
POLITECNICO DI TORINO
MASTER’s Degree in Data Science and Engineering

MASTER’s Degree Thesis

Time-Robust and Energy-Efficient
Decoder for Real-Time Neural Decoding

of Primary Motor Cortex Activity

Supervisors

Prof. Stefano DI CARLO

Prof. Alessandro SAVINO

Dr. Alessio CARPEGNA

Dr. Paolo VIVIANI

Candidate

Marco TASCA

October 2024

Summary

The human brain may be the most complex organ we know, and despite significant
advances, our understanding of its structure and function remains limited. We
have only begun to uncover the intricate network of billions of neurons and their
countless synaptic connections that enable the brain’s continuous activity. Although
much remains unknown, the pursuit of deeper insight into the brain’s workings
is a driving force in scientific research. In parallel with neuroscience, the field of
Artificial Intelligence (AI) has emerged as a rapidly evolving area of study, with
the potential to revolutionize our understanding and interaction with the brain.

It is no coincidence that the latter is inspired by the former—an attempt by
humans to mimic nature. Within the expansive domains of Machine Learning, Data
Science, and Neural Networks, a new revolution is underway. We are moving beyond
traditional architectures and embracing a novel neuromorphic paradigm, commonly
known as Spiking Neural Networks (SNNs). This third generation of AI algorithms
presents both unresolved challenges and exciting new opportunities. Notably, SNNs
are capable of learning complex temporal patterns while exhibiting significantly
lower power requirements compared to conventional neural networks. Moreover, due
to their inherent similarities to biological systems, they are supposedly well-suited
for analyzing brain signals.

In recent years, neuroengineering and Artificial Intelligence have increasingly
collaborated, leading to remarkable advancements. Linear filters, are gradually
being replaced by more precise and powerful tools. This synergy has enabled
significant progress, including algorithms that can read images from the human
visual cortex, allow paralyzed patients to type on virtual keyboards, control a
mouse without hands, and even play mind-controlled games.

Our study is to be collocated in the context of the European Project B-Cratos,
aimed to develop a closed-loop Brain Computer Interface to control a robotic
prosthesis. We will explore the potential and efficiency of this new class of neu-
romorphic algorithms for analyzing brain signals. Specifically, we will develop a
Spiking Neural Network (SNN)-based decoder for a Brain-Machine Interface (BMI).
The purpose of this decoder will be to interpret 2D hand kinematics from brain
signals collected through Electrocorticography (ECoG) from the Primary Motor

ii

Cortex (M1) of a nonhuman primate, Indy. Additionally, we will investigate a new
method for preprocessing the signal, called Spiking Band Power (SBP), and its long-
term stability compared to more traditional approaches, as well as unsupervised
and supervised adaptation techniques to efficiently address the evolution in M1’s
firing dynamics through time. Our challenge is to presents a model able to reduce
time consumption and power requirements, while enhancing long-term stability,
making it suitable for real-world applications where efficiency and responsiveness
are critical.

As a member of the scientific community, and a newcomer to it, I am eager
to share the work we have undertaken over the past year. Our research, though
modest in scope, carries great hope: to contribute meaningfully to the collective
body of scientific knowledge and, ultimately, to achieve something beneficial for
humankind.

—
Keywords: Artificial Intelligence (AI), Spiking Neural Networks (SNNs), Brain-

Machine Interface (BMI), neuromorphic paradigm, Primary Motor Cortex (M1),
ECoG technology, 2D kinematics, neuroengineering, temporal patterns, supervised
adaptation, unsupervised adaptation.

iii

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

1 Introduction 1
1.1 Introduction to Neuromuscular Physiology 2
1.2 Introduction to Brain Computer Interfaces 2
1.3 Aim and Challenges . 3

1.3.1 Performance Degradation Over Time 3
1.3.2 Efficiency and Hardware Constraints 4

1.4 B-Cratos Project . 4
1.4.1 Key Features and Innovations of B-Cratos Project 4
1.4.2 Contribution of Our Study 5

2 Background 8
2.1 Anatomy and Physiology of Neuromuscular System 8

2.1.1 Central and Peripheral Nervous System 9
2.1.2 The Brain . 9
2.1.3 The Neurons . 10
2.1.4 The Skeletal Muscle System 12
2.1.5 The Genesis of Voluntary Movements 12

2.2 Brain Signal Acquisition Methods for BMIs 15
2.2.1 Invasive Methods . 15
2.2.2 Non-Invasive Methods . 16
2.2.3 Advantages of ECoG . 17

2.3 Signal Cleaning and Processing Techniques (ECoG) 18
2.3.1 Data Acquisition and Initial Cleaning 18
2.3.2 Noise Reduction, Referencing Schemes, and Our Approach . 19
2.3.3 Spike Detection and Spike Sorting (MUA and SUA) 20

v

2.3.4 Firing Rate Estimation (TCR) 20
2.3.5 Most Common Processing Techniques 21

2.4 Spiking Band Power Overview . 22
2.4.1 Understanding Spiking Band Power 23
2.4.2 Performance Advantages and Power Efficiency 23
2.4.3 Methodology for SBP Extraction 24
2.4.4 Applications of SBP . 24
2.4.5 Conclusions and Future Directions 24

2.5 Spiking Neural Networks . 25
2.5.1 Fully Connected Neural Networks 26
2.5.2 Recurrent Neural Networks 27
2.5.3 Common Spiking Neuron Models 28
2.5.4 The Appeal of LIF Neurons 28
2.5.5 The LIF Neuron in Detail 29
2.5.6 Backpropagation for FCNNs 32
2.5.7 Spatio-Temporal Backpropagation (STBP) for Regression in

SNNs . 35
2.5.8 Optimization Variants: AdamW and Dropout 38
2.5.9 Overview of Spike Encoding Methods 39

2.6 Adaptation Techniques for Temporal Robustness 42
2.6.1 Unsupervised Adaptation Techniques 43
2.6.2 Aligning Neural Data with PCA 44
2.6.3 Supervised Adaptation Techniques 46
2.6.4 Conclusion and Future Directions 47

3 Related Works 48
3.1 State-of-the-Art Hand Velocity Decoding in BMIs 48

3.1.1 Traditional Filters: The Foundation 49
3.1.2 Deep Learning Decoders: Embracing Complexity 49
3.1.3 Spiking Neural Networks: High-Performing and Energy-

Efficient . 50
3.2 Long-Term Stability in Brain Signal Decoding 51

3.2.1 From Single-Unit Activity to Spike Band Power 51
3.2.2 Adaptive Strategies for Long-Term Stability 51

4 Methods 53
4.1 The choice of M1 over S1 . 53
4.2 Selected Preprocessing Methods . 55
4.3 Preprocessing Details . 55

4.3.1 MUA and SUA Practical Implementation 56
4.3.2 SBP Practical Implementation 57

vi

4.3.3 Common Preprocessing Steps 58
4.4 Unsupervised Adaptations with Normalization and PCA 58

4.4.1 Session Alignment Strategies based on Centering and Nor-
malisation . 59

4.4.2 Session Alignment Strategies based on PCA 61
4.4.3 Principal Component Reordering and Sign Alignment 62

4.5 Supervised Adaptation with Fine-Tuning 62
4.5.1 Two Baselines . 63
4.5.2 Fine-Tuning single layers . 64
4.5.3 Efficiency of First-Layer Fine-Tuning 64

4.6 Model Architecture and Configuration 64

5 Results 67
5.1 Dataset . 67

5.1.1 Data Acquisition and Preprocessing (SUA) 68
5.1.2 Session Selection and Preprocessing (MUA and SBP) 69
5.1.3 Behavioral Task . 70

5.2 Metrics . 71
5.2.1 Pearson Correlation Coefficient (CC) 71
5.2.2 Root Mean Square Error (RMSE) 71
5.2.3 Why We Used Both RMSE and CC 72

5.3 Single-Session Evaluation of SNN across MUA, SUA and SBP . . . 72
5.3.1 Comparison between preprocessing methods 73
5.3.2 Spiking activity analysis . 75
5.3.3 Training Loss analysis . 77

5.4 Unsupervised adaptations: Online Normalisation and PCA Alignment 78
5.4.1 Experiment 0: No Alignment 79
5.4.2 Experiment 1: Impact of Online Vs. Offline Normalisation . 80
5.4.3 Experiment 2: Online Normalisation Vs. Online Centering . 86
5.4.4 Experiment 3: PCA Adaptation: Rotation and Ordering . . 87
5.4.5 Experiment 4: PCA Adaptation: Rotation and Scaling with

Singular Values . 90
5.4.6 Why PCA-based adaptations failed 91

5.5 Supervised Adaptation for Long-Term Stability 92
5.5.1 Experiment 1: Extensive Retraining Across Sessions (Whole

Model) . 94
5.5.2 Experiment 2: Short-Term Adaptations (Single Layers) . . . 95

5.6 Comparative Summary Analysis . 97

6 Conclusions and Future Works 100

vii

Bibliography 103

viii

List of Tables

2.1 Comparison between LIF neuron and perceptron 31

4.1 Hyperparameters of our model. 65

5.1 CC and RMSE for MUA, SUA, SBP1000 and SBP2000 (mean and
std). 79

5.2 Statistical testing results of the Null Hp: MUA ≈ SBP, for both CC
and RMSE. 84

5.3 Performance metrics for SBP (centered and rescaled) 87
5.4 Performance metrics for MUA (centered and rescaled) 87
5.5 Performance metrics for SBP (offline and online normalised, with

and without PCA) . 93
5.6 Mean and standard deviation of CC and RMSE for the resumed and

retrained models across sessions with SBP. 95
5.7 Statistical tests for layer 1 and layer 2 over CC and RMSE metrics. 97
5.8 Mean and standard deviation of CC and RMSE for different adapta-

tions methods with SBP. 98

ix

List of Figures

1.1 Overview of the B-Cratos project. Taken from [10]. 6

2.1 Overview of brain anatomy. Taken from [12] 11
2.2 Simplified representation of the sensorimotor loop. M1 Cortex in

green and S1 Cortex in blue. Taken from [14]. 13
2.3 The two maps present in our brain: the sensory and motor homuncu-

lus. Taken from [15] . 14
2.4 Overview of brain signal recording methods. Taken from [20] 18
2.5 The main preprocessing steps to obtain SBP, MUA, and SUA. . . . 23
2.6 Structure and main components of a FCNN. Figure taken from [36]. 26
2.7 An RNN unfolded, with S0, S1, ... being the internal states of the

net at each time step. Taken from [37] 27
2.8 LIF-neuron response to input spikes and behaviour of the membrane

leaking dynamics . 30
2.9 Comparison between LIF neuron and perceptron. 32
2.10 (a) Diagram of a spiking neuron. (b) The Sigmoid function used as

surrogate gradient to approximate Heaviside function. Taken from
[41]. 36

2.11 Error backpropagation through time in unfolded RNN. Image taken
from [42]. 36

3.1 In this figure from the work by Ahmadi et al. [3] we can see a
comparison (CC and RMSE) of 8 different decoders over 26 sessions,
spanning on 218 day. 50

4.1 MUA and SUA binning and summing spikes in 4 milliseconds time
intervals. Figure taken from [48]. 57

4.2 Data folding into overlapping windows or "Sequences". Figure is
taken from [48]. 59

5.1 Complete pipeline from acquisition to decoding of 2D hand kinemat-
ics of Indy (NHP). 68

x

5.2 Example plot of three signals for CC and RMSE comparison. 73
5.3 Single session comparison between MUA, SUA, SBP1000 and SBP2000. 74
5.4 Evolution of CC and RMSE over epochs while evaluating on TSS

and training on TRS. 75
5.5 (a) First hidden layer. (b) Second hidden layer. (c) Third. (d)

Output non spiking layer (2 LI-Neurons). 76
5.6 Training loss mean and std for each session (above). Real training

loss batch by batch (below). Loss is MSE, data is preprocessed with
SBP. 77

5.7 Comparison between training loss and velocity of the finger. 78
5.8 Linear regression analysis for SBP and MUA without alignment (CC

and RMSE). 81
5.9 The different LIF neuron response to a signal with and without

normalisation. 82
5.10 Linear regression analysis for SBP and MUA with online or offline

normalisation (CC and RMSE). 83
5.11 Linear regression plots (above). Distribution of sessions over metric

scores (below). Online normalisation comparison between MUA and
SBP (CC and RMSE) . 85

5.12 Linear regression analysis for SBP and MUA. Online normalisation
Vs online centering (CC and RMSE). 86

5.13 Linear regression analysis for 4 combinations of normalisation, PCA
and reordering on SBP. 89

5.14 Similarity matrix of Wref and Winf, before and after reordering. . . . 90
5.15 Linear regression analysis for PCA adaptation (rotation and scaling)

on SBP . 92
5.16 Summary of linear transformation methods for SBP 93
5.17 Performance trends (CC and RMSE) for resumed and retrained

models across sessions. 95
5.18 CC and RMSE over time for short-term adaptations with SBP. Re-

training all layers (Experiment 3) and individual layers (Experiment
4) . 96

5.19 Comparison between our 3 main results on both CC AND RMSE,
with SBP. 99

xi

Acronyms

AdEx
adaptive exponential neuron

AI
artificial intelligence

ANN
artificial neural network

ALS
amyotrophic lateral sclerosis

AP
action potential

BCI
brain computer interface

BMI
brain machine interface

BPTT
back propagation through time

CAR
common average referencing

CC
Pearson’s correlation coefficient

xiii

CCA
canonical correlation coefficient

CNS
central nervous system

DBS
deep brain stimulation

EEG
electroencephalography

ESA
entire spiking activity

ECoG
Electrocorticography

FCNN
fully connected neural network

FMRI
functional magnetic resonance imaging

fNIRS
functional near infrared spectroscopy

GRU
gated recurrent unit

HH
Hodgkin-Huxley neuron

IF
integrate and fire

IZH
Izhikevich neuron

xiv

KF
Kalman filter

LFP
local field potential

LI
leaky integrate

LIF
leaky integrate and fire

LSTM
long short term memory

M1
primary motor cortex

MEG
magnetoencephalography

MND
motor neuron disease

MSE
mean square error

MUA
multi unit activity

NLIF
non linear leaky integrate and fire

ON
online normalisation

PC
principal components

xv

PCA
principal components analysis

PNS
peripheral nervous system

QRNN
quasi recurrent neural network

RMSE
root mean square error

RNN
recurrent neural network

S1
primary somatosensory cortex

SBP
spiking band power

SCI
spinal cord injury

SEEG
stereo-electroencephalography

SMA
supplementary motor area

SNN
spiking neural network

SNR
signal to noise ratio

STBP
spatio temporal back propagation

STDP
spiking time dependent plasticity

xvi

SUA
singular unit activity

TCR
threshold crossing rate

TEL
trainable encoding layer

UKF
unscented Kalman filter

WCF
Wiener cascade filter

WF
Wiener filter

xvii

Chapter 1

Introduction

Loss of motor ability and control over the upper and lower limbs, even when the
brain remains intact, can result from several conditions, including spinal cord
injuries (SCI), whether complete or incomplete, as well as by lower motor neuron
diseases (MNDs) like amyotrophic lateral sclerosis (ALS), or amputation. These
conditions disrupt the communication pathway between the brain and muscles,
leading to severe impairments in movement and daily functioning. Addressing
these challenges necessitates the development of highly efficient, fast-to-train, and
adaptive Brain-Machine Interfaces (BMIs) that can accurately decode brain signals
and restore motor function. Such solutions must be able to quickly adapt to
the brain’s evolving neural activity while being power-efficient and suitable for
real-world applications. My thesis work is dedicated to advancing a neuromorphic
approach using Spiking Neural Networks (SNNs) to create a BMI that meets these
critical needs, overcoming the challenges of long-term stability and power-intensive
decoding processes.

We made a deliberate architectural choice that comes with a significant as-
sumption. Our approach was to implement the decoder as a component in the
loop between M1, the Primary Motor Cortex, and S1, the Primary Somatosensory
Cortex. By doing so, we chose not to process any feedback from S1, focusing solely
on the motor commands from M1. We leave the task of processing feedback and
making adjustments to the brain itself, as we believe strongly in the brain’s superior
adaptive capabilities. The primary goal of our decoder is to accurately interpret
the underlying dynamics of M1.

In the following section, we will present a general overview of the neuromuscular
system, we will introduce Brain-Computer Interfaces (BCIs) and their pivotal role
in restoring lost motor functions. In connection with this, we will outline the aim
and challenges of our work, alongside our collaboration with the Links Foundation
and the European project B-Cratos.

1

Introduction

1.1 Introduction to Neuromuscular Physiology

The neuromuscular system enables voluntary movement through the intricate
coordination of brain regions and muscles. At the heart of this process is the motor
cortex, which includes the Primary Motor Cortex (M1), the Premotor Cortex,
and the Supplementary Motor Area (SMA). Together, these areas are responsible
for planning, initiating, and executing voluntary movements. They send motor
commands through neural pathways, eventually reaching the skeletal muscles to
produce movement.

Adjacent to M1, the Primary Somatosensory Cortex (S1) is involved in processing
sensory feedback, which is crucial for the fine-tuning of motor actions. This feedback
loop helps ensure that movements are smooth and accurately executed.

In the context of brain-machine interfaces (BMIs), we focus on recording and
interpreting the neural activity from M1 using Electrocorticography (ECoG), a
method that captures the brain’s electrical signals. The signals obtained from M1
will be the primary input for our decoder, which aims to translate these neural
impulses into meaningful outputs for controlling external devices.

1.2 Introduction to Brain Computer Interfaces

Brain-computer interfaces (BCIs), also known as brain-machine interfaces (BMIs),
are groundbreaking systems that forge a direct link between the brain and external
devices, bypassing traditional neuromuscular pathways. By interpreting neural
activity that reflects a user’s intentions, BCIs convert these signals into commands
for controlling various assistive technologies. This capability is transformative for
individuals with severe motor impairments, such as those caused by spinal cord
injuries, stroke, or ALS, empowering them to regain motor functions and enhance
their quality of life through the control of computer cursors, robotic limbs, or
electrical stimulation systems.

At the core of BCIs are sophisticated algorithms that decode neural activity into
actionable commands. These range from classical techniques like linear regression
to cutting-edge deep learning models. Although BCIs are closely associated with
motor rehabilitation, their scope extends to communication, environmental control,
entertainment, and cognitive enhancement. However, challenges remain, including
ensuring the robustness and precision of decoding algorithms, achieving long-term
stability of neural recordings, and navigating ethical concerns related to privacy
and the risks of invasive methods. As our understanding of neuroscience deepens
and technology advances, BCIs are poised to become increasingly refined and
transformative in their applications.

2

Introduction

1.3 Aim and Challenges
The primary objective of this research is to accurately and efficiently predict
the two-dimensional kinematics of hand movements using neural signals from
the Primary Motor Cortex (M1) obtained through Electrocorticography (ECoG).
The study addresses two major challenges: sustaining decoder performance over
time and optimizing energy and memory efficiency. Overcoming these challenges
is essential for developing stable, low-power, implantable decoders that provide
consistent and reliable performance in real-world BCI and BMI applications over
extended periods. This will be achieved by experimenting with supervised learning
techniques alongside a blend of supervised and unsupervised transfer learning
methods. Additionally, we will investigate a new preprocessing approach, called
Spiking Band Power (SBP), that, when combined with trainable feature encoding,
is expected to improve long-term stability and reduce memory and energy demands.
This effort will be supported by employing a novel neuromorphic decoder paradigm,
based on Spiking Neural Networks (SNN), designed for exceptionally low power
consumption.

1.3.1 Performance Degradation Over Time
Time performance degradation in brain-computer interfaces (BCIs), particularly
those reliant on spike recordings, presents a significant obstacle to their long-term
viability and clinical translation. This instability primarily stems from the brain’s
biological response to implanted electrodes and the inherent characteristics of
neural recordings [1, 2].

The formation of glial scars, mostly in intracortical implants, is a major cause.
This natural defense mechanism encapsulates the foreign electrodes, impeding their
ability to effectively record neural activity [1]. The micromotion of electrodes,
often exacerbated by the brain’s natural movements, including those caused by
blood flow, further compounds the problem. This movement disrupts the delicate
interface between electrodes and neurons, leading to a degradation in signal quality
and necessitating frequent recalibration [3, 2]. Insulation degradation is another
significant factor that compromises signal reliability over time by causing signal
leakage [1]. The brain’s inherent plasticity, while crucial for learning and adap-
tation, presents an additional layer of complexity for BCI stability. As the brain
dynamically reorganizes its neural connections, neural activity patterns shift, im-
pacting the decoding performance of BCIs and demanding adjustments to maintain
accuracy [4, 1].

The cumulative effect of these factors is a progressive decline in observable
neurons and a weakening of recorded signals, ultimately limiting the longevity of
spike-based BCIs. This degradation underscores the need for the right implant, and

3

Introduction

adaptation techniques to enhance the long-term stability of BCIs, as a necessary
step to their successful clinical translation and long-term use.

1.3.2 Efficiency and Hardware Constraints
BCIs are designed for direct communication between the brain and external devices,
this requires efficient algorithms and hardware. These systems need to analyze
neural signals in real-time, to effectively control external tools, like computer cursors
or prosthetic. This processing must be done efficiently, particularly for implantable
BCIs with limited power, memory and computational resources [4, 5, 6].

In this field a significant challenge lies in balancing the complexity of decoding
algorithms with the constraints of hardware implementations. More sophisticated
algorithms, such as deep learning models, though demonstrably very accurate,
require significantly more processing power and memory [7]. This demand clashes
with the limited battery life and heat dissipation capabilities of implantable devices.
This challenge necessitates ongoing research into efficient algorithms and specialized
hardware like neuromorphic chips, as well as optimization techniques such as data
quantization and compression. Striking a balance between decoding accuracy,
speed, and power consumption remains crucial for creating robust and clinically
viable BCIs.

1.4 B-Cratos Project
This master’s thesis was conducted at the LINKS Foundation [8], a research
institution established through a partnership between Compagnia di San Paolo and
Politecnico di Torino, as well as at the SMILIES Lab [9] at Politecnico di Torino.
LINKS specializes in applied research, digital technology, and innovation, with
active projects both nationally and internationally.

This work is part of the B-Cratos (Wireless Brain-Connect inteRfAce TO
machineS) project [10], a European initiative funded under the EU Horizon 2020
research and innovation program (grant agreement 965044). The primary goal of
B-Cratos is to develop a wireless, bidirectional, and battery-free brain-machine
interface (BMI) aimed at restoring hand functionality and sensory feedback for
individuals with paralysis or amputation.

1.4.1 Key Features and Innovations of B-Cratos Project
Design and Development of a High-Channel, High-Speed, Wireless Brain
Implant : A central focus of the project is the creation of a fully-implantable,
battery-less brain interface capable of high-resolution neural signal sensing and
precise cortical stimulation. This system utilizes the Utah Array, which is connected

4

Introduction

to a compact, biocompatible, and hermetically sealed implant housing custom
electronics for amplifying, digitizing, and processing neural activity. An external
wearable module, developed by NTNU researchers, facilitates wireless bidirectional
communication using an innovative transmission technique.

Fat Intra-Body Communication (FAT-IBC) Platform : The project aims
to establish a high-speed communication platform based on microwave propagation
through subdermal body fat. This method, known as FAT-IBC, is designed to
minimize interference from external electronic devices while ensuring reliable data
transmission.

HPC-Based AI Computing for BMI Control : Advanced machine learning
(ML) and deep learning (DL) algorithms are being developed to control arm
movements and provide sensory feedback. These algorithms are crucial for pattern
recognition and classification tasks.

Development of Artificial Skin : The sensory feedback system incorporates a
novel combination of triboelectric nanogenerators (TENGs) and graphene-based
hydrogels, capable of generating a time-dependent force map in digital format.

Integration with a Biomechatronic Prosthetic Arm : The project will
integrate the 5-axis Mia robotic arm from Prensilia s.r.l., a spin-off of Scuola
Superiore Sant’Anna. This prosthetic arm, an evolution of the IH2 Azzurra, is
recognized for its enhanced strength, speed, and lightweight design, and is widely
used in research institutions globally.

The B-Cratos BMI is classified as an invasive interface due to its use of intracorti-
cal microelectrode arrays (specifically the Utah Array by Blackrock Microsystems).
These arrays are connected to a biocompatible implant that houses the necessary
electronics for neural signal processing and stimulation. The system’s wireless func-
tionality is supported by an external wearable module that manages power supply
and high-speed data transfer. The AI module plays a critical role in facilitating
bidirectional communication between the brain and the prosthetic device, decoding
neural signals from the implanted electrodes and encoding sensory inputs from the
prosthetic hand’s sensorized skin.

1.4.2 Contribution of Our Study
Our study significantly contributes to the B-Cratos project by enhancing the
development of energy-efficient, stable, and real-time neural decoding systems
suitable for long-term implantation. These contributions are crucial for achieving

5

Introduction

Figure 1.1: Overview of the B-Cratos project. Taken from [10].

the project’s goals of creating a high-performance, bidirectional Brain-Machine
Interface (BMI) with minimal power consumption and long-term reliability.

Firstly, we propose the implementation of a neuromorphic, low-power decoder
that may be directly implanted within the brain. This decoder is designed to
function with minimal power requirements, thereby eliminating the necessity for a
large power source. Its energy efficiency can also, with further optimisation studies,
guarantee that it does not overheat the surrounding neural tissue, which is essential
for the long-term safety and functionality of the implant.

In addition to the decoder, our research introduces a novel approach to pre-
processing neural signals using Spiking Band Power (SBP). This is an efficient
and straightforward method for processing raw neural data in real-time, making it
particularly suitable for BMI applications. The SBP preprocessing technique effec-
tively captures the relevant information while maintaining computational simplicity,
thereby enhancing the overall efficiency and reliability of the system.

To further improve the utility of SBP in real-time decoding, we introduce a
trainable feature encoder. This encoder is designed to translate the continuous
SBP signals into discrete spikes that can then be fed directly into the neuromorphic
decoder. The encoder is integrated in the decoder architecture, in this way the
calibration is performed for both at the same time, with minimal computational

6

Introduction

overload. Moreover, it operates in real-time, maintaining the system’s simplicity
and efficiency while allowing for the effective transformation of neural data into
a format suitable for neuromorphic processing. This integration of a trainable
encoder ensures that the SBP method remains not only efficient but also highly
adaptable to changes in neural signals and conditions, enhancing the potential
long-term stability of our approach.

To further improve the time robustness of the proposed method, we conducted
investigations on its behaviour over sessions recorded in an extended period (223
days). This study is critical for the viability of chronic neural implants.

Finally, we explored alternative strategies for rapid and efficient recalibration of
the neural decoder, experimenting on both supervised and unsupervised adaptations.
Given the dynamic nature of the neural interface environment, the ability to quickly
recalibrate the decoder is vital for maintaining high performance. Our contributions
in this area ensure that the B-Cratos system remains adaptable and robust, even
in the face of changing neural conditions.

Through these advancements, our study tries to enhance the B-Cratos project’s
objective to develop a safe, efficient, and durable brain-machine interface, thus con-
tributing to the creation of more advanced and clinically viable neural prosthetics.

7

Chapter 2

Background

In this chapter, we will introduce and explain the key topics present in our thesis,
providing relevant citations along the way.

We will begin with an overview of the physiology of the motor cortex and the
neural mechanisms that govern voluntary movements. Next, we will examine the
most common methods for acquiring and preprocessing brain signals, followed by a
more in-depth discussion of the specific preprocessing techniques we have selected
for our analysis (detailed configurations will be provided in Chapter 4).

In particular, we will focus on spike sorting and threshold-based spike detection,
including both single-unit activity (SUA) and multi-unit activity (MUA), as well as
a detailed examination of Spiking Band Power (SBP) and its theoretical advantages.

We will then delve into spiking neural networks (SNNs), discussing various
neuron structures, foundational paradigms, popular spike encoding methods, and
training strategies. Additionally, we will explain how regression can be performed
using SNNs, with a focus on our chosen training technique: Spatio-Temporal
Backpropagation (STBP).

Finally, we will explore unsupervised and supervised adaptation techniques
aimed at improving decoder robustness across multiple sessions. This will include
an analysis of the theoretical foundations of unsupervised linear transformations,
and a supervised approach which involves fine-tuning one or more layers of the
network for a brief period on new session data. Technical details will be presented
in Chapter 4.

2.1 Anatomy and Physiology of Neuromuscular
System

Voluntary movements represent the culmination of a complex interaction between
various actors and intricate structures, all working in concert to produce what

8

Background

appears to be an effortless action. Together, they constitute the neuromuscular
system.

In the following section, we will provide a general overview of this phenomenon
by introducing each key player and offering insight into their interactions. We will
discuss the nervous system, skeletal muscles, and neurons, with a particular focus
on the genesis of movement within the brain, and the role of the primary motor
cortex (M1), where our sensor is placed. This introduction is intended as a broad
overview rather than an exhaustive explanation.

2.1.1 Central and Peripheral Nervous System
The nervous system is a complex network that coordinates the body’s activities
by transmitting signals between different parts of the body. It is divided into two
main components: the Central Nervous System (CNS) and the Peripheral Nervous
System (PNS) [11, p. 171].

The CNS is the command center of the body, comprising the brain and spinal
cord. The brain processes sensory information, initiates responses, stores memories,
and generates thoughts and emotions. The spinal cord serves as a conduit for
signals between the brain and the rest of the body, and it also controls simple
reflexes that do not require brain input. The PNS consists of all the nerves that
branch out from the brain and spinal cord, extending to other parts of the body,
including the limbs and organs. It is further divided into the somatic nervous
system, which controls voluntary movements and transmits sensory information,
and the autonomic nervous system, which regulates involuntary functions such as
heart rate and digestion.

2.1.2 The Brain
Within the central nervous system (CNS) lies the brain, a big and energy-demanding
organ that serves as the central hub for regulating essential functions such as breath-
ing, heart rate, and other vital processes. Additionally, it manages consciousness,
memory and voluntary activities, including speech, walking, and thinking. In this
region, movements are conceived, planned, and transmitted via the spinal cord to
the muscles, with feedback integrated in a loop that ensures voluntary movements
to be smooth and effective. The brain is organized into several key areas, each with
distinct functional roles [11, pp. 175–202].

Cerebrum

The cerebrum is the largest and most prominent part of the brain, divided into
two hemispheres—left and right—that each govern various mental and physical

9

Background

functions. Each hemisphere consists of four distinct lobes. The frontal lobe, located
at the front, is crucial for high-level processes such as decision-making, problem-
solving, and planning. The parietal lobe, situated on the top of the brain, is
essential for integrating sensory information and facilitating spatial orientation.
The temporal lobe, found on the sides, plays a vital role in processing auditory
information and forming memories. Lastly, the occipital lobe, positioned at the
rear, is dedicated to visual processing, converting light into meaningful visual
experiences.

Cerebellum

Nestled beneath the cerebrum, the cerebellum oversees the coordination of move-
ment and balance. It fine-tunes motor activities, ensuring smooth, precise actions
and maintaining equilibrium.

Brainstem

The brainstem serves as a vital conduit between the brain and the spinal cord,
regulating essential physiological processes necessary for life. The midbrain is
responsible for processing visual and auditory stimuli, contributing to sensory
perception and reflexes. Acting as a bridge, the pons facilitates communication
between different brain regions and plays a role in regulating respiration. At the
base of the brainstem, the medulla oblongata controls autonomic functions such as
heartbeat and breathing, which are critical for survival.

Diencephalon

The diencephalon, nestled deep within the brain, encompasses the thalamus and
hypothalamus. The thalamus serves as a relay station for sensory information,
while the hypothalamus is instrumental in maintaining homeostasis, managing
temperature, hunger, and circadian rhythms.

Limbic System

A key player in emotion and memory, the limbic system includes structures such
as the hippocampus, crucial for forming new memories, and the amygdala, which
processes emotional responses. This system is fundamental to our emotional
experience and memory consolidation.

2.1.3 The Neurons
The brain, like the rest of the nervous system, is primarily composed of neurons,
which are fundamental components of nervous tissue and essential for its function.

10

Background

Figure 2.1: Overview of brain anatomy. Taken from [12]

Although neurons can be classified into various types based on their shape and
function, they all share a common structural framework consisting of three main
parts: the cell body, which contains the nucleus and organelles necessary for the
neuron’s metabolic functions and processes incoming information; the dendrites,
which are branch-like extensions that receive signals from other neurons and
transmit them to the cell body; and the axon, a long projection that carries
electrical impulses away from the cell body to other neurons, muscles, or glands.
The axon may be covered by a myelin sheath, enhancing the speed of impulse
transmission.

Neurons can be divided into two main categories based on their roles in integrat-
ing sensory input and generating appropriate actions. Afferent neurons, also known
as sensory neurons, carry sensory information from receptors toward the central
nervous system (CNS), allowing the brain to perceive and process external and
internal stimuli. Efferent neurons, or motor neurons, transmit motor commands
from the CNS to muscles and glands, facilitating movement and physiological
responses.

Neurons generate and transmit electrical signals called action potentials (APs).
An action potential is a rapid change in the electrical charge across the neuron’s

11

Background

membrane that travels along the axon to its terminals. Upon reaching the termi-
nals, neurotransmitters are released to communicate with other neurons or target
cells. This process enables the nervous system to efficiently coordinate various
physiological functions and responses.

2.1.4 The Skeletal Muscle System
Skeletal muscles are critical for movement and are structured to facilitate contraction.
Each skeletal muscle is composed of numerous muscle fibers, which are long,
cylindrical cells capable of contracting. These fibers are grouped into bundles
known as fascicles, and each muscle is enveloped by connective tissue that provides
support and protection. Muscle fibers contain myofibrils, the contractile components
of the muscle. Myofibrils are organized into sarcomeres, which are the smallest
functional units of muscle contraction. The interaction between actin and myosin
filaments within the sarcomeres leads to muscle contraction through the sliding
filament mechanism.

Control of skeletal muscle contraction is mediated by motor neurons. When
a motor neuron sends an action potential, it travels to the muscle fiber at the
neuromuscular junction, where the neuron communicates with the muscle. The
neurotransmitter acetylcholine is released at this junction, triggering muscle con-
traction. Subsequently, sensory receptors gather information such as position,
resistance, temperature and contact, to then send it to the brain. This feedback
loop enables the brain to adjust and fine-tune ongoing movements based on sensory
input, ensuring precise control over muscle movements and accurate responses,
ranging from simple actions to complex tasks [13].

2.1.5 The Genesis of Voluntary Movements
Let us now explore mechanisms and brain regions responsible for managing voluntary
movements—which integrate sensory feedback with motor commands to ensure
smooth and coordinated actions. This is crucial for our study, in order to understand
the central role of the Primary Motor Cortex(M1), that will be the main source
of our data. The generation of movement in the brain involves a meticulously
coordinated process across several key areas. It begins with the planning and
initiation of movement, progresses to execution, and is continuously refined based
on real-time sensory feedback.

1. Planning and Initiation of Movement

The process of voluntary movement starts in the premotor cortex and the supple-
mentary motor area (SMA), both of which are situated in the frontal lobe. These

12

Background

Figure 2.2: Simplified representation of the sensorimotor loop. M1 Cortex in
green and S1 Cortex in blue. Taken from [14].

areas are involved in the planning and preparation of complex motor actions. The
premotor cortex integrates sensory information to create a motor plan, while the
SMA contributes to the planning of sequential movements and coordination of
movements involving both sides of the body [11, pp. 313–320].

13

Background

2. Execution of Movement

Once a movement plan is formulated, it is transmitted to the primary motor cortex
(M1), located in the precentral gyrus of the frontal lobe. The primary motor cortex
is responsible for the execution of voluntary movements. It sends motor commands
through the corticospinal tract to the spinal cord, where the commands are relayed
to the appropriate muscles. The motor cortex is organized somatotopically, meaning
that different regions of the cortex correspond to different body parts, creating a
motor map of the body.

This map, known as the motor homunculus, is the somatomotor equivalent of the
more famous somatosensory homunculus, situated in the Primary Somatosensory
Cortex (S1). Both are represented in Figure 2.3. The motor homunculus reflects
the relative cortical area devoted to controlling each body part, with larger areas
allocated to parts requiring finer motor control, such as the hands and face. This
organization enables precise movement control and exhibits plasticity, adapting to
changes in motor demand or injury [11, pp. 337–345].

Figure 2.3: The two maps present in our brain: the sensory and motor homunculus.
Taken from [15]

3. Integration of Sensory Feedback

During movement execution, real-time sensory feedback is crucial for fine-tuning
and adjusting motor commands. The somatosensory cortex, located in the post-
central gyrus of the parietal lobe, processes sensory information related to touch,

14

Background

proprioception, and pressure from various body parts. Sensory signals are sent to
the somatosensory cortex, where they are integrated to provide continuous feedback
about the movement. This feedback helps in adjusting motor commands to correct
any errors and refine the movement [11, pp. 265–268].

4. Coordination and Refinement

The cerebellum and basal ganglia are essential for the coordination and refinement
of movements. The cerebellum receives input from the motor cortex and the sensory
systems, and it is responsible for fine-tuning motor commands to ensure smooth
and accurate execution. The basal ganglia, a group of nuclei deep within the brain,
helps in regulating the initiation and amplitude of movement by modulating the
activity of the motor cortex [11, pp. 297–311].

5. Continuous Adjustment

Throughout the execution of a movement, the brainstem assists in regulating
basic motor functions and maintaining posture. It integrates information from the
cerebellum and sensory systems to adjust muscle tone and stabilize movements [11,
pp. 297–311].

In summary, the production of voluntary movements involves a complex interac-
tion between several brain regions. The premotor cortex and supplementary motor
area plan and prepare movements, the primary motor cortex executes them, and
the somatosensory cortex provides necessary feedback for ongoing adjustments.
The cerebellum and basal ganglia further refine and coordinate these movements,
ensuring precise and adaptive motor control.

2.2 Brain Signal Acquisition Methods for BMIs
Acquiring brain signals is a fundamental aspect of brain-machine interfaces (BMIs)
and neuroprosthetics, as it allows for the direct interpretation of neural activity.
Various methods exist, each with its own set of advantages and limitations. These
methods are typically categorized based on their invasiveness and the nature of the
signals they capture.

2.2.1 Invasive Methods
Invasive methods involve surgical intervention to place electrodes either on the
surface or within the brain, enabling the acquisition of high-fidelity neural signals.
Such implants are called intracranial electrodes provide the most direct access
to brain activity, capturing high-fidelity signals, including single-neuron action

15

Background

potentials and local field potentials (LFPs) [4]. Surgically implanted, these elec-
trodes offer precise neural activity localization, making them valuable for decoding
complex movements such as hand trajectories, individual finger movements, and
tactile stimuli within the motor cortex. [6]

Electrocorticography (ECoG)

ECoG electrodes are placed on the cortex’s surface, requiring a craniotomy but not
penetrating the brain tissue. This method balances signal fidelity and invasiveness,
offering better spatial resolution than EEG while minimizing risks associated with
deeper implantation. ECoG is effective in decoding various movements, ranging
from discrete hand gestures to continuous cursor control [6, 4].

Stereo-electroencephalography (SEEG) and Deep Brain Stimulation
(DBS)

SEEG and DBS electrodes are implanted in deeper brain structures such as the
subthalamic nucleus (STN) or ventrolateral thalamus (VL). Primarily designed for
epilepsy monitoring and Parkinson’s disease treatment, these electrodes demonstrate
potential for movement decoding. Researchers utilize SEEG and DBS signals to
predict movement onset, identify hand movements, and decode continuous kinetic
information related to grasping [4, 6].

2.2.2 Non-Invasive Methods
Non-invasive methods, in contrast, do not require surgical intervention for electrode
placement. These methods are generally safer but often come with limitations in
signal resolution and susceptibility to noise.

Electroencephalography (EEG)

EEG is the most prevalent non-invasive technique, involving the placement of
electrodes on the scalp to measure electrical activity from neuronal populations.[16,
5, 4], While safe and user-friendly, EEG has limited spatial resolution compared to
invasive methods and is vulnerable to noise from muscle activity and other artifacts
[5, 16, 4]. Despite these drawbacks, EEG is effective in decoding movements such
as cursor control, wheelchair navigation, and prosthetic limb control.[5, 16, 4]

Magnetoencephalography (MEG)

MEG measures the magnetic fields generated by electrical currents in active neurons.
Offering enhanced spatial resolution compared to EEG, MEG is less prone to signal

16

Background

distortion by the skull and scalp. However, MEG requires specialized equipment
and a shielded environment to minimize magnetic interference [5, 4].

Functional Near-Infrared Spectroscopy (fNIRS)

fNIRS is a non-invasive optical imaging technique that measures blood oxygenation
changes in the brain, reflecting neuronal activity. Although safe, portable, and less
sensitive to motion artifacts than fMRI, fNIRS has limited temporal resolution.
Nonetheless, fNIRS demonstrates potential in decoding movement-related brain
activity [5, 4].

Functional Magnetic Resonance Imaging (fMRI)

fMRI is another method used to measure brain hemodynamic responses, utilizing
blood-oxygen-level-dependent (BOLD) activity measured with an MRI scanner.
While fMRI boasts superior spatial resolution, it suffers from low temporal reso-
lution, with a significant lag between neuronal activity and the BOLD response
[4].

2.2.3 Advantages of ECoG
In the context of brain-machine interfaces, electrocorticography (ECoG) is often
favored due to its balance between invasiveness and signal fidelity. While fully
invasive techniques offer higher resolution, they come with increased risks of tissue
damage and signal degradation over time. Conversely, non-invasive methods like
electroencephalography (EEG) are safer but typically provide lower resolution and
less reliable signals.

ECoG serves as a middle ground by delivering high-quality signals for decoding
two-dimensional hand kinematics with relatively lower risks, making it a suitable
option for brain-machine interface (BMI) and brain-computer interface (BCI)
applications. ECoG electrodes are positioned directly on the surface of the brain,
capturing neural activity with greater spatial resolution than non-invasive EEG,
which facilitates more precise movement decoding [4]. Additionally, ECoG grids can
cover a larger cortical area than penetrating microelectrode arrays, providing access
to a broader range of motor and sensory information pertinent to two-dimensional
kinematics [4].

Moreover, ECoG offers a favorable signal-to-noise ratio, being less susceptible
to artifacts such as muscle activity, which often plague EEG recordings [4]. This
advantage is further underscored by a study demonstrating that a subject could con-
trol a BMI using facial electromyography (EMG), illustrating EEG’s vulnerability
to such artifacts [4, 17].

17

Background

Finally, multiple sources emphasize the long-term stability of ECoG compared
to intracortical electrodes [2, 18]. This stability arises from ECoG electrodes being
placed on the brain’s surface, which minimizes tissue damage and inflammatory
responses that can lead to signal degradation over time [4, 1, 19]. Chronic ECoG
recordings have been shown to last for many years in both animals and humans [4].

Figure 2.4: Overview of brain signal recording methods. Taken from [20]

2.3 Signal Cleaning and Processing Techniques
(ECoG)

Signal processing techniques play a crucial role in analyzing neural data, particularly
for applications like Brain-Machine Interfaces (BMIs). These techniques are essential
for interpreting the complex and often noisy signals recorded from the brain,
especially in the context of electrocorticography (ECoG) signals.

2.3.1 Data Acquisition and Initial Cleaning
Neural ECoG signals, like in our case, are commonly acquired using intracortical
microelectrode arrays such as the Utah array. These arrays consist of multiple

18

Background

electrodes that can record the activity of both single neurons, referred to as single-
unit activity (SUA), and groups of neurons, known as multi-unit activity (MUA).
The recorded signals are usually sampled at high frequencies (e.g., 24.4 kHz or 30
kHz) to capture the fast temporal dynamics of neural activity. To preserve the
intricate details of these signals, they are digitized with high resolution, typically
16-bit or more [2, 3].

Immediately after acquisition, the neural signals undergo several preprocessing
steps to improve their quality. Pre-amplification is applied to strengthen the signals,
and an anti-aliasing low-pass filters may be applied to remove high-frequency noise
above the Nyquist frequency. This process is critical for enhancing the signal-to-
noise ratio, thereby facilitating more accurate downstream analysis [21, 2, 3].

Moreover, as better explained below, different kind of referencing scheme may
be adopted to further enhance signal quality.

2.3.2 Noise Reduction, Referencing Schemes, and Our Ap-
proach

In neural recordings, reducing noise and removing artifacts are crucial for obtaining
high-quality data, especially given the wide array of noise sources, including power
line interference (50 or 60 Hz and harmonics), electronic artifacts, and biological
noise.

The dataset we use for our study already applies unipolar referencing during the
data recording phase. In unipolar referencing, each electrode’s potential is measured
relative to a distant reference electrode, often located at an electrically neutral
site. This distant positioning helps reduce interference from local neural activity.
However, because the reference is external and far from the recorded brain region,
unipolar referencing is more susceptible to common-mode noise. Common-mode
noise originates from external electromagnetic sources or from shared activity across
the brain regions, affecting multiple electrodes simultaneously. As a result, unipolar
referencing cannot easily differentiate between true neural signals and widespread
noise, potentially compromising signal clarity [22].

To improve the signal-to-noise ratio and better isolate neural activity in our
analysis, we will implement Common Average Referencing (CAR). In CAR, the
average signal across all electrodes is subtracted from each individual electrode’s
signal. This technique reduces noise that is common to all electrodes while pre-
serving the distinct neural activity at each recording site. The method can be
expressed mathematically as:

VCAR,i(t) = Vi(t) − 1
N

NØ
j=1

Vj(t) (2.1)

19

Background

where VCAR,i(t) is the CAR-referenced signal for electrode i, Vi(t) is the original
signal from electrode i, and N is the total number of electrodes, this value is
calculated at each time step t. This approach effectively eliminates common-mode
noise by leveraging the assumption that noise is distributed evenly across all
electrodes, thus enhancing the neural signals of interest [23, 21, 3].

CAR offers robust noise suppression, making it a preferred method for neural
signal analysis. While bipolar referencing is another effective strategy for reducing
local noise by measuring the potential difference between neighboring electrodes,
CAR provides a more global and simple solution by addressing noise common
to the entire electrode array. For this reason, CAR is particularly well-suited to
our study’s focus on neural decoding, where capturing high-quality signals while
keeping it as simple as possible is critical [2].

2.3.3 Spike Detection and Spike Sorting (MUA and SUA)
Later on, we can proceed with the real preprocessing: spike detection and sorting
are common steps when dealing with ECoG signals and BMIs. These methods
are used to detect the activity of individual neurons from electrodes recording
population spiking activity.

Spikes are brief, high-frequency events that reflect the output of neurons. To
detect these spikes, the raw neural signal is typically band-pass filtered to isolate the
frequency band associated with spikes (usually above 300 Hz, or between 500 and
5000 Hz) [2, 3, 24]. Then events in that range of frequency that cross a predefined
threshold are identified as spikes (Threshold crossing TC). This threshold is set
based on the noise level of the recording and can be determined either manually or
using automated algorithms [25, 3, 19].

Following detection, spike sorting is performed to distinguish the detected spikes
based on their waveform. From a single channel, detected spikes are grouped in
different units. This step is crucial to differentiate between spikes from different
neurons on the same electrode. It provides insights into how each neuron, or usually
a little sub-population of neurons, contributes to brain activity. Various algorithms
are used for this purpose. [2, 3, 19, 24].

To reduce memory usage and computational costs, we will not consider each
spike event, but we will perform a firing rate estimation.

2.3.4 Firing Rate Estimation (TCR)
Firing rate estimation is a key technique used to summarize spiking activity over
time, converting discrete neural events into a simpler representation that makes
neural data more manageable for processing. This approach reduces computational
complexity by focusing on overall neural activity patterns rather than individual

20

Background

spike events, making it particularly valuable in creating a lightweight decoder for
brain-machine interfaces.

We experimented with two widely used methods for firing rate estimation:
binning and kernel smoothing. Binning is a straightforward technique where
spikes are counted within fixed-duration intervals, or bins, and the firing rate is
expressed as the total number of spikes within each bin. It aims to preserve the
temporal resolution of neural activity while avoiding the need to process each spike
individually. This method is simple to implement and computationally efficient, but
its effectiveness depends on choosing the right bin size. A large bin may miss rapid
changes in neural dynamics, while a small bin can introduce noise and variability
[19].

On the other hand, kernel smoothing produces a continuous estimate of the
firing rate by convolving the spike train with a smoothing kernel, such as the
Gaussian kernel. The width of the Gaussian kernel, controlled by its standard
deviation, determines how much smoothing is applied. A wider kernel smooths
out noise but may obscure finer details of neural activity, while a narrower kernel
retains more temporal precision at the expense of potentially allowing more noise
into the signal [22, 19].

When you combine binning with spike detection you have Threshold Crossing
Rate (TCR). In short, it provides a quick way to estimate the firing rate of neurons
by counting how often the signal crosses a set threshold, making it a useful tool
in detecting spikes from neural data. However, it has limitations in accuracy,
especially in noisy recordings or for smaller, less obvious spikes.

In our study, we tested both techniques, as background research, and found that
they provided similar performance in terms of decoding accuracy. We chose to adopt
TCR because of its computational simplicity and reduced energy usage. It allowed
us to achieve a more lightweight and efficient implementation without sacrificing
significant accuracy. We will discuss the technical details and the parameters used
in this implementation in the chapter 4.

2.3.5 Most Common Processing Techniques

For completeness, we outline some of the main preprocessing techniques commonly
discussed in the literature. These techniques are essential for enhancing the quality
of neural recordings and preparing the data for further analysis. In our study,
we will focus on three primary methods: Spiking Band Power (SBP), Multi-Unit
Activity (MUA), and Single-Unit Activity (SUA). By utilizing and adapting these
three methods, we aim to enhance the accuracy and reliability of our neural signal
analyses, tailoring the preprocessing techniques to best fit our experimental goals.

21

Background

Entire Spiking Activity (ESA) : It captures the overall spiking activity without
relying on threshold-based detection. ESA is obtained by high-pass filtering the
raw signal, full-wave rectifying it, and then applying a low-pass filter. This method
is particularly advantageous in chronic recordings with low signal-to-noise ratios,
as it is less sensitive to noise and avoids biases associated with threshold-based [3].

Multi-Unit Activity (MUA) : It represents the combined spiking activity of
a group of neurons recorded on a single electrode. MUA is usually obtained by
band-pass filtering the raw signal to isolate the spiking frequency band (e.g., 500 Hz
to 5 kHz) and then by computing spike detection. Although it provides a coarser
measure of neural activity compared to SUA, MUA still offers valuable information
about population-level dynamics [2].

Single-Unit Activity (SUA) : It reflects the spiking activity of single neurons.
SUA is obtained by first detecting and then sorting spikes to identify those origi-
nating from the same neuron. This high level of detail is crucial for studying neural
coding and network dynamics [2].

Local Field Potential (LFP) : It represents the low-frequency component of
the extracellular signal, reflecting the summed synaptic and subthreshold activity
of a population of neurons near the electrode. LFPs are extracted by applying a
low-pass filter to the raw signal, typically with a cutoff frequency around 300 Hz.
LFPs contain valuable information about both the input to a neural population
and the local processing within that population [24].

Spiking Band Power (SBP) : It can be seen as a variant of ESA. It measures
the power within the high-frequency band of the neural signal, typically between
300 Hz and 1 kHz or higher, primarily reflecting the spiking activity of neurons.
SBP is a continuous signal, and can be used as a simpler alternative or complement
to traditional spike sorting, especially in applications where identifying individual
units is challenging or unnecessary. This method is very energy and memory-
efficient, and it is particularly effective in decoding tasks even at low signal-to-noise
ratios, highlighting its potential for long-term implantable devices [26].

2.4 Spiking Band Power Overview
Spiking Band Power (SBP) has recently gained attention in neuroengineering, es-
pecially regarding its application in Brain-Machine Interfaces (BMIs). The novelty
of our work also involves examining the long-term stability of this preprocess-
ing method. For this reason, this section delves into the definition of SBP, its

22

Background

Figure 2.5: The main preprocessing steps to obtain SBP, MUA, and SUA.

performance advantages, power efficiency, methodology for extraction, and its
applications in various tasks.

2.4.1 Understanding Spiking Band Power
SBP quantifies the power concentrated within a specific high-frequency range of
recorded neural signals, typically between 300 and 1,000 Hz or higher [26]. This
measure is crucial for capturing the energy predominantly associated with neuronal
spiking activity. Conceptually, the neural signal can be envisioned as a spectrum of
frequencies; SBP emphasizes the higher end, where action potentials, or spikes, are
most prevalent. Unlike traditional spike-sorting methods that depend on identifying
individual spikes above a specific voltage threshold, SBP quantifies the overall
power within the spiking band. This approach is particularly advantageous as it
enables the detection and analysis of signals from neurons with weaker amplitudes
that might be missed by threshold-based methods.

2.4.2 Performance Advantages and Power Efficiency
SBP demonstrates superior performance compared to traditional spike-based de-
coding methods, such as MUA and SUA, especially in predicting complex motor
movements. Its narrower bandwidth does not compromise its excellent spatial
specificity, effectively reflecting the activity of high-amplitude neurons situated near
the electrode. This characteristic is crucial for accurately capturing neural activity,
even at low signal-to-noise ratios (SNRs), allowing SBP to detect neuronal signals
that may elude conventional spike sorting techniques [26]. Moreover, the reduced

23

Background

bandwidth requirement of SBP leads to significant power savings for BMI devices.
By concentrating on a narrower frequency band, SBP enables lower sampling rates,
which directly decreases power consumption in the analog front-end. Additionally,
SBP can eliminate the need for complex spike detection and sorting circuits, further
enhancing overall power efficiency [26]. This efficiency is particularly advantageous
for real-time applications in BMIs, where battery life and computational resources
are often constrained.

2.4.3 Methodology for SBP Extraction
The extraction of SBP follows a systematic process, primarily based on method-
ologies outlined in existing literature, with slight modifications planned to align
with the specific needs of our study. Practical details of these adjustments will be
detailed in Chapter 4.

The extraction process begins with band-pass filtering the raw neural signal to
isolate the frequency range associated with spiking activity, typically 300-1,000
Hz. This step effectively removes irrelevant frequency components, focusing the
analysis on the spiking band [26, 27]. Next, the filtered signal undergoes full-wave
rectification, where both positive and negative phases of the spikes are captured by
taking the absolute value [27]. This is the magnitude extraction. After rectification,
the signal is smoothed and downsampled using various techniques, including static
binning with non-overlapping averages, moving average filters, or Gaussian filters.
These methods enhance the signal by smoothing it and highlighting the overall
envelope of spiking activity, thus facilitating more accurate analyses of neuronal
behavior [27, 26].

2.4.4 Applications of SBP
Recent studies illustrate the effectiveness of SBP in various BMI tasks. For instance,
SBP has shown performance comparable to or superior to TCR methods in decoding
one-dimensional finger movements in both open-loop and closed-loop settings [26].
It has excelled in two-dimensional cursor control tasks, highlighting its potential for
more complex control schemes [26]. Additionally, SBP has been successfully utilized
as input for SNN decoders, achieving high accuracy in finger velocity prediction
while maintaining computational efficiency [27].

2.4.5 Conclusions and Future Directions
While SBP shows considerable promise, it is important to note that most research is
still in its preliminary stages, necessitating further investigation to fully understand
its limitations and optimize its application across various BMIs [26]. We will

24

Background

examine this aspect in our reseach. Additionally, the optimal bandwidth for SBP
may vary depending on factors such as brain region, recording electrodes, and
the specific task being decoded [27, 26]. In summary, Spiking Band Power (SBP)
emerges as a powerful and promising neural feature for BMI applications. It offers
a unique blend of high decoding accuracy, spatial specificity, and power efficiency,
positioning it as a valuable tool for the development of advanced and clinically
viable neural interfaces.

2.5 Spiking Neural Networks
Spiking Neural Networks (SNNs) represent a neuromorphic computing architecture
inspired by the structure and function of the brain [28]. Unlike conventional
artificial neural networks (ANNs), which rely on continuous activation functions
and synchronous neurons, SNNs process information using asynchronous discrete
spikes, mimicking the way biological neurons communicate. This approach makes
them particularly suitable for brain-inspired computing. Additionally, the binary
and sparse nature of spikes leads to more efficient computations, offering significant
improvements in terms of power consumption and resource usage [29, 28]. Among
others, two studies by Carpegna et al. [30, 31] discuss and explore efficiency in
hardware implementation, while the recent results by Padovano et al.[32] show
how optimisation can further enhance on-chip efficiency while maintaining high
prediction quality.

In SNNs there is a loss in encoding capacity due to the binary nature of spikes.
However, this limitation can be mitigated by leveraging the temporal dynamics
neurons, which makes SNNs particularly effective for handling time series data.
Essentially, information can be encoded not just in the presence or absence of a spike,
but also in the timing of spikes [33]. The efficiency of SNNs can be fully realized
through specialized hardware optimised to simulate such structure. This is an
active area of research with platforms like Loihi from Intel and TrueNorth from IBM
aiming to push the boundaries of low-power SNN processing [29]. Unfortunately,
while this hardware aspect is of great interest, it falls outside the scope of our
exploration due to time constraints.

At a structural level, SNNs closely resemble traditional ANNs, with the primary
distinction being the behavior of individual neurons. Keeping this in mind, we
will first outline the architecture of the most basic neural network, the fully
connected neural network (FCNN), and then explore how it evolves within this
new neuromorphic paradigm. As a matter of fact, the temporal dynamics of a
SNN follows the general paradigm of recurrent neural networks (RNN) [33]. It
is important to mention that a lot of different solution have been proposed for
ANNs and then adapted to SNNs, like the more modern Transformers [34]. We

25

Background

could explore these topics in much greater detail, and we would love, but given the
limitations of time and space, we’ll focus on the essentials and relevant information
for this thesis, aiming to be exhaustive, clear, and not too boring.

2.5.1 Fully Connected Neural Networks
For details about this architecture refer to [35]. A fully connected neural network
(FCNN), also known as a dense neural network, is a fundamental type of artificial
neural network where each neuron in one layer is connected to every neuron in the
following layer. This architecture allows for a comprehensive interaction between
the neurons across different layers, enabling the network to learn complex patterns
from the data.

Figure 2.6: Structure and main components of a FCNN. Figure taken from [36].

Neurons, Layers, Weights, and Biases

Neurons serve as the fundamental computational units in neural networks, emulating
the function of biological neurons. Each neuron processes input from other neurons
or raw data by computing a weighted sum, adding a bias, and applying an activation
function to generate an output, which is then transmitted to the next layer.

The basic architecture of a neural network consists of several layers. The input
layer receives the raw data, where each neuron corresponds to a feature of the input;

26

Background

for example, a 28x28 pixel grayscale image would have 784 neurons. Hidden layers
follow, where the majority of computations occur. Neurons in these layers are fully
interconnected, and the weights of these connections are adjusted during training
to improve data fitting. Finally, the output layer generates the final predictions,
which could involve classification or regression tasks. For a classification problem
with 10 classes, the output layer would contain 10 neurons, each representing a
class, often utilizing functions like softmax to produce interpretable probabilities.

The strength of the connections between neurons is governed by weights, which
are learned during training, along with biases that allow for the activation function
to be shifted. This combination enhances the network’s capacity to accurately
model the data by minimizing prediction errors through iterative updates during
the training process.

2.5.2 Recurrent Neural Networks

Figure 2.7: An RNN unfolded, with S0, S1, ... being the internal states of the net
at each time step. Taken from [37]

.

While FCNNs excel in handling static data, they fall short when it comes to
sequences or time-dependent information. This is where Recurrent Neural Networks
(RNNs) come into play. RNNs are specifically designed to process sequential data
by incorporating temporal dynamics into their architecture. Unlike FCNNs, RNNs
maintain a memory of previous inputs through internal state representations,
allowing them to capture patterns across time steps. In Figure 2.7 we can see
a graphical representation of an RNN unfolded in time, highlighting the role of
previous internal stases in current predictions.

The key feature of RNNs is their ability to loop back connections, enabling
information to persist in the network. This recurrent structure allows RNNs to
learn from both current and past inputs, making them particularly effective for
tasks such as natural language processing, speech recognition, and time series

27

Background

forecasting. By leveraging this memory, RNNs can model temporal dependencies
and make predictions based on sequences of varying lengths.

In summary, RNNs enhance the capabilities of neural networks by addressing
the limitations of FCNNs when it comes to sequential data, providing a powerful
tool for a wide range of applications that require an understanding of temporal
relationships. More details can be found in the paper by Laith Alzubaidi et al.[35]

2.5.3 Common Spiking Neuron Models
The differences between Artificial Neural Networks (ANNs) and Spiking Neural
Networks (SNNs) primarily stem from the structure of their fundamental units:
the neurons. For this reason, we will briefly mention the main models used in the
spiking neural network domain, here a more comprehensive review [29].

The Hodgkin-Huxley (HH) Model is celebrated for its biological realism, a
complex simulation of the dynamics of ion channels that govern neuronal activity.
However, its high computational demands can make it impractical for large-scale
simulations and deep learning tasks. In contrast, the Izhikevich (IZH) Model offers
a balance between biological fidelity and computational efficiency, successfully
reproducing a range of neuronal firing patterns, though it is still more demanding
than simpler models.

The Leaky Integrate-and-Fire (LIF) Model stands out for its computational
efficiency, integrating input currents over time while allowing charge to leak at
a defined rate. When the membrane potential exceeds a specific threshold, the
neuron fires a spike and resets. The Adaptive Exponential (AdEx) Model builds
on the LIF framework by incorporating an adaptation mechanism that makes
firing rates dependent on past activity, thus enhancing biological realism without
sacrificing computational efficiency. Other models, such as the Integrate-and-Fire
(IF) and Non-linear Integrate-and-Fire (NLIF) models, also exist, each with their
own trade-offs between biological accuracy and computational complexity.

2.5.4 The Appeal of LIF Neurons
The following concepts about LIF neurons and formulas are taken from previous
literature [28, 29, 34]. The Leaky Integrate-and-Fire (LIF) neuron model has gained
popularity, particularly in deep learning applications, due to its computational
simplicity and efficiency. This makes it well-suited for large-scale simulations and
deep spiking neural networks (SNNs). The straightforward dynamics of the LIF
model align well with gradient-based learning algorithms such as Spatio-Temporal
Backpropagation (STBP), enhancing the effectiveness of the training process.
While it does not capture the full complexity of biological neurons as models like
Hodgkin-Huxley (HH) or Izhikevich (IZH) do, the LIF neuron offers a practical

28

Background

balance between biological realism and computational feasibility. Additionally, its
simplicity makes it ideal for implementation on neuromorphic hardware, which
often prioritizes energy efficiency.

Ultimately, the choice of neuron model should align with the specific objectives of
the application. For scenarios where biological fidelity is crucial and computational
cost is less of a concern, HH or IZH models may be preferable. However, for
applications that emphasize computational efficiency, scalability, and compatibility
with deep learning techniques and neuromorphic platforms, LIF neurons emerge as
the most convenient option.

2.5.5 The LIF Neuron in Detail
The Leaky Integrate-and-Fire (LIF) neuron provides a simplified but effective rep-
resentation of biological neurons, balancing computational efficiency with biological
plausibility. The functioning of the LIF neuron can be understood through the
accumulation of synaptic currents over time. Inputs, representing the electrical
signals from other neurons, are integrated within the membrane potential of the
neuron. This process is akin to charging a capacitor, where the neuron accumulates
the input signals it receives, which are scaled by their respective synaptic weights.

A key feature of the LIF neuron is its leakage mechanism, where the membrane
potential gradually decays over time in the absence of sustained inputs. This is a
distinctive property that sets it apart from models without decay, and is controlled
by a parameter, often represented as τ or β, that determines how quickly the
neuron "forgets" past inputs. The decay process ensures that the neuron does not
accumulate inputs indefinitely and resets itself in the absence of stimulation.

Once the accumulated membrane potential crosses a defined threshold, Vth,
the neuron fires a spike. This firing event transmits a signal to other neurons
in subsequent layers, acting as a communication event. After the neuron spikes,
the membrane potential resets, which typically involves subtracting the threshold
value.

Mathematically, the membrane potential of the LIF neuron in the continuous-
time LIF model behaves following this differential equation:

τm
du(t)

dt
= −(u(t) − urest) + RI(t) (2.2)

if u(t) ≥ Vth →
I

O(t) = 1
u(t + dt) = u(t) − Vth

(2.3)

Where τm = RC, urest = 0 and I(t) is the input signal. When the membrane
potential surpasses the fixed Vth, then a spike is emitted and u(t) is reset by
subtraction. In Figure 2.8 we can see an example that highlights these dynamics.

29

Background

Figure 2.8: LIF-neuron response to input spikes and behaviour of the membrane
leaking dynamics

While the discrete approximation, implemented in our digital model is repre-
sented in the equation below:

u(t) = τ(u(t − 1) − s(t − 1)Vth) + I(t) (2.4)

where u(t) represents the membrane potential at time t, τ is the decay factor
governing the rate of leakage, s(t − 1) is the output spike from the previous time
step, and I(t) is the total synaptic input current at time t. This input current, I(t),
can be described as the sum of the weighted input spikes from connected neurons:

I(t) =
Ø

i

wi · si(t) + b (2.5)

Here, wi denotes the synaptic weight for the i-th input, si(t) is the spike received
from the i-th neuron, and b represents the bias term associated with the neuron.

The output spike s(t), which represents whether the neuron fires or not, is a
binary decision:

30

Background

s(t) =
1 if u(t) ≥ Vth

0 otherwise

Thus, the LIF neuron behaves in a time-dependent manner, accumulating input,
leaking potential, and firing once the threshold is crossed, then resetting to repeat
the process. This dynamic system allows for the modeling of time-sensitive neuronal
behavior, making the LIF neuron particularly suitable for spiking neural networks
(SNNs) and applications that require efficient temporal computation.

LIF Neurons vs. Traditional Perceptrons

While both LIF neurons and perceptrons (traditional neurons in ANNS) serve as
foundational units in neural networks, they operate under distinct mechanisms:

Feature LIF Neuron Perceptron
Signal Type Spikes (discrete events in

time)
Continuous values

Time Dynamics Inherently time-dependent;
membrane potential evolves
over time, integrating inputs
and leaking charge

Typically time-
independent; output
depends solely on
current inputs

Output Representation Spike rate (frequency of
spikes) or directly using
membrane potential for con-
tinuous values

Continuous value ob-
tained by applying
an activation function
(e.g., sigmoid, ReLU,
Softmax)

Learning Spike-Timing-Dependent
Plasticity (STDP) or
gradient-based methods like
STBP

Gradient-based meth-
ods, primarily back-
propagation

Biological Plausibility More biologically realistic
due to spike-based communi-
cation and temporal dynam-
ics

Less biologically
realistic; primarily
an abstraction of
weighted summation
and synchronous
computations

Table 2.1: Comparison between LIF neuron and perceptron

In essence, LIF neurons capture the temporal aspects of neural processing,

31

Background

making them suitable for tasks involving time-series data and event-based applica-
tions. Their spike-based nature also aligns well with energy-efficient neuromorphic
hardware. In contrast, perceptrons excel in tasks where temporal dynamics are
less critical, and continuous input-output mappings suffice.

Figure 2.9: Comparison between LIF neuron and perceptron.

2.5.6 Backpropagation for FCNNs
We believe that providing a clear explanation of how the training process works is
very important for our work. As a matter of fact, it’s crucial to discuss how it is
adapted for Spiking Neural Networks (SNNs). Backpropagation is fundamental
for training Artificial Neural Networks (ANNs); it’s a mathematical process that
enables the network to adjust its weights and biases, minimizing error and allowing
for gradual learning that extracts meaningful insights from raw data. Without
backpropagation, neural networks as we know them would not exist. To introduce
Backpropagation we refer to this summary paper [38].

The training process utilizes the chain rule of calculus to propagate errors
backward through the network, calculating the gradients (derivatives) of the loss
function with respect to each weight and bias. These gradients are then employed
to update the parameters. The process can be broken down into four main steps:
the forward pass, loss calculation, backward pass (gradient computation), and
weight updates. Let us explore each step along with the relevant mathematical
concepts.

1. Forward Pass

During the forward pass, the network computes the output by passing the input
through each layer, using the current weights and biases. For a single layer, the

32

Background

output of neuron j in layer l is given by:

z
(l)
j =

Ø
i

w
(l)
ji a

(l−1)
i + b

(l)
j

where: - w
(l)
ji is the weight connecting neuron i from the previous layer l − 1

to neuron j in the current layer l, - a
(l−1)
i is the activation of neuron i from the

previous layer, - b
(l)
j is the bias of neuron j in the current layer.

The weighted sum z
(l)
j is passed through an activation function σ (e.g., ReLU,

sigmoid, etc.) to produce the output or activation of neuron j:

a
(l)
j = σ(z(l)

j)

This process is repeated across all layers until the output layer, where the
network produces a final prediction ŷ.

2. Loss Calculation

After the forward pass, the network’s prediction ŷ is compared to the actual target
y using a loss function L(ŷ, y). A common choice for the loss function is the mean
squared error (MSE) for regression tasks or the cross-entropy loss for classification
tasks.

For example, the MSE loss for a regression problem where the output layer is
composed by n neurons is:

L(ŷ, y) = 1
n

nØ
j=1

(yj − ŷj)2

3. Backward Pass (Gradient Computation)

The goal of backpropagation is to compute the gradients of the loss function L
with respect to the weights and biases. These gradients tell us how much each
weight and bias needs to be adjusted to minimize the loss.

For the output layer, the derivative of the loss function with respect to the
activation a

(L)
j (where L denotes the output layer) is computed first. If MSE is

used, the gradient of the loss with respect to the activation a
(L)
j is:

∂L

∂a
(L)
j

= 2(a(L)
j − yj)

Next, we compute the gradient of the loss with respect to the pre-activation
value z

(L)
j (before applying the activation function):

33

Background

∂L

∂z
(L)
j

= ∂L

∂a
(L)
j

· σ′(z(L)
j)

where σ′(z(L)
j) is the derivative of the activation function used in the output

layer.
For hidden layers, the gradients are computed using the chain rule, propagating

the error backward. The error in layer l is related to the error in layer l + 1 by:

δ
(l)
j =

AØ
k

δ
(l+1)
k w

(l+1)
kj

B
· σ′(z(l)

j)

Here, δ
(l)
j represents the error term for neuron j in layer l, and σ′(z(l)

j) is the
derivative of the activation function for neuron j in that layer.

The gradients of the loss with respect to the weights and biases can now be
computed. For a given weight w

(l)
ji between neurons i and j in layer l, the gradient

is:

∂L

∂w
(l)
ji

= δ
(l)
j a

(l−1)
i

Similarly, the gradient with respect to the bias of neuron j in layer l is:

∂L

∂b
(l)
j

= δ
(l)
j

These gradients are calculated for all layers, starting from the output layer and
propagating backward through the hidden layers.

4. Weight Update

Once the gradients have been calculated, the weights and biases are updated to
reduce the error. This is typically done using stochastic gradient descent (SGD) or
a variant. The update rule for the weights is:

w
(l)
ji = w

(l)
ji − η

∂L

∂w
(l)
ji

And for the biases:

b
(l)
j = b

(l)
j − η

∂L

∂b
(l)
j

Here, η is the learning rate, which controls how much the weights are adjusted in
each iteration. The gradients computed during backpropagation guide the updates,
ensuring that the network gradually reduces the loss and improves its predictions.

34

Background

2.5.7 Spatio-Temporal Backpropagation (STBP) for Re-
gression in SNNs

Following the introduction of backpropagation in Fully Connected Neural Networks
(FCNNs), we now delve into its adaptation for Spiking Neural Networks (SNNs)
in the context of regression tasks, following the works by Wu et al. and Liao et
al. [39, 27]. While backpropagation is crucial for adjusting weights and biases in
traditional Artificial Neural Networks (ANNs), SNNs’ spike-based communication
and temporal dynamics require specialized modifications. In this case, the final
predictions are continuous values, encoded in the membrane potential of non-spiking
Leaky Integrate (LI) neurons in the output layer. The hidden layers, meanwhile,
are composed of Leaky Integrate-and-Fire (LIF) neurons, which handle the spiking
activity.

Spatio-Temporal Backpropagation (STBP) is a technique that allows efficient
training of SNNs by addressing the non-differentiability of spikes through surrogate
gradients and incorporating backpropagation through time (BPTT) [40] to manage
the network’s temporal behavior. In the following, we explore how STBP is
employed for SNN regression tasks, using the Mean Squared Error (MSE) as the
loss function and the arctangent (arctan) function as the surrogate gradient.

Forward Pass in Regression with SNNs

In SNN regression, inputs are processed through layers of LIF neurons, which
accumulate and integrate information over time. These neurons spike when their
membrane potential exceeds a certain threshold, transmitting information to
subsequent layers. However, unlike classification tasks where the output is often a
spike rate, in regression, the final layer consists of non-spiking LI neurons. The
membrane potential of these neurons directly encodes the continuous prediction
values at the final time step.

This approach allows SNNs to harness their unique temporal integration ca-
pabilities while still producing smooth, continuous outputs suited to regression
tasks.

Loss Calculation with MSE

For regression, the Mean Squared Error (MSE) is the most suitable loss function,
as it measures the difference between the network’s predicted values (represented
by the membrane potentials in the non-spiking output layer) and the actual target
values. Minimizing this loss ensures that the network’s continuous predictions get
closer to the true values over time, improving performance on regression tasks.

35

Background

Surrogate Gradient with Arctangent Function

One of the central challenges in training SNNs is that spikes are inherently non-
differentiable, which prevents the direct use of gradient-based optimization methods.
To circumvent this, surrogate gradients are used to approximate the gradient of
the spike generation process, allowing backpropagation to function effectively.

Different function can be used as the surrogate gradient, the most common are
the the arctangent (arctan) function and the sigmoid, that we can see in Figure
2.10. This approximation allows gradients to be computed during training, even
though the actual spike generation is not differentiable.

Figure 2.10: (a) Diagram of a spiking neuron. (b) The Sigmoid function used as
surrogate gradient to approximate Heaviside function. Taken from [41].

Backward Pass with BPTT in SNNs

Figure 2.11: Error backpropagation through time in unfolded RNN. Image taken
from [42].

The backward pass in Spiking Neural Networks (SNNs) builds upon the principles

36

Background

of standard backpropagation, but it is extended to handle the temporal nature
of SNNs through Backpropagation Through Time (BPTT). Unlike traditional
feedforward networks, where input data is static, SNNs deal with time-varying
data, requiring a more sophisticated approach to process the temporal dynamics of
spiking neurons.

To manage this, the dataset is discretized into fixed-length time steps, and
these time steps are grouped into short sequences. Each sequence contains a fixed
number of samples and is often designed to overlap with adjacent sequences to
capture continuous temporal patterns. The overlapping allows the network to
better track temporal dependencies across a broader time window and ensures
smoother transitions between sequences.

During BPTT, the network is trained on these folded sequences, where each
sequence represents a chunk of the input data, discretized into time steps. The
network processes the entire sequence, and at the end, the loss is computed by
summing the losses at each individual time step within that sequence. This method
enables the network to be effectively “unfolded” across time, treating the temporal
sequence as a continuous flow of information rather than isolated static inputs.

The core idea of BPTT is to propagate gradients backward not only through
the spatial layers of the network but also through the temporal dimension. This
allows the model to learn how activations (spikes) at earlier time steps influence
future predictions, tackling the temporal credit assignment problem. The gradients
calculated from the loss at each time step are accumulated and then used to update
the weights and biases of the network, improving its ability to learn temporal
patterns.

This approach ensures that the network learns effectively from temporal data,
while accounting for the spiking nature of SNNs, where neurons communicate
through discrete spikes over time. Additionally, early predictions in each sequence
are often discarded, as the network takes time to “warm up” and settle into a stable
state, leading to more accurate predictions toward the latter part of each sequence.

By discretizing time steps, folding the dataset into overlapping sequences, and
using BPTT, SNNs can learn from complex time-varying data, leveraging both
spatial and temporal dynamics in their learning process.

For a regression task, on the final non-spiking layer the gradients are calculated
based on the membrane potentials, which represent the network’s predictions. For
the hidden LIF layers, the surrogate gradients are used to approximate the gradients
of the spiking neurons, allowing errors to be propagated backward through the
spikes.

This backward pass, combining surrogate gradients and BPTT, ensures that
both the temporal dynamics and spatial relationships in the network are considered
during training.

37

Background

2.5.8 Optimization Variants: AdamW and Dropout
In our study, following [27], during training of SNN, we introduce two key opti-
mization techniques: AdamW [43], which we use as a variant of the more classical
Adam, an adaptive Stochastic Gradient Descent (SGD) technique, and Dropout
[44], which we use to prevent overfitting. These methods help ensure stability,
efficiency, and generalization during training. Below, we present both methods and
explain how they are applied to update the model’s weights and biases.

AdamW as a Variant of SGD

While Stochastic Gradient Descent (SGD) is a fundamental optimization technique,
its simplicity can lead to slow convergence and issues with stability, particularly in
deep networks like Spiking Neural Networks (SNNs). To address these limitations,
we employ AdamW, a more advanced optimization algorithm that builds upon the
strengths of SGD by incorporating adaptive learning rates and improved weight
decay handling.

The traditional weight update rule for SGD is as follows:

w
(l)
ji = w

(l)
ji − η

∂L

∂w
(l)
ji

(2.6)

where η is the learning rate, and ∂L

∂w
(l)
ji

is the gradient of the loss L with respect

to weight w
(l)
ji at layer l.

In contrast, AdamW improves on this by introducing two key innovations:
adaptive learning rates for each parameter, based on estimates of the first and
second moments of the gradients and decoupled weight decay, helping prevent
overfitting.

The simplified update rule for AdamW is as follows:

w
(l)
ji = w

(l)
ji − η

 αm̂
(l)
jiñ

v̂
(l)
ji + ϵ

+ λw
(l)
ji

 (2.7)

where m̂
(l)
ji and v̂

(l)
ji represent the estimates of the first and second moments

(mean and variance corrected and weighted using the initial parameters β1 and
β2) of the gradient for weight w

(l)
ji , α is another initial parameter, ϵ is a small

constant for numerical stability, and λ is the weight decay factor. For a more
formal definition refer to the paper by Ilya Loshchilov and Frank Hutter [43].

By using AdamW, we ensure that our model converges faster and with greater
stability, while avoiding overfitting by properly regularizing the weights.

38

Background

Dropout to Prevent Overfitting

In addition to weight decay, Dropout is a popular regularization technique that
helps prevent overfitting during the training process [44]. Overfitting occurs when
the model becomes too specialized in fitting the training data, failing to generalize
well to unseen data. Dropout works by randomly deactivating (or "dropping out")
a portion of the neurons during each training iteration, forcing the network to learn
more robust and general features.

During the forward pass of training, a fraction p of the neurons in each layer
are randomly set to zero. This prevents the network from relying too heavily on
any single neuron and encourages the network to distribute its learning across the
available units. Dropout is typically only applied during training; during inference,
all neurons are active, and their outputs are scaled appropriately to account for
the dropout that occurred during training.

This technique has been widely effective in preventing overfitting, particularly
in deep neural networks like our SNN model, which requires robust generalization
due to its complex temporal dynamics.

Conclusion

Spatio-Temporal Backpropagation (STBP), in conjunction with surrogate gradients
and Backpropagation Through Time (BPTT), enables the efficient training of
Spiking Neural Networks (SNNs) for regression tasks. By using the arctangent
function as the surrogate gradient, STBP allows smooth gradient computation,
ensuring that even non-differentiable spikes contribute to learning. With the Mean
Squared Error (MSE) as the loss function, the network can directly optimize its
predictions, which are encoded as membrane potentials in the non-spiking LI
neurons of the final layer. This approach unlocks the power of SNNs for continuous-
value prediction tasks, while addressing the challenges posed by their unique spiking
dynamics.

Furthermore, by employing both AdamW and Dropout, we provide a strong foun-
dation for training our SNN model efficiently while avoiding overfitting, ultimately
improving its performance across different tasks.

2.5.9 Overview of Spike Encoding Methods
A fundamental step in the spiking world is encoding input data into spike trains.
It is critical as SNNs can only work with spikes and the choice of the right method
influences how effectively the network can learn and perform various tasks. This
section provides a formal overview of three principal spike encoding methods—rate
encoding, temporal encoding, and phase encoding—and introduces an adaptive

39

Background

encoding approach where the encoding layer is trained alongside the rest of the
network.

Rate Encoding

Rate encoding, also known as firing rate encoding, is one of the most fundamental
methods used in SNNs due to its simplicity and direct correlation with traditional
artificial neural networks. In this approach, information is represented by the
average firing rate of a neuron over a specified time window [29]. The intensity or
magnitude of the input signal is translated into the number of spikes generated
within this period; higher input values correspond to higher firing rates, while lower
input values result in fewer spikes.

Mathematically, the firing rate can be expressed as:

r = n

T
(2.8)

where denotes the number of spikes emitted in the time window . This method
is advantageous because it is robust to temporal noise and does not require precise
spike timing. It provides a straightforward mechanism to encode continuous input
values into spike trains that the SNN can process. However, rate encoding often
necessitates longer time windows to accurately estimate the firing rate, which can
be a limitation in applications that demand rapid processing or have strict latency
requirements.

Temporal Encoding

Temporal encoding utilizes the precise timing of individual spikes to represent
information [34], offering a more efficient use of spikes compared to rate encoding.
In temporal encoding, the exact times at which spikes occur carry significant
information about the input signal. Two common variations of this method are
time-to-first-spike coding and inter-spike interval coding.

In time-to-first-spike coding, the latency between the onset of a stimulus and
the first spike emitted by a neuron encodes the input value. A shorter latency
indicates a stronger input signal, establishing an inverse relationship between spike
timing and input magnitude. This can be mathematically represented as:

I ∝ 1
tlatency

(2.9)

where is the input value and is the latency to the first spike. Inter-spike interval
coding, on the other hand, conveys information through the intervals between
consecutive spikes, with variations in these intervals reflecting changes in the input
signal.

40

Background

Temporal encoding is advantageous for tasks requiring rapid information trans-
mission and can enhance computational efficiency by reducing the number of spikes
needed. It aligns closely with certain biological neural processes, providing increased
biological plausibility. However, this method demands precise control over spike
timing and can be more susceptible to noise and variability, posing challenges in
implementation and robustness.

Phase Encoding

Phase encoding represents information through the phase relationship between
neuronal spikes and an underlying oscillatory cycle, such as theta or gamma rhythms
commonly observed in neural systems [28]. In this method, spikes are timed relative
to a global oscillation, and the phase angle at which a neuron fires conveys the
input information.

The phase angle at which a spike occurs can be calculated using the expression:

ϕ = 2π

A
t mod Tosc

Tosc

B
(2.10)

where is the spike time, is the period of the oscillation, and mod denotes the
modulo operation. Phase encoding facilitates synchronization across different
neural populations and can efficiently represent complex, high-dimensional data by
leveraging the temporal structure of oscillations.

This method is particularly beneficial in neural systems where oscillatory activity
plays a significant role in information processing and communication. However,
implementing phase encoding in artificial systems can be complex, as it depends on
maintaining consistent and precise oscillatory cycles. Additionally, it may require
sophisticated mechanisms to generate and synchronize these oscillations within the
network.

Trainable Encoding

A recent approach to spike encoding involves integrating the encoding process
directly into the training of the SNN, allowing the network to learn how to convert
continuous input data into spike trains optimally [29]. In this method, raw input
data are fed directly into the SNN, and the first hidden layer serves as encoding
layer, learning how to perform the encoding during the training process.

This encoding layer consists of spiking neurons with trainable parameters, such
as synaptic weights, membrane potentials, and threshold values. As the network
undergoes training, these parameters are adjusted to enable the neurons in the
encoding layer to emit spike trains that represent the input data effectively for the
task at hand. This adaptive encoding process is governed by the same learning
rules and optimization algorithms applied to the rest of the network.

41

Background

The key advantage of this trainable encoding layer is that it allows the encoding
scheme to be tailored specifically to the data distribution and the requirements of
the task, potentially leading to better performance than static, predefined encoding
methods. By learning the encoding in conjunction with the rest of the network
parameters, the SNN can discover novel and efficient ways to represent inputs,
enhancing adaptability and generalization capabilities.

This approach reduces the need for manual preprocessing or the design of
separate encoding mechanisms. It is particularly effective in complex tasks such as
image recognition, speech processing, or any application where the optimal encoding
of input data is not readily apparent. By leveraging the network’s capacity to
learn from data, the encoding layer can adapt to various input modalities and
distributions, making the SNN more robust to changes in the input environment.

Implementation in Our Model

Selecting an appropriate spike encoding method is crucial for the performance
and efficiency of spiking neural networks. Rate encoding offers simplicity and
robustness but may be limited in speed and efficiency. Temporal encoding provides
rapid information transmission and efficient spike usage but requires precise timing
control and may be sensitive to noise. Phase encoding facilitates synchronization
and efficient representation of complex data but relies on consistent oscillatory
mechanisms that can be challenging to implement.

The introduction of a learnable encoding layer represents an interesting advance-
ment in spike encoding methodologies. By incorporating the encoding process into
the network’s training, this approach allows the SNN to actively learn the most effec-
tive way to represent input data as spike trains. This end-to-end learning enhances
the network’s adaptability, performance, and flexibility, potentially surpassing the
capabilities of static encoding schemes and enhancing the long-term stability of the
model. Our hypothesis it that this approach, combined with coherent preprocessing
methods (like SBP) can improve long-term stability of decoders.

2.6 Adaptation Techniques for Temporal Robust-
ness

Neural recordings, such as Electrocorticography (ECoG) data, can vary significantly
across different recording sessions due to various factors, including changes in the
brain’s physiological state, sensor placements, or environmental conditions. These
variations can degrade the performance of machine learning models if not addressed
properly, especially when the goal is to generalize a decoder across multiple sessions
or adapt it over time.

42

Background

In previous sections, we discussed the training methods necessary to develop an
efficient SNN-based regression model, which predicts the 2D kinematics of hand
movements from neural signals. However, to ensure that the model remains effective
over time, it is necessary to introduce adaptation techniques that allow the model
to handle shifts in the data distribution without requiring constant retraining.
This chapter focuses on two primary strategies for adaptation: unsupervised
techniques, which adjust subsequent sessions without needing labeled ground truth,
and supervised techniques, which involve selectively fine-tuning parts of the model
to adapt to temporal changes.

In the following sections, we will present both approaches, starting with the
unsupervised techniques that leverage linear transformations and then moving on
to the supervised fine-tuning of specific model components.

2.6.1 Unsupervised Adaptation Techniques

Unsupervised adaptation techniques are particularly advantageous in situations
where labeled data from new recording sessions is limited. These methods enable
the model to adjust to variations in the input distribution without requiring explicit
information about the output. In our study, the objective was to keep the model
static and to adapt new electrocorticography (ECoG) data to it, without the need
for access to the two-dimensional hand kinematics that we aim to predict.

The literature indicates that the covariance matrix of the motor cortex (M1)
remains relatively stable over extended periods [45], while the behavior of individual
neurons can exhibit considerable variability from session to session. This variability
can arise from several factors, including sensor misplacement and synaptic plasticity,
as discussed in Section 1.3.1.

Linear transformations of data that leverage the stability of the covariance
matrix through time may represent an effective strategy for unsupervised adaptation
across sessions. We address this challenge through the application of two linear
transformation techniques. One technique utilises principal component analysis
(PCA) to extract and align the principal components from different sessions [46],
while the other involves a straightforward online normalisation. Both approaches
are calculated using a little portion of the new session to then align the remaining
data with the original one.

It is important to highlight that our approach leverages PCA-based alignment
in a different context compared to existing literature. Previous studies [46] have
successfully applied this method to sessions containing identical movements per-
formed in the same sequences, making it a supervised approach. In contrast, our
aim is to generalize this alignment technique to accommodate more diverse sessions
with varying movements, thus transitioning to an unsupervised framework.

43

Background

2.6.2 Aligning Neural Data with PCA
This section discusses methodologies for aligning covariance matrices of neural
recordings from different sessions through the application of PCA, emphasizing
the alignment of principal components (PCs) as a more efficient alternative to
Canonical Correlation Analysis (CCA), which would deal with datapoints directly,
instead of just covariance matrices. The aim of this approach is to align a inference
session to a reference session, referred as Xinf and Xref.

Using PCA to Extract Stable Neural Manifolds

The main idea involves utilizing PCA to extract stable neural manifolds from each
recording session. These manifolds are defined as latent spaces that encapsulate the
essential dynamics of neural activity, particularly for decoding movement-related
information [46, 45]. The process begins with the calculation of the covariance
matrix, which reflects how the activity of different neurons co-varies across the
session. From this covariance matrix, the eigenvectors (PCs) are extracted, revealing
the directions of maximum variance in the neural data. Corresponding eigenvalues
indicate how much variance is accounted for by each PC. Then it is possible to
align the sessions through their manifolds expressed as PCs.

Importantly, the approach discussed here does not aim to reduce the dimension-
ality of the data. Although PCA is frequently applied for dimensionality reduction,
the focus is instead on identifying and aligning the PCs that represent the un-
derlying dynamics of neural activity without discarding any information. This
methodology allows for a complete representation of the data while leveraging the
stable characteristics of the neural manifolds for subsequent analysis. In a second
refinement step, as novelty, we include also the eigenvalues in the process, in order
to not only rotate the covariance matrices, but also to rescale them.

Covariance Matrix Decomposition: Leveraging PCA and SVD

Given the symmetry of the covariance matrix derived from neural signals, Principal
Component Analysis (PCA) is used to decompose the neural data matrix X from
each session into principal components and eigenvalues. Specifically, the PCA of
the reference session data Xref produces:

Wref , Λref = PCA(Xref) (2.11)
Where Wref is the matrix of principal components (eigenvectors) and Λref is the

diagonal matrix of eigenvalues, representing the variance captured by each principal
component. This decomposition captures the primary orthonormal directions of
variation in the data, making the data easier to align between sessions. PCA was
used in practice for this decomposition because it is simple, needs only covariance

44

Background

matrix, which can be easily computed online, and directly orders the components
by variance explained, simplifying alignment.

While PCA was our method of choice, the relationship between PCA and
Singular Value Decomposition (SVD) provides a theoretical foundation for the
alignment process. For symmetric matrices like the covariance matrix, SVD yields
the same principal components and singular values. The SVD of Cref , covariance
matrix of Xref would be:

Cref = Uref × Σref × V T
ref (2.12)

Where Uref contains the singular vectors (equivalent to the principal components
in PCA), and Σref is the diagonal matrix of singular values of the covariance
matrix, which are the eigenvalues of the original dataset. Thus, in practice, PCA
directly provides both the principal components W and the singular values of the
original session (through the square root of the eigenvalues), making SVD and
PCA practically interchangeable in this case.

Furthermore, this equivalence will allow us to interpret the singular values
obtained via PCA as the proper scaling factors when aligning sessions, and refine
this alignment approach.

Aligning Sessions through PCA

Following the extraction of the PCs and eigenvalues for each session, attention
turns to aligning these components to facilitate meaningful analysis. Instead of
employing the older CCA approach on single-unit activity (SUA) data from the
motor cortex (M1) as outlined in the literature [45], a new method based on PCA
has been proposed, which enhances computational efficiency, as noted in [46].

The online adaptation process consists of two main steps. First, the PCs of the
new session are determined using a little portion of its data. Subsequently, these
PCs serve as a linear transformation to align the new session’s data with that of
the reference session. This alignment can be mathematically expressed as:

xaligned = Wref × W T
inf × xinf (2.13)

The advantage of utilizing PCA over CCA is highlighted in the literature,
particularly in the context of the proposed alignment technique. PCA matrices are
orthonormal, simplifying the inversion process to a straightforward transposition.
This eliminates the computational complexity associated with decomposing matrices,
a requirement in CCA. As emphasized in the paper by Zanghieri et al. [46].

45

Background

2.6.3 Supervised Adaptation Techniques
In addition to the unsupervised adaptation strategies previously explored, su-
pervised adaptation provides a direct method to handle variations in input data
across sessions. We decided to complement unsupervised adaptations with a more
traditional approach: fine-tuning the pre-trained model using a small set of labeled
data from the new session. Depending on the extent of the data shift, fine-tuning
can target either the entire network or specific layers. By incorporating session-
specific labeled data, the model recalibrates its parameters, enhancing its ability to
generalize to new conditions while retaining knowledge from prior sessions.

This flexibility allows the adaptation process to be tailored according to the ex-
tent of data shifts. The specifics of these supervised fine-tuning methods, including
layer selection and the amount of new labeled data required, will be discussed in
further detail in the methods section.

Fine-Tuning Strategies

Fine-tuning can either involve the entire model or selectively focus on specific layers.
Recalibrating all parameters is beneficial when input data across sessions differs
significantly. By updating the entire model, all layers adapt to reflect the new
data distribution, improving the model’s ability to generalize. This comprehensive
adjustment is suitable for scenarios where session-to-session variations are broad.
In many cases, the variations may be more localized. In our context, this translates
to fine-tune only some components of the model, complementing the unsupervised
adaptations techniques already implemented. This selective fine-tuning not only
enhances efficiency but also aligns with the need for a lightweight, simple, and
resource-efficient solution, especially in embedded hardware environments.

While this theoretical advantage is promising, real-world performance must be
validated not only with software experiments, performed in our study, but also
through hardware implementation and testing to fully understand the impact on
energy and memory efficiency.

Theoretical Considerations for Fine-Tuning the First Layer

In our context, fine-tuning the first layer, which processes SBP-preprocessed neu-
ronal signals, offers a key advantage. This layer directly interacts with the input
signals, making it sensitive to session-specific changes and enabling effective adap-
tation while maintaining the stability of higher-level features.

Our approach has another potential benefit. The model is entirely trained using
STBP, a supervised training method that incorporates techniques from ANNs.
However, future improvements could explore training the first layer—responsible
for encoding spikes—using unsupervised methods. This change could enable

46

Background

unsupervised adaptation to new sessions without relying on labeled data, offering
greater flexibility in the adaptation process. Unfortunately, due to time constraints,
this possibility was not fully explored in this work but remains a promising direction
for future research. By investigating unsupervised training strategies for the
encoding layer, we could enhance adaptability to new sessions while reducing the
need for labeled data.

2.6.4 Conclusion and Future Directions
In this section, we reviewed unsupervised and supervised adaptation techniques
aimed at improving the robustness of Spiking Neural Networks (SNNs) for Brain-
Computer Interface (BCI) applications.

Unsupervised methods as online normalisation and PCA, were explored for
aligning neural data across sessions without the need for labeled data. By aligning
principal components, instead of employing the more computationally intensive
Canonical Correlation Analysis (CCA), PCA offers a more efficient means of com-
pensating for distributional shifts in neural manifolds. However, further evaluation
is required to confirm its effectiveness in contexts where neural signals show sig-
nificant variability. In the literature, PCA-based alignment has typically been
applied to the same specific movements across sessions, ensuring consistency in the
underlying neural dynamics. In our study, however, the movements involved are
similar in nature (e.g., reaching for a target) but not identical to previous sessions.
This difference introduces greater variability in neural activity, making it necessary
to assess whether PCA can still effectively capture and align the underlying mani-
fold in such scenarios. It is possible that a simple alignment technique like online
normalisation calculated over a little portion of the new session may be preferable.

On the supervised side, we examined fine-tuning different layers, focusing on the
theoretical reasons behind the choice of the first hidden layer of our model. This
component is responsible for encoding preprocessed neural signals like Spike Band
Power (SBP) or interprets Threshold Crossing Rate (TCR). While Spike-Time-
Dependent Backpropagation (STBP) enables adaptation, it can be computationally
intensive.

In this thesis, we will further investigate these strategies for BCI systems, to
provide a foundation for improving unsupervides adaptation to dynamic neural
environments.

47

Chapter 3

Related Works

In this chapter, we aim to provide a comprehensive review of the current state of
the art in motor BMIs, in particular 2D hand velocity decoding from M1 cortex. By
doing so we analysed various key research papers, and special emphasis has been
placed on contributions that adopted the same dataset [47] we used. By synthesizing
these insights, we will uncover the trends, limitations, and key innovations that
have shaped the development of motor decoders.

Alongside this review, we will explore the rising potential of Spiking Neural
Networks (SNNs), a neuromorphic architecture inspired by the brain’s natural
spike-based communication. Unlike traditional ANNs, SNNs promise significant
improvements in energy efficiency and power consumption, making them particularly
attractive for BMIs. We will investigate the scale of these improvements and assess
their practical implications for BMI systems.

Lastly, we will delve into the preprocessing techniques used to enhance neural
signal quality and decoding accuracy. A special mention will be given to Entire
Spiking Analysis (ESA), and Spike Band Power (SBP), which have emerged as
powerful methods in the field. This discussion will help clarify the most effective
approaches for optimizing neural signal analysis, offering insights into how these
techniques can further improve the performance of motor BMIs.

3.1 State-of-the-Art Hand Velocity Decoding in
BMIs

Literature highlights several approaches for decoding hand velocity in Brain-Machine
Interfaces (BMIs), ranging from established methods like Kalman Filters to emerging
techniques utilizing spiking neural networks. This overview provides a detailed
exploration of these decoders, emphasizing their strengths, limitations, and potential
for advancing BMI technology.

48

Related Works

3.1.1 Traditional Filters: The Foundation

Kalman Filters (KFs), particularly velocity Kalman filters (vKFs), are widely used
for continuous state decoding in BMIs. They estimate hand velocity from neural
features like spike counts within a defined time bin. However, KFs are linear
decoders, which may not optimally capture the non-linear relationships between
neural activity and hand kinematics. Wiener Filters (WFs), similar to KFs, have
been widely used, but they share the same linear characteristics that might exhibit
suboptimal performance due to the non-linear nature of neural signals.

Unscented Kalman Filters (UKFs) and Wiener Cascade Filters (WCFs) respec-
tively address the linearity limitation of KFs and WFs by incorporating non-linear
transformations and extensions. While they have demonstrated superior perfor-
mance in decoding hand velocity, they still rely on the assumption of stationary
Gaussian noise, which may not always hold true for neural signals, as stated in the
paper by Ahmadi et al. [3].

3.1.2 Deep Learning Decoders: Embracing Complexity

Despite a relevant increase in power, complexity and energy consumption, deep
learning’s capacity to model complex, non-linear relationships has led to its increas-
ing adoption in BMI decoding, replacing lighter but under performing traditional
filters. Long Short Term Memory recurrent neural networks (LSTMs) excel at
capturing temporal dependencies in sequential data, making them suitable for
decoding hand kinematics from time-varying neural signals. Studies have shown
LSTMs outperforming KF-based decoders for hand kinematic decoding from Local
Field Potentials (LFPs) [2], and their superior performance to other recurrent
approaches like GRU when using MUA signals [48, 49]. Moreover, like reported by
Ahmadi et al. [19] LSTM quality can be further enhanced with ad hoc preprocessing
methods, like Bayesian Adaptive Kernel Smoother (BAKS) applied to MUA. Fur-
ther researchs [3] suggest that Quasi Recurrent NNs (QRNNs), coupled with Entire
Spiking Activity (ESA) as input, achieve significantly higher decoding performance
than other decoders, including KFs, UKFs, LSTMs, and other recurrent neural
networks, as shown in Figure 3.1.

This figure and the related study are very important for our work, as ESA shows
similarities to SBP, and coupled with the QRNN represents the state-of-the-art for
prediction quality over our dataset [47].

Finally, another study by Ahmadi et al. from 2019 stated that also Temporal
Convolutional Networks (TCNs), in pair with raw LFP can offer a valuable end-to-
end approach, automatically learning features from raw signals and decoding hand
kinematics [50].

49

Related Works

Figure 3.1: In this figure from the work by Ahmadi et al. [3] we can see a
comparison (CC and RMSE) of 8 different decoders over 26 sessions, spanning on
218 day.

3.1.3 Spiking Neural Networks: High-Performing and Energy-
Efficient

SNNs present a compelling alternative to traditional ANNs for BMI decoding,
particularly in power-constrained implantable devices. While being comparable
to filters for energy consumption, they are theoretically capable of ANN state-of-
the-art performances. Unlike ANNs, SNNs rely on the timing of sparse spikes to
process information, which significantly reduces the number of computations and
the amount of data movement. This event-driven nature makes SNNs inherently
energy-efficient. A key study [27] for our research implemented an SNN decoder for
finger velocity using spatio-temporal backpropagation (STBP). This SNN achieved
accuracy comparable to state-of-the-art ANN decoders, while requiring only 6.8%
of the computational operations and 9.4% of the memory accesses, highlighting
its potential for low-power implantable BMIs. In another study [51], Chen et al.
demonstrated that an SNN implementation on the Loihi neuromorphic chip [52]
consumed 50 times less power than an equivalent ANN method.

50

Related Works

3.2 Long-Term Stability in Brain Signal Decod-
ing

A key challenge in Brain-Machine Interfaces (BMIs) is the long-term stability
of decoding performance, particularly when relying on signals that degrade over
time. Literature discuss several approaches and findings related to achieving stable
decoding performance in BMIs.

3.2.1 From Single-Unit Activity to Spike Band Power
The choice of the method to preprocess raw signals is fundamental. It needs
to retain enough information to ensure high performance and high adaptability
through time, while not overloading memory or energy resources of the decoder.
Ahmadi et al. in different publications [3, 2, 19] highlighted the characteristics and
differences between SUA, MUA, LFPs and ESA.

Single-Unit Activity (SUA) proved to be able to provide short-term high ac-
curacy, while its performance tends to decline over time. In contrast, Multi-Unit
Activity (MUA) offers simpler processing and improved stability, though its decod-
ing accuracy is typically lower than SUA. Local Field Potentials (LFPs), which
reflect the summed synaptic activity, have demonstrated promising long-term sta-
bility, even in the absence of spike activity. Because LFPs can be sampled at lower
rates, they consume less power, making them an appealing option for implantable
brain-machine interfaces (BMIs). However, LFP decoding accuracy is generally
lower compared to SUA.

Finally, Entire Spiking Activity (ESA), a continuous signal that captures popula-
tion spiking activity, has emerged as a promising alternative. It exhibits long-term
stability similar to LFPs and surpasses MUA in performance. As previously
discussed, ESA-based decoders, particularly when combined with deep learning
techniques like QRNNs, can achieve superior decoding accuracy, even outperforming
SUA-based decoders.

An alternative approach by Nason et al. [26] is constituted by Spike Band
Power (SBP), particularly within the 250-3,000 Hz range. It has been successfully
integrated with spike counts in human clinical trials, enhancing decoding perfor-
mance and potentially extending the operational lifespan of implanted arrays. This
method has also been used with SNN [27], giving promising results. Nevertheless
its long-term stability has yet to be proven.

3.2.2 Adaptive Strategies for Long-Term Stability
We need the right decoder architecture to properly leverage the chosen preprocess
method and enhance long-term stability. Traditional decoders, like Kalman filters,

51

Related Works

might not be ideal for non-stationary neural signals, as previously stated, their
performance can degrade as the relationship between neural activity and behavior
changes over time, moreover their have overall lower performances than more
advanced approaches. State-of-the-art decoders rely on complex machine learning
architectures such LSTM and QRNN. Yet, once again, the power and resources
needed to train and perform predictions on those models make them unsuitable for
real world scenarios. Furthermore, the fine tuning process is usually supervised,
slow, data intensive and computationally expensive [7].

Some unsupervised Learning Algorithms, like the recurrent exponential-family
harmonium (rEFH), have shown superior performance compared to Kalman filter-
based approaches. These methods learn from the statistical structure of neural
data without relying on explicit kinematic labels, nor to the hypothesis of gaussian
stationary noise or linearity, potentially offering greater robustness to signal varia-
tions. However, they still fall short in performance when compared to Artificial
Neural Networks (ANNs) [25].

Changing perspective, recent studies on the stable latent dynamics within
neural population activity have shown promising results for long-term decoding
stability [45], while developing strategies to perfom computations online with
minimal energy consumption [46]. By aligning the latent dynamics, researchers
have achieved accurate predictions of behavioral features, even with neuron turnover
in recordings spanning up to 2 years. This suggests that stable behavioral execution
might be rooted in the consistent dynamics of neural populations, rather than in
the activity of individual neurons, which are more prone to variability over time.

While population-based decoding approaches, like MUA, ESA, SBP and LFPs,
have shown improved stability compared to methods relying on SUA, linear transfor-
mations aligning stable latent dynamics could be leveraged to explore unsupervised
adaptations to real world scenarios.

researches on transfer and continual learning for SNNs are also giving promising
results [53, 54], but further studies have to be conducted in this field to address
the behaviour of SNN on fine-tuning and long-term stability, while keeping the big
advantage of energy efficiency.

Our strategy focuses on minimizing fine-tuning efforts in the first hidden layer.
We will create a pipeline that starts with SBP preprocessing, followed by unsuper-
vised online linear transformations to align latent dynamics, and concludes with our
SNN. This approach takes advantage of the first hidden layer’s natural ability to
encode spikes [27], resulting in a lightweight encoder that can be trained alongside
the rest of the network and hopefully easily fine-tuned to adapt to data shifts.

52

Chapter 4

Methods

This chapter presents the methodologies used to decode two-dimensional hand
kinematics from neural signals recorded in the primary motor cortex (M1) within
a brain-computer interface framework. We focus on M1 due to its crucial role in
voluntary motor control and its predictive capabilities for movement intentions,
supported by empirical evidence and practical considerations related to data
availability.

We detail the preprocessing methods applied to the raw neural data—Single-Unit
Activity (SUA), Multi-Unit Activity (MUA), and Spiking Band Power (SBP)—each
selected for its ability to capture neural activity pertinent to decoding motor
intentions. The preprocessing procedures encompass filtering techniques, spike
detection and sorting, and data binning, preparing the neural signals for input into
our Spiking Neural Network (SNN) models. Common steps like data folding for
temporal contextualization are also included.

To address session-to-session variability in neural recordings, we employ unsuper-
vised adaptation techniques using normalization and Principal Component Analysis
(PCA), and supervised fine-tuning, enhancing the stability and performance of the
SNN models across different sessions. Finally, we describe the architecture and
configuration of the SNN model, including its hyperparameters and layer structure.
This model predicts 2D hand velocity from neural inputs, allowing us to explore
performance trade-offs between model complexity and efficiency.

4.1 The choice of M1 over S1
We have made the design choice to focus on neural signals from the primary motor
cortex (M1) for decoding 2D hand kinematics in our brain-computer interface (BCI)
due to M1’s critical role in generating and controlling voluntary movements. M1
is the most reliable source of motor-related information [2], making it ideal for

53

Methods

accurately decoding intended hand movements.
In our design choice, the future implementations in real world scenario will rely

on visual feedback of the user. This closed-loop interaction should harness the
brain’s natural plasticity, allowing it to integrate the BCI into its motor control
schema and thereby enhance the system’s accuracy and intuitiveness.

In summary, our choice to utilize M1 signals and real-time visual feedback within
a closed-loop design aims to ensure robust, real-time control over assistive devices,
facilitating the brain’s adaptation and optimizing the BCI’s long-term performance.

In designing a brain-computer interface (BCI) for decoding 2D hand kinematics,
the decision to focus on signals from the primary motor cortex (M1) rather than
the primary somatosensory cortex (S1) is grounded in several key factors:

M1’s Critical Role in Motor Control M1 is the primary cortical region
responsible for generating and controlling voluntary movements. It encodes detailed
information about hand kinematics, making it an ideal source for decoding motor
intentions [1, 4]. M1’s ability to predict future movements, typically 100-150 ms
ahead, is particularly valuable for real-time BCI applications, allowing for smoother
and more responsive control [55].

Empirical Success of M1-Based Decoding Numerous studies have demon-
strated that decoding hand kinematics from M1 alone is sufficient for effective BCI
control, without the need to incorporate sensory feedback from S1. This success
underscores M1’s reliability and robustness as a source of motor-related signals [2,
55, 7, 56].

Complexity of S1 Integration While S1 provides important sensory feedback,
its role in predicting future movements is less direct than that of M1. S1 primarily
encodes current sensory feedback rather than future kinematics, which can com-
plicate the decoding process. Integrating S1 into the BCI system would require
more sophisticated algorithms to manage the dynamic interplay between motor
commands and sensory information, adding significant complexity to the initial
development phase [55, 56, 4].

Brain Plasticity and Adaptation The brain’s plasticity, particularly within
M1, supports the hypothesis that the brain can adapt to the BCI over time.
Interacting with a BCI induces functional changes in M1, enabling the brain to
refine its control signals for more effective communication with the BCI decoder [4,
56, 2]. This adaptive capacity is crucial for the long-term success and stability of
the BCI, as it allows the brain to incorporate the decoder into its motor schema,
enhancing intuitive control.

54

Methods

4.2 Selected Preprocessing Methods
In our study, three preprocessing methods were chosen to enhance the interpretation
of neural data and ensure comparability with existing studies. These methods
include Single-Unit Activity (SUA), Multi-Unit Activity (MUA), and Spiking Band
Power (SBP). Each method was selected for its unique advantages and its role in
providing a comprehensive view of neural activity.

Single-Unit Activity (SUA): The dataset chosen already preprocessed sessions
extracting SUA. This method, by spike detection and sorting, captures the activity
of isolated neurons and is critical for understanding the firing patterns of individual
neurons. In our dataset (for the 30 sessions that we are interested in) the results
is to have 480 distinct features, originated by sorting each original channel in 5
new sorted units. Each of them is trying to capture the spiking activity of a single
neuron. This method provides detailed insights into neuronal behavior and it is
commonly used by studies focused on neural coding and network dynamics [47].

Multi-Unit Activity (MUA): To complement the SUA data and ensure coher-
ence with related studies, particularly [48], we implemented Multi-Unit Activity
(MUA). MUA represents the combined spiking activity of multiple neurons recorded
on a single electrode. For our analysis, MUA was obtained by binning the SUA
data into the original recording channels. This binning process aggregates the
spiking activity of several neurons, summing them together, providing a broader
view of neural population dynamics. By aligning our methodology with that of
Marta Bono [48], we aim to facilitate a meaningful comparison and validate our
findings within the context of existing research.

Spiking Band Power (SBP): The third preprocessing method employed is
Spiking Band Power (SBP), which measures the power within the high-frequency
band of the neural signal. SBP is a valuable technique for analyzing spiking activity
and offers several advantages in the context of ECoG data, better explained in
the dedicated section 2.4. We are selecting this method due to its potential for
long-term stability, low energy consumption, and reduced complexity.

4.3 Preprocessing Details
In this section, we outline the preprocessing steps essential for transforming raw
Electroencephalography (ECoG) data into usable formats for our model, specifically
focusing on Multi-Unit Activity (MUA), Single-Unit Activity (SUA), and Spike
Band Power (SBP). We will detail the practical methodologies known and employed

55

Methods

in our study, including the parameters and configurations that guide the conversion
process from raw data to these derived signals. Following this, we will discuss
the common preprocessing steps applied uniformly across MUA, SUA, and SBP,
facilitating efficient model training and performance.

4.3.1 MUA and SUA Practical Implementation
The preprocessing pipeline for multi-unit activity (MUA) and single-unit activity
(SUA) signals follows a well-defined sequence. The neural recordings were sampled
at 24.4 kHz and filtered using a causal IIR bandpass filter (fourth-order Butterworth)
with a passband of 500 Hz to 5000 Hz. After filtering, spikes were detected and
sorted.

For both MUA and SUA, spike detection begins by calculating the absolute
value of the filtered neural signal and identifying events that crossed a threshold,
typically set between 3.5 to 4.0 times the signal’s standard deviation. The spike
detection process marks the points in time where these threshold crossings occur,
and the corresponding timestamps are recorded.

The key difference between MUA and SUA preprocessing is the additional spike
sorting step in SUA. After threshold crossings are detected, SUA applies spike
sorting on the waveforms of the spikes detected —consisting of 64 samples (about
2.6 ms) around the timestamps. These waveforms are first aligned to their highest
point (the waveform peak) to ensure consistency in comparison, and then reduced
using PCA. This makes it easier to classify the waveforms into distinct groups.

Once the waveforms have been simplified, they are sorted into different units
using pre-defined templates created by the operator. These templates act as
references, helping to assign each spike to a specific unit based on its waveform
shape. Depending on the recording session, spikes could be sorted into up to two or
four distinct units per channel, allowing for the identification of individual neurons
or sub-populations of neurons. Additionally, an unsorted “noise” or “hash” unit
was maintained for each channel, containing events that crossed the threshold but
did not match any defined unit template. Finally, units with spike rates below 0.5
Hz were discarded to exclude inactive or irrelevant neurons from further analysis.
All this process is well described in the literature [25, 47].

For both MUA and SUA, the final preprocessing step involves binning the
detected spikes into non-overlapping 4-millisecond intervals, as shown in figure
4.1, and count the detected spikes in that interval of time. This time-discrete
representation of neural firing rates can be referred to as Threshold Crossing Rate
(TCR). The "Threshold Crossing" phase refers to the detection of spikes, while the
"Rate" aspect involves counting and summing the spikes within each time window.
In MUA preprocessing, all detected spikes are retained without differentiation
between units, providing a broader view of population-level neural activity. In

56

Methods

Figure 4.1: MUA and SUA binning and summing spikes in 4 milliseconds time
intervals. Figure taken from [48].

contrast, SUA preprocessing benefits from spike sorting, allowing for the isolation
of specific neuronal units.

4.3.2 SBP Practical Implementation

This section describes the implementation of two Spiking Band Power (SBP)
preprocessing variations designed for use with Spiking Neural Networks (SNN),
SBP1000 and SBP2000. They share many common steps, yet they differ primarily
in their band-pass filtering frequency.

To mitigate common noise, including residual power line interference, Common
Average Referencing (CAR) is applied over unipolar referencing already implemented
during the recording phase. This technique enhances the visibility of localized
neural activity by subtracting the average signal across all electrodes from each
individual channel, effectively isolating the relevant neural signals, more details in
2.3.2.

A 2nd order digital Butterworth band-pass filter with finite response is then
employed to isolate the frequency range associated with spiking activity. Specifically,
SBP1000 focuses on the range of 300-1000 Hz, whereas SBP2000 extends this
range to 300-2000 Hz. The broader bandwidth utilized in the second is expected
to enhance decoding performance by capturing higher frequency spiking activity.

Next, the signal magnitude is extracted by calculating the absolute value, which
rectifies the signal and captures the envelope of spiking activity. Following this, the
signal undergoes downsampling (10x) and averaging in non-overlapping windows of
4 milliseconds. This averaging process smooths the signal, reduces its dimensionality,
and aligns the data rate with the 250 Hz sampling rate of the hand position data.

57

Methods

4.3.3 Common Preprocessing Steps
In preparing the neural data for input into our model, we employ a systematic
preprocessing approach that applies uniformly to three primary methodologies:
Multi-Unit Activity (MUA), Single-Unit Activity (SUA), and Spike Band Power
(SBP). After initial computation, all three methods yield time steps of 4 ms,
ensuring consistency across the dataset.

Binning and Summation for Dataset Reduction

After reducing samples to 4 ms time steps, further processing is necessary to
enhance model efficiency and manageability. We achieve this by summing the
samples into non-overlapping windows, typically to 32 ms in duration. The specific
choice of window size is determined by the parameters selected for the model. This
binning process effectively condenses the dataset, allowing for the retention of
critical features while reducing the overall volume of input data. By summing the
data over these larger intervals, we minimize noise and capture the underlying
trends in neural activity, which are essential for effective model learning.

Data Folding for Temporal Contextualization

To enable the model to leverage the temporal dependencies inherent in the data,
we implement data folding. This technique involves grouping time steps into larger,
overlapping windows, where the overlap is defined as the window size minus one.
For instance, with a selected window size of 10 samples, the resulting overlap would
be 9 samples. The length of windows is fixed, and change model to model. A visual
representation of the final dataset is in figure 4.2. This structure is particularly
advantageous for BPTT, allowing the model to learn effectively from sequential
data. By performing error backpropagation through each window, we capture the
dynamic interactions present across time, thereby enhancing the model’s ability to
learn from the temporal context of the data.

4.4 Unsupervised Adaptations with Normaliza-
tion and PCA

This section provides an in-depth explanation of theoretical foundation and method-
ologies for unsupervised adaptation aimed at reducing session-to-session variability
in neural signals recorded from the primary motor cortex (M1). The goal is to
improve the long-term performance of a spiking neural network (SNN) trained to
predict 2D hand velocity from M1 signals. In literature these methods rely on
supervised techniques that require the same repeated movements sequence across

58

Methods

Figure 4.2: Data folding into overlapping windows or "Sequences". Figure is taken
from [48].

sessions, but in this work, we attempt to generalise this alignment strategies for
unsupervised approaches capable of adapting to sessions with varying movement
patterns.

The adaptation techniques include Principal Component Analysis (PCA) and
various forms of normalization, applied to align neural data. We’ll refer to the
reference session as Xref and to the new session, that will be aligned to the reference
one, as Xinf .

4.4.1 Session Alignment Strategies based on Centering and
Normalisation

Session-to-session variability in neural data poses significant challenges for neural
decoding and analysis. To mitigate this variability, we implemented several align-
ment strategies that account for differences in both the rotation and scaling of
neural data across sessions. These strategies involve steps such as centering and
normalization, applied in both dynamic (online) and static (offline) contexts.

By comparing online and offline normalization, as well as centering versus
normalization, we aim to determine the most effective strategy for reducing session-
to-session variability. Online normalization may offer advantages by adapting to
real-time changes in neural activity, while offline normalization provides a consistent
baseline. Similarly, normalization may offer benefits over centering by adjusting
the dynamic range of the data, potentially improving the performance of alignment
techniques sensitive to input variance.

This integrated approach allows us to investigate whether continuous, real-time
adjustments are more effective than static transformations in reducing variability,

59

Methods

and whether adjusting the dynamic range of the data through normalization
provides additional benefits over centering alone.

Centering and Normalization

The first strategy in aligning neural signals across sessions is to standardize the
neural activity within each session. We explored two primary methods: centering
and standard scaling (normalization). Centering involves subtracting the mean
activity of each neuron over time, ensuring that each channel has a zero mean while
maintaining its original variance. This method is expressed as:

Xcentered = X − µX

where µX represents the mean activity of each input channel across the session.
By centering the data, we retain the covariance relationships between neurons, which
is essential for subsequent alignment techniques that rely on these relationships.

Normalization, or standard scaling, extends centering by also scaling each
channel’s variance to one. This process is defined by:

Xnormalized = X − µX

σX

where σX denotes the standard deviation of each channel. Normalization
eliminates differences in the scale of neural activity between channels, which is
critical for alignment techniques such as Principal Component Analysis (PCA) that
behaves differently in the two scenarios.

The choice between centering and normalization depends on the specific re-
quirements of the alignment strategy. If preserving the original variance structure
is important, centering may be preferred. If standardizing the variance across
channels is necessary, normalization provides additional benefits by adjusting the
dynamic range of the data.

Online and Offline Normalisation

To further address session-to-session variability, we compared the impact of online
(dynamic) and offline (static) normalisation. In the online approach, parameters
such as the mean (µ) and standard deviation (σ) are computed dynamically over
the first few minutes of each inference session. These parameters are then applied
during inference:

Xinf = Xinf − µinf

σinf

60

Methods

This method allows for real-time adjustments to the data preprocessing, ac-
commodating any shifts in neural activity that may occur at the start of a new
session.

Offline normalization uses fixed parameters derived from a reference session,
applying them uniformly to subsequent sessions without real-time updates. This
static transformation assumes that the variability between sessions can be accounted
for by a consistent set of normalization parameters.

4.4.2 Session Alignment Strategies based on PCA

We also explore the effect of normalization versus centering. While centering aligns
the mean of each input channel, normalization further standardizes variance. This
allows us to investigate whether adjusting the dynamic range of the data through
normalization provides additional benefits.

PCA-based alignment is then applied to address rotational differences between
sessions. The transformation aligns the directions of maximum variance in the
feature space using the equation:

Xaligned = Wref × W T
inf × Xinf

Incorporating both rotational alignment and scaling adjustments, PCA-based
alignment can be further refined by incorporating singular values (square roots of
eigenvalues) derived from the covariance matrix.

Novel Approach: Incorporating Eigenvalues

We introduce a novel approach that extends the traditional PCA method by
incorporating not only the rotation indicated by the orthonormal basis formed
by the principal components but also the absolute values of the singular values,
which are the square roots of the eigenvalues. The final alignment approach can be
expressed mathematically as:

x′ = WrefΣrefΣ−1
inf W

T
infx

In this formulation, Σ represents the diagonal matrix of singular values. This
inclusion of singular values allows for both alignment and scaling, ensuring that
the variance in the new session is appropriately adjusted relative to the reference
session. By taking this comprehensive approach, we enhance the fidelity of the
alignment process, which may lead to improved performance in subsequent analyses
or predictive modeling tasks.

61

Methods

4.4.3 Principal Component Reordering and Sign Alignment
To refine the alignment further, we reordered the principal components of the
inference session (Winf) to match the reference session (Wref) based on their
similarity, in case, we also reorder the singular values accordingly . The similarity
matrix was computed as:

M = Winf × W T
ref

From this matrix, we selected the largest values row by row, ensuring that each
principal component in Winf was reordered to match the most similar component
in Wref . To prevent duplicates, we excluded previously selected components from
consideration.

After reordering, we addressed potential sign inversions. While two principal
components can point in the same direction, they may have opposite signs. We
corrected these inversions by ensuring that the dot product between each reordered
PC in Winf and its counterpart in Wref was positive, flipping the sign if necessary.
This operation is not needed with singular values, because we are in fact dealing
with their absolute values, and the centering process guarantees that data variance
is symmetrical respect to the sign.

The final reordered and sign-aligned PC matrix for the inference session was:

Word = reordering(Winf , W T
ref)

This process is derived from established literature: [46].

4.5 Supervised Adaptation with Fine-Tuning
In our approach to handling session-to-session variability in spiking neural net-
works (SNNs) trained to predict 2D hand velocity from M1 signals, supervised
adaptation via fine-tuning plays a key role. Specifically, we utilize Spatio-Temporal
Backpropagation (STBP) to adjust the synaptic weights and biases while keeping
the parameters of the leaky integrate-and-fire (LIF) neurons fixed. The primary
focus is on weighting the connections between layers to allow the network to adapt
effectively to the current session. However, all supervised adaptation steps are
preceded by an unsupervised online normalization phase, applied dynamically
during the first few minutes of each new session to account for neural variability
across recordings.

We focus on three key strategies: retraining the model from scratch, extensive
fine-tuning across all layers, and targeted fine-tuning of specific layers, particularly
the first layer. Each of these strategies will be evaluated in terms of their ability to

62

Methods

maintain long-term model performance and stability, with a particular emphasis
on computational efficiency.

By leveraging unsupervised adaptation through online normalization, we aim
to reduce the session-to-session variability in the input signals, enhancing the
effectiveness of all subsequent supervised adaptation techniques. Our ultimate
goal is to demonstrate that fine-tuning the first layer of the model, in conjunction
with online normalization, can yield significant improvements in performance while
minimizing the need for extensive retraining.

Given the nature of SNNs, it is uncertain whether the model retains representa-
tions from past sessions during fine-tuning. While our ongoing research will not
address this issue, it is not critical in our context, as we primarily seek optimal
performance in the current session. The model does not need to retain past behav-
ior, as its primary function is to generalize effectively for the present and future
sessions.

4.5.1 Two Baselines

Retraining the Model from Scratch for Each Session

In this experiment, we explore the performance of retraining the SNN from scratch
for each new session. This approach involves training a fresh model for every
session, ensuring that the model is fully specialized for the current neural data.
While this method may provide the best possible fit for each session, it is highly
resource-intensive and lacks any transfer learning capability from previous sessions.

This experiment serves as a baseline, allowing us to measure the upper limits of
performance without the use of any prior session information or fine-tuning strate-
gies. The results will provide a benchmark to compare against other adaptation
methods.

Extensive Fine-Tuning Across the Entire Model

In the second experimental condition, we apply extensive fine-tuning across all
layers of the SNN model. Here, the model is first initialized using weights learned
from previous sessions, and fine-tuning is applied to all layers using the new session
data. By fine-tuning the entire model, we aim to adapt to the session-specific
data while preserving some of the representations learned in prior sessions. This
experiment allows us to test how knowledge embedded from past sessions increase
or shows comparable performances

63

Methods

4.5.2 Fine-Tuning single layers
After the initial baseline evaluation, we fine-tune the model using only a small
portion of the new session data. This allows us to investigate the model’s ability
to generalize with minimal training data. We will experiment with fine-tuning
different layers of the network to understand the impact of adjusting specific parts
of the model.

The focus of this experiment is to explore the efficiency of fine-tuning when only
the first layer or select layers are updated. By evaluating the model’s performance
after fine-tuning only a fraction of the layers, we can assess which layers are most
important for adapting to new session data and determine whether lower layers,
such as the first layer responsible for initial neural feature extraction, are sufficient
to handle the majority of the session-to-session variability.

4.5.3 Efficiency of First-Layer Fine-Tuning
Our primary hypothesis is that fine-tuning the first layer of the model, after
applying online normalization, will provide significant performance improvements
with minimal computational cost. The first layer encodes the SBP input data
and extracts fundamental neural features, making it a critical component of the
network. By fine-tuning this layer, we hypothesize that the model can effectively
adapt to session-specific differences while preserving higher-level representations.

Through systematic evaluation, we will determine whether first-layer fine-tuning
is sufficient to achieve high performance on new sessions. This approach has the
potential to significantly reduce the computational resources required for adapting
the model, making it a more practical solution for real-time neural decoding
applications.

4.6 Model Architecture and Configuration
This section provides an overview of the hyperparameters, configuration and
architecture of the model we evaluated. The model is regression-based, designed to
predict 2D velocity in Cartesian coordinates, specifically the left-hand kinematics
of a Non-Human Primate (NHP). Consequently, the output layer of the model
consists of two Leaky Integrate (LI) neurons, while the preceding layers consist of
varying numbers of Leaky Integrate-and-Fire (LIF) neurons. These layers are fully
connected and incorporate both weight and bias matrices. The model is trained
using Spatio-Temporal Back Propagation (STBP), a strategy inspired by BPTT,
borrowed from traditional Recurrent Neural Networks (RNNs). Further details
are provided in Chapter 2. Moreover the model is enhanced with Dropout and
AdamW.

64

Methods

A paper by Liao et al. [27] helped us in fixing correct hyperparameters for our
task, as it is addressing a similar issue. Its purpose was to predict finger velocity on
one axis for two distinct groups of fingers, of the right arm of a non human primate
(NHP) using SNN. While the objective is different, as we wanted to predict 2D
kinematics of the left hand, it showed enough similarities.

Hyperparameters are summarized in Table 4.1. Below is a brief explanation of

Hyperparameters
training loss MSE

reset mechanism by subtraction
surrogate gradient y = arctan(x)

output neurons 2
input neurons 96 (MUA and SBP) or 480 (SUA)

batch size 256
epochs 24

learning rate (η) 2e-3
dropout 0.3

windows size (timesteps) 10
window overlap (timesteps) 9

warmup (timesteps) 2
timestep (ms) 32

Vthreshold 0.4
τhidden 0.6
τout 0.6

hidden layers 3
neurons per hidden layer 256, 256, 256

use biases True
offset (ms) 0

Table 4.1: Hyperparameters of our model.

key hyperparameters:

• Batch size: The number of samples into which the training dataset is divided.
This determines how many samples are processed together in a single forward
and backward pass through the network, allowing for the calculation of loss
and the optimization of weights and biases.

• Epochs: The number of times the entire dataset is passed through the network
during training, providing multiple opportunities for the model to learn from
the data.

65

Methods

• Window size: The number of timesteps considered when folding the data
for BPTT. For more details on this process, refer to Section 4.3.3.

• Overlap: The number of timesteps shared between adjacent windows, ensuring
continuity between successive data segments.

• Warmup: The number of initial timesteps in a window that are excluded when
calculating the loss, allowing the model to stabilize before making predictions.

• Membrane potential threshold (Vth): The value at which a neuron emits a
spike. Once this threshold is reached, the neuron resets its membrane potential
by subtracting the spike value.

• Membrane Decay (τhidden, τout): These constants control the rate at which
the membrane potential decays in the absence of input. τhidden applies to
hidden layers made of LIF neurons, while τout is used for the output layer
composed of LI neurons.

• Biases: The inclusion of biases in layer connections is optional and can be
toggled based on the network’s requirements.

• Offset: A parameter introduced to account for any potential lag between the
input signal and the recorded velocities, hypothesizing that this lag may be
due to delays in the experimental data.

66

Chapter 5

Results

In this section, we describe the dataset adopted, followed by each experiment.
They are presented in a logical sequence to outline our research process. We began
by testing the proposed model in a single-session scenario, assessing regression
performance and comparing the effects of different preprocessing methods: SUA,
MUA, SBP1000, and SBP2000. Next, we evaluated the multi-session performance
of selected methods in both online and offline scenarios, using various supervised
and unsupervised adaptation approaches. This leveraged the natural ability of
SNNs to encode continuous signals (SBP) into spikes and learn this process during
training, thanks to the first hidden layer, called Trainable Encoding Layer (TEL).

These experiments aim to enhance both computational efficiency and usability,
making our solution more practical for real-world applications. Our goal was to
address data shifts caused by both natural variations and tool-induced changes,
ensuring system stability. At the same time, we prioritized minimizing user
inconvenience—avoiding long retraining sessions and excessive power consumption.
Our results demonstrate that with minimal retraining effort, performance can be
restored and even improved.

5.1 Dataset
The dataset for this study was obtained using two adult male rhesus macaque
monkeys (Macaca mulatta), named Indy and Loco, housed in the laboratory of Dr.
Sabes [47]. At the time of data collection, Indy was 11 years old with a weight of
12 kg, and Loco was 9 years old weighing 14.5 kg.

We selected this dataset to ensure alignment with previous research conducted by
Marta Bono [48], which explored transfer learning using the same dataset as part of
the same European project. Additionally, this dataset is open-source and well-suited
to our regression task. The dataset, composed of continuous reaching movements

67

Results

toward visual targets in a virtual reality environment, features a relatively simple
task, making it ideal for evaluating the performance of our decoder. The simplicity
of the reaching task offers a controlled environment for testing, while serving as a
foundational step toward future implementation in real-world scenarios. Lastly, the
availability of extensive literature on this dataset further supports its suitability
for our study.

In Figure 5.1 we can see the whole process, from acquisition to decoding of hand
kinematics.

Figure 5.1: Complete pipeline from acquisition to decoding of 2D hand kinematics
of Indy (NHP).

5.1.1 Data Acquisition and Preprocessing (SUA)
Each monkey underwent chronic implantation of two 96-channel silicon microelec-
trode arrays (Blackrock Microsystems, Salt Lake City, UT) into their sensorimotor
cortex. For Indy, the implants were positioned in the right hemisphere, while for
Loco, they were placed in the left hemisphere. The arrays targeted specific regions:
one was implanted in the primary motor cortex (M1, Brodmann area 4) with 1.0
mm shanks coated in platinum (nominal impedance of 400kΩ), and the other in the
primary somatosensory cortex (S1, Brodmann area 1) with 1.5 mm shanks coated
in sputtered iridium oxide (nominal impedance of 50kΩ). The S1 arrays were
designed differently because they were used for electrical stimulation in separate
experiments. Both arrays were aimed at areas representing the shoulder and upper
arm.

Neural signals were recorded using an RZ2 BioAmp Processor paired with a PZ2
Preamplifier (Tucker-Davis Technologies, Alachua, FL). The data were sampled

68

Results

at a rate of 24.4 kHz and filtered using a causal Infinite Impulse Response (IIR)
bandpass filter (fourth-order Butterworth filter with a passband of 500 Hz to 5,000
Hz). Spike detection and sorting were conducted online using custom software
written in C++. The process involved calculating the absolute value of the filtered
neural signals and identifying events that crossed a threshold—typically set at 3.5 to
4.0 times the standard deviation. Extracted waveforms (64 samples, approximately
2.6 ms) were aligned to their peak values. Principal Component Analysis (PCA)
was then employed to reduce dimensionality, and waveforms were assigned to single
units based on operator-defined templates. This method has been used to obtain
SUA recordings.

In some recording sessions, up to two units per channel were assigned, while in
others, up to four units were designated. An unsorted “noise” or “hash” unit was
maintained for each channel to include events that crossed the threshold but did
not match any templates. This process resulted in 480units for sessions selected of
Indy.

5.1.2 Session Selection and Preprocessing (MUA and SBP)

For this study, we focused on Indy and selected 26 sessions for analysis. These
sessions were drawn from an initial set of 30 that, in addition to SUA, contained also
raw electrocorticography (ECoG) data, which was crucial for extracting Spiking
Band Power (SBP), a novel preprocessing method developed to analyze neural
signals without relying on traditional spike sorting and detection. The already
extracted single-unit activity (SUA) signals were retained, while multi-unit activity
(MUA) signals were obtained by aggregating the 480 resulting SUA units back into
96 channels.

We concentrated on Indy and these 30 sessions because raw data was only
available for this subset. However, four sessions were excluded from the analysis
due to specific considerations:

• Session ‘indy_20160630_01’: This session did not employ unipolar referencing
during data acquisition, which is critical for eliminating power line noise. Attempt-
ing to apply unipolar referencing post hoc would not yield results consistent with
the other sessions, potentially compromising data integrity.

• Sessions ‘indy_20161013_03’, ‘indy_20161206_02’, ‘indy_20170124_01’:
These sessions were characterized by excessive noise levels, rendering the models
incapable of performing reliable inference (CC ≈ 0). The performance drop may be
due to issues with the chronic implantation hardware, increased noise or procedural
inconsistencies between sessions. Unfortunately, we do not have visibility of the
specific procedures performed to record these sessions and the possible consequences.
Exclude those was the simplest solution.

69

Results

By excluding these four sessions, we ensured that the dataset comprised high-
quality recordings suitable for our analysis. The final selection of 26 sessions allowed
for consistent application of the SBP method across all data.

Before applying the decoding algorithms, several further preprocessing steps
were undertaken to ensure data quality and consistency. Discrete derivatives where
applied to the kinematic data to downsample and align them with the neural data
binning, facilitating synchronized analysis. SBP, MUA and SUA where extracted
from the selected sessions and then formatted into the final dataset, as specified in
Section 4.2. Following parameters specified in Table 4.1.

5.1.3 Behavioral Task

The monkeys were trained to perform continuous reaching movements toward
visual targets within a virtual reality environment. Indy used his left arm, while
Loco used his right arm. Visual cues were projected onto a mirror, creating the
illusion that they appeared in the plane of the reaching hand. An opaque barrier
prevented the monkeys from seeing their actual arms, enhancing the reliance on
proprioceptive feedback.

The workspace was defined in the horizontal (transverse) plane just below
shoulder level. Coordinate axes were established such that the intersection of the
transverse and lateral planes defined the x-axis (with positive values to the right of
the subject), and the intersection of the transverse and sagittal planes defined the
y-axis (with positive values rostral to the subject).

Targets were presented either in an 8-by-8 square grid or an 8-by-17 rectangular
grid for Indy, with an inter-target spacing of 15 mm. Each target was a circle
with a visual radius of 5 mm. To successfully acquire a target, the monkey had to
position the fingertip within a square acceptance zone measuring 7.5 mm by 7.5
mm, centered on the target, and maintain that position for 450 ms. The acceptance
zones of adjacent targets were non-overlapping but directly adjacent to each other.

After a target was acquired, a new target was immediately presented without any
inter-trial interval, although a 200 ms “lockout interval” followed target acquisition
during which no new target could be acquired. In most sessions, targets were
selected randomly with replacement from the set of possible locations, meaning
the same target could potentially be presented consecutively. In some sessions, the
current target was excluded from immediate reselection to prevent repetition.

Fingertip position was monitored using a six-axis electromagnetic position sensor
(Polhemus Liberty, Colchester, VT) operating at 250 Hz. The recorded position
data were non-causally low-pass filtered using a fourth-order Butterworth filter
with a cutoff frequency of 10 Hz to minimize sensor noise. Velocity were calculated
by discretely differentiating the x and y-axis position data.

70

Results

5.2 Metrics
For all the experiments, two principal metrics are used, to evaluate the quality of
predictions respect to the ground truth: Pearson Correlation Coefficient (CC) and
Root Mean Square Error (RMSE).

5.2.1 Pearson Correlation Coefficient (CC)
The Pearson correlation coefficient is a statistical measure that quantifies the
strength and direction of the linear relationship between two continuous variables.
It is commonly used in data analysis to determine how closely two variables are
related. The coefficient, typically denoted by r, ranges from -1 (perfect negative
linear correlation) to 1 (perfect positive linear correlation). 0 means that there is
no correlation.

Pearson correlation assumes the data is normally distributed and measures only
linear associations. It is widely used in fields like statistics, machine learning, and
finance to evaluate relationships between variables.

The formula for the Pearson correlation coefficient is:

CC =
qn

i=1(xi − x̄)(yi − ȳ)ñqn
i=1(xi − x̄)2

ñqn
i=1(yi − ȳ)2

Where: - xi and yi are predicted and true velocities, at instant i. - x̄ and ȳ are
the means of the x and y data points, respectively. - n is the number of time steps.

This measures the strength and direction of the linear relationship between two
variables, in our case xi are predictions, and yi the real velocities

5.2.2 Root Mean Square Error (RMSE)
Root Mean Square Error (RMSE) is a commonly used metric to measure the
accuracy of a model’s predictions, particularly in regression tasks. It calculates
the average magnitude of the errors between predicted values and actual values,
giving higher weight to larger errors due to the squaring of differences. RMSE is
particularly useful when you want to assess how well a model fits the data, as it
indicates how close the predicted values are to the actual ones.

The RMSE is always non-negative, and a lower RMSE value indicates a better
fit of the model. Since RMSE has the same units as the dependent variable, it
provides an intuitive sense of the prediction error.

The RMSE is calculated using the formula:

RMSE =
öõõô 1

n

nØ
i=1

(yi − xi)2

71

Results

Where n is the number of time steps, yi represents the actual values, and xi

represents the predicted values.

5.2.3 Why We Used Both RMSE and CC
In evaluating the performance of a predictive model, it is crucial to assess both
the accuracy of the predictions and the strength of the relationship between the
predicted and actual values. To achieve this, we use two complementary metrics:
the Root Mean Square Error (RMSE) and the Pearson correlation coefficient.

RMSE provides a direct measure of how far the model’s predictions deviate from
the actual values. This metric focuses on the magnitude of errors and highlights
large discrepancies by penalizing them more heavily. A lower RMSE indicates better
prediction accuracy, with zero representing a perfect match between predictions
and actual values. However, RMSE alone captures only the overall error.

On the other hand, CC measures the strength and direction of the linear
relationship between the predicted and actual values. While RMSE focuses on
prediction error, Pearson correlation evaluates how well the predicted and actual
values follow the same trend. By using both RMSE and the Pearson correlation
coefficient, we gain a more comprehensive understanding of model performance.

A Dummy Example

In Figure 5.2 we can see a simple example to show how the two metrics behave in
two different scenarios. In the first case we want to confront the blue signal -the
original one- with the orange one, identical but for a single point, shifted by 12
units. In this case RMSE = 1.2 and CC = 0.690.

In the second case we want to confront the blue signal with the green one, which
retains the same relationship between points, but are all shifted by 8 units. In this
case RMSE = 8.0 and CC ≈ 1.

In the first case CC is significantly smaller, because there is an inconsistency
when dealing with the relationship between points. In the second case CC is almost
1, indicating a perfect correlation, even if all point are far from the real values.
That’s because the trend is perfectly preserved. If we focus on RMSE we can
observe the exact opposite: just one point is a very little change for the overall
signal, but if all points shift, that’s considerably more.

5.3 Single-Session Evaluation of SNN across MUA,
SUA and SBP

We first tested our SNN over the 4 preprocessing methods (MUA, SUA, SBP1000,
SBP2000). To build our model we used Python library SnnTorch presented here

72

Results

Figure 5.2: Example plot of three signals for CC and RMSE comparison.

[34]. More details are present in the models section of the thesis 4.6.
We analysed the performances of our model according to our metrics (CC and

RMSE) across 4 different preprocessing methods on a single session: indy_20160622_01.
We chose this one because it is the first to have both processed (SUA) and raw
data available (needed to extract SBP). Later, we selected the most promising
preprocessing method, and we investigated the behaviour of the net: the spiking
dynamics, the loss evolution on training, and the evolution of CC and RMSE on
the test set after each training epoch.

As general preprocessing steps (after the extraction of MUA, SUA, SBP1000
and SBP2000) we first downsampled the resulting dataset to 32 ms timesteps (by
summing together original samples, distant 4ms each), then folded it in windows
of 10 timesteps (320 ms per window), with 9 overlapping samples. This is better
described in Section 4.3. Later, we divide the resulting dataset in two subsets:
Training Set (TRS) which is the 80% of the original dataset, and Test Set (TSS)
which is the remaining 20%. Finally, we center and standardize (z-score) the TRS
and then TSS, using std and mean obtained by TRS.

5.3.1 Comparison between preprocessing methods
At first, we compared CC and RMSE metrics over the 4 preprocessing methods.
To do so, we preprocessed the session according to the 4 methods, then we followed
the steps described above. Afterwards, we could proceed training on TRS and

73

Results

evaluating on TSS the model for all the 4 methods, and to ensure a more stable
result, we repeat the experiment for 10 times over each method (total of 40 times).

Figure 5.3: Single session comparison between MUA, SUA, SBP1000 and
SBP2000.

From the results obtained and shown in Figure 5.3, we concluded that the
most promising method is SBP2000, only SUA achieved comparable results. We
eventually chose SBP because SUA theoretically needs more resources both during
preprocessing and training, having 480 channels as input of the model, which
translates in 480 input neurons, instead of just 96. A strategy could be to compute a
dimensionality reduction, but that would end up in rising both algorithm complexity
and resources demand, while potentially decrease prediction quality. For all of
these reasons, from now on we decided to continue the single-session evaluation on
SBP2000.

To conclude this comparison, in Figure 5.4 we can see the evolution of the
prediction quality obtained during training for the different preprocessing methods.
The model in this case was trained for 24 epochs on TRS, and at the end of
each epoch we measured the accuracy reached by evaluating it on TSS. This
experiment was performed one time for each preprocessing method. We can notice
the superiority of SBP2000 and how, with all the methods, the model reached
stability, and did not overfit. This was further proved by confronting the curve of
the loss on both training and test set over the epochs.

74

Results

Figure 5.4: Evolution of CC and RMSE over epochs while evaluating on TSS
and training on TRS.

5.3.2 Spiking activity analysis
To show the Spiking activity of our model, we tried with all the different prepro-
cessing methods, and all the results where quite similar, so we decided to show
the graphs for the model trained with SBP2000. The spikes are the result of the
inference on TRS (while there are no significant difference with TSS). Figure 5.5
shows how many neurons (y-axis) fire with a given frequency (x-axis).

One important aspect when training a Spiking Neural Network (SNN) is eval-
uating dead neurons and reasons why. A neuron is considered "dead" if, during
inference, it never fires. This implies that the weights and biases have been cali-
brated in such a way that the neuron remains silent all the time, which ultimately
leads to a potential loss of information capability, and a waste of computational
resources. Furthermore, once a neuron becomes inactive during training, it is often
very difficult to reactivate it. This is because our training process does not update
the weights and biases of dead neurons, as they no longer emit spikes and are
consequently excluded from the backpropagation process.

However, a model able to retain good prediction quality and characterised by

75

Results

Figure 5.5: (a) First hidden layer. (b) Second hidden layer. (c) Third. (d) Output
non spiking layer (2 LI-Neurons).

low spiking frequency combined with a moderate amount of silent neurons can also
be a very desirable outcome. As a matter of fact, this could also mean less memory
movements and more sparse calculations, ultimately increasing the efficiency of the
model [27, 33, 34]. This last was our case, confirmed by scores of both CC and
RMSE.

Furthermore, we want to spend few words about the first hidden layer perfor-
mance. It showed almost no dead neurons, exhibiting strong neuronal activity.
We chose to display the graph for SBP2000 also because of this particular layer,
as it is responsible for encoding the continuous signals of the 96 channels into
discrete spikes, we will later call it Encoding Trainable Layer (TEL) for this rea-
son. This encoding method is quite a novelty, as it differs from classical encoding
techniques. In the following experiments we tried to better understand and explain
the implications.

Finally, we can confirm that the final layer behaved exactly as expected: both
of its neurons never fired. This is intentional, as they are LI neurons, designed to
accumulate membrane potential without resetting, which is used to predict velocity.

76

Results

5.3.3 Training Loss analysis
Loss during training represents the model’s performance, quantifying how far its
predictions are from the actual target values. As training progresses, the goal is to
minimize the loss, indicating that the model is learning and improving.

Typically, in well-designed models, loss decreases over time, showing that the
network is adjusting its parameters (weights and biases) to better capture the un-
derlying patterns in the data. A sharp decline in loss early in training suggests rapid
learning, while a plateau or slow decline may indicate that the model is approaching
its optimal state or encountering challenges like overfitting or underfitting.

Monitoring the loss trend is crucial to ensure that the model is learning effectively.
If the loss doesn’t decrease or even increases, it may signal issues like improper
learning rates, vanishing gradients, or poor model architecture.

Figure 5.6: Training loss mean and std for each session (above). Real training
loss batch by batch (below). Loss is MSE, data is preprocessed with SBP.

In our case, the training loss is decreasing as expected with each epoch; however,
the standard deviation is higher than expected. We can derive an intuitive explana-
tion for this phenomenon: in Figure 5.6 (below) we can see the loss calculated batch
by batch, where the vertical lines highlight the epochs. It is evident a repetitive

77

Results

pattern, where the first half of each epoch exhibits notably low peaks. To better
understand the cause, let’s focus on the last epoch.

In Figure 5.6 we can see the average trend of the loss (above) during training,
and the real loss (below), calculated batch per batch. The vertical lines are there
to highlight the start and end of each epoch, showing a repetitive pattern.

In Figure 5.7, we compare velocity with loss, and it becomes evident that speed
significantly influences the loss value. The plot shows the clear correlation between
a zero-speed sample and a very low loss. For clarity, we plotted only one direction,
but the same happened with both.

The current session (indy_20160622_01) contains many static samples in the
first half, where the speed is zero for both directions of the 2D velocity of the
fingers. This peculiarity however is not problematic, as the model successfully
trains and makes accurate predictions regardless.

Figure 5.7: Comparison between training loss and velocity of the finger.

5.4 Unsupervised adaptations: Online Normali-
sation and PCA Alignment

From this session on, we present the results of experiments conducted on MUA and
SBP (SBP2000) neural data over 26 sessions, spanning 223 days. The reference
session (RS), from which the model was trained, is the oldest available session,

78

Results

CC RMSE
MUA 0.8656 ± 0.0037 29.0276 ± 0.3305
SUA 0.8743 ± 0.0043 28.4999 ± 0.8352
SBP1000 0.8502 ± 0.0040 30.4996 ± 0.7746
SBP2000 0.8739 ± 0.0036 28.0236 ± 0.6778

Table 5.1: CC and RMSE for MUA, SUA, SBP1000 and SBP2000 (mean and
std).

indy_20160622_01, then the behaviour of decoder and preprocessing methods was
tested on the following 25 inference sessions (ISs). The primary goal was to assess
how different data alignment strategies could affect the long-term performance of
our spiking neural network.

In the following experiments, we explored unsupervised methods to align the 25
ISs to the RS. All parameters calculated online (during inference) were extracted
from the first 2 minutes of each session, while the performance evaluation metrics
(CC and RMSE) were computed on the remaining data. For offline counterexamples,
the parameters are fixed, calculated from the first 80% of the RS and the model
was always trained on 80% of the RS too.

For simplicity, from now on we will consider normalisation (which include
centering by mean subtraction) as a linear transformation, even if translations can
be classified as either linear or affine depending on the theoretical framework. We
will refer to reference session and inference sessions data also as Xref and Xinf, while
the mean and standard deviation will be µref and σref if calculated offline on the
first 80% of RS, and µinf and σinf if calculated on the first 2 minutes of the current
inference session.

During the following dissertation, we decided to focus only on MUA and SBP2000
(simply called SBP hereafter). SUA was excluded from this analysis for practical
reasons: the complexity of extracting SUA from raw data (spike detection and
sorting), coupled with the changes required to the model’s structure (480 input
neurons instead of 96), would result in a significant loss of computational efficiency
while making the preprocessing step unnecessary more complex. Moreover, from
results of single session analysis, it seems to not obtain better results than SBP2000.

5.4.1 Experiment 0: No Alignment
In this preliminary experiment, after training the model on RS, we evaluated its
performances on both MUA and SBP data across ISs without applying any prior
adaptation, nor supervised or unsupervised. This setup allowed us to observe the
model’s ability to generalize across sessions when no adjustments were made to
account for session-to-session variability.

79

Results

This experiment captured a very important difference between MUA and SBP,
and showed how the model behaves when dealing with continuous SBP data,
highlighting the necessity for applying further transformations.

Figure 5.8, shows us the scatter plots and the linear regression lines for CC and
RMSE across the 25 ISs. MUA data, extracted through threshold crossing technique

—and so intrinsically scaled and centered— started from a decent CC ≈ 0.65, and
then linearly declined through time, showing a consistent loss in performance, that
we tried to compensate in the next experiments. On the other hand, the behaviour
of our model fed with SBP was way more critical: it was not able to generalise
at all on ISs. Its regression line had no decrease or increase trend, while steadily
showing a CC ≈ 0.

The Role of The First Hidden Layer

We highlighted this critical result to discuss the role of the first hidden layer in
interacting with continuous input data, like SBP, and to explain why we refer to it
as a trainable encoding layer (TEL). As a matter of fact, we designed our decoder
pipeline to extract the SBP data with minimal operations from raw neural signals,
without explicitly encoding spikes, contrary to methods like MUA or SUA. This
architectural choice left the responsibility of encoding spikes —and learning how
to do it— to our model, in particular to the first hidden layer, like explained in
Section 2.5.9. This came with many advantages, as we will explain later in this
section.

Without centering nor scaling input channels of ISs, TEL failed its encoding duty,
leading to a model that could not predict velocity at all. This was evident from
the correlation coefficient (CC), which remained close to zero for all the sessions.
Our supposition for this outcome was that our method would have required data
to be normalised, before being used in inference. That’s because TEL may need
a consistently similar dynamic range to allow its 256 LIF-neurons to decay and
rise above the spiking threshold Vth and translate continuous inputs into spikes
in a coherent way. To better explain this concept, in Figure 5.9 we plotted the
different response of a LIF neuron when the same signal, a simple sine function, is
normalised or not.

5.4.2 Experiment 1: Impact of Online Vs. Offline Normali-
sation

In this experiment our aim was to investigates the behaviour of the decoder when
different kind of input signals, MUA and SBP, were normalised before being fed to
the net. Both online and offline normalisation has been tested on the 25 ISs, While
the model was first trained on the 80% of the RS, preprocessed and normalised

80

Results

Figure 5.8: Linear regression analysis for SBP and MUA without alignment (CC
and RMSE).

accordingly. In Figure 5.10 we plotted a first summary of the 4 tested combinations:
offline and online normalised MUA and SBP, for both CC and RMSE. We decided
to plot scatterplots and linear regression lines along with their respective confidence
intervals (95%). This approach allowed us to still display individual sessions while
focusing on overall trends. This is particularly important in our study, as we are
interested in understanding the long-term behavior of the network.

When working with µref and σref, the primary goal was to assess how the
performance metrics evolved compared to the previous experiment. We observed a
marked change in the model’s behavior using SBP. The RMSE trend is not very
informative, as its mean was too large to provide meaningful insights. However,
the correlation coefficient (CC) consistently remained well above zero, indicating
that despite its limitations offline normalization enabled TEL to better encode
input signals. Meanwhile, the metrics related to MUA only showed marginal
improvements.

After the offline setup, in which centering and scaling can be considered standard
preprocessing steps, as they are static for all sessions, and always referring to the

81

Results

Figure 5.9: The different LIF neuron response to a signal with and without
normalisation.

RS, we tested online normalisation, using µinf and σinf calculate on the first 2
minutes of each IS. The primary objective was to quantify the improvement given
by this first and very simple unsupervised adaptation technique.

This is the simple equation used during online normalisation (ON):

Xinf, norm = Xinf − µinf

σinf
(5.1)

We observed a significant improvement in prediction quality for both MUA and
SBP, marked by a substantial increase in CC and a clear reduction in RMSE, in
both the overall trends and individual sessions. To examine the average metric
scores accross the 25 ISs, we can refer to the values presented in Tables 5.3 and 5.4.
SBP achieved the best performance, reflected by a CC of approximately 0.75 and a
RMSE of about 55.25, with a CC increase of approximately 121% and a RMSE
reduction of around 30%. Nevertheless, the groundbreaking aspect of this results
lies in the trend of the CC for SBP inference on ISs.

To assess the trend of CC for SBP, we conducted a linear regression analysis.
Despite acknowledging the limited statistical significance of our method, primarily

82

Results

Figure 5.10: Linear regression analysis for SBP and MUA with online or offline
normalisation (CC and RMSE).

due to a very low R2 value when analyzing session data over time—likely affected
by various uncontrollable factors such as noise and other sources of variability not
accounted for by linear regression—we chose to present the slope and p-value due
to the simplicity of the approach. This allows us to explore, though not definitively
prove, potential trends over time.

In this case, the slope of CC remained consistently close to zero, suggesting no
significant decline in prediction quality over time, while the p-value was around 0.8,
well above the conventional 0.05 threshold. This supports the null hypothesis for
the slope parameter, confirming the stability of the SBP model’s performance. In
contrast, the CC results for the MUA data revealed that, despite the substantial
performance boost thanks to ON, MUA performance exhibited a noticeable decline
over time. This was confirmed by the p-value (approximately 0.005) of its negative
slope, that would lead to the rejection of the null hypothesis for the parameter.

83

Results

Statistical Comparison between MUA and SBP

To better capture differences between MUA and SBP when applying ON, we
plotted again in Figure 5.11 the two preprocessing method trends, along with the
distributions of sessions over performances measured with both CC and RMSE. It
shows even more clearly the consistent superiority of SBP respecting to MUA in
terms of both mean performances and stability over time.

Additionally, we chose to provide a more statistical validation of the above
statement, by testing the null hypothesis: MUA ≈ SBP. We employed both the
Wilcoxon signed-rank test and the paired t-test to ensure a comprehensive analysis
of the statistical significance of the differences. The Wilcoxon test, being non-
parametric, does not assume normal distribution, making it suitable for data that
may not meet this assumption. In contrast, the paired t-test, which assumes
normality, is more powerful when this condition holds. By using both tests,
we increased the robustness of our findings, ensuring valid results regardless of
the data distribution. This translated into testing µMUA = µSBP for t-test, and
MMUA = MSBP (Median) for Wilcoxon test. For this purpose, Table 5.2 offers
further insights.

The p-values obtained were all well below the p-value of 0.05 (statistical sig-
nificance) for both CC and RMSE. These results confirmed that the difference
between performances of SBP and MUA is statistically significant.

Test MUA Vs SBP (P-value)
Wilcoxon test for CC 0.0002

t-test for CC 0.0001
Wilcoxon test for RMSE 0.0023

t-test for RMSE 0.0016

Table 5.2: Statistical testing results of the Null Hp: MUA ≈ SBP, for both CC
and RMSE.

Long-Term Stability: a Synergy between TEL, ON and SBP

The high variability in SBP between sessions—due to physiological changes and
noise—demanded continuous adaptation to maintain prediction accuracy. ON
helped compensate for these fluctuations. Indeed, both MUA and SBP benefited
from this online adaptation, but while the increase in performance of MUA, even if
substantial, was not enough to produce a stable trend through time, SBP not only
outperformed MUA, but also showed a stable prediction CC across all the 25 ISs (
≈ 220 days).

We believe that the reason why ON’s impact was particularly effective lies in

84

Results

Figure 5.11: Linear regression plots (above). Distribution of sessions over metric
scores (below). Online normalisation comparison between MUA and SBP (CC and
RMSE)

the synergy between the structure of our model, and in particular the presence
of TEL and the nature of SBP. This continuous signal is obtained with minimal
preprocessing steps, and retains all the information filtered out by static TCR
approaches (used with MUA). For this reason it needed TEL to be dynamically
encoded in spikes. At the same time, this allowed TEL to be effectively trained on
RS, and then to express its whole potential in extracting spikes on the following
sessions.

In contrast, MUA data underwent static spike detection through threshold
crossing before being processed by the model. This preprocessing step effectively
normalized data in a fixed manner, reducing the need for, and the possibility of
further adaptations. As a result, the model’s ability to respond dynamically to
shifts in data is limited for MUA, making the benefits of ON less pronounced.

In summary, the novel application of SBP as a preprocessing method over ex-
tended periods of time, combined with ON, proved to yield remarkable performance
and, of greater importance, to achieve long-term stability, at least over the spanning

85

Results

time of the inference sessions.

5.4.3 Experiment 2: Online Normalisation Vs. Online
Centering

After comparing online and offline normalisation in the previous experiment, the
focus here is to explore whether rescaling during inference yields better performance
than centering alone for maintaining model consistency across sessions.

For each preprocessing method the models was trained on 80% of RS as usual,
then tested on ISs. Figure 5.12 shows the results, for both single sessions and
trends through time.

Figure 5.12: Linear regression analysis for SBP and MUA. Online normalisation
Vs online centering (CC and RMSE).

The experiment revealed that for both SBP and MUA, scaling was important in
preserving high prediction quality. The results from Table 5.3 further underscore
this assertion, showing the best performance when using scaling and centering
together. SBP showed the greatest improvement, with nearly a 3% increase in CC
and a 2% reduction in RMSE, underscoring the importance of rescaling during

86

Results

inference. MUA exhibited smaller but consistent improvements, with a change of
approximately 2% in both CC and RMSE.

In summary, these findings demonstrated that original ON (centering and scaling)
consistently outperformed online centering alone in aligning MUA and SBP data
across sessions, suggesting that rescaling in addition to centering is essential for
enhancing prediction accuracy across sessions.

From this point on, we have experimented with only SBP. As a matter of fact,
the stable behaviour obtained through ON is a crucial achievement, but it still
showed lower prediction quality respect to the model trained and evaluated on a
single session. For this reason, in the following experiments we have tried different
online linear transformations to further increase long-term prediction accuracy.

Metrics Offline SBP
Norm

Online SBP
Norm

Online SBP
Centered

CC 0.3376 ± 0.1477 0.7477 ± 0.0427 0.7284 ± 0.0544
RMSE 77.6579 ± 13.0987 54.5107 ± 7.4272 55.485 ± 8.1905
Slope CC -0.0005 -0.0 -0.0
P-value CC 0.1928 0.7919 0.9507
Slope RMSE -0.0212 0.008 0.001
P-value RMSE 0.5549 0.7581 0.9708

Table 5.3: Performance metrics for SBP (centered and rescaled)

Metrics Offline MUA
Norm

Online MUA
Norm

Online MUA
Centered

CC 0.4811 ± 0.1583 0.7112 ± 0.0598 0.6967 ± 0.0735
RMSE 71.1587 ± 13.105 56.6054 ± 9.0444 57.8689 ± 10.0183
Slope CC -0.0016 -0.0005 -0.0006
P-value CC 0.0009 0.0049 0.0116
Slope RMSE 0.0508 0.0368 0.0427
P-value RMSE 0.1625 0.1811 0.1512

Table 5.4: Performance metrics for MUA (centered and rescaled)

5.4.4 Experiment 3: PCA Adaptation: Rotation and Or-
dering

In this experiment, we focused on a PCA-based rotational alignment strategy: our
aim was to work with covariance matrices between sessions and using PCA to

87

Results

extract PCs.. We used them to align the sessions themselves. The goal was to
evaluate if the same linear rotation needed to align covariance matrices could be
effectively applied to align Xinf to Xref, and increase the model prediction quality
across sessions, leading eventually to a better long-term stability. In this first linear
transformation, we used this equation:

Xaligned = WrefW
T
infXinf

Where Xaligned is the current IS rotated like the RS, Wref is the orthonormal
matrix made by PCs of the RS on the columns and Winf is the orthonormal matrix
for the IS, calculated online using the first 2 minutes of the IS. Finally, Xinf is the
IS data before alignment. More details can be found in Section 4.4.

The model is always trained on 80% of Xref, norm, and, after each different linear
transformation, before inference, each resulting Xaligned is rescaled again, using
σaligned computed on its first 2 minutes, so that each channel presents unit variance,
as during training. This is done to ensure consistency between experiments, allowing
to always use the same model. Here the two variant of this first PCA-based linear
transformation:

1. Online Normalisation → Rotation: ISs were normalised using µinf and
σinf, then Wref and Winf were calculated from 80% of Xref, norm and the first 2
minutes of Xinf, norm. Finally PCA rotation was applied.

2. Centering → Rotation: Data was only centered resulting in Xref, cent and
Xinf, cent, then Wref and Winf were calculated as above, and eventually Xinf, cent
was aligned.

The experiment was repeated for all the ISs, both with and without reordering
the PCs of Winf according to Wref . More details below and in the Section 4.4.3.

The results indicate that the most effective approach is to scale before PCA,
followed by reordering PCs. This finding is clearly illustrated in Figure 5.13.

However, the overall prediction quality remained far from satisfactory, especially
when compared to the results of simple ON on the same setup. Therefore, this
approach seems to not be the most appropriate for unsupervised adaptation.

To Scale or Not to Scale

The primary objective of this experiment was to assess the quality of predictions
made by a model trained on data from RS and applied to data from IS, with
the datasets aligned using a PCA-based rotation. Although the brain signals are
homogeneous and come from the same source, and thus the features are likely on
similar scales, it is still important to consider whether scaling the data could affect
the alignment process.

88

Results

Figure 5.13: Linear regression analysis for 4 combinations of normalisation, PCA
and reordering on SBP.

When PCA is applied without scaling, the natural variance structure of the
data remains intact, with features that have slightly higher variances contributing
more to PCs. This could be beneficial if the variance patterns in the brain signals
were preserved between sessions, as it should allow the alignment to retain these
dominant features. As a result, the model’s predictions on the IS may benefit from
this natural variance-driven structure, improving its ability to generalize.

On the other hand, scaling the data before PCA ensures that all features
contribute equally, preventing small differences in variance from dominating PCs.
This could be particularly helpful when aligning datasets across sessions, as it
should minimize the impact of any subtle variance differences, leading to a more
balanced alignment between the sessions.

Testing both approaches allowed us to explore whether preserving the natural
variance or equalizing the feature variances yielded better alignment and, conse-
quently, more accurate predictions on the second session. This comparison is critical
for determining which method offers the best model performance and ensures that
the alignment process effectively handles the underlying brain signal structure.

89

Results

The Role of Reordering PCs

The effect of reordering can be seen in Figure 5.14. We first calculated the similarity
matrix M using this equation:

M = W T
refWinf

Where each value is the dot product between a PC from reference session and
a PC from inference session. The dot product of two vectors u and v is given by
u ·v = |u||v| cos(θ), where θ is the angle between them. Geometrically, it represents
how much one vector aligns with the other. If the vectors have unit magnitude, as
in our case, the dot product simplifies to u · v = cos(θ), which directly gives the
cosine of the angle between the vectors. We used these values squared as similarity
score.

Finally we reordered the PCs of the inference session by sorting the similarity
matrix row by row in descending order, and correcting the signs when needed.
More details in Section 4.4.3.

Figure 5.14: Similarity matrix of Wref and Winf, before and after reordering.

5.4.5 Experiment 4: PCA Adaptation: Rotation and Scal-
ing with Singular Values

The fourth experiment was our last attempt to improve long-term stability using a
more refined method than simply ON. Here we evaluated the effect of using both
principal components (W) and singular values (square roots of eigenvalues, Σ)
during the alignment process. The equation describing this linear transformation
is the following one:

90

Results

Xaligned = WrefΣrefΣ−1
inf W

T
infXinf

For more details, refer to Section 4.4.
Singular values reflect the standard deviation along each principal component,

and using them for scaling should improve alignment by accounting for both
rotational and scaling discrepancies across sessions.

As for the previous experiment, the model was trained on 80% of Xref, norm, and
after each linear transformation, Xinf, aligned was rescaled using σaligned, calculated
from its first 2 minutes, ensuring that each channel maintained unit variance, just
like during training. Two alignment methods were tested:

1. Centering → Rotation & Scaling: Data is only centered, PCA is applied
to both rotate and scale.

2. Normalisation → Rotation & Scaling: Data is normalised before PCA
rotation and scaling.

In both cases, principal components Winf and singular values Σinf from the
inference session were reordered to match the reference session Wref and Σref .

Even after implementing both rotation and scaling, the results were far from be-
ing comparable with ON. As we can see from Figure 5.15, the trend is almost stable
or just slightly decreasing in time, but the overall performances are substantially
worse.

5.4.6 Why PCA-based adaptations failed
The experiments aimed to assess various alignment strategies performances across
multiple sessions. In the end, Online normalization (ON) consistently yielded
superior results on our setup, achieving our goal for long-term stability through
unsupervised adaptation, without retraining the model.

This method is particularly effective with data preprocessed with spiking band
power (SBP), and encoded thourgh a trainable encoding layer (TEL) made by LIF-
neurons. Offline normalization, by contrast, led to poor results, demonstrating that
real-time adjustments are essential for long-term model stability. All subsequent
experiments, using PCA-based linear transformations, underperformed compared
to simple online normalization.

Thus, the clear conclusion from all these methods is that ON with SBP and TEL
is the most effective approach to handle session variability and maintain model
accuracy over time. We can see the results in details in Figure 5.16, and in Table
5.5.

We can now confidently assert that the results presented in the literature,
discussed in 2.6.2, which were derived from sessions involving identical movements

91

Results

Figure 5.15: Linear regression analysis for PCA adaptation (rotation and scaling)
on SBP

performed in the same sequence, cannot be generalized to broader unsupervised
scenarios like ours. As a matter of fact, we opted not to manually select the same
movements across different sessions, as that would have introduced a supervised
approach, out from our research scope and already proven to be successful. However,
we hope that our experiments and methodologies can serve as a valuable resource
for aligning datasets with a more similar structure, more coherent with literature.

5.5 Supervised Adaptation for Long-Term Stabil-
ity

In this section, we explored supervised adaptation strategies to enhance the long-
term stability of our Spiking Neural Network (SNN)-based decoder across multiple
sessions spanning 223 days. The primary objective was to assess how different
retraining approaches could affect the decoder’s performance in predicting 2D
hand velocity from SBP signals. We focused on the correlation coefficient (CC)

92

Results

Figure 5.16: Summary of linear transformation methods for SBP

Metrics Offline Nor-
malisation

Online Nor-
malisation

PCA Rota-
tion

PCA Ro-
tation and
Scaling

Mean CC 0.3168 ±
0.1071

0.7462 ±
0.043

0.4392 ±
0.1138

0.4426 ±
0.1062

Mean RMSE 79.5725 ±
9.1177

55.2512 ±
6.5658

70.2241 ±
6.4536

70.5426 ±
7.0981

Slope CC -0.0005 -0.0000 -0.0003 -0.0002
P-value CC 0.1928 0.7919 0.4537 0.6599
Slope RMSE -0.0212 0.008 -0.0007 -0.0072
P-value RMSE 0.5549 0.7581 0.9791 0.7972

Table 5.5: Performance metrics for SBP (offline and online normalised, with and
without PCA)

and root mean square error (RMSE) as evaluation metrics. Building upon the
unsupervised adaptation results achieved through online normalization (ON), we

93

Results

aimed to demonstrate the effectiveness of minimal supervised retraining, particularly
on the first hidden layer (TEL) of the SNN, to address the temporal evolution
of neural firing dynamics in the Primary Motor Cortex (M1) as well as other
disruptive actors, like noise and gliar scars.

The initial model was trained on the first session, indy_20160622_01, using
80% of the data for training. Then the model was adapted session-by-session,
in sequence. The amount of data and number of epochs used to apply ON and
during retraining varied between experiments. Our aim was to investigate how
different retraining strategies would impact long-term stability and whether minimal
retraining of specific layers could maintain or improve decoder performances. To
train or fine tune the model, we always used STBP, with AdamW and Dropout,
updating only weights and biases.

5.5.1 Experiment 1: Extensive Retraining Across Sessions
(Whole Model)

The objective of this experiment was to determine the upper bound for CC and the
lower bound for RMSE, and to evaluate the impact of prior knowledge on model
performance. Two models were trained for 24 epochs on 80% of the data from
each normalized session, with evaluation on the remaining 20%. This process was
repeated sequentially for all 26 sessions. One model, called "Retrained", was trained
from scratch for each session, while the other, referred to as the “Resumed”, was
initialized at each session with the weights and biases from the previous session.
This setup should allow the resumed model to adapt its parameters to new data
while retaining knowledge from earlier sessions.

Both models demonstrated high CC and low RMSE across all sessions, with
the resumed model consistently outperforming the retrained model, as shown in
Figure 5.17. The results obtained are comparable to the state-of-the-art, presented
in Section 3.1.

The figure plots CC and RMSE over time, highlighting the trends across days
since the second session, the first is excluded as identical to the single session
experiment, and to be consistent with the rest of the tests. While the resumed
model maintained stable performance, even increasing for CC, the retrained model
showed a slight but constant decline over time. However, this was not proven to be
statistically significant, and could be determined by different variables, like noise
or the variable length of each session.

The mean and standard deviations for CC and RMSE are summarized in
Table 5.6, further confirming the superior performance of the resumed model
throughout the sessions and emphasizing the advantages of leveraging prior knowl-
edge. The resumed model results are almost comparable with the state-of-the-art
for ANNs tested on the same dataset 3.1.

94

Results

Figure 5.17: Performance trends (CC and RMSE) for resumed and retrained
models across sessions.

Metric Resumed Model Retrained Model
CC 0.8797 ± 0.0242 0.8364 ± 0.0183

RMSE 37.1033 ± 5.4681 42.5367 ± 4.5032

Table 5.6: Mean and standard deviation of CC and RMSE for the resumed and
retrained models across sessions with SBP.

5.5.2 Experiment 2: Short-Term Adaptations (Single Lay-
ers)

To assess whether minimal retraining could maintain or improve performance while
reducing computational demand, we performed short-term adaptations on the entire
model and on single layers. Our ultimate objective was to evaluate performance
increase when fine-tuning for a very short time on the first layer (TEL). The
starting hypothesis was that adapting this layer, which is responsible for encoding
spikes when fed with continuous signals (SBP), could effectively address for shifts
in data domain through time.

95

Results

Initially, we trained the model on the first 80% of RS normalised, then, for each
IS, we took the first 2 minutes, and adapted the model on those, before evaluating
the performances on the rest of the ISs.

The complete adaptation consisted in computing µinf and σinf on the first 2
minutes, apply ON, and then fine tune for just 1 epoch on the same samples. At
each IS, weights and biases are resumed from the previous session.

The retrained parameters were only weights and biases of connections before
each LIF-neuron layer. We investigated the impact of retraining the entire model or
individual layers —either connections before the first, second, or third LIF layer—
to determine if focusing on specific components of the model yielded comparable
performance gains.

Despite the limited duration of fine tuning, the decoder maintained reasonable
performance levels. Moreover, CC exhibited a positive trend over time, as shown
in Figure 5.18, indicating that even minimal retraining allowed the model to adjust
effectively to the evolving neural dynamics. The RMSE values remained relatively
stable or slightly decreased, suggesting improved decoding accuracy too.

Figure 5.18: CC and RMSE over time for short-term adaptations with SBP.
Retraining all layers (Experiment 3) and individual layers (Experiment 4)

96

Results

The mean and standard deviation of CC and RMSE for this experiment are
summarized in Table 5.8, confirming the effectiveness of minimal retraining.

The results indicated that retraining the connections before the first or second
LIF layer yielded performance metrics nearly identical, this is confirmed by Table
5.7. Moreover the difference between retraining the whole model and the first layer
are minimal, with an CC increment of 0.7% and an RMSE decrement of 2% on
average.

Test Layer 1 vs layer 2 (P-value)
Wilcoxon test for CC 0.7310

t-test for CC 0.9480
Wilcoxon test for RMSE 0.6528

t-test for RMSE 0.9736

Table 5.7: Statistical tests for layer 1 and layer 2 over CC and RMSE metrics.

Retraining the third layer resulted in lower performance and a less pronounced
positive trend.

The results also proved the efficacy of computing minimal fine-tuning on TEL,
compared to extensively retraining the whole model from scratch at each session.
From mean computed over the 25 ISs in Table 5.8 we can notice a little decrement
in CC of only 2.3%, and an RMSE increase of 7%, which is slightly higher, but
still a quite good result comparing the different efforts.

These findings suggest that adapting the earlier layer, particularly TEL (layer 1),
effectively compensated for session-to-session variability in input signals. Finally,
the positive trend in CC indicated that the model could benefit from prior knowledge
while adjusting to new data.

5.6 Comparative Summary Analysis
The results across all experiments reveals important insights into the effectiveness
of different retraining strategies. The best unsupervised approach has demonstrated
to be simple Online Normalisation (ON) when performed using Spiking band Power
(SBP) in synergy with the first hidden layer used as trainable encoding layer (TEL).
To further enhance decoding ability of our setup, we then evaluated a supervised
approach on the top of this findings. Leveraging prior knowledge showed to be
critical, in particular resumed model resulted in the best performance overall,
highlighting the importance of past learning in achieving robust long-term stability.

Following this path, short-term fine tuning proved to be an efficient approach,
significantly reducing computational demands while maintaining decent prediction
quality. Focusing on retraining individual layers, the first hidden layer (TEL)

97

Results

yielded performance comparable to retraining all layers, effectively compensating
for session-to-session variability in input signals when dealing with SBP. TEL
demonstrated to be crucial to address domain shifts and perform feature extraction
(spike encoding). The final positive trends in CC over time indicated that the model
continued to learn and adapt effectively even with minimal additional training of a
single layer (TEL).

Our final method included SBP, ON, and short-term fine tuning on TEL, offering
a practical solution for real-world applications where rapid adaptation and resource
constraints are critical.

In Figure 5.19 We can see a direct and detailed comparison between our 3 main
results, resumed model, achieving state-of-the-art performances, only ON, showing
stable trend over time and overall decent prediction quality and, in the middle,
the synergy with ON and fine-tuning TEL, showing a critical increment in metric
scores while conserving theoretically light implementation.

The corresponding mean and standard deviation for each method are detailed
in Table 5.8.

Method CC RMSE
Resumed 0.8797 ± 0.0242 37.1033 ± 5.4681
Retrained 0.8364 ± 0.0183 42.5367 ± 4.5032
All Layers 0.8185 ± 0.0188 44.8876 ± 3.9202
Layer 1 (TEL) 0.8125 ± 0.0239 45.8735 ± 4.9987
Layer 2 0.8123 ± 0.0266 45.8624 ± 5.1468
Layer 3 0.7940 ± 0.0320 48.0328 ± 6.0469
online norm (ON) 0.7462 ± 0.0430 55.2512 ± 6.56589
fixed 0.3168 ± 0.1071 79.5725 ± 9.1177

Table 5.8: Mean and standard deviation of CC and RMSE for different adaptations
methods with SBP.

98

Results

Figure 5.19: Comparison between our 3 main results on both CC AND RMSE,
with SBP.

99

Chapter 6

Conclusions and Future
Works

This thesis investigated preprocessing methods, models and adaptation strategies
to effectively decode 2D hand velocity from M1 cortex of NHP Indy, while achieving
long-term stability, power efficiency and state-of-the-art accuracy.

First, we accurately selected the model, which is a regression-based spiking
neural network designed to predict 2D velocity from 96 input channels. The output
layer consists of two Leaky Integrate (LI) neurons, while the preceding layers are
composed of Leaky Integrate-and-Fire (LIF) neurons. These fully connected layers
are trained using Spatio-Temporal Back Propagation (STBP), allowing the model
to capture the temporal dynamics essential for accurate kinematic predictions. To
further enhance performance, the model incorporates Dropout regularization to
prevent overfitting and the AdamW optimizer to improve training efficiency.

Later, we conducted a series of experiments and researches to find the best
preprocessing method to address not only prediction quality when used in synergy
with our model, but also computational simplicity and theoretical power efficiency.
We found all these characteristics in spiking band power (SBP).

At last, our work explored a variety of adaptation strategies aimed at enhancing
the performance and long-term stability of the model. One of the most effective
unsupervised approaches combined Spiking Band Power (SBP) with Simple Online
Normalisation (ON), alongside using the first hidden layer as a trainable encoding
layer (TEL). This configuration theoretically offers robustness to session-to-session
variability, maintaining stable performance, while ensuring power efficiency and
keeping the net completely fixed.

In addition to unsupervised methods, supervised adaptation strategies were also
evaluated. The resumed model—leveraging prior learning—achieved the highest
overall performance, highlighting the importance of preserving past knowledge for

100

Conclusions and Future Works

robust long-term stability. Short-term fine-tuning of the first hidden layer (TEL)
emerged as an efficient approach, reducing computational overhead while main-
taining prediction quality. This targeted fine-tuning produced results comparable
to model performances when retrained from scratch at each session, theoretically
making it an efficient solution for real-world applications where computational
resources are limited.

The final proposed method offers a practical and lightweight solution. it inte-
grates the SNN-based decoder with SBP, ON, and fine-tuning of TEL, allowing
us to reach a stable CC of 0.81 ± 0.02 and an RMSE of 45.87 ± 5. This result is
not distant from scores obtained by complete retraining the model on each session,
better by only 2.7% in CC and 7% in RMSE, with a much superior computational
workload. Notably, the reduced need for extensive retraining implies that the
system can adapt quickly to session-to-session variability with minimal involvement
from both the patient and clinical staff. This significantly lowers the burden on
the user, as the decoder requires less recalibration and effort to maintain accuracy
over time, making it an attractive option for real-world brain-computer interface
(BCI) applications where ease of use is critical.

Moreover, for BCI applications, it is essential that the decoder consumes as
little energy as possible, remains computationally simple, and generates minimal
heat—especially when considering potential implantation in the human body.
Ensuring low power consumption and thermal efficiency is crucial to prevent
overheating, extend device longevity, and enhance patient safety. However, some
aspects of the results remain theoretical, as the model has not been implemented on
hardware to evaluate power consumption, nor has the decoder been tested in a real
closed-loop scenario with real patients. These gaps suggest important directions
for future work, where hardware implementation will allow for the investigation
of power efficiency, and closed-loop testing will provide insight into the system’s
real-time performance, adaptability, and interaction with the human brain.

Another promising area for future exploration is optimizing the methodology
used to fine-tune TEL. While the current approach is in principle effective, it may
be more computationally intensive than necessary. Spiking neural networks (SNNs)
offer alternative algorithms, such as Spike-Timing-Dependent Plasticity (STDP),
that enable local and unsupervised learning. Leveraging such techniques for TEL
could enable fully unsupervised continual adaptations, resulting in highly efficient
long-term stability and greatly enhancing the usability of the decoder in practical
applications for the final user.

In conclusion, this thesis lays a strong theoretical foundation for enhancing model
adaptability and efficiency through a combination of supervised and unsupervised
adaptation strategies. Future work should focus on hardware implementation,
real-world closed-loop testing, and exploring more efficient fine-tuning methods like
STDP to further improve long-term stability, computational efficiency, and overall

101

Conclusions and Future Works

usability.

102

Bibliography

[1] M. D. Murphy, D. J. Guggenmos, D. T. Bundy, and R. J. Nudo. «Current
challenges facing the translation of brain computer interfaces from preclinical
trials to use in human patients». In: Frontiers in Cellular Neuroscience 9
(2016), p. 497. doi: 10.3389/fncel.2015.00497 (cit. on pp. 3, 18, 54).

[2] Nur Ahmadi, Timothy G. Constandinou, and Christos-Savvas Bouganis.
«Decoding Hand Kinematics from Local Field Potentials Using Long Short-
Term Memory (LSTM) Network». In: 2019 9th International IEEE/EMBS
Conference on Neural Engineering (NER). 2019, pp. 415–419. doi: 10.1109/
NER.2019.8717045 (cit. on pp. 3, 18–20, 22, 49, 51, 53, 54).

[3] Nur Ahmadi, Timothy Constandinou, and Christos Bouganis. «Robust and
accurate decoding of hand kinematics from entire spiking activity using deep
learning». In: Journal of Neural Engineering 18 (Jan. 2021). doi: 10.1088/
1741-2552/abde8a (cit. on pp. 3, 19, 20, 22, 49–51).

[4] Mikhail A. Lebedev and Miguel A. L. Nicolelis. «Brain-Machine Interfaces:
From Basic Science to Neuroprostheses and Neurorehabilitation». In: Physio-
logical Reviews 97.2 (2017). PMID: 28275048, pp. 767–837. doi: 10.1152/
physrev.00027.2016 (cit. on pp. 3, 4, 16–18, 54).

[5] Shiv Mudgal, Suresh Sharma, Jitender Chaturvedi, and Anil Sharma. «Brain
computer interface advancement in neurosciences: Applications and issues». In:
Interdisciplinary Neurosurgery: Advanced Techniques and Case Management
20 (Feb. 2020), p. 100694. doi: 10.1016/j.inat.2020.10069 (cit. on pp. 4,
16, 17).

[6] Xiaolong Wu, benjamin metcalfe benjamin, Shenghong He, Huiling Tan,
and Dingguo Zhang. «A Review of Motor Brain-Computer Interfaces using
Intracranial Electroencephalography based on Surface Electrodes and Depth
Electrodes». In: TechRxiv (Apr. 2023). doi: 10.36227/techrxiv.22340677.
v1. url: http://dx.doi.org/10.36227/techrxiv.22340677.v1 (cit. on
pp. 4, 16).

103

https://doi.org/10.3389/fncel.2015.00497
https://doi.org/10.1109/NER.2019.8717045
https://doi.org/10.1109/NER.2019.8717045
https://doi.org/10.1088/1741-2552/abde8a
https://doi.org/10.1088/1741-2552/abde8a
https://doi.org/10.1152/physrev.00027.2016
https://doi.org/10.1152/physrev.00027.2016
https://doi.org/10.1016/j.inat.2020.10069
https://doi.org/10.36227/techrxiv.22340677.v1
https://doi.org/10.36227/techrxiv.22340677.v1
http://dx.doi.org/10.36227/techrxiv.22340677.v1

BIBLIOGRAPHY

[7] Shoeb Shaikh, Rosa So, Tafadzwa Sibindi, Camilo Libedinsky, and Arindam
Basu. «Towards Intelligent Intracortical BMI (i2BMI): Low-Power Neuro-
morphic Decoders That Outperform Kalman Filters». In: IEEE Transac-
tions on Biomedical Circuits and Systems 13.6 (2019), pp. 1615–1624. doi:
10.1109/TBCAS.2019.2944486 (cit. on pp. 4, 52, 54).

[8] LINKS Foundation. LINKS Foundation: Leading Innovation and Research.
Accessed: 2024-09-03. 2024. url: https://linksfoundation.com/en/ (cit.
on p. 4).

[9] SMILIES Lab, Politecnico di Torino. SMILIES Lab: Smart Micro/nano-
systems and Internet of Things Laboratory. Accessed: 2024-09-03. 2024. url:
https://www.smilies.polito.it (cit. on p. 4).

[10] B-Cratos Project. B-Cratos: Wireless Brain-Connect inteRfAce TO machineS.
Accessed: 2024-09-03. 2024. url: https://www.b-cratos.eu (cit. on pp. 4,
6).

[11] Casey Henley. Foundations of Neuroscience. Illustrator: Casey Henley. Li-
censed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License. Michigan State University Libraries, 2021. isbn:
978-1-62610-109-8 (cit. on pp. 9, 13–15).

[12] Dana Foundation. Anatomy and Function of Brain Areas. Accessed: August
30, 2024. 2023. url: https://dana.org/app/uploads/2023/09/anatomy-
function-brain-areas-basics-aug-2019-2024.jpeg (cit. on p. 11).

[13] Alan J. McComas. «The Neuromuscular System». In: Exercise Physiology:
People and Ideas. Ed. by Charles M. Tipton. New York, NY: Springer New
York, 2003, pp. 39–97. isbn: 978-1-4614-7543-9. doi: 10.1007/978-1-4614-
7543-9_2. url: https://doi.org/10.1007/978-1-4614-7543-9_2 (cit. on
p. 12).

[14] Cleveland Clinic. Somatic Nervous System. Accessed: 2024-09-01. url: https:
//my.clevelandclinic.org/health/body/23291- somatic- nervous-
system (cit. on p. 13).

[15] Encyclopædia Britannica. Homunculus. Image. Accessed: September 1, 2024.
2024. url: https://www.britannica.com/science/homunculus-biology#
/media/1/270724/277135 (cit. on p. 14).

[16] Hans Scherberger. «Neural Prostheses for Reaching». In: Encyclopedia of
Neuroscience (Dec. 2009). doi: 10.5167/uzh-32047 (cit. on p. 16).

104

https://doi.org/10.1109/TBCAS.2019.2944486
https://linksfoundation.com/en/
https://www.smilies.polito.it
https://www.b-cratos.eu
https://dana.org/app/uploads/2023/09/anatomy-function-brain-areas-basics-aug-2019-2024.jpeg
https://dana.org/app/uploads/2023/09/anatomy-function-brain-areas-basics-aug-2019-2024.jpeg
https://doi.org/10.1007/978-1-4614-7543-9_2
https://doi.org/10.1007/978-1-4614-7543-9_2
https://doi.org/10.1007/978-1-4614-7543-9_2
https://my.clevelandclinic.org/health/body/23291-somatic-nervous-system
https://my.clevelandclinic.org/health/body/23291-somatic-nervous-system
https://my.clevelandclinic.org/health/body/23291-somatic-nervous-system
https://www.britannica.com/science/homunculus-biology#/media/1/270724/277135
https://www.britannica.com/science/homunculus-biology#/media/1/270724/277135
https://doi.org/10.5167/uzh-32047

BIBLIOGRAPHY

[17] Álvaro Costa, Enrique Hortal, Eduardo Iáñez, and José M. Azorín. «A Sup-
plementary System for a Brain-Machine Interface Based on Jaw Artifacts
for the Bidimensional Control of a Robotic Arm». In: PLOS ONE 9.11
(Nov. 2014), pp. 1–13. doi: 10.1371/journal.pone.0112352. url: https:
//doi.org/10.1371/journal.pone.0112352 (cit. on p. 17).

[18] E. J. Hwang and R. A. Andersen. «The utility of multichannel local field
potentials for brain–machine interfaces». In: Journal of Neural Engineering
10.4 (2013), p. 046005. doi: 10.1088/1741-2560/10/4/046005 (cit. on
p. 18).

[19] Nur Ahmadi, Trio Adiono, Ayu Purwarianti, Timothy G. Constandinou, and
Christos-Savvas Bouganis. «Improved Spike-Based Brain-Machine Interface
Using Bayesian Adaptive Kernel Smoother and Deep Learning». In: IEEE
Access 10 (2022), pp. 29341–29356. doi: 10.1109/ACCESS.2022.3159225
(cit. on pp. 18, 20, 21, 49, 51).

[20] Elaine Astrand, Claire Wardak, and Suliann Ben Hamed. «Selective visual
attention to drive cognitive brain–machine interfaces: from concepts to neu-
rofeedback and rehabilitation applications». In: Frontiers in Systems Neu-
roscience 8 (2014). issn: 1662-5137. doi: 10 . 3389 / fnsys . 2014 . 00144.
url: https://www.frontiersin.org/journals/systems-neuroscience/
articles/10.3389/fnsys.2014.00144 (cit. on p. 18).

[21] P. Ahmadipour, Y. Yang, E. F. Chang, and M. M. Shanechi. «Adaptive track-
ing of human ECoG network dynamics». In: Journal of Neural Engineering
18.1 (Feb. 2021), p. 016011. doi: 10.1088/1741-2552/abae42 (cit. on pp. 19,
20).

[22] Nur Ahmadi, Timothy Constandinou, and Christos Bouganis. «Impact of
referencing scheme on decoding performance of LFP-based brain-machine
interface». In: Journal of Neural Engineering 18 (Nov. 2020). doi: 10.1088/
1741-2552/abce3c (cit. on pp. 19, 21).

[23] John W. Kelly, Daniel P. Siewiorek, Asim Smailagic, and Wei Wang. «Auto-
mated Filtering of Common-Mode Artifacts in Multichannel Physiological
Recordings». In: IEEE Transactions on Biomedical Engineering 60.10 (2013),
pp. 2760–2770. doi: 10.1109/TBME.2013.2264722 (cit. on p. 20).

[24] Nur Ahmadi, Timothy Constandinou, and Christos Bouganis. «Inferring
entire spiking activity from local field potentials». In: Scientific Reports 11
(Sept. 2021). doi: 10.1038/s41598-021-98021-9 (cit. on pp. 20, 22).

105

https://doi.org/10.1371/journal.pone.0112352
https://doi.org/10.1371/journal.pone.0112352
https://doi.org/10.1371/journal.pone.0112352
https://doi.org/10.1088/1741-2560/10/4/046005
https://doi.org/10.1109/ACCESS.2022.3159225
https://doi.org/10.3389/fnsys.2014.00144
https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2014.00144
https://www.frontiersin.org/journals/systems-neuroscience/articles/10.3389/fnsys.2014.00144
https://doi.org/10.1088/1741-2552/abae42
https://doi.org/10.1088/1741-2552/abce3c
https://doi.org/10.1088/1741-2552/abce3c
https://doi.org/10.1109/TBME.2013.2264722
https://doi.org/10.1038/s41598-021-98021-9

BIBLIOGRAPHY

[25] Joseph G Makin, Joseph E O’Doherty, Mariana M B Cardoso, and Philip N
Sabes. «Superior arm-movement decoding from cortex with a new, unsupervised-
learning algorithm». In: Journal of Neural Engineering 15.2 (Jan. 2018),
p. 026010. doi: 10.1088/1741-2552/aa9e95. url: https://dx.doi.org/
10.1088/1741-2552/aa9e95 (cit. on pp. 20, 52, 56).

[26] Samuel R. Nason et al. «A low-power band of neuronal spiking activity
dominated by local single units improves the performance of brain–machine
interfaces». In: Nature Biomedical Engineering 4 (2020), pp. 973–983 (cit. on
pp. 22–25, 51).

[27] Jiawei Liao, Lars Widmer, Xiaying Wang, Alfio Di Mauro, Samuel R. Nason-
Tomaszewski, Cynthia A. Chestek, Luca Benini, and Taekwang Jang. «An
Energy-Efficient Spiking Neural Network for Finger Velocity Decoding for
Implantable Brain-Machine Interface». In: 2022 IEEE 4th International Con-
ference on Artificial Intelligence Circuits and Systems (AICAS). 2022, pp. 134–
137. doi: 10.1109/AICAS54282.2022.9869846 (cit. on pp. 24, 25, 35, 38,
50–52, 65, 76).

[28] Shirin Dora and Nikola Kasabov. «Spiking Neural Networks for Computational
Intelligence: An Overview». In: Big Data and Cognitive Computing 5.4 (2021).
issn: 2504-2289. doi: 10.3390/bdcc5040067. url: https://www.mdpi.com/
2504-2289/5/4/67 (cit. on pp. 25, 28, 41).

[29] Sanaullah Sanaullah, Shamini Koravuna, and Thorsten Jungeblut. «Exploring
spiking neural networks: a comprehensive analysis of mathematical models
and applications». In: Frontiers in Computational Neuroscience 17 (Aug.
2023). doi: 10.3389/fncom.2023.1215824 (cit. on pp. 25, 28, 40, 41).

[30] Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. «Spiker: an
FPGA-optimized Hardware accelerator for Spiking Neural Networks». In:
2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). ISSN:
2159-3477. July 2022, pp. 14–19. doi: 10.1109/ISVLSI54635.2022.00016
(cit. on p. 25).

[31] Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. Spiker+: a
framework for the generation of efficient Spiking Neural Networks FPGA
accelerators for inference at the edge. arXiv:2401.01141 [cs]. Jan. 2024. doi:
10.48550/arXiv.2401.01141. url: http://arxiv.org/abs/2401.01141
(visited on 01/26/2024) (cit. on p. 25).

[32] Dario Padovano, Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo.
«SpikeExplorer: Hardware-Oriented Design Space Exploration for Spiking
Neural Networks on FPGA». en. In: Electronics 13.9 (Jan. 2024). Number:
9 Publisher: Multidisciplinary Digital Publishing Institute, p. 1744. issn:

106

https://doi.org/10.1088/1741-2552/aa9e95
https://dx.doi.org/10.1088/1741-2552/aa9e95
https://dx.doi.org/10.1088/1741-2552/aa9e95
https://doi.org/10.1109/AICAS54282.2022.9869846
https://doi.org/10.3390/bdcc5040067
https://www.mdpi.com/2504-2289/5/4/67
https://www.mdpi.com/2504-2289/5/4/67
https://doi.org/10.3389/fncom.2023.1215824
https://doi.org/10.1109/ISVLSI54635.2022.00016
https://doi.org/10.48550/arXiv.2401.01141
http://arxiv.org/abs/2401.01141

BIBLIOGRAPHY

2079-9292. doi: 10.3390/electronics13091744. url: https://www.mdpi.
com/2079-9292/13/9/1744 (visited on 09/06/2024) (cit. on p. 25).

[33] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée
Masquelier, and Anthony Maida. «Deep learning in spiking neural networks».
In: Neural Networks 111 (Mar. 2019), pp. 47–63. issn: 0893-6080. doi: 10.
1016/j.neunet.2018.12.002. url: http://dx.doi.org/10.1016/j.
neunet.2018.12.002 (cit. on pp. 25, 76).

[34] Jason K. Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu.
Training Spiking Neural Networks Using Lessons From Deep Learning. 2023.
arXiv: 2109.12894 [cs.NE]. url: https://arxiv.org/abs/2109.12894
(cit. on pp. 25, 28, 40, 73, 76).

[35] Laith Alzubaidi et al. «Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions». In: Journal of Big Data 8.1 (2021),
pp. 1–74. doi: 10.1186/S40537-021-00444-8 (cit. on pp. 26, 28).

[36] Diab Abueidda, Seid Koric, Rashid Abu Al-Rub, Corey Parrott, Kai James,
and Nahil Sobh. A deep learning energy method for hyperelasticity and vis-
coelasticity. Jan. 2022. doi: 10.48550/arXiv.2201.08690 (cit. on p. 26).

[37] unknown. Recurrent Neural Network (RNN). Accessed: 2024-09-23. url:
https://dengliangshi.github.io/images/bptt/rnn.png (cit. on p. 27).

[38] Mingfeng Li. «Comprehensive Review of Backpropagation Neural Networks».
In: Academic Journal of Science and Technology 9 (Jan. 2024), pp. 150–154.
doi: 10.54097/51y16r47 (cit. on p. 32).

[39] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. «Spatio-Temporal
Backpropagation for Training High-Performance Spiking Neural Networks».
In: Frontiers in Neuroscience 12 (May 2018). issn: 1662-453X. doi: 10.3389/
fnins.2018.00331. url: http://dx.doi.org/10.3389/fnins.2018.
00331 (cit. on p. 35).

[40] Paul Werbos. «Generalization of Backpropagation with Application to a
Recurrent Gas Market Model». In: Neural Networks 1 (Dec. 1988), pp. 339–
356. doi: 10.1016/0893-6080(88)90007-X (cit. on p. 35).

[41] Chenlin Zhou et al. «Direct training high-performance deep spiking neural
networks: a review of theories and methods». In: Frontiers in Neuroscience
18 (July 2024). doi: 10.3389/fnins.2024.1383844 (cit. on p. 36).

[42] unknown. Error Propagation in RNN. Accessed: 2024-09-23. url: https:
//dengliangshi.github.io/images/bptt/error.png (cit. on p. 36).

107

https://doi.org/10.3390/electronics13091744
https://www.mdpi.com/2079-9292/13/9/1744
https://www.mdpi.com/2079-9292/13/9/1744
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1016/j.neunet.2018.12.002
https://arxiv.org/abs/2109.12894
https://arxiv.org/abs/2109.12894
https://doi.org/10.1186/S40537-021-00444-8
https://doi.org/10.48550/arXiv.2201.08690
https://dengliangshi.github.io/images/bptt/rnn.png
https://doi.org/10.54097/51y16r47
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.3389/fnins.2018.00331
http://dx.doi.org/10.3389/fnins.2018.00331
http://dx.doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.3389/fnins.2024.1383844
https://dengliangshi.github.io/images/bptt/error.png
https://dengliangshi.github.io/images/bptt/error.png

BIBLIOGRAPHY

[43] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization.
2019. arXiv: 1711.05101 [cs.LG]. url: https://arxiv.org/abs/1711.
05101 (cit. on p. 38).

[44] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural Networks
from Overfitting». In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html
(cit. on pp. 38, 39).

[45] Juan Gallego, Matthew Perich, Raeed Chowdhury, Sara Solla, and Lee Miller.
«Long-term stability of cortical population dynamics underlying consistent
behavior». In: Nature Neuroscience 23 (Feb. 2020), pp. 1–11. doi: 10.1038/
s41593-019-0555-4 (cit. on pp. 43–45, 52).

[46] Marcello Zanghieri, Mattia Orlandi, Elisa Donati, Emanuele Gruppioni, Luca
Benini, and Simone Benatti. «Online Unsupervised Arm Posture Adapta-
tion for sEMG-based Gesture Recognition on a Parallel Ultra-Low-Power
Microcontroller». In: 2023 IEEE Biomedical Circuits and Systems Confer-
ence (BioCAS). 2023, pp. 1–5. doi: 10.1109/BioCAS58349.2023.10388902
(cit. on pp. 43–45, 52, 62).

[47] Joseph E. O’Doherty, Mariana M. B. Cardoso, Joseph G. Makin, and Philip
N. Sabes. Nonhuman Primate Reaching with Multichannel Sensorimotor
Cortex electrophysiology. May 2017. doi: 10.5281/zenodo.788569. url:
https://doi.org/10.5281/zenodo.788569 (cit. on pp. 48, 49, 55, 56, 67).

[48] Marta Bono. «Time Robustness of Deep Learning Models for Real-Time
Neural Decoding of Arm Movement». Rel. Gabriella Olmo, Paolo Viviani.
Corso di Laurea Magistrale in Ingegneria Biomedica. Politecnico di Torino,
2023 (cit. on pp. 49, 55, 57, 59, 67).

[49] Paolo Viviani et al. «Deep Learning for Real-Time Neural Decoding of Grasp».
In: Machine Learning and Knowledge Discovery in Databases: Applied Data
Science and Demo Track. Ed. by Gianmarco De Francisci Morales, Claudia
Perlich, Natali Ruchansky, Nicolas Kourtellis, Elena Baralis, and Francesco
Bonchi. Cham: Springer Nature Switzerland, 2023, pp. 379–393. isbn: 978-3-
031-43427-3 (cit. on p. 49).

[50] Nur Ahmadi, Timothy Constandinou, and Christos Bouganis. «End-to-End
Hand Kinematic Decoding from LFPs Using Temporal Convolutional Net-
work». In: Oct. 2019, pp. 1–4. doi: 10.1109/BIOCAS.2019.8919131 (cit. on
p. 49).

108

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1038/s41593-019-0555-4
https://doi.org/10.1038/s41593-019-0555-4
https://doi.org/10.1109/BioCAS58349.2023.10388902
https://doi.org/10.5281/zenodo.788569
https://doi.org/10.5281/zenodo.788569
https://doi.org/10.1109/BIOCAS.2019.8919131

BIBLIOGRAPHY

[51] K. Yamazaki, V. K. Vo-Ho, D. Bulsara, and N. Le. «Spiking Neural Networks
and Their Applications: A Review». In: Brain Sciences 12.7 (June 2022),
p. 863. doi: 10.3390/brainsci12070863. url: https://doi.org/10.3390/
brainsci12070863 (cit. on p. 50).

[52] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Prasad
Joshi, Andrew Lines, Andreas Wild, Hong Wang, and Deepak Mathaikutty.
«Loihi: A Neuromorphic Manycore Processor with On-Chip Learning». In:
IEEE Micro PP (Jan. 2018), pp. 1–1. doi: 10.1109/MM.2018.112130359
(cit. on p. 50).

[53] Alberto Dequino, Alessio Carpegna, Davide Nadalini, Alessandro Savino,
Luca Benini, Stefano Di Carlo, and Francesco Conti. Compressed Latent
Replays for Lightweight Continual Learning on Spiking Neural Networks. 2024.
arXiv: 2407.03111 [cs.NE]. url: https://arxiv.org/abs/2407.03111
(cit. on p. 52).

[54] Elijah A. Taeckens and Sahil Shah. «A Spiking Neural Network with Contin-
uous Local Learning for Robust Online Brain Machine Interface». In: bioRxiv
(2023). doi: 10.1101/2023.08.16.553602. eprint: https://www.biorxiv.
org/content/early/2023/12/13/2023.08.16.553602.full.pdf. url:
https://www.biorxiv.org/content/early/2023/12/13/2023.08.16.
553602 (cit. on p. 52).

[55] Kristopher Jensen, Ta-Chu Kao, Jasmine Stone, and Guillaume Hennequin.
«Scalable Bayesian GPFA with automatic relevance determination and discrete
noise models». In: Advances in Neural Information Processing Systems. Ed.
by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan. Vol. 34. Curran Associates, Inc., 2021, pp. 10613–10626. url:
https://proceedings.neurips.cc/paper_files/paper/2021/file/
58238e9ae2dd305d79c2ebc8c1883422-Paper.pdf (cit. on p. 54).

[56] Minki Kim, Jeong-woo Sohn, and Sung-Phil Kim. «Decoding Kinematic
Information From Primary Motor Cortex Ensemble Activities Using a Deep
Canonical Correlation Analysis». In: Frontiers in Neuroscience 14 (Oct. 2020).
doi: 10.3389/fnins.2020.509364 (cit. on p. 54).

109

https://doi.org/10.3390/brainsci12070863
https://doi.org/10.3390/brainsci12070863
https://doi.org/10.3390/brainsci12070863
https://doi.org/10.1109/MM.2018.112130359
https://arxiv.org/abs/2407.03111
https://arxiv.org/abs/2407.03111
https://doi.org/10.1101/2023.08.16.553602
https://www.biorxiv.org/content/early/2023/12/13/2023.08.16.553602.full.pdf
https://www.biorxiv.org/content/early/2023/12/13/2023.08.16.553602.full.pdf
https://www.biorxiv.org/content/early/2023/12/13/2023.08.16.553602
https://www.biorxiv.org/content/early/2023/12/13/2023.08.16.553602
https://proceedings.neurips.cc/paper_files/paper/2021/file/58238e9ae2dd305d79c2ebc8c1883422-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/58238e9ae2dd305d79c2ebc8c1883422-Paper.pdf
https://doi.org/10.3389/fnins.2020.509364

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Introduction to Neuromuscular Physiology
	Introduction to Brain Computer Interfaces
	Aim and Challenges
	Performance Degradation Over Time
	Efficiency and Hardware Constraints

	B-Cratos Project
	Key Features and Innovations of B-Cratos Project
	Contribution of Our Study

	Background
	Anatomy and Physiology of Neuromuscular System
	Central and Peripheral Nervous System
	The Brain
	The Neurons
	 The Skeletal Muscle System
	The Genesis of Voluntary Movements

	Brain Signal Acquisition Methods for BMIs
	Invasive Methods
	Non-Invasive Methods
	Advantages of ECoG

	Signal Cleaning and Processing Techniques (ECoG)
	Data Acquisition and Initial Cleaning
	Noise Reduction, Referencing Schemes, and Our Approach
	Spike Detection and Spike Sorting (MUA and SUA)
	Firing Rate Estimation (TCR)
	Most Common Processing Techniques

	Spiking Band Power Overview
	Understanding Spiking Band Power
	Performance Advantages and Power Efficiency
	Methodology for SBP Extraction
	Applications of SBP
	Conclusions and Future Directions

	Spiking Neural Networks
	Fully Connected Neural Networks
	Recurrent Neural Networks
	Common Spiking Neuron Models
	The Appeal of LIF Neurons
	The LIF Neuron in Detail
	Backpropagation for FCNNs
	Spatio-Temporal Backpropagation (STBP) for Regression in SNNs
	Optimization Variants: AdamW and Dropout
	Overview of Spike Encoding Methods

	Adaptation Techniques for Temporal Robustness
	Unsupervised Adaptation Techniques
	Aligning Neural Data with PCA
	Supervised Adaptation Techniques
	Conclusion and Future Directions

	Related Works
	State-of-the-Art Hand Velocity Decoding in BMIs
	Traditional Filters: The Foundation
	Deep Learning Decoders: Embracing Complexity
	Spiking Neural Networks: High-Performing and Energy-Efficient

	Long-Term Stability in Brain Signal Decoding
	From Single-Unit Activity to Spike Band Power
	Adaptive Strategies for Long-Term Stability

	Methods
	The choice of M1 over S1
	Selected Preprocessing Methods
	Preprocessing Details
	MUA and SUA Practical Implementation
	SBP Practical Implementation
	Common Preprocessing Steps

	Unsupervised Adaptations with Normalization and PCA
	Session Alignment Strategies based on Centering and Normalisation
	Session Alignment Strategies based on PCA
	Principal Component Reordering and Sign Alignment

	Supervised Adaptation with Fine-Tuning
	Two Baselines
	Fine-Tuning single layers
	Efficiency of First-Layer Fine-Tuning

	Model Architecture and Configuration

	Results
	Dataset
	Data Acquisition and Preprocessing (SUA)
	Session Selection and Preprocessing (MUA and SBP)
	Behavioral Task

	Metrics
	Pearson Correlation Coefficient (CC)
	Root Mean Square Error (RMSE)
	Why We Used Both RMSE and CC

	Single-Session Evaluation of SNN across MUA, SUA and SBP
	Comparison between preprocessing methods
	Spiking activity analysis
	Training Loss analysis

	Unsupervised adaptations: Online Normalisation and PCA Alignment
	Experiment 0: No Alignment
	Experiment 1: Impact of Online Vs. Offline Normalisation
	Experiment 2: Online Normalisation Vs. Online Centering
	Experiment 3: PCA Adaptation: Rotation and Ordering
	Experiment 4: PCA Adaptation: Rotation and Scaling with Singular Values
	Why PCA-based adaptations failed

	Supervised Adaptation for Long-Term Stability
	Experiment 1: Extensive Retraining Across Sessions (Whole Model)
	Experiment 2: Short-Term Adaptations (Single Layers)

	Comparative Summary Analysis

	Conclusions and Future Works
	Bibliography

