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Abstract

This thesis uses information collected from five monitoring stations between 2000
and 2022 to present a comprehensive database analysis of the air quality in the ur-
ban area of Turin, with a focus on nitrogen oxides and particulate matter. The goal
is to demonstrate a methodology for approaching pollutant concentration databases,
and assess the impact of regulatory measures on air quality, determining whether
introduced environmental policies have influenced the concentrations of nitrogen
oxides (NO, NO2, NOx) and particulate matter (PM10 and PM2.5). The study uses
publicly available datasets, that provide detailed daily and hourly measurements
of pollutant concentrations from the Sistema Regionale di Rilevamento di ARPA
Piemonte (database accessible at https://aria.ambiente.piemonte.it/#/qualita-
aria/dati). The work on the database begins with characterizing the different
measurement methods employed at each station, assessing their reliability and
comparability. A geographical map illustrates the spatial distribution of the sta-
tions, complemented by an evaluation of data coverage that highlights measurement
variability over time. This analysis gives an overview on when each station began
operating and highlights key periods of reliable data collection, providing insights
into the functionality and data quality of each station. The raw data were reor-
ganized and cleaned to ensure accuracy, underling inconsistencies and filling data
gaps where possible. This process helped to highlight significant trends, gaps, and
possible errors in the measurements over the years. In the main part of the thesis,
Long-term trends in pollutant levels are analyzed using both simple linear trend
analysis and advanced techniques such as STL (Seasonal and Trend decomposition
using Loess), which helps firstly to provide a general view of the pollution levels,
and secondly to identify trends, seasonal patterns, and irregular changes in the data
that are not immediately visible. Additionally, a preliminary exploration of the
potential use of the cleaned dataset in the Urban Atmospheric Pollutant Dispersion
Model SIRANE, is provided. This stresses its possible future application in studies
focused on the area of Turin. The results of this thesis present a comprehensive
view of air quality database, providing insight on data reliability and measurement
trends and variability, across Turin over the first two decades of the 21st century.
The analysis evidences an improvement in air quality condition, with decreasing
trends in nitrogen oxides and particulate matter concentrations. This reduction
is mainly attributed to the implementation of stringent environmental policies,
demonstrating the effectiveness of the regulations introduced by the European
Parliament and concretely adopted by the city of Turin. This work not only
provides a clear perspective on the historical and current state of urban air quality
in Turin but also provides a valuable reference for future air quality comparisons
and air pollution management in the metropolitan area.

https://aria.ambiente.piemonte.it/#/qualita-aria/dati
https://aria.ambiente.piemonte.it/#/qualita-aria/dati
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Chapter 1

Introduction

1.1 Context
Air pollution is becoming a severe issue for public health and environmental sustai-
nability, especially in urban areas worldwide. The city of Turin, with approximately
850,000 residents in its urban area, is the fourth largest city in Italy and one
of the most important economic and industrial center, especially until the first
decade of the 21st century with the FIAT factory. Despite being a green hub of
culture and history, the city faces persistent pollution problems, partly due to its
geographical layout. The surrounding Alps and Appenine mountains, from the
west to the north, contribute to poor air circulation, especially in winter. During
this season indeed, stable atmospheric conditions occur for example when warm air
traps colder air near the ground, therefore preventing pollutants from dispersing
upward and causing persistent smog. This, combined with the city’s traffic and
industrial activities, worsens air quality, significantly affecting the environment and
living condition. Nitrogen oxides (NO, NO2, NOX) and particulate matter (PM10,
PM2.5) are among the most critical air pollutants, primarily emitted from vehicular
traffic, industrial processes, and domestic heating. Nitrogen oxides are particularly
harmful because, beyond their direct toxicity, they contribute significantly to the
formation of photochemical smog and secondary pollutants, such as acids and
organic derivatives. PM10 and PM2.5 refer to particulate matter with diameters of
10 microns and 2.5 microns, respectively. These fine particles consist of dust, smoke,
and various other substances that due to their small size, can penetrate deeply into
the respiratory system, causing significant health risks such as respiratory diseases
and cardiovascular problems which contribute to decrease the life expectancy. Not
surprisingly their concentration are regulated by appropriate national and European
laws and standards (there is an upper limit of “overruns”, in days in a year, of
these thresholds, beyond which European sanctions are triggered).
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Introduction

The constant monitoring of these pollutants is crucial for understanding air quality
and evaluating the impact of regulatory measures. In addition, it should be recalled
that the interplay between pollution and weather conditions makes managing urban
air quality particularly challenging, since pollutants can alter local weather, while
weather affects pollutant dispersion. The SIRANE model briefly introduced in this
thesis, which simulates pollution dispersion in urban areas by considering various
factors including meteorological conditions, offers a way to better understand how
pollutants spread across the city. By integrating weather data, the model provides
predictions that can guide urban planning and policy decisions aimed at mitigating
pollution.
This thesis goes on to investigate at Turin’s air quality by analyzing publicly avai-
lable datasets to understand pollution trends and patterns and this introductory
chapter sets the stage by presenting the broader context of the study, highlighting
the complexities of working with large datasets, and introducing the main topics
that will be examined in detail throughout the thesis.

1.2 Objectives
The main objective of this thesis is to answer the question, how has pollution in
Turin changed in recent years? In particular, by analyzing long-term data on the
most important pollutants present at the urban level, the study primarily seeks to
uncover trends and irregular changes in air quality, which could provide insights
into the effectiveness of current regulations or correlate changes in air quality with
climate change. This will also provide a comprehensive overview of the database
that collect all measurement data from the monitoring stations within the city,
allowing to study the behavior of the monitoring stations during their working
period, highlighting possible issues in detection. This research aims also to evaluate
the impact of environmental policies and create a starting point for further analysis
on understanding how weather conditions influence pollution levels.

1.3 Implemented Methodology
The methodology used involves mainly techniques of data cleaning, statistical
analysis methods and modeling, to explore the air quality database in order to
obtain several information, including trends and patterns. Data preprocessing
was performed using Python Pandas and Julia DataFrames to clean and organize
the big datasets, addressing missing values and making data format simpler and
organized. The geographic information system tool QGIS was used to visualize
the spatial distribution of the monitoring stations in the urban area, showing their
proximity to industrial or high trafficked area. It also facilitated the accurate
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representation of the vector layer used by the SIRANE model to define the gas
dispersion network and allowed visualization of pollutant concentrations calculated
by the model, directly on the streets using heatmap layers. A simple trial was
conducted using SIRANE to assess pollutant dispersion, taking into account factors
such as meteorological conditions and urban layout, with the aim of evaluating its
reliability within Turin’s urban environment by comparing predicted concentrations
with measured data. Advanced statistical techniques, such as Seasonal and Trend
decomposition using LOESS (STL), were employed to separate long-term trends
from seasonal variations, particularly suited to recurring time patterns. This
approach made it possible to emphasize certain aspects of the data and make the
analysis more comprehensive, helping to evaluate the performance of monitoring
stations and highlighting significant trends or particularly pollution period.
This thesis is organized as follows. In the “Data Source” chapter, a complete
explanation and analysis of the databases public available for nitrogen oxides and
particulate measures is reported. In the "Measure Comparison" chapter, the analysis
of the correlation between different measurements is presented. The analysis of the
air quality and trend of concentration of pollutant is reported in the "Temporal
Analysis" chapter. Results are presented at the end of each chapter and discussed
in the "Conclusion" chapter.
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Chapter 2

Data Source

2.1 Data Overview
In this section is provided a compressive view of the publicly available database of air
quality data collected by different monitoring stations, located in the municipality
of Turin, and operating over the past two decades. The database offers the detection
in a large spectrum of a multitude of pollutant gases and particulate concentrations.
However the discussion focuses on the data collected in the urban area of Turin,
in particular on the historical series of NO, NO2, NOX, and PM measure, which
based on an initial analysis, these are the most standard measures, mostly detected
since the start of the 21st century. The data span 23 years, from 2000 to 2022,
providing a very long time series data which could be helpfully to understand and
give a clear vision of how has air quality changed over time.

2.2 Data Acquisition and Preprocessing
The data used in this study were provided by the Sistema Regionale di Rilevamento
di ARPA Piemonte, accessible through the air quality data portal [9]. In the site
the pollutant measurement data can be downloaded as a comma-separated values
(.csv) file, after selecting the pollutant type, the monitoring station, the year of the
measurements and other parameters. However the downloading process of all files
from the portal can be intricate and slow, so a formal request can be presented in
order to gain access to the whole database, simplifying the collection process.
For this thesis, a formal request was submitted, and a large portion of the full
database was provided, covering the period 2000-2022. Years 2023 and 2024 were
not included, as they had not yet been certified by ARPA at the time data were
obtained for this analysis. The data for PM2.5 does not cover the period from 2000
to 2004, as records for those years were not made available.

4



Data Source

2.2.1 Structure of the Data Files
The database is exported into multiple files, each organized following a specific
naming convention, which reflects the pollutant type and year of measurement:

• Export_2000_NO_torino.csv: Contains NO measurements for the year 2000.

• Export_2001_NO2_torino.csv: Contains NO2 measurements for the year
2001.

• Export_2022_PM10_torino.csv: Contains PM10 measurements for the year
2022.

Each of these files contains pollutant concentration measurements collected from
several stations within the municipality of Turin.

In addition, an extra file stazioni.csv containing a description of each mo-
nitoring station was provided. The information in this file is particularly useful for
understanding and classifying the measurements collected in each data file, and
the key columns are reported in the Table 2.1.

Table 2.1: Key Columns and Description from the stazioni.csv File

Column Name Description

codice_istat_comune ISTAT code identifying the municipality to which the station belongs.
progr_punto_com Identifier of the monitoring point station.
denominazione Name or code of the station.
data_inizio Start date of the station’s detection.
data_fine End date of the station’s operation, when present.
indirizzo_localita Address where the station is situated.
utm_x UTM coordinate (x) for geographic location.
utm_y UTM coordinate (y) for geographic location.
quota_stazione Altitude of the station (if available).
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The CSV files containing the measures of concentration are organized in different
lines, and the key columns are reported in Table 2.2.

Table 2.2: Description of the Most Important Columns in the Measurements Files

Column Name Description Possible Va-
lues

rete_monitoraggio Monitoring network. 13 (Turin)
codice_istat_comune Municipality where the station is located. 1272 (Turin

area), 2121
progr_punto_com Specific monitoring station within the municipality. 822,

803(Torino-
Consolata)

id_parametro Identifier for the pollutant being measured. 21 (NO), 4
(NO2), 22

valore_validato Measured concentration value [45.6, 32.8,
380.2]

flag_gestore_sistema Validation status by ARPA. 0 (validated), 1
(invalidated)

datetime Date and hour of the measurement (YYYY-MM-DD HH:MM). 2000-01-01
00:00

6



Data Source

2.2.2 Data Organization
Before preprocessing the data, a pre-filtering step was necessary to reduce the
dataset’s size and make it more manageable. The raw dataset, as stated before,
contains measurements from various monitoring stations distributed across different
municipalities; so a previous step is needed in order to keep only the data related
to monitoring stations within the municipality of Turin.
This shifts the focus only on the data relevant to this thesis analysis. In par-
ticular, five monitoring stations were identified as being within Turin’s urban
area: Torino-Consolata, Torino-Rebaudengo, Torino-Lingotto, Torino-Grassi, and
Torino-Rubino. An explicit overview of these stations will be provided later in the
chapter (subsection 2.7).
The organization process also involves aggregating each pollutant—NO, NO2, NOX,
PM10, and PM2.5—all measurement from 2000 to 2022 into a single dataset for
each pollutant, maintaining the original structure.

2.2.3 Data Preprocessing
The aim of preprocessing is to have easily accessible data and ensure quality and
reliability of the measurements all their parameters, before conducting further
analysis.

Methodology

The preprocessing step involved the exploration of each datafile for each pollutant
type, the understanding of completeness of the time series (to ensure the datetime
column was present and continuous), the verification of the correct labeling, and
the identification of all types of measures present. Of critical importance was the
validity check conducted on each measurement, identifying missing and unrealistic
range values. This were classified based on a review of the flag_gestione_sistema
status (na value introduced) as follows:

• Valid Measurements: Correctly recorded measurements, flagged as valid
(flag_gestore_sistema = 0).

• Invalid Measurements: flag_gestione_sistema = 1, indicates measure
present in the time series but not valid (e.g., negative or error values).

• Missing Measurements: Values (valore_validato = na) flagged as mis-
sing (flag_gestore_sistema = na), this ensure a clear distinction from
invalid data.
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Summary

The table 2.3 below compares the datasets of NO, NO2, NOX before and after
preprocessing, showing the improvements in flag accuracy:

Table 2.3: Comparison of Flags Before and After Preprocessing

Dataset Measurement Type Before Correction After Correction

NO

Correct Invalid Flags (set to 1) 0 8
Correct Missing Flags (set to NaN) 1,909 41,435
Correct Valid Measurements (set to 0) 702,269 702,269
Incorrect Valid Flags 8 0
Incorrect Missing Flags 39,526 0
Incorrect Invalid Flags 0 0

NO2

Correct Invalid Flags (set to 1) 0 0
Correct Missing Flags (set to NaN) 1,948 48,295
Correct Valid Measurements (set to 0) 695,417 695,417
Incorrect Valid Flags 0 0
Incorrect Missing Flags 46,347 0
Incorrect Invalid Flags 0 0

NOX

Correct Invalid Flags (set to 1) 0 1,062
Correct Missing Flags (set to NaN) 1,906 49,649
Correct Valid Measurements (set to 0) 690,769 690,769
Incorrect Valid Flags 1,062 0
Incorrect Missing Flags 47,743 0
Incorrect Invalid Flags 0 0

The Correct Invalid Flags (set to 1) and Incorrect Missing Flags (set to 1) highlight
the most important quantities, providing an idea of how was the quality of the
data before and after the preprocessing, showing respectively how many invalid
measurements are correctly flagged, and how many missing values are not correctly
flagged. This methodology significantly improved the accuracy of the flags, and
it solves the problem of misclassification of missing and invalid measures. The
adjustments made a solid data base, ensuring that all measurements are correctly
categorized, and can be safely used for subsequent analysis.

The preprocessing also facilitated the identification of the sampling frequency
for each pollutant concentration measurement (directly inferred from the data),
distinguishing between measurements collected on an hourly or daily basis.
Additionally, this preprocessing phase uncovered that particulate matter (PM10
and PM2.5) data contained multiple types of measurements. These varieties were
identified by different id_parametro values, corresponding to different instruments
or methods for measuring PM. The discovery led to further investigation which
will be detailed in the Chapter 3 Measure Comparison, which report the analysis
of the consistency between different types of particulate matter measurements.
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2.3 Sampling Frequency of Measurements
Upon reviewing the data, it was observed that NO, NO2 and NOX measurements
were consistently collected on an hourly basis, with the concentrations expressed in
µg/m3. As mentioned earlier, it was noticed that for the same monitoring station
the presence of multiple particulate measurements (PM10, PM2.5) that differ based
on the type and instruments used for the measurement. In particular, certain
monitoring stations (e.g., Torino-Lingotto) offer more specific detection and also
report concentrations of elements dispersed into the atmosphere, nevertheless these
measurements will not be considered during the subsequent analysis.
This diversity in instrumentation has a direct impact on the sampling frequency,
which can vary from hourly to daily. Tables 2.4 and 2.5 report all types of
measurements present in the PM10 and PM2.5 datasets, grouped by sampling
frequency, and with a brief description.

Table 2.4: Summary table of PM10 measurements.

PM10 Measurements

id_parameter name u.m.

Sampling Frequency: Daily

PM10_GAV PM10 - High Volume µg/m3
PM10_GBV PM10 - Low Volume µg/m3
PM10_B PM10 - Beta µg/m3
PM10_B_p PM10 - Beta - n.2 µg/m3
PM10_BD PM10 - Beta (daily average) µg/m3
PM10GAV1 PM10 - High Volume - n.2 µg/m3

Sampling Frequency: Hourly

PM10_TCON PM10 - Teom (correction factor + 50% -15) µg/m3
PM10_CP PM10 - from particle counter µg/m3
PM10_BH PM10 - Beta (hourly average) µg/m3
PM10_N PM10 - Nephelometer µg/m3
PM10_T PM10 - Teom µg/m3
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Table 2.5: Summary table of PM2.5 measurements.

PM2.5 Measurements

id_parameter name u.m.

Sampling Frequency: Daily

PM2.5 PM2.5 - Low Volume µg/m3
AS_PM2.5 Arsenic in PM2.5 ng/m3
BAAPM2.5 Benzo(a)anthracene in PM2.5 ng/m3
BP_PM2.5 Benzo(a)pyrene in PM2.5 ng/m3
BJKPM2.5 Benzo(b+j+k)fluoranthene in PM2.5 ng/m3
CD_PM2.5 Cadmium in PM2.5 ng/m3
NI_PM2.5 Nickel in PM2.5 ng/m3
PB_PM2.5 Lead in PM2.5 µg/m3
PM2.5_BD PM2.5 - Beta (daily average) µg/m3
PM2.5_B PM2.5 - Beta µg/m3

Sampling Frequency: Hourly

PM2.5_CP PM2.5 - from particle counter µg/m3
PM2.5_BH PM2.5 - Beta (hourly average) µg/m3

For each type of measurement, it was verified that sampling frequency continuity
was maintained throughout the period 2000-2022.
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2.4 Coverage Analysis
An important part of data preparation for analysis is evaluating the completeness
and continuity of the measurements over time. The coverage analysis assesses the
extent in which each pollutant was monitored across the selected stations in Turin.
This ensures that sufficient data is available to support a reliable trend analysis and
identifies any gaps that may need to be taken into account in a second phase of the
analysis. The following sections present a detailed review of the data coverage for
nitrogen oxides and particulate matter. For each pollutant group, valid and invalid
measurements are visualized across all selected monitoring stations, providing a
simple and effective understanding of the robustness and reliability of the dataset.

2.4.1 Methodology
To determine the temporal coverage of the measurements, the following steps were
taken:

• Each pollutant data was filtered and sorted by datetime for each available
detection station, and classified by measurement type.

• The presence and validity of data were assessed daily. For daily measurements,
a day was considered valid if at least one valid measurement
(flag_gestore_sistema = 0) was recorded. For hourly measurements, a day
was considered valid if at least min_valid_hours = 12 valid measurements
were recorded in that day.

The parameter min_valid_hours is introduced to ensure a consistent methodo-
logy for evaluating the temporal coverage of hourly measurements by defining a
minimum threshold of valid data needed to consider a day reliable. The choice
of a 12-hour threshold reflects a balance between maintaining a sufficient number
of valid days and ensuring that the daily averages accurately represent true daily
conditions.
Since this threshold impacts not only the temporal coverage but also the reliabi-
lity of subsequent analyses, it is crucial to further evaluate its appropriateness.
A complete reasoning about the threshold is provided in subsection 2.6, to con-
firm that this choice offers an optimal trade-off between data availability and
representativeness.
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2.4.2 Nitrogen Oxides (NO, NO2, NOX) Measurements
Figure 2.1 highlights the time series during which the measurements were available
(in grey) and valid (colored) for each station for the entire period between 2000 to
2022.

Figure 2.1: Nitrogen Oxides Measurement Daily Coverage for All Available Stations.

From an initial crude graphical view, it is noticeable that most stations exhibit a
consistent and substantial amount of valid data. The station Torino-Rubino only
started its measurements in 2007, and particularly Torino-Rebaudengo and Torino-
Lingotto have good overall coverage throughout all measured years. However, some
gaps in the data are also evident, e.g, for the station Torino-Consolata between
2007 and 2008, which require further investigation that will be addressed in the
Gap Analysis section.

Important Note: One important observation is the complete absence of NO, NO2,
and NOX measurements for the Torino-Grassi station. As a result, the following
analysis for nitrogen oxides will not include this station.
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2.4.2.1 Summary of Coverage Analysis of Nitrogen Oxides

In the Table 2.6 are reported the percentage of the valid measurement days relative
to both the number of days with any measurement and over the total period
between 2000 and 2022.

Table 2.6: Nitrogen Oxides Measurement Daily Coverage Summary.

Coverage percentage of NO, NO2, and NOX measurements
Gas On present days (%) On total period (%)

Torino-Consolata
NO 99.40 94.23
NO2 99.10 92.95
NOX 99.11 92.44

Torino-Rebaudengo
NO 99.32 95.29
NO2 99.24 94.57
NOX 99.25 94.08

Torino-Lingotto
NO 98.63 94.08
NO2 98.60 93.20
NOX 98.57 92.56

Torino-Rubino
NO 99.44 67.09
NO2 99.43 66.66
NOX 99.41 66.58

As anticipated from the graphical result, the overall coverage is very high across all
stations, with percentages above 98% for present days. The station Torino-Rubino
exhibit a lower coverage over the total period, and this is expected due to the later
start of data collection at that site.
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2.4.3 Particulate Matter (PM10, PM2.5) Measurements
The results, illustrated in Figures 2.2 and 2.3, highlight the periods during which
PM10 and PM2.5 measurements were available (in grey) and valid (colored) for
each station. The data for each station include various measurement types with
different sampling frequencies. An initial view shows that data are present for all
five stations in the urban area of Turin.

Figure 2.2: PM10 Measurement Daily Coverage for All Stations

14
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When examining the PM10 measurements Torino-Consolata has extensive data for
PM10_GBV from 2000 to 2022, despite some gaps in the last years. PM10_T
and PM10_TCON are present for nearly the same period (2001-2010), instead
PM10_GAV data are present only up to the end of 2003. Torino-Rebaudengo
shows consistent coverage for PM10_B from 2013 to 2022, and for PM10_CP from
2013 to 2022, whereas the measures of PM10_B_p are all shown to be invalid.

At Torino-Lingotto, PM10_B data span from 2005 to 2022, though there is a
small evident gap at the middle of 2011. The time period covered by the combined
PM10_GBV and PM10_B_p datasets spans from 2008 to 2022. Torino-Grassi
maintains almost continuous data for PM10_GBV from 2000 to 2022. Torino-
Rubino has a coverage for PM10 data from 2007 onwards, with valid data especially
for PM10_GBV, PM10_BH, and PM10_BD. PM10_B has valid data for a small
period mostly concentrated around 2022.

For PM10 measurements, the Torino-Consolata and Torino-Grassi stations are the
most reliable, since they provide the most complete records from 2000 to 2022. For
detailed and long-term studies, it is best to focus on PM10_T and PM10_GBV at
Torino-Consolata, PM10_B at Torino-Rebaudengo, PM10_B and PM10_GBV at
Torino-Lingotto, PM10_GBV at Torino-Grassi, and PM10_B and PM10_BH at
Torino-Rubino. These measurements offer the most consistent data coverage and
can help in a robust analysis.
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Figure 2.3: PM2.5 Measurement Daily Coverage for All Stations

When examining the PM2.5 fine particulate measurements, at the Torino-Rebaudengo
station data collection began at the end of 2011 and has been ongoing since then,
but valid measurements are present only from 2013. The Torino-Lingotto station
stands out with a continuous record of PM2.5 measurements spanning from 2005
to 2022 with several types of measurements (including atmosphere polluting ele-
ments). Similarly, the Torino-Rubino station started gathering PM2.5 data in 2013,
maintaining consistency over the years.

The results show that different types of PM measurements for the same sta-
tion have similar data coverage intervals. This observation suggests that it might
be possible to integrate these different measurements temporally, and extend the
temporal coverage of particulate matter data for a single station. Further analysis
will focus on understanding the similarity between these different measurements to
facilitate their integration (chapter 3).
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2.4.3.1 Summary of Coverage Analysis of PM

To better identifying the measurement types that are most frequently recorded
across all stations, in Table 2.7, Table 2.8 are reported the percentage coverage
of PM10, PM2.5 measurements. (For completeness PM2.5 element dispersion
measurements coverage is reported in Appendix in Table B.1).
Each table includes two percentages for each measurement: the percentage of valid
data when the measurement is present, and the percentage of valid data over the
entire 23-year period from 2000 to 2022 (8401 days) which reflects the overall
presence and completeness of the measurement across the study period.

Table 2.7: Coverage percentage of PM10 measurements.

Coverage percentage of PM10 measurements
Measure On present days (%) On total period (%)

Torino-Consolata
PM10TCON 90.14 36.58
PM10_GAV 9.04 3.31
PM10_GBV 93.66 93.66
PM10_T 90.17 36.59

Torino-Rebaudengo
PM10_B 83.11 40.35
PM10_CP 74.89 29.85

Torino-Lingotto
PM10_N 64.13 0.70
PM10_GBV 92.25 52.14
PM10_B_p 91.92 8.67
PM10_B 89.41 69.63

Torino-Grassi
PM10_GBV 87.50 87.50

Torino-Rubino
PM10_B 46.34 0.68
PM10_BD 89.39 15.55
PM10_BH 85.87 36.10
PM10_GBV 91.44 62.97
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Table 2.8: Coverage percentage of PM2.5 fine particulate measurements.

Coverage percentage of PM2.5 fine particulate
Measure On present days (%) On total period (%)

Torino-Rebaudengo
PM2.5_CP 75.04 29.91
PM2.5_B 86.65 34.22

Torino-Lingotto
PM2.5 90.97 69.23
PM2.5_B 86.99 7.88

Torino-Rubino
PM2.5_BH 86.75 36.47
PM2.5_BD 90.35 15.71
PM2.5_B 47.15 0.69

These results align with the coverage analysis graphical results, highlighting that
PM10_GBV and PM10_B are the most consistently recorded measurements for
PM10 across the various stations. Their frequent recording and high percentages
of valid data suggest they are good indicators of PM10 levels for our study case.
Similarly, for PM2.5 the measurements PM2.5_BH and PM2.5_B emerge as the
most reliable and offer substantial coverage across the observation period at their
respective stations.

2.4.4 Final Comment on the Coverage Analysis
The coverage analysis reveals that most stations provide reliable and continuous
data, particularly with regard to measurements of nitrogen oxides, offering strong
coverage across the full study period. For the particulate matter, the most reliable
measurements come from Gravimetric and Beta methods, which provide the longest
coverage over the years. Torino-Lingotto distinguishes as the station with the most
diverse range of PM measurements, capturing data from multiple measurement
methods. A key finding of the analysis is the complete lack of NO, NO2 and
NOX data for Torino-Grassi, meaning this station will not be considered in the
nitrogen oxides analysis. Additionally, as shown in the coverage plot, for PM2.5 the
data is only available for Torino-Rebaudengo, Torino-Lingotto, and Torino-Rubino
stations.
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Important Note: After conducting the coverage analysis, it was necessary to select
the measurements with the most reliable and complete time series data for each
station to ensure a cleaner and more straightforward analysis of particulate matter,
primarily aimed at obtaining a comprehensive trend analysis. Only measurements
that demonstrated adequate data coverage across the study period were maintained
for further analysis, including the gap analysis.
The following measurements were chosen for each station:

• Torino-Consolata: PM10_T, PM10_GBV

• Torino-Rebaudengo: PM10_B, PM10_CP, PM2.5_B, PM2.5_CP

• Torino-Lingotto: PM10_B, PM10_GBV, PM2.5, PM2.5_B

• Torino-Grassi: PM10_GBV

• Torino-Rubino: PM10_B, PM10_GBV, PM2.5_B
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2.5 Gap Analysis
This section focuses on quantifying missing periods in the measurement data for
nitrogen oxides and particular matter, already partially identified by the coverage
analysis. A complete analysis is reported, identifying critical periods, period with
longest gaps and the distribution of all continuous missing measurements for each
stations and type.
This analysis is crucial for assessing the quality and consistency of the data and
provides an important contribution to the coverage analysis. It is particularly useful
to identify whether the dataset contains many short gaps that could potentially be
addressed, thereby increasing its robustness, particularly for further trend analysis.

2.5.1 Nitrogen Oxides (NO, NO2, NOX) Measurements
The gap analysis for nitrogen oxides across the four available stations is summarized
in Figure 2.4. An interesting view of the distribution of the gaps in the data is
given through the gap classification into six duration bins: 1 hour - 24 hours, 1
day - 7 days, 1 week - 4 weeks, 1 month - 3 months, 3 months - 9 months, and
gaps greater than 9 months. This helps quantify short-term incomplete as well
as extended periods of data loss. A more detailed view of the 1-24 hour bin is
provided on the right side of the figure, which provides a more in-depth view of
the duration and frequency of these shorter gaps.
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Figure 2.4: Gap Duration Distribution for Nitrogen Oxides Across Stations

Important Observations:

• Short-term gaps (1 to 24 hours) dominate, indicating frequent brief disruptions
in data collection.

• In the 1 to 24-hour range, most gaps last between 1 and 3 hours.

• Torino-Consolata and Torino-Rebaudengo have slightly higher occurrences of
gaps, especially for NOX.

• Longer gaps (more than 1 week) are rare but do occur occasionally.
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• For a single station the plots shows that gaps are very similar across all gases,
with slight variations in frequency.

This visualization helps understand the extent and pattern of missing data, which
is important for ensuring the accuracy of trend analyses in the study.
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2.5.1.1 Summary of Gap Analysis of Nitrogen Oxides

The gap analysis for nitrogen oxides across the four available stations is summarized
in Tables 2.9, 2.10, and 2.11.

Table 2.9: Gap Duration Summary for NO

Station Total Most Freq. Longest Gap % Gaps

Torino-Consolata 795 1 ca. 10 mo (2007-02 to 2008-01) 1h-24h: 94.47%, >3mo: 0.13%
Torino-Rebaudengo 570 1 ca. 2 mo (2019-07 to 2019-09) 1h-24h: 90.18%, >3mo: 0.35%
Torino-Lingotto 757 1 ca. 1 mo (2003-06 to 2003-08) 1h-24h: 87.05%, >3mo: 0.13%
Torino-Rubino 388 1 ca. 4 wk (2007-03 to 2007-03) 1h-24h: 92.27%, >3mo: 0.0%

Table 2.10: Gap Duration Summary for NO2

Station Total Most Freq. Longest Gap % Gaps

Torino-Consolata 882 1 ca. 10 mo (2007-02 to 2008-01) 1h-24h: 91.95%, >3mo: 0.11%
Torino-Rebaudengo 568 1 ca. 2 mo (2019-07 to 2019-09) 1h-24h: 88.73%, >3mo: 0.35%
Torino-Lingotto 743 1 ca. 2 mo (2022-03 to 2022-05) 1h-24h: 87.35%, >3mo: 0.27%
Torino-Rubino 393 1 ca. 4 wk (2007-03 to 2007-03) 1h-24h: 91.84%, >3mo: 0.0%

Table 2.11: Gap Duration Summary for NOX

Station Total Most Freq. Longest Gap % Gaps

Torino-Consolata 943 1 ca. 10 mo (2007-02 to 2008-01) 1h-24h: 92.36%, >3mo: 0.11%
Torino-Rebaudengo 1021 1 ca. 2 mo (2019-07 to 2019-09) 1h-24h: 93.73%, >3mo: 0.35%
Torino-Lingotto 781 1 ca. 2 mo (2022-03 to 2022-05) 1h-24h: 87.45%, >3mo: 0.23%
Torino-Rubino 408 1 ca. 4 wk (2007-03 to 2007-03) 1h-24h: 91.96%, >3mo: 0.0%

Figure 2.5: Gap Duration Summary by Station and Gas Type: NO, NO2, and NOX

Of particular importance are the percentage of gaps falling within the 1-24 hour
range and those exceeding 3 months. The majority of gaps for all gases are short-
term (lasting between 1 and 24 hours), making up over 85% of gaps at each station,
with the most frequent being of 1 hour. These type of gaps do not represent a big
challenges in the further data analysis since, frequent short missing data can often
be addressed through standard data-cleaning techniques such as linear interpolation.

A key observation that results from the summary tables is that gaps in the data for
different measurements at the same station often happen during the same periods.
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These gaps could be due to temporary issues or malfunctions at the monitoring
stations during those times. For example, the longest gap recorded occurred at
Torino-Consolata, where NO, NO2, and NOX data were missing for approximately
10 months between February 2007 and January 2008.

2.5.2 Particulate Matter (PM10, PM2.5) Measurements
For particulate matter, a similar gap analysis was performed as for nitrogen oxides,
restricting the analysis only at the measurement type with the longest time series
as stated at the end of coverage analysis. This ensure the analysis to be consistent
and reliable with the subsequent trend analysis.

The selected measurement types for both PM10 and PM2.5 are: PM10_T, PM10_GBV,
PM10_B, PM10_CP, PM2.5_B, PM2.5_CP, and PM2.5.

In order to maintain uniformity in the analysis, the gap analysis for particu-
late measurements was performed on a daily basis. For measures with hourly
sampling, daily averages were calculated using a threshold of min_valid_hours
= 12, as done previously during the coverage analysis.

The distribution of daily gaps for particulate matter measurements is summa-
rized in Figure 2.6. The figure is divided into two sections: on the left side, the
main gap distribution is displayed by five bins ranging from 1 day to more than 9
months, while on the right side a more detailed breakdown of a week bin is provided.

A key observation is that, similar to the nitrogen oxides analysis, short-term
gaps are the most frequent at all stations for both PM10 and PM2.5 measurements.
Some longer gaps (lasting more than a week) are evident at certain stations, with
Torino-Rebaudengo and Torino-Grassi standing out for having a higher number of
long gaps in PM10 measurements. The longest gaps are no longer than 9 months
across any of the stations. However, Torino-Consolata exhibits some of the largest
gaps among all stations on the PM10 data. Similarly, Torino-Grassi also shows
extended gaps in the PM10 measurements, particularly for PM10_GBV. Although
less frequent, gaps of a few weeks are present for each stations.
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Figure 2.6: Gap Duration Distribution for PM10 and PM2.5 Across Stations
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2.5.2.1 Summary of Gap Analysis of PM

Here is reported a summary of the gap duration’s for PM10 and PM2.5 measu-
rements across all the stations, for the type of measurements available and with
the longest time series data. For each measurement in each station is explicitly
reported the length of the longest gap (with the explicit period) and the missing
day percentage over the total number of present days.

Table 2.12: PM10 Missing Data Summary

PM10 Missing Data Summary

Measurement Missing Days Longest Gap Most Frequent Gap Missing %

Torino-Consolata

PM10TCON 214 107 days (2001-09-16 to 2001-12-31) 1 6.51
PM10_GBV 531 116 days (2021-10-12 to 2022-02-04) 1 6.32
PM10_T 213 107 days (2001-09-16 to 2001-12-31) 1 6.48

Torino-Rebaudengo

PM10_B 162 14 days (2016-06-26 to 2016-07-09) 1 4.56
PM10_CP 355 48 days (2013-04-13 to 2013-05-30) 1 12.40

Torino-Lingotto

PM10_B 676 89 days (2011-05-09 to 2011-08-05) 1 10.36
PM10_GBV 362 14 days (2016-05-16 to 2016-05-29) 1 7.63

Torino-Grassi

PM10_GBV 1050 54 days (2015-06-19 to 2015-08-11) 1 12.50

Torino-Rubino

PM10_B 432 28 days (2018-04-27 to 2018-05-24) 1 12.26
PM10_GBV 466 17 days (2007-06-01 to 2007-06-17) 1 8.10
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Table 2.13: PM2.5 Missing Data Summary

PM2.5 Missing Data Summary

Measurement Missing Days Longest Gap Most Frequent Gap Missing %

Torino-Rebaudengo

PM2.5_B 421 43 days (2015-10-21 to 2015-12-02) 1 12.77
PM2.5_CP 349 48 days (2013-04-13 to 2013-05-30) 1 12.19

Torino-Lingotto

PM2.5 565 28 days (2022-07-26 to 2022-08-22) 1 8.85
PM2.5_B 80 9 days (2022-12-20 to 2022-12-28) 1 10.78

Torino-Rubino

PM2.5_B 400 28 days (2018-04-27 to 2018-05-24) 1 11.35

The key patterns in missing data highlighted by the Tables 2.12 and 2.13 reveal
several important insights. As anticipated from the graphical representation, for
PM10 the Torino-Consolata station has three notable gaps, with two of them for
the same period both lasting approximately 107 days. The Torino-Grassi station
exhibits the highest percentage of missing data for PM10, with 12.5% missing and
a longest gap of 54 days, also due to the smaller number of measurements for this
specific measurement . Torino-Lingotto and Torino-Rubino also show significant
data gaps, with missing percentages of 10.3% and 12.2%, respectively.

For PM2.5, Torino-Rebaudengo exhibits the highest percentage of missing da-
ta, with longest gap lasting about 43 days. Torino-Lingotto shows the highest
number of missing days (565), but with a lower missing percentage of 8.8%, which
is possible and make sense given its longer time series data.

In general, despite short-term gaps dominate across all stations, the presence
of these extended gaps, presents potential challenges for the robustness and validity
of the trend analysis.
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2.5.3 Final Comment on the Gap Analysis
The gap analysis led to the discovery of two important insights regarding the
dataset provided by (ARPA Piemonte). First, while each measurement exhibited
different frequency of missing data, the majority of the gaps were short-term, both
for hourly sampling data (with most of the gaps lasting between 1 and 3 hours)
and daily sampling data. These shorter gaps can be addressed using standard
data-cleaning techniques, such as interpolation, and do not pose a real problem
especially if the aim is the analysis of long term trend.

However, more significant issues are present, such as long-term gaps (over a
month), which are probably caused by monitoring station malfunctions. These
extended gaps present a substantial challenge to annual trend analysis, as they
may compromise the accuracy even of long-term evaluations like yearly averages.

In this section, the analysis presented is essential to identify when and where
these gaps occur, making them to be properly considered when interpreting the
results of the trend analysis. A proposal to mitigate the impact of these larger gaps
is to segment the trend analysis into shorter, more consistent periods or focus on
shorter-term evaluations that minimize the influence of these interruptions. More
attention to this will be reserved later in the thesis.

Overall, the gap analysis highlights the need to be careful when interpreting
trends from this datasets, especially for long-term air quality assessments. Conclu-
sions must account for the gaps, both short and long-term, to ensure accurate and
meaningful results.
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2.6 Sensitivity Analysis of Hourly Data Thre-
shold

The goal of this analysis is to see what could be an appropriate threshold
min_valid_hours for the minimum number of valid hourly measurements required
to calculate reliable daily averages of Nitrogen oxides and particulate concentrations.
Setting an optimal threshold ensures that the daily averages are representative of
true daily conditions.
Indeed a threshold that is too low may include days with insufficient data, leading
to biased or unreliable averages that do not capture the true variability of pollutant
concentrations. Conversely, a threshold that is too high may exclude too many
days, potentially reducing the dataset and limiting the temporal coverage of the
analysis.

2.6.1 Sensitivity Analysis for Nitrogen Oxides
In this section is conducted the sensitivity analysis for the hourly measures of NO,
NO2, and NOX pollutant, by the four monitoring stations in Turin with available
data.

Each station’s data is evaluated through four key visual components:

• Distribution of Valid Hours Per Day: A plot that shows the frequency
distribution of valid hourly measurements per day, highlighting the proposed
12-hour threshold with a dashed red line.

• Missing Hours Split by Time of Day: A bar plot that presents the missing
data patterns, grouped by different periods of the day (Morning, Afternoon,
Evening, Night) to identify temporal biases in the measurements.

• Daily Hourly Coverage: Displays the hourly coverage across the entire
study period, which provide a general overview of how many days are over
the threshold.

• Distribution of Hourly Measurements for Different Completeness
Levels: A histogram that highlights the completeness of hourly measurements
on daily basis, divided into four categories: less than 6 hours, 6-12 hours,
12-18 hours, and 18-24 hours of valid measurements.
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2.6.1.1 Representative Results from Torino-Consolata

Figure 2.7 shows the results of the sensitivity analysis for the Torino-Consolata
station. The analysis indicates that the majority of days have a high level of
completeness, with a significant portion of the measurements meeting the 12-
hour threshold. Similar patterns were observed for the other stations (Torino-
Lingotto, Torino-Rebaudengo, and Torino-Rubino), thus confirming that the 12-
hour threshold for the averaging of hourly data, will not discard many measurements
across all stations.

Figure 2.7: Sensitivity Analysis of NO, NO2, and NOX for Torino-Consolata.
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2.6.2 Sensitivity Analysis for PM10 and PM2.5

In order to evaluate the optimal threshold, a visual analysis is conducted, focusing
on the hourly measures for both particulate measurements available in each station.
It is recalled that PM measurement with hourly sampling frequency, among the
selected with a long-term temporal coverage are:

For PM10: PM10_T, PM10_CP.
For PM2.5: PM2.5_B, PM2.5_BH, PM2.5_CP, and PM2.5.

The analysis is based on four key visual components represented in the figure:

• Distribution of Valid Hours Per Day: Through bar plot is reported the
number of days with varying numbers of valid hourly measurements. A red
dashed line is drawn at the 12-hour mark, highlighting the threshold under
consideration. This distribution helps us understand how frequently days fall
below or above specific completeness levels.

• Missing Hours Distribution Between Day and Night: A plot that
presents the division of missing measurements between daytime (06:00 to
18:00) and nighttime (18:00 to 06:00), a common division in air quality
analysis. This give a general overview of the hourly measurements distribution
over a day, highlighting in a uneven case, the presence of biases in the calculus
of the averages.

• Daily Hourly Coverage: A scatter plot that provides a temporal view of
hourly coverage for the entire data period. It allows showing how the number
of valid measurements varies day-to-day, providing a vision on how consistently
the 12-hour threshold is met across the monitoring period and whether the
coverage is evenly distributed.

• Distribution of Hourly Measurements for Different Completeness
Levels: This set of histograms is the most representative plot of the analysis
as it directly reveals the biases in the distribution of hourly measurements
across a day. Four ranges of completeness are represented: less than 6 hours,
6-12 hours, 12-18 hours, and 18-24 hours of valid measurements per day. The
histograms show how hourly measurements are spread throughout the day,
with the associated density profile.

In this section only the results for PM2.5 are reported, as the PM10 data exhibits the
same pattern, supporting the decision to use the same threshold for both pollutants.

For completeness, the analogous analysis of PM10 data including the same vi-
sual components reported here, is provided in the Appendix (Fig. B.2, B.3).
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Figure 2.8 shows the results of the sensitivity analysis for PM2.5 hourly data, speci-
fically for the PM2.5_CP measurement from Torino-Rebaudengo and PM2.5_BH
measurement from Torino-Rubino.

Figure 2.8: Analysis of PM2.5 hourly data sensitiveness

The plots provide clear evidence that days with more than 12 valid hours tend to
have balanced measurements across the entire day, with a nearly uniform distribu-
tion, ensuring comprehensive daily averages. In contrast, days with fewer than 12
hours of valid data show gaps that often coincide with key daytime hours (during
middle hours), leading to potential biases in daily averages.
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Additionally, as shows the Valid Hours Distribution histogram, for days that
do not have the full 24 valid measurements, most still have significantly more
than the chosen threshold of 12 hours. Moreover, there is no substantial difference
between the number of missing hours during the day and night.

In conclusion, the analysis supports the use of the 12-hour threshold. This choice
maintains data integrity and allows to minimize potential biases introduced by the
averaging process, without needing to discard many days, thus preserving broad
data coverage.
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2.7 Monitoring Stations in Turin urban area
As mentioned earlier, the dataset provided by ARPA Piemonte includes a file,
stazioni.csv, which contains detailed information about all monitoring stations,
having data registered in the database. This file provides essential details such as
geographical coordinates, operational periods, the types of pollutants measured at
each station, and the unique station identifiers, especially crucial for filtering all
the measurements. Indeed the air quality database includes measurements from
across the entire municipality of Turin, so the filtering step was necessary to focus
on the stations located specifically within the urban area.

This section presents an overview of the five monitoring stations situated in Turin’s
urban area, emphasizing the types of pollutants each station measures and the
environmental context surrounding each location. This focus ensures a clear under-
standing and allows for concrete reasoning of how the stations’ placement reflects
the different pollution sources and urban dynamics of the surrounding environment.
Further information on these five stations is available on the official website of the
Comune di Torino [4].

2.7.1 Selection of Urban Stations
To ensure that the data analyzed through this thesis accurately represented urban
air quality of Turin, only the measures from certain stations were maintained from
the original database provided.
The filtering criteria included two key columns from the stazioni.csv file:

rete_monitoraggio = 13, which identifies the network monitoring stations of
Turin.

codice_istat_comune = 001272, which identifies the stations belonging to the
administrative area of Turin.

Applying these filters, the resultant unique stations in the datasets are associated
with the following five progr_punto_com values: 803, 805, 806, 819, and 822.

These progr_punto_com values correspond to the following monitoring stations:

• Torino-Consolata(803)

• Torino-Grassi(819)

• Torino-Rebaudengo(805)

• Torino-Rubino(822)

• Torino-Lingotto(806)

These finding agree with the five monitoring station listed in the Comune di Torino
website, previusly cited.
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2.7.2 Urban Distribution of Monitoring Stations
Using QGIS, the coordinates from the stazioni.csv file were used to create a
map that visualizes the spatial distribution of the monitoring stations within Turin
urban area. The results is reported in Figure 2.9.
This map highlights the station locations relative to key urban features, such as
major roads, residential and central areas, providing context for the spatial analysis
of air quality. The five stations are uniformly distributed in the Turin urban area

Figure 2.9: Map of monitoring stations in Turin, visualized with QGIS.

The distances between the stations can be of can be of relevant importance in
understanding potential spatial dispersion of pollutants and the variations in air
quality across different zones of the city. Using the Measure Line tool in QGIS,
and after correcting the map’s geo-reference, the distances between each station
were calculated.
The stations closest to each other are Torino-Consolata and Torino-Rebaudengo,
with a distance of approximately 2.65 km. On the other hand, more distant
stations are Torino-Lingotto and Torino-Rubino, which are 6.10 km apart from
Torino-Consolata.
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These variations in distance can provide a starting point on further investiga-
tion that focus on correlations between air quality measurements at different
stations, considering their spatial positioning. Specifically, stations located farther
apart may capture distinct pollution profiles, while closer stations may show similar
trends. This can potentially highlight the possibility of shared sources of pollution,
similar urban environments, and provide insight into the range of spacial variability
for a pollutant gas or PM.

2.7.3 Station Descriptions
The monitoring stations in Turin are categorized based on two combined factors:
the nearest sources of pollution and their geographical setting. These categories
combine to provide a more comprehensive classification of monitoring stations. An
overview of typical station types based on their combined characteristics is reported
below:

Suburban Background (Fondo Suburbana): Mainly define urban areas with
residential or commercial characteristics, and generally far from direct pollution
sources, such as heavy traffic or industrial zones. The primarily measures that
provide insight into the air quality here are nitrogen oxides (NOX).

Urban Traffic (Traffico Urbana): Stations placed mainly in high-traffic areas
of the city, where vehicular emissions are the primary source of pollution. These
stations are often equipped with instruments that measure carbon monoxide (CO)
and nitrogen oxides (NOX) to monitor the direct impact of traffic.

Rural Background (Fondo Rurale): Stations located away from urban centers,
in areas with residential and agricultural features. The instrumentation at these
stations typically measures nitrogen oxides (NOX), ozone (O3), sulfur dioxide (SO2),
and particulate matter (PM10).

The classification on the Turin municipality website reports the categorization of
each of the five monitoring stations in the Turin urban area as followings:

• Torino-Consolata: Urban Traffic, with residential/commercial feature. This
station, indeed is located near the city center. It is one of the most well-
equipped stations for monitoring both gaseous pollutants and particulate
matter across a wide range of sources, including the detection of various
organic compounds and heavy metals.
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• Torino-Rebaudengo: Urban Traffic as the previous. Situated near a very
busy intersection, for both local traffic and vehicles entering or exiting the
city, and still in a industrial/commercial zone.

• Torino-Lingotto: Urban Background. This station is located near a mix of
residential, commercial, and industrial areas, monitors a wide range of general
pollutants. Its instrumentation includes sensors for Total Suspended Particles
(PTS), Carbon Monoxide (CO), Nitric Oxide (NO), Nitrogen Dioxide (NO2),
and Ozone (O3), making it one of the most reliable stations for air quality
monitoring.

• Torino-Grassi: Suburban Traffic. Situated in prevalent residential and
slightly industrial area, the station monitors mainly Total Suspended Particles
(PTS) and particulate matter (PM10).

• Torino-Rubino: Urban Background, as Lingotto one. However the area is
reported to be mainly residential, without the presence of industrial activities.
A quieter populated area with the pollution source mostly due to vehicles
activity, this station monitors pollutants such as CO and NOX.

As it is possible to understand, the five air quality monitoring stations considered
for analysis in this thesis provide a comprehensive representation of Turin’s urban
environment. Thanks to the slight differences in the surrounding environments of
each station, ranging from residential to high-traffic or semi-industrial areas, it is
possible to obtain a general overview of how pollutant levels varies across different
urban settings.

By understanding the environment and pollutant sources surrounding each station,
this section forms the basis for the subsequent analysis, which will allow more in-
depth consideration over the air quality trends, pollutant levels, and their potential
impacts on public health and urban life.
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Chapter 3

Measure Comparison

3.1 Correlation Analysis of Different Types of
Particulate Matter (PM10, PM2.5) Measure-
ments

As pointed out in Chapter 2, the dataset for particulate matter contains various
measurements that differ based on the instrumentation used for the detection or
the type of the particle. In this section is reported the comparison between the
different types of PM measurements. The primary goal is to assess the similarity
between measures by different detection systems and determine the possibility of
integrating the data to improve temporal coverage.

3.1.1 Methodology
In order to compare measurements with different sampling frequencies (daily and
hourly data), the data was processed to match the lowest common frequency.
Hourly measurements were averaged, over the 24-hour, to create daily averages
allowing for consistent comparisons on a daily basis. The hourly measurements
averaged into daily values are denoted in the scatter plot with the suffix ’_mean’.
Creating the scatter plots for the comparison of each measure involved the calcula-
tion of the common period of validity for each couple of measures. Only paired
measurements, whether belonging to the same station or not, with both data points
valid for the same period were compared daily.
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In order to quantify the similarity between different measurements, the Pearson
correlation coefficient, mean absolute error (MAE), and root mean square error
(RMSE) were calculated for each measure pairs. Below are reported the metrics
used in this analysis, with their mathematical definitions.

Pearson correlation coefficient: The Pearson correlation coefficient measures
the linear correlation between two time series datasets, X and Y (e.g. daily PM
measurements recorded by different instruments) and it is defined as:

r =
qn

i=1(Xi − X̄)(Yi − Ȳ )ñqn
i=1(Xi − X̄)2

ñqn
i=1(Yi − Ȳ )2

(3.1)

where Xi and Yi represent the PM concentrations measured on each day, and X̄
and Ȳ are the means of the time series. The Pearson coefficient can range from -1
to 1, with values closer to 1 indicating a strong positive correlation, values closer
to -1 indicating a strong negative correlation, and values around 0 indicating no
linear correlation.

Mean Absolute Error (MAE) The Mean Absolute Error (MAE) is a measure
of errors between paired observations and is calculated as:

MAE = 1
n

nØ
i=1

|Xi − Yi| (3.2)

where Xi and Yi represent the concentrations measured on the same day, for instance
by two different instruments. MAE is essentially the average absolute difference
between these values and quantify whether the two measurements are compatible.
It is also effective for highlighting differences in measurements of the same type
taken (at the same time) but from different locations, thereby emphasizing spatial
variability in particulate concentrations.

Root Mean Square Error (RMSE) The Root Mean Square Error provides a
measure of the differences between two values. The formula for RMSE is:

RMSE =
öõõô 1

n

nØ
i=1

(Xi − Yi)2 (3.3)

MAE and RMSE are two measure of the average magnitude of the error, however
Root Mean Square Error gives a relatively stronger weight to large errors, as it
squares the differences before averaging, making it particularly useful in detecting
large errors.
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Important Note: In this chapter two main central aspect on the comparison
are reported: the first relative to the comparison of different measures from the
same station, the second relative to the comparison of measures from the different
station. The first methodology aimed to compare spatially compatible measures,
to see if they could be combined to extend data coverage. The second help better
to understand how similar or different the monitoring stations are, or address
particular behaviour to fast or slow dispersion process in the pollutant. The results
for the two aspect are reported separately.

3.1.2 Correlation between measurements from the same
station

Comparing measurements from the same station helps to identify how different
methods can complement each other to enhance temporal coverage, uncover discre-
pancies between measurement types or detect potential errors in data labeling for
identical measures.

To make the results more readable and organized, particulate measurements and
element dispersed in atmosphere measurements (detected only by Torino-Lingotto
station) are separated in the analysis. Only the scatter plots related to particulate
measurements (PM10 and PM2.5) are presented in this section. Scatter plots for
atmospheric elements highly correlated are included in the appendix, Figure B.1,
so that these results can offer interesting insights that could be explored in future
research. In addition, scatter plots with highly correlated measurements (Pearson
correlation coefficient greater than 0.9) are colored with a red border to facilitate
the identification of measurement pairs that can be considered for integration. Pairs
of measurements shared by multiple stations are presented in the same subplot.
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Scatter plots of PM10

In Figures 3.1, 3.2, and 3.3, the scatter plots for PM10 measurements at various
stations, for which multiple measures are present, are shown.

Figure 3.1: Scatter plots of PM10 measurements for Torino-Consolata
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Figure 3.2: Scatter plots of PM10 measurements for Torino-Rebaudengo and Torino-
Lingotto
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Figure 3.3: Scatter plots of PM10 measurements for Torino-Rubino

The previous figures reveals several important information about correlations, which
are summarized for each station as following:

• At Torino-Consolata, PM10_GBV and PM10_GAV show a good correla-
tion (Pearson 0.95). This two measures also show a correlation above 0.8
with PM10_T and PM10_TCON measures. Additionally, PM10_T (Hourly)
measurements align perfectly with PM10TCON values, which are adjusted
TEOM (Tapered Element Oscillation Microbalance) measurements (raw values
reduced by 50% and subtracting 15) to match actual PM10 concentrations.
From the literature it emerges that the TEOM tends to underestimate the
PM compared to the gravimetric samplers and require adjustments [2].
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• Torino-Rebaudengo present a very high correlation (Pearson = 0.98) bet-
ween PM10_CP and PM10_B, indicating an agreement between measures
from the particle counter and measures with Beta method.

• At Torino-Lingotto, there is a high correlation (Pearson = 0.95) between
PM10_GBV and PM10_B and also between PM10_B and PM10_B_p,
indicating these measures are possibly suitable for integration. In contrast,
PM10_GBV and PM10_N do not show a high correlation, suggesting some
differences between filter-derived and Nephelometer measures of concentration.

• Torino-Rubino show a perfect correlation (Pearson = 1.00) for PM10_B
and PM10_BD indicating the same type of measure registered with different
names (most likely due to error in the registration). Also PM10_BH and
PM10_BD present a perfect correlation which confirming that hourly averaged
measurements can reliably substitute for daily measurements. Also in this
station
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Scatter plots of PM2.5

Similarly to the approach used for PM10, the comparison represented in each subplot
in Figure 3.4 shows the correlation between measurements from Torino-Rebaudengo,
Torino-Rubino, and Torino-Lingotto stations. These stations have different types
of fine particulate measurements available, which can be compared.

Figure 3.4: Scatter plots of PM2.5 measurements for all stations

The key findings for each station and measures of PM2.5 summarizes in:

• Torino-Rebaudengo show a high correlation for PM2.5_CP_mean and
PM2.5_B (Pearson = 0.91) measurements, and this again suggests a close
relationship between particle counter and Beta detection methodology.
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• Torino-Rubino shows two couples of measures with perfect correlation.
PM2.5_B and PM2.5_BD with Pearson = 1.00 indicating that these measu-
rements are effectively identical; and PM2.5_BH and PM2.5_BD indicating
that the hourly average concentration corresponds to the daily measurement.

• At Torino-Lingotto, PM2.5_B (Beta) and PM2.5 (Low Volume gravimetric)
measurements show strong agreement.

Summary and Comparison of Different Methods of Measure

The representation with scatter plots of the different concentration measurements,
for common intervals belonging to the same station, provided a clearer view of the
particulate data, highlighting certain similarity between them.
Possible nomenclature registration error (or changes in measurement instrumen-
tation) were discovered in the data, whereby identical measurements were named
differently (e.g. PM10_B and PM10_BD; PM2.5_B and PM2.5_BD).
Furthermore, several pairs of PM10 and PM2.5 measurements showed high correla-
tions across different stations, which made them suitable for temporal integration,
which enhance data robustness and addresses missing values.

In the continuation of this thesis, temporal integration is applied exclusively
to measurement pairs with a Pearson correlation coefficient of 1, specifically to the
_B, _BH and _BD measurements for both PM10 and PM2.5.
The trend analysis in the following chapter continue using the cleaned raw data,
with adjustments based on the integrated values.

From the comparison interesting differences between various measurement methods
are found:

• Gravimetric analysis (used in Low Volume measurement) and Beta-ray at-
tenuation methods (used for Beta measurement) show a good relationship
for both PM10 and PM2.5 measurements, with Pearson correlation above 98%
. This finding aligns with result present in the literature, which reports a
significant correlation between these two methods [12].

• Filter-derived and Nephelometer data (PM10_GBV and PM10_N) do not
exhibit a strong correlation, which highlight a notable difference in the two
types of concentration measurements. This observation is supported by the
literature [14].

46



Measure Comparison

3.2 Scatter plots of general correlation (between
measures from different stations)

The scatter plots reported in this section allow for the evaluation of correlations
between different types of particulate matter measurements, despite the fact that
the measurements come from different locations, where pollution levels can typically
vary due to local factors.

3.2.1 PM10

In the original data, are identified 10 different types of PM10 measurements. In
principle this allows for the comparison of

1
10
2

2
= 45 pairs. However, only 23 of

these pairs have overlapping data for the same periods (same days), making them
the only ones meaningful to represent in the scatter plots.

Figure 3.5: Scatter plots of PM10 measurements pairs across all stations
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3.2.2 PM2.5

For the PM2.5, there are only ten pair of overlapping measurements that have
overlapping data for the same days.

Figure 3.6: Scatter plots of PM2.5 measurements among all stations
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Summary of Correlation Findings
Overall, from Figures 3.5 and 3.6, it is observed that a strong correlation exists
between the various types of PM10 and PM2.5 measurements across different stations.
This confirms the results from the earlier analysis, which highlighted that the
different measurement pairs showing strong correlation are consistent with those
previously identified.
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Chapter 4

Temporal Analysis

This chapter is the core and the turning point that encloses the central topic of the
thesis. In order to provide a clear view of long-term time series two methodologies
are combined: first, through the use of summary and advanced statistical methods
and second, with comprehensive graphical representation which are crucial to
highlight environmental air quality condition.

4.1 Linear Trend
4.1.1 Methodology
The analysis mainly focuses on using annual averages to obtain a smooth represen-
tation of the temporal evolution of gases concentration. This approach effectively
reduce the influence of short-term fluctuations, and as a result the trend lines
can better capture the underlying continuous changes in pollutant levels. The
averages were computed over the solar year, from January to December, instead
of considering seasonal years (e.g., from autumn to autumn). The second choice,
would seem the most appropriate for environmental analysis issues, as seasonality
and seasonal variation are more enhanced. Nevertheless, most scientific papers
regarding environmental monitoring and in regulatory environments (e.g European
Environment Agency) rely on annual averages to define standard levels. The
approach addressed in this thesis entail a straightforward and simple calculation
that ensure the results are standardized and can be used for comparisons with
legislative parameters.

For the graphical representation of the linear regression line, the regplot function
from the Python library Seaborn was used [15] and as a complement, to statisti-
cally quantify the trends, the Ordinary Least Squares (OLS) method present in
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statsmodels was utilized[11]. The OLS method works by minimizing the sum of
the squared differences residuals between the observed data points and the estima-
ted regression line. This tool provides different detailed statistical parameters such
as slope, intercept, R-squared values, and sensitivity like p-values.

4.1.2 Handling of Data Gaps
A significant aspect of the data analysis involved dealing with large gaps in the tem-
poral series for the concentration measurements. The presence and identification
of data gaps, was done during the data preprocessing stage (detailed in Chapter 2)
where results were saved and accessible for later and further different task.

Important Note: For this initial trend analysis, gaps in the data were not
specifically accounted for, and annual averages were calculated based on the availa-
ble data points for each year, without exclusions. Gaps in the data were anyway
highlighted in trend representation, to better emphasize where the calculation may
be unreliable due to missing information.

The decision of using raw data for the initial trend analysis provides a primary
view of trends, but some statistical detailed results are to be considered distorted.
A more refined approach would involve considering segmentation of the long term
time series before and after significant continue missing measurements (e.g., those
exceeding two months). In addition boundaries problem can occur, when in a time
series, the presence of partially covered year, due for not perfect alignment with
the start or ending point of monitoring period for stations, might affect averages.
In this way, the segments are therefore treated independently and a more correct
estimation of the trend can be obtained.

4.1.3 Linear Trend Analysis of NO, NO2, NOX

This section summarize the trend analysis results both as graphical and tabular
forms, illustrating the temporal evolution of nitrogen oxides (NO, NO2, and NOX)
concentrations across the considered monitoring stations.

4.1.3.1 Station-specific plots

The station-specific plots in Figure 4.1 collect the the annual average temporal
series of NO, NO2, and NOX concentrations. Each station plot reveal critical points,
such as the sharp NO peak at Torino-Consolata in 2005, which may be attributed
to specific data anomalies (as expected in correspondence of the underlined large
gap). Also for Torino-Rubino stations is it possible to see the boundary effect of the
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not perfect alignment between the start of 2007 and the start of monitoring period
for the station. In fact the partial initial uncover for Torino-Rubino, especially
with missing data in Winter month lead to an underestimation of the average
concentration for that year.

Figure 4.1: Annual Trends of Nitrogen Oxides with gap highlighted

Specific observations at each station further clarify these trends:

• Torino-Consolata: This station exhibits a large and constant decline in all
pollutants levels, may related to the effectiveness of urban traffic reduction
measures and improved vehicle emissions standards, especially considering its
location in the residential historic city center.
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• Torino-Rebaudengo: Consistently high pollutant levels are observed th-
roughout the analysis period, emphasizing the impact of dense traffic (sta-
tion located near major roads of Turin, constantly affected by high traffic).
Nevertheless a gradual decline is visible.

• Torino-Lingotto: This station shows a consistent and moderate decrease
in pollutant concentrations, with a small variability. This might be due
to more stable and reliable data togheder with the presence of more stable
pollution sources in the surrounding area, residential commercial with and
light industrial activities.

• Torino-Rubino: This station presents lower overall concentrations and a
gradual decline, that align with the quieter, suburban-like residential area
with low traffic and industrial impact.

Despite the lack of consideration for data gaps, the figure 4.1 and the observations
clearly highlight a decreasing trend in the concentration of all gases across all
stations over the years.

4.1.3.2 Summary of Trend Analysis of NO, NO2, NOX

The analysis of station-specific plots and linear trend regressions illustrate a signifi-
cant reduction in NO, NO2, and NOX concentrations across all monitoring stations
under analysis, confirming and making more evident the overall downward trends.

In Table 4.1, as support for the previous graphical representation, results from
the of the Ordinary Least Squares analysis are summarized. In each columns the
table reports key regression statistics, including slope, p-values, and R-squared
values, for each station and pollutant, highlighting in bold significant trends. The
significance level indicates how statistically reliable the results are, with symbols
representing the strength of the evidence against the assumption that the observed
trend is due to random chance: triple XXX indicates highly significant results
(p-value < 0.001), double XX still very significant results (p-value between 0.001
and 0.01), a single X indicates significant results (p-value between 0.01 and 0.05)
instead ns stands for not significant (p-value ≤ 0.05). This notation is commonly
used to provide a straightforward understanding of the p-value’s magnitude.

The negative slopes confirm the observed downward trends.
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Table 4.1: Regression Statistics on Annual Average by Station and Gas

As stated before, the analysis of linear trends included all available data points, so
it is important to acknowledge that it is heedless of the missing values. This may
affect the precision of the calculated statistics. Despite this limitation, the findings
offer meaningful insights into the overall trends about pollutant concentrations and
underline a notable decline across the study period. The observed regression slopes
provide a general understanding of how pollution levels have changed over time
and highlight the relative success of emission reduction measures implemented at
different monitoring stations.

4.1.3.3 Analysis of Variability

Understanding how pollutant concentrations fluctuate throughout the year gives a
deeper insight into air quality dynamics during the whole period of the analysis. In-
deed, it’s important to not only consider annual average levels but also higher-order
moments such as the standard deviation (second moment) and kurtosis (fourth
moment), which provide a deeper layer of information.

The standard deviation reflects the degree of fluctuations in pollutant levels, and
given that all measurements over the course of a year are considered, a reasonably
large level of variability is expected. However, the evolution of standard deviation
over time is particularly revealing since it can highlight shifts either toward greater
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stability, or increased variability, in pollutant levels. For instance, a decreasing
trend in standard deviation, might indicate that pollutant levels are becoming
more stable. This can reflect the effective pollution control measures or changes in
emission sources.
On the other hand, kurtosis looks at the tail of pollutant concentrations distribution
and can reveals the presence of extreme events. High kurtosis values suggest that
there are more frequent or major pollution spikes, even if overall average levels
appear stable.

Figures 4.2 and 4.3 illustrate the annual standard deviation and kurtosis of NO,
NO2, and NOX concentrations across the considered monitoring stations.

Figure 4.2: Annual Standard Deviation for Nitrogen Oxides Across all Stations
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Figure 4.3: Annual Kurtosis for Nitrogen Oxides Across all Stations
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4.1.3.4 Comparative Trends Across Stations

Figures 4.4, 4.5, and 4.6 illustrate the annual trends of NO, NO2, and NOX concen-
trations for the considered monitoring stations in the same plot. This representation
better emphasizes the previous results, by allowing a direct comparison between
stations.

Figure 4.4: Comparative Annual Trends of NO Across Stations

Figure 4.5: Comparative Annual Trends of NO2 Across Stations
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Figure 4.6: Comparative Annual Trends of NOX Across Stations

From the comparative analysis, information of the temporal distribution of pollutant
levels across different monitoring stations are obtained. The results aligns with
the expectation given the geographical locations of each station. As previously
anticipated, the highest concentration levels are observed at Torino-Rebaudengo
probably related to its environmental context, while the lowest levels are recorded
at Torino-Rubino, compatible with its quieter residential area. This highlights how
the station locations significantly influence the observed data.
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4.1.3.5 Heatmap Analysis of Temporal Changes

In this paragraph, another graphical representation is presented, which can be
adopted to emphasize certain aspects of the linear trend analysis.
Figure 4.7 presents the monthly concentration heatmaps of NO, NO2, and NOX
across the four monitoring stations. These heatmaps report a granular visualization
of the temporal dynamics of pollutant levels, highlighting both seasonal patterns,
longer-term trends and a straightforward visualization of month gaps. By showing
pollutant levels month-by-month, the heatmaps allow to closely examine how local
emissions, seasonal weather conditions, and changes over time affect air quality.
This particular representation is suitable also for further underlining with different
colors the months where the average concentration exceeded a fixed threshold,
appropriately based on the EU air quality directive [7].

Figure 4.7: Monthly Concentration Heatmaps by Station and Gas

A quick guide to correctly interpret the heatmaps is reported.
The x-axis represents the years, while the y-axis shows the months of the year
from January to December. The color scale on the right of each subplot indicates
the concentration levels of the pollutants, with lighter colors (yellow) representing
higher concentrations and darker colors (purple) representing lower concentrations.
White squares indicate missing data for the corresponding month.

Specific observations from the heatmaps further clear up the key aspects of pollutant
dynamics:

59



Temporal Analysis

• Seasonal Variability: The heatmaps show a clear pattern of higher pollutant
concentrations during the colder months (October to February), associated
with increased emissions from domestic heating and stable weather conditions
that trap pollutants close to the ground. This seasonal effect is consistent
across all stations and pollutants.

• Long-Term Declining Trends: Despite seasonal peaks, the heatmaps also
reveal a gradual overall decline in concentrations over the years (shadowing of
plots from left to right), supporting the results obtained with Linear trend
analysis, may due to the effectiveness of implemented air quality control
measures. This trend is most visible at Torino-Rubino and Torino-Lingotto.

• Comparison Across Pollutants: The NO gas often exhibits sharper seasonal
peaks compared to NO2 and NOX, that might reflect possible differences in
emission sources or atmospheric lifetimes and dispersion.

• Data Gaps: Noticeable gaps in the data, especially at Torino-Consolata
and Torino-Lingotto (reflect known periods of missing measurements) and
Torino-Rubino that started the detection in March 2007.

60



Temporal Analysis

4.1.4 Linear Trend Analysis of PM10 and PM2.5

The trend analysis for PM10 and PM2.5 was conducted using an approach similar
to that applied to nitrogen oxides. The analysis was started by creating the
daily_aggregated dataset for PM10 and PM2.5 data. In the daily_aggregated
data, hourly frequency measurements are included but are aggregated into daily
averages, computed only for days respecting the min_valid_hours = 12 threshold
discussed in chapter 2.
This choice was motivated by several factors:

• Stability of aggregated data: Aggregating the data on a daily level provides
a more stable and uniformed approximation of pollutant levels, between hourly
and daily sampled measurements, which reduces variability.

• Data continuity and noise reduction: Daily aggregation mitigates the
frequent gaps present in hourly data, improving overall data continuity and
reducing noise.

Similar reasoning could be applied to create monthly_aggregated and
seasonal_aggregated datasets, which would provide a smoother analysis of long-
term trends by further reducing short-term variability. However, these datasets are
not included in the scope of this thesis.

A linear regression model was used to fit annual averages of PM concentrations
(calculated for each year using daily measurement) from the year 2000 to 2022,
focusing only on the measurements that provided the best temporal coverage, as
outlined earlier.
Important Note: The selected measurements for PM10 were PM10_T, PM10_GBV,
PM10TCON, PM10_B, and PM10_CP, while for PM2.5 the analysis focused on
the measurements PM2.5, PM2.5_B, and PM2.5_CP. This approach provides a
more reliable and general overview of how particulate concentrations have changed
over the period in analysis.
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4.1.4.1 Station-specific Plots

The station-specific plots in Figures 4.8 and 4.9 allow to examine the general trend
of particulate matter concentrations over each period where the measurements time
series was present. As for Nitrogen Oxides, periods of missing data longer than one
month are highlighted in the plots to indicate potential uncertainties. In the plots
localized peaks may appear, potentially reflecting either episodic high pollution
events or the influence of data gaps.

Figure 4.8: Annual Trends of PM10 Measurements for All Stations
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Specific observations evidenced for PM10 for each station by Figure 4.8 are:

• Torino-Consolata: A decreasing trend is observed for all measure of PM10
concentrations, though some peaks are notable, especially at the edges of the
periods. Large data gaps are also visible (e.g. 2001-2002, 2021-2022), which
indicate potential uncertainties.

• Torino-Rebaudengo: The PM10 concentration levels are very fluctuating,
particularly with a high peaks around 2017, but no presence of gap is hi-
ghlighted for that year. This specific year’s spike, confirmed by historical
report from ARPA Piemontes, highlights a significant pollution event majorly
attributed to unfavorable weather conditions [8].

• Torino-Lingotto: The trend displays a decrease in concentrations from 2005
onwards, with occasional spikes, mainly in the first period.

• Torino-Grassi: A consistent decrease is observed in PM10 levels, with more
stable readings in periods 2000-2005 and 2016-2022. Significant several gaps
appear in 2014–2015.

• Torino-Rubino: Both PM10_GBV and PM10_B concentrations show decli-
ning trends, however PM10_GBV displays significant fluctuations, particularly
between 2007 and 2013. A more careful assessment may be needed for this
period in order to address this behavior to possible incompleteness of the data,
although no long large gaps are highlighted.
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Figure 4.9: Annual Trends of PM2.5 Measurements for All Stations

Specific observations evidenced for PM2.5 for each station by Figure 4.9 are:

• Torino-Rebaudengo: The particle count measure does not provide a very
effective visualization of a decreasing trend, however as for PM10 a peak in
2017 is highlighted. PM2.5_B shows a decline for the period 2013-2022.

• Torino-Lingotto: A clear decline is visible in PM2.5 levels from 2005 to 2022,
with several fluctuations principally between 2010 and 2015, probably related
to gaps in the data, although smaller than one month.

• Torino-Rubino: This station show a slight decline in PM2.5 concentration,
though variability and occasional peaks are present.
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4.1.4.2 Summary of Trend Analysis for PM10 and PM2.5

To support the graphical annual trends, the regression statistics based on the OLS
method are summarized in Table 4.2 and Table 4.3 for PM10 and PM2.5 respectively.
These results confirm the overall decrease particulate matter concentrations across
the stations.

Table 4.2: Regression Statistics for PM10 by Station, for PM10

Table 4.3: Regression Statistics for PM2.5 by Station, for PM2.5

As in previous analyses, significance levels are based on p-values, with stronger signi-
ficance indicating greater confidence in the observed trends, and in the tables, the
measurement types that showed significant decreasing trends are highlighted in bold.

The overall trends for both PM10 and PM2.5 are predominantly downward for
almost all measurement type across the stations. However, it is worth noting that
the regression for PM10 at the Torino-Rebaudengo station did not pass the p-value
threshold. Therefore, the decreasing trend at this station cannot be confirmed
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as statistically significant. This may be related to the fact that annual averages
were used, but the time series for measurements at this station is relatively short,
and the data exhibit considerable fluctuations. From the coverage analysis in
Chapter 2, it is recalled that for this station, data coverage on valid days for PM10
measurements was 83.11% for PM10_B and 74.89% for PM10_CP, both among
the lowest percentages of valid days for PM measurements. The presence of gaps,
although smaller than one month, could still impact the robustness of the trend
analysis and contribute to the reduced significance of the results. A special focus is
addressed to this station later in the thesis through STL analysis.

4.1.4.3 Comparative Trends Across Stations

In order to give a clear, visual comparison overview of how particulate matter
measurements have evolved across different stations, in Figures 4.10 and 4.11 are
reported the time evolution of the annual averages of PM10 and PM2.5. These
figures offer a way to observe differences in pollutant levels and trends for the same
measurements across stations, highlighting variations that can be associated to the
spatial distribution of the monitoring points.

Figure 4.10: Comparative Annual Trends of PM10 Measurements
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Figure 4.11: Comparative Annual Trends of PM2.5 Measurements

Overall, as observed in the nitrogen oxides analysis, stations like Torino-Rebaudengo
show higher pollution levels, while Torino-Rubino consistently reports the lowest.
It is notable that Torino-Grassi consistently shows slightly higher concentrations
of PM10_GBV compared to the Torino-Consolata measurement. This difference
is particularly evident during the earlier years of the analyzed period, though the
gap narrows in recent years since stations show a similar downward trend. For
PM2.5, Torino-Lingotto consistently shows the lowest and most reliable concen-
tration levels. In contrast, Torino-Rebaudengo exhibits much more variability, as
evidenced previously particularly in 2017, where both PM2.5_B and PM2.5_CP
measurements show sharp peaks. Torino-Rubino shows PM2.5 levels similar to
those at Torino-Lingotto, with smaller fluctuations, especially in the most recent
years.
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4.2 Seasonal Trend Decomposition
The Seasonal and Trend decomposition using LOESS (STL) is a reliable and po-
werful method for time-series analysis [3], that allows to separate a data into three
key components: trend, seasonal, and residual using LOESS (Locally Weighted
Scatterplot Smoothing), which works applying local regression. This methodology is
particularly useful in this case study, especially in understanding long-term trends,
identifying recurring seasonal patterns, and detecting irregular fluctuations that
may indicate anomalies in the monitoring stations or extreme events that impacted
air quality.

In is notable an analogy with the well known Fourier Decomposition, which breaks
down the time-series in sinusoidal functions and assumes the seasonal component
to be of fixed length. STL decomposition instead offers a better flexibility, as it
allows the seasonal component to vary locally, making it well-suited for air quality
data where periodic patterns may change over time, influenced by seasonal factors
such as weather, traffic and human activities.

The STL decomposition used in this thesis is based on Python’s Statsmodels
library, which provides flexible and clear implementation of STL [5, 11].
A direct explanation of each component in the STL decomposition is as follows:

• Trend Component: reflects the underlying long-term variation of pollutant
levels, indicating whether concentrations are generally increasing, decreasing,
or stable over time.

• Seasonal Component: highlights recurrent seasonal patterns especially
useful in air quality analysis.

• Residual Component: underlines irregular fluctuations or unexpected
pollution spikes relative to anomalies or extreme events.

The following sections present the results of applying STL to analyze the time-series
data, which was previously examined using linear trend analysis. Different graphical
representations are used to further highlight the findings for nitrogen oxides and
particulate matter measurements.
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4.2.1 STL Results of NO, NO2, NOX

The STL decomposition for nitrogen oxides reproduced results similar to those
obtained from the linear trend analysis, providing a clearer understanding of the
trends across different monitoring stations.

As a general visual overview, Figure 4.12 shows only the trend component for NO,
NO2, and NOX across the four stations, where also the average concentrations for
the first and last year of the time period are highlighted.

Figure 4.12: STL Trend Analysis for NO, NO2, and NOX by Station

As support of the previous graphical representation, the average concentrations at
the start and end of the analysis period are reported in the Table 4.4.
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Table 4.4: Summary of Average Concentrations at Start and End of Analysis Period

Looking carefully at Table 4.4, it is evident that the average concentration of
pollutant in the final year are significantly lower compared to the first year of
analysis. It is important to note, however that the potential influence of missing
data, may introduce some degree of error into the results. These values should
be considered as reasonable estimates rather than definitive measurements of the
actual year’s average concentration.

70



Temporal Analysis

The full STL decomposition results, including the seasonal and residual components,
as long as the observed time series, is reported in Figure 4.13 for Torino-Rebaudengo.
From the figure, the decreasing trends of nitrogen oxides are evident, and spikes
and potential errors that may have affected the data are visible for both seasonal
and residual component, especially for NO in the first period.

The STL results for the other stations are reported in the Appendix (Figures
A.1, A.2, A.3), as they show similar patterns.

Figure 4.13: STL decomposition for Torino-Rebaudengo Station
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Table 4.5, as support of the complete graphical representation, shows the summary
of the key STL statistics for each pollutant and station. This table highlights
interesting values such as the trend mean, seasonal amplitude, and the statistical
significance level (p-values), which by a quick observation it appears ≈ 0.0. This
finding underscore the reliability of the STL trend estimates, indicating the trends
to be highly significant across all stations.

Table 4.5: STL Analysis Summary

As already shown by the linear trend analysis, the STL decomposition confirms
that trends for NO, NO2, and NOX are decreasing in all monitoring stations from
2000 to 2022.
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4.2.2 STL Results of PM10 and PM2.5

This section presents the results of the STL decomposition applied to
daily_aggregated PM10 and PM2.5 concentration data using a 365-day cycle, in
analogy to the nitrogen oxides analysis, and consistent with the methodology used
in the particulate matter linear trend analysis.
Applying STL decomposition to monthly or seasonal data could offer additional
insights by smoothing out daily noise; however, this would result in fewer data
points, potentially diminishing the statistical reliability of the residual analysis and
reducing sensitivity to short-term anomalies.

For each type of measurement and station, the analysis period was determined by
identifying the first and last valid data points within the time series.
As a initial approach to the STL decomposition for PM, the analysis was conducted
on the raw data, for which not yet the temporal integration of perfect correlated
measurement was performed (as discussed in Chapter 3). However, only type
of measurements with time-series of at least 365 valid data points were included
in the analysis. This criterion ensures that the seasonal analysis is robust and
reliable, and does take into account also measurements with not very extended data.

The measurements that did not meet this threshold and were excluded from the
STL representation due to insufficient data were: for Torino-Consolata PM10_GAV
with 278 valid data points, for Torino-Lingotto PM10_N with 59 valid data points,
for Torino-Rubino PM10_B with 57 valid data points and for PM2.5 Torino-Rubino
PM2.5_B with only 58 valid data.

Below, the full STL decomposition results for Torino-Rebaudengo station are
shown in Figures 4.14 and 4.15 for PM10 and PM2.5 respectively. Particular at-
tention should be paid to this station, as the linear trend analysis previously
indicated that the station did not exhibit a significant decreasing trend for the
PM10 measurements.
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Figure 4.14: STL decomposition for PM10 at Torino-Rebaudengo Station

Figure 4.15: STL decomposition for PM2.5 at Torino-Rebaudengo Station

These figures shown above highlight distinct seasonal fluctuations with sharp peaks
during the colder months and lower values in the warmer periods for Torino-
Rebaudengo station. Looking at the trend component, there is lack of clarity
especially at the edges of the considered period, that might reflect some possible
missing data which might play a more significant role in influencing the PM levels.
Relying only on the graphical trend line for conclusions on the variation of the
pollution levels might be insufficient, so as support the statistics from the STL
analysis are reported later in a table.
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A particularly notable observation is the great similarity in the trend and seasonal
components between PM10_CP and PM2.5_CP measurements. Both exhibit near-
ly identical patterns across all STL components, which suggest a strong reliability in
the measurement process at this station. The main difference lies in the magnitude
of the particulate levels, with PM10 consistently having higher concentrations than
PM2.5, as expected given the larger particle size.

For further observations and graphical representations of the complete STL analysis
for measurements by other monitoring stations, refer to Appendix (B.4).

As summary of the STL analysis for particulate matter measurements, in Ta-
ble 4.6 and Table 4.7, the complete STL decomposition results including key
quantities such as trend direction and time series length (in days), are reported
for all stations. In addition, the average trend of PM10 and PM2.5 pollutant in
each station were calculated. For each station, the main averages quantities are
reported and the general direction of the trend calculated by weighting the trend
values according to the length of the time series for each measurement.
This approach was choose to ensure that longer datasets have a greater influence
on the station’s overall trend, with a more accurate reflection of particulate matter
levels variations.

Table 4.6: STL Analysis Summary for PM10
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Table 4.7: STL Analysis Summary for PM2.5

The summary tables confirm the overall trend, previously obtained from the Linear
Trend analysis, to be decreasing for all monitoring stations in Turin. Even for Torino-
Rebaudengo, where the linear trend was initially unclear, the STL decomposition
allowed for a clearer interpretation, showing a consistent decreasing trend for all
PM10 measurements. Noteworthy is the fact that for most measurement types with
good data coverage, the analysis was reliable and returned significantly trends with
very high significance levels.
Although gaps were not taken into account, still aware of their presence (some
of considerable duration), the methodology used was still able to provide a good
approximation of long-term trends.
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Chapter 5

Model-Data comparison

The goal of this part of the thesis is to explore the potential of the SIRANE model
in simulating pollutant dispersion, particularly in the urban area of Turin. This
analysis provides an initial evaluation of the model’s ability to represent the spatial
and temporal variations of key pollutants, including NO, NO2, NOX, PM10, and
PM2.5. The focus is on understanding how the model performs under the specific
conditions of Turin. This chapter presents a summary of the approach taken with
the SIRANE, along with the key results obtained, setting up a methodology that
makes use of the air quality measurements discussed earlier in the thesis, crucial for
validating and calibrating the model, but not necessarily direct inputs for running
the model itself.

5.1 Introduction to SIRANE model
The SIRANE model [13] was developed by the École Centrale de Lyon to calculate
the concentrations of pollutants in the street network of a city. It is one of the few
air quality (AQ) tools specifically designed to account for urban canopy effects,
making it highly responsive to road traffic emissions. The model provides pollutant
concentration estimates with an hourly time resolution and a spatial resolution
down to meters.
SIRANE model has been validated both in wind tunnels [10] and either in real
context and, in the last decade, SIRANE has been applied continuously in various
European urban areas, with some pilot studies developed in Italy mainly as master
degree reports. It is currently used by many French’s public authorities (Lyon, Le
Havre, Paris, Saint-Étienne) and within research projects.

SIRANE’s main application are: evaluate population exposure; build cartographies
at the district scale; determine the representativeness of monitoring stations, predict
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pollutants temporal and spatial pathways, including peaks and evaluate the impact
of new urban policy. The model is optimised to calculate UAQ on target domains
with length scales up to a few kilometres and a 10-metre spatial resolution. The
main innovation of SIRANE is that it is based on the concept of the street network,
which is dependent on the buildings’ volume, the spacing and is able to capture
the main characteristics of the city. The basic element of SIRANE geometry relies
on the concept of the open street and the street canyon, i.e. a cavity between
buildings with a specific ratio among width (W) and height (H), where W is the
width of the street and H is the height of the surrounding buildings. A street is
classified as a canyon when the W/H ratio is 3 or less, while a ratio greater than
3 defines an open street. This distinction allows the model to adjust for different
dispersion behaviors based on the urban layout.

Despite its strengths, the SIRANE model holds some limitations. For each time
step pollutant dispersion is computed assuming steady conditions and concentra-
tion are estimated independently from that in the previous periods. In particular,
in case of calm wind conditions, the model fails to adequately account for the
accumulation of pollutants over the urban area. Moreover, SIRANE needs a large
input data set and, in order to build this data set, three main problems must
be taken into account: characterisation of the complexity of the geometry of the
domain, estimate of the intensity and spatial distribution of the pollutant sources
and adoption of the crucial parameters to describe the meteorological conditions [13].

The setup for this study benefited from existing previous pilot studies that had
already adapted the model to Turin’s urban environment (Bo M., 2020) [1]. These
included SIRANE versions v.1, v.2, and v.3, which used emissions data based on
2004 fluxes combined with 2014 vehicular fleet emission factors. Additionally, the
meteorological data, receptor datasets, and uniform background concentrations
(using data from the ARPA station of Vinovo) all corresponded to the year 2014.
A further refinement of the model can be made, using more recent air quality data.
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5.2 Analysis Overview
This study utilized the SIRANE model to simulate pollutant concentrations over
three distinct periods: January 1st, April 1st, and August 1st, 2014, each covering
a 24-hour time frame. PM10, and PM2.5. The work focused on three areas in Turin,
referred to as A1, A2, and A3, respectively. Area A1 corresponds to the zone
around Torino-Lingotto, A2 to the zone around Torino-Consolata, and A3 to the
zone around Torino-Rebaudengo. Each of these areas defines a circular zone with
a 1 km radius centered around the monitoring stations. The reason for this choice
was to include areas that differ in urban structure, as previously discussed, and
to compare the average pollution levels across the defined street network with the
measurements at the specific monitoring stations. For this case study , the areas
were further classified by counting the number of street canyons and open streets
in each zone, as detailed later in the analysis.

The selection of time periods was made based on the exploratory nature of the
study, and the significant computational resources required to run the SIRANE
model for extended periods. Simulating pollutant dispersion over longer periods,
such as several weeks or months, requires running large data sets, multiple input
parameters, and performing complex calculations to reflect changes in pollutant
dispersion. These requirements have made it difficult to run longer simulations.
Focusing on shorter periods, lasting 24 hours, provided an initial understanding of
the model’s capabilities.
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5.3 Methodology and Data Processing
The whole urban graph network representation of Turin, present in SIRANE
(/RESULTS/reseau-rues.shp file) was imported into QGIS software to facilitate
the selection of specific areas for analysis. The streets in the model are identified
by an ID that groups together streets with identical characteristics. This means
that the ID is not unique; however, by visualizing the data in QGIS, it is possible
to verify that duplicate IDs represent segments of the same road section, ensuring
coherent geographic reference.

A summary of the selected areas, including the number of streets and their
classification as either street canyons or open streets, is provided in Table 5.1.

Table 5.1: Summary Selected Study Areas Street Characteristics in SIRANE

Area Total Num-
ber of Streets

Number
of Street
Canyons (Ty-
pe=0)

Number of
Open Streets
(Type=1)

Percentage
of Street Ca-
nyons

reseau_rue (Full urban area) 19152 7477 11675 0.39
A1 (Torino-Lingotto) 389 162 227 0.42
A2 (Torino-Consolata) 842 642 200 0.76
A3 (Torino-Rebaudengo) 405 166 239 0.41

It is observed that the Areas A1 (Torino-Lingotto) and A3 (Torino-Rebaudengo)
have a similar proportion of street canyons, with around 40% of their streets
classified as canyons. Area A2 (Torino-Consolata), on the other hand, has a
significantly higher ratio of street canyons (0.76%), indicating a dense urban
environment with many narrow streets, compatible with Turin’s city center. In
such areas, pollutants tend to become trapped for extended period due to reduced
airflow and limited dispersion pathways, which can result in higher pollutant
concentration levels.
The overall street network of Turin has a lower ratio of street canyons (0.39%),
suggesting a more mixed urban layout considering the entire city, often characterized
by wider roads and green spaces.
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The pollutant concentrations simulated by the model for each street are obtained
from files stored in the /RESULTS/RUES_PAR_RUE directory, with files named using
the format Rues_id2_id1.dat. Each of this files refers to a street, and in the
naming convention scheme, id2 represents the road section, while id1 distingui-
shes different segments within the same section. Also, each file contains hourly
concentration data and deposition rates for a range of pollutants, which can be
selected based on the analysis requirements. For this study, the focus was limited
to nitrogen oxides and particulate matter simulated concentration.
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5.4 Analysis Results and Model Evaluation
As previously discussed in the analysis overview, the SIRANE software was used
to run simulations of 24-hour time frame, for three specific days in 2014: January
1st, April 1st, and August 1st. These days were selected as an initial and general
approach to capture seasonal variation, representing winter, spring, and summer
conditions. It is important to note that the results from these simulations are
intended to give insight for a preliminary descriptive analysis, rather than providing
definitive conclusions. The limited time periods means that the findings offer
insight into the model’s behavior under varied seasonal conditions, but should be
interpreted with caution since not fully representative of long-term seasonal trends.
For instance, while January 1st is characterized by typical winter conditions, it
also coincides with a public holiday, which may influence traffic and other sources
of pollution, making it less representative of typical winter pollution levels.

The results from the SIRANE model are compared with the corresponding measu-
rements from the monitoring stations located within the study areas A1 (Torino-
Lingotto), A2 (Torino-Consolata), and A3 (Torino-Rebaudengo). Particularly, the
comparison is performed by taking the simulated concentrations on each specific
point of the receptor within the selected areas for each hour, and comparing these
hourly simulated concentrations to the corresponding hourly measurements recor-
ded at the correspondent monitoring stations.

The following analysis is organized into two main parts: first, the evaluation
of mean concentrations of NO, NO2, NOX, PM10, and PM2.5 across each study
area for the selected days is reported; and second, the comparison of the simulated
concentrations with the hourly measurements recorded at the monitoring stations
within each area. This approach aims to provide a methodology approach to test
how well the model captures the spatial patterns of pollutant distribution in the
study areas, as well as its accuracy in replicating observed temporal variations and
peaks at specific monitoring points.
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5.4.1 Area-Averaged Concentrations Results
Figure 5.1, Figure 5.2, and Figure 5.3 present the daily trend of the concentration
simulated by SIRANE in each street, and averaged for the three study areas: A1
(Torino-Lingotto), A2 (Torino-Consolata), and A3 (Torino-Rebaudengo). In the
plots, different colors are used to represent each of the three areas, and the legend
displays the average concentration level for the entire day for the pollutant being
analyzed in each respective area. This results provides a general overview of the
average air pollutant concentrations simulated by the model in the selected areas,
highlighting the model’s ability to reproduce the characteristic pollutant trends
during the day.

Figure 5.1: Average pollutant concentrations for January 1st, 2014.
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Figure 5.2: Average pollutant concentrations for April 1st, 2014.
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Figure 5.3: Average pollutant concentrations for August 1st, 2014.

Despite the limited period examined for the simulations, a clear idea of how pollu-
tant gas concentrations change over the course of the day can already be obtained
from the plots. In particular, no major differences between different areas are iden-
tified, yet expected trends are well present, occurring with some minor differences
for each of the three chosen periods. With regard to concentrations of nitrogen
oxides, of which one of the main emission sources is high-temperature combustion
from on-road vehicles, peaks are observed during peak traffic hours, especially in
the morning (between 06:00 and 09:00) and in the evening (between 18:00 and
21:00).
When observing particulate matter, PM10 and PM2.5 show quite similar trends
across the selected days, possibly due to the fact that both particulate matter
fractions share common sources or are influenced by similar environmental factors.
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Table 5.2 summarizes the average pollutant levels across the three areas for each
selected day in 2014, showing a clear decrease in concentrations from winter
(January) to summer (August).

Table 5.2: Mean Pollutant Levels (µg/m3) in Three Areas on Selected Days in 2014

Day Area NO NO2 NOX PM10 PM2.5

January 1st A1 (Torino-
Lingotto)

92.05 72.9 188.34 60.93 51.31

A2 (Torino-
Consolata)

107.28 78.35 208.91 63.87 52.92

A3 (Torino-
Rebaudengo)

95.36 73.71 192.57 61.13 51.48

April 1st A1 (Torino-
Lingotto)

32.75 73.3 99.35 50.0 30.2

A2 (Torino-
Consolata)

44.27 85.35 120.57 53.81 32.15

A3 (Torino-
Rebaudengo)

37.37 78.59 108.2 51.21 30.93

August 1st A1 (Torino-
Lingotto)

16.32 50.87 60.11 22.6 12.62

A2 (Torino-
Consolata)

15.28 50.8 58.92 22.96 12.59

A3 (Torino-
Rebaudengo)

12.47 46.55 52.82 21.29 11.84

Overall, two main aspects can be observed from the area-averaged concentration
plots:

Area Differences: Across all periods, Area A2 (Torino-Consolata) consisten-
tly shows higher pollutant concentrations compared to the other areas. Across
all periods, Area A2 (Torino-Consolata) consistently exhibits higher pollutant
concentrations compared to the other areas. Recalling that A2 has the highest
density of street canyons, this indicates that the model is accurately capturing
the reduced dispersion of pollutants in such dense urban environments. Area A3
(Torino-Rebaudengo) generally exhibits lower pollutant levels, reflecting better
dispersion due to its more open street layout.
However, as previously discussed in the thesis, the Torino-Rebaudengo monitoring
station is located in an area characterized by significant traffic density. The result
suggest that the model may not fully capture the impact of localized traffic emis-
sions in this area. Further and longer simulations are needed to clarify this aspect,
focusing more accurately on the emission sources specified as inputs to the model.

Trend Variations: There is a clear seasonal trend for all pollutants, with the
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highest concentrations occurring on January 1st, likely due to increased heating.
Pollutant levels decrease notably in April. The lowest concentrations are observed
on August 1st, especially for nitrogen oxides, compatible with reduced traffic during
the holidays and better atmospheric conditions for pollutant dispersion. Overall
the daily trend suggest that the model is capable of representing the expected
diurnal variations in pollutant levels.
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5.4.2 Comparison of Simulated and Measured Data
To evaluate the performance of the SIRANE model, simulated hourly concentrations
were compared with measurements from the monitoring stations in each study
area. The analysis is not taking in consideration the PM10 and PM2.5 pollutant
concentration, since these are only available as daily averages at the stations.
The comparison is conducted for January 1st, April 1st, and August 1st, 2014. By
using a graphical representation, measured data (denoted as "Mes") and simulated
data (denoted as "Mod") of concentration levels for NO, NO2 and NOX are shown
for each area. Receptors are represented as R1, R2, and R3, corresponding to the
monitoring stations in Area A1 (Torino-Lingotto), Area A2 (Torino-Consolata),
and Area A3 (Torino-Rebaudengo), respectively. The legend also reports the
daily average for both measured and simulated concentrations. In addition, error
calculations, such as normalized absolute differences, are used to assess the model’s
performance in replicating measured concentrations. This approach gives insight of
how well the model aligns with real-world pollution levels.

Figure 5.4, Figure 5.5, and Figure 5.6 show the comparison for January 1st,
where both the measured and modelled concentration levels are reported along
with the normalized difference between the two. The plots for April 1st and August
1st, 2014, are not included since they exhibit similar behavior between the model
and measurements to those observed on January 1st.
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Figure 5.4: Measured and modelled NO concentrations, with the normalized
difference between them below.
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Figure 5.5: Measured and modelled NO2 concentrations, with the normalized
difference between them below.
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Figure 5.6: Measured and modelled NOX concentrations, with the normalized
difference between them below.
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The key observations that emerge from the above graphical representation are as
follows:

• A general overestimation of simulated concentrations of NO, NO2, and NOX by
SIRANE, compared to measured values, is observed across all three receptors
(R1, R2, and R3) when compared to measured values. This discrepancy may
be due to several factors. As suggested by different studies on the model [13]
the better tuning of input parameters, such as emission sources, traffic acti-
vity patterns and meteorological data, can significantly improve the model’s
accuracy.
Despite the hourly differences, the daily average values do not present signifi-
cant disagreement, indicating that while the model may struggle to represent
hourly variations, it provides a closer approximation to the observed daily
pollution trends when averaged over time.

• The normalized difference plots highlight that the largest discrepancies occur
during specific periods, particularly in the afternoon (around 15:00 to 18:00).
This may be addressed to specific behaviour of the model, which require a
deeper investigation.
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Conclusions

In this thesis, various analyses are discussed, and the key findings are summarized
below:

Structure of Air Quality Database The air quality database for Turin monito-
ring stations integrates data from five points in the urban area, each equipped with
different instruments and methods for measuring pollutants. Particular attention
should be paid to the sampling frequency of each measurement, that might be
different. The dataset appears overall complete and able to provide a very reliable
analysis for the nitrogen oxides, while for particulate matter additional research
work may be done to fill some periods of data unavailability. A general aspect of
the air quality database is the presence of missing data and potential errors in data
recording, which is crucial to address, for conducting a subsequent reliable and
accurate analysis.

Different Measurement Types Different instruments and methods for main-
ly particulate matter measurements, were discovered to be present in the data,
across multiple stations. A correlation analysis between these measures was then
conducted. The analysis firstly highlighted errors in labeling within the dataset,
where differently named entries showed a perfect correlation, indicating they we-
re likely the same measurement. In addition, highly similar measurements were
identified, for which temporal integration could be used to improve the overall
data coverage. Through the analysis it was shown that Gravimetric and Beta Ray
detection methods presented a high good correlation, confirming the consistency of
these two approaches. Finally, strong correlations were observed between specific
atmospheric elements, such as BP_PM2.5 and BAAPM2.5, pointing out potential
relations that could be worth investigating in future.
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Trend Analysis The trend analysis revealed a consistent decrease in pollutant
levels across all monitoring stations in Turin from the start of the 21st century
until 2022. Both nitrogen oxides (NO, NO2, NOX) and particulate matter (PM10,
PM2.5) exhibited a clear downward trend over the study period. Although the
linear trend analysis faced challenges due to frequent data gaps, it still provided a
useful overview of the overall decline in pollution levels through annual averages.
The STL analysis, on the other hand, proved to be robust and reliable, handling
even shorter time series effectively. Both analyses produced consistent results,
reinforcing the observed long-term decreasing trend in pollution. The comparison
between trends across different stations highlighted variations in pollution levels,
mainly attributed to the environmental context of each monitoring point. Results
reflecting the classification of each station’s environment were obtained, for instance,
stations located near traffic-heavy areas, like Torino-Rebaudengo, recorded higher
pollutant concentrations, while stations in more residential or suburban areas, such
as Torino-Rubino, showed lower levels. This consistency across stations further
confirm the reliability of the analysis conducted and demonstrate how that the
observed trends reflect the local environmental conditions.

Sirane Model From this study is provided a picture of the SIRANE model, and
its potential for simulating pollutant dispersion in Turin. The simulations, carried
out for only a restricted period offered a preliminary evaluation of the model’s
ability to capture general pollutant variation, especially during the day. For the
case study basic settings were used, to the scope of evaluating how the model was
suitable to provide a description of the dispersion of pollutant in the urban area.
The reported analysis, albeit general and straightforward, still involved a complete
and deep understanding of the model, such that it could be considered reliable
for future, more specific analysis. Limitations were identified, particularly in the
choice and definition of the model’s input parameters, which could be improved
with more recent air quality and weather data.

Overall conclusions This thesis focused specifically on the analysis of a large
part of the database consisting of measurements of environmental pollutant concen-
trations on the municipality of Turin, first providing a clear view of its structure
and consequently providing a methodology for analyzing these data. The research
stresses the importance of careful processing techniques in order to obtain relevant
results, such as providing a comprehensive view of how air pollution has changed
from the beginning of the century to the present, and crucially, quantifying these
changes with accurate numerical data. I personally believe this is particularly
important since, according to the European Environment Agency, air pollution is
the largest environmental health risk in Europe, causing a significant number of
premature deaths and diseases each year [6].
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Regarding the specific analysis done, on the urban area of Turin, although the
concentration levels of pollutant are decreasing, and there is a consequent impro-
vement in air quality, the values still remain very high. The analysis was able to
reveal how the city of Turin, has been committed to fulfilling and complying with
European policies over the past two decades, in order to reduce general pollutant
emissions. Further analysis could focus particularly on the periods when pollutant
levels significantly exceeded regulatory thresholds.

It is hoped that the results discussed in this work, that lays a foundational un-
derstanding of the database of pollution concentration in Turin during the first
two decades of the 21st century, can serve as a reference for future studies and
policy-making. By continuing to provide data analysis of this type, it is possible
to better guides public health strategies and support adapted interventions to
reduce the air pollution in urban areas. Further research is encouraged to refine
the methods presented, improving data completeness, and exploring closely the
relationships between pollutant and weather condition, recalling SIRANE as a valid
tool for this purpose.
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Appendix A

Nitrogen oxides

A.1 STL analysis

Figure A.1: STL decomposition for Torino-Consolata Station
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Nitrogen oxides

Figure A.2: STL decomposition for for Torino-Lingotto Station

Figure A.3: STL decomposition for Torino-Rubino Station
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Particulate matter

B.1 Scatter Plots of Highly Correlated Atmo-
spheric Element Measurements

Figure B.1: Scatter Plots of Highly Correlated Atmospheric Element Measurements
at Torino-Lingotto
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B.2 Coverage Percentage of PM2.5 Elements

Coverage percentage of PM2.5 elements

Measure On present days (%) On total period (%)

Torino - Lingotto

AS_PM2.5 52.90 40.26
BP_PM2.5 52.67 40.08
CD_PM2.5 52.90 40.26
NI_PM2.5 52.43 39.90
PB_PM2.5 52.90 40.26
BAAPM2.5 49.57 34.48
BJKPM2.5 51.51 35.83

Table B.1: Coverage percentage of PM2.5 elements dispersion measurements.
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B.3 Analysis of PM10 hourly data sensitiveness

Figure B.2: PM10 hourly data summary
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Figure B.3: PM10 hourly data summary
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B.4 STL analysis

Figure B.4: STL decomposition for PM10 at Torino-Consolata Station

Figure B.5: STL decomposition for PM10 at Torino-Grassi Station
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Figure B.6: STL decomposition for PM2.5 at Torino-Lingotto Station
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