectra are similar, and the effect of different Reynolds numbers is to shift the high
wavenumber (small scales) part of the curve. Decreasing the Prandtl number has the
effect of reducing the amplitude of the temperature fluctuations and dampening the
fluctuations at small scales, shifting the whole curve towards bigger scales.

11

Figure 1.5: Three dimensional energy spectra 𝐸𝑇(𝑘) for temperature fluctuation in
forced channel flows. Reproduced from (Grötzbach, 2013).

The phenomena get more complex when buoyancy influenced flows are considered,
as the Prandtl number also influences the velocity field. This is particularly relevant for
heavy liquid metals reactor, in which large amount of thermal energy is transported
at moderate velocities. When buoyancy is not negligible, even for near unity Prandtl
flows analogies between the thermal and momentum fields become unreliable.

1.2 Low Prandtl number turbulence modeling
The highlighted characteristics of low-Pr flows make their modeling extremely chal-
lenging, and a plethora of different numerical models have been put forth.
For a complete summary of the matter, the reader is referred to (Grötzbach, 2013),
while here a brief description of the most relevant RANS (Reynolds Averaged Navier
Stokes) modeling strategies will be given. Note that the high Reynolds numbers typical
of reactor flows prevent the use of DNS (Direct Numerical Simulation) and LES (Large
Eddy Simulation) approaches.

Using a RANS approach leads to the following expression for the temperature:

𝜕𝑇
𝜕𝑡 + 𝑈𝑗

𝜕𝑇
𝜕𝑥𝑗

= 𝛼𝑙
𝜕2𝑇

𝜕𝑥𝑗𝜕𝑥𝑗
−

𝜕𝑢𝑗𝜃
𝜕𝑥𝑗

(1.3)

with 𝑇 being the mean temperature, 𝜃 the temperature fluctuation, 𝑈 the mean velocity,
𝑢 the velocity fluctuation and 𝛼𝑙 the thermal diffusivity.

The turbulent heat flux term 𝑢𝑗𝜃 needs to be modeled, and various strategies have
been proposed with different hypothesis and mathematical structures. Two categories
of models relevant to the current project are:

12

• Eddy diffusivity models

• Algebraic models

1.2.1 Eddy diffusivity models
The simplest framework is represented by eddy diffusivity models, that rely on the
assumption of perfect alignment between the turbulent heat flux and the mean tem-
perature gradient. This in practice means modeling the thermal turbulent diffusivity
𝛼𝑡 as a scalar isotropic quantity:

𝑢𝑖𝜃 = −𝛼𝑡
𝜕𝑇
𝜕𝑥𝑖

(1.4)

This structure naturally poses the question on how to model 𝛼𝑡.
The most direct approach is to use zero equation models, an example is expressing the

turbulent thermal diffusivity as:
𝛼𝑡 =

𝜈𝑡
𝑃𝑟𝑡

(1.5)

where 𝜈𝑡 is the eddy diffusivity and 𝑃𝑟𝑡 is the turbulent Prandtl number and takes the
value 𝑃𝑟𝑡 ≃ 0.8 − 0.85 for near unity 𝑃𝑟 and 𝑃𝑟𝑡 ≃ 2 for 𝑃𝑟 << 1.

This kind of modeling shows several limitations. First and foremost, as discussed
previously, the similarity between the thermal and momentum turbulent fields falls
apart for low 𝑃𝑟 values, which makes a local relationship between 𝛼𝑡 and 𝜈𝑡 a not so
valid assumption. Also, the increased sensitivity to the Reynolds number in the case of
low Prandtl values makes the definition of a constant 𝑃𝑟𝑡 value acceptable in a wide
range of 𝑅𝑒 impossible (Fiore, n.d.). Furthermore, the assumption of a constant 𝑃𝑟𝑡
has been proven quite restrictive (Grötzbach, 2013); this led to the creation of various
correlations such as (Kays, 1994).
Another relevant drawback of simple gradient diffusion hypothesis is the assumption of
alignment between the turbulent heat flux and the mean temperature gradient, which
is only acceptable for parallel flows where the temperature profile is not affected by the
streamwise turbulent heat flux. A SGDH model was tested in (Errico & Stalio, 2014)
and (Errico & Stalio, 2015), where it was shown how the model wrongly predicted the
heat flux in separation and reattachment regions.

A step up in complexity is represented by one equation models and two equations models,
based on the idea of adding the dependence of 𝛼𝑡 on the thermal statistics too and
not limiting it to the momentum ones only. A relevant two equations model that will
be used throughout this project was proposed in (Manservisi & Menghini, 2014), in
which the authors express 𝛼𝑡 as:

𝛼𝑡 = 𝐶𝜃𝑘𝜏𝑙𝜃 (1.6)

where 𝜏𝑙𝜃 is a function of the time scale ratio 𝑅 = 𝜀𝑘𝜃
𝑘𝜀𝜃

and takes into account the
corrections in the near-wall region. Temperature fluctuations 𝑘𝜃, its dissipation 𝜀𝜃 and
its specific dissipation 𝜔𝜃 = 𝜀𝜃

𝑘𝜃
are defined as:

13

𝑘𝜃 ∶=
1
2𝑇′2, 𝜀𝜃 ∶=

𝑣
Pr⟨(

𝜕𝑇′

𝜕𝑥𝑖
) (

𝜕𝑇′

𝜕𝑥𝑖
)⟩ 𝜔0 =

𝜀0
𝑘𝜃

(1.7)

and the following transport equations can be written:
𝜕𝑘𝜃
𝜕𝑡 + 𝑈𝑖

𝜕𝑘𝜃
𝜕𝑥𝑖

=
𝜕

𝜕𝑥𝑖
[(𝛼 +

𝛼𝑡
𝜎𝑘𝜃

)
𝜕𝑘𝜃
𝜕𝑥𝑖

] + 𝑃𝜃 − 𝜖𝜃 (1.8)

𝜕𝜖𝜃
𝜕𝑡 +𝑈𝑖

𝜕𝜖𝜃
𝜕𝑥𝑖

=
𝜕

𝜕𝑥𝑖
[(𝛼 +

𝛼𝑡
𝜎𝜖𝜃

)
𝜕𝜖𝜃
𝜕𝑥𝑖

]+
𝜖𝜃
𝑘𝜃

(𝐶𝑝1𝑃𝜃 − 𝐶𝑝2𝜖𝜃)+
𝜖𝜃
𝑘 (𝐶𝑝2𝑃𝑘 − 𝐶𝑑2𝜖) (1.9)

The two equations add model coefficients, for which the authors give some base values.
Similar models that aim to improve the numerical stability and accuracy have been
proposed, using 𝑘 − 𝜔 − 𝑘𝜃 − 𝜔𝜃 or 𝑘 − Ω − 𝑘𝜃 − Ω𝜃 transport equations and can be
found in (Da Vià et al., 2016).

These models are an accuracy improvement over the zero-equation models in that
they offer a more complex computation of the turbulent Prandtl number and they are
compatible with standard isotropic momentum turbulence model like the 𝑘 −𝜀 and −𝜔.
At the same time, they still suffer from the strong assumption of alignment between
the turbulent heat flux and mean temperature gradient.

1.2.2 Explicit algebraic models
A class of models that overcomes the already mentioned alignment hypothesis is the
Explicit algebraic models class. The assumption that those use is the Generalized Gradient
Diffusion Hypothesis (GGDH), which models the turbulent heat flux as:

𝑢𝑖𝜃 = −𝐷𝑖𝑗
𝜕𝑇
𝜕𝑥𝑗

(1.10)

where 𝐷𝑖𝑗 is a dispersion tensor effectively replacing the scalar 𝛼𝑡. Various ways of
modeling the dispersion tensor are explored by different models: for example strictly
speakingGGDHmodels relate 𝐷𝑖𝑗 linearly to the Reynolds stresses, while Higher-Order
GGDH involve higher order terms.

The Daly and Harlowmodel (Daly &Harlow, 1970) is a GGDHmodel that expresses
𝐷𝑖𝑗 as:

𝐷𝑖𝑗 = 𝐶′ 𝑘
𝜀𝑢𝑖𝑢𝑗 (1.11)

thus introducing the the Reynolds stress model in the 𝑢𝜃 model; this makes the Daly
and Harlow model quite sensitive to the correct representation of 𝑢𝑖𝑢𝑗. The model
was tested along a SGDH model in low 𝑃𝑟 flows in (Errico & Stalio, 2015), comparing
to DNS data for both the magnitude and direction of 𝑢𝜃. In their paper, the authors
showed how the GGDH model was an improvement over the SGDH model in that it
predicted the direction of the heat fluxes, but at the same time it required the tuning of
the model’s constant 𝐶𝜃 when used for low 𝑃𝑟 flows. An example of an higher order
model is (Abe & Suga, 2001).

14

1.3 Current availability of high-fidelity data
The challenges posed by low Prandtl number flowsmake the availability of high fidelity
data of utmost importance, both for the validation of existing modeling strategies and
for the training and validation of new data-driven methods; those same challenges also
make it more difficult to gather experimental and numerical results, so data availability
is understandably a concern. In light of this, part of the Horizon 2020, EU SESAME
and MYRTE (“Horizon 2020 - European Commission,” n.d., “MYRRHA Research
and Transmutation Endeavour | MYRTE Project | Fact Sheet | H2020,” n.d.) projects
has been the generation of experimental and numerical reference data (Shams et al.,
2019). As a result, different cases were simulated without using turbulence models;
these cases represent a wide array of phenomena like wall-bounded mixed convection,
forced convection, separation bubbles in backward facing steps, impinging jets and
free shear layers.

Besides the mentioned European projects, more high fidelity data for low Prandtl
flows is available for simple geometries. Of particular relevance for this project are
the databases (Kawamura et al., 2000), (Bricteux et al., 2012), (Tiselj et al., 2001)
and (Alcántara-Ávila et al., 2018); these are all DNS of channel flows with different
Reynolds and Prandtl numbers. To train the machine learning models for 𝑢𝜃 that will
be illustrated in the following chapters, some statistics related to both the velocity and
the temperature field are required, such as the turbulent dissipation rate 𝜀 and the
dissipation rate of thermal fluctuations 𝜀.

Table 1.1 summarises the available channel flow data, with the relevant 𝑅𝑒𝜏 and 𝑃𝑟
values. The column ”Complete?” signals whether or not all the quantities necessary
for the computation of the models’ inputs are made available.

Table 1.1: Summary of the relevant datasets for the current project. The column ”Com-
plete?” signals whether or not all the quantities necessary for the compu-
tation of the model’s invariants are available. Also note that the Reynolds
and Prandtl are given as intervals, for more exact details consult the related
resources.

𝑅𝑒𝜏 𝑃𝑟 Complete?

Bricteux et al., 2012, Tiselj et al., 2001
180 0.01 Yes
395 0.01 Yes
590 0.01 Yes

Kawamura et al., 2000

180 0.025 - 0.71 Yes
395 0.025 - 0.71 Yes
640 0.025 -0.71 Yes
1020 0.71 No

Alcántara-Ávila et al., 2018 500-2000 0.007-0.71 No

15

1.4 Motivation for the current project
Given thementionedmodeling challenges related to lowPrandtl flows and the availabil-
ity of data, the scientific community turned its attention towards data-driven thermal
turbulence models. One of those is presented in (Fiore, Koloszar, Fare, et al., 2022)
and (Fiore, Koloszar, Mendez, et al., 2022), which is a data-driven, physics constrained
model for the turbulent heat flux. The model showed promising results, as in its first
iteration it achieved good accuracy both on training data and validation data.

On the other hand, in its initial phase, it was trained using DNS data only, which
severely limits the flow conditions it trains on. The limitations caused by this restricted
training dataset will be shown in subsection 2.3.4. In order to overcome those limita-
tions, the idea is to use multi-fidelity modeling to train the model on a wider array of
flow cases, since lower fidelity datasets could be added to the training phase, covering
flow conditions and geometries not compatible with DNS computing requirements.

This document details the development of the project, and is structured as follows:

• In Chapter 2 some notions about machine learning are introduced, along with
the description of the single fidelity, data-driven, turbulent heat flux model. Both
the capabilities and the limitation of the single fidelity model are shown, as they
are the basis on which the development of the multi-fidelity model started.

• Chapter 3 introduces the concept of multi-fidelity modeling in general and then
delves more in depth into multi-fidelity modeling via composite neural networks.

• In Chapter 4 the CFD databases used in the project are analyzed and compared,
to understand the effects of turbulence modeling both on physical quantities and
on the machine learning model’s inputs.

• In Chapter 5 the process towards the development of the multi-fidelity model is
traced, showing results and comparisons with its predecessor along the way.

• Chapter 6 summarises the conclusions and future works related to the project.

16

Chapter 2

Machine learning for fluid dynamics
In the following chapter a brief introduction to what machine learning is and why is it
useful in fluid dynamics is given. Particular attention is dedicated to neural networks
and how they work, as they are the main workhorse of this project. Then a recap of the
already existing data driven turbulent heat flux model is made, analyzing its potential
and limiting factors, which are the starting point of the current project.

2.1 Introduction
Citing Cherkassky and Mulier, 2007, ”A learning method is an algorithm that estimates an
unknown mapping between a system’s inputs and outputs from the available data, namely from
known samples”.

From this definition alone the central role that data plays in the context of machine
learning is quite clear. Historically speaking, fluid mechanics has dealt and is dealing
with increasing amounts of data coming from experiments and numerical models,
thanks to the big strides taken by high-performance computing architectures and
experimental measuring systems (Brunton et al., 2020).

At the same time, many engineering fluid flows present relevant challenges in that
they are strongly non-linear, non-stationary, highly dimensional and include multi-
scale physics. A relevant example of said characteristics can be found in the numerical
simulation of liquid metal reactors, in which the following difficulties exist among
others:

• Multiple scales at which relevant physics phenomena happen. As an example
the presence of the helical wires spacers in the reactor core strongly influences
the thermal gradients and, due to their geometry, require detailed CAD models
and CFD meshes of length scales much smaller than the system’s dimension.

• Turbulence modeling. While obviously not unique to reactor flows, turbulence
modeling poses additional challenges in liquid metal reactors due to their low
Prandtl number, as shown in chapter 1.

• Prediction of time dependent sloshing phenomena in case of seismic activity is
crucial due to the high density of liquid metals.

17

These features render incredibly computationally expensive or flat out impossible to
obtain statistically converged numerical results. In common engineering tasks such as
design and optimization, this computational cost is often not sustainable and faster,
more efficient modeling is needed.

In this context, data-driven and machine learning methods thus aim to provide
an alternative to complement existing modeling techniques and achieve the desired
balance between accuracy and cost, be it computational, time-related or economical.

Figure 2.1: Schematic overview of various machine learning techniques. Taken from
Mendez et al., 2023.

Various families of algorithms can be identified and the most common distinction is
made between three main categories, based on the amount of supervisory information
available to the learning machine:

• Unsupervised learning

• Semi-supervised learning

• Supervised learning

2.1.1 Unsupervised learning
In the case of unsupervised learning, features get extracted from the data without the
need of ground truth-label for the results. In other words the learning system receives
input samples without the notion of the relative output. Typical unsupervised learning

18

problems include dimensionality reduction, quantization and clustering.
A common technique of unsupervised learning, the Principal Component Analysis,
will be used in chapter 4 to assess the difference between two complex datasets of
RANS and DNS simulations, thus a short introduction is given in the following section.

Principal Component Analysis

The Principal Component Analysis (PCA) is one of the oldest techniques for multi-
variate analysis, firstly presented by Pearson, 1901. At its core it is a dimensionality
reduction tool that computes a transformation into a new set of orthogonal variables
(Principal Components) that are a combination of the original variables, used when the
dataset is characterized by several interrelated variables. The new coordinate system’s
components are ordered to capture the most variance within the first components,
retaining the most information about the dataset in the first few variables. A complete
reference on the PCA is (Jolliffe, 2010). Next, the computation of PCA will be shown
following the procedure and notation found in (Brunton & Kutz, 2019).

The first step in computing the PCA is the construction of an 𝑛×𝑚 matrix X, in which
each row represents a measurement of all the features, or a ”snapshot” of the system.

The second step is the computation of the mean of all rows x:

x𝑗 =
1
𝑛

𝑛
∑
𝑖=1

X𝑖𝑗 (2.1)

This in turns allows the creation of the mean matrix X̄:

X̄ = ⎡⎢⎢
⎣

1
⋮
1

⎤⎥⎥
⎦
x̄ (2.2)

The mean subtracted data matrix B is then:

B = X − X̄ (2.3)

Next, the matrix C is computed normalizing the covariance of B by 𝑛 − 1.

C =
1

𝑛 − 1B
𝑇B (2.4)

Each entry 𝑐𝑖𝑗 of this new matrix quantifies the correlation between the two measured
quantities 𝑖 and 𝑗 across all measurements.

The eigenvectors ofC are called principal components anddefine a new set of coordinates
in which the covariance matrix is diagonal.

CV = VD ⟹ C = VDV𝑇 ⟹ D = V𝑇CV (2.5)

The elements 𝜆𝑘 of the diagonal matrix D are the variances of the data along the
directions constructed by the columns of the eigenvector matrix V, which correspond
to the principal components. The element vij are commonly referred to as loadings.

19

2.1.2 Semi-supervised learning
Semi-supervised learning algorithms use both labeled and unlabeled datasets during
the training phase. In fact, in many modern applications, it is either prohibitively
expensive to build a labeled data set large enough to train learning algorithms or full
data about the problem is not available. Popular methods belonging to this groups are
Generative adversarial networks (GANs) and Reinforcement learning (RL).

2.1.3 Supervised learning
Methods belonging to the supervised learning category imply the availability of a
labeled dataset, that means feeding the algorithm with both the training data and its
label or ”true value”. These labels can either be discrete (e.g car/bicycle), in which
case the task is called classification, or continuous (e.g. the temperature at a point in
space), and the task is called regression. During the training a loss function is built,
generally evaluating some measure of error between the prediction given an input
and the relative label, and then gets minimized by acting on the learning machine’s
parameters. In this category of methods, the most popular is probably that of neural
networks, which play a central role in the current project and will thus be analyzed in
more details in the following section.

2.2 Neural networks
The term ”neural network” has been used to describe a wide range of different models
(Bishop, 2006), with varying degrees of resemblance to their biological namesake. In
this context, we will consider them as nonlinear function approximator.

The unit element in a neural network is a neuron, that receives an input and passes
it through an activation function to produce an output. Neurons are combined and
arranged in different structures tailored to the learning task. Among the most common
structures is the feed-forward networks, composed of layers of neurons producing an
output that gets weighted and then sent as input to the next layer. The first layer of
such networks is the input layer, while the last layer is the output layer that gives the
prediction; this prediction is then used by the cost function to compute some form of
error that gets minimized by acting onto the network parameters. A more formal
expression of what a neural network will be now presented, following conventions
and nomenclature from (Bishop, 2006).

Considering a layer with 𝑀 neurons, 𝑀 linear combinations of the 𝐷 input variables
𝑥1, 𝑥2, ..., 𝑥𝐷 are constructed:

𝑎𝑗 =
𝐷

∑
𝑖=1

𝑤(1)
𝑗𝑖 𝑥𝑖 + 𝑤(1)

𝑗0 (2.6)

where 𝑗 = 1, ..., 𝑀 and the superscript (1) signals that the parameters 𝑤 belong to
the first layer of the neural network. The parameters 𝑤𝑗𝑖 are called weights and the

20

Figure 2.2: Neural network diagram, reproduced from Bishop, 2006. The variables are
represented by nodes, while weights are represented by links and biases
are omitted.

parameters 𝑤𝑗0 are called biases; the quantity 𝑎𝑗 is commonly referred to as activation.
Each of the resulting activations undergoes a non-linear transformation represented
by an activation function ℎ(⋅) to obtain an hidden unit 𝑧𝑗:

𝑧𝑗 = ℎ(𝑎𝑗) (2.7)

These hidden units are again linearly combined to give output unit activations:

𝑎𝑘 =
𝑀
∑
𝑗=1

𝑤(2)
𝑘𝑗 𝑧𝑗 + 𝑤(2)

𝑘0 (2.8)

where 𝑘 = 1, ..., 𝐾 and 𝐾 is the total number of outputs. A set of outputs 𝑦𝑘 is given by
applying an activation function to the output unit. Choices of activation function vary
depending on the use case, the common ones are the ReLU, sigmoid and hyperbolic
tangent functions. For regression problems, the output activation function is commonly
chosen to be the identity function.

21

2.2.1 Neural network training

Figure 2.3: 3D space view of the error
function𝐸(𝑤) (Reproduced
from Bishop, 2006). A lo-
calminimum is found in𝑤𝐴
and a global minimum in
𝑤𝐵.

In the preceding section a neural network was
built as a parametric model with parameters
𝑤𝑗𝑖 and 𝑤𝑗0, but no mention was made as to
how to choose and optimize these weights
and biases for a given task. The process of
finding the ”best” 𝑤𝑖𝑗 and 𝑤𝑗0 to approximate
a target 𝑡𝑛 given the inputs 𝑥𝑛 is called training.
The mechanism that drives this process is the
minimization of an error function 𝐸(𝑤), for
this example taken to be the sum-of-squares
error:

𝐸(w) =
1
2

𝑁
∑
𝑛=1

∥y (x𝑛,w) − t𝑛∥2 (2.9)

In the case of a 2D input space, the error func-
tion can be represented as a 3D surface as in
Figure 2.3. Note that, very much like in the
figure, in common applications the error func-
tion is generally not convex in the weights’
space, and thus presents both local and global minima, all of which correspond to the
situation where:

∇𝐸(w) = 0 (2.10)

Finding an analytical solution to this equation is generally not possible, and thus the
usual procedure consists in using numerical methods of the form:

w(𝜏+1) = w(𝜏) + Δw(𝜏) (2.11)

in which an initial value 𝑤(0) is set and then updated at each iteration 𝜏 according
to the update term Δ𝑤(𝜏). An effective way to proceed is using information given by
the gradient itself ∇𝐸(𝑤) to step into its negative direction, which is the direction of
steepest descent. In general, these methods are called gradient descent methods, and
take the form:

w(𝜏+1) = w(𝜏) − 𝜂∇𝐸 (w(𝜏)) (2.12)

where the parameter 𝜂 is referred to as learning rate.
In the context of the neural networks, the learning rate is one of the key hyperparame-

ters that the user can act upon to influence both the training and the performance of
the model. Its magnitude must be set to achieve a balance between the stability and
the speed of the training. In general, choosing too large of a learning rate will result in
divergence, meaning that the optimization is not able to minimize the loss function. Too
small of a learning rate will instead result in either a very slow or ineffective training
process. A simple numerical example of gradient descent is shown in Figure 2.4, where

22

−10 0 10

x

0

100

200

y

Function

η: 0.01

η: 0.1

η: 0.55

Figure 2.4: Example of gradient descent method on the function 𝑦 = 2𝑥2 − 5𝑥 + 6,
starting from 𝑥 = −2.

the minimum of the function 𝑦 = 2𝑥2 −5𝑥+6 is to be found, starting the search from the
point 𝑥 = −2. The first 8 optimization steps of three different learning rates are shown.
With the smallest step, the minimization proceeds in the right direction but does not
make enough progress and stops before getting to the minimum. The intermediate
step on the other hand is able to find the minimum within the 8 steps. The largest
learning rate not only does not find the minimum, but diverges from the start, leading
to a complete inaccurate solution.

In the numerical example, the function’s gradient was easily computed symbolically;
in the case of the error function 𝐸(w) used in neural networks this would be unfeasible.
The technique used to efficiently compute the derivatives is called error backpropagation
or backpropagation.

2.3 Single fidelity data-driven turbulence model for the
turbulent heat flux

During the 2000s, machine learning methods started to become popular in the CFD
community to get over the limitations of classical turbulence models: for example in
(Yarlanki et al., 2012) neural networks were used to estimate the 𝑘 − 𝜀 coefficients.
A notable and relevant use of neural networks in turbulence model is (Ling et al.,
2016), in which they are used to predict the Reynolds stresses anisotropy tensor while
embedding the Galilean invariance mathematically into the network itself; the authors
also introduce the concept of a Tensor Basis Neural Network (TBNN), which effectively
embeds the rotational invariance by enforcing that the anisotropy tensor lies on a basis
of isotropic tensors.

The starting point for the current project is the single fidelity, data-driven turbulent
heat flux model developed in (Fiore, Koloszar, Fare, et al., 2022), which aims to model
the dispersion tensor D (and thus 𝑢𝑗𝜃) using the high fidelity DNS datasets cited in
the introduction as training data. For the full derivation of the model the reader is

23

referred to the original paper, here only the main takeaways will be summarised.

2.3.1 Mathematical formulation
The derivation starts with a general functional relationship between tensors, scalars
and vectors related to both the momentum and thermal field:

u𝜃 = 𝑓 (b,S,Ω, ∇𝑇, 𝑔, 𝑘, 𝜀, 𝑘𝜃, 𝜀𝜃, 𝛼, 𝜈) (2.13)

where:
𝑏𝑖𝑗 =

𝑢𝑖𝑢𝑗

𝑘 −
2
3𝛿𝑖𝑗

𝑆𝑖𝑗 =
1
2

⎛⎜
⎝

𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
⎞⎟
⎠

Ω𝑖𝑗 =
1
2

⎛⎜
⎝

𝜕𝑈𝑖
𝜕𝑥𝑗

−
𝜕𝑈𝑗

𝜕𝑥𝑖
⎞⎟
⎠

(2.14)

The model is guaranteed to be Galilean invariant thanks to the inclusion of rotational
and strain rates in Equation 2.13; it is also algebraic and explicit, meaning it can be
expressed as:

𝑢𝜃 = −D∇𝑇 (2.15)
Where D is a dispersion tensor.

Adding the assumption that the anisotropic part of D depends on the anisotropy of
the momentum field and not on the temperature distribution, and only considering
forced convection flows:

D = ℱ(b,S, Ω, ||∇𝑇||, 𝑘, 𝜀, 𝑘𝜃, 𝜀𝜃, 𝛼, 𝜈) (2.16)

The term D is modeled using a Tensor Basis Neural Network, as to embed two
fundamental properties: the rotational invariance and the consistency with the second law
of thermodynamics. This is achieved by expressing the dispersion tensor as:

D = [(A + A𝑇) (A𝑇 + A) +
𝑘

𝜖0.5 (W − W𝑇)] (2.17)

which enforces the real part of the eigenvalues of the symmetric part of D to be
real, thus satisfying the second law of thermodynamics. The quantity 𝑘

𝜖0.5 ensures the
dimensional consistency of the expression.

The tensors A and W are a combination of the tensor basis Ti:

A =
𝑛

∑
𝑖=1

𝑎𝑖T𝑖, W =
𝑛

∑
𝑖=1

𝑤𝑖T𝑖 (2.18)

The minimal tensor basis was derived and consists of the following set:

I,b,S, Ω,bS,SΩ,bΩ,bΩS (2.19)

24

The corresponding minimal basis of invariants is:

{b2}, {b2}, {S2}, {Ω2}, {bS}, {bS} (2.20)

where b2 is the projection of b on the 𝑥 − 𝑦 plane of the flow.
Using the Buckingham Theorem, it is possible to define 10 independent dimension-

less groups, so that the coefficients in Equation 2.18 take the general form:

𝑐𝑖 = 𝑓𝑖(𝜋𝑖, 𝑅𝑒𝑡, 𝑃𝑟) (2.21)

where the 8 𝜋𝑖 are:

• 𝜋1 = 𝑘2

𝜀2 {S2}

• 𝜋2 = 𝑘2

𝜀2 {Ω2}

• 𝜋3 = {b2}

• 𝜋4 = 𝑘
𝜀{bS}

• 𝜋5 = {b2}

• 𝜋6 = {bSΩ}

• 𝜋7 = ||∇𝑇||
√𝑘𝜃

𝑘3/2

𝜀

• 𝜋8 = 𝑅 = 𝑘𝜃𝜀
𝑘𝜀𝜃

Note that the invariants 𝜋𝑖 are expressed in dimensionless form so that the model
can be used for arbitrary flow conditions; this means that the 𝑎𝑖 and 𝑤𝑖 coefficients in
Equation 2.18 are dimensionless too. In turn, the tensors composing the tensors basis
are multiplied and divided using 𝑘 and 𝜀 to obtain a dimensional heat flux. The tensors
used in the model then become:

• T1 = 𝑘
𝜀1/2 I

• T2 = 𝑘
𝜀1/2b

• T3 = 𝑘2

𝜀3/2S

• T4 = 𝑘2

𝜀3/2 Ω

• T5 = 𝑘2

𝜀3/2bS

• T6 = 𝑘2

𝜀3/2bΩ

• T7 = 𝑘3

𝜀5/2SΩ

• T8 = 𝑘3

𝜀5/2bSΩ

2.3.2 Structure of the neural network
The neural network models the coefficient Y = [𝑎1, ..., 𝑎8, 𝑤1, ..., 𝑤8] in Equation 2.18
from the input X = [𝜋1, ..., 𝜋8, 𝑅𝑒𝑡, 𝑃𝑟] using the weights 𝑊:

Y = ℱ(X, 𝒲) (2.22)

The inputs are normalized using minimum and maximum values in the dataset so
that they fall into the [−1, 1] interval; then they get fed into the ANN through two
branches:

25

Figure 2.5: Single fidelity neural network structure. The top branch has 6 hidden layers
of 100 neurons each, while the bottom (𝑃𝑟) branch has 2 layers of 100
neurons each. Only the last layers use the tanh activation function, while
all the others use the 𝑅𝑒𝐿𝑈.

• The first one receives all the input together and processes them through 6 layers
of 100 neurons each. The first 5 layers use the 𝑅𝑒𝐿𝑈 activation function while
the last layer uses the hyperbolic tangent. The inputs of this branch also pass
through the function log(|𝑥| + 1) to reduce their right-skewdness.

• The second branch only gets fed the 𝑃𝑟 number, which goes through 2 layers
of 100 neurons each; the first layer uses the 𝑅𝑒𝐿𝑈 activation function while the
second uses the hyperbolic tangent.

These two branches then get multiplied by amerge layer out of which the 16 coefficients
[𝑎1, ..., 𝑎8, 𝑤1, ..., 𝑤8] are computed. From there on the tensorD gets computed following
Equation 2.18 and Equation 2.17.

2.3.3 Training process
The training process uses the Adam optimizer with a constant learning rate 𝜂 = 0.001
to minimize the loss function ℒ, defined as:

ℒ =
1
𝑁

⎛⎜⎜
⎝

𝑁
∑
𝑖=1

3
∑
𝑗=1

(̂𝑞𝑖,𝑗 − 𝑞𝑖,𝑗)
2⎞⎟⎟
⎠

+
𝜆
𝑁

⎛⎜⎜
⎝

𝑁
∑
𝑖=1

3
∑

𝑗,𝑘=1

∣∣∣∣

𝜕 ̂𝑞𝑖,𝑗

𝜕𝑥𝑘
−

𝜕𝑞𝑖,𝑗

𝜕𝑥𝑘

∣∣∣∣
Δ𝑥𝑘

⎞⎟⎟
⎠

(2.23)

In the loss function definition two terms can be identified:

26

• 1
𝑁 (∑𝑁

𝑖=1 ∑3
𝑗=1(̂𝑞𝑖,𝑗 − 𝑞𝑖,𝑗)

2
): this terms drives the optimization towards the min-

imization of the error in the turbulent heat flux prediction.

• 𝜆
𝑁 (∑𝑁

𝑖=1 ∑3
𝑗,𝑘=1 ∣

𝜕 ̂𝑞𝑖,𝑗

𝜕𝑥𝑘
−

𝜕𝑞𝑖,𝑗

𝜕𝑥𝑘
∣ Δ𝑥𝑘): this terms promotes a smooth solution. This

is an important property, as the heat flux enters the energy equation through
its divergence. The partial derivatives in this terms are computed using central
differences. 𝜆 is a regularizing parameter, empirically set to 10.

The batches of data are constructed by sampling subpartitions of the domains of each
simulation so that the spatial derivatives can be computed.

2.3.4 Performance
For a complete and in-depth analysis of the performance of the model on various flows,
the reader is referred to the original paper (Fiore, Koloszar, Fare, et al., 2022). Adding
onto what was found by the authors, in this section the model will also be used a priori
using the RANS database created for this project, which will be further analyzed in
chapter 4. Note that the model was re-trained using only high fidelity channel flow
data, to achieve a fair comparison with the multi-fidelity models built for this project.

In the 𝑅𝑒𝜏 window used for training, the single fidelity model proved to be accurate
with both training and validation data, showing no apparent signs of overfitting.
An example of validation data is shown in Figure 2.6, in which the prediction for

0.0 0.5 1.0

y/H

−0.2

−0.1

0.0

v
+
θ+

RANS

SFNN (RANS)

DNS

SFNN (DNS)

(a) Wall normal component.

0.0 0.5 1.0

y/H

0.0

0.2

0.4

u
+
θ+

RANS

SFNN (RANS)

DNS

SFNN (DNS)

(b) Streamwise component.

Figure 2.6: Turbulent heat flux prediction for the Single Fidelity Neural Network
(SFNN) for 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.025. The solid lines show CFD results,
while the dotted lines show the prediction made a priori using either the
DNS or RANS-derived inputs and tensors.

𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.025 is shown. It can be seen that the SFNN matches very closely the
DNS results when using DNS input data, and only marginally worsen when RANS
data is used, underestimating the wall-normal component. Note that, even tough the

27

RANS simulation gives no information whatsoever about the streamwise component,
the model is still able to output a somewhat accurate prediction.

0.0 0.5 1.0

y/H

−0.10

−0.05

0.00

v
+
θ+

RANS

SFNN (RANS)

DNS

SFNN (DNS)

(a) Wall normal component.

0.0 0.5 1.0

y/H

0.00

0.05

0.10

u
+
θ+

RANS

SFNN (RANS)

DNS

SFNN (DNS)

(b) Streamwise component.

Figure 2.7: Turbulent heat flux prediction for the Single Fidelity Neural Network
(SFNN) for 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01. The solid lines show CFD results,
while the dotted lines show the prediction made a priori using either the
DNS or RANS-derived inputs and tensors.

Changing the Prandtl number to 𝑃𝑟 = 0.01 does not alter in any negative way the
model’s accuracy, as shown in Figure 2.7. It’s interesting to note that in this case
the SFNN is perfectly able to ”mend” the inaccuracy that characterizes the RANS
simulation at lower Prandtl number, thus giving a prediction of the wall-normal
turbulent heat flux closely matched to the DNS data (Figure 2.7a).

Moving onto higher Reynolds numbers, a distinct pattern starts to develop in the
wall-normal turbulent heat flux prediction. Following the left panels in figures 2.8
and 2.9, the SFNN’s prediction develops a ”bump” (i.e. an overestimation) of the
maximum in the wall-normal turbulent heat flux with respect to the RANS solution.
Note that, as further analyzed in section 4.4, the error between RANS and DNS tends
to decrease when the Reynolds and Prandtl number are increased; for this reason the
RANS data was deemed to be adequate for qualitative comparisonwith the data-driven
methods. Given the absence of RANS data for the streamwise component, it is difficult
to gather conclusion on whether a similar behavior can be found in that component
too.

This kind of behavior is hypothesized to be related to the fact that the model was
trained on a database too narrow, that does not include flows with Reynolds number
high enough to ”inform” the neural network about the physical phenomena character-
istic of typical nuclear reactor flows. As such, the single fidelity training database was
deemed to be too limited and a different training framework necessary.

It must be noted that this is not the only limitation at play: in (Fiore et al., 2024)
an in depth analysis of the impact of momentum modeling inconsistencies onto the
thermal closure was carried out. Nevertheless, as will be shown in chapter 4, for the
current project an accurate momentum modeling strategy was used for simple channel

28

0.0 0.5 1.0

y/H

−0.2

−0.1

0.0
v

+
θ+

RANS

SFNN (RANS)

DNS

SFNN (DNS)

(a) Wall normal component. 𝑅𝑒𝜏 = 1020, 𝑃𝑟 =
0.01

0.0 0.5 1.0

y/H

0.0

0.2

0.4

u
+
θ+

RANS

SFNN (RANS)

DNS

SFNN (DNS)

(b) Streamwise component. 𝑅𝑒𝜏 = 1020, 𝑃𝑟 =
0.01

0.0 0.5 1.0

y/H

−0.4

−0.2

0.0

v
+
θ+

RANS

SFNN (RANS)

DNS

SFNN (DNS)

(c) Wall normal component. 𝑅𝑒𝜏 = 2000, 𝑃𝑟 =
0.01

0.0 0.5 1.0

y/H

0.0

0.5

1.0

u
+
θ+

RANS

SFNN (RANS)

DNS

SFNN (DNS)

(d) Streamwise component. 𝑅𝑒𝜏 = 2000, 𝑃𝑟 =
0.01

Figure 2.8: Turbulent heat flux prediction for the Single Fidelity Neural Network
(SFNN) for higher Reynolds numbers. The solid lines show CFD results,
while the dotted lines show the prediction made a priori using the RANS-
derived inputs and tensors. In this case no SFNN data with DNS input is
available, as explained in chapter 1.

flows via the EBRSM, and thus the effect of modeling is secondary to that caused by
the lack of high-Re data.

A promising field of study, which will be the main protagonist of this project, is
multi-fidelity modeling, that relies on data of different origins (and degrees of accuracy)
to ”inform” the model about trends in regions where high fidelity data is not available.

In chapter 3 a brief introduction to multi-fidelity modeling will be given, along with
simple typical examples to show its potential and key parameters. In chapter 4 the first
step towards the adaptation of said framework towards the heat flux modeling will be
taken, in the form of comparing the key differences between simulations of different
accuracy both in the physical quantities’ space and in the model’s input’s space. At last,
in chapter 5 several models’ structures will be built to accommodate the multi-fidelity
training and results will be reported.

29

0.0 0.5 1.0

y/H

−0.75

−0.50

−0.25

0.00

v
+
θ+

RANS SFNN (RANS)

(a) Wall normal component. 𝑅𝑒𝜏 = 4000, 𝑃𝑟 =
0.01

0.0 0.5 1.0

y/H

0

1

u
+
θ+

RANS SFNN (RANS)

(b) Streamwise component. 𝑅𝑒𝜏 = 4000, 𝑃𝑟 =
0.01

0.0 0.5 1.0

y/H

−0.5

0.0

v
+
θ+

RANS SFNN (RANS)

(c) Wall normal component. 𝑅𝑒𝜏6000, 𝑃𝑟 =
0.01

0.0 0.5 1.0

y/H

0

1

2

u
+
θ+

RANS SFNN (RANS)

(d) Streamwise component. 𝑅𝑒𝜏 = 6000, 𝑃𝑟 =
0.01

Figure 2.9: Turbulent heat flux prediction for the Single Fidelity Neural Network
(SFNN) for higher Reynolds numbers. The solid lines show CFD results,
while the dotted lines show the prediction made a priori using the RANS-
derived inputs and tensors. In this case no SFNN data with DNS input is
available, as explained in chapter 1. Note that for these Reynolds numbers,
no DNS data is available for either model usage or comparison.

30

Chapter 3

Multi-fidelity modeling

3.1 Introduction
Multi-fidelity modeling is a science branch tasked with discovering methods that
allow us to learn relationships between data of different origins and qualities and
leverage them to maximize the accuracy of a model’s predictions. Data can be generally
categorized based on availability or cost and accuracy:

• High-fidelity data better captures a phenomenon’s features and behavior, but is
harder (as in more costly, technically harder or time consuming) to obtain and
thus less available. Common examples of high fidelity data are Direct Numerical
Simulations (DNS) and experimental measurements.

• Low-fidelity data, on the other hand, is a lower quality approximation of the
ground truth, but is cheaper and easier to obtain. Common examples include
RANS simulations and reduced order models.

In the next section a very brief introduction will be given; for a more complete re-
view on the subject, the reader is encouraged to consult the following review article
(Fernández-Godino, 2023). In the context of this project, more attention will be given
to Multi-Fidelity Surrogate Models, which integrate information from the low and high
fidelity models to build a surrogate model, as opposed to Hierarchical Models that do
not explicitly build a multi-fidelity surrogate model architecture. In particular, only
Deterministic Models, which establish a single, fixed relationship between the input and
output variables will be treated.

In recent years, multi-fidelity modeling has gathered some traction in aerodynamics
and aeroacoustics: the improved accuracy with little added computational cost has
proved a key element in shape optimization problems of airfoils (Liao et al., 2021) and
wing-body configurations (X. Zhang et al., 2021), as well as in the design of acoustic
metasurfaces (Wu et al., 2023).

3.1.1 Model’s fidelity
The level of fidelity of a model is determined by three categories:

31

• Modeling strategy: this category is concerned with how the model mathematically
represents the phenomenon andwhich assumptions, if any, are used to simplify the
problem. An example of different modeling strategies is the different turbulence
models used in CFD.

• Accuracy: this category refers to how the model discretizes the domain in space
and/or time. The mesh resolution and the time-step are a feature of this category.

• Source: this category signals the introduction of experimental data, which is
generally considered to be of the highest fidelity available.

At the current stage of the project no experimental data is used and numerical data
differs in the turbulence modeling used and in the computing mesh; more details will
be given in the dedicated section.

3.1.2 Relationship between data of different fidelity levels
The core of any multi-fidelity model is the relationship found between high and low
fidelity data. With this in mind, different methods have been proposed in literature,
and they can be grouped as follows:

• Additive and multiplicative corrections. This group of corrections aims to improve
the low fidelity prediction by either an addition or a multiplication. In equations,
they can be written as:

𝑦𝐻𝐹 = 𝑦𝐿𝐹(x) + 𝛿(x) (3.1)
𝑦𝐻𝐹 = 𝜌(x) ⋅ 𝑦𝐿𝐹(x) (3.2)

• Space mapping. The space mapping strategy aims to align the low fidelity model
to the high fidelity model in the parameter space. If in a design space the various
fidelity are similar, the optimization can be carried out on the low fidelity, gaining
in efficiency with a minimal loss in accuracy.

• Comprehensive corrections. This category mixes together the additive and multi-
plicative correction strategy.

𝑦𝐿𝐹 = 𝜌(x) ⋅ 𝑦𝐿𝐹(x) + 𝛿(x) (3.3)

Note that depending on the approach chosen, the data may come from more than 2
levels of fidelity. Either way, in the following only two levels will be considered.

3.2 multi-fidelity modeling via composite neural network
One application of multi-fidelity surrogate modeling is found in (Meng & Karniadakis,
2020), in which the authors put forth a generalized auto-regressive scheme expressed
as:

𝑦𝐻𝐹 = ℱ(𝑦𝐿𝐹) + 𝛿(𝑥) (3.4)

32

Figure 3.1: multi-fidelity neural network, as represented in (Meng & Karniadakis,
2020). 𝒩𝒩𝐿 is the low-fidelity neural network, while 𝒩𝒩𝐻1

and 𝒩𝒩𝐻2
are respectively the linear and non linear neural network. 𝜃, 𝛾1 and 𝛾2 are
network parameters.

where ℱ(.) is an linear/nonlinear function mapping the low-fidelity data to the high
fidelity level. ℱ is then further decomposed in a linear and in a non linear part:

ℱ = ℱ𝑙 + ℱ𝑛𝑙 (3.5)

thus obtaining
𝑦𝐻 = ℱ𝑙(𝑥, 𝑦𝐿𝐹) + ℱ𝑛𝑙(𝑥, 𝑦𝐿𝐹) (3.6)

The two linear and non linear functions can be modeled with neural networks, using
a structure like the one shown in Figure 3.1. Keeping the figure as reference, going
from the left to the right, the components making up the composite neural network
are:

• The input layer, taking as input the vector x.

• The low-fidelity neural network 𝒩𝒩𝐿. Its role is to approximate the low fidelity
data given the input x and the network parameters 𝜃.

• The low-fidelity output layer, in which 𝑦𝐿 is obtained.

• The high fidelity section, in turn composed of the two neural networks 𝒩𝒩𝐻1
and

𝒩𝒩𝐻2
. Notice how these two networks take as input both the low-fidelity predic-

tion and the input x, outputting ℱ𝑙 and ℱ𝑛𝑙. To represent the linear contribution,
no activation function is used in 𝒩𝒩𝐻1

.

• The high fidelity output 𝑦𝐻𝐹, given as a sum of the two high fidelity networks’
outputs. This reproduces Equation 3.6.

33

The unknown parameters 𝜃, 𝛾1 and 𝛾2 are learned by minimizing a loss function. A
typical loss function in a multi-fidelity framework will have both contribution from
the high and low fidelity parts, thus having a form similar to the following:

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑦𝐿
+ 𝑀𝑆𝐸𝑦𝐻

+ 𝜆 ∑ 𝛽𝑖 (3.7)

in which the Mean Square Error 𝑀𝑆𝐸 loss function for a given fidelity level 𝑖 is used:

𝑀𝑆𝐸𝑖 =
1
𝑁𝑖

𝑁𝑖

∑
𝑗=1

(|𝑦∗
𝑖 − 𝑦𝑖|2) (3.8)

Note that the choice of 𝑀𝑆𝐸 as the error function is purely symbolic here and can be
varied according to the problem at hand, as will be clearer in the relevant section later
on.

The term 𝜆 ∑ 𝛽𝑖 represents the regularization term, which penalizes the magnitude of
the parameters 𝛽𝑖 of 𝒩𝒩𝐿𝐹 and 𝒩𝒩𝐻2

.

3.3 Toy problems
To better understand all the factors at play in the creation and usage of the framework
presented in the previous sections, some typical regression toy problems are replicated
with the composite neural network structure. The problems are coded using Python
as the programming language and PyTorch as the main machine learning package.

3.3.1 Forrester function

0.0 0.2 0.4 0.6 0.8 1.0

x

−10

−5

0

5

10

15

20

y

Low fidelity data

High fidelity data

True high fidelity

True low fidelity

Figure 3.2: Forrester function and sampled data points.

34

The first toy problem is represented by the Forrester function from (Forrester et al.,
2008), in which high and low fidelity data is given by the following functions:

𝑦𝐿𝐹(𝑥) = 𝐴(6𝑥 − 2)2 sin(12𝑥 − 4) + 𝐵(𝑥 − 0.5) + 𝐶, 𝑥 ∈ [0, 1] (3.9)
𝑦𝐻𝐹(𝑥) = (6𝑥 − 2)2 sin(12𝑥 − 4) (3.10)

with 𝐴 = 0.5, 𝐵 = 10 and 𝐶 = −5. To keep consistency with literature, the same
sampling points are used as the one used in Meng and Karniadakis, 2020, with 11
equally spaced lowfidelity points [𝑥𝐿𝐹, 𝑦𝐿𝐹] and 4 high fidelity points [𝑥𝐻𝐹, 𝑦𝐻𝐹 (shown
in figure 3.2).

The neural network is structured as follows:

• 𝒩𝒩𝐿𝐹 composed of 2 hidden layers with 20 neurons each, using the hyperbolic
tangent as activation function.

• 𝒩𝒩𝐻1
composed of no hidden layers.

• 𝒩𝒩𝐻2
composed of 2 hidden layers with 10 neurons each, using the hyperbolic

tangent as activation function.

Differing from the cited paper, here the Adam optimizer is used, as its implementation
in PyTorch allows for different settings of learning rate and weight decay for each of
the different parameters and networks. A working training configuration is found to
be the one with:

• Adam optimizer, with weight decay on 𝒩𝒩𝐿𝐹 = 0.001 and 𝒩𝒩𝐻2
= 0.01.

• Cyclical learning rate with lower and upper bounds [0.001, 0.01] and a triangular
pattern with 𝑐𝑦𝑐𝑙𝑒𝑙𝑒𝑛𝑔𝑡ℎ = 10000. This is not crucial as the training finds an
acceptable solution even with a constant learning rate, but using a cyclical LR
helps the optimizer traverse saddle points faster (Smith, 2017).

• The loss function chosen is the MSE for both the training and validation data.

As can be seen from figure 3.3, the composite neural network is able to learn the
main features from the low fidelity data and use them to enhance the high fidelity
prediction. It is especially important to notice that the multi-fidelity framework is able
to accurately predict the high fidelity function in the 𝑥 ∈ [0.65, 0.9] interval, where no
high fidelity data is sampled for training.

In Figure 3.4a the output of the two high fidelity subnetworks is shown: the entirety
of the high fidelity prediction is due to 𝒩𝒩ℋ1, which is understandable when con-
sidering that the two fidelity levels are linearly correlated. 𝒩𝒩ℋ2 gives no contribute
whatsoever.

Figure 3.4b shows the single fidelity prediction, obtained by training on the high
fidelity network on the high fidelity data only. It is clearly seen how the single fidelity
is not capable of predicting relevant features of the true high fidelity function such as
the main valley.

35

0.0 0.2 0.4 0.6 0.8 1.0

x

−10

0

10

y

Predicted high fidelity

Predicted low fidelity

Real high fidelity

Real low fidelity

Figure 3.3: Multi-fidelity prediction of the Forrester function. The sampled points are
also shown.

0.00 0.25 0.50 0.75 1.00

−10

0

10

NNH1 Prediction

NNH2 Prediction

Real low fidelity

Real high fidelity

(a) Output of the two high fidelity sub-
networks.

0.00 0.25 0.50 0.75 1.00

x

0

10

y
Predicted high fidelity

Real high fidelity

(b) Single fidelity prediction of the Forrester
function using only high fidelity data on
the Forrester function.

3.3.2 Forrester function with a discontinuity
A different toy function is the Forrester function with an added discontinuity, in which
the low fidelity data can be expressed as:

𝑦𝐿𝐹(𝑥) =
⎧{
⎨{⎩

0.5(6𝑥 − 2)2 sin(12𝑥 − 4) + 10(𝑥 − 0.5) − 5 0 ≤ 𝑥 ≤ 0.5
3 + 0.5(6𝑥 − 2)2 sin(12𝑥 − 4) + 10(𝑥 − 0.5) − 5 0.5 < 𝑥 ≤ 1

(3.11)

and the high fidelity data can be written as:

𝑦𝐻𝐹(𝑥) =
⎧{
⎨{⎩

2𝑦𝐿𝐹(𝑥) − 20𝑥 + 20 0 ≤ 𝑥 ≤ 0.5
4 + 2𝑦𝐿𝐹(𝑥) − 20𝑥 + 20 0.5 < 𝑥 ≤ 1

(3.12)

For this test case, 38 low fidelity data points and 5 high fidelity data points are sampled
from the above definitions; both the sampled data points and the high/low fidelity

36

0.0 0.2 0.4 0.6 0.8 1.0

x

−10

−5

0

5

10

15

20

y

Low fidelity data

High fidelity data

True high fidelity

True low fidelity

Figure 3.5: Data sampling for the discontinuous test function. The dotted and dashed
lines represent the ”ground truth” for the high and low fidelity functions
respectively. Note how no high fidelity point is sampled in the (0.4, 0.6)
interval, giving no information whatsoever about the discontinuity.

functions are shown in Figure 3.5. The high fidelity data is sampled as to not capture
relevant information regarding the discontinuity, while the low fidelity data is sampled
with an higher density in the discontinuity region.

Using the same network structure as for the first toy problem does not yield good
results for this problem, as shown in Figure 3.6. While the low fidelity prediction is
accurate, the high-fidelity prediction is off in the low and high 𝑥 ranges, even though it
vaguely captures the discontinuity.

A much better performance is achieved switching to the following structure:

• 𝒩𝒩ℒℱ composed of 2 hidden layers of 10 neurons each.

• 𝒩𝒩ℋ1 composed of 1 hidden layer of 10 neuron with no activation function.
Note that this is the same configuration used in the ArchivX version of (Meng &
Karniadakis, 2020).

• 𝒩𝒩ℋ2 composed of 2 hidden layers of 10 neurons each.

• A key element in this case is the regularization applied to each network. A
working configuration is found to be the one with 𝜆𝐿𝐹 = 5−5, 𝜆𝑁𝑁𝐻2

= 5−3 and
no regularization on the linear network. A multi-step learning rate scheduler
was also used, pictured in Figure 3.8a.

With this structure the prediction is much more accurate, as shown in Figure 3.7,
especially in the 𝑥 > 0.8 region. Notably, the model correctly predicts the discontinuity
even though no high fidelity data is available. An interesting difference with respect to
the previous toy problem is that in this case the 𝒩𝒩ℋ2 output is non zero and gives

37

0.0 0.2 0.4 0.6 0.8 1.0

x

−10

0

10

20

y
Predicted high fidelity

Predicted low fidelity

Real high fidelity

Real low fidelity

(a) Discontinuous function prediction.

0.00 0.25 0.50 0.75 1.00

x

0

20

y

NNH1 Prediction

NNH2 Prediction

yLF
yHF

(b) Linear and non linear functions predicted
by the neural networks.

Figure 3.6: Results for the second toy problem using the same neural network as the
one used for the first toy problem.

a small contribution to the final result. Still, 𝒩𝒩ℋ1 heavily resembles the true high
fidelity function and the other contribution is almost constant in each of the windows
before and after the jump.

Another interesting feature that the multi-fidelity model is able to capture is the
slight increase for increasingly low 𝑥 values close to zero. In fact no high fidelity data
were sampled in the 𝑥 < 0.2 region, but the model manages to reproduce the correct
trend regardless.

0.0 0.2 0.4 0.6 0.8 1.0

x

−10

0

10

20

y

Predicted high fidelity

Predicted low fidelity

Real high fidelity

Real low fidelity

Figure 3.7: Discontinuous function prediction with the multi-fidelity strategy.

38

0 20000 40000 60000 80000

Training iteration

10−4

10−2

100

102
L

os
s

fu
n

ct
io

n
Ltotal
Ltest
Llow

Lhigh
η

(a) Loss functions ℒ and learning rate 𝜂.

0.00 0.25 0.50 0.75 1.00

x

0

20

y

NNH1 Prediction

NNH2 Prediction

yLF
yHF

(b) 𝒩𝒩ℋ1 and 𝒩𝒩ℋ2 output.

Figure 3.8: Training statistics, 𝒩𝒩ℋ1 and 𝒩𝒩ℋ2 contribution in the discontinuous
function prediction with the multi-fidelity strategy.

3.3.3 Continuous function with nonlinear correlation
The last toy problem is a case of continuous function with nonlinear correlation. The
two functions are given by:

𝑦𝐿𝐹(𝑥) = sin(8𝜋𝑥) (3.13)

𝑦𝐻𝐹(𝑥) = (𝑥 − √2)𝑦2
𝐿𝐹(𝑥) (3.14)

The fact that, for some 𝑥 values, the low fidelity is not only wrong in magnitude but
also qualitatively wrong with respect to the high fidelity, makes this a case of adversarial
training. This can clearly be seen in Figure 3.9, where the odd valleys of the high fidelity
correspond to peaks of the low fidelity.

For this case 51 [𝑥𝐿𝐹, 𝑦𝐿𝐹] and 14 [𝑥𝐻𝐹, 𝑦𝐻𝐹] points were sampled and the first struc-
ture was used, meaning:

• 𝒩𝒩ℒℱ with a 4 × 20 structure.

• 𝒩𝒩ℋ1 with no hidden layers.

• 𝒩𝒩ℋ2 with a 2 × 10 structure.

Once again the frameworks proves to be robust and able to discover the correlation
between the two data origins. In Figure 3.11 it is clear how the model correctly captures
the high fidelity function even though only one or two points per valley are available
and the lowfidelity function suggests an opposite trend. This time the ”feature analysis”
in Figure 3.10b starts to lose a clear pattern.

For completeness’ sake a single, high fidelity fitting with the same 𝑦𝐻𝐹 data points is
shown in Figure 3.12, which makes clear how the high fidelity alone is not capable of
extracting the true trend of the data.

39

0.0 0.2 0.4 0.6 0.8 1.0

x

−1

0

1

2

y

High fidelity data

Low fidelity data

True high fidelity

True low fidelity

Figure 3.9: Third toy function. Note that the low fidelity is adversarial, meaning that in
some regions it’s quantitatively and qualitatively wrong with respect to the
high fidelity data.

0 5000 10000 15000 20000 25000

Training iteration

10−4

10−3

10−2

10−1

100

L
os

s
fu

n
ct

io
n

Ltotal
Ltest
Llow

Lhigh
η

(a) Loss functions. ℒ𝓉ℴ𝓉𝒶𝓁

0.0 0.2 0.4 0.6 0.8 1.0

x

−2

−1

0

1

2

3

y

NNH1 Prediction

NNH2 Prediction

yHF

(b) 𝒩𝒩ℋ1 and 𝒩𝒩ℋ2 output.

Figure 3.10: Training statistics, 𝒩𝒩ℋ1 and 𝒩𝒩ℋ2 contribution in the continuous func-
tion prediction with the multi-fidelity strategy.

40

0.0 0.2 0.4 0.6 0.8 1.0

x

−1

0

1

2

y

Predicted high fidelity

Predicted low fidelity

Real high fidelity

Real low fidelity

Figure 3.11: multi-fidelity fitting of the continuous function with non linear correlation.

0.0 0.2 0.4 0.6 0.8 1.0

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

Predicted high fidelity

Real high fidelity

Figure 3.12: Single fidelity fitting of the continuous functionwith non linear correlation.

41

3.4 Towards multi-fidelity turbulent heat flux modeling
In this chapter the multi-fidelity neural network framework was used to solve simple
test problems. Even though in the original paper it was applied to more complex test
cases, such as a 20D function, there still is a complexity step up when considering
the turbulent heat flux modeling. This step up is given mainly by the need to enforce
first principles such as the Galilean and rotational invariance, but the scarcity of data
combined with the high dimensional input play their part too.

Nevertheless, the adoption of a multi-fidelity training strategy could still provide
with an increase in accuracy outside of the training range of the original model and
provide a valid alternative to existing modeling solutions. The main focus will thus
be on the ability of the model to reproduce physical trends and not necessarily exact
values.

In chapter 4 the implementation will start with an analysis and comparison of the
high and low fidelity dataset, while in chapter 5 some multi-fidelity models for the
turbulent heat flux and their results will be shown.

42

Chapter 4

RANS/DNS input comparison

4.1 Introduction
In this chapter the databases used in the training and validation of the multi-fidelity
thermal turbulence model will be analyzed and compared. The general flow charac-
teristics such as flow geometry, fluid properties and turbulence modeling strategies
will be shown first. Then we will move onto the comparison of physical quantities
and model’s invariants. The last step will be a Principal Component Analysis of the
channel flow, to further explain how the DNS and RANS approaches differ from each
other.

4.2 Channel flows

4.2.1 RANS channel database description

𝑅𝑒 𝑃𝑟

180 0.01, 0.025
395 0.01, 0.025
640 0.01, 0.025
1020 0.01, 0.025
2000 0.01, 0.025
4000 0.01, 0.025
6000 0.01, 0.025

Table 4.1: RANS
channel
database.

The RANS channel data used was created ad-hoc for this project,
and is made up of 14 simulations with different combinations
of 𝑅𝑒𝜏 and 𝑃𝑟 numbers, as shown in table Table 4.1. The simu-
lations were carried out using the OpenFOAM suite, using the
Elliptic Blending Reynolds Stress Model (EBRSM) (Manceau &
Hanjalić, 2002; Manceau, 2015) and a custom implementation
of the Manservisi model (Manservisi & Menghini, 2014) for the
turbulent heat transfer. The geometry is that of a fully devel-
oped 2D channel flow with constant wall heat flux 𝑞𝑤 and the
following parameters:

• 𝜈 = 1.74 ⋅ 10−7 m2/s

• 𝛼 = 1.74 ⋅ 10−5 m2/s

• 𝜅 = 26.22 kgm/s3 K

• 𝜌 = 10340 kg/m3

• 𝐶𝑝 = 145.75 m2/s2 K

• 𝛽 = 0.01 K−1

• 𝑇𝑟𝑒𝑓 = 278 K

• 𝑞𝑤 = 36 ⋅ 104 kg/s3

43

Figure 4.1: RANS channel flow geometry and boundary conditions.

To be consistent with the DNS literature, the adimensionalization of the values is
carried out using standard wall values like 𝑢𝜏 and 𝜈 for the velocity and viscosity, while
the friction temperature is defined as 𝑡𝜏 = 𝑞𝑤

𝜌𝑐𝑝𝑢𝜏
.

The OpenFOAM output consists in several text files that contains the cell values for
various fields sampled along the channel height at its midpoint. The files are then read
with Python and all the necessary fields (invariants, tensors and post-processing data)
are computed after the simulation has run.

4.2.2 DNS channel database description

𝑅𝑒𝜏 𝑃𝑟

180 0.01[𝑇], 0.025[𝑇], 0.05[𝑇], 0.1[𝑇], 0.2[𝑇], 0.4[𝑇], 0.6[𝑇], 0.71[𝑇]
395 0.01[𝑇/𝑉], 0.025[𝑇/𝑉], 0.71[𝑇],
590 0.01[𝑇]
640 0.025[𝑇], 0.71[𝑇]
1000 0.01[𝑉]
1020 0.71[𝑁]
2000 0.0100[𝑉]

Table 4.2: DNS channel database simulations and whether they were used for training
[𝑇] or validation [𝑉]. The 𝑅𝑒𝜏 = 395 cases are labeled as [T/V] because each
training was repeated including and excluding them so that the model’s
robustness could be checked.

TheDNS data for the channel flowwas taken from (Bricteux et al., 2012), (Kawamura
et al., 2000) and Alcántara-Ávila et al., 2018, even tough for the training of the model
only the first two database cited were (partially) used, since the last one does not have
all of the quantities needed for the computation of the invariants and was thus only
used during the validation. The 𝑅𝑒𝜏 = 1020 case did not have its full turbulent statistics
neither, and was thus used for turbulent heat flux comparison only. All the DNS data

44

used for the training or validation of the model is shown in table Table 4.2. Note that in
(Kawamura et al., 2000) 4 different cases were run, which were either Couette flows or
Poiseuille flows with either constant 𝑞𝑤 or constant wall-temperature difference Δ𝑇𝑤;
for the task at hand only the Poiseuille flows with constant 𝑞𝑤 were used.

Both the DNS and the RANS data were interpolated on the same grid, made up of
1000 equally spaced grid elements across the channel height.

4.3 Impinging jet

Figure 4.2: Computational setup for the impinging jet. Taken from (Duponcheel &
Bartosiewicz, 2021).

Another flow considered will be the impinging jet, a configuration in which a hot jet
is blown via a slit in the top wall of a channel onto a lower, cooler wall. Impinging jets
are flows of interest because they are a canonical case of wall interaction and a common
and efficient cooling strategy (Duponcheel & Bartosiewicz, 2021). Temperature and
velocity fields for a RANS simulation of an impinging jet at 𝑅𝑒 = 5700, 𝑃𝑟 = 0.01 are
shown in Figure 4.4 and 4.3 respectively.

The Reynolds number can be defined as a function of the jet mean velocity 𝑈 and
width 𝐵: 𝑅𝑒 = 𝑈𝐵

𝜈 . The hot jet coming out of the slit is isothermal with temperature
𝑇 = 𝑇𝑗, while the wall are kept at temperature 𝑇 = 𝑇𝑤. The temperature difference
Δ𝑇 = 𝑇𝑗 − 𝑇𝑤 is used as reference temperature.

An important geometric property is the aspect ratio 𝐴𝑅 = 𝐻
𝐵 , given by the ratio

between the height 𝐻 and the jet width 𝐵. Higher 𝐴𝑅 values represents cases in which
the jet is closer to a free jet, but they also require longer domains so that the boundary
conditions have negligible effects. In the following, jets with 𝐴𝑅 = 2 will be considered.

In the current project, impinging jets will be used at the end to assess the performance
of the model and to enlarge the low fidelity training database.

4.3.1 DNS impinging database description
Since the DNS database from (Duponcheel & Bartosiewicz, 2021) did not have enough
statistics to be used for training, it was only used in the validation phase as a benchmark.

45

In particular, the flow case with 𝑅𝑒𝐵 = 5700 and 𝑃𝑟 = 0.01 was chosen, with the inlet
being fully turbulent.

4.3.2 RANS impinging database description

Figure 4.3: Velocity magnitude in the RANS impinging jet flow with 𝑅𝑒 = 5700, 𝑃𝑟 =
0.01.

Figure 4.4: Normalized temperature field in the RANS impinging jet flow with 𝑅𝑒 =
5700, 𝑃𝑟 = 0.01.

The same flow as in the DNS case was replicated using a RANS approach, to be
able to enlarge the RANS training set. The simulation was carried out in OpenFOAM,
using an EBRSM model (Manceau, 2015) for the Reynolds Stresses and the Manservisi
(Manservisi &Menghini, 2014) model for the heat transfer. In Figure 4.3 and Figure 4.4
the velocity and temperature fields respectively are represented. The jet velocity is
𝑈𝑗 = 1, and the temperatures are 𝑇𝑗 = 2 and 𝑇𝑤 = 1. Before passing the data to the
data-driven models all the dimensional data are adimensionalized using either the
Δ𝑇 or the 𝑈𝑗, and all of the fluid properties are defined as functions of those values to
have a fully parametric model:

• 𝜈 =
𝑈𝑗𝐵
𝑅𝑒

• 𝛼 = 𝜈
𝑃𝑟

• 𝜌 = 𝑐𝑜𝑛𝑠𝑡. = 1

• 𝐶𝑝 = 1

46

• 𝜅 = 𝛼𝜌𝐶𝑝 • 𝜇 =
𝑈𝑗𝐵𝜌

𝑅𝑒

Buoyancy effects are neglected and the fluid composition is considered constant. In
subsection 4.4.2 the DNS and RANS results will be compared.

4.4 Physical quantities comparison

4.4.1 Channel flow

0.0 0.5 1.0

y/H

0

5

hu
i
u
j
i

u
2 τ

u2

v2

w2

uv

(a) Reynolds stresses.

0.0 0.5 1.0

y/H

−0.2

−0.1

0.0

u
0 iθ
0

DNS - v0θ0

RANS - v0θ0

(b) Wall-normal turbulent heat flux.

0.0 0.5 1.0

y/H

0.0

0.1

0.2

ε

DNS - ε

RANS - ε

(c) Turbulent dissipation rate.

0.0 0.5 1.0

y/H

0.000

0.001

0.002

0.003

ε θ

DNS - εθ
RANS - εθ

(d) Thermal dissipation rate.

Figure 4.5: Various turbulent quantities for the channel flow along the channel height
for 𝑅𝑒𝜏 = 395 and 𝑃𝑟 = 0.025.

The first step in assessing the difference between the DNS approach and the RANS
approach was to compare physical quantities such as average fields and turbulent
statistics. For the majority of the turbulent quantities, in particular the momentum-
related ones, a good agreement is shown between the DNS and the RANS dataset, as
shown in panel Figure 4.5. An accurate prediction of the Reynolds stress tensor is key,
as discussed in (Fiore, Koloszar, Fare, et al., 2022), and thus the choice of an EBRSM is
justified since the 𝑢𝑖𝑢𝑗 components are well captured even at low Reynolds, as shown

47

in Figure 4.5a. The only relative inaccuracy in the RANS prediction is shown close
to the wall for the 𝜀 and 𝜀𝜃 values, in which small valleys are noticeable in the lower
fidelity prediction. Also note that the chosen thermal turbulence model does not predict
any stream-wise turbulent heat flux, or any non temperature gradient-aligned turbulent
heat flux for that matter.

The biggest difference is observed on the 𝑘𝜃 prediction, shown in Figure 4.6; for this
particular flow the peak 𝑘𝜃 suffers a percentage error of −18.79%.

0.0 0.5 1.0

y/H

0.000

0.025

0.050

0.075
k
θ

DNS - kθ
RANS - kθ

Figure 4.6: Thermal variance 𝑘𝜃 along the channel height for 𝑅𝑒 = 395 and 𝑃𝑟 = 0.025.

The RANS modeling is also inaccurate in predicting the turbulent heat flux and the
entity of the error heavily depends on the flow conditions. To quantify such error,
the peak relative error was computed for every matching DNS-RANS conditions as
follows:

𝑝𝑒𝑎𝑘 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
min(𝐷𝑁𝑆) − min(𝑅𝐴𝑁𝑆)

min(𝐷𝑁𝑆) (4.1)

The result is shown in Figure 4.7, which makes clear that in general the prediction
made by the turbulence model becomes more and more accurate as the 𝑅𝑒 and 𝑃𝑟
increase. As mentioned, this result is used to justify the usage of RANS data as baseline
for comparison at high 𝑅𝑒𝜏, where no DNS data is available.

4.4.2 Impinging jet
While in the case of the channel flow it is reasonable to expect the RANS modeling
to be relatively accurate, flows with separation and recirculation zones such as the
impinging jet pose more of a challenge. To compare the two strategies, data is sampled
along the channel height at 𝑥/𝐵 = 1, 2, ..., 9; those locations are shown overlaid onto
the streamlines in Figure 4.8.

In Figure 4.9 the DNS and RANS Reynolds stresses and 𝑣𝜃 are shown, sampled
at 𝑥/𝐵 = 1. The first difference when compared with the channel flow is that the
Reynolds stresses prediction by the RANS is much less accurate, especially the 𝑢𝑢
component. This inaccuracy is pronounced close to the lower wall and in the region
between the wall jet and the recirculation bubble. The turbulent heat flux component

48

180 395 640 1020 2000

Reτ

0.01

0.025

P
r

0

0.1

0.2

0.3

0.4

P
ea

k
re

la
ti

ve
er

ro
r

Figure 4.7: Peak relative error Equation 4.1 on the turbulent heat flux for the overlap-
ping DNS/RANS channel simulations. Note that for 𝑃𝑟 = 0.01 the DNS
data is actually computed with 𝑅𝑒𝜏 = 590, but here is compared to the
RANS simulation with 𝑅𝑒𝜏 = 640.

𝑣𝜃 is majorly underestimated by the RANS model for coordinates 2𝑦/𝐻 < 0.3, while it
is in reasonable agreement with the DNS data further from the lower wall.

Further away from the jet, the RANS prediction gets more accurate both considering
the momentum modeling (Figure 4.10a) and the turbulent heat flux prediction (Fig-
ure 4.10b). At the 𝑥/𝐵 = 5 coordinate, the Reynolds stress predicted by the EBRSM
model aremore accurate than at 𝑥/𝐵 = 1, even though the 𝑢𝑢 component is still wrongly
computed near the lower wall. The turbulent heat flux maximum and minimum are
well predicted in magnitude; the RANS model also manages to correctly predict the
location of the minimum, while placing the maximum closer to the lower wall than
the DNS does. For a more comprehensive analysis of different turbulence modeling
strategies on the same flow, the reader is referred to (De Santis et al., 2019).

Overall, the RANS model is still able to capture the general behavior in most of the
domain, even though it is clear how much more challenging it is when compared to a
simpler flow like the channel one. This brief analysis of a more complex configuration,
should make clear how fundamental it is to train and validate any data driven model
against different flows of interest.

49

Figure 4.8: Impinging jet sampling locations, shown with the yellow lines on top of the
velocity streamlines. Only the right half of the domain is shown.

0 1 2

2y/H

0.00

0.01

0.02

u
iu
j

uu

vv

ww

uv

(a) Reynolds stresses. The DNS data is repre-
sented with the solid lines, the RANS data
with the dashed lines.

0 1 2

2y/H

−0.010

−0.005

0.000

v
θ

DNS

RANS

(b) 𝑣𝜃 turbulent heat flux component.

Figure 4.9: Reynolds stresses (left) and turbulent heat flux (right) in the impinging jet
with 𝑅𝑒 = 5700, 𝑃𝑟 = 0.01 at 𝑥/𝐵 = 1.

50

0 1 2

2y/H

0.000

0.025

0.050

u
iu
j

uu

vv

ww

uv

(a) Reynolds stresses. The DNS data is repre-
sented with the solid lines, the RANS data
with the dashed lines.

0 1 2

2y/H

−0.002

0.000

0.002
v
θ

DNS

RANS

(b) 𝑣𝜃 turbulent heat flux component.

Figure 4.10: Reynolds stresses (left) and turbulent heat flux (right) in the impinging
jet with 𝑅𝑒 = 5700, 𝑃𝑟 = 0.01 at 𝑥/𝐵 = 6.

51

4.5 Model’s invariants comparison

0.0 0.5 1.0

y/H

0.0

0.2

0.4

lo
g
(|π

3
+

1
|)

log(|π3 + 1|) - DNS

log(|π3 + 1|) - RANS

0.0 0.5 1.0

y/H

0.05

0.10

0.15

0.20

lo
g
(|π

5
+

1
|)

log(|π5 + 1|) - DNS

log(|π5 + 1|) - RANS

Figure 4.11: b-only related invariants along the channel height for 𝑅𝑒 = 395 and
𝑃𝑟 = 0.025. Here they are plotted after undergoing the log(|𝜋𝑖 + 1|) trans-
formation, meaning that these are the true neural network inputs.

Moving on to the analysis of the actual model’s inputs (i.e. the 𝜋𝑖 invariants together
with 𝑅𝑒𝑡), the same general trend already shown for the physical quantities in the
channel flows is observed. The momentum-related invariants which do not involve b
alone (shown in Figure 4.12) are similar both in trend and in values between the two
datasets. This similarity tends to degrade when lower 𝑃𝑟 and 𝑅𝑒 are considered, like
what has already been noted about the heat flux prediction.

A more pronounced difference is instead noted when observing invariants which
involve either b or b2 only (as far as the tensor basis is concerned). Looking at Fig-
ure 4.11 not only the gap all along the channel height is bigger, but also the trend very
close to the wall predicted by the RANS is off, as both invariants reach their maximum
at the wall in the RANS case, while they do not in the DNS case. This difference
is attributed to a combination of the minor differences in the prediction of both the
turbulent kinetic energy and the Reynolds stresses. It’s interesting to note that 𝜋4,
while still being related to b via the {bS} term, does not show the same difference close
to the wall. Overall, the momentum-related invariants are similar between RANS and
DNS simulation, which is expected since an EBRSM model was used for the Reynolds
stresses.

The major difference among the invariants is observed in the behavior of 𝜋8 along
the channel height, which gets underestimated by the RANS modeling. Given the
definition of 𝜋8 = 𝑘𝜃𝜀

𝑘𝜀𝜃
and the aforementioned error in the 𝑘𝜃 prediction made by the

thermal turbulence model, one can attribute the difference in 𝜋8 to the RANS thermal
modeling strategy.

52

0.0 0.5 1.0

y/H

0

2

4
lo

g
(|π

1
+

1
|)

log(|π1 + 1|) - DNS

log(|π1 + 1|) - RANS

0.0 0.5 1.0

y/H

0.0

0.2

0.4

0.6

lo
g
(|π

4
+

1
|)

log(|π4 + 1|) - DNS

log(|π4 + 1|) - RANS

0.0 0.5 1.0

y/H

0

2

4

lo
g
(|π

6
+

1
|)

log(|π6 + 1|) - DNS

log(|π6 + 1|) - RANS

Figure 4.12: Non b-only related invariants along the channel height for 𝑅𝑒 = 395
and 𝑃𝑟 = 0.025. Here they are plotted after undergoing the log(|𝜋𝑖 + 1|)
transformation, meaning that these are the true neural network inputs.
Also 𝜋2 is not shown since it is identical to 𝜋1 for channel flows.

0.0 0.5 1.0

y/H

0

2

4

6

lo
g
(|R

e t
+

1
|)

log(|Ret + 1|) - DNS

log(|Ret + 1|) - RANS

0.0 0.5 1.0

y/H

0.0

0.1

0.2

lo
g
(|π

8
+

1
|)

log(|π8 + 1|) - DNS

log(|π8 + 1|) - RANS

0.0 0.5 1.0

y/H

0

2

lo
g
(|π

7
+

1
|)

log(|π7 + 1|) - DNS

log(|π7 + 1|) - RANS

Figure 4.13: Thermal-related invariants along the channel height for 𝑅𝑒 = 395 and
𝑃𝑟 = 0.025. Here they are plotted after undergoing the log(|𝜋𝑖 + 1|) trans-
formation, meaning that these are the true neural network inputs.

53

4.6 Principal Component Analysis
In this project, the PCA was used to further understand the difference between the
RANS and DNS datasets, especially in the model inputs’ space. Hence, the PCA was
computed on the DNS data, then the RANS data was projected on the new coordinate
system; the scikit Python package was used to handle both the data pre-processing
and the actual PCA computation.

4.6.1 Components’ analysis

1 2 3 4 5 6 7 8 9 10

PC

0.0

0.2

0.4

0.6

E
x
p

la
in

ed
va

ri
a
n

ce
ra

ti
o

DNS

0.6

0.7

0.8

0.9

1.0

Cumulative sum

Figure 4.14: Ratio of explained variance for each component and cumulative sum of
the variance over the components.

The explained variance ratio computed for each component is shown in Figure 4.14.
It is clearly seen that the first component is quite dominant, as it explains around 55%
of the variance in the DNS dataset; also it shows how just the first three components
are able to encompass more than 90% of the variance and were thus selected for a more
in depth analysis.

Figure 4.15 shows the composition of the first three components in terms of the
original variables (i.e. the invariants); the PCA groups the invariants as follows:

• Component 1 is influenced mostly by the momentum-only invariants 𝜋1, ..., 𝜋6
and on a smaller scale by 𝜋7.

• Component 2 on the other hand is influenced for the biggest part by thermal-
related invariants such as 𝑃𝑟, 𝑅 and 𝜋7.

• Component 3 is dominated by the effect of the 𝑅𝑒𝑡 and, in a smaller fashion, by
the invariants closely related to the Reynolds stresses such as 𝜋3, 𝜋4 and 𝜋5.

54

π1 π2 π3 π4 π5 π6 Ret Pr R π7

Invariants

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

C
om

p
on

en
t

co
m

p
o
si

ti
o
n

0
.4

1

0
.4

1

0
.3

9

0
.3

5

0
.3

5 0
.4

1

-0
.0

5

-0
.0

3

-0
.0

3

0
.3

0

0
.0

3

0
.0

3 0
.1

1

-0
.0

2

0
.1

6

0
.0

7

-0
.1

4

0
.6

2

0
.6

2

-0
.4

0

-0
.1

3

-0
.1

3

0
.2

4

-0
.4

0

0
.3

3

0
.0

6

-0
.7

4

-0
.1

7

-0
.2

1 -0
.1

2

Component 1

Component 2

Component 3

Figure 4.15: First three principal components and their loading in terms of the original
variables.

55

0 10

PC 1

0

5

P
C

2

0.0

0.5
DNS

RANS

0.000.25

(a)

0 10

PC 1

−2

0

2

4

P
C

2

RANS DNS

180

390

640

1000

2000

4000
6000

R
e τ

(b)

0 10

PC 1

−2

0

2

4

P
C

2

RANS DNS

0.01

0.02

0.05

0.1

0.2

0.4

0.71

P
r

(c)

Figure 4.16: RANS/DNS datasets in the PC1-PC2 space. Figure 4.16a on the left also
shows the density of the data along the two variables.

Having computed the transformation onto the DNS dataset, it was then applied to
the RANS data to evaluate the differences in the Principal Components’ space.

In Figure 4.16 the data is projected onto the axis given by PC1 and PC2: along
PC1 the RANS data expands the range achieved by the DNS data, which is in part a
consequence of the higher 𝑅𝑒 spectrum achieved by the RANS simulations. In fact, as
shown in Figure 4.16b, the top end of 𝑅𝑒𝜏 range is mostly on the left, past the minimum
values achieved by the DNS data. As seen in Figure 4.16a, the distribution is similar,
except for the fact that RANS data has an higher peak, is shifted slightly to higher PC1
values and has a longer tail to the left.

Along PC2 on the other hand, the DNS dataset covers a larger range of values, which
is mostly a consequence of the higher range of 𝑃𝑟 numbers explored with the DNS
dataset. This hypothesis is confirmed by Figure 4.16c, in which data is colored by its
𝑃𝑟 number: here clear ”banding” can be observed along PC2, as both RANS and DNS
data get ordered along the axis by their Prandtl number. From the same figure it’s also
clear how the DNS data with higher 𝑃𝑟 expands the range for positive PC2 values. No
clear influence of the 𝑅𝑒𝜏 can be seen on PC2, as justified by the composition shown in

56

Figure 4.15. PC2’s distribution differs between the two fidelity databases, as the DNS
data presents two separated peaks while the RANS data shows a flatter distribution
with only one larger peak.

−2.5 0.0 2.5

PC 2

0

10

P
C

3

0.00
0.25

DNS

RANS

0.0 0.5

(a)

−2.5 0.0 2.5

PC 2

0

5

10

P
C

3

RANS DNS

180

390

640

1000

2000

4000
6000

R
e τ

(b)

−2.5 0.0 2.5

PC 2

0

5

10

P
C

3

RANS DNS

0.01

0.02

0.05

0.1

0.2

0.4

0.71

P
r

(c)

Figure 4.17: RANS/DNS datasets in the PC2-PC3 space. Figure 4.17a on the left also
shows the distribution of the data along the two variables.

In Figure 4.17a the data is projected onto PC2-PC3 space. PC3’s distribution is fairly
similar between the two databases, even tough the RANS’ one is less peaky and the
valley between the two peaks is much less pronounced.

An interesting observation can be made regarding the relationship between PC3
and 𝑅𝑒𝜏: as seen from Figure 4.17b, the correlation is clear and inverse, but the main
difference (and the range extension by the RANS data) does not come from the top end
of the 𝑅𝑒𝜏 range but rather from the bottom (or top range of PC3). While the inverse
relation with PC3 is justified by PC3 composition, the reason behind the behavior for
high values of PC3 might be related to the increasing inaccuracy in the momentum-
related quantities by the RANS modeling which accompanies a decrease in 𝑅𝑒.

Overall, the PCA confirmed that the most critical combination for RANS modeling
is low Reynolds numbers combined with low Prandtl values, mimicking the results
given by the analysis of the physical quantities. The PCA has also shown how adding

57

the RANS dataset will expand the training database not only in terms of 𝑅𝑒𝜏 values,
but also in terms of model’s inputs.

58

Chapter 5

Multi-fidelity model for the turbulent
heat flux

5.1 Introduction
In the following chapter, the development of several data-driven, multi-fidelity models
for the turbulent heat fluxwill be discussed. Themathematical and physical constraints
will be explained, as well as the training details.

In the previous chapters all the elements necessary to the creation of a multi-fidelity
strategy have been analyzed, such as the single fidelity limitations and the differences
between data of different origins. In the creation of the multi-fidelity model, it is of
paramount importance to maintain the physical nature of the single fidelity model by
ensuring that the result is rotational and Galilean invariant and satisfies the already
mentioned decomposition to abide by the second law of thermodynamics. At the same
time the implementation of a multi-fidelity framework inevitably adds complexity
to the model and its training, so several options have been explored and the most
promising ones will be explained in what follows.

5.2 Requirements and constraints
In general, unless some hard or soft constraint are imposed, there is no guarantee that a
structure like the one shown in chapter 3 is consistent with the physics of the problem,
thus the implementation of the multi-fidelity strategy necessitates the addition of some
constraints to the multi-fidelity framework. The main constraints are given by:

• Rotational invariance with respect to the coordinate system and Galilean invariance.
In chapter 2 it has been shown how the rotational invariance was enforced in
the single fidelity model using the Tensor Representation theory. It is clear that
such invariance must be a feature of the multi-fidelity model too, and as such
the dispersion tensor cannot undergo any transformation violating this property.
This severely limits the way the neural network structure can be formulated, as
for example a framework like the one used in chapter 3 could not be used as
is, since the low fidelity prediction passes through both linear and non-linear
networks.

59

The Galilean invariance is guaranteed in the same way as it was done for the
single fidelity model in chapter 2.

• Consistency with the second law of thermodynamics. This is again a central point in
keeping themodel physics enforced, and the samemethodology shown in chapter 2
will be used in the following models. This means that any dispersion tensor
modeled will be expressed as:

D = [(A + A𝑇) (A𝑇 + A) +
𝑘

𝜖0.5 (W − W𝑇)] (5.1)

with A and W obtained as combination of the basis tensors Ti via the neural
network modeled coefficients 𝑎𝑖, 𝑤𝑖:

A =
𝑛

∑
𝑖=1

𝑎𝑖T𝑖, W =
𝑛

∑
𝑖=1

𝑤𝑖T𝑖 (5.2)

• Correct physical dimensions. This requirement deals with the model giving di-
mensionally consistent output during usage. During the training phase, all the
quantities are adimensionalized using the relevant flow values; on the other hand
during CFD usage the model takes as inputs whichever form of the data that the
solver gives it. To keep dimensional consistency, each of the structures shown in
the following will have small expedients applied to the structure itself. These
ranges from the standard multiplication/division by 𝑘 and 𝜀 shown in Equa-
tion 5.1 to the use of adimensionalized tensors Ti in the high fidelity networks in
model S7.

5.2.1 Loss function
Another difference when compared to the Single Fidelity Neural Network (SFNN) is
the wider possibilities on how to compute the loss function. The basic form, already
discussed in chapter 2, is:

ℒ =
1
𝑁

⎛⎜⎜
⎝

𝑁
∑
𝑖=1

3
∑
𝑗=1

(̂𝑞𝑖,𝑗 − 𝑞𝑖,𝑗)
2⎞⎟⎟
⎠

+
𝜆
𝑁

⎛⎜⎜
⎝

𝑁
∑
𝑖=1

3
∑

𝑗,𝑘=1

∣∣∣∣

𝜕 ̂𝑞𝑖,𝑗

𝜕𝑥𝑘
−

𝜕𝑞𝑖,𝑗

𝜕𝑥𝑘

∣∣∣∣
Δ𝑥𝑘

⎞⎟⎟
⎠

(5.3)

In a multi-fidelity environment, other terms with the exact same form can be added.
For example, given a flow (𝑅𝑒𝜏 and 𝑃𝑟) for which both DNS and RANS inputs are
available, two difference terms (or mixed terms) can be added measuring the difference
in both the low and high fidelity outputs. The idea behind these terms is to drive the
optimization towards learning the relationship between RANS and DNS since, due to
the earlier discussion about the rotational invariance, the low fidelity prediction cannot
pass through the high fidelity network, hindering the model’s capability to learn said
relationship.

60

With those terms added, the loss function can have up to 4 terms:

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑅𝐴𝑁𝑆 + ℒ𝐷𝑁𝑆 + ℒ𝑚𝑖𝑥−𝑙𝑓 + ℒ𝑚𝑖𝑥−ℎ𝑓 (5.4)

where:

• ℒ𝑅𝐴𝑁𝑆 measures the error between the RANS result and the low fidelity predic-
tion given the low fidelity input. Note that for this term only the wall-normal
component is computed.

• ℒ𝐷𝑁𝑆 measures the error between the DNS result and the high fidelity prediction
given the high fidelity input.

• ℒ𝑚𝑖𝑥−𝑙𝑓 measures the error between the low fidelity predictions given the RANS
and DNS inputs for the same flow condition (if available).

• ℒ𝑚𝑖𝑥−ℎ𝑓 measures the error between the high fidelity predictions given the RANS
and DNS inputs for the same flow condition (if available).

In the following sections the effect of including the additional termsℒ𝑚𝑖𝑥−𝑙𝑓 andℒ𝑚𝑖𝑥−ℎ𝑓
will be shown, both on the turbulent heat flux prediction and on the training perfor-
mance.

5.2.2 Training
The optimization algorithm chosen was Adam, as for the original single fidelity model;
in this project a weight decay factor of 1 ⋅ 10−3 was added to reduce the possibility
of overfitting, as suggested as good practice in (Goodfellow et al., 2016). Since no
memory limit was hit, the batch size was chosen to be equal to the entire dataset so
that the mixed terms could always be computed.

When the 2D impinging jet data was introduced, only the RANS data could be
used for training due to the lack of necessary DNS statistics. The 2D RANS data was
interpolated on a 1000 × 1000 grid, and subpartitions of said grid were fed to the
network during the training phase. This was done so that the data at 𝑥/𝐵 = 1, ..., 9
could be removed from the training dataset and kept for the validation. Each model
was trained for 20000 total epochs with a scheduled learning rate (more details in the
next subsection).

Since the multi-fidelity model comes with an increase in complexity and computing
time, as a nice to have the entire model is made GPU-compatible in order to speed up
computation. To compare GPU vs. CPU training a sample multi-fidelity model with
14000 neurons was built and run on a 2019 laptop with an Intel(R) Core(TM) i7-9750H
CPU with a maximum frequency clock of 2.6GHz and a 4GB NVIDIA GeForce GTX
1650 GPU. With this machine, the GPU training had an average of 0.0526s per epoch,
while the CPU training took 0.249s per epoch on average, which translates to around a
78.9% training time decrease.

61

Having noted the available data characteristics in section 1.3 and wanting to evaluate
the performance of the framework when given RANS inputs, the validation loss is
computed for DNS cases 𝑅𝑒𝜏 = 395, 𝑅𝑒𝜏 = 1020, 𝑃𝑟 = 0.01, 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01
and 𝑅𝑒𝜏 = 1000, 𝑃𝑟 = 0.02. This is done in order to maximize the DNS data since the
𝑅𝑒𝜏 = 1020, 2000 could not be used for training. Different trainings including also the
𝑅𝑒𝜏 = 395 flows in the training dataset were also carried out to test the robustness of
the model and the effect of the mixed terms; their results match well with the others
unless specified otherwise.

5.2.3 Uncertainty quantification
To better interpret themodel, the uncertainty quantification algorithm ”Gaussian Stochas-
tic Weight Algorithm” (Maddox et al., 2019) was implemented into the training and
post-processing of the model. The SWAG algorithm was implemented along with a
cyclic learning rate as in (Izmailov et al., 2019) to allow the optimizer to explore the
parameters’ space.

Figure 5.1: Typical training and validation loss functions when coupled with the SWAG
algorithm. In this case the training starts with 3000 iterations to get to an
initial solution. From there on, the SWAG algorithm engages by setting the
learning rate to 1 ⋅ 10−3 and linearly decreasing it to 2.5 ⋅ 10−4 in 1000 epochs.
At the end of each cycle (lowest learning rate point), the model’s weights
are sampled.

With reference to Figure 5.1, the training proceeds with a learning rate 𝜂 of 5 ⋅ 10−4

without sampling until epoch 2000; 𝜂 then gets halved reaching an initial solution at
epoch number 3000. From there on, the SWAG algorithm engages, by pushing the
learning rate to 1 ⋅ 10−3 and then linearly decreasing it back down to 2.5 ⋅ 10−4 in the
span of 1000 epochs. At the end of each cycle the network parameters are sampled
and the mean and a low-rank diagonal approximation of the covariance are computed.
After the training, the model is averaged by sampling 100 times the weights from the
distribution, thus allowing to compute both the mean and the standard deviation of
the network output. While the mean is used to compare the accuracy of the model

62

when compared to baseline data, the standard deviation and the uncertainty intervals
are useful to determine the convergence and stability of the training process.

63

5.3 GGD sum model (S1)

Figure 5.2: Multi Fidelity structure S1. The hidden layers of the ”𝜋𝑖” branches have 6
layers of 100 neurons each, while the ”𝑃𝑟” layers have 2 layers of 50 neurons
each. The activation function is ReLU except for the last layer in each branch,
that uses a Tanh activation function.

The most immediate implementation of a multi-fidelity model was constructed
expressing the turbulent heat flux as a sum of a low and high fidelity terms built using
the exact same structure:

𝑢𝜃 = −𝐷𝐿𝐹∇𝑇 − 𝐷𝐻𝐹∇𝑇 (5.5)
where the two dispersion terms 𝐷𝐿𝐹 and 𝐷𝐻𝐹 follow Equation 5.1. This approach was
chosen as a first iteration as its implementation is relatively easy, since it is made up of
two neural networks (one for each 𝐷) identical to the one already used in the single
fidelity model. The full structure is shown in Figure 5.2.

At the same time this model adds a layer of complexity to the low fidelity part: it in
fact represents the low fidelity contribution as a Generalized Gradient Diffusion term
making use of a dispersion term, while the data it trains on is the result of a Simple
Gradient Diffusion model, effectively going from a scalar 𝛼𝑡 to a full tensor 𝐷𝐿𝐹.

5.3.1 Results
Starting from the lower end of the Reynolds’ range a first difference with the single
fidelity model can be observed.

In panel 5.3 results for the (training) data point 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.025 can be seen
for both the SFNN and the MFNN (S1). In Figure 5.3a the streamwise component is
shown. As expected, the difference between the two training modes is minimal, since
the RANS data adds no information about the streamwise component; both models
underestimate the heat-flux when given RANS inputs.

64

0.00 0.25 0.50 0.75 1.00

y/H

0.00

0.05

0.10

0.15
u

+
θ+

SFNN

MFNN

DNS

(a) Streamwise 𝑢𝜃 component.

0.00 0.25 0.50 0.75 1.00

y/H

−0.10

−0.05

0.00

v
+
θ+

SFNN

MFNN

DNS

RANS

(b) Wall-normal 𝑣𝜃 component.

Figure 5.3: S1 turbulent heat flux prediction for the 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.025 channel flow
for RANS inputs. Full loss function used in training.

In Figure 5.3b the wall-normal component is represented, and a big difference is
noted between the twomodels. In this case the multi-fidelity model is able to accurately
track the DNS result, much improving the single fidelity model when given the same
input data. This result however, must be taken with extreme caution: this is in fact one
of the training points and, on top of that, the difference between the RANS and DNS is
minimal. Nevertheless, the improvement over the SFNN model is still clear, as this
was a training flow for the SFNN too.

Moving onto the 𝑅𝑒𝜏 = 395 cases shown in Figure 5.4 and 5.5, once again one can
note the very little difference when comparing the two models over the streamwise
component. On the right side of the figures though, the wall-normal component shows
how the MFNN is basically trying to fit the RANS data, with no regard for the high
fidelity data. Note that those results are from a training process in which the 𝑅𝑒𝜏 = 395
flows are excluded from the training dataset.

As expected, for the cases in which both fidelity levels are available as training data,
the addition of mixed terms to the loss function helps a little in driving the MFNN
prediction closer to the DNS data. To show this, the same model was trained using a
loss function made of only the first two terms in Equation 5.4, so that the low fidelity
neural network would have no direct information about the DNS data.

The results of the two different training methods are shown in Figure 5.6, where
the flow 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01 is computed. In Figure 5.6a, no mixed terms were
considered. In this case, it’s clear how the MFNN resorts to fitting the RANS data. In
Figure 5.6b, the full loss function was used; the effect of the mixed terms is clear in that
it closes the gap between the high fidelity data and the model’s prediction.

While adding the mixed terms did not significantly influence the model’s ability
to predict the wall-normal component outside of the overlapping DNS/RANS cases,
the one major effect it had was moving the MFNN streamwise component closer and
closer to that predicted by the SFNN. This is a slight improvement in accuracy as in
most cases the SFNN was more accurate when predicting 𝑣𝜃, with the caveat that past

65

0.00 0.25 0.50 0.75 1.00

y/H

0.0

0.2

0.4
u

+
θ+

SFNN

MFNN

DNS

(a) Streamwise 𝑢𝜃 component.

0.00 0.25 0.50 0.75 1.00

y/H

−0.2

−0.1

0.0

v
+
θ+

SFNN

MFNN

DNS

RANS

(b) Wall-normal 𝑣𝜃 component.

Figure 5.4: S1 turbulent heat flux prediction for the 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.025 channel
flows for RANS inputs.

0.00 0.25 0.50 0.75 1.00

y/H

0.00

0.05

0.10

u
+
θ+

SFNN

MFNN

DNS

(a) Streamwise 𝑢𝜃 component.

0.00 0.25 0.50 0.75 1.00

y/H

−0.05

0.00

v
+
θ+

SFNN

MFNN

DNS

RANS

(b) Wall-normal 𝑣𝜃 component.

Figure 5.5: S1 turbulent heat flux prediction for the 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01 channel flows
for RANS inputs. Full loss function used in training.

𝑅𝑒𝜏 = 2000 no data is available at all, making it impossible to express a fair judgment.
An example is shown in Figure 5.7, where the channel flow with 𝑅𝑒𝜏 = 1020, 𝑃𝑟 =

0.01 is shown. In this case, whether themixed terms are considered or not, the difference
in the 𝑣𝜃 prediction is small and negligible. In the bottom row (Figure 5.7c and 5.7d)
the streamwise component is shown, and the effect of the mixed terms is visible. The
same results are true for greater Reynolds numbers, which is furthermore justified by
the absence of DNS data to begin with.

The final comparison is done for flows outside of the original single fidelity training
range, for which 𝑅𝑒𝜏 ≥ 2000. Since no major differences are noted when varying the
Prandtl number, only results for 𝑃𝑟 = 0.01 will be shown in the following.

Starting from the flow case 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01, shown in Figure 5.8, a good
improvement can be seen in the wall-normal component prediction when compared to
the single fidelity model. Even at this relatively low 𝑅𝑒𝜏 value, it is possible to notice
how the multi-fidelity model avoids the bump in which the single fidelity model incurs.

66

0.00 0.25 0.50 0.75 1.00

y/H

−0.03

−0.02

−0.01

0.00
v

+
θ+

SFNN

MFNN

DNS

RANS

(a) No mixed terms used during training.

0.00 0.25 0.50 0.75 1.00

y/H

−0.03

−0.02

−0.01

0.00

v
+
θ+

SFNN

MFNN

DNS

RANS

(b) Mixed terms used during training.

Figure 5.6: Effect of the loss function terms on S1’s turbulent heat flux prediction for
the 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01.

As will be noted in the following, this is a trend that the multi-fidelity model maintains
even in the top end of the 𝑅𝑒𝜏 spectrum.

On the other hand, the streamwise component suffers and underestimates slightly
the turbulent heat flux along the whole channel height in the MFNN model; as already
noted no increase in accuracy is expected anyway in said component since the RANS
data has no 𝑢𝜃 component.

Results for flow conditions outside of the DNS database are shown in Figure 5.9.
In light of the discussion in section 4.4 and chapter 1, for higher Reynolds number
the RANS data is assumed to be increasingly correct and thus used as a baseline
for qualitative comparison. Looking at the left of panel 5.9, the multi-fidelity model
appears to reduce the chronic overestimation of the single fidelity model, closely
matching the RANS data. This does not apply to the streamwise component (right
side of the panel), for which however no quantitative or qualitative data is available
and thus no definitive conclusion can be made.

67

0.00 0.25 0.50 0.75 1.00

y/H

−0.2

−0.1

0.0

v
+
θ+

SFNN

MFNN

DNS

RANS

(a) 𝑣𝜃 prediction using the complete loss func-
tion.

0.00 0.25 0.50 0.75 1.00

y/H

−0.2

−0.1

0.0

v
+
θ+

SFNN

MFNN

DNS

RANS

(b) 𝑣𝜃 prediction using no mixed terms in the
loss function.

0.00 0.25 0.50 0.75 1.00

y/H

0.0

0.2

0.4

u
+
θ+

SFNN

MFNN

DNS

(c) 𝑢𝜃 prediction using the complete loss func-
tion.

0.00 0.25 0.50 0.75 1.00

y/H

0.0

0.2

0.4

u
+
θ+

SFNN

MFNN

DNS

(d) 𝑢𝜃 prediction using no mixed terms in the
loss function.

Figure 5.7: Effect of added loss function terms at 𝑅𝑒𝜏 = 1020, 𝑃𝑟 = 0.01. This is a
validation case and whether the mixed terms are considered or not does
not make a noticeable difference on the wall-normal component prediction.

68

0.00 0.25 0.50 0.75 1.00

y/H

−0.4

−0.2

0.0

v
+
θ+

SFNN

MFNN

DNS

RANS

(a) Wall normal component 𝑣𝜃.

0.00 0.25 0.50 0.75 1.00

y/H

0.0

0.5
u

+
θ+

SFNN

MFNN

DNS

(b) Streamwise component 𝑢𝜃.

Figure 5.8: Comparison of turbulent heat flux prediction between Single FidelityNeural
Network (SFNN) andMulti Fidelity Neural Network (MFNN-S1) for 𝑅𝑒𝜏 =
2000, 𝑃𝑟 = 0.01. Note that this is the highest 𝑅𝑒𝜏 for which DNS data is
available. The full loss function was used in this case.

69

0.00 0.25 0.50 0.75 1.00

y/H

−0.75

−0.50

−0.25

0.00

v
+
θ+

SFNN

MFNN

RANS

(a) Wall normal component 𝑣𝜃. 𝑅𝑒𝜏 =
4000, 𝑃𝑟 = 0.01

0.00 0.25 0.50 0.75 1.00

y/H

0.0

0.5

1.0

1.5

u
+
θ+

SFNN

MFNN

(b) Streamwise component 𝑢𝜃. 𝑅𝑒𝜏 =
4000, 𝑃𝑟 = 0.01

0.00 0.25 0.50 0.75 1.00

y/H

−0.75

−0.50

−0.25

0.00

v
+
θ+

SFNN

MFNN

RANS

(c) Wall normal component 𝑣𝜃. 𝑅𝑒𝜏 =
6000, 𝑃𝑟 = 0.01

0.00 0.25 0.50 0.75 1.00

y/H

0

1

u
+
θ+

SFNN

MFNN

(d) Streamwise component 𝑢𝜃. 𝑅𝑒𝜏 =
6000, 𝑃𝑟 = 0.01

Figure 5.9: Comparison of turbulent heat flux prediction between Single FidelityNeural
Network (SFNN) andMulti FidelityNeural Network (MFNN-S1) for higher
Reynolds numbers. For the selected 𝑅𝑒𝜏 no DNS data is available.

70

Dispersion tensors analysis

Further insight into the model can be gained by looking at the dispersion tensors 𝐷𝐿𝐹
and 𝐷𝐻𝐹.

0.00 0.25 0.50 0.75 1.00

y/H

0

100

200 DLF−xx
DLF−xy

DLF−yy
DLF−yx

(a) 𝐷𝐿𝐹 for the 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01 case.

0.00 0.25 0.50 0.75 1.00

y/H

−100

0

100

DHF−xx
DHF−xy

DHF−yy
DHF−yx

(b) 𝐷𝐻𝐹 for the 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01 case.

Figure 5.10: 𝐷𝐿𝐹 (left) and 𝐷𝐻𝐹 (right) components for the 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01 case.
The full loss function is used.

In Figure 5.10a the low fidelity dispersion tensor 𝐷𝐿𝐹 is shown for the 𝑅𝑒𝜏 =
2000, 𝑃𝑟 = 0.01 flow. It can be noted that with this model the optimization pro-
cess drives towards fully building the low fidelity tensor 𝐷𝐿𝐹 to resemble the single
fidelity tensor (shown in Fiore, Koloszar, Fare, et al., 2022), while enforcing the 𝐷𝐻𝐹
tensor to be skew-symmetric with small values on the main diagonal. This pattern
is persistent regardless of the chosen Reynolds and Prandtl numbers and whether
validation or training data are used.

0.0 0.5 1.0

2y/H

0.0

0.5

1.0

u
+
θ+

RANS

Multi-fidelity (RANS)

DNS

(a) Full loss function.

0.0 0.5 1.0

2y/H

0.0

0.5

1.0

u
+
θ+

RANS

Multi-fidelity (RANS)

DNS

(b) Loss function with only the direct terms.

Figure 5.11: Low fidelity streamwise turbulent heat flux component prediction with
the two different loss functions. 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01.

In terms of turbulent heat flux prediction, this 𝐷𝐿𝐹 structure means that the low

71

fidelity part of the network still tries to output a streamwise component 𝑢𝜃, even though
it has no direct information from the RANS data, only from the mixed loss terms. The
result is an inaccurate prediction of the streamwise component, shown for both loss
functions in Figure 5.11. In both cases the low fidelity outputs something resembling to
the streamwise component but with no accuracy either qualitatively or quantitatively.

The effect of the mixed loss terms can also be looked at from the training convergence
point of view via the tools provided by the SWAG algorithm.

0.0 0.2 0.4 0.6 0.8 1.0
−0.4

−0.2

0.0

v
+
θ+

Mean prediction

Uncertainty (±2σ)

DNS data

RANS data

0.0 0.2 0.4 0.6 0.8 1.0

y/H

0.0

0.5

u
+
θ+

Mean prediction

Uncertainty (±2σ)

DNS data

Figure 5.12: Uncertainty quantification for the loss function without the mixed terms.
𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01 flow.

In figure 5.12 the results of the SWAG algorithm for the 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01
flow are shown. The training proved to be very stable and precise, achieving small
standard deviation with the sampled models. Also note that the inclusion of the mixed
terms into the loss function did not alter in any way the stability of the training, and
the uncertainty intervals turned out to be virtually indistinguishable from those in
Figure 5.12 and will therefore not be reported.

Final remarks

A plot of the mean squared error for all the cases available is shown in Figure 5.13.
To produce those results, the MSE was computed using DNS data as ground truth
where available and RANS data was used elsewhere. These plots show how, with
the exception of a couple of low-Reynolds and low-Prandtl cases, the MFNN model

72

0 2500 5000

Reτ

0.010

0.015

0.020

0.025
P
r

10−5

10−4

10−3

M
S

E

(a) MFNN, wall-normal component.

0 2500 5000

Reτ

0.010

0.015

0.020

0.025

P
r

10−5

10−4

10−3

M
S

E

(b) SFNN, wall-normal component.

1000 2000

Reτ

0.010

0.015

0.020

0.025

P
r

10−4

10−3

10−2

M
S

E

(c) MFNN, streamwise component.

1000 2000

Reτ

0.010

0.015

0.020

0.025

P
r

10−4

10−3

10−2

M
S

E

(d) SFNN, streamwise component.

Figure 5.13: Mean squared error comparison between the SFNN and the MFNN (S1).
To compute the MSE, DNS data was used as ground truth where available,
RANS data was used elsewhere.

achieves lower error in the wall normal prediction, especially at higher 𝑅𝑒𝜏 values. It’s
worth noting that themodel performsworsewhere the RANSprediction is considerably
far from that of DNS.
The MFNN model instead performs slightly worse than the single fidelity when the
streamwise component is considered.

Overall, the model’s first iteration shows the promising ability to follow trends
indicated by RANS data for regions where no DNS data is available. No improvement
was made on the prediction of the streamwise component, but this was somewhat
expected as the low fidelity data added no information on that front.

The main drawback is that the model is almost exactly replicating the RANS data for
the 𝑣𝜃 component, instead of trying to mimic the DNS values. This is partly attributed
to the fact that, when compared to the original multi-fidelity framework presented
in chapter 3, this multi-fidelity model had to be modified to enforce the mentioned
first principles into the model. This meant altering the way in which the low fidelity
prediction and high fidelity networks interact, as explained in section 5.2. While this is
an open problem, what can be improved is the model interpretability: an avenue to do
so is the active strategy of altering the network structure.

73

5.4 SGD + GGD additive model (S5)

Figure 5.14: Multi Fidelity structure S5. The hidden layers of the ”𝜋𝑖” branches have
6 layers of 100 neurons each, while the ”𝑃𝑟” layers have 2 layers of 50
neurons each. The activation function is ReLU except for the last layer in
each branch, that uses a Tanh activation function.

From the results given by the first structure tested, reported at the end of section 5.3,
the idea of a simplermodel was originated. Themain area of improvement was deemed
to be the low fidelity network, since in the first iteration it gave a full dispersion tensor
𝐷𝐿𝐹 as output even though the low fidelity data were results from Simple Gradient
Diffusion models. To simplify the model and make it more consistent with its training
data, the natural step is to modify the output given by 𝒩𝒩ℒℱ and make it a scalar 𝛼𝐿𝐹
instead of a full tensor. The final turbulent heat flux prediction then becomes:

𝑢𝜃 = −𝛼𝐿𝐹∇𝑇 − 𝐷𝐻𝐹∇𝑇 (5.6)

The resulting neural network is schematically shown in Figure 5.14; all of the hyperpa-
rameters related to network structure and training are unchanged.

5.4.1 Results
Most of the results obtained with the S1 model regarding the high fidelity prediction
are valid for the S5 structure too, meaning it is also capable of reproducing trends
learned from the RANS data at higher Reynolds. Even with this simplified low fidelity
network, the model still shows the tendency to disregard the high fidelity data for what
concerns the wall normal component.

An example of such behavior is shown in Figure 5.15a, where the wall-normal 𝑣𝜃
prediction is plotted; the prediction is very similar to the one made by (S1) model,

74

0.00 0.25 0.50 0.75 1.00

y/H

−0.2

−0.1

0.0
v

+
θ+

SFNN

MFNN

DNS

RANS

(a) Wall-normal 𝑣𝜃 component.

0.00 0.25 0.50 0.75 1.00

y/H

0.0

0.2

0.4

u
+
θ+

SFNN

MFNN

DNS

(b) Streamwise 𝑢𝜃 component.

Figure 5.15: S5 model’s performance for 𝑅𝑒𝜏 = 1020, 𝑃𝑟 = 0.01.

pictured in Figure 5.7a. In both cases the MFNN model seems to follow the RANS
data more than the DNS. Even with this structure, the streamwise component (shown
in Figure 5.15b) does not really improve in terms of quality over the single fidelity
prediction.

The improvement that this particular structure allows is more towards model in-
terpretability, which is a key area in machine learning research. According to the
classification in (Y. Zhang et al., 2021), changing the network architecture is an active
approach in the first dimension towards network interpretability.

There is now a clearer definition of what the low fidelity is: much like the original
framework explored in chapter 3, with the S5 structure the low fidelity network outputs
is closer to the low-fidelity data than before. As noted in subsubsection 5.3.1, with the
S1 structure, the optimizer tends to build the low fidelity dispersion tensor 𝐷𝐿𝐹 as to
represent all the components of 𝑢𝜃. This leads to an unrealistic and non-physically
related low-fidelity streamwise component.

In Figure 5.16 the outputs of the two neural networks of the S5 model are shown.
With this structure, the optimizer uses the low fidelity network to predict the wall-
normal turbulent heat flux via the 𝛼𝑡 value, while shaping the 𝐷𝐻𝐹 tensor to model
the streamwise component. For the flow case 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01, a very similar phe-
nomenon to what happens with the S1 model is noted: during training, the optimizer
”feeds back” high fidelity information onto the low fidelity network. This is clear by
the fact that the entire prediction of 𝑣𝜃 is assigned to the low fidelity network, leading
to a different 𝛼𝑡 value than that computed via the RANS method; this phenomenon
is particularly clear for flows in which the corresponding DNS data is very different
from the RANS data.

A clear example of this ”feedback” is shown in Figure 5.19, where both 𝛼𝐿𝐹 (right)
and the high fidelity 𝑣𝜃 (left) are shown. For this flow case, one can note how the low
fidelity network underestimates 𝛼𝑡 (with respect to the RANS value), in an attempt to
match the DNS 𝑣𝜃. This behavior is different from the simple test cases in chapter 3,
where the low fidelity network accurately predicted the low fidelity data; at the same

75

0.00 0.25 0.50 0.75 1.00

y/H

−200

0

200 DHF−xx
DHF−xy

DHF−yy
DHF−yx

(a) High fidelity tensor 𝐷𝐻𝐹.

0.00 0.25 0.50 0.75 1.00

y/H

0

50

100

α
t

αt MFNN

αt RANS

(b) 𝛼𝑡 prediction comparison with the 𝛼𝑡 in the
RANS simulation.

Figure 5.16: S5 model’s output for 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01. 𝛼𝑡 MFNN on the right is
what in Figure 5.14 was 𝛼𝐿𝐹

time it is not necessarily a negative one: due to the enforcement of first principles, the
exact linear and non-linear correction could not be learned in the same way as in the
original multi-fidelity framework.

The ”feedback” phenomenon goes away when mixed terms are not added to the loss
function. This is clear when looking at Figure 5.20, where results are shown for 𝑅𝑒𝜏 =
180, 𝑃𝑟 = 0.01 (even though the same considerations are valid for all the other flow
cases). In this case the optimizer finds the best solution for 𝒩𝒩ℒℱ to fit the low fidelity
data, while being incapable of correcting it with the high fidelity contribution. The
result is in essence a model that always outputs a RANS-like wall normal component
without learning from high fidelity data, and then adds a streamwise component which
is somewhat comparable in accuracy to the single fidelity model.

Adding or not the mixed terms to the loss function does not alter the training stability
in the S5 structure, as was found out when analyzing the S1 model. To prove this
assessment, the same data shown in Figure 5.12 was computed for the S5 model and
reported in Figure 5.17. Once again very small standard deviation is achieved when
sampling the model, and this is shown by the narrow uncertainty intervals.

Overall the S5 structure improves some aspects of the S1 structure, mainly themodel’s
interpretability, while still suffering from some of the same deficiencies, in particular
the partial inability to correct the low fidelity prediction using higher fidelity data. Part
of this is attributed to the already mentioned impossibility of completely replicating
the framework proposed in (Meng & Karniadakis, 2020).
The omission of the mixed terms guides the model into predicting near-RANS values
for the wall normal component, and then adding a streamwise component similar to
that predicted by the SFNN. Adding those terms instead forces the model into a more
accurate prediction of the turbulent heat flux for the overlapping DNS/RANS cases,
but has little effect otherwise. A difference between the S1 and S5 models is that, in
the case of the S5 model, adding or not the mixed terms does not lead to a noticeably

76

0.0 0.2 0.4 0.6 0.8 1.0
−0.4

−0.2

0.0
v

+
θ+

Mean prediction

Uncertainty (±2σ)

DNS data

RANS data

0.0 0.2 0.4 0.6 0.8 1.0

y/H

0.0

0.5

u
+
θ+

Mean prediction

Uncertainty (±2σ)

DNS data

Figure 5.17: S5 model’s uncertainty quantification for the loss function with no mixed
terms. 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01 flow.

different 𝑢𝜃 prediction.

77

0 2500 5000

Reτ

0.010

0.015

0.020

0.025

P
r

10−5

10−4

10−3

M
S

E

(a) MFNN, wall-normal component.

0 2500 5000

Reτ

0.010

0.015

0.020

0.025

P
r

10−5

10−4

10−3

M
S

E

(b) SFNN, wall-normal component.

1000 2000

Reτ

0.010

0.015

0.020

0.025

P
r

10−4

10−3

10−2

M
S

E

(c) MFNN, streamwise component.

1000 2000

Reτ

0.010

0.015

0.020

0.025

P
r

10−4

10−3

10−2

M
S

E
(d) SFNN, streamwise component.

Figure 5.18: Mean squared error comparison between the SFNN and the MFNN (S5).
To compute the MSE, DNS data was used as ground truth where available,
RANS elsewhere.

78

0.00 0.25 0.50 0.75 1.00

y/H

−0.03

−0.02

−0.01

0.00

v
+
θ+

SFNN

MFNN

DNS

RANS

(a) Wall-normal 𝑢𝜃 component.

0.00 0.25 0.50 0.75 1.00

y/H

0

5

α
t

αt MFNN

αt RANS

(b) 𝛼𝑡 prediction comparison with the 𝛼𝑡 in the
RANS simulation.

Figure 5.19: S5 ”feedback” phenomenon for 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01. Notice how the
model ”adjusts” the low-fidelity prediction not to match the low fidelity
data but to best match the high fidelity one.

0.00 0.25 0.50 0.75 1.00

y/H

−0.03

−0.02

−0.01

0.00

v
+
θ+

SFNN

MFNN

DNS

RANS

(a) Wall-normal turbulent heat flux prediction
by the S5 model with no mixed terms in the
loss function. 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01.

0.00 0.25 0.50 0.75 1.00

y/H

0.0

2.5

5.0

7.5

α
t

αt MFNN

αt RANS

(b) 𝛼𝑡 prediction comparison with the 𝑎𝑙𝑝ℎ𝑎𝑡 in
the RANS simulation.

Figure 5.20: Absence of ”feedback” phenomenon for 𝑅𝑒𝜏 = 180, 𝑃𝑟 = 0.01 in the S5
model. Notice how the model completely disregards the high fidelity data.
These results are obtained using no mixed terms in the loss function.

79

5.5 SGD + GGD multiplicative model (S7)

Figure 5.21: Multi Fidelity structure S7. The hidden layers of the ”𝜋𝑖” branches have
6 layers of 100 neurons each, while the ”𝑃𝑟” layers have 2 layers of 50
neurons each. The activation function is ReLU except for the last layer in
each branch, that uses a Tanh activation function.

The last model presented has the same general ideas of the S5 structure, except that
in this case the final prediction is given by the product between the high fidelity tensor
𝐷𝐻𝐹 and the low fidelity prediction:

𝑢𝜃 = 𝐷𝐻𝐹𝑢𝜃𝐿𝐹 (5.7)

To achieve dimensional consistency the 𝐷𝐻𝐹 tensor is made made adimensional by
using adimensional tensors T𝑖 in its definition.

5.5.1 Results
The S7 structure achieves radically different results from those of S1 and S5. In fact,
when trained without the mixed terms, the model correctly predicts the low fidelity 𝑣𝜃
while still being able to apply corrections to it via the high fidelity network.

This is shown in Figure 5.22, where both the low fidelity (in the form of 𝛼𝑡) and the
high fidelity (in the form of 𝐷𝐻𝐹) prediction are shown. As opposed to the results of
subsection 5.4.1, this model is able to both achieve a good low fidelity prediction of
𝛼𝑡, while still being able to correct it using 𝐷𝐻𝐹 to best match the high fidelity data.
Moreover, this results is carried over even in the validation range, as demonstrated by
Figure 5.23b.

The promising characteristic of this structure is that the ability to correct low fidelity
data at low Reynolds, does not take away the fact that the model is still capable of

80

0.00 0.25 0.50 0.75 1.00

y/H

0

10

20
α
t

αt MFNN

αt RANS

(a) 𝛼𝑡 prediction.

0.00 0.25 0.50 0.75 1.00

y/H

−10

0

10 DHF−xx
DHF−xy

DHF−yy
DHF−yx

(b) 𝐷𝐻𝐹 tensor.

Figure 5.22: S7 predictions for 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01 using the complete loss function.
Notice how the model is simultaneously achieving a good prediction of
the low fidelity 𝛼𝑡 and still being able to correct the low fidelity prediction.

0.00 0.25 0.50 0.75 1.00

y/H

0.00

0.05

0.10

u
+
θ+

SFNN

MFNN

DNS

(a) Wall-normal component 𝑣𝜃 at 𝑅𝑒𝜏 =
395, 𝑃𝑟 = 0.01.

0.00 0.25 0.50 0.75 1.00

y/H

−0.05

0.00
v

+
θ+

SFNN

MFNN

DNS

RANS

(b) Wall-normal component 𝑣𝜃 at 𝑅𝑒𝜏 =
395, 𝑃𝑟 = 0.01.

Figure 5.23: S7 predicted wall-normal component 𝑣𝜃 for the 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01 case.

learning the high Reynolds trends from the RANS data. This capability is shown in
Figure 5.24. In both cases the MFNNmodel still follows quite well the DNS (in the case
of 𝑅𝑒𝜏 = 2000) and RANS data, avoiding the typical SFNN bump. Even this result must
be taken with caution: the model is in fact mostly veering towards the SFNN results
at low Reynolds numbers. This is not a problem per se, but it must be acknowledged
that the SFNN results are not necessarily accurate when used with RANS modeling.
Therefore a possible area of future work is implementing the robustness-based training
strategies explored in (Fiore et al., 2024; Saccaggi, 2023) into the multi-fidelity training.
It’s also interesting to note how this structure applies minimal changes to the SFNN
predicted streamwise component until 𝑅𝑒𝜏 = 2000, while for 𝑅𝑒𝜏 > 2000 it constantly
overestimates the SFNN prediction.

Evenwith the S7 structure, the trainingwas very stable regardless of the loss function
used, an example is shown in Figure 5.25; adding themixed loss terms to the S7 training,

81

0.00 0.25 0.50 0.75 1.00

y/H

−0.4

−0.2

0.0
v

+
θ+

SFNN

MFNN

DNS

RANS

(a) Wall normal component 𝑣𝜃.
𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01.

0.00 0.25 0.50 0.75 1.00

y/H

−0.75

−0.50

−0.25

0.00

v
+
θ+

SFNN

MFNN

RANS

(b) Wall normal component 𝑣𝜃.
𝑅𝑒𝜏 = 6000, 𝑃𝑟 = 0.01.

0.00 0.25 0.50 0.75 1.00

y/H

0.0

0.5

1.0

u
+
θ+

SFNN

MFNN

DNS

(c) Streamwise component 𝑢𝜃.
𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01.

0.00 0.25 0.50 0.75 1.00

y/H

0

1

2

u
+
θ+

SFNN

MFNN

(d) Streamwise component 𝑢𝜃.
𝑅𝑒𝜏 = 6000, 𝑃𝑟 = 0.01.

Figure 5.24: S7 predictions for high 𝑅𝑒𝜏 and low 𝑃𝑟.

pushes the model towards the RANS prediction, as shown in Figure 5.26.
Overall, the S7 structure is the most promising among the ones tested. In fact the S1

and S5 structure can be crudely described as RANS approximators for the wall-normal
component that add a streamwise component closely related to the SFNN one on top.
S7 on the other hand proved to be a bit more flexible, being capable of mimicking the
SFNN for flows inside the high fidelity range, while reverting to follow low fidelity
patterns outside.

The main areas that need to be worked on remain how to improve the accuracy
for very low Prandtl and Reynolds flows and how to improve the prediction of the
streamwise component. As mentioned, for the first point a viable solution might
be the path already explored with the single fidelity model in (Fiore et al., 2024;
Saccaggi, 2023), that would increase the robustness of the network to sub-optimal
RANS turbulence modeling. The second point could be tackled using more than two
levels of fidelity: this would allow a wider range of models and geometries to be
included in the training, adding representative results for the streamwise component
at higher Reynolds numbers.

82

0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

v
+
θ+

Mean prediction

Uncertainty (±2σ)

DNS data

RANS data

0.0 0.2 0.4 0.6 0.8 1.0

y/H

0.0

0.5

1.0

u
+
θ+

Mean prediction

Uncertainty (±2σ)

DNS data

Figure 5.25: Uncertainty quantification for the S7 model. 𝑅𝑒𝜏 = 2000, 𝑃𝑟 = 0.01

0.00 0.25 0.50 0.75 1.00

y/H

−0.05

0.00

v
+
θ+

SFNN

MFNN

DNS

RANS

Figure 5.26: S7 prediction for the 𝑅𝑒𝜏 = 395, 𝑃𝑟 = 0.01 case. Model trained using the
mixed terms.

83

0 2500 5000

Reτ

0.010

0.015

0.020

0.025

P
r

10−5

10−4

10−3

M
S

E

(a) MFNN, wall-normal component.

0 2500 5000

Reτ

0.010

0.015

0.020

0.025

P
r

10−5

10−4

10−3

M
S

E

(b) SFNN, wall-normal component.

1000 2000

Reτ

0.010

0.015

0.020

0.025

P
r

10−4

10−3

10−2

M
S

E

(c) MFNN, streamwise component.

1000 2000

Reτ

0.010

0.015

0.020

0.025

P
r

10−4

10−3

10−2

M
S

E
(d) SFNN, streamwise component.

Figure 5.27: Mean squared error comparison between the SFNN and the MFNN (S7).
To compute the MSE, DNS data was used as ground truth where available,
RANS elsewhere. These results were obtained without adding the mixed
terms.

84

5.6 Impinging jet results
Up to this point, the data-driven models were only tested on channel flows. This was
done for sake of simplicity but, at the same time, this is obviously a very restricted flow
case, not representative of all the real use cases for a similar model.
The natural step forward is to test and train the model on more complex flows, as it
was done in (Fiore, Koloszar, Fare, et al., 2022) for the single fidelity training. To this
end the impinging jet flow (described in subsection 4.4.2) was considered, adding the
RANS simulation to the low fidelity database and training an S7 structure.

0 1 2

2y/H

−0.010

−0.005

0.000

v
+
θ+

RANS

MFNN (RANS)

DNS

SFNN

(a) High fidelity prediction.

0 1 2

2y/H

−0.010

−0.005

0.000

v
+
θ+

RANS

MFNN-LoFi (RANS)

DNS

(b) Low fidelity prediction.

Figure 5.28: Multi-fidelity model prediction of 𝑢𝜃 for 𝑥/𝐵 = 1. Both the final (high
fidelity) and the low fidelity prediction are shown.

In the impinging jet case, the key factor determining the accuracy of themulti-fidelity
structure is the distance from the jet. Both the low and high fidelity predictions for
𝑥/𝐵 = 1 are shown in Figure 5.28. In this case the single fidelity model is actually
outperforming the multi-fidelity, accurately capturing the minimum of the 𝑣𝜃 term.
For 𝑥/𝐵 > 0.2, the two data-driven models are almost identical, both under-predicting
the heat flux. Figure 5.28b shows the relative low fidelity prediction: the MFNN over-
predicts the minimum, and then gets wrongly corrected by the high fidelity network
as to match the RANS data.

At 𝑥/𝐵 = 5 the situation improves, on one hand because the MFNN model is more
accurate with respect to the RANS data, and on the other hand because the RANS data
itself is closer to the DNS data. Comparing the two data-driven models, the difference
is still minimal, even though the MFNN has a more similar shape to those of RANS
and DNS.
The low fidelity prediction (Figure 5.29b) is quite accurate, to the point that it is more
accurate than the high fidelity prediction. Once again, like for 𝑥/𝐵 = 1, the correction
applied by the high fidelity part of the network is worsening the prediction made by
the model.

For the furthest point from the jet available 𝑥/𝐵 = 9 very similar observations can
be made. In this case the MFNN is superior to the single fidelity model in shape, but

85

0 1 2

2y/H

−0.002

0.000

0.002

0.004
v

+
θ+

RANS

MFNN (RANS)

DNS

SFNN

(a) High fidelity prediction.

0 1 2

2y/H

−0.002

0.000

0.002

0.004

v
+
θ+

RANS

MFNN-LoFi (RANS)

DNS

(b) Low fidelity prediction.

Figure 5.29: Multi-fidelity model prediction of 𝑢𝜃 for 𝑥/𝐵 = 5. Both the final (high
fidelity) and the low fidelity prediction are shown.

0 1 2

2y/H

0.000

0.002

v
+
θ+

RANS

MFNN (RANS)

DNS

SFNN

(a) High fidelity prediction.

0 1 2

2y/H

−0.002

0.000

0.002

0.004

v
+
θ+

RANS

MFNN-LoFi (RANS)

DNS

(b) Low fidelity prediction.

Figure 5.30: Multi-fidelity model prediction of 𝑢𝜃 for 𝑥/𝐵 = 9. Both the final (high
fidelity) and the low fidelity prediction are shown.

once again the low fidelity prediction gets wrongly corrected, ending up further from
the high fidelity data.

It must be noted that in the channel flow the RANS always overestimates the mag-
nitude of the 𝑣𝜃 component. What happens is that the low fidelity correctly predicts
the RANS value (as shown in Figure 5.23) and the high fidelity then correctly reduces
its magnitude. One hypothesis is that, having no high fidelity jet data, the model still
applies the same learned correction, that is clearly not valid for this use case.

As a final remark it is worth noting that adding the impinging jet RANS data to the
low fidelity training pool did not alter the model’s performance on the channel flow.
For this reason, those results are not shown again in this section as they are practically
identical to those in subsection 5.5.1.

86

Chapter 6

Conclusions and future works
Over the course of this project, several multi-fidelity data-driven models for the the
turbulent heat flux have been developed with the intent of finding a solution to the
lack of high fidelity training data.

The main objective was to prove that such models could effectively learn patterns
given by the low-fidelity data and apply them to give physical predictions outside of
the range of availability of high fidelity data.

This target was achieved with extensive tests for channel flows. These tests showed
how adding the low fidelity data allowed the model to learn the characteristic behavior
for high Reynolds numbers. Of all the structures tested, the S7 is the most promising,
since it shows the ability to match the single fidelity predictions in regions covered by
high fidelity training data, while resorting to apply the lower fidelity trends elsewhere.

At the same time, the model was also tested on the more complex flow represented
by the impinging jet. This showed only slight, if any, improvement over the already
existing single fidelity model. The reasons attributed to the poor performance in the
impinging jet case are believed to be a) that is a more complex flow to begin with
and RANS itself proved to be less accurate than in the channel case and b) only low
fidelity data was fed to the model in the training process, therefore severely hindering
its possibility to learn the relationship between the two levels. In turns, this signals the
absolute necessity to extend the training database, in particular the high fidelity one,
to 2D and 3D flows.

Moving forward the immediate next step is to augment the training database, as
the data to do so is already available and more will come in the future. Extending
the training database will hopefully improve the prediction for complex flows and
perhapsmore importantly give the opportunity to fairly assess themodel’s performance.
Another path to explore is making the model capable of training on more than 2 levels
of fidelity: this goes hand in hand with the previous point, as it would widen the
choice of CFD models to draw data from. Examples of readily available data to include
in the training dataset are the DNS of a turbulent boundary layer (Li et al., 2009) and
the DNS of a backward facing step (Oder et al., 2019); ad-hoc LES simulations could
also be run in the near future.

These two improvements could lead to the creation of a multi-fidelity input/multi-
fidelity output model, that would leverage the findings of (Fiore et al., 2024; Saccaggi,
2023) to cure the modeling-related inconsistencies via multi-fidelity inputs. Such a

87

model would then apply the techniques explored in the current project to output a
multi-fidelity prediction, making sure that the model learns phenomenological trends,
even in regions where no high fidelity data is available, as was done for high 𝑅𝑒𝜏 in
the case of channel flows.

Lastly, the multi-fidelity model must be implemented in a CFD suite so that an a
posteriori validation can be carried out. The groundwork to do so already exists, as the
single fidelity network was implemented in OpenFOAM in (Fiore, Koloszar, Fare, et al.,
2022).

88

Bibliography
Abe, K., & Suga, K. (2001). Towards the development of a reynolds-averaged algebraic

turbulent scalar-flux model. International Journal of Heat and Fluid Flow, 22(1),
19–29. https://doi.org/10.1016/S0142-727X(00)00062-X

Alcántara-Ávila, F., Hoyas, S., & Pérez-Quiles,M. J. (2018). DNSof thermal channel flow
up to reτ=2000 for medium to low prandtl numbers. International Journal of Heat
and Mass Transfer, 127, 349–361. https://doi.org/10.1016/j.ijheatmasstransfer.
2018.06.149

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Bricteux, L., Duponcheel, M., Winckelmans, G., Tiselj, I., & Bartosiewicz, Y. (2012).

Direct and large eddy simulation of turbulent heat transfer at very low prandtl
number: Application to lead–bismuth flows.Nuclear Engineering and Design, 246,
91–97. https://doi.org/10.1016/j.nucengdes.2011.07.010

Brunton, S. L., & Kutz, J. N. (2019). Data-driven science and engineering: Machine learning,
dynamical systems, and control. Cambridge University Press. https://doi.org/10.
1017/9781108380690

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid
mechanics [Publisher: Annual Reviews]. Annual Review of Fluid Mechanics, 52,
477–508. https://doi.org/10.1146/annurev-fluid-010719-060214

Cherkassky, V. S., & Mulier, F. (2007). Learning from data: Concepts, theory, and methods
(2nd ed) [OCLC: ocm76481553]. IEEE Press : Wiley-Interscience.

Da Vià, R., Cerroni, D., Menghini, F., & Manservisi, S. (2016). Numerical validation
of a four parameter logarithmic turbulence model. 1. https://doi.org/10.7712/
100016.1857.6906

Daly, B. J., & Harlow, F. H. (1970). Transport equations in turbulence. The Physics of
Fluids, 13(11), 2634–2649. https://doi.org/10.1063/1.1692845

De Santis, A., Ortiz, A. V., Shams, A., & Koloszar, L. (2019). Modelling of a planar
impinging jet at unity, moderate and low prandtl number: Assessment of ad-
vanced RANS closures. Annals of Nuclear Energy, 129, 125–145. https://doi.org/
10.1016/j.anucene.2019.01.039

Duponcheel, M., & Bartosiewicz, Y. (2021). Direct numerical simulation of turbulent
heat transfer at low prandtl numbers in planar impinging jets. International
Journal of Heat and Mass Transfer, 173, 121179. https : / /doi . org /10 . 1016 / j .
ijheatmasstransfer.2021.121179

Errico, O., & Stalio, E. (2014). Direct numerical simulation of turbulent forced con-
vection in a wavy channel at low and order one prandtl number. International
Journal of Thermal Sciences, 86, 374–386. https://doi.org/10.1016/j.ijthermalsci.
2014.07.021

89

https://doi.org/10.1016/S0142-727X(00)00062-X
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.149
https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.149
https://doi.org/10.1016/j.nucengdes.2011.07.010
https://doi.org/10.1017/9781108380690
https://doi.org/10.1017/9781108380690
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.7712/100016.1857.6906
https://doi.org/10.7712/100016.1857.6906
https://doi.org/10.1063/1.1692845
https://doi.org/10.1016/j.anucene.2019.01.039
https://doi.org/10.1016/j.anucene.2019.01.039
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121179
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121179
https://doi.org/10.1016/j.ijthermalsci.2014.07.021
https://doi.org/10.1016/j.ijthermalsci.2014.07.021

Errico, O., & Stalio, E. (2015). Direct numerical simulation of low-prandtl number
turbulent convection above a wavy wall. Nuclear Engineering and Design, 290,
87–98. https://doi.org/10.1016/j.nucengdes.2014.12.005

Fernández-Godino, M. G. (2023). Review of multi-fidelity models. Advances in Com-
putational Science and Engineering, 1(4), 351–400. https://doi.org/10.3934/acse.
2023015

Fiore, M. (n.d.). Matilde fiore’s PhD thesis [Doctoral dissertation].
Fiore, M., Koloszar, L., Fare, C., Mendez, M. A., Duponcheel, M., & Bartosiewicz, Y.

(2022). Physics-constrained machine learning for thermal turbulence modelling
at low prandtl numbers. International Journal of Heat and Mass Transfer, 194,
122998. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122998

Fiore, M., Koloszar, L., Mendez, M. A., Duponcheel, M., & Bartosiewicz, Y. (2022).
Turbulent heat flux modelling in forced convection flows using artificial neural
networks. Nuclear Engineering and Design, 399, 112005. https://doi.org/10.1016/j.
nucengdes.2022.112005

Fiore,M., Saccaggi, E., Koloszar, L., Bartosiewicz, Y., &Mendez,M. A. (2024, September
5). Data-driven turbulent heat flux modeling with inputs of multiple fidelity.
https://doi.org/10.48550/arXiv.2409.03395

Forrester, A., Sóbester, A., & Keane, A. (2008). Engineering design via surrogate modelling:
A practical guide [OCLC: 264714649]. Wiley ; John Wiley [distributor].

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Grötzbach, G. (2013). Challenges in low-prandtl number heat transfer simulation and

modelling. Nuclear Engineering and Design, 264, 41–55. https://doi.org/10.1016/j.
nucengdes.2012.09.039

Horizon 2020 - european commission. (n.d.). Retrieved August 18, 2024, from https :
//research-and-innovation.ec.europa.eu/funding/funding-opportunities/
funding-programmes-and-open-calls/horizon-2020_en

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., & Wilson, A. G. (2019, February
25). Averaging weights leads to wider optima and better generalization. https:
//doi.org/10.48550/arXiv.1803.05407

Jolliffe, I. T. (2010). Principal component analysis (2. ed). Springer.
Kawamura, H., Abe, H., & Shingai, K. (2000). DNS of turbulence and heat transport

in a channel flo w with different reynolds and prandtl numbers and boundary
conditions. Proceedings of the 3rd International Symposium on Turbulence, Heat and
Mass Transfer.

Kays, W. M. (1994). Turbulent prandtl number—where are we? Journal of Heat Transfer,
116(2), 284–295. https://doi.org/10.1115/1.2911398

Li, Q., Schlatter, P., Brandt, L., &Henningson,D. S. (2009). DNSof a spatially developing
turbulent boundary layer with passive scalar transport. International Journal of
Heat and Fluid Flow, 30(5), 916–929. https://doi.org/10.1016/j.ijheatfluidflow.
2009.06.007

Liao, P. (, Song, W. (, Du, P. (, & Zhao, H. ((2021). Multi-fidelity convolutional neu-
ral network surrogate model for aerodynamic optimization based on transfer
learning. Physics of Fluids, 33(12), 127121. https://doi.org/10.1063/5.0076538

90

https://doi.org/10.1016/j.nucengdes.2014.12.005
https://doi.org/10.3934/acse.2023015
https://doi.org/10.3934/acse.2023015
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122998
https://doi.org/10.1016/j.nucengdes.2022.112005
https://doi.org/10.1016/j.nucengdes.2022.112005
https://doi.org/10.48550/arXiv.2409.03395
https://doi.org/10.1016/j.nucengdes.2012.09.039
https://doi.org/10.1016/j.nucengdes.2012.09.039
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-2020_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-2020_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-2020_en
https://doi.org/10.48550/arXiv.1803.05407
https://doi.org/10.48550/arXiv.1803.05407
https://doi.org/10.1115/1.2911398
https://doi.org/10.1016/j.ijheatfluidflow.2009.06.007
https://doi.org/10.1016/j.ijheatfluidflow.2009.06.007
https://doi.org/10.1063/5.0076538

Ling, J., Kurzawski, A., & Templeton, J. (2016). Reynolds averaged turbulence mod-
elling using deep neural networks with embedded invariance. Journal of Fluid
Mechanics, 807, 155–166. https://doi.org/10.1017/jfm.2016.615

Maddox, W., Garipov, T., Izmailov, P., Vetrov, D., & Wilson, A. G. (2019, December 31).
A simple baseline for bayesian uncertainty in deep learning. https://doi.org/10.
48550/arXiv.1902.02476

Manceau, R., & Hanjalić, K. (2002). Elliptic blending model: A new near-wall reynolds-
stress turbulence closure. Physics of Fluids, 14(2), 744–754. https://doi.org/10.
1063/1.1432693

Manceau, R. (2015). Recent progress in the development of the elliptic blending
reynolds-stress model. International Journal of Heat and Fluid Flow, 51, 195–220.
https://doi.org/10.1016/j.ijheatfluidflow.2014.09.002

Manservisi, S., & Menghini, F. (2014). A CFD four parameter heat transfer turbulence
model for engineering applications in heavy liquidmetals. International Journal of
Heat and Mass Transfer, 69, 312–326. https://doi.org/10.1016/j.ijheatmasstransfer.
2013.10.017

Mendez, M. A., Ianiro, A., Noack, B. R., & Brunton, S. L. (Eds.). (2023).Data-driven fluid
mechanics: Combining first principles and machine learning. Cambridge University
Press.

Meng, X., & Karniadakis, G. E. (2020). A composite neural network that learns from
multi-fidelity data: Application to function approximation and inverse PDE
problems. Journal of Computational Physics, 401, 109020. https://doi.org/10.1016/
j.jcp.2019.109020

MYRRHA research and transmutation endeavour | MYRTE project | fact sheet | h2020
[CORDIS | european commission]. (n.d.). Retrieved August 18, 2024, from
https://cordis.europa.eu/project/id/662186

Nuttall, W. J. (2022, June 16). Nuclear renaissance: Technologies and policies for the future of
nuclear power (2nd ed.). CRC Press. https://doi.org/10.1201/9781003038733

Oder, J., Shams, A., Cizelj, L., & Tiselj, I. (2019). Direct numerical simulation of low-
prandtl fluid flow over a confined backward facing step. International Journal of
Heat and Mass Transfer, 142, 118436. https://doi.org/10.1016/j.ijheatmasstransfer.
2019.118436

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11),
559–572. https://doi.org/10.1080/14786440109462720

Saccaggi, E. (2023, April 13). Robustness-based training and explainability of a data-driven
model to cure the inconsistency between RANS andDNS datasets [laurea]. Politecnico
di Torino.

Shams, A., Roelofs, F., Niceno, B., Guo, W., Angeli, D., Stalio, E., Fregni, A., Duponcheel,
M., Bartosiewicz, Y., Tiselj, I., & Oder, J. (2019). Reference numerical database
for turbulent flow and heat transfer in liquid metals. Nuclear Engineering and
Design, 353, 110274. https://doi.org/10.1016/j.nucengdes.2019.110274

Shams, A., Roelofs, F., Tiselj, I., Oder, J., Bartosiewicz, Y., Duponcheel, M., Niceno, B.,
Guo, W., Stalio, E., Angeli, D., Fregni, A., Buckingham, S., Koloszar, L. K., Villa

91

https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.48550/arXiv.1902.02476
https://doi.org/10.48550/arXiv.1902.02476
https://doi.org/10.1063/1.1432693
https://doi.org/10.1063/1.1432693
https://doi.org/10.1016/j.ijheatfluidflow.2014.09.002
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.017
https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.017
https://doi.org/10.1016/j.jcp.2019.109020
https://doi.org/10.1016/j.jcp.2019.109020
https://cordis.europa.eu/project/id/662186
https://doi.org/10.1201/9781003038733
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118436
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118436
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1016/j.nucengdes.2019.110274

Ortiz, A., Planquart, P., Narayanan, C., Lakehal, D., van Tichelen, K., Jäger, W., &
Schaub, T. (2020). A collaborative effort towards the accurate prediction of tur-
bulent flow and heat transfer in low-prandtl number fluids. Nuclear Engineering
and Design, 366, 110750. https://doi.org/10.1016/j.nucengdes.2020.110750

Smith, L. N. (2017, April 4). Cyclical learning rates for training neural networks. https:
//doi.org/10.48550/arXiv.1506.01186

Tiselj, I., Bergant, R., Mavko, B., Bajsic´, I., & Hetsroni, G. (2001). DNS of turbulent
heat transfer in channel flow with heat conduction in the solid wall. Journal of
Heat Transfer, 123(5), 849–857. https://doi.org/10.1115/1.1389060

Wu, J., Feng, X., Cai, X., Huang, X., & Zhou, Q. (2023). A deep learning-based multi-
fidelity optimization method for the design of acoustic metasurface. Engineering
with Computers, 39(5), 3421–3439. https://doi.org/10.1007/s00366-022-01765-9

Wydler, P. (2005). Liquid metal cooled reactors [Number: 12]. CHIMIA, 59(12), 970–
970. https://doi.org/10.2533/000942905777675381

Yarlanki, S., Rajendran, B., & Hamann, H. (2012). Estimation of turbulence closure
coefficients for data centers using machine learning algorithms [ISSN: 1087-
9870]. 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in
Electronic Systems, 38–42. https://doi.org/10.1109/ITHERM.2012.6231411

Zhang, X., Xie, F., Ji, T., Zhu, Z., & Zheng, Y. (2021). Multi-fidelity deep neural network
surrogate model for aerodynamic shape optimization. Computer Methods in
Applied Mechanics and Engineering, 373, 113485. https://doi.org/10.1016/j.cma.
2020.113485

Zhang, Y., Tiňo, P., Leonardis, A., & Tang, K. (2021). A survey on neural network
interpretability [Conference Name: IEEE Transactions on Emerging Topics in
Computational Intelligence]. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence, 5(5), 726–742. https://doi.org/10.1109/TETCI.2021.3100641

92

https://doi.org/10.1016/j.nucengdes.2020.110750
https://doi.org/10.48550/arXiv.1506.01186
https://doi.org/10.48550/arXiv.1506.01186
https://doi.org/10.1115/1.1389060
https://doi.org/10.1007/s00366-022-01765-9
https://doi.org/10.2533/000942905777675381
https://doi.org/10.1109/ITHERM.2012.6231411
https://doi.org/10.1016/j.cma.2020.113485
https://doi.org/10.1016/j.cma.2020.113485
https://doi.org/10.1109/TETCI.2021.3100641

	Introduction
	Low Prandtl number flows
	Low Prandtl number turbulence modeling
	Eddy diffusivity models
	Explicit algebraic models

	Current availability of high-fidelity data
	Motivation for the current project

	Machine learning for fluid dynamics
	Introduction
	Unsupervised learning
	Semi-supervised learning
	Supervised learning

	Neural networks
	Neural network training

	Single fidelity data-driven turbulence model for the turbulent heat flux
	Mathematical formulation
	Structure of the neural network
	Training process
	Performance

	Multi-fidelity modeling
	Introduction
	Model's fidelity
	Relationship between data of different fidelity levels

	multi-fidelity modeling via composite neural network
	Toy problems
	Forrester function
	Forrester function with a discontinuity
	Continuous function with nonlinear correlation

	Towards multi-fidelity turbulent heat flux modeling

	RANS/DNS input comparison
	Introduction
	Channel flows
	RANS channel database description
	DNS channel database description

	Impinging jet
	DNS impinging database description
	RANS impinging database description

	Physical quantities comparison
	Channel flow
	Impinging jet

	Model's invariants comparison
	Principal Component Analysis
	Components' analysis

	Multi-fidelity model for the turbulent heat flux
	Introduction
	Requirements and constraints
	Loss function
	Training
	Uncertainty quantification

	GGD sum model (S1)
	Results

	SGD + GGD additive model (S5)
	Results

	SGD + GGD multiplicative model (S7)
	Results

	Impinging jet results

	Conclusions and future works

