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Abstract 
 

 
In recent years, the aviation industry has been transitioning toward simpler and more efficient 
systems, aiming to reduce complexity while enhancing safety and reliability. This shift, driven by the 
"More Electric Aircraft" concept, is gradually replacing hydraulic systems with electromechanical 
ones, which promise to minimize maintenance, reduce costs, and improve overall system 
performance. This thesis focuses on the characterization and modelling of an Electromechanical 
Actuator (EMA), specifically targeting its integration into secondary flight control systems. 
 
The primary objective of this work is to analyze the dynamic behaviour of an EMA through 
experimental testing on a bench at Politecnico di Torino, simulating the actuation of a secondary 
flight control. Using a Model-Based Systems Engineering (MBSE) approach, a mathematical model 
of the EMA was developed, taking into account the interactions between the various gearbox 
components, particularly the meshing of gears and the dissipative forces caused by friction. The new 
model improved upon previous High Fidelity (HF) models by more accurately reflecting real-world 
performance. 
 
Throughout the analysis, it was shown that friction significantly affects the system's behavior, 
particularly at lower command speeds, where meshing forces become more relevant. The new friction 
model demonstrated a reduction in Root Mean Square Error (RMSE) when compared to the previous 
HF model, which exhibited increasing divergence from desired results at higher command inputs. 
This improved precision, especially in representing the angular position of the motor, confirms the 
validity of the friction-based approach. 
 
Concluding the study, potential future developments include implementing gear degradation models 
and studying Prognostics and Health Management (PHM) to ensure long-term reliability of these 
systems. Additionally, incorporating the backlash effect into the current model could provide a more 
comprehensive understanding of gear dynamics and further enhance the model's accuracy. 
 
This work represents a significant step forward in the understanding and modelling of EMAs, offering 
valuable insights for future developments in the aerospace industry and the continued advancement 
of More Electric Aircraft technologies. 
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1.  Introduction 
 

Flight controls play a central role in ensuring the safe and dependable operation of an aircraft during 
all phases of flight. These controls allow the pilot to modify the areas of wind-resistant control 
surfaces like ailerons, rudders, and lifts in order to control roll, yaw, and pitch. The ability to control 
these surface areas is essential not only for the normal agility of the aircraft but also for managing 
adverse weather, correcting deviations from the desired path, and responding promptly to in-flight 
emergencies. The doctor examined the patient thoroughly to determine the cause of his symptoms.[1] 
 
Flight controls in the field of aviation have experienced significant evolution over time. During the 
early days of aviation, wind-resistant surface areas on airplanes were controlled using simple 
mechanical systems made up of steel cords, pulleys, and bars directly connected to the pilot's controls. 
Although the systems were simple and long-lasting, they required a significant amount of physical 
effort from the pilot, especially when operating larger aircraft or flying at high speeds. Additionally, 
the complete reliance on mechanics in these systems limited both the speed and precision of 
commands sent to the control surfaces. 

 
Figure 1.1: Airplanes Control devices [2] 
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As aircraft and missions grew more complex, the need for enhanced flight control systems became 
increasingly apparent. This need drove the development of assisted flight controls, which integrated 
mechanical and hydraulic power. In hydromechanical systems, the introduction of hydraulic actuators 
enabled the multiplication of the pilot’s applied force, allowing for the control of progressively larger 

and heavier aircraft with minimal physical effort. These systems relied on hydraulic pumps that 
powered cylinders linked to the control surfaces, thereby transforming a small input from the pilot 
into a significantly amplified force. 
 

1.1. Traditional Mechanical Systems 
 
During the beginnings of aviation, flight control systems were completely mechanical due to the 
technology limitations and ease of building. The systems utilized steel cables, pulleys, levers, and 
linkages that connected the cockpit controls directly to the aerodynamic surfaces, including ailerons, 
rudders, and elevators. Every action taken by the pilot using the controls was sent to the control 
surfaces via a system of rods and cables, which, although sturdy and simple to upkeep, had some 
constraints. 
 
Initially, the pilot had to exert a significant amount of physical effort due to the inertia of the 
mechanical components and aerodynamic resistance of the control surfaces, particularly when 
performing high-speed maneuvers or flying larger aircraft. The rise in aerodynamic forces while 
flying caused a corresponding rise in the force needed to operate the control surfaces, consequently 
restricting the maneuverability and efficiency of the aircraft's controls.  
Additionally, mechanical systems had a tendency to experience issues with reliability and precision. 
Vibrations, wear of components, and regular adjustments could impact control effectiveness, causing 
mechanical play and delays in control surface response.  
 
Another important drawback of conventional mechanical systems was their intricate design and 
integration into the aircraft's structure. The wires and wheels needed to be guided accurately inside 
the airplane, which led to more space being used and a higher total weight for the system. This also 
restricted the ability to add redundant systems, which are crucial for enhancing aircraft safety, 
particularly in complicated missions or demanding operational settings. 



 

14 
 

Figure 1.2: Cables and pulleys on traditional mechanical systems 
 
 
 
A key aspect of fly-by-wire systems is the introduction of automation and electronic management of 
flight controls. Onboard computers do not merely transmit the pilot's commands but process them to 
optimize the aircraft's response, correcting any errors or compensating for changing atmospheric 
conditions. This allows the aircraft to maintain artificial stability, enhancing safety and reducing the 
pilot's workload, who can then focus on other critical tasks. 
 
The flight control actuation systems, both hydraulic and electromechanical, play a crucial role in this 
context. Actuators are devices that convert control signals, sent by the fly-by-wire system or 
hydromechanical controls, into mechanical movements that directly operate the control surfaces. 
Hydraulic actuators, for example, use fluid pressure to generate powerful and precise movements, 
ideal for large aircraft or control surfaces requiring significant forces. 
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Figure 1.3: Electromechanical servovalve 
 
 

 
1.2. The Advent of Fly-by-Wire Systems 

 
Beginning in the 1970s, there was a push to enhance the accuracy, security, and adaptability of flight 
control systems, resulting in the creation of fly-by-wire (FBW) systems. These systems signify a 
technological shift in flight control, substituting conventional mechanical and hydraulic connections 
with fully electronic control systems.  
 
In a fly-by-wire system, the pilot's instructions are not sent directly to the control surfaces through 
cables or hydraulic lines anymore. Instead, digital electrical signals are generated from the pilot's 
control movements through position sensors and transducers. The electrical signals are transmitted to 
onboard computers, which analyze the data in real-time, considering factors like airspeed, aircraft 
position, weather conditions, and planned maneuvers [3]. 
 
The core of the fly-by-wire system consists of flight control computers, which use advanced 
algorithms to interpret the pilot's commands and generate the appropriate control signals for the 
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actuators that move the aerodynamic surfaces. This approach not only improves precision and 
response speed but also enables the implementation of automatic stabilization systems, fault 
protection, and emergency management, significantly reducing the pilot's workload. 
 
Another major benefit of fly-by-wire systems is the capability to seamlessly incorporate additional 
functionalities like automated flight control systems, piloting assistance, and adaptive flight modes. 
These systems are able to adapt to flight conditions automatically, enhancing stability and safety, and 
enabling the pilot to concentrate on high-level tasks like mission management and strategic 
navigation. 
 
Nonetheless, the shift to fly-by-wire systems brought about fresh hurdles, including the requirement 
to guarantee the dependability of electronic systems and protection against software malfunctions. In 
order to deal with these problems, present fly-by-wire systems are created with thorough redundant 
features, such as numerous control computers and replicated communication pathways, guaranteeing 
the system can still function safely even if one or more parts fail. 
 
 
 
 

1.2.1      The Evolution Toward Electromechanical Systems 

 
The ongoing advancements in technology have resulted in the creation of more complex flight control 
systems, especially those that utilize electromechanical components. These systems, merging fly-by-
wire features with high-tech electromechanical actuators, embody state-of-the-art flight control 
technology. 
 
High-precision electric motors are utilized in electromechanical actuators to create the motion of 
control surfaces. These actuators provide multiple benefits compared to conventional hydraulic 
systems, such as higher energy efficiency, lower system weight, and enhanced operational reliability. 
Moreover, due to the ability to control electric motors precisely through digital signals, 
electromechanical systems can offer rapid and accurate responses to changes in flight commands. 
 
Sophisticated electromechanical systems are well-suited for tasks that demand precision and quick 
reactions, like advanced aircraft, drones, and space expeditions. Moreover, decreasing reliance on 
traditional hydraulic systems simplifies aircraft design and maintenance, reduces critical components, 
and enhances overall system reliability.[4] 
 
 
Research [6] indicates that PBW (power-by-wire) actuators bring numerous advantages to actuation 
systems, primarily due to their fault-tolerant nature and the elimination of pipes and fluids. These 
benefits include:  
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a) enhanced safety and reliability, thanks to the absence of hazardous and flammable hydraulic 

fluids; 
b) reduced weight, volume, and complexity in power transmission pathways (Figure 4);  
c) simplified maintenance and lower costs, as there are no hydraulic leaks and diagnostics are 

improved; 
d) greater energy efficiency and superior dynamic performance.  

 
 
 

Figure 1.4: Power-by-wire actuators and HSA composition. (a) EHA, (b) EMA, and (c) HSA. [7] 
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These actuators are already integrated into operational aircraft, where EHAs and EMAs have matured 
sufficiently for use in recent large commercial transport aircraft. For example, EMAs are utilized in 
landing gear braking, mid spoiler surfaces, and the trimmable horizontal stabilizer on the Boeing 787. 
On the Airbus A380, EHAs are employed in primary flight controls (ailerons and elevators), while 
EMAs are used for slats, the trimmable horizontal stabilizer, and thrust reverser actuation. In military 
aviation, the Joint Strike Fighter features primary flight control systems driven by EHAs. Actuator 
engineers have estimated that PBW actuators and associated electrical systems could significantly 
reduce fuel consumption and maintenance costs in an all-electric passenger aircraft, leading to a 30-
50% decrease in ground service equipment. In combat scenarios, military aircraft could see a 
reduction in take-off weight by 270-450 Kg and up to a 14% decrease in fuselage vulnerability. 
Although PBW actuators are relatively new to the aerospace industry, the MEA/AEA concept 
presents substantial future opportunities for these actuators. 
 
As depicted in Figure 4(a), an EHA is essentially a self-contained hydraulic actuator with a pump 
driven by a variable-speed electric motor. In EHAs, power control is handled by the pump instead of 
traditional hydraulic systems, with adjustments in pump speed leading to changes in flow and 
hydraulic power levels. The electric motor and pump units regulate the position of the piston linked 
to the load by moving fluid between cylinder chambers, getting rid of the need for large piping 
systems and outside hydraulic sources. However, EMAs eliminate the necessity for hydraulic parts 
in the area, opting for mechanical drives to control the screw rod. This results in decreased 
maintenance needs, as well as a dependable, leak-proof operation. It is commonly acknowledged that 
EMAs generally have a weight advantage compared to EHAs when the actuation needs are the same. 
In spite of these advantages, engineers and researchers continue to face obstacles in progressing EMA 
technology for upcoming aircraft. In contrast to traditional hydraulic servo actuators, EMAs 
encounter various challenges such as limited understanding in areas like reliability, jamming risk, 
health monitoring, and thermal management. Conducting thorough experimental tests is vital to 
guarantee that airborne EMAs perform reliably. 
 
This study reviews the development and testing of one particular linear EMA system, with a focus on 
its application in flight controls, tested on a test bench. 
 
 

1.3. The Electromechanical Servovalve 
 
EMAs are tools that utilize an electric motor to produce the necessary force or torque for adjusting 
aerodynamic surfaces, with the movement being transferred via a mechanical setup. This brushless 
motor is connected to a gear box and, when needed, a linear actuator like a ball or roller screw can be 
added. Digital power electronic devices manage the onboard electrical system to provide the 
necessary power. 
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In recent decades, the aerospace industry has been steadfast in its pursuit of developing "more 
electric" aircraft. This has led to a gradual, yet steady, increase in the adoption of electrical technology 
in flight control systems, starting with fly-by-wire and continuing with the integration of 
electromechanical actuators, partially replacing traditional hydraulic and electrohydraulic actuators. 
This transition has allowed for more versatile configurations, improved aircraft dynamics, and 
effectively addressed issues related to noise and vibration, particularly through the use of 
piezoelectric technologies. [9] 
 
Despite the advancements made, electromechanical actuators (EMAs) have not yet reached full 
technological maturity and continue to present various safety issues. These problems can be partially 
mitigated through more complex designs, which, however, lead to increased production costs. 
 

Figure 1.5: Electromechanical actuator (EMA) [10] 
 
 
Because of safety issues, the utilization of EMAs as main actuators for flight control is presently 
restricted to experimental aircraft. Developing a strong Prognostics and Health Management (PHM) 
system could be a helpful approach in dealing with these difficulties by quickly identifying faults and 
correctly predicting the Remaining Useful Life (RUL) of deteriorating components. 
 
Incorporating a PHM system into aircraft control parts poses numerous difficulties, which are 
exacerbated by the use of electromechanical technology. The primary obstacle is the insufficient 
experimental data available, as EMAs are not commonly used in flight control systems yet, resulting 
in a scarcity of trustworthy past data. Another problem stems from the restrictions of the 
computational power on board, leading to the need for basic functions and effective algorithms to 
evaluate the health of each monitored component. Moreover, the complexity of extracting useful data 
during flight is increased by the unpredictable commands given to the actuators and the fluctuating 
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loads from gusts and turbulence, necessitating a reduction in the number of sensors to prevent higher 
costs and reliability problems. Ultimately, the prognostic algorithm must accurately capture the 
nonlinear nature of both the monitored system and degradation modes, as well as the influence of 
non-Gaussian noise, in order to minimize uncertainty in predictions and achieve optimal accuracy. 
 
 

1.3.1.   Electric actuation system 

 
An actuation system is described as a system that can generate and manage the movement of a 
mechanical part (mechanical load). The controlled mechanical load parameters can be static 
(position), kinematic (velocity), or dynamic (acceleration, torque, or force). Each actuation system 
consists of a power element, referred to as the actuator, that is tasked with producing the mechanical 
effort linked to the movement. This actuator may be hydraulic, pneumatic, electric, or of a different 
kind. 
 
An electric drive system is defined as one that utilizes an electric actuator, i.e., an electric machine, 
typically operating as a motor, in which energy is converted from electrical to mechanical form 
(electromechanical energy conversion). Motion control is achieved by regulating the motor's supply 
parameters (voltage, current, frequency). 
 
 

Figure 1.6: Scheme of an electric drive system 
 

To accomplish this, a power device is interposed between the motor and the electrical energy source 
(such as the public electricity grid) to provide the motor with the required voltage, current, and 
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frequency levels. Excluding solutions that use rotating converters, this device will generally be a 
static converter, composed of a power electronics structure employing components such as diodes, 
thyristors, transistors, etc., and possibly a transformer (to adjust the voltage level and/or the number 
of phases). The basic schematic of a generic electric drive system is shown in Figure 1.6. [8] 
 
 
 
 
 
 

2.  Activity and test bench description 
 

2.1. Test bench 

Over the years, numerous research projects and theses at the Politecnico di Torino have led to the 
development, assembly, and study of a test bench that replicates an electromechanical actuator. The 
test bench was assembled at the research laboratory of the DIMEAS department at the Politecnico, 
where the EMA bench tests and measurements were carried out. The only difference from a real 
actuator is the absence of a linear conversion of the rotational motion generated by the gearbox. 
Instead, an encoder, a sensor for measuring the angular position, is mounted on a smaller gear that 
meshes directly with the gearbox output. The test bench consists of the following components: 

• Control unit: The control unit essentially drives the motor when a command is issued by 
the user through the Siemens human-machine interface platform. It processes the desired 
command and the rotor position, applying the control law to determine the correct phase 
commutation. This operation is physically carried out by the inverter (Power unit). 
 

• Power module: The inverter is responsible for converting the three-phase current based on 
the rotor's position. The frequency at which the inverter switches the phases directly affects 
the speed of the rotating magnetic field and, consequently, the speed of the motor's rotation. 
In this way, a rotating magnetic field is generated inside the motor, which interacts with the 
magnetic field of the permanent magnets, causing the motor to rotate. 
 

• Microbox PLC: The programmable logic controller runs Siemens' TIA software, which 
contains a detailed model of the servomechanism. With this program it is possible to teach the 
desired command to the servomechanism (step, ramp, sinusoid). 
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• Converter: The test bench contains two converters; The converter transforms from 220V 
to 24V and is used to correctly power the power plant. 
 

• Electric motor: Generates mechanical power to drive the servomechanism. The motor is 
an 8-pole PMSM (permanent magnet synchronous motor) with three-phase power supply. 

 
• Epicyclic reducer or Gearbox: Made at the Polytechnic using Fused Deposition 

Modelling (FDM) technology, it is connected to the electric motor shaft. The reducer has 2 
stages and a transmission ratio of 124. The detail of the reducer in its stages and transmission 
ratios are explained in Appendix A. 

 
Figure 2.1: Test bench flow diagram [11] 
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Figure 2.2: Microbox PLC SIMATIC IPC427E; 

 
Figure 2.3: Control Unit CU310-2 PN and Power module;     

Figure 2.4: Epicyclic reducer;                                                                        Figure 2.5: Converter; 
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The technical details of the devices follow:  
 
 

 
 
 
 
 
 
 
 
 
 

  
Table 2.1: Electric motor: Engineering data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 2.2: Electric motor: Mechanical data 
 
 
 
 

Technical data 
  Rated torque (100 K)  

Static torque (60 K) 
Static torque (100 K) 
Rated speed (100 K) 

Number of poles  
Rated current 

Stall current (60 K) 
Stall current (100 K) 

Moment of inertia 
Efficiency 

5.3 Nm 
5.00 Nm 
6.0 Nm 

2000 rpm 
8 

3.0 A 
2.55 A 
3.15 A 

7.700 kg*cm2 
90 % 

Mechanical Data 

Motor type 
Shaft height 

Cooling Natural cooling 
Radial runout tolerance 0.040 mm 
Concentricity tolerance 0.10 mm 
Axial runout tolerance 0.10 mm 

Vibration severity grade 
Connector size 

Degree of protection 
Temperature monitoring 

Electrical connectors 
Encoder AM24DQI 

Permanent-magnet synchronous motor 
63 

Cooling 
0.040 mm 
0.10 mm 
0.10 mm 
Grade A 

1 
IP64 

Pt1000 temperature sensor 
Connectors for signals and power 

Absolute encoder 24 bits 
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2.1.1 Activity description 
 
 
The purpose of the sperimental activity is to study the EMA actuator under different commands in 
order to evaluate, through the model-based systems engineering (MBSE) approach, the friction 
present in the gearbox and how it affects the commanded position of the end user, that could be 
associated with the drive of a plane’s mobile surface. 
 
This EMA test bench fairly accurately replicates a real electromechanical servomechanism. As EMA 
systems are increasingly being adopted in the aerospace sector, as introduced in Chapter 1, the aim 
of this study is to analyze its practical implementation. In general, EMAs are finding their application 
in the actuation of secondary flight controls, which typically operate at ranges between 5-6 °/𝑠 (high-
lift devices) and 20-30 °/𝑠 (spoilers and airbrakes). For the typical actuation speed of primary and 
secondary flight controls in large commercial aircraft, the relevant regulatory framework is found 
within CS-25 (Certification Specifications for Large Aeroplanes) and its amendments under EASA 
(European Union Aviation Safety Agency) regulations. Specifically, these regulations address 
general requirements for flight control systems and their functionality, ensuring smooth and effective 
operations during various phases of flight. [28]. 
 

 
Figure 2.6: CS 25.671 (d) details 
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In this study, it has been observed that the meshing between the shafts and the gears of the reducer 
actually degrades the final angular position of the motor, and consequently of the load, leading to 
significant effects. For example, consider a mobile surface commanded to deploy at 6 °/𝑠 but actually 
extending at 4.5 °/𝑠 cause friction. For actuation times of secondary controls, which can take up to 
10-20 seconds, this discrepancy results in noticeable differences. In real world scenarios, this would 
put the pilot in a more difficult and complex control situation, where a movable surface (or more) 
might be deployed at 70 degrees instead of the commanded 80-90 degrees, with increased safety risks. 
 
In practice, what is done is to issue a command through the Siemens platform, which acts as an 
interface between human and machine, and convert it into a specific electrical impulse. This impulse, 
circulating in the motor's coils, generates a driving torque on the motor shaft, which is connected to 
the epicyclic gearbox and sets the rest of the gear mechanism in motion. The command issued via the 
platform is a command on the output shaft, i.e., on the encoder; for example, a command of 0.03 rad/s 
corresponds to a rotation of the encoder at 0.03 rad/s, or 1.72 degrees per second. 
 
Some tests were carried out to calculate the degradation of the command by executing only ramp 
commands of various amplitudes. It is important to note that, for the extension of a secondary flight 
surface, a ramp command of a certain amplitude is issued, which corresponds to the speed at which 
we want the surface to be deployed. 
 
10 tests were performed with 10 increasing ramp commands, starting from the smallest 
(approximately 0.6 °/𝑠) to the largest (6 °/𝑠), to observe how friction affects the motor at different 
speeds. The command test are called by increasing numbers ‘0.01, 0.02, … 0.09, 0.1’ because this 
writing indicates respectively a ramp command with an amplitude of 0.01 radiant/s, 0.02 rad/2 and 
so on. Additionally, the previously developed HF model was also used to evaluate how reliable it is 
for this type of command and to possibly compare it with the subsequently created model. 
 
Here the logical path taken is outlined: 
 

 

Experimental 
tests and data 

collection 

System 

analysis 

Numerical 
model 

development 

Model 
validation Simulations 



 

27 
 

 
2.2. High Fidelity model 

 
In previous works, a numerical model was developed that can accurately replicate the behavior of the 
actual test bench components. Previous studies focused on the possibility of replicating the behavior 
of a system characterized by reaction times between those of a primary flight control and those of a 
secondary flight control. As a result, a Matlab Simulink model has been developed, using an 
integration step of 1 ∗ 10−6 s. This allows for a faithful representation of the system's electronic 
components' behavior, remaining one or two orders of magnitude below the characteristic time of the 
electronic part itself. [12]  
 

 
Figure 2.7: High Fidelity model overview 

 
 

Given the need to replicate the system's behavior over long time intervals, a fixed-step integration 
method, ODE 1, also known as Euler's method, was adopted; this choice has a lower cost in terms 
of required memory, although more demanding in terms of computational resources.  
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2.3. High Fidelity Electro-mechanical actuator model 
description 

 
 
As we saw in the figure 2.7, the model built by previous works is composed of numerous sub-systems, 
that we briefly describe: 
 
• Control Electronics (PID): The PWM (Pulse Width Modulation) controller, receives as input the 
command and transforms it into a reference current that is applied to the motor. In the aerospace field, 
PID controllers are widely used; 
 
• Resolver: Converts the angular position of the motor into an electrical angular position, used than 
by the inverter to control the three currents inside the three-phase motor; 
 
• Inverter Model: Transforms the modulated signal from the controller into a supply current for the 
motor. The information signal must be translated into a high-power signal before, for this there is an 
H-bridge, an electronic circuit composed of diodes and transistors, commonly used in aviation to 
solve this problem. 
 
• BLDC electromagnetic model: The sub-system of the electric motor, that provides as output the 
torque supplied, which is engaged via the motor-shaft directly into the gearbox; 
 
• Motor-transmission dynamical model: Is the mechanical part of the actuator. It contains the 
equations of motion and the mathematical model studied in this work, that calculates the friction and 
the meshing between motor-shaft/planes and planets/crown. Having as input the torque delivered, it 
returns as output the angular displacement of the motor and the user (encoder). 
 
• Signal acquisition: this block has nothing to do with a real electromechanical actuator component, 
but it is used for the elaboration of some data generated by the simulation. The subsequent sections 
will focus on describing each individual sub-system to gain a comprehensive understanding of the 
working flow of the model [13][14]. 
 
 
This work presents the modifications made to the 'Motor-transmission dynamical model' block, 
taking into account the physical meshing between the gears, the exchange of forces, and the 
calculation of friction and its torque acting on the shafts. The detailed explanation is provided in 
Chapter 4. Following this, the mathematical model used to implement the equations governing the 
mechanical phenomenon is described. 
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3. Dynamic analysis 
 
Once the electronic components of the test bench and the block model in Simulink have been 
described, we can analyze the planetary gearbox, which is at the core of the friction phenomena. Its 
modeling, like any mechanical system, is carried out in several steps illustrated in the figure 3.1. 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

                                            Figure 3.1: Modellization flowchart 
 
 
 
 
For the mechanical system, refer to Appendix A, which contains a detailed description of the 
components in the gearbox. 
 
 

Mechanical 
system 

Physical model 

Mathematical 
model 

 

Simulation 
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3.1. Physical model 
 
The physical model represents a system equivalent to the mechanical system, based on certain 
assumptions made to simplify the model. In this case, an elasto-dynamic analysis was chosen. The 
model takes into account quantities such as: 
 

• The inertia of the bodies; 
• The stiffness and damping of the bodies; 
• The backlash between the rings; 

 
 

 
 

Figure 3.2: Main elements of the planetary gearbox [15] 
 

 
 
Backlash has been previously studied [12], and therefore it is not considered in this thesis work. 

 
 
The planetary gearbox's dynamic behavior was analyzed with a rotational mathematical model that 
simplifies the equations of motion and reduces computational costs. Nevertheless, not all translational 
effects (and therefore the bearing reactions) are considered.[16] 
 
The model was designed for a particular gearbox, but it was also configured to be suitable for any 
planetary gearbox with three planets in the reduction stage. In any scenario, it can be readily adjusted 
for systems containing more than three planets. 
 
The gear mesh stiffness is represented as springs, with damping elements placed in parallel to simulate 
viscous effects. 
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Figure 3.3   Lumped-Parameter Dynamic Model [16] 

 
 

The chosen modeling methodology is the lumped parameter approach, which considers elastic 
elements as massless and mass elements as rigid. The correct selection of parameters (such as masses, 
stiffnesses, damping, etc.) allows for the development of a reliable model for the overall study of the 
system's dynamics. 
 
So we can write the stiffness and damping coefficient of a generic shaft as: 
 
 

   𝐾𝜃 =
Ӏ𝑝∗𝐺𝑠

𝐿𝑠
                                                              (3.1)   
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𝐶𝑠 = 2 ∗ 𝜀 ∗ √𝐾𝜃 ∗ 𝑚𝑠                                                       (3.2) 
 
 
With: 
 

• Ӏ𝑝 =
𝜋

2
∗ 𝑟𝑠

4 the polar moment of inertia of the section [mm^4] with 𝑟𝑠 the radius of the shaft; 
 
• 𝐺𝑠 the shear modulus [GPa]; 

 
• 𝐿𝑠 the length of the shaft section [mm]; 

 
• 𝑚𝑠 the mass of the shaft; 
 

• 𝜀 the damp ratio, calculated in the script matlab called dinamica riduttore. 
 
 
 

 
 

Figure 3.4: Shaft torsional stiffness 
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3.2. Mathematical model 

 

Having chosen a dynamic model with lumped parameters, with reference to figure 3.3 we can 
introduce a series of parameters and initial simplifying hypotheses: 

• Equal and constant viscous damping coefficients for ring-planet gears 
𝑐𝑟𝑝1 = 𝑐𝑟𝑝2 = 𝑐𝑟𝑝3 = 𝑐𝑟𝑝; 

• Equal and constant viscous damping coefficients for sun-planet gears 
𝑐𝑠𝑝1 = 𝑐𝑠𝑝2 = 𝑐𝑠𝑝3 = 𝑐𝑠𝑝; 

• Equal and constant ring-planet gear mesh stiffness 𝑘𝑟𝑝1=𝑘𝑟𝑝2=𝑘𝑟𝑝2=𝑘𝑟𝑝; 

• Negligible transmission error 𝑒𝑠𝑝 ≃ 0 and 𝑒𝑟𝑝 ≃ 0; 

• Pressure angle of sun-planet  𝛼𝑠𝑝 and ring-planet 𝛼𝑟𝑝 constant during the meshing. 

 
The equations of motion developed for each rotating element of the reducer are presented below. The 
equations of motion are reported, considering the 5 degrees of freedom of the gearbox: rotation of the 
sun-gear, rotations of the 3 satellites, rotation of the train carrier and the crown, that has been 
considered fixed. 

 

We define the following quantities: 

• 𝑇𝐷 Input torque to the sun gear [Nm]; 

• 𝑇𝐿 Load tourqe on the planet carrier [Nm]; 

• 𝑟𝑏𝑝 Base radius of the planet gears [m]; 

• 𝑟𝑏𝑟 Base radius of the ring gear [m]; 

• 𝑟𝑏𝑠 Base radius of the sun gear [m]; 

• 𝑟𝑐 Radius of the planet carrier [m]; 

• 𝑐𝑠𝑝  Viscous damping coefficient of the sun-planet gears [kg/s]; 

• 𝑐𝑟𝑝  Viscous damping coefficient of the ring-planet gears [kg/s]; 
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• 𝑘𝑠𝑝 Sun-planet gear mesh stiffness [N/m]; 

• 𝑘𝑠𝑝 Ring-planet gear mesh stiffness [N/m]; 

• 𝐼𝑠𝑜𝑙 𝑎𝑛𝑑 Ӏ𝑠𝑎𝑡 the the moments of inertia of the motor-shaft and the satellites (same for 

all satellites while a little bit different from the driven-shaft) 

 

 

3.2.1. Solar shaft equilibrium equation 
 
The free body diagram of the solar wheel was created with 𝑟𝑏𝑠 =  𝑟𝑎𝑑𝑖𝑢𝑠 of the solar base, in 
order to derive the equation of motion: 

 
Figure 3.5: Free body diagram of the solar wheel 
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From which the following equation of motion derives: 
 

                           𝑇𝐷 – 𝑟𝑏𝑠  ∗ (𝑐𝑠𝑝1𝛿�̇� 𝑝1  +   𝑐𝑠𝑝2𝛿�̇� 𝑝2   +   𝑐𝑠𝑝3𝛿�̇� 𝑝3 )  −   𝑟𝑏𝑠  ∗ (𝑘𝑠𝑝1  ∗ 

𝑓(𝛿𝑠𝑝1, 𝐵𝑠𝑝1) + 𝑘𝑠𝑝2 ∗ 𝑓(𝛿𝑠𝑝2, 𝐵𝑠𝑝2 )+ 𝑘𝑠𝑝3 ∗ 𝑓(𝛿𝑠𝑝3, 𝐵𝑠𝑝)) =  𝐼𝑠𝑜𝑙 ∗ 𝜃 𝑠  

 
 
 

(3.3) 
 

The 𝑓(𝛿𝑠𝑝i, 𝐵𝑠𝑝i) terms are the backslash function; Backlash represents the clearance between two 
interacting moving parts and is essential to allow relative rotation between them. 
This phenomenon is particularly evident in mechanical systems equipped with a driving gear and a 
driven gear that are not directly interconnected, meaning that the motor shaft and the load shaft are 
connected to each other through intermediate gear trains. 
The function representing the backlash phenomenon is shown in Figure 3.6 and can be expressed as: 
 
 

           
  (3.4) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.6: Backlash function 
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• δ (delta): represents the relative displacement or angular error between two components in a 
transmission system, such as the angular error between the driven and driving gear teeth in a 
gear mesh. 

• 𝐵 (backlash): represents the magnitude of mechanical play or the angular distance that can 
be traveled before the gear teeth re-engage. It quantifies the clearance between gear teeth 
before motion is transmitted from the driving to the driven element 

 
Since this has already been tested and validated in previous models, for convenience it has not been 
considered in this model. Since the latter is already very complex and large, including the backslash 
would have weighed down the computational load of the Simulink program too much. Therefore in 
our model it will be 𝑓(𝛿𝑠𝑝𝑖, 𝐵𝑠𝑝𝑖) = 1 ; 
 
For simplicity, it will no longer be included in the equations. 

 
 

3.2.2. Relative rotation balance of the satellite shafts 
with respect to the train carrier. 

 
 
As previously mentioned, since the model is purely rotational, the gyroscopic effects resultingv from 
the rotation of the three planet gears around the carrier axis are not considered. The equilibrium 
equations are as follows: 
 
 
Satellite 1: 
 
(𝑘𝑠𝑝1 − 𝑘𝑟𝑝1) ∗ 𝑟𝑏𝑝 + (𝑐𝑠𝑝1 ∗ 𝛿ʹ𝑠𝑝1 − 𝑐𝑟𝑝1 ∗ 𝛿ʹ𝑟𝑝1) ∗ 𝑟𝑏𝑝 = Ӏ𝑠𝑎𝑡 ∗ Ӫ𝑝2_𝑐           (3.5) 

 
 
 
 
 
 
 
 
 



 

37 
 

 
Figure 3.7: Free body diagram of the satellite 1; 

 
 

 Satellite 2: 

(𝑘𝑠𝑝2 − 𝑘𝑟𝑝2) ∗ 𝑟𝑏𝑝 + (𝑐𝑠𝑝2 ∗ 𝛿ʹ𝑠𝑝2 − 𝑐𝑟𝑝2 ∗ 𝛿ʹ𝑟𝑝2) ∗ 𝑟𝑏𝑝 = Ӏ𝑠𝑎𝑡 ∗ Ӫ𝑝2_𝑐              (3.6) 

 

Figure 3.8: Free body diagram of the satellite 2 
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Satellite 3: 
  
 
(𝑘𝑠𝑝3 − 𝑘𝑟𝑝3) ∗ 𝑟𝑏𝑝 + (𝑐𝑠𝑝3 ∗ 𝛿ʹ𝑠𝑝3 − 𝑐𝑟𝑝3 ∗ 𝛿ʹ𝑟𝑝3) ∗ 𝑟𝑏𝑝 = Ӏ𝑠𝑎𝑡 ∗ Ӫ𝑝3_𝑐              (3.7)  

 

 
Figure 3.9: Free body diagram of the satellite 3 

 
 
There is also the final equation related to the rotation of the planet carrier, located in the 
second stage of the gearbox, which drives the final gear connected to the encoder. In our 
model, this equation was not created as it is unnecessary. Our main interest is to calculate the 
correct motor angular position, which, through the transmission ratio τ, will directly give us 
the angular position of the load. 
 
In any case, this would have been the relevant equation: 
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   (𝑐𝑠𝑝1𝛿�̇�𝑝1 ∗ 𝑟𝑐 ∗ cos(α𝑠𝑝) +  𝑐𝑟𝑝1𝛿�̇� 𝑝1 ∗ 𝑟𝑐 ∗ cos(α𝑟𝑝) + 

𝑐𝑠𝑝2𝛿�̇�𝑝2 ∗ 𝑟𝑐 ∗ cos(α𝑠𝑝) + 𝑐𝑟𝑝2𝛿�̇� 𝑝2 ∗ 𝑟𝑐 ∗ cos(α𝑟𝑝) + 𝑐𝑠𝑝3𝛿�̇�𝑝3 ∗ 

𝑟𝑐 ∗ cos(α𝑠𝑝) + 𝑐𝑟𝑝3𝛿�̇�𝑝3 ∗ 𝑟𝑐 ∗ cos(α𝑟𝑝)) + (𝑘𝑠𝑝1 ∗ 𝑟𝑐 ∗ cos(α𝑠𝑝) + 

(𝑘𝑟𝑝1∗ 𝑟𝑐 ∗ cos(α𝑟𝑝) + (𝑘𝑠𝑝2 ∗ 𝑟𝑐 ∗ cos(α𝑠𝑝) + (𝑘𝑟𝑝2 ∗ 𝑟𝑐 ∗ cos(α𝑟𝑝) + 

 (𝑘𝑠𝑝3 ∗ 𝑟𝑐 ∗ cos(α𝑠𝑝) + (𝑘𝑟𝑝3 ∗ ∗ 𝑟𝑐 ∗ cos(α𝑟𝑝)) - 𝑇𝐿 = 𝐼𝑐𝑎𝑟 ∗ 𝜃 𝑐𝑎𝑟 

 
 
 
 
 

(3.8) 

With 𝑟𝑐 the radius of the satellite carrier. 
 
 

3.2.3. Elastic and viscous meshing forces 
 
 

The dynamic meshing forces mainly depend on variations in mesh stiffness and transmission errors. 
These forces, which vary during rotation, are transmitted through the supports to the gearbox housing. 
 
Elastic meshing forces  
 
Elastic force on the solar is:  
 

𝐹𝑒𝑙𝑎𝑠𝑡
𝑠𝑜𝑙 = 𝑘𝑠𝑝1 ∗ 𝛿𝑠𝑝1 + 𝑘𝑠𝑝2 ∗ 𝛿𝑠𝑝2 + 𝑘𝑠𝑝3 ∗ 𝛿𝑠𝑝3                                   (3.9) 

 

On the satellites: 
 

𝐹𝑒𝑙𝑎𝑠𝑡
𝑠𝑎𝑡1 = 𝑘𝑠𝑝1 ∗ 𝛿𝑠𝑝1 − 𝑘𝑟𝑝1 ∗ 𝛿𝑟𝑝1                               (3.10) 

𝐹𝑒𝑙𝑎𝑠𝑡
𝑠𝑎𝑡2 = 𝑘𝑠𝑝2 ∗ 𝛿𝑠𝑝2 − 𝑘𝑟𝑝2 ∗ 𝛿𝑟𝑝2                               (3.11)  

𝐹𝑒𝑙𝑎𝑠𝑡
𝑠𝑎𝑡3 = 𝑘𝑠𝑝3 ∗ 𝛿𝑠𝑝3 − 𝑘𝑟𝑝3 ∗ 𝛿𝑟𝑝3                               (3.12) 
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Viscous meshing forces 
 

On the solar: 
 

𝐹𝑣𝑖𝑠𝑐
𝑠𝑜𝑙 = 𝑐𝑠𝑝1 ∗ 𝛿ʹ𝑠𝑝1 + 𝑐𝑠𝑝2 ∗ 𝛿ʹ𝑠𝑝2 + 𝑐𝑠𝑝3 ∗ 𝛿ʹ𝑠𝑝3                                  (3.13) 

  

On the satellites: 
𝐹𝑣𝑖𝑠𝑐
𝑠𝑎𝑡1 = 𝑐𝑠𝑝1 ∗ 𝛿ʹ𝑠𝑝1 − 𝑐𝑟𝑝1 ∗ 𝛿ʹ𝑟𝑝1                                            (3.14) 

  
𝐹𝑣𝑖𝑠𝑐
𝑠𝑎𝑡2 = 𝑐𝑠𝑝2 ∗ 𝛿ʹ𝑠𝑝2 − 𝑐𝑟𝑝2 ∗ 𝛿ʹ𝑟𝑝2                                            (3.15) 

 
𝐹𝑣𝑖𝑠𝑐
𝑠𝑎𝑡3 = 𝑐𝑠𝑝3 ∗ 𝛿ʹ𝑠𝑝3 − 𝑐𝑟𝑝3 ∗ 𝛿ʹ𝑟𝑝3                                          (3.16) 

 
 
The equations 3.17 to 3.28 express the relative movements between the various components of the 
gear system, such as the sun gear and the planet gears. These displacements are given by the 
differences in angular velocities and positions of the components. Physically, this represents the 
deformation of the gears during meshing. Their importance lies in describing how the gear teeth move 
relative to each other during engagement. 
The displacements and their derivative along the sun-planet gear meshes were calculated as follows: 

 
 

𝛿𝑠𝑝1 = 𝑟𝑏𝑠 ∗ (𝜃𝑠 − 𝜃𝑐) − 𝑟𝑏𝑝 ∗ 𝜃𝑝1_𝑐                                                  (3.17) 
 

𝛿ʹ𝑠𝑝1 = 𝑟𝑏𝑠 ∗ ( 𝜃ʹ𝑠 − 𝜃ʹ𝑐) − 𝑟𝑏𝑝 ∗ 𝜃ʹ𝑝1_𝑐                                                (3.18) 
 
 

𝛿𝑠𝑝2 = 𝑟𝑏𝑠 ∗ (𝜃𝑠 − 𝜃𝑐) − 𝑟𝑏𝑝 ∗ 𝜃𝑝2_𝑐                                                   (3.19) 
 

𝛿ʹ𝑠𝑝2 = 𝑟𝑏𝑠 ∗ ( 𝜃ʹ𝑠 − 𝜃ʹ𝑐) − 𝑟𝑏𝑝 ∗ 𝜃ʹ𝑝2_𝑐                                                (3.20) 
 

 

𝛿𝑠𝑝3 = 𝑟𝑏𝑠 ∗ (𝜃𝑠 − 𝜃𝑐) − 𝑟𝑏𝑝 ∗ 𝜃𝑝3_𝑐                                                   (3.21) 
 

𝛿ʹ𝑠𝑝3 = 𝑟𝑏𝑠 ∗ ( 𝜃ʹ𝑠 − 𝜃ʹ𝑐) − 𝑟𝑏𝑝 ∗ 𝜃ʹ𝑝3_𝑐                                                 (3.22) 
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The displacements and their derivative along the planet-ring gear meshes: 

 
 

𝛿𝑟𝑝1 = 𝑟𝑏𝑝 ∗ 𝜃𝑝1_𝑐 − 𝑟𝑏𝑟 ∗ 𝜃𝑐𝑎𝑟                                                  (3.23) 
 

𝛿ʹ𝑟𝑝1 = 𝑟𝑏𝑝 ∗ 𝜃ʹ𝑝1_𝑐 − 𝑟𝑏𝑟 ∗ 𝜃ʹ𝑐𝑎𝑟                                                 (3.24) 
 
 

𝛿𝑟𝑝2 = 𝑟𝑏𝑝 ∗ 𝜃𝑝2_𝑐 − 𝑟𝑏𝑟 ∗ 𝜃𝑐𝑎𝑟                                                  (3.25) 
 

 𝛿ʹ𝑟𝑝2 = 𝑟𝑏𝑝 ∗ 𝜃ʹ𝑝2_𝑐 − 𝑟𝑏𝑟 ∗ 𝜃ʹ𝑐𝑎𝑟                                                 (3.26) 
 
 

𝛿𝑟𝑝3 = 𝑟𝑏𝑝 ∗ 𝜃𝑝3_𝑐 − 𝑟𝑏𝑟 ∗ 𝜃𝑐𝑎𝑟                                                   (3.27) 
 

𝛿ʹ𝑟𝑝3 = 𝑟𝑏𝑝 ∗ 𝜃ʹ𝑝3_𝑐 − 𝑟𝑏𝑟 ∗ 𝜃ʹ𝑐𝑎𝑟                                                  (3.28) 
 
 
 
 

3.3. Simulation 

 
 

To simulate the dynamic behavior of the system, the equations of motion were derived. These were 
then integrated into the Simulink environment, a software within the MATLAB programming 
language. The advantages of this software are: 
 

• The possibility of block-based modelling of both dynamic and non-dynamic systems; 
 

• By varying the model parameters, we can understand how the system evolves, identify the 
key factors that most influence the model, and how they do so. This procedure is particularly 
useful both in the design phase and in the improvement phase of the model; 
 

• Monitoring the forces involved in real-time allows us to understand which elastic or viscous 
components are primarily responsible for meshing, depending on the type of command given. 
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The main blocks of the model are described, following the mathematical model just presented, in 
Chapter 4. 
 
In addition, there are several MATLAB scripts and functions that complement the Simulink model, 
which calculate all the quantities described so far, as well as those that follow. They can be found in 
the Appendix B-Matlab Script Appendix. Specifically: 
 

• Main HF: It defines the main parameters of the HF model, including the parameters of the 
controller, the inverter, and the motor. Once the program is executed, it opens the 
corresponding Simulink model and starts the simulation. Additionally, it reorganizes and 
saves the relevant data into output structures, allowing for easy selection of the quantities of 
interest. 
 

• Dinamica riduttore: It contains all the geometric data of the gearbox (gear ratio, shaft 
lengths, tooth dimensions of the gears on different shafts, etc.), the calculation of the moments 
of inertia, and the meshing stiffness through the call of another function called 'mesh stiffness.' 
It also includes the contact segments between the teeth of the different shafts and their 
evolution during meshing. Additionally, it estimates the friction coefficient for this type of 
rotational dynamics, as described in section 3.4.2. 

 
• mesh stiffness: A function that calculates the meshing stiffnesses according to the Kuang 

& Yang Model. [25] 
 

• BancoEMA_ramp0.01 and others: There are 10 files with this name, changing only the 
last part, according to the specific command we are performing (ramp 0.02, 0.03, … 0.1). 

These scripts are used to visualize the quantities recorded during the tests, and subsequently 
compare them with those from the Stiffness model. They simply open CSV files, which is the 
format used by Siemens software to record the data obtained from the test bench, extract the 
variables of interest, and insert them into convenient vectors for subsequent on-screen 
visualization. 
 

• saveresultsHF: This script simply saves the data, at the end of a simulation, into vectors, 
which are then plotted in MATLAB for easier visualization. In the same graph, it also plots 
the corresponding experimentally measured quantity, allowing for an immediate assessment 
of the model's effectiveness. 
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3.4. Energy dissipation 
 
Losses in mechanical transmission must be considered in a accurate model. The text below explains 
the model that is utilized to calculate the different elements of loss in the gearbox. Power losses 
related to gears can be divided into two groups: 
 

• Load-dependent losses; 
• Load-independent losses 

Among the load-dependent power losses, those caused by sliding between the meshing teeth are 
included. The friction model for this type of loss is now presented. 
 

3.4.1. Sliding losses of the meshing teeth 
 

It is important to recognize that the force transmitted between meshing teeth during sliding motion 
has two components: one perpendicular to the tooth surface and the other tangential, aligning with 
the relative sliding velocity. [17] 

Pure rolling motion happens only at the point of contact between the pitch circles of the gears. 
Sliding happens above and below this point, causing a friction force between the interacting teeth 
known as 𝐹𝑎𝑡𝑡(𝑡). The frictional force creates a torque that varies based on the position of the contact 
point on the line of action: 

.𝐹𝑎𝑡𝑡(𝑡) = 𝜇 ∗ 𝐹𝑛(𝑡)                                                        (3.29) 

 
Where: 

• 𝜇 is the coefficient of friction; 
• 𝐹𝑛(𝑡) is the force exchanged between the teeth during meshing and directed along the line 

of action [N];  
• 𝐹𝑎𝑡𝑡(𝑡) is the tangential friction force perpendicular to the line of action [N]. 

 

The coefficient 𝜇 is assumed to remain constant during meshing. However, it is necessary to account 
for the change in sign with the direction of the relative sliding velocity 𝑉𝑆: 
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𝜇 = 𝜇0 ∗ 𝑠𝑖𝑔𝑛(𝑉𝑠)   {
𝜇0, 𝑉𝑠 > 0

−𝜇0, 𝑉𝑠 < 0
                                     (3.30) 

 
 
Vibrations can be initiated by the reversal of the friction force. In straight-tooth gears, this 
phenomenon is very important, but it is not important in helical gears, as in our situation. 
 
To simulate the presence of friction during meshing, the following steps were taken: 
 

1. Estimation of the friction coefficient 𝜇0;  
 

2. Calculation of the contact geometry, deriving the expressions for the curvature radii of the 
gears; 

 
3. Determination of the expression for the sliding velocity of the two profiles along the contact 

segment;  
 

4. Calculation of the friction torque exerted by 𝐹𝑎𝑡𝑡(𝑡). 
 
 

3.4.2. Estimation of the friction coefficient 
 
 
Determining the friction coefficient is crucial and can be done through experimental testing or 
consulting the formulas in the literature. It should be emphasized that the coefficient changes during 
meshing depending on the movement of the contact point along the line of action and various 
operating parameters like contact force. In order to simplify the modelling of the system, a consistent 
friction coefficient is used, determined by averaging the values measured along the path of contact. 
Listed below are a few of the equations applied in this thesis work to calculate the Coulomb friction 
coefficient. 
 
Friction coefficient with ISO/TR 14179-2 
 
The first expression is taken from ISO/TR 14179-2 [18] and is here reported: 
 
 

𝜇𝑠𝑜𝑙−𝑠𝑎𝑡 = 0.048 ∗ (
𝐹𝑠𝑜𝑙−𝑠𝑎𝑡

𝑏

𝑉𝑐∗𝜌𝑠𝑜𝑙−𝑠𝑎𝑡
)

0.2

∗ 𝜂−0.05 ∗ 𝑅𝑎𝑚
0.25 ∗ 𝑋𝐿                             (3.31) 
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With: 
 

• 𝑉𝑐 is the sum of the velocities at the pitch point [m/s]; 
 

• 𝜌𝑠𝑜𝑙−𝑠𝑎𝑡 is the curvature radius at the pitch point [mm]; 
 

• 𝑏 is the face width of the gear teeth [mm]; 
 

• 𝐹𝑠𝑜𝑙−𝑠𝑎𝑡 is the contact force between the solar gear and the planet gear per unit length [N/mm]; 
 

• 𝑋𝐿 is a factor related to the type of lubricant, set equal to 1 because is absent here; 
 

• η is a coefficient similar to a dynamic viscosity at the point of contact between the rings; 
 

• 𝑅𝑎𝑚 is the arithmetic mean of the surface roughness, equal to 1
2
(𝑅𝑎1 + 𝑅𝑎2) [𝜇𝑚]; 

 
 
For the satellite-crown mesh the expression is the same, it changes only the 𝐹𝑠𝑎𝑡−𝑐𝑜𝑟 force. 
 
 
Friction coefficient with ISO/TR 6336-4 
 
 
Another expression used is derived from the regulations ISO/TR 6336-4 [19], for the solar-satellite 
meshing: 
 
. 

𝜇𝑠𝑜𝑙−𝑠𝑎𝑡 = 0.143 ∗ (
𝛿∗

𝐹𝑠𝑜𝑙−𝑠𝑎𝑡
𝑏

𝑉𝑐∗𝜌𝑠𝑜𝑙−𝑠𝑎𝑡∗𝜂𝑑
)

0.25

                                         (3.32) 

 
 
With 𝜂𝑑 representing the dynamic viscosity and δ the average roughness of the contact surfaces. 
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3.5. Gear Meshing Geometry  
 
The point where the teeth touch is on the line that touches the base circles of the gears, called the 
contact line. The contact portion is determined by where the addendum circles of the two gears 
intersect with this line.  
 
The line segment 𝑠𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝐴𝐵 signifies the specific part of the interaction where the teeth actually 
engage in meshing. While in use, the contact point between the conjugate profiles shifts along the 
line of action, staying within the range marked by points A and B. [15] 

 
 

Figure 3.10: Contact segment [20] 
 
The contact segment is divided into two parts: the first part, called the approach segment 𝑠𝑎𝑐𝑐, extends 
between point A and the pitch point C. The second part is known as the recess segment 𝑠𝑟𝑒𝑐, spanning 
from points C to B. Additionally, the segment from 𝑇1 to 𝑇2 is referred to as the base segment 
𝑠𝑏𝑎𝑠𝑒 corresponding to the segment 𝑠𝑏𝑎𝑠𝑒 = 𝑇1𝑇2. Looking at figure figure 3.7, we can calculate these 
segments as: 
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                                 𝑠𝑎𝑐𝑐 = √𝑟𝑎2
2 − 𝑟𝑏2

2 − 𝑟𝑝2 ∗ sin (𝛼)                                             (3.33) 

 
 𝑠𝑟𝑒𝑐 = √𝑟𝑎1

2 − 𝑟𝑏1
2 − 𝑟𝑝1 ∗ sin (𝛼)                                             (3.34) 

 
𝑠𝑏𝑎𝑠𝑒 = (𝑟𝑏1 + 𝑟𝑏2) ∗ tan (𝛼)                                                 (3.35) 

 
 
With: 
 

• α is the operating pressure angle [rad]; 
 

• 𝑟𝑎1 𝑎𝑛𝑑 𝑟𝑎2 are the addendum radius of the driving (sun) gear and driven (planet) gear [m]; 
 

• 𝑟𝑏1 𝑎𝑛𝑑 𝑟𝑏2 are the base radius of the driving gear and driven gear [m]; 
 

• 𝑟𝑝1 𝑎𝑛𝑑 𝑟𝑝2 are the pitch radius of the driving gear and driven gear [m]; 
 
 
 
The general position of the contact point along the contact segment is identified by the angle 𝜃𝑝𝑜𝑠, 
which is the angle between the starting position 𝜃𝑝𝑜𝑠−𝐴 and the ending position 𝜃𝑝𝑜𝑠−𝐵 of the meshing 
between a pair of engaged teeth. From figure 3.7 we can obtain: 
 
 

𝜃𝑝𝑜𝑠−𝐴 = arctan (
𝑟𝑏1∗tan(𝛼)−𝑠𝑎𝑐𝑐

𝑟𝑏1
)                                           (3.36) 

 
 

𝜃𝑝𝑜𝑠−𝐵 = arctan (
𝑟𝑏1∗tan(𝛼)+𝑠𝑟𝑒𝑐

𝑟𝑏1
)                                          (3.37) 

 
 
Once the angle 𝜃𝑝𝑜𝑠 is defined, the expressions for the radii of curvature of the teeth for both the sun 
gear and the planet gear are subsequently derived, with reference to the meshing between external 
gears (see figure 3.8 and 3.9).  
 
Defined also: 
 

• 𝜌𝑠𝑜𝑙1 is the curvature radius of the driving gear [m];  



 

48 
 

 
• 𝜌𝑠𝑎𝑡2  is the curvature radius of the driven gear [m]; 

 
 
Referring to the figure 3.7 we can calculate: 
 
 

𝜌𝑠𝑜𝑙1 = 𝑇1𝑃 = 𝑟𝑏1 ∗ tan (𝜃𝑝𝑜𝑠)                                              (3.38) 
 

𝜌𝑠𝑎𝑡2 = 𝑇2𝑃 = 𝑠𝑏𝑎𝑠𝑒 − 𝜌𝑠𝑜𝑙1                                                  (3.39) 
 
The radii of curvature change in an inverse relationship while the teeth pair are meshed, meaning as 
the contact point moves along the teeth flanks. One rises while the other falls as a result. 
 
 

 
Figure 3.11: External wheel curvature radii                          Figure 3.12: Internal wheel curvature radii 
 
 
So these are the curvature radius trends plotted in Matlab. The script is provided at the end in 
Appendix B-Script Matlab: 
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Figure 3.13: Curvature radii along the solar-satellite contact line; 

 

 
Figure 3.14: Curvature radii along the crown-satellite contact line; 
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3.6. Crawling speed 
 
The illustration in Figure 3.10 depicts the gear configuration of the two wheels in our reducer. In this 
case, we can see the sliding velocity as the discrepancy between the tangential velocity elements of 
the tooth flanks where they meet. 
 
Defining: 
 

• 𝑤𝑠𝑜𝑙 the rotational speed of the sun gear [rad/s]; 
 

• 𝑤𝑠𝑎𝑡 the rotational speed of the i-th planet gear [rad/s]; 
 

• 𝑤𝑐𝑎𝑟 the rotational speed of the carrier [rad/s]; 
 

• 𝜌𝑠𝑜𝑙1 and 𝜌𝑠𝑎𝑡2 the curvature radii of the sun gear and the planet gear, respectively, for the 
sun-planet meshing [m]; 

 
• 𝜌𝑠𝑎𝑡1 and 𝜌𝑟𝑖𝑛𝑔2 the curvature radii of the planet gear and the ring gear, respectively, 

for the ring-planet meshing [m]; 

 
 

Figure 3.15: Meshing between external and internal gears 
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The meshing phenomenon between the sun gear and the planet gears, as well as between the ring gear 
and the planet gears, occurs simultaneously. 
Since the planet gears rotate both around their own centers and around the sun gear's axis together 
with the carrier, the sun-to-planet sliding velocity 𝑣𝑠𝑝 and the ring-to-planet sliding velocity 𝑣𝑟𝑝 can 
be expressed as follows: 
 
 

𝑣𝑠𝑝 = (𝑤𝑠𝑜𝑙 −𝑤𝑐𝑎𝑟) ∗ 𝜌𝑠𝑜𝑙1 − (𝑤𝑠𝑎𝑡 −𝑤𝑐𝑎𝑟) ∗ 𝜌𝑠𝑎𝑡2                               (3.40) 
 

𝑣𝑟𝑝 = (𝑤𝑠𝑎𝑡 −𝑤𝑐𝑎𝑟) ∗ 𝜌𝑠𝑎𝑡1                                                   (3.41) 
 

 
3.7. Friction pairs 

 
Friction forces act perpendicularly to the contact forces between the tooth surfaces, generating 
resisting torques that depend on the shape of the gear teeth (Figure 3.11). The frictional torques vary 
during meshing because the lever arm of the friction force 𝐹𝑎𝑡𝑡(𝑡) changes as the contact point moves 
along the line of action. Friction in the sun-planet system depends on the curvature radii 𝜌𝑠𝑜𝑙1 and 
𝜌𝑠𝑎𝑡2, while in the ring gear, it depends on the curvature radii 𝜌𝑠𝑎𝑡1 and 𝜌𝑟𝑖𝑛𝑔2 for the meshing 
between the planets and the ring gear. 

Figure 3.16: Lever arms and friction forces 
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The friction force varies based on the direction of the relative velocity of the teeth along the line of 
contact. 
The presence of frictional torques affects the rotational equilibrium equations (equations 3.3-3.7) of 
the sun gear and the planet gears, which are then solved through integration respectively: 
 
 
𝑇𝐷 – 𝑟𝑏𝑠  ∗ (𝑐𝑠𝑝1𝛿�̇� 𝑝1  +   𝑐𝑠𝑝2𝛿�̇� 𝑝2   +   𝑐𝑠𝑝3𝛿�̇� 𝑝3 )  −   𝑟𝑏𝑠  ∗ (𝑘𝑠𝑝1 + 𝑘𝑠𝑝2 +𝑘𝑠𝑝3)  

−𝑇𝑎𝑡𝑡_𝑠𝑝1 − 𝑇𝑎𝑡𝑡_𝑠𝑝2 − 𝑇𝑎𝑡𝑡_𝑠𝑝3 =  𝐼𝑠𝑜𝑙 ∗ 𝜃 ̈𝑠                                                                   
                                                                                                                                                   (3.42) 

 
 
(𝑘𝑠𝑝1 − 𝑘𝑟𝑝1) ∗ 𝑟𝑏𝑝 + (𝑐𝑠𝑝1 ∗ 𝛿ʹ𝑠𝑝1 − 𝑐𝑟𝑝1 ∗ 𝛿ʹ𝑟𝑝1) ∗ 𝑟𝑏𝑝 − 𝑇𝑎𝑡𝑡𝑠𝑝1 − 𝑇𝑎𝑡𝑡𝑟𝑝1 = Ӏ𝑠𝑎𝑡 ∗ Ӫ𝑝1_𝑐 

                              (3.43) 
 
 
(𝑘𝑠𝑝2 − 𝑘𝑟𝑝2) ∗ 𝑟𝑏𝑝 + (𝑐𝑠𝑝2 ∗ 𝛿ʹ𝑠𝑝2 − 𝑐𝑟𝑝2 ∗ 𝛿ʹ𝑟𝑝2) ∗ 𝑟𝑏𝑝 − 𝑇𝑎𝑡𝑡𝑠𝑝2 − 𝑇𝑎𝑡𝑡𝑟𝑝2 = Ӏ𝑠𝑎𝑡 ∗ Ӫ𝑝2_𝑐 

                              (3.44) 
 
 

(𝑘𝑠𝑝3 − 𝑘𝑟𝑝3) ∗ 𝑟𝑏𝑝 + (𝑐𝑠𝑝3 ∗ 𝛿ʹ𝑠𝑝3 − 𝑐𝑟𝑝3 ∗ 𝛿ʹ𝑟𝑝3) ∗ 𝑟𝑏𝑝 − 𝑇𝑎𝑡𝑡𝑠𝑝3 − 𝑇𝑎𝑡𝑡𝑟𝑝3 = Ӏ𝑠𝑎𝑡 ∗ Ӫ𝑝3_𝑐 
                              (3.45) 

 
 
 
The friction pairs can be calculated as follows, considering the friction forces described in section 
3.4.1: 
 

  
𝑇𝑎𝑡𝑡_𝑠𝑝 = (𝜇𝑠𝑜𝑙−𝑠𝑎𝑡 ∗ 𝐹𝑠𝑝 ∗ 𝑠𝑖𝑔𝑛(𝑉𝑠𝑝) ∗ 𝜌𝑠𝑜𝑙1                                 (3.46) 

 
 𝑇𝑎𝑡𝑡_𝑟𝑝 = (𝜇𝑟𝑖𝑛𝑔−𝑠𝑎𝑡 ∗ 𝐹𝑟𝑝 ∗ 𝑠𝑖𝑔𝑛(𝑉𝑟𝑝) ∗ 𝜌𝑠𝑎𝑡1                                (3.47) 
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3.8. Gear meshing stiffnesses 

 
Meshing stiffness indicates the relationship between the tangential force along a line of action and 
the deflection of the tooth in the same direction. It is defined as the force required to deform a single 
tooth with a width of 1 meter by 1 meter along the line of action ([N/m/m]). Since the applied force 
on a tooth varies in intensity, direction, and point of application, the tooth deflection continually 
changes. Therefore, the variability of the meshing stiffness is influenced by both the variability of the 
tangential force (intensity, direction, and sense) and the change in the number of engaged teeth 
(degree of coverage) during meshing. [24] 
 
Figure 3.13 shows the steps to calculate the meshing stiffness for a planetary gearbox. Since there are 
multiple planet-sun and planet-ring gear pairs, the stiffness of each pair is assessed experimentally. 
 
 

 
Figure 3.17: Mesh stiffness evaluation graph 

 
 
 
Following a finite element analysis, J. H. Kuang and Y. T. Yang developed an analytical model for 
calculating mesh stiffness [25]. Their model represents the stiffness of a single tooth, which is 
conceptualized as a cantilever beam. Specifically, equation 3.44 expresses the variability of stiffness 
as a function of the contact point position, its displacement, and other parameters. This approach 
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allows for the exact determination of stiffness along the entire path of action, i.e., throughout the 
meshing process, from the initial contact between gear teeth to their separation. The stiffness of a 
single tooth 𝐾𝑖(𝑟𝑖) as a function of the radial distance 𝑟𝑖  from the gear axis as well as the Kuang and 
Yang’s empirical equation is: 
 
 

𝐾𝑖(𝑟𝑖) = 109 ∗ [(𝐴0 + 𝐴1 ∗ 𝑥𝑖) + (𝐴2 + 𝐴3 ∗ 𝑥𝑖) ∗
𝑥𝑖−𝑅𝑖

(1+𝑥𝑖)∗𝑚
]                   (3.48) 

 
Where the experimental coefficients are: 
 

• 𝐴0 = 3.867 + 1.612 ∗ 𝑍𝑖 − 0.02916 ∗ 𝑍𝑖
2 +  0.0001553 ∗ 𝑍𝑖

3; 
• 𝐴1 =  17.060 +  0.7289 ∗ 𝑍𝑖 −  0.01728 ∗ 𝑍𝑖

2 + 0.00009993 ∗ 𝑍𝑖
3; 

• 𝐴2 = 2.637 − 1.222 ∗ 𝑍𝑖 +  0.02217 ∗ 𝑍𝑖
2 −  0.0001179 ∗ 𝑍𝑖

3; 
• 3𝐴3 = −6.330 − 1.033 ∗ 𝑍𝑖 +  0.02068 ∗ 𝑍𝑖

2 −  0.0001130 ∗ 𝑍𝑖
3; 

 
 
𝑚 is the module of the gear [m], 𝑥𝑖 is the correction factor of the i-th gear, equal to the ratio between 
the displacement v of the cutting line from the reference line and the module m, 𝑥𝑖 =

𝑣𝑖

𝑚
 , 𝑍𝑖  the 

number of teeth of the i-th gear and 𝑅𝑖 is the pitch radius of the i-th gear [m];" 
 
 
According to what was previously stated in the physical model described in paragraph 3.1, when two 
teeth are meshing, there are two constants, 𝐾1 and 𝐾2, which are arranged in series. The stiffness of 
a single pair of meshing teeth is the single stiffness equivalent to the stiffness values arranged in 
series. So 𝐾𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 will be: 
 
 

𝐾𝑒𝑞 =  
𝐾1(𝑟1)∗𝐾2(𝑟2)

𝐾1(𝑟1)+𝐾2(𝑟2)
                                                        (3.49) 

 
Considering 4 contact points: 
 

A. Point of engagement initiation; 
 

B. Point of engagement initiation for a single pair of teeth; 
 

C. Point of disengagement for a single pair of teeth; 
 

D. Point of disengagement. 
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Figure 3.18: Contact segment ( 𝜃𝑝 = 2𝜋

𝑧⁄  , angular pitch) 
 
 
 
If 𝜀 = 1 (contact ratio), there would always be a single pair of teeth in mesh, and the meshing 
stiffness 𝐾𝑡𝑜𝑡 would coincide with the stiffness of the individual pair 𝐾𝑒𝑞, but this is a limiting case. 
Typically, ε is between 1 and 2, meaning that during meshing, the system cyclically transitions 
between having one and two pairs of teeth in contact. Consider a generic gear system with two pairs 
of teeth: pair A consists of teeth 1 and 2, and pair B consists of teeth 3 and 4. Teeth 1 and 3 belong to 
the driving gear, while teeth 2 and 4 belong to the driven gear, as shown in Figure 3.17. 
 

 
Figure 3.19: 2 Pairs of teeth in mesh 
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In the initial phase, tooth 1 begins to engage with its corresponding tooth on the other gear, while 
tooth 3, which precedes it by one pitch, traverses the final section of its engagement path, between 
points C and D. When pair A starts to travel along segment B-C, pair B has already disengaged, while 
the subsequent pair of teeth has not yet begun to engage. 
During the central phase of engagement (segment B-C), only one pair is loaded, and therefore, the 
engagement stiffness coincides with the stiffness of pair A, denoted as 𝐾𝑆𝐴. In contrast, during the 
initial and final segments, two pairs are engaged, resulting in a situation analogous to two springs 
arranged in parallel. Thus, in this case, 𝐾𝑀 is equal to the sum of the stiffnesses of the engaged pairs, 
𝐾𝑆
𝐴 and 𝐾𝑆𝐵 

The stiffnesses of the two engaged pairs are: 
 

  𝐾𝑆
𝐴 =

𝐾1
𝐴(𝑟1

𝐴)∗𝐾2
𝐴(𝑟2

𝐴)

𝐾1
𝐴(𝑟1

𝐴)+𝐾2
𝐴(𝑟2

𝐴)
                                                (3.50) 

 
 
 

𝐾𝑆
𝐵 =

𝐾1
𝐵(𝑟1

𝐵)∗𝐾2
𝐵(𝑟2

𝐵)

𝐾1
𝐵(𝑟1

𝐵)+𝐾2
𝐵(𝑟2

𝐵)
                                     (3.51) 

 
 
While 𝐾𝑀: 
 

• 𝐾𝑀 = 𝐾𝑆
𝐴  if there is only one engaged pair, that is, when traversing segment B-C; 

• 𝐾𝑀 = 𝐾𝑆
𝐴 + 𝐾𝑆

𝐵 if there are two engaged pairs, specifically along segments A-B and C-D. 
 
 
 

3.9. Phase differences in planets gear meshing 
 
Multiple tooth engagements in epicyclic gear systems involve a variable number of teeth in contact, 
operating at the same meshing frequency, referred to as 𝑓𝑚𝑒𝑠ℎ. All sun-planet gear engagements 
exhibit the same pattern and periodicity in the variation of the number of teeth in contact, but these 
variations are generally not synchronized. This means there is a phase shift between the number of 
teeth in contact across the different gear engagements. The same phenomenon occurs with the ring-
planet engagements. Additionally, a phase difference must also be considered between the sun-planet 
and ring-planet gear engagements [25]. 
 
 
The phase shifts between the different planets are:  
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• 𝛾𝑠𝑛  is the relative phase shift between the engagement of the n-th sun-planet pair and that of 
the first sun-planet pair; 
 

• 𝛾𝑟𝑛 is the relative phase shift between the engagement of the n-th ring-planet pair and that of 
the first ring-planet pair; 

 
• 𝛾𝑠𝑟  is the relative phase shift between the engagement of the n-th sun-planet pair and the n-

th ring-planet pair.  
 

To determine 𝛾𝑠𝑛, we can imagine fixing the sun gear. After a complete rotation of the carrier, the 
first planet will have made a full 2π rotation around the sun's axis, coming into contact with all the 
sun's teeth. Consequently, with a carrier rotation 𝜓𝑛  the same planet will mesh with a number of sun 

teeth equal to 𝑧𝑠𝑜𝑙 ∗
𝜓𝑛 

2𝜋
⁄ .  A similar reasoning applies to the determination of 𝛾𝑟𝑛.  

Thus, the phase shifts between the planets are derived using the following relations: 
 
 

𝛾𝑠𝑛 =
𝑧𝑠𝑜𝑙∗𝜓𝑛

2𝜋
   and    𝛾𝑟𝑛 = −

𝑧𝑟𝑖𝑛𝑔∗𝜓𝑛

2𝜋
  with clockwise rotation of the planets     (3.52) 

 
 
If the rotation were counterclockwise, the signs would be reversed. Additionally: 
 

𝜓𝑛 = 𝑝𝑛
2𝜋

𝑧𝑠𝑜𝑙∗𝑧𝑟𝑖𝑛𝑔
                                                    (3.53)  

 

With 𝜓𝑛 the rotation angle of the carrier required to bring the first planet into the initial position of 
the n-th planet. 
To calculate 𝛾𝑠𝑟  the procedure described by R.G. Parker was followed [26]: 
 

𝛾𝑠𝑟 =
𝑃𝑚_𝑟𝑖𝑛𝑔𝐶𝑟𝑖𝑛𝑔_𝑝𝑙𝑎𝑛𝑒𝑡

𝑝𝑏𝑎𝑠𝑒
                                     (3.54) 

 
Where: 
 

• 𝑃𝑚_𝑟𝑖𝑛𝑔 is the point on the contact line segment of the ring gear-planet gear mesh, 
corresponding to the moment when the contact point for the sun-planet gear mesh coincides 
with the instantaneous center of rotation. 
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• 𝐶𝑟𝑖𝑛𝑔_𝑝𝑙𝑎𝑛𝑒𝑡 is the instantaneous center of rotation for the ring gear-planet gear contact. 
 
 
Using a form of the meshing stiffness (3.48) expressed through a Fourier series [27], which accounts 
for the phase shifts just described, we can write the 6 time-varying meshing stiffness values: 3 for the 
sun-planet meshing and 3 for the planet-ring meshing: 
 
 
 
𝐾𝑠𝑝1(𝑡) = 𝐾𝑠𝑝 +

𝐾𝑠𝑝

𝜋
∗ sin(𝜔𝑚(𝑡 − 𝑇𝑚 ∗ 𝛾𝑠1)) +

𝐾𝑠𝑝

3𝜋
∗ sin(3𝜔𝑚(𝑡 − 𝑇𝑚 ∗ 𝛾𝑠1)) +

𝐾𝑠𝑝

5𝜋
∗

sin(5𝜔𝑚(𝑡 − 𝑇𝑚 ∗ 𝛾𝑠1))                                                                  
                                                                                          (3.55) 

 
 
𝐾𝑠𝑝2(𝑡) = 𝐾𝑠𝑝 +

𝐾𝑠𝑝

𝜋
∗ sin(𝜔𝑚(𝑡 − 𝑇𝑚 ∗ 𝛾𝑠2)) +

𝐾𝑠𝑝

3𝜋
∗ sin(3𝜔𝑚(𝑡 − 𝑇𝑚 ∗ 𝛾𝑠2)) +

𝐾𝑠𝑝

5𝜋
∗

sin(5𝜔𝑚(𝑡 − 𝑇𝑚 ∗ 𝛾𝑠2))                                                                  
(3.56) 

 
 
𝐾𝑠𝑝3 = 𝐾𝑠𝑝 +

𝐾𝑠𝑝

𝜋
∗ sin(𝜔𝑚(𝑡 − 𝑇𝑚 ∗ 𝛾𝑠3)) +

𝐾𝑠𝑝

3𝜋
∗ sin(3𝜔𝑚(𝑡 − 𝑇𝑚 ∗ 𝛾𝑠3)) +

𝐾𝑠𝑝

5𝜋
∗ sin(5𝜔𝑚(𝑡 −

𝑇𝑚 ∗ 𝛾𝑠3))                                                                  
(3.57) 

 
 
𝐾𝑟𝑝1 = 𝐾𝑟𝑝 +

𝐾𝑟𝑝

𝜋
∗ sin(𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟1 + 𝛾𝑟𝑠)) +

𝐾𝑟𝑝

3𝜋
∗ sin(3𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟1 + 𝛾𝑟𝑠))) +

𝐾𝑟𝑝

5𝜋
∗

sin(5𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟1 + 𝛾𝑟𝑠)))                                                                  
(3.58) 

 
 
𝐾𝑟𝑝2 = 𝐾𝑟𝑝 +

𝐾𝑟𝑝

𝜋
∗ sin(𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟2 + 𝛾𝑟𝑠)) +

𝐾𝑟𝑝

3𝜋
∗ sin(3𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟2 + 𝛾𝑟𝑠))) +

𝐾𝑟𝑝

5𝜋
∗

sin(5𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟2 + 𝛾𝑟𝑠)))                                                                  
(3.59) 

 
 
𝐾𝑟𝑝3 = 𝐾𝑟𝑝 +

𝐾𝑟𝑝

𝜋
∗ sin(𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟3 + 𝛾𝑟𝑠)) +

𝐾𝑟𝑝

3𝜋
∗ sin(3𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟3 + 𝛾𝑟𝑠))) +

𝐾𝑟𝑝

5𝜋
∗

sin(5𝜔𝑚(𝑡 − 𝑇𝑚 ∗ (𝛾𝑟3 + 𝛾𝑟𝑠)))                                                                  
(3.60) 
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With: 
 

• 𝜔𝑚 is the meshing rotation speed. (𝜔𝑚 = 2𝜋 ∗ 𝑓𝑚);  
 

• 𝑓𝑚 is the meshing frequency given by 𝑓𝑚 = 𝑓𝑠𝑜𝑙 ∗
𝑧𝑠𝑜𝑙∗𝑧𝑟𝑖𝑛𝑔

𝑧𝑠𝑜𝑙+𝑧𝑟𝑖𝑛𝑔
;  

• 𝑇𝑚 is the meshing period (𝑇𝑚 = 1
𝑓𝑚
⁄ ). 

 
 
Additionally, a constant stiffness value 𝐾𝑠𝑝 and 𝐾𝑟𝑝 was used as an initial value, without accounting 
for the variation in stiffness as a function of the load applied on the tooth, nor the change in the 
number of teeth in contact during meshing. 
 
 

𝑘𝑠𝑝 = (0.75 ∗ 𝜀 + 0.25) ∗ 𝑘𝑐 ∗ 𝑏𝑠                                  (3.61) 
 

𝑘𝑟𝑝 = (0.75 ∗ 𝜀 + 0.25) ∗ 𝑘𝑐 ∗ 𝑏𝑟                                  (3.62) 
 
 

Having: 
 

• 𝑘𝑐 is the stiffness of a pair meshing teeth; 
• 𝜀 is the contact ratio;  
• 𝑏𝑠 is the face width of the sun gear; 
• 𝑏𝑟 is the face width of the ring gear. 

 
 
The stiffness has been expressed as a function of time because, although the formulation based on 
angular position is more accurate, it is more convenient to express it in relation to the time during 
which the dynamics of the epicyclic gear train evolve. It should also be noted that the Fourier series 
is merely a sum of harmonics with frequencies equal to the meshing frequency 𝑓𝑚 of the tooth and its 
multiples.  
As an example, the stiffness values calculated for the minimum command meshing, specifically at 
0.01 rad/s, are reported in figures: 
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Figure 3.20: Trend of mesh stiffness between sun gear and planets. 

Figure 3.21: Trend of mesh stiffness between crown and planets 
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The highest stiffness values represent the meshing between two pairs of teeth, while the lowest values 
correspond to the meshing between a single pair. It is also observed that there is a phase shift among 
the three planets during meshing with both the sun gear and the ring gear; thus, the stiffness values 
𝐾𝑠𝑝 and 𝐾𝑟𝑝 exhibit the same trends but are shifted by a certain 𝛥𝑡. 
 
Now, let’s analyze a specific test, for instance, the command value of 0.01 rad/s, and make some 
considerations regarding the stiffness that apply to any command. 
 
The period of the stiffness for this command is approximately 0.3 𝑠 and, by analyzing Figures 3.17 
and 3.18, we can observe intervals of time in which all values are at their maxima, all at their minima, 
and intervals where they cross each other. 
 
If we analyze the factors contributing to the stiffness, we have 3 characteristic contributions with their 
own periods: 
 
𝑘𝑥𝑦(𝑡) = 𝑘𝑥𝑦 + 𝑎 ⋅ sin(𝑤𝑚(𝑡 − ⋯ )) + 𝑏 ⋅ sin(3𝑤𝑚(𝑡−. . )) + 𝑐 ⋅ sin (5(𝑤𝑚(𝑡 − ⋯ )))     (3.63) 

 
With 𝑎, 𝑏, 𝑐 numerical coefficient.  
 
We have 3 periods:  
 

• 𝑇1 =
2𝜋

|𝑤|
=

2𝜋

𝑤𝑚
= 4,98 𝑠 ; 

• 𝑇2 =
2𝜋

|𝑤|
=

2𝜋

3𝑤𝑚
= 1,66 𝑠; 

• 𝑇3 =
2𝜋

|𝑤|
=

2𝜋

5𝑤𝑚
= 0,99 𝑠 

 
Since all three periods are rationally related, the resulting function will be periodic. The overall period 
of the function will be the minimum common multiple (m.c.m.) of the three periods, which in this 
case is: 

𝑇𝑡𝑜𝑡 = 𝑚. 𝑐.𝑚. (4.98, 1.66, 0.99) ≅ 5 s 
 
In reality, since the periods are not perfectly rationally related but approximated, the function will not 
be perfectly periodic and regular. It will exhibit irregular segments and quasi-periodicity. 
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We observe this in the behavior of the current flowing through the rotor windings of the electric 
motor. In fact, as shown in Figure 3.19, the current behavior measured during the first test, 
corresponding to the first command of 0.01 rad/s, displays a clear periodicity of 5s seconds between 
current peaks. This corresponds to the meshing periodicity between two gears. 

 

Figure 3.22: Current behavior periodicity in the motor. 
 
 
The second and third periods 𝑇2 and 𝑇3 are less visible when observing the current due to disturbances 
and noise. They correspond respectively to the first period  𝑇2 = 1,66𝑠 during which the stiffness 
reaches its maximum value (indicating two pairs of teeth in mesh, see Figure 3.17), and the second 
period 𝑇3 = 0,99𝑠 which represents the time interval during which the gear transitions from two pairs 
of teeth in mesh to one. 
 
The current peaks occur for two main reasons: either because at those points there is engagement 
between a single pair of teeth, necessitating more effort from the motor to complete the meshing, 
which leads the inverter to send a higher power signal to compensate for this deficiency; or because, 
after nnn meshing cycles involving multiple teeth, the phase difference between the solar-planet 
meshing and the corresponding planet-ring meshing is detected. Locally, there will be a brief current 
spike due to the fact that the tooth is essentially commanded to engage but does not immediately find 
the corresponding tooth of the other gear to mesh with. 
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All these considerations have been presented for a single command but apply to all other commands 
discussed in this work, as outlined in Chapter 5. 

 
 

 

4.  Simulink model 
 
After describing the phenomenon from a mathematical and physical perspective, the corresponding 
block model has been developed in Simulink. Each block represents the realization of the 
mathematical equations outlined in the previous chapter. 
 
Inside the Mechanical transmission model, which was one of the main block of the High Fidelity 
system, has been developed the friction model below. 
 
The entire friction model consists of 7 main blocks, each containing sub-blocks. The figure presents 
a schematic representation with the blocks numbered to facilitate their description. 

 
Figure 4.1: Simluink Friction model blocks 
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4.1. Block 1 and 2: Relative displacements and their 
derivatives 

 
Block 1 and block 2 represents the mathematical formulation described in the paragraph 3.2.3. and 
the implementation of the equations 3.17 to 3.28, i.e., the relative displacements along the line of 
action between sun and planet gears and their derivates. 

 
 

Figure 4.2: Relative elastic displacements 
 

 
Figure 4.3: Relative elastic displacements derivates 
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4.2. Block 3: Gear mesh elastic forces 
 

This block calculates the elastic forces exchanged between two meshing teeth; specifically, equations 
3.9 to 3.12 described in the previous chapter. The inputs are the relative displacements previously 
calculated and the gear mesh stiffnesses, expressed according to the model [27] and described in 
paragraph 3.9. The block outputs the torque exerted by the elastic actions between the sun-planet and 
planet-ring gear meshes, obtained by multiplying the elastic forces by the radius of the gear to which 
they refer. 

Figure 4.4: Elastic torque between the sun-planet and planet-ring gear meshes 
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4.3. Block 4: Gear mesh viscous forces 
 

As the previous one, this block calculate the viscous forces exchanged during the meshing, as 
described in paragraph 3.2.3. It represents the equations 3.13 to 3.16, and, like the previous block, 
takes as input the relative displacement velocities and the viscous damping coefficients. It outputs 
both the viscous forces and torques acting in the gear meshes. 

Figure 4.5: Viscous torque between the sun-planet and planet-ring gear meshes 
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4.4. Block 5: Equations of motion 
 
This block contains the equations of rotational equilibrium for the sun gear and the three satellites, as 
described in Chapter 3. In particular, Equation 3.42 is presented in figure 4.6 while equations 3.43 to 
3.45 in figure 4.7. 

 
Figure 4.6: Equation of equilibrium for the sun gear 

 
Figure 4.7: Equation of equilibrium for the satellites 
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It is immediately apparent that the model for the equation of the sun gear is more developed than 
those for the satellites. This is because our primary interest lies in studying the angular position and 
velocity of the sun gear rather than that of the satellites. In fact, the behavior of the sun gear governs 
the other equations; therefore, a more detailed model was created solely for this equation to avoid 
overloading the simulation environment. 
 
It can be observed that the equilibrium equation for the sun gear includes the 'Borello friction model' 
block for the static friction of the gear, as well as the torques that are added and subtracted to obtain 
the angular velocity and position of the motor shaft through integration blocks. Initially, this equation 
also included a contribution that accounted for the dimensional viscous damping coefficient of the 
DC motor and the load; however, it was removed (or rather, modified) due to numerical issues. This 
factor, when directly multiplied by the rotational speed of the shaft, was subtracted from the other 
driving and resisting torques acting on the shaft. During the validation of this model, this led to 
numerical instability in the computational process, specifically within the integration block.  
This instability occurred because the speed, at the initial time intervals, reached values higher than 
those commanded, resulting in a resistive contribution that was greater than the actual value, which 
inverted the physics of the model (resistive contributions greater than the driving ones, causing the 
sun gear to hypothetically rotate in the opposite direction). 
 
To avoid this issue, the subtractive contribution due to the dimensional viscous damping of the DC 
motor and the load has been transferred directly into the elastic and viscous torques, through a 
multiplicative coefficient that reduces the torques by the same amount obtained from the product of 
the damping coefficient CM (or CU) and the velocity 𝑤𝑚, with CM dimensional viscous damping 
coefficient of the DC motor (CU respectively the load) and 𝑤𝑚the steady-state velocity of the motor. 
 
As output, we obtain, in addition to the angular velocity of the motor shaft, the corrected angular 
position, taking into account the forces and frictions exchanged between the gear trains, and 
consequently, the angular position of the load, which represents the final user's position. 
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4.5. Block 6: Curvature radii of friction 
 
We have seen that the contact between the teeth occurs along the tangent line to the two base circles, 
within a portion of it referred to as the contact segment. This block performs the calculation of these 
segments, as described in Chapter 3.5, both for the driving gear (pho1) and for the driven gear (pho2). 
 
pho1_pr and pho2_pr refers instead to the curvature radii of a planet gear and the ring gear, 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8: Calculation of friction curvature radii 
 
 
The calculation of the curvature radii is essential for the validation of the model, as the friction forces 
exchanged during meshing vary their distance from the axis of rotation of the shafts, since they act 
along the contact segment. Consequently, the torque exerted by friction during meshing will also 
vary. 
 
These curvature radii, along with the engagement forces from blocks 3 and 4, serve as inputs to block 
7, which then calculates the corresponding friction torques. 
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4.6. Block 7: Calculation of friction losses for gearing 
 
 
Having calculated all the components required by equations 3.46 and 3.47, this block computes the 
dissipative friction forces for each gear engagement. The friction coefficients, according to ISO/TR 
14179-2 and 6336-4 [18], as described in paragraph 3.4.2, are labeled in the model as f_att_average 
for sun-planet gears and f_att_average_r for planet-ring gears, and are calculated in the 
dinamica_riduttore Matlab script. 
 

 

 
Figure 4.9: Frictional torque losses in gear engagements 

 
This block outputs all the frictional torques 𝑇𝑎𝑡𝑡_𝑠𝑝1, 𝑇𝑎𝑡𝑡_𝑠𝑝2, 𝑇𝑎𝑡𝑡_𝑠𝑝3, 𝑇𝑎𝑡𝑡_𝑟𝑝1, 𝑇𝑎𝑡𝑡_𝑟𝑝2, 𝑇𝑎𝑡𝑡_𝑟𝑝3, 
which are then fed into block 5, i.e., into the equations of motion corrected by this model, as well as 
the equations 3.42 to 3.45. 
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5. Comparison and final results 
 
After describing the Simulink model created for the examined gearbox system, this chapter presents 
the final simulation results.  
All ramp commands estimated at the beginning of the project were executed to better evaluate the 
actuation of a secondary flight control command. The graphs plot the angular position of the motor 
and that of the encoder, compared with the experimental data recorded by the sensors during the tests. 
 
In the first 5 commands, only the angular positions of the friction model were plotted and compared 
with the experimental results, whereas for the last 5 commands, both models were compared (HF and 
HF Friction).  
This is because the friction model is more noticeable in low ramp commands, as the forces exchanged 
by the gears are much closer in magnitude to the friction forces, resulting in a more visually significant 
impact on the graph. In contrast, with larger commands, the effect of friction is less dominant. 
(In thi 
Here the results for each command: 
(In the interpretation of the following figures, 'HF' refers to the newly developed friction model 
described here, not the previous model). 
 
1. Ramp command  0.01 rad/s 
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Figure 5.1: Ramp 0.01, Motor and encoder angular position 

 
As can be seen in Figure 5.2, where the motor angular position is plotted for the first ramp, the motor's 
angular position exhibits a wavy nature, closely resembling the behavior recorded during the test 
(purple line). As previously mentioned, the influence of friction is clearly visible here through small 
oscillations around the rising line that the angular position would follow. It is also evident, in line 
with the developed model, that the period of these small oscillations matches the gear engagement 
period described in Chapter 3, confirming that for small commands, the gear forces are significant 
enough to slightly alter the angular position read by the sensor placed on the motor shaft. Moreover, 
note how realistically close this position is to the one actually recorded during the tests. 
 

 
Figure 5.2: Detail of the almost oscillatory trend of motor angular position 
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2. Ramp command  0.02 rad/s 

 
Figure 5.3: Ramp 0.02, Motor and encoder angular position 

 
The order of magnitude in the image above is 104. 
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3. Ramp command  0.03 rad/s 

 
Figure 5.4: Ramp 0.03, Motor and encoder angular position 
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4. Ramp command  0.04 rad/s 

 
Starting from approximately 0.04 rad/s, the slight fluctuations that were clearly noticeable in the 
initial ramps begin to fade and are no longer clearly visible, except when zooming into the graph at 
the order of magnitude of a second. 
 

 
 

Figure 5.5: Ramp 0.04, Motor and encoder angular position 
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5. Ramp command  0.05 rad/s 

 
 

Figure 5.6: Ramp 0.05, Motor and encoder angular position 
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6. Ramp command  0.06 rad/s 

The remaining commands are plotted in graphs that show the experimental results, the old HF model 
and the new model with the implementation of friction, to better visualize the differences. 

 
Figure 5.7: Ramp 0.06, Motor and encoder angular position of HF and HFF model 
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As we can observe, and this applies to previous commands as well, the old HF model is very 
inaccurate for commands that are prolonged over time, accumulating a steady position error that 
causes the system to diverge from the actual commanded position. In comparison, the new HFF (High 
Friction Fidelity) model is much more precise and realistic, deviating from the real position by a much 
smaller error. 
 
7. Ramp command  0.07 rad/s 

 
Figure 5.8: Ramp 0.07, Motor and encoder angular position of HF and HFF model 
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8. Ramp command  0.08 rad/s 

 
 

Figure 5.9: Ramp 0.08, Motor and encoder angular position of HF and HFF model 
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9. Ramp command  0.09 rad/s 

 
 

Figure 5.10: Ramp 0.09, Motor and encoder angular position of HF and HFF model 
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10.   Ramp command  0.1 rad/s 

 
 

Figure 5.11: Ramp 0.1, Motor and encoder angular position of HF and HFF model 
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5.1. RMSE calculation 
 
The RMSE (Root Mean Square Error) is a measure of the difference between the predicted values 
from a model and the actual observed values. It is widely used to assess the accuracy of predictions 
in regression models or simulations and it has the same unit of measurement as the variables being 
compared." 
 
To assess the accuracy of the two models, the RMSE of both was estimated with respect to the 
experimentally recorded values, as it provides an indication of the average magnitude of the error. 
The formula implemented is: 
 
 

(5.1)                                                                                                                        
 
 
 
With: 
• 𝑛 is the total number of observations, 
• 𝑦𝑖 are the actual (measured) values, 
• ỹ𝑖 are the predicted (or estimated) values from the model. 

 
Ramp command RMSE new HFF model RMSE old HF model 

0,01 rad/s 288,45 4006,93 

0,02 rad/s 258,86 7189,55 

0,03  rad/s 196,56 10370,17 

0,04 rad/s 120,78 13550,79 

0,05 rad/s 178,24 16729,41 

0,06 rad/s 288,58 19908,03 

0,07 rad/s 103,46 23058,65 

0,08 rad/s 107,77 26318,57 

0,09 rad/s 261,29 29487,77 

0,1 rad/s 245,65 32650,39 

Table 5.1: RMSE values 
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A lower value indicates that the model is more accurate in reproducing the actual data; Conversely, 
a high RMSE indicates that the model is inaccurate. 
 
As we can see from the table, the old HF model gradually reaches increasingly higher RMSE values, 
which not only means that the model is inaccurate, but also that with larger commands it becomes 
progressively more imprecise, accumulating an error that grows larger and leads to a response that 
diverges from the commanded input.  
 
The new model, on the other hand, has low RMSE values, meaning it is very reliable and closely 
reflects reality. These values are slightly different from each other because the model still includes 
some simplifications of reality, which bring it closer to it but do not describe it perfectly. In this case, 
factors such as backlash (which was not considered in the model), numerical factors found in 
literature, and formulas regarding dissipation between straight-tooth gears (while ours are helical) 
create small imperfections and differences in the simulation results, but they are negligible compared 
to the overall outcome. 
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6. Conclusion and future developments 
 
 

This thesis explored the dynamic behavior and modeling of an electromechanical actuator (EMA) 
with a focus on its integration into secondary flight control systems. Through experimental testing 
and subsequent numerical analysis, it has been developed a refined model that better represents the 
real-world performance of the EMA, specifically targeting the interaction between the gearbox 
components and the dissipative forces caused by friction. 
 
The simulation results demonstrate that the newly implemented friction model aligns closely with the 
experimental data, especially at lower command rates. The observed fluctuations in angular position 
during meshing further confirm the influence of friction, with periods corresponding to gear 
engagement cycles. As expected, for smaller commands, the impact of meshing forces becomes 
increasingly significant, reflecting real-world conditions. 
 
Comparing the old High Fidelity (HF) model with the enhanced friction model, we observed a 
significant reduction in the Root Mean Square Error (RMSE) values for the new model. The old HF 
model showed increasing RMSE as commands grew larger, indicating growing divergence from the 
desired outcomes, while the new model maintained low RMSE, suggesting its reliability in reflecting 
physical behaviour despite some minor discrepancies due to modelling simplifications. 
Looking forward, the model serves as a foundation for future developments, particularly in the areas 
of prognostics and health management. By incorporating advanced algorithms for predicting the 
Remaining Useful Life (RUL) of actuator components, future studies could contribute significantly 
to the reliability and safety of these systems. Additionally, refining the model to account for complex 
phenomena like backlash and the use of helical gears will further enhance its accuracy and 
applicability in aerospace applications. 
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For this particular study, potential future work could include: 
 

• The study and implementation of a gear degradation model, as the presence of tooth damage 
can induce undesirable dynamic behavior, leading to noise, acoustic emissions, and 
unacceptable performance, as well as significant reductions in the gearbox's useful life. 
Therefore, a study on Prognostics and Health Management (PHM) could be conducted; 
 

• The implementation of the backlash function in the new HF Friction model is essential to fully 
describe the behavior of the meshing gears. It would be important to verify how this affects 
the model's accuracy and the behavior of the friction forces. 

 
 
 
 
In conclusion, this work offers valuable insights into the behavior of EMAs, contributing to the larger 
effort of advancing "More Electric Aircraft" technology and paving the way for their broader adoption 
in critical flight systems. 
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Appendix A 
 
Kinematic analysis  
 
The components of an epicyclic gear train are: 
 

• the sun gear; 
• the ring gear; 
• the planets (or satellites); 
• the carrier (or planet carrier) 
 

The sun gear is an externally toothed wheel, and the ring gear has internal teeth, both of which are 
coaxial with the main axis of the gear system. The planets are externally toothed wheels that 
simultaneously mesh with both the sun and the ring gears. Finally, the planet carrier is the kinematic 
structure that constrains the axes of the planets to rotate around the main axis of the gear system. 
There are at least three planets to ensure the balance of inertia forces generated by their rotation 
around the carrier axis. The planets perform both a rotation around their own axis and a revolution 
around the sun gear's axis. 
The figure belowc shows a schematic of a single-stage epicyclic gear train, indicating the four 
components that comprise it. 

Figure A.1: Single-stage epicyclic gear train 
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The actuator under examination consists of two stages: the first stage is made up of two sets of sun-
planet-ring gears located at the ends of the gearbox to self-balance it. The second stage, where the 
load is connected via an external gear, is placed in the centre. All the gears have helical teeth, except 
for the one that engages with the encoder on the output shaft, which has straight teeth. The sun gear 
is mounted on the input shaft of the gearbox, and the planet carrier is mounted on the output shaft. 
 

 
Figure A.2: Top view epicyclic reducer 

 
 
The first aspect to consider involves the velocities of each individual component and the calculation 
of the correct transmission ratios. In epicyclic gear reducers, the gears (the satellites) not only rotate 
around their own axis but also revolve around the axis of the sun gear (i.e., the primary axis of the 
reducer). This results in relative motions, so each component will have both a relative and an absolute 
velocity. Assuming an observer fixed to a virtual satellite carrier (even though such a carrier does not 
exist in our case, we consider it for simplicity), the relative velocities of the sun and the ring gear with 
respect to the carrier (denoted with an apostrophe) can be expressed as: 
 

𝑤𝑠
′ = 𝑤𝑠 −𝑤𝑝 

𝑤𝑐
′ = 𝑤𝑐 − 𝑤𝑝 
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Where: 
 
• 𝑤𝑠 is the rotational speed of the sun gear (and 𝑤𝑠

′ is the relative velocity) [rad/s]; 
• 𝑤𝑐 is the rotational speed of the ring gear (and 𝑤𝑐

′ is the relative velocity) [rad/s]; 
• 𝑤𝑝 is the rotational speed of the carrier [rad/s]. 
 
Using the relative velocities and applying Willis's formula between the sun gear and the ring gear, we 
have: 

𝜏𝑜 =
𝑤𝑠
′

𝑤𝑐
′
=
𝑤𝑐 − 𝑤𝑝

𝑤𝑠 − 𝑤𝑝
= −

𝑧𝑐
𝑧𝑠

 

 
The negative sign indicates the opposite directions of rotation. If the ring gear is fixed, with the sun 
gear mounted on the input shaft and the carrier on the output shaft, the overall transmission ratio of 
the first stage is determined by setting 𝑤𝑐 = 0, giving: 
 

𝜏0 =
𝑤𝑠
′

𝑤𝑐
′
= −

𝑤𝑝

𝑤𝑐 − 𝑤𝑝
 

And rewriting Ω =
𝑤𝑠

𝑧𝑐
𝑧𝑠
+1

. 

 
Figure: A.3: Reducer shaft diagram 
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Finally, apply Willis's formula between the sun gear (input) and the carrier (output). 
 

𝜏1 =
𝑤𝑠 − Ω

𝑤𝑝 − Ω
= −

𝑧𝑝 ⋅ 𝑧𝑠1
𝑧𝑠 ⋅ 𝑧𝑠2

 

 
Substituting the value of Ω found before and doing some calculations we get: 
 

𝜏 =
𝑤𝑠

𝑤𝑝
=

𝑧𝑐
𝑧𝑠
+ 1

1 −
𝑧𝑐 ⋅ 𝑧𝑠2
𝑧𝑝 ⋅ 𝑧𝑠1

=
4

0.03225
= 124 

 
 

PLANETARY GEARBOX Basic Datasheet 
Moment of inertia reduced to the input shaft. 𝟏. 𝟕𝟓 ⋅ 𝟏𝟎𝟑 𝒈 ⋅ 𝒎𝒎𝟐  

Number of teeth of the sun gear 𝒛𝒔 21  

Number of teeth of the crown gear 𝒛𝒄 63  

Number of teeth of the satellite 1 𝑺𝟏 21  

Number of teeth of the satellites 2/3 𝑺𝟐 20 

Number of teeth of the output shaft 𝒛𝒑  62 

Transmission ratio 𝝉  124 

 
Table A.1: Planetary gearbox Datasheet 
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Appendix B 

 

Script Matlab 

Main HF 
%% Unità di misura utilizzate nella simulazione 
% test.time         [s] 
% test.pos_ref      [rad] in albero lento 
% test.speed_ref    [rad/s]    
% test.Iq_ref       [A] 
% test.tens_out     [V] 
% test.Id           [A] 
% test.Iq           [A] 
% test.RPM_lvl_act  [rad/s]  
% test.pos_act      [rad] in albero veloce 
%  
%% Unità di misura dati sperimentali 
% data.time           [s] 
% data.posEncoder     [°] in albero lento 
% data.posMotor       [°] in albero lento 
% data.velCom         [rpm] in albero lento 
% data.velRead        [rpm] in albero lento 
% data.ISetpoint      [A] 
% data.IActValue      [A]  
% data.quadVSetpoint  [V] 
% data.Load           [Nm] 
% data.amplCom        [°] in albero lento 
% data.phCom          [°] in albero lento 
% data.freqCom        [Hz] in albero lento 
 
%% Calcolo del gioco sperimentale  
 
%err = max( abs(data.posMotor-data.posEncoder) ); 
dynamics.BLK = 0.0023;        % [rad] Backlash Width (albero lento) 
 
%% DEFINIZIONE PARAMETRI HF MODEL 
%% Parametri simulazione 
 
simulation.TiBr = 10;               % [s] Durata simulazione 
simulation.DT = 1e-6;               % [s] Passo di integrazione 
simulation.initPos = 0;             % [rad] Posizione iniziale (albero lento) 
 
simulation.tauFilter = 5*10e-5;     % [s] Tempo caratteristico filtro I_3eq 
 
flag = 1;      % Controllo in posizione 
 
%simulation.comSinAmpl = deg2rad( data.amplCom );    % [rad] Ampiezza del comando 
%simulation.comSinFreq = data.freqCom * (2*pi);      % [rad/s] Frequenza del comando 
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%simulation.comSinPh = deg2rad( data.phCom );        % [rad] Fase iniziale 
 
%% Controller 
 
controller.Gprop = 1000/60*124;     % [1/s] Guadagno proporzionale controller   % 5e2/tau 
controller.W_refMax = 8000*pi/30;   % [rad/s] Saturazione errore posizione      % 6060*pi/30%; 
controller.I_Max = 22.5;            % [A] Saturazione I_ref 
controller.Knoise = 0;              % [] Coefficiente moltiplicativo Rumore (0 - 1 - 10 - 100) 
 
controller.PID.GAP = 0.2368;        % [Nms/rad] Guadagno proporzionale PID      % 0.05;%0.1;%0.75 
% controller.PID.GAI = 0;           % [Nm/rad] Guadagno integrativo PID         % 10 
% controller.PID.GAD = 0;           % [Nms^2/rad] Guadagno derivativo PID       % 5e-5 
 
controller.PID.ErIM = 100;          % [Nm] Max Errore Integrativo 
controller.PID.band = 1e-3;         % [rad] Tolleranza ramo integrativo 
controller.PID.Ti = 0.01;           % [s] Tempo caratteristico ramo integrativo 
controller.PID.Tt = 1;              % [s] Tempo caratteristico compensazione windup 
 
controller.PID.Td = 0;              % [s] Tempo caratteristico ramo derivativo 
controller.PID.N = 1000;            % [1/s] Banda passante filtro derivativo 
 
%% Inverter 
 
inverter.PWM.hb = 0.1;              % [A] Ampiezza banda di isteresi 
inverter.Hbridge.Vdc = 380;         % [V] Tensione alimentazione 
inverter.Hbridge.RSnubber = 1e5;    % [ohm] Resistenza snubber 
inverter.Hbridge.CSnubber = inf;    % [F] Capacità snubber 
inverter.Hbridge.Ron = 1e-2;        % [ohm] Ron (in Universal Bridge) 
 
%% Motore 
 
BLDC.P = 4;             % [] Numero paia poli 
BLDC.Nabc = [1 1 1];    % [] Frazione spire attive (fasi A, B, C) 
 
BLDC.Rs = 2.75;         % [ohm] Resistenza nominale fase-fase (es. Rab) 
BLDC.Ls = 30.5e-3;      % [H] Induttanza nominale fase-fase (es. Lab) 
BLDC.Ke = 1.91/2;       % [Nm/A] Costante di fcem del motore   
 
BLDC.TMM = 11.842;      % [Nm] Saturazione coppia 
BLDC.zeta = 0;          % [] Modulo eccentricità statica 
BLDC.phi = 0;           % [] Fase eccentricità statica 
 
%% Dinamica motore-trasmissione 
 
dynamics.tau = 1/124;       % Rapporto di trasmissione 
dynamics.JM = 0.00077;      % [kg*m^2]      Momento d'inerzia del DC Motor (AV=albero veloce) 
dynamics.CM = 0.0255;       % [N*m*s/rad]   Coefficiente di smorzamento viscoso dimensionale DC Motor (AV) 
dynamics.JU = 1e-3;         % [kg*m^2]      Momento d'inerzia utilizzatore ridotto all'albero veloce 
dynamics.CU = 4.5070e-7; %4.5070e-7;    % [N*m*s/rad]   Coefficiente di smorzamento viscoso dimensionale 
utilizz.(AV) 
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dynamics.CM1 = 0.0163;                  
 
dynamics.friction.FSTm = 2*0.0676/BLDC.TMM;      % [] Attrito statico  motore       (albero veloce - espresso in 
percentuale di BLDC.TMM) 
dynamics.friction.FDTm = 0.0676/BLDC.TMM;        % [] Attrito dinamico motore       (albero veloce - espresso in 
percentuale di BLDC.TMM) 
dynamics.friction.FSTu = 2*0.045/BLDC.TMM;       % [] Attrito statico  utilizzatore (albero veloce - espresso in 
percentuale di BLDC.TMM) 
dynamics.friction.FDTu = 0.045/BLDC.TMM;         % [] Attrito dinamico utilizzatore (albero veloce - espresso in 
percentuale di BLDC.TMM) 
 
dynamics.ThUmin = -1.5;     % [rad] Finecorsa inferiore 
dynamics.ThUmax = 1500000;      % [rad] Finecorsa superiore 
 
%% Simulation 
 
%data.resistence = data.load + data.friction;  
 
%% 
% *BOLD TEXT*  
 
exeSimulation = tic; 
sim('modelHF_friction_final.slx') 
enlapsedTime = toc(exeSimulation); 
 
%% Salvataggio dati 
 
simResults.time = tout;                   % tempo simulazione 
simResults.iA = out(:,1);                 % Iq 
simResults.V_Afiltered = out(:,2);        % Va filtrata 
simResults.V_Bfiltered = out(:,3);        % Vb filtrata 
simResults.V_Cfiltered = out(:,4);        % Vc filtrata 
simResults.V_3eq = out(:,5);              % V equivalente filtrata 
simResults.Vd = out(:,6);                 % V dirette filtrata 
simResults.deltaVfiltered =out(:,7);      % Delta V filtrata 
simResults.Dtheta_m = out(:,8);           % Dtheta M 
simResults.theta_u = out(:,9);            % Theta u 
simResults.I_3eq = out(:,10);             % I quadratura equivalente trifase 
simResults.theta_m = out(:,11);           % Theta M 
simResults.Id = out(:,12);                % I diretta equivalente trifase 
simResults.PosRef = out(:,13);            % Comando istante per istante 
simResults.VelRef = out(:,14);            % Velocità di riferimento ingresso PID 
simResults.IqRef = out(:,15);             % I quadratura di riferimento in uscita dal PID 
simResults.Tm = out(:,16);                % Coppia esercitata dal motore 
 
 
simResults.backlash = dynamics.BLK; 
simResults.exeTime = enlapsedTime;  % [s] 
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Dinamica riduttore 
 
%% RIDUTTORE EPICICLOIDALE 
% clear all; 
% close all;  
% clc 
 
eps=0.047; % pressure-induced shear coefficient 
c1=-1.890758; % -1.890758 -2.999 
c2=10.5253; % 10.5253 7.852 
T=20; %-20:0.20066889:40; % temperature range Celsius  
nu_cin=10^(10^(c1*log(T+273.15)+c2)); % viscosità cinematica f(T) 
pho_lub=0.869; % densità del lubrificante (assente quindi si prende aria in considerazione)lla temperatura di 
riferimento[kg/dm3] 
 
psi=-0.001; % density-temperature coefficient 
pho_T=pho_lub-((T-15)*6.444*(10^-4)); 
pho2_T=pho_lub.*(exp(psi.*(T-15))); 
nu_din=(nu_cin./10^6).*(pho2_T*1000); 
 
%% dati geometrici delle ruote dentate 
pho=7850; % densità [kg/m3] 
ns=3; % numero di pianeti 
eps_1=1.2;%2 % rapporto di condotta 
x_i=0; % fattore di correzione dentatura 
alpha=22.5*(pi/180); % angolo di pressionem [rad] 
phi_0=(2*pi)/ns; % angolo di distanziamento satelliti [rad] 
z_1 = [21 21 63]'; % Solar-satellite-internal gear - 1st stage 
 
 
% interasse e raggi di base e testa 
rbs= 35; %(d_1(1)/2)-1.25*mn_1; % Raggio base solare [mm] 
rbp=35; %(d_1(2)/2)-1.25*mn_1 ; % Raggio base satellite [mm] 
m= rbs/21;% % modulo normale d_primitivo/n_denti[mm]  
 
Int=rbs+rbp; % Interasse [mm] 
rbr=132; % Raggio base corona [mm] 
rbc=rbs+rbp; % "Raggio base" porta satellite [mm] 
rts=40.6; % Raggio testa solare [mm] 
rtp=40.6; % Raggio testa satellite [mm] 
rtr=126.4; % Raggio testa corona [mm] 
rp= 39.5; %Raggio primitivo solare/satellite [mm] 
rpr=127.5; %Raggio primitivo corona [mm] 
 
s_dente=pi*m/2; % spessore dente nella circonferenza primitiva [mm]  
s_dente_sat=pi*m/2; 
p_base=m*pi*cos(alpha);  
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b_1=18; % [mm] larghezza di fascia 
 
m_sol_1=2.5;  % solar mass [kg] 
m_cor_1=1.5;  % ring mass [kg] 
m_sat_1=2;  % planet mass [kg] 
 
 
% alberi 
d_shaft_in=33; % diametro albero ingresso [mm] 
m_shaft_in=0.10; % massa albero ingresso [kg] 
l_shaft_in=220; % lunghezza albero ingresso [mm] 
E_shaft_in=210; % modulo di elasticità [Gpa] 
v=0.3; % coefficiente di poisson 
G_shaft_in=E_shaft_in/(2*(1+v)); % modulo elasticità tangenziale [Gpa] 
 
%% cinematica 
% rapporti di trasmissione 
 
tau_rp = z_1(2)/z_1(3); 
tau_sp = -(z_1(1)/z_1(2)); 
tau = 1 + (z_1(3)/z_1(1)); 
 
% distribuzione coppie-analisi statica 
T_s= 6; % [Nm] 
T_load_id=T_s*tau;  
T_sp=(T_s/3)*(z_1(2)/z_1(1)); 
F_sp=T_s./(3*2*rp*cos(alpha)); 
F_rp=F_sp; 
F_car=F_sp*cos(alpha) + F_rp*cos(alpha); 
T_car=F_car*3*(rp+rp); 
 
%calcolo coppia Tm generata dal comando  
Potenza=mean(y5)*mean(y7); 
Coppia=Potenza/mean(y4); 
 
 
% velocità 
n_in=0.01*124*60/(2*pi);  %%0.02 0.03 0.04 0.05 ... 0.1   %[rpm]    (velocità motore in rpm) rad/s *60/(2pi) = 
rpm 
omega_in=(2*pi*n_in)/60; % Velocità dell'albero del solare [rad/s] 
omega_c=omega_in/tau; % Velocità portasatellite ideale [rad/s] 
omega_s=omega_in; % Velocità solare [rad/s] 
omega_p=(omega_s-omega_c)*(z_1(1)/z_1(2)); % Velocità relativa satellite [rad/s] 
omega_p_ax=omega_p-omega_c; % Velocità assoluta satellite [rad/s] 
 
 
%% dinamica 
% Momenti d'inerzia 
I_sol=(((2*rp)^2)/8)*m_sol_1; % momento inerzia solare % [kg*m2] 
I_sat=(((2*rp)^2)/8)*m_sat_1; % inerzia satelliti % [kg*m2] 
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Igear1 = 1.75E-6; %9.52E-7; % [kgm2] inertia driving shaft (somma dell'inerzia riportata all'albero motore) 
Jgb = Igear1*124; % [kgm2] inertia power screw shaft (in quanto Igear1 rappresenta il momento di inerzia ridotto 
all'albero motore) 
Jm= 7700e-6; 
 
 
%% Rigidezza di ingranamento 
%% Solare-pianeta 
R_sol_inf=sqrt(((Int*sin(alpha)) - sqrt((m + rp)^2 -(((rp)*cos(alpha))^2)))^2 + ((rp)*cos(alpha))^2); 
A=0; % inizio segmento dei contatti 
B=(eps_1-1)*2*pi/z_1(1); 
C=2*pi/z_1(1); 
D=eps_1*2*pi/z_1(1); 
 
% primo tratto (due coppie di denti in presa) 
tetaAB=linspace(A,B); % vettore avanzamento angolo di ingranamento da A a B 
rAB_1=sqrt((((rp)*cos(alpha)).^2) + (sqrt((R_sol_inf.^2)-(((rp)*cos(alpha)).^2)) + 
(rp)*cos(alpha).*tetaAB).^2); 
rAB_2=sqrt((((rp)*cos(alpha)).^2) + ((Int*sin(alpha) - sqrt(rAB_1.^2 - ((rp)*cos(alpha)).^2))).^2); 
[KAB_sol]=mesh_stiffness(m,z_1(1),2*rp,rAB_1,x_i); 
[KAB_sat]=mesh_stiffness(m,z_1(2),2*rp,rAB_2,x_i); 
 
% secondo tratto (una coppia di denti in presa) 
tetaBC=linspace(B,C); % vettore avanzamento angolo di ingranamento da A a B 
rBC_1=sqrt((((rp)*cos(alpha)).^2) + (sqrt((R_sol_inf.^2)-(((rp)*cos(alpha)).^2)) + 
(rp)*cos(alpha).*tetaBC).^2); 
rBC_2=sqrt((((rp)*cos(alpha)).^2) + ((Int*sin(alpha) - sqrt(rBC_1.^2 - ((rp)*cos(alpha)).^2))).^2); 
[KBC_sol]=mesh_stiffness(m,z_1(1),2*rp,rBC_1,x_i); 
[KBC_sat]=mesh_stiffness(m,z_1(2),2*rp,rBC_2,x_i); 
 
% terzo tratto (due coppie di denti in presa) 
tetaCD=linspace(C,D); % vettore avanzamento angolo di ingranamento da C a D 
rCD_1=sqrt((((rp)*cos(alpha)).^2) + (sqrt((R_sol_inf.^2)-(((rp)*cos(alpha)).^2)) + 
(rp)*cos(alpha).*tetaCD).^2); 
rCD_2=sqrt((((rp)*cos(alpha)).^2) + ((Int*sin(alpha) - sqrt(rCD_1.^2 - ((rp)*cos(alpha)).^2))).^2); 
[KCD_sol]=mesh_stiffness(m,z_1(1),2*rp,rCD_1,x_i); 
[KCD_sat]=mesh_stiffness(m,z_1(2),2*rp,rCD_2,x_i); 
 
% rigidezza con due coppie di denti in presa (AB e CD) 
KAB_eq= (KAB_sol.*KAB_sat)./(KAB_sol + KAB_sat); % rigidezza equivalente due molle in serie (1 coppia di denti 
in presa) 
KCD_eq= (KCD_sol.*KCD_sat)./(KCD_sol + KCD_sat); % rigidezza equivalente due molle in serie (1 coppia di denti 
in presa) 
Keq_2cop = (b_1/1000).*(KAB_eq + KCD_eq); % rigidezza equivalente due molle in parallelo (due coppie di denti 
in presa) 
 
% rigidezza con 1 coppiA di denti in presa (BC) 
Keq_1cop= (b_1/1000).*((KBC_sol.*KBC_sat)./(KBC_sol + KBC_sat)); 
% creazione vettori da plottare 
tetaAD=[tetaAB tetaBC tetaCD]; 
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Rig_sol_sat=[Keq_2cop Keq_1cop Keq_2cop]; 
r_punto_pignonesol=[rAB_1,rBC_1,rCD_1]; 
r_punto_ruotasat=[rAB_2,rBC_1,rCD_2]; 
 
 
%% Pianeta-corona 
R_sat_inf=sqrt(((Int*sin(alpha)) - sqrt((-m + (rpr))^2 -(((rpr)+ (1.25*m))^2))^2 + ((rp)*cos(alpha))^2)); 
Apr=0; % inizio segmento dei contatti 
Bpr=(eps_1-1)*2*pi/z_1(2); 
Cpr=2*pi/z_1(2); 
Dpr=eps_1*2*pi/z_1(2); 
 
% primo tratto (due coppie di denti in presa) 
tetaABpr=linspace(Apr,Bpr); % vettore avanzamento angolo di ingranamento da A a B 
rAB_1_pr=sqrt((((rp)*cos(alpha)).^2) + (sqrt((R_sat_inf.^2)-(((rp)*cos(alpha)).^2)) + 
(rp)*cos(alpha).*tetaABpr).^2); 
rAB_2_pr=sqrt((((rpr)+ (1.25*m)).^2) + ((Int*sin(alpha) - sqrt(rAB_1_pr.^2 - ((rp)*cos(alpha)).^2))).^2); 
[KAB_sat_pr]=mesh_stiffness(m,z_1(2),2*rp,rAB_1_pr,x_i); 
[KAB_ring_pr]=mesh_stiffness(m,z_1(3),2*rpr,rAB_2_pr,x_i); 
 
% secondo tratto (una coppia di denti in presa) 
tetaBCpr=linspace(Bpr,Cpr); % vettore avanzamento angolo di ingranamento da A a B 
rBC_1_pr=sqrt((((rp)*cos(alpha)).^2) + (sqrt((R_sat_inf.^2)-(((rp)*cos(alpha)).^2)) + 
(rp)*cos(alpha).*tetaBCpr).^2); 
rBC_2_pr=sqrt((((rpr)+ (1.25*m)).^2) + ((Int*sin(alpha) - sqrt(rBC_1_pr.^2 - ((rp)*cos(alpha)).^2))).^2); 
[KBC_sat_pr]=mesh_stiffness(m,z_1(2),2*rp,rBC_1_pr,x_i); 
[KBC_ring_pr]=mesh_stiffness(m,z_1(3),2*rpr,rBC_2_pr,x_i); 
 
% terzo tratto (due coppie di denti in presa) 
tetaCDpr=linspace(Cpr,Dpr); % vettore avanzamento angolo di ingranamento da A a B 
rCD_1_pr=sqrt((((rp)*cos(alpha)).^2) + (sqrt((R_sat_inf.^2)-(((rp)*cos(alpha)).^2)) + 
(rp)*cos(alpha).*tetaCDpr).^2); 
rCD_2_pr=sqrt((((rpr)+ (1.25*m)).^2) + ((Int*sin(alpha) - sqrt(rBC_1_pr.^2 - ((rp)*cos(alpha)).^2))).^2); 
[KCD_sat_pr]=mesh_stiffness(m,z_1(2),2*rp,rCD_1_pr,x_i); 
[KCD_ring_pr]=mesh_stiffness(m,z_1(3),2*rpr,rCD_2_pr,x_i); 
 
% rigidezza con due coppie di denti in presa (AB e CD) 
KAB_eq_pr= (KAB_sat_pr.*KAB_ring_pr)./(KAB_sat_pr + KAB_ring_pr); % rigidezza equivalente due molle in serie 
(1 coppia di denti in presa) 
KCD_eq_pr= (KCD_sat_pr.*KCD_ring_pr)./(KCD_sat_pr + KCD_ring_pr); % rigidezza equivalente due molle in serie 
(1 coppia di denti in presa) 
Keq_2cop_pr = (KAB_eq_pr + KCD_eq_pr).*(b_1/1000);% rigidezza equivalente due molle in parallelo (due coppie 
di denti in presa) 
 
% rigidezza con 1 coppiA di denti in presa (BC) 
Keq_1cop_pr= ((KBC_sat_pr.*KBC_ring_pr).*(b_1/1000))./(KBC_sat_pr + KBC_ring_pr); 
% creazione vettori da plottare 
tetaADpr=[tetaABpr tetaBCpr tetaCDpr]; 
Rig_sat_ring=-[Keq_2cop_pr Keq_1cop_pr Keq_2cop_pr]; 
Rig_sat_ring_TOT=repmat(Rig_sat_ring,1,14); 
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r_punto_pignonesat=[rAB_1_pr,rBC_1_pr,rCD_1_pr]; 
r_punto_ruotacor=[rAB_2_pr,rBC_1_pr,rCD_2_pr]; 
lcont_1=rbs.*tan(tetaAD); 
tetaADpr_TOT=linspace(0,2*pi,length(Rig_sat_ring_TOT)); 
 
%% rigidezza con Fourier e smorzamento riduttore 
% rigidezze e smorzamenti costanti 
Keq_1cop_const=mean(Keq_1cop); % in prima approssimazione considero ksp=krp=costante 
Keq_1cop_const_pr=mean(Keq_1cop_pr); 
ksp=(0.75*eps_1 + 0.25)*Keq_1cop_const*(b_1/1000);   
kcp=ksp; 
damp_ratio=(0.3+0.17)/2; 
csp=2*damp_ratio*sqrt((ksp*m_sol_1*m_sat_1/(m_sat_1+m_sol_1))); 
crp=2*damp_ratio*sqrt(kcp*m_sat_1); 
 
p=[32 63 95]; 
FI=[p(1)*2*pi/(z_1(1)+z_1(3)) p(2)*2*pi/(z_1(1)+z_1(3)) p(3)*2*pi/(z_1(1)+z_1(3))]; 
 
gammaS1=(z_1(1)*FI(1)/(2*pi))*pi/180; %sfasamento relativo fra l ingranamento della 1a coppia solare-
pianeta e quello fra la prima coppia solare-pianeta (se stessa); 
gammaS2=(z_1(1)*FI(2)/(2*pi))*pi/180;%sfasamento relativo fra l ingranamento della 2a coppia solare-pianeta 
e quello fra la prima coppia solare-pianeta; 
gammaS3=(z_1(1)*FI(3)/(2*pi))*pi/180;%sfasamento relativo fra l ingranamento della 3a coppia solare-pianeta 
e quello fra la prima coppia solare-pianeta; 
 
 
gammaC1=-(z_1(3)*FI(1)/(2*pi))*pi/180;%sfasamento relativo fra l'ingranamento della 1a coppia corona-
pianeta e quello fra la prima coppia corona-pianeta 
gammaC2=-(z_1(3)*FI(2)/(2*pi))*pi/180; %sfasamento relativo fra l'ingranamento della 2a coppia corona-
pianeta e quello fra la prima coppia corona-pianeta 
gammaC3=-(z_1(3)*FI(3)/(2*pi))*pi/180;%sfasamento relativo fra l'ingranamento della 2a coppia corona-
pianeta e quello fra la prima coppia corona-pianeta 
 
gammaCS=(gammaS1-gammaC1)/p_base; 
 
 
%% 
f_s = omega_in/(2*pi); 
fmesh= f_s*(z_1(1)*z_1(3))/(z_1(1)+z_1(3)); 
Tmesh=1/fmesh; 
 
%% %% rigidezza alberi  
k_shaft_in=0*(G_shaft_in)*pi*(d_shaft_in/2)^4/(6*l_shaft_in); % [Nm] rigidezza torsionale albero solare 
c_shaft_in=0.003; 
K_shaft = (pi*8^4/32)*(210*1E3*0.33)/40/1000; 
C_shaft = 2*0.1*sqrt((Jgb/tau^2*Jm)/(Jgb/tau^2+Jm)*K_shaft);  
 
%% segmento di contatto SOLARE-PIANETA 
% lunghezza segmenti di contatto solare-satellite 
s_acc=sqrt((rtp^2)-(rbp^2)) - rp*sin(alpha); % tutti in [mm] 
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s_rec=sqrt((rts^2)-(rbs^2)) - rp*sin(alpha); 
s_cont=s_acc+s_rec; 
s_base=(rbs+rbp)*tan(alpha); 
d1=sqrt((r_punto_pignonesol.^2)-(R_sol_inf^2)); 
d2=s_cont-d1; 
lcont=rbs.*tan(tetaAD); 
 
% t_medio=sbase/(1.15*(d_1st(1)/2)*cos(alpha)); 
T1A=(rp + rp)*sin(alpha) - sqrt((rtp^2)-(rbp^2)); 
BT2=(rp + rp)*sin(alpha) - sqrt((rts^2)-(rbs^2)); 
% tperc=lcont./(omega_s*rbs*cos(alpha)); 
teta_rif_A=atan((rbs*tan(alpha) - s_acc)/rbs); % maldotti 
teta_rif_B=atan((rbs*tan(alpha) + s_rec)/rbs); % maldotti 
teta_rif=linspace(teta_rif_A,teta_rif_B,300); % maldotti 
ldc_length_deg=(teta_rif(end)-teta_rif(1))/10; % delta di rotazione solare contatto segmento di ingranamento 
pho1=(rbs/1000)*tan(teta_rif); % raggi dei cerchi equivalenti 
 
 
% carico che si divide lungo la linea di contatto 
F_spAB=linspace(F_sp/3,(2/3)*F_sp,length(tetaAB)); 
F_spBC=(2/3)*F_sp*ones(1,length(tetaBC)); 
F_spCD=linspace((2/3)*F_sp,F_sp/3,length(tetaCD)); 
F_sp_lin=[F_spAB F_spBC F_spCD]; 
 
 
%% segmento di contatto CORONA-PIANETA 
% lunghezza segmenti di contatto solare-satellite 
s_cont_pr=Int*sin(alpha)+ sqrt((rtp^2)-(rbp^2)) - sqrt((rbr^2)-(rtr^2));  % [mm] 
s_acc_pr=rbr*tan(alpha) - sqrt((rbr^2)-(rtr^2)); 
s_rec_pr= s_acc_pr-s_cont_pr; 
teta_rif_A_pr=atan((rbp*tan(alpha) - s_acc_pr)/rbp);  
teta_rif_B_pr=atan((rbp*tan(alpha) + s_rec_pr)/rbp);  
teta_rif_pr=-linspace(teta_rif_A_pr,teta_rif_B_pr,300);  
ldc_length_deg_pr=-(teta_rif_pr(end)-teta_rif_pr(1))/15; 
N2B2=sqrt((rbr^2)-(rtr^2))-Int*sin(alpha); 
Q2B2=(rbp*tan(alpha) + rbp*(pi-(2*alpha)) + rbp*tan(alpha)) -s_acc_pr -s_dente_sat; 
B2Q3= p_base - p_base.*((Q2B2/p_base)-round(Q2B2/p_base));  
P2Q3=abs(B2Q3-s_acc_pr); 
gamma_rs=P2Q3./p_base; 
pho1_pr=N2B2/1000 +(rbp/1000)*tan(teta_rif_pr); 
pho2_pr=Int*sin(alpha)+pho1_pr; % da correggere 
lcont_2_pr=linspace(-s_acc_pr,s_rec_pr,length(teta_rif_pr)); 
 
 
%% stima coefficiente di attrito ISO/TR 14179-2 
% SOLARE-PIANETA 
sigma=(0.1+0.1)/(2*(10^6)); % sqrt((0.1/(10^6))^2 + (0.1/(10^6))^2) (0.1+0.1)/(2*(10^6)) 
r_curv=1/(rp/1000) + 1/(rp/1000); 
v_per=omega_s*rp/(1000);   % m/s 
v_sw=2*v_per*sin(alpha); 
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K=(1000*T_s*(z_1(1)+z_1(2)))/(2*(b_1)*((rp^2)*z_1(2))); 
f_att=((nu_cin.^(-0.223))*(K.^(-0.40)))./(3.239*v_per.^(0.7)); 
f_att2=0.048*(((1./(b_1/1000))./v_sw).^0.2).*((nu_din).^(-0.05))*(sigma^0.25);    %% r_curv_r 
const=0.048*((nu_din).^(-0.05)).*(sigma^0.25); 
f_att_average=mean(f_att2); 
 
 
% PIANETA-CORONA  
sigma_r=(0.1+0.1)/(2*(10^6)); % sqrt((0.1/(10^6))^2 + (0.1/(10^6))^2) (0.1+0.1)/(2*(10^6)) 
r_curv_r=1/(rp/1000) - 1/(rpr/1000); 
v_per_r=omega_p*(rp)/(1000); 
v_sw_r=2*v_per_r*sin(alpha); 
K_r=(1000*(T_s/3)*(z_1(2)+z_1(3)))/(2*(b_1/1000)*((rp^2)*z_1(3))); 
f_att_r=((nu_cin.^(-0.223))*(K_r.^(-0.40)))./(3.239*v_per_r.^(0.7)); 
f_att2_r =0.048.*(((1./(b_1/1000))./(v_sw_r)).^0.2).*((nu_din).^(-0.05))*(sigma.^0.25); 
const_r= 0.048*((nu_din*1000).^(-0.05)).*(sigma_r^0.25); 
f_att_average_r=mean(f_att2_r); 
 
%% stima coefficiente di attrito ISO/TS 6336-4 
f_att_6336=0.143.*(((sigma.*(1./(b_1/1000)))./(v_per.*nu_din)).^0.25); 
f_att_average_6336=mean(f_att_6336); 
f_att_6336_r=0.143.*(((sigma_r.*(1./(b_1/1000)))./(v_per_r.*nu_din)).^0.25); 
f_att_average_6336_r=mean(f_att_6336_r); 
 

 

Mesh Stifness 
 
function [K] =mesh_stiffness(mn,Z,d,r,x_i) 
% % La funzione calcola le rigidezze del dente e la rigidezza di ingranamento 
% Input: 
% - mn=modulo 
% - Z: vettore 3x1 contenente il numero di denti delle ruote dei due stadi  
% - d=diametro primitivo 
% - r=posizione punto di contatto dentatura lungo la linea di contatto  
% - x_i= fattore di correzione 
 
A_0 = 3.867 + 1.612*Z - 0.02916*(Z^2) + 0.0001553*(Z^3); 
A_1 = 17.060 + 0.7289*Z - 0.01728*(Z^2) + 0.00009993*(Z^3); 
A_2 = 2.637 - 1.222*Z + 0.02217*(Z^2) - 0.0001179*(Z^3); 
A_3 = -6.330 - 1.033*Z + 0.02068*(Z^2) - 0.0001130*(Z^3); 
K=(10^9)*((A_0 + A_1*x_i) + (A_2 + A_3*x_i)*(((r)-(d/2))/((1+x_i)*mn))); 
end 
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BancoEMA_ramp0.01    
%% 0,02 %%0,03 %0,04… %0,09 %0,1 
 
tau=124; 
opts = delimitedTextImportOptions("NumVariables", 9); 
 
% Specify range and delimiter 
opts.DataLines = [1, Inf]; 
opts.Delimiter = ";"; 
 
% Specify column names and types 
opts.VariableNames = ["Xms", "C0Drive_axis_1r4821", "C1Drive_axis_1r4820", "C2Drive_axis_1r62", 
"C3Drive_axis_1r63", "C4Drive_axis_1r77", "C5Drive_axis_1r76", "C6Drive_axis_1r1733", "Var9"]; 
opts.SelectedVariableNames = ["Xms", "C0Drive_axis_1r4821", "C1Drive_axis_1r4820", "C2Drive_axis_1r62", 
"C3Drive_axis_1r63", "C4Drive_axis_1r77", "C5Drive_axis_1r76", "C6Drive_axis_1r1733"]; 
opts.VariableTypes = ["double", "double", "double", "double", "double", "double", "double", "double", "string"]; 
 
% Specify file level properties 
opts.ExtraColumnsRule = "ignore"; 
opts.EmptyLineRule = "read"; 
 
% Specify variable properties 
opts = setvaropts(opts, "Var9", "WhitespaceRule", "preserve"); 
opts = setvaropts(opts, "Var9", "EmptyFieldRule", "auto"); 
opts = setvaropts(opts, ["Xms", "C0Drive_axis_1r4821", "C1Drive_axis_1r4820", "C2Drive_axis_1r62", 
"C3Drive_axis_1r63", "C4Drive_axis_1r77", "C5Drive_axis_1r76", "C6Drive_axis_1r1733"], "TrimNonNumeric", 
true); 
opts = setvaropts(opts, ["Xms", "C0Drive_axis_1r4821", "C1Drive_axis_1r4820", "C2Drive_axis_1r62", 
"C3Drive_axis_1r63", "C4Drive_axis_1r77", "C5Drive_axis_1r76", "C6Drive_axis_1r1733"], "DecimalSeparator", 
","); 
opts = setvaropts(opts, ["Xms", "C0Drive_axis_1r4821", "C1Drive_axis_1r4820", "C2Drive_axis_1r62", 
"C3Drive_axis_1r63", "C4Drive_axis_1r77", "C5Drive_axis_1r76", "C6Drive_axis_1r1733"], "ThousandsSeparator", 
"."); 
 
% Import the data 
BancoEMAramp10 = readtable("C:\Users\buonp\OneDrive\Desktop\tesi 
magistrale\TEST17_04\BancoEMA_ramp1,0.CSV", opts); 
 
% conversioni 
 
BancoEMAramp10.C0Drive_axis_1r4821(2:end)=BancoEMAramp10.C0Drive_axis_1r4821(2:end)*360/400000
00; 
BancoEMAramp10.C1Drive_axis_1r4820(2:end)=BancoEMAramp10.C1Drive_axis_1r4820(2:end)*360/(40960*
tau); 
 
BancoEMAramp10.C2Drive_axis_1r62(2:end)=BancoEMAramp10.C2Drive_axis_1r62(2:end)*2*pi/60; 
BancoEMAramp10.C3Drive_axis_1r63(2:end)=BancoEMAramp10.C3Drive_axis_1r63(2:end)*2*pi/60; 
 
%% Clear temporary variables 
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clear opts 
x=BancoEMAramp10.Xms(2:end)/1000;  %tempo 
y1=BancoEMAramp10.C0Drive_axis_1r4821(2:end); % [°] encoder position, fast shaft 
y2=BancoEMAramp10.C1Drive_axis_1r4820(2:end); % [°] motor position, fast shaft 
y3=BancoEMAramp10.C2Drive_axis_1r62(2:end); % [rad/s] speed setpoint after filter, fast shaft" 
y4=BancoEMAramp10.C3Drive_axis_1r63(2:end); % [rad/s] actual speed smoothed, fast shaft" 
y5=BancoEMAramp10.C4Drive_axis_1r77(2:end); % [A]current setpoint torque-generating (comando in corr) 
y6=BancoEMAramp10.C5Drive_axis_1r76(2:end); % [A] current actual value torque generating (comando in 
corrente reale) 
y7=BancoEMAramp10.C6Drive_axis_1r1733(2:end); % [A]   quadrature voltage setpoint 
 
%correzzioni dovuti all'errore di siemens 
k=y1(1)-y2(1); 
y2(:)=y2(:)+k; 
c=y2(32060)-y2(32061); 
y2(32061:1:end)=y2(32061:1:end)+c; 
y1(:)=y1(:)-y1(1); 
y2(:)=y2(:)-y2(1); 
 
%coeff che sostituisce il coeff di smorzamento viscoso dimensionale DC Motor (AV) 
a=1;          % variano in base al comando 
b=0.09564; 
 
%valori medi 
 
Media_speed_setpoint_after_filter_fast_shaft=mean(y3) 
%Media_actual_speed_smoothed_fast_shaft_rads = mean(y4) 
% mean(y5) 
% mean(y7) 
% mean(y6) 
 
 
% Rappresentazione solo comando a rampa 0.01 
plot(x,y1,x,y2) 
legend("[°] encoder position","[°] motor position") 
grid on 
xlabel('time [s]') 
ylabel('deg [°]') 
% axis([0 1000000 0.071845 0.0725]) 
 
%Rappresentazione altre grandezze 
figure 
plot(x, y3,x, y4) 
legend("[rad/s] speed setpoint after filter","[rad/s] actual speed smoothed") 
grid on 
xlabel('time [s]') 
 
figure 
plot(x, y5,x, y6,x, y7) 
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legend("[A] current setpoint torque-generating","[A] current actual value torque generating","[V] quadrature 
voltage setpoint") 
% axis([0 10000 0.071824 0.071827])") 
grid on 
xlabel('time [s]') 
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