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Abstract

Optimization via Simulation applied to biological systems
is a powerful tool for conducting large-scale, automated in
silico experiments aimed at improving real-world processes.
This field presents significant challenges, as the complexity
of the simulated biological systems results in complex, high-
dimensional, black-box functions that are difficult to optimize
algorithmically, alongside the substantial computational cost of
repeated simulations.

A preliminary phase of this work addresses the algorithm
decision problem for non-convex function optimization, propos-
ing a model that estimates the performance of different
optimization meta-heuristics on arbitrary functions using sta-
tistical Fitness Landscape Analysis measures.

The study then applies a multi-scale model of tumor growth
and cell resistance to treatments to optimize the delivery strat-
egy of tumor necrosis factors (TNF). The specific challenges
of the multi-scale model are identified and then addressed
by developing three custom algorithms. A hybrid approach
combines a population-based algorithm for broad exploration of
the search space with a noise-resistant single-state algorithm for
refining promising solutions. Two population-based algorithms
are adapted to address the specific challenges posed by the
model, resulting in two noise-resistant methods that proved
able to efficiently optimize the problem even with a limited
computational budget.
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1 Introduction

1.1 Optimization via simulation of complex biological sys-
tems

Optimization via Simulation (OvS) is a strategy used to enhance real-world pro-
cesses by first developing a model or simulation of the system of interest. Once
the system has been modeled, it can be represented as a function, where the in-
dependent variables correspond to potential decisions in the real-world process,
and the dependent variable is a measure of the desirability of the outcome. This
function is referred to as a fitness function, or sometimes loss function for min-
imization problems. Algorithms are then employed to optimize this function,
identifying the set of decision variables that yield the most desirable result.
OvS can be seen as automated in silico experimentations, and it finds applica-
tions in a variety of fields including industrial manufacturing processes [75] [31]
or design [42], healthcare [69], network engineering [74], and bioengineering [66]
[27].

Biological systems are inherently complex, rarely understood in depth, and their
study is most often empirical. In fields such as biotechnology, medicine, and drug
development, optimizing processes is often a costly, time-consuming, trial-and-
error endeavor. This is due to the high number of controllable parameters, their
poorly understood effects, and the difficulty in predicting the overall behavior
of a complex system. The introduction of simulation models enables large-scale,
low-cost in silico experiments, allowing researchers to generate insights or hy-
potheses that can be then tested experimentally [4]. For these reasons, the last
decade has seen a blooming in the development of computational models for
biological systems, including the use of process algebras, rule-based systems,
spatio-temporal models, Petri nets [12] and multi-layer Petri nets [8].
By applying optimization algorithms to these simulations, researchers can effi-
ciently explore the parameter space and improve real-world procedures without
resorting to costly large-scale in vitro explorations.

For instance, a notable application of OvS is in the design and optimization
of bioreactors. A study on the production of Poly(3-hydroxybutyrate) from
methane utilized process simulation to enhance the design of bubble column
bioreactors, demonstrating how computational techniques can streamline bio-
processes and improve yield and efficiency [2]. Similarly, biofabrication, which
involves highly complex processes with numerous parameters and a vast de-
sign space, benefits from OvS by enabling the automated design of protocols
for cell culture and tissue engineering or the improvement of existing ones [9].
These improved protocols not only accelerate the development process but also
enhance the quality of the final product [26][18].
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1.2 Multi scale model of tumor growth

The real-world use case this thesis focuses on starts with the work of M. Ponce-
de-Leon et al. [57].
The authors used OvS to optimize the supply strategy of in-vitro cancer treat-
ments, with a focus on the phenomenon of cell resistance to the therapy. Models
have been used previously to investigate the effectiveness of different delivery
schedules for tumor necrosis factors (TNF), indicating that different sets of
values for pulse period, pulse duration and concentration of TNF can lead to
effective treatments or to the emergence of tumor cell resistance to TNF [16].
Cell resistance is a complex phenomenon, originating from the interplay of dif-
ferent processes at the molecular, cellular and multi-cellular levels [29]. The
authors proposed to model the phenomenon with a multi-scale model (MSM).
MSMs allow to integrate different processes happening at different scales, mak-
ing them powerful tools to model complex phenomena [49][11]. With the aid of
multi-scale models, it is possible to simulate complex biological phenomena that
are generated from the interplay of the genotype, phenotype and multi-cellular
systems.

The inherent complexity of a multi-scale model, combined with the hybrid ap-
proach that integrates continuous, discrete, and stochastic simulations, renders
the model unsuitable for analytical study. Consequently, the model must be
treated as a black-box, where the researcher can only test various input config-
urations and observe the outcomes [21].
M. Ponce-de-Leon et al. extended an existing multi-scale model of a 3T3 fibrob-
last spheroid by integrating a molecular level simulation of the TNF receptor’s
dynamics and a simulation of the downstream propagation of the signal that
induces the TNF binding via a boolean model. The model is based on Physi-
Cell [25] and PhysiBoSS [41]. Cells are simulated as single agents, each with
its intra-cellular model. The intra-cellular model accounts for the cell cycle, the
death models (necrosis or apoptosis), the TNF receptor and the gene regulatory
network.
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Figure 1: Diagram representing the intracellular sub-models of the multi-scale
model of tumor growth. “Each individual cell agent has a kinetic model of
the TNF receptor dynamics connected to the micro-environment through the
presence of surrounding TNF and coupled to the Boolean network through a
transfer function. The Boolean network has three readout nodes (proliferation,
Non-ACD, and apoptosis), which rule the fate of the cell agent” (taken from
[57]).

Using this model, the authors tested different TNF administration strate-
gies, optimizing three different parameters: the duration and the period of the
TNF pulse and the concentration of TNF, while the value used as fitness is
the number of surviving cells at the end of the simulation. The authors first
explored the function by means of Sweep Search, testing solutions that were
randomly generated and selected from a grid covering the search space. Then
they optimized it with a Genetic Algorithm and the Covariance Matrix Adap-
tation Evolutionary Strategy.
Given the stochastic nature of the model, the authors ran each simulation three
times and averaged the fitness.
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2 Background

2.1 Optimization techniques for non-convex functions

Once the fitness function is defined, mapping the inputs of the simulation to
some measure of the desirability of its output, algorithms must be employed to
optimize it.
The process of algorithmically optimizing a function defined by a complex,
multi-scale simulator is a complex task. The function is not understood arith-
metically and thus it can be only viewed as a black-box [33]: the algorithm can
explore the search space and access the fitness values corresponding to any given
point, but has no insights to guide the search process. Additionally, due to the
inherent complexity of the modeled biological system, the fitness function itself
is intricate, making the optimization problem challenging.

This problem falls within the broader field of non-convex function optimization
[70], which focuses on efficiently finding the minimum or maximum of arbitrary
functions that define non-convex spaces. The black-box nature of the function
implies that the optimization algorithms do not rely on analytical knowledge
of the function’s characteristics or specific assumptions, nor can they employ
problem-specific heuristics. Instead, solutions are derived through a search pro-
cess rather than an analytical one. Some algorithms may utilize the function’s
gradient, if available, though the field is not limited to functions with known
gradients.
For convex functions the optimum can be typically found with gradient descent
in continuous settings and local search in discrete settings. If the gradient is
not known, it can be estimated with the finite difference method, allowing to
get arbitrarily close to the optimum. However, for non-convex functions, multi-
ple local optima exist in the search space, and the aforementioned local search
methods are likely to converge to different ones depending on the starting point.
Furthermore, without analytical insight into the function, there is no straightfor-
ward way to determine if the local optimum found by the local search procedure
is the global optimum, or to evaluate how good it is compared to other solutions
that can be found from different starting points or different algorithms.
In discrete and finite search spaces, it is theoretically possible to enumerate all
possible solutions and select the best one, and, for continuous functions, the
global optimum can be found with a brute force approach when the Lipschitz
constant L is known [30]. However, brute force approaches are computationally
unfeasible in most cases, particularly for high-dimensional functions.
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Figure 2: An example of non-convex 2D function (taken from [5])

This field addresses the inherently unsolvable problem of finding the global
optimum of any non-convex, arbitrarily complex, black-box function within a
feasible computational cost. Given the impossibility of solving this problem ex-
actly, algorithms rely on heuristic methods that typically yield solutions that
are good enough [32].
However, even when accepting algorithms that approximate rather than guar-
antee the global optimum, defining and achieving this good enough standard, as
well as determining when it applies, presents significant challenges, as we will
explore later.

Meta-Heuristics Given the unfeasible nature of exact solutions, researchers
have developed numerous algorithms known as meta-heuristics. These are
high-level procedures, or strategies, that coordinate the use of one or many
heuristics to effectively explore the solution space. While meta-heuristics are
often assumed to adapt to a wide range of functions, as we will see, this adapt-
ability is not always guaranteed.
A great number of meta-heuristics have been developed and tested to tackle
this problem, and they can be broadly divided into single state strategies and
population-based strategies, with evolutionary strategies being a sub-set of
the population-based.

Exploration vs Exploitation Before discussing specific meta-heuristics, it
is useful to reason on the high level properties of this kind of solutions. As
mentioned before, due to the black-box nature of the fitness function, each al-
gorithm frames the problem as a search process in the function space. The key
difference between these algorithms lies in the heuristic strategies they use to
guide this search.
In general, all meta-heuristics exhibit two fundamental tendencies: exploration

8



and exploitation. Exploration involves sampling new states from the search
space without prior knowledge of their fitness potential. In contrast, exploita-
tion uses information extrapolated from the previously visited states, which is
the only information about the search space available to the algorithm, to iden-
tify potentially better solutions [36].
Both exploration and exploitation are high level features, with different meta-
heuristics employing various strategies to implement them. But the balance
between these two plays a crucial role nevertheless. An exploration-heavy algo-
rithm might eventually yield excellent results but typically requires significant
time. Extreme examples, such as random sampling or enumeration, would the-
oretically find the global optimum but are extremely time-consuming. On the
other hand, an algorithm focused on exploitation will converge more quickly
but, because it explores a smaller portion of the search space, is more likely to
settle for a local, sub-optimal minimum.
A common strategy is to modulate the balance between exploration and ex-
ploitation using a schedule. The search process might begin with a strong
emphasis on exploration, sampling large areas of the search space, and then
gradually shift towards exploitation as more information is gathered. Alterna-
tively, an algorithm may focus on exploitation while it continues to find better
solutions and switch back to an exploration-oriented approach when encounter-
ing fitness plateaus in the optimization process [72].

2.1.1 Single-State meta-heuristics

Hill Climbing and Tabu Search The simplest meta-heuristic is the Hill
Climbing algorithm [20], a greedy, local search meta-heuristic that iteratively
explores the neighborhood of its current state and moves toward new states with
better fitness. Different variations can explore the entire neighborhood of a solu-
tion and move toward the best new state found (Steepest Ascent Hill Climbing)
or explore just until the first improved solution is found. Other variations can
dynamically adjust the distance from the current solution used to define the
neighborhood, ∆, allowing for larger or smaller steps during different times of
the process. All variations suffer from the same problem: being local search
strategies, they generally converge toward a nearby local optimum. An algo-
rithm built upon Hill Climbing is Hill Climbing with random restarts [20]. As
the name suggests, this simple meta-heuristics runs Hill Climbing from different
random starting points, allowing for a larger exploration of the search space. It
is more effective than a simple Hill Climbing but not particularly efficient.
Another variant of Hill Climbing is Tabu Search [58], which introduces a Tabu
list of forbidden moves, preventing it from cycling back to states already visited.
Tabu Search suffers from the same main limitation as Hill Climbing.

Simulated Annealing Simulated Annealing [64] can be interpreted as an
improved version of Hill Climbing. This meta-heuristic is characterized by a
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probabilistic acceptance criterion for the neighborhood’s states, with each state
having a probability of being accepted proportional to the observed ∆ fitness
and to a temperature parameter. A high temperature increases the acceptance
probability of states with worsening fitness.
The main idea is to start the algorithm with a high temperature, and let it
cool down as iterations go by. This means the algorithm starts with a higher
freedom to explore the surroundings, but with improving solutions still having a
higher chance of being selected, and gradually transitions to favoring more and
more improving solutions. This can allow the algorithm to escape small local
minima.
Simulated Annealing is a classic example of meta-heuristics with a scheduled
transition from an exploration oriented to an exploitation oriented strategy.
But the algorithm requires the temperature as well as the cooling schedule to
be specified as hyper-parameters, which require manual fine-tuning. It is also
greatly affected by the chosen starting point, as its exploration capabilities are
still limited.

2.1.2 Population-Based meta-heuristics

Population-based algorithms maintain a set of candidate solutions, or a pop-
ulation, at each step of the optimization process. Each algorithm employs its
own strategy to evolve the population and explore the search space. Many of
these population-based meta-heuristics are bio mimetic, inspired by the natural
exploratory behavior of animal species, which is why they are often referred
to as Swarm Intelligence algorithms. Evolutionary algorithms, differently, are
explicitly inspired by the principles of natural evolution. They rely on defined
operators for parent selection, offspring generation, mutation, and survival [53].

Particle Swarm Optimization - PSO Particle Swarm Optimization (PSO)
is one of the most successful global optimization meta-heuristics, inspired by the
social behavior of animals such as flocks of birds. It is known for its efficiency
and performance. PSO explores the solution space by maintaining a population
of candidate solutions, referred to as the swarm of particles, which function as
a decentralized and self-organizing system. Every particle in the swarm acts as
an agent, capable of making its own decisions. The population is initially ran-
domly distributed across the search space, with each particle assigned a random
speed and direction. During each iteration, every particle updates its speed
and direction based on two factors: the best solution found by the entire swarm
(global best) and the best solution found by the particle itself (local best). These
influences are controlled by two hyper-parameters, the learning factors, which
determine the weight of each direction. The two learning factors are also called
the cognitive coefficient and the social coefficient. Additionally, random noise
is introduced at each iteration to ensure that the contribution of these two di-
rections is not deterministic. By being attracted to both their local optimum
and the global optimum, PSO effectively employs both local and global search
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strategies. The random initialization of particles, combined with their evolving
speed and direction, facilitates a thorough exploration of the search space [53].
The hyper-parameters needed by PSO are the population size, the cognitive and
social coefficients and the inertia, or weights.

Artificial Bee Colony - ABC Artificial Bee Colony (ABC) is a global op-
timization meta-heuristic developed in 2005, inspired by the social behavior of
bees searching for food sources. It has gained attention for its strong perfor-
mance and the simplicity of its hyper-parameter tuning. In ABC, the colony
of bees is divided into three groups: scout bees, employed bees, and onlooker
bees. Scout bees are responsible for the exploration phase, randomly searching
the solution space for new promising, high-fitness areas known as food sources.
Employed bees focus on exploitation, exploring the vicinity of a discovered food
source to refine and improve the solution. Onlooker bees choose a food source
based on a probability proportional to its perceived quality and contribute to
the selection and further exploitation of promising solutions. Food sources are
abandoned after a fixed number of attempts without improvements, prompting
employed bees to either become scouts and search for new areas or act as on-
lookers to assist in the selection process [38].

ABC explicitly defines the exploration/exploitation trade-off, assigning differ-
ent agents to the different roles. The algorithm modulates the trade-off based
on whether exploitation is producing improved results or not. This modula-
tion can be observed by plotting the average distance between solutions in the
colony at different iterations: the population diversity shows an oscillatory be-
havior, with the distance decreasing when food sources are being exploited and
increasing again when new sources need to be found (figure 3).

Figure 3: Average distance between individuals in the bee colony at different
iterations

Genetic Algorithms - GA While the concept of artificial evolution steams
from the late work of Alan Turing in the 1950s, Genetic Algorithms (GA) were
formalized and popularized as optimization tools by John Holland in the early
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70s [34][35]. They have since become one of the most widely used evolutionary
meta-heuristics and optimization algorithms. Just as natural evolution can be
seen as a search process that explores the space of possible genetic sequences
to produce fitter individuals, Genetic Algorithms apply this principle to generic
search spaces and fitness functions.
The first step in implementing a GA is to represent candidate solutions as a
genome, a sequence of genes. Genes are defined by their alleles, the different
states they can take. Traditionally, genes are represented as bits, but any data
type can be used. For instance, a continuous function with N dimensions can
be represented either as a sequence of N genes, defined as 32-bit floating point
numbers, or as a sequence of N*32 binary genes.

After defining the genome and alleles, the process of biological evolution is sim-
ulated using three key operators: selection, crossover and mutation. The
selection operator selects the fittest individuals to serve as parents for the next
generation. The crossover operator combines the genomes of two parents to
create an offspring solution, and the mutation operator introduces random
perturbations to the genome of the offspring solutions. These operators can
be implemented in various ways, but the simplest approach uses a steady-state
selection, where the fittest N individuals are chosen as parents, while the worst
performing ones are removed from the population, and a single point crossover,
where the genome of one parent is taken, and a number of sequential genes are
replaced by those of the other parent. The mutation operator varies depending
on the data type of the genes: bit flipping is common for binary genes, while
Gaussian perturbation or uniform sampling is typically used for numeric genes
[47][40].

GA are among the most theoretically rich optimization techniques, with founda-
tional work beginning from J. Holland himself. From the perspective of the ex-
ploration/exploitation trade-off, GA exploit existing solutions through crossover
and explore the search space via random mutations. However, the theoretical
foundation of GA is rooted in the concept of schemas. A schema is a sequence
of symbols drawn from the set of alleles, plus wildcards represented by the sym-
bol *. The order of a schema is the number of contained symbols that are not
wildcards. The instances of a schema are genomes that match the sequence
described by the schema, with wildcard positions allowing for any allele value.
The evolution of a population is thus interpreted as a process of selecting and
amplifying the correct schemas. Given that any genome with N genes is in-
stance of 2N schemas, a population of M individuals will contain between 2N

and M ∗ 2N schemas. As the algorithm evaluates the fitness of the M solutions,
it implicitly estimates the fitness of all of the schemas it is instance of. Any
given schema’s fitness is estimated as the average fitness of the individuals that
are instances of it. The schema theorem posits that the selection and crossover
operators gradually amplify schemas that produce high-fitness solutions. The
building block hypothesis suggests that fit solutions are composed of fit high
order schemas, which in turn are built from fit lower order schemas. The mu-
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tation operator introduces random perturbations to the genome, enabling new
and potentially unseen schemas to emerge in the population and reducing the
risk of a collapse in population diversity [47][40].

GA are complex to implement and tune. They require careful decisions regard-
ing the encoding of solutions into a genome, as well as the design of crossover,
selection, and mutation operators. Its hyper-parameters, such as mutation prob-
ability, population size, the number of parents involved in mating, and strategies
for population replacement or the introduction of elitism, which always preserves
the N best individuals across generations, can deeply affect its performances.
Different configurations can lead to a collapse in the population diversity and
premature convergence, making it hard to plan the exploration/exploitation
trade-off based on the computational budget available.

Differential Evolution - DE Differential Evolution (DE) [56] is another
population-based meta-heuristic. As it uses the mutation and crossover opera-
tors, it is considered an evolutionary algorithm too, but compared to Genetic
Algorithms it drifts apart from the biological concept of genetic evolution.
DE encodes individual solutions as vectors of parameters. The main operator
guiding the evolution process is the mutation operator, which produces one mu-
tant vector from three solutions randomly chosen from the population. One of
them is selected as a pivotal point, to which the difference between the other two,
scaled by a factor F, is summed. The crossover operator then mixes the mu-
tant vector with the parameters of the original one, generating the trial vector :
a hyper-parameter determines the likelihood that a component of the mutant
vector will replace the corresponding component in the target vector.
Differently from GA, the selection operator applies only to the trial vector and
to its parent, preserving the one with better fitness.

DE is generally considered a more exploration-oriented algorithm, as its crossover
operator acts on randomly chosen solutions, which naturally maintains a higher
population diversity.
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2.2 Algorithm decision problem and no free lunch theo-
rem

The meta-heuristics discussed so far are among the most widely used, but they
represent only a small fraction of a highly active research field. Over 500 meta-
heuristics exist, with more than 350 developed in the last decade [63]. This
proliferation of new algorithms, often simple variations of existing ones or novel
bio-mimetic algorithms inspired by various natural phenomena [14], does not
ease the task of optimizing a specific problem in the absence of clear guidelines
on which algorithm is most suited for the specific problem at hand. K. Rajwar
et al. [63] note that the performance of the same meta-heuristic can vary greatly
across different problems, with no explicit explanation of why. This variability
undermines the value of comparisons based solely on benchmark function, as
the effectiveness of an algorithm depends heavily on the specific fitness function
being optimized. Additionally, once an algorithm is selected, its performance is
significantly affected by the choice of its hyper-parameters, which can be opti-
mized only by means of empirical experimentation.

This issue is encapsulated by the no free lunch theorem: no single algorithm
can be universally optimal for all problems. The theorem states that every
algorithm that searches for the global optimum of a fitness function performs
exactly the same when averaged over all possible fitness functions [13]. This
introduces the algorithm decision problem: determining how to choose the most
appropriate meta-heuristic for a given fitness function.

2.2.1 Analysis on the characteristics of different meta-heuristics

Extensive research has been conducted to compare the performance of different
meta-heuristics, and produce at least some guidelines for the algorithm decision
problem.
H.R. Boveiri et al. [14] conducted a large number of experiments over 20 differ-
ent meta-heuristics, producing some theoretical results. But the very authors of
this paper highlighted the limitations of their approach: one of their experimen-
tal results suggested that the GA converge faster, and are thus preferable for low
budget optimization, while the ABC algorithms take longer time but converge
to better solutions; but the authors recognized that the behavior of GA with
a larger population and a higher mutation probability would likely maintain a
higher population diversity, allowing for more exploration and possibly reaching
similar performances to ABC, or even better.
K. Rajwar et al. [62] focused on the structural bias of the different meta-
heuristics. The authors reckon that population-based algorithms can be biased
toward certain areas of the search space, such as the center. They then devel-
oped a novel methodology to detect structural bias and tested it on 6 different
meta-heuristics, including GA, DE and PSO, suggesting that DE shows the
smallest amount of bias.
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A. Thomaser et al. [73] tried a different strategy. Observing that benchmark
functions are rarely predictive of real world performances, they built custom
made benchmarks, tailored to simulate characteristics of their own real world
problem. The process is automatic, as benchmarks are randomly generated
functions, and their similarity to the fitness function of interest is estimated
from a set of statistical measures. This can be a powerful approach: if the real
fitness function is expensive to evaluate, a custom benchmark function can allow
for large scale experiments on the best algorithm and configuration.

Genetic Algorithms, being one of the oldest and most widely used meta-heuristics,
received a lot of attention over the years. Researchers have tried to describe the
features of a problem’s search space that can influence the success of GA. The
most treated concept is deception: for certain functions and certain genome en-
codings, low order schemas that are not present in the high order schema of the
best solution will produce small fitness improvements, leading GA to preserve
them and leading the search away from the global optimum. Another source of
difficulty is mutually conflicting solutions: two or more areas of high fitness with
no common schemas will lead GAs to produce many useless, low fitness hybrids
[52]. Moreover, as mentioned earlier, GA requires an explicit decision on how to
encode solutions into a genome. This decision shapes the search space that the
algorithm sees, exerting great influence on the optimization performances.[28]
While those are interesting theoretical results, they don’t really help tackle the
algorithm selection problem, as there is no way to easily estimate properties as
deception in a black-box function.

2.2.2 Exploitation strategies and implicit assumptions

To better understand the algorithm decision problem, it’s useful to step back
from the rich, specific literature and consider it from a broader perspective. All
meta-heuristics are characterized by two key features: exploration and exploita-
tion. Meta-heuristics explore the search space to some degree randomly, due to
the lack of prior information to guide the search. They then use the informa-
tion gained from these random samples to heuristically direct the exploration
towards more promising areas.
Different algorithms implement different heuristic strategies for exploiting the
information found. For instance, the Artificial Bee Colony (ABC) algorithm ex-
plores the vicinity of promising solutions in depth and, based on certain thresh-
olds, decides when an area is no longer worth exploring. Genetic Algorithms
(GA) recombine promising solutions with their crossover operator, whereas Dif-
ferential Evolution (DE) performs recombination based on the geometric dis-
tance between solutions.
When an algorithm exploits its currently available information using a given
heuristics, it implicitly makes assumptions about certain properties of the search
space.
It is interesting to observe that bio mimetic algorithms, inspired by the behavior
of animals solving real-world problems, implicitly inherit the assumptions from
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the real-world problem of the animals. For example, the Artificial Bee Colony
(ABC) algorithm, which mimics the foraging behavior of bees, assumes that the
vicinity of high-fitness points is likely to contain other high-fitness points [6].
This assumption works well for the natural distribution of flowers in a physical
environment, which bees have evolved to exploit effectively. However, this as-
sumption does not necessarily hold for an industrial optimization problem or a
combinatorial, NP-Complete problem, because there is no guarantee that these
problems will exhibit the same spatial characteristics as the natural environ-
ments that inspired the algorithm.
Genetic Algorithms make slightly more complex assumptions, described by the
building block hypothesis, but they nevertheless are simply assumptions that are
not guaranteed to hold for any problem.
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2.3 Optimization via Simulation

OvS as a field introduces a great deal of complexity, with the need to build a
reliable simulation to describe the real world process and quantify the desired
outcome into a continuous fitness function; but it also introduces new difficul-
ties into the optimization procedure. Most optimization meta-heuristics require
a large number of samples from the search space, and the algorithm decision
problem and the hyper-parameters optimization require running multiple exper-
iments. But in most cases simulators are expensive to run, making the whole
process slow and challenging [17]. Simulators can also introduce some extent
of randomness, defining a stochastic fitness function. The noise in the fitness
function influences the search strategies of the meta-heuristics [3].
A widespread solution for the high cost of running the simulator is introducing
meta-models, or surrogate models. These meta-models are regression models
that approximate the behavior of the simulator’s fitness function, allowing for a
lower computational cost but introducing additional noise [1]. The choice of the
type of meta-model allows for any regression model to be used, but most works
seem to opt for a fully connected neural network. Other possible variations are
how to train the meta-models and how to introduce them in the optimization
procedure. For example the meta-model can be trained before starting the op-
timization process, using a set of sampled points and the corresponding fitness,
but it can also be trained on the solutions explored by the algorithm during the
last N iterations, taking advantage of a locality assumption for which a model
trained on a group of solutions will provide good results for solutions that are
similar to them and reduce its performance as solutions get further away from
its training set. The exact role of the meta-model in the optimization process
can vary from entirely substituting the simulator during the optimization step
[46] to being used to filter out unpromising solutions [75].
Other works use domain specific knowledge to guide the optimization process,
biasing the initial population toward promising areas or clustering together in-
dependent variables that will have similar effects in the outcome [75]. This is
another powerful approach, as the algorithms see the fitness function as a black-
box, the researchers may want to exploit the knowledge they already have.

Overall, to this day the algorithm decision problem is unsolved, and optimizing
complex functions, especially if defined by a computationally expensive simula-
tor, is a challenging and time-consuming task, mostly guided by trial-and-errors.
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3 Methodology

The work of this thesis is organized into two main parts.
The first part consists of a preliminary work addressing the algorithm decision
problem in the general context by developing a meta-optimization model. This
model utilizes statistical measures to describe the fitness functions’ landscapes
and predicts the performance of various optimization algorithms.
The second part focuses on the real-world optimization via simulation problem of
themulti-scale model of tumor growth. The simulator presents specific traits and
challenges; after having tested the most common optimization meta-heuristics
and identified the source of their difficulty, three custom algorithms have been
developed to tackle the problems posed by the model.
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3.1 Meta-Optimization model

As mentioned in the Introduction, although there is a wide variety of meta-
heuristic algorithms available for addressing non-convex optimization problems,
no significant guidelines exist to assist in selecting the most suitable algorithm
for a specific problem.
The first part of this work aims to develop a heuristic solution that guides the
selection of the appropriate algorithm for a given fitness function, eliminat-
ing the need for extensive experimental testing. This solution is presented as a
meta-optimization model, which takes the fitness function as input and provides
estimates of how well different meta-heuristics might perform with that function.
The meta-optimization model can be described by the tuple: (F,A,D(f),M(D(f), a))

• F: universe of functions that can be optimized.

• A: set of meta-heuristics that can be used to optimize the functions.

• D(f): descriptor function. From a given function f ∈ F , D(f) → Rn

produces a set of measures that describe properties of F . For the meta-
model to be practically useful, D(f) must be computable with a relatively
small number of samples from the function f .

• M(D(f), a): model, for f ∈ F, a ∈ A,M(D(f), a)→ R maps the descrip-
tions produced by D on f and a given algorithm to a predicted perfor-
mance score.

3.1.1 Descriptor D and Fitness Landscape Analysis

The first and most critical component of the meta-optimization model is the
descriptor D. D must compute measures of the function’s properties that can
explain the varying performances of different meta-heuristics.
This presents a dual challenge: the measures need to be rich enough in informa-
tion to effectively characterize the function and guide algorithm selection. At
the same time, they must be coarse enough to be computed from a small set of
samples, without requiring extensive exploration of the function’s space.
A powerful set of tools to solve this problem is Fitness Landscape Analysis.
The concept was first defined by Sewell Wright in 1932 [76] within the context
of evolutionary biology. Wright posited that it is possible to define a field en-
compassing all possible combinations of genes. This field includes all existing
biological individuals, which are located as clusters within a much larger space
of possibilities, as well as any potential variation of them.
This theoretical field can be used to understand the dynamics of the evolution-
ary process. Some evolutionary pathways are more likely, while others, though
desirable, may be nearly impossible to achieve. The landscape is character-
ized by gradients, peaks (local minima and maxima), and valleys (relatively flat
areas with low fitness that evolution is unlikely to traverse). While Wright’s
work was not originally related to optimization algorithms or even computer
science, it effectively describes the shapes and properties of the search space of
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a non-convex fitness function. It also provides insight into how this landscape
influences the trajectories that evolution, or any specified search strategy, tends
to follow.

This concept has been revived and explicitly adapted to non-convex optimiza-
tion decades later.
P.F. Stadler formalized the concept of fitness landscape of a function [67] in
2002, describing it as the tuple (X,N(x), f(x)), where

• X: set of feasible solutions, or the search space.

• N(x): neighborhood function.

• f (x): fitness function.

Note that the neighborhood function N(x) implicitly defines how the feasible
solutions of X are distributed in the landscape. Since we deal with continuous or
discrete numeric functions, it is intuitive to reason about the distance between
solutions as geometrical distance. But in the optimization process, the operator
N depends on the algorithm used and its own notion of neighborhood. For
PSO, Hill Climbing and to some extent Differential Evolution it makes sense to
reason within geometrical distance, while for GA the actual distance measure
depends on how the solutions are encoded in the genome. Figure 4 highlights
how different distance metrics influence the shape of the search space.
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Figure 4: With a geometric distance measure, the global optimum is distant
from both local clusters, similarly to a Needle in a Haystack problem. With a
GA implementation that encodes the two numeric components of the vector in
a two-genes genome, it is only one crossover operation away.

On the space defined by (X,N(x), f(x)) it is possible to define qualitative
characteristics of interest:

• Modality: number of local optima.

• Basins of attraction: given a local optimum, its basin of attraction is
the area surrounding it from which a local search algorithm converges into
the local optima. Basins of attraction can be strong, if the local search
will converge from any points in them, or weak, if it will converge for only
large parts of them. Besides the size of the basin of attraction, its shape
can be of interest.

• Funnels: presence of clusters of local optima surrounding the global op-
timum. They can be exploited by the search algorithm but they can also
cause premature convergence to a sub-optimal solution. The protein fold-
ing problem is a fine example of an optimization landscape characterized
by funnels [54].

• Distribution of local optima: relates to the concept of funnels. How
local optima are distributed in the search space influences the algorithm
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performances. A funnel around the global optimum can be exploited by
an algorithm, while clusters of local optima far from the global optima can
mislead it. An isolated global optimum defines the needle in a haystack
problem, which is basically unsolvable.

• Ruggedness, neutrality: they refer to the shape of the fitness surface.
A rugged surface is characterized by many small “ups and downs”, while
neutrality indicates areas of low or null variation. Both ruggedness and
neutrality create challenges for the search algorithm. A rugged surface can
introduce noise in the exploitation procedure, while a neutral landscape
offers no information on promising directions. Both measures depend on
some concept of scale: they can be considered on a very small, local scale
or on a bigger, more global scale.

• Deception: it is a strongly algorithm-dependent property. It refers to
characteristics of the fitness landscape that trick the algorithm into moving
away from the optimal solution. The concept has been used mostly for
GA [52], but a simpler way to visualize it is a local gradient carrying a
Hill Climbing toward a local optimum instead of the global optimum, or
an isolated cluster of local minima consuming the resources of an ABC
optimization procedure.

These characteristics interact together forming unique optimization land-
scapes for different functions. For instance, the widely known Travelling Sales-
man Problem (TSP) shows a large basin of attraction surrounding its global
optimum, together with a highly rugged, noisy surface, with the variance of the
noise growing monotonously with the distance from the global optimum. High
quality local optima are scattered across the search space with low correlation
between each other [78].

From these qualitative descriptions of the fitness landscape, a significant num-
ber of statistical measures have been defined [44][45]. Each measure uses a set
of sampled points from the function’s space to estimate the properties of its
fitness landscape.

The descriptor D computes a number of FLA measures, both implemented
internally and included from the R package Flacco [39].

Dimensionality: the number of independent variables.

First Entropic Measure (FEM): measure for the ruggedness or the neu-
trality of the fitness landscape. It is based on a random walk, and it labels
each consecutive three points as either rugged, smooth or neutral, based on the
observed change in the fitness values. The ruggedness or smoothness of the
landscape is then estimated with a measure of entropy on the sequence of la-
bels. The operation is repeated with different step sizes on the random walk,
producing different measures on different scales considered.
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Fitness Distance Correlation (FDC): estimate for the distribution of local
minima in the search space and the presence of funnels. It is based on a set
of randomly sampled points: for each point the distance to the best known
optimum is considered, and the covariance between individual fitness and its
distance is considered. It is computed globally, with points sampled from the
entire search space, and locally, for local subsets of the original sample. A set
of measures is extracted, including the global FDC and average, maximum,
minimum and std of local FDC estimates.

Dispersion: characterizes global topology and estimates the presence of fun-
nels. It is based on a measure of dispersion defined as the average pair-wise
distance between points. Starting from a set of randomly sampled points, the
measure iteratively restricts them with more and more restrictive fitness thresh-
olds and records the variation in the dispersion.

Jensen’s Inequality Ratio: measure for non-convexity of the fitness land-
scape. It is based on the Jensen’s inequality, which defines convex functions.
Given a set of randomly sampled points, it computes the percentage of ones for
which the inequality holds.

Meta-models: estimate of global structure properties such as separability,
multi-modality or existence of plateaus [48] based on the training of a meta-
model. Both a strong (Random Forest) and weak (Linear Regressor) model are
trained, and both the training and validation errors are considered.

Measures by Flacco packages: on top of the aforementioned techniques,
the Flacco package [39] has been included to provide additional measures:

• Cell mapping features: the search space is discretized in a number of
cells. On these cells, the following measures are extracted:

– Angle: considers the best and worst solutions inside the cell and
measure their angle from the center.

– Cell convexity: estimate the convexity of the search space by consid-
ering combinations of neighboring cells.

– Gradient homogeneity: for each point in a cell and its closest neigh-
bor, a vector is computed, directed toward the highest fitness between
the two. The vectors are normalized, summed up and divided by the
maximum possible vector length. In case of a randomly distributed
objective values, and thus vectors pointing in random directions, the
result is close to zero.

– Generalized cell mappings: the function space is reduced to one so-
lution for each cell, with three different approaches: min, max and
mean. Then the transition probabilities between cells are computed
as interpreted as absorbing Markov chains. Each cell is labeled either
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as an attractor cell (which leads only to itself), uncertain cell (which
can lead to different attractors) and basin of attractions, set of cells
that lead to the same attractor.

• Information content-based features: set of estimates for smoothness, rugged-
ness and neutrality.

• Nearest-better features: set of heuristic measures to estimate the presence
and size of basins of attraction.

• Principal components features: computes a covariance matrix on the sam-
pled points and corresponding fitness and the number of components re-
quired to explain most of the observed variability.

Figure 5: Example on how gradient homogeneity is computed by Flacco in a
single cell. (taken from [39])

Additionally, some algorithm-specific, non FLA-related measures were com-
puted as well:

Geometrical Evolvability Measure: simple measure that uses geometrical
distance to define neighborhoods over sampled points and estimate the percent-
age of them showing improvements.
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LPP: another evolvability measure based on geometrical distance. For differ-
ent values of M , the measure computes a binary string where at each position i
the value is 1 if the ith closest point has better fitness, 0 otherwise. The string
is then parsed as a binary number and used to score the solution. High scores
indicate that the solution is immediately surrounded by improving solutions,
low scores indicate that improving solutions can be found in the surroundings
but small peaks must be traversed, and a value of 0 indicates a local optima.

GA and DE-specific evolvability measures: running exactly 1 iteration
of the optimization algorithm with a small random population allows to extract
the following measures: EAP is the difference in mean fitness between starting
and end population; EPP is a binary measure indicating the presence of an
improvement in the best solution of the population; PER is the percentage of
the individuals showing an improvement. These measures can be taken multiple
times, producing both averages and standard deviations.

3.1.2 Algorithm set A

The meta-optimization model as defined in section 3.1 is characterized by a set
of optimization algorithms A that the model supports.
The four most used meta-heuristics have been included in the meta-optimization
model, each one with a few variations in the hyper-parameters. Different con-
figurations of the same algorithm are seen as completely different algorithms by
the model.

• GA: based on the open-source package PyGAD [24], genetic algorithms
are included with different crossover (single point, scattered, uniform)
and parent selection (steady-state, roulette-wheel, tournament) operators.
The mutation probability is set to a fixed 0.3 on a single gene, the popu-
lation size to 32 and the number of parents mating to 6.

• DE: differential evolution is implemented by the scipy optimize package
[65], and is included with different strategies to compute the trial vector.
The mutation strategy can either start from a random solution or from the
best one, and use the distance vector between two or four other random
solutions. The population size is fixed at 15.

• ABC: artificial bee colony is implemented by the open-source package
beecolpy [55]. The package has been forked and customized for this specific
work. The meta-heuristic is included with a fixed colony size of 60, of
which 30 acts as scouts.

• PSO: implemented by the package PySwarms [51], Particle Swarm Opti-
mization has been included with a population size of 10 or 30 and a local
or global-oriented strategy.
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Another important aspect of any optimization algorithm is runtime. None
of the algorithms considered have a default stopping criterion, and while the fit-
ness improvement is likely to plateau at some point, the exact time required for
this to happen can not be forgone. To ensure fair comparisons, each algorithm
is bound to a maximum budget of 10, 000 samples from the fitness function,
after which they are stopped.
The meta-model is not meant to estimate the efficiency of different algorithms,
but is limited to estimating their performances given a fixed budget. How-
ever, its extensibility allows to easily include new algorithms, allowing to add
variations with different budgets and predict whether an increment in runtime
corresponds to a worthy improvement in the solution’s fitness, or to re-train the
model for different budget scenarios.

3.1.3 Function set F

Another component of the meta-optimization model, defined in section 3.1, is
the universe of functions F.

To build a more reliable model, the universe of functions has been split into
two sets, one for deterministic functions and one for stochastic functions. On
the two sets of functions, FD and FND, two corresponding models have been
trained.
In both cases there are no explicit requirements for a function to be usable by
the meta-model except for producing a real number as output and having known
ranges and no constraints for the independent variables.
However the training set is made of functions with dimensionality between 2
and 6, and its generalization capabilities to functions with higher dimensional-
ity haven’t been tested. For functions with more than 6 independent variables
it is recommended to re-train the model on a more suitable dataset. As for the
ranges of the independent and dependent variables, to ensure enough diversity
the model has been trained on functions with a wide variety of ranges, between
1 and 5000. For the non-deterministic dataset, randomness is introduced by
adding or multiplying noise from a uniform distribution; the amount of noise
introduced is always limited, and as we’ll see later none of the optimization
algorithms currently included in the meta-model is suitable for higher level of
noise.
The set of functions used to build the training dataset of the model consists of
a set of 201 benchmark functions, both implemented directly or taken from an
open source benchmark functions set [71].

Name Dimensionalities Input domain

Rana 2, 4, 6 [−20, 20]

Rana 2, 4, 6 [−60, 60]

Rana 2, 4, 6 [−120, 120]
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Name Dimensionalities Input domain

Sin 2, 4, 6 [−10, 10]

Sin 2, 4, 6 [−20, 20]

Sin 2, 4, 6 [−30, 30]

Schaffers 2 [−2, 2]

Schaffers 2 [−3, 3]

Schaffers 2 [−10, 10]

Weierstrass 2, 4, 6 [−1, 1]

Weierstrass 2, 4, 6 [−4, 4]

Weierstrass 2, 4, 6 [−10, 10]

DifferentPowers 2, 4, 6 [−10, 10]

DifferentPowers 2, 4, 6 [−20, 20]

BentCigar 2, 4, 6 [−5, 5]

Discus 2, 4, 6 [−5, 5]

Linear Slope 2, 4, 6 [−50, 50]

Ellipsoidal 2, 4, 6 [−30, 30]

Thevenot 2, 3, 4, 5 [−6.28, 6.28]

Ackley 2, 3, 4, 5 [−32, 32]

Ackley N. 2 2 [−32, 32]

Ackley N. 3 2 [−32, 32]

Ackley N. 4 2, 3, 4, 5 [−35, 35]

Adjiman 2 [−1, 2]

Alpine N. 1 2, 3, 4, 5 [0, 10]

Alpine N. 2 2, 3, 4, 5 [0, 10]

Bartels 2 [−500, 500]

Beale 2 [−4.5, 4.5]

Bird 2 [−2π, 2π]

Bohachevsky N. 1 2 [−100, 100]

Bohachevsky N. 2 2 [−100, 100]

Bohachevsky N. 3 2 [−50, 50]

Booth 2 [−10, 10]
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Name Dimensionalities Input domain

Branin 2 [−5, 10]

Brent 2 [−20, 0]

Bukin N. 6 2 [−15,−5]

Colville 4 [−10, 10]

Cross-in-Tray 2 [−10, 10]

De Jong N. 5 2 [−65.536, 65.536]

Deckkers-Aarts 2 [−20, 20]

Dixon Price 2, 3, 4, 5 [−10, 10]

Drop-Wave 2 [−5.2, 5.2]

Egg Crate 2 [−5, 5]

Egg Holder 2 [−512, 512]

Exponential 2, 3, 4, 5 [−1, 1]

Forrester 1 [0, 1]

GoldsteinPrice 2 [−2, 2]

GramacyLee 1 [−0.5, 2.5]

Griewank 2, 3, 4, 5 [−600, 600]

HappyCat 2, 3, 4, 5 [−2, 2]

Himmelblau 2 [−6, 6]

HolderTable 2 [−10, 10]

Keane 2 [−10, 10]

Langermann 2 [0, 10]

Leon 2 [0, 10]

LevyN13 2 [−10, 10]

Matyas 2 [−10, 10]

Thevenot 2, 3, 4, 5 [−2π, 2π]

McCormick 2 [−1.5, 4]

Michalewicz 2, 3, 4, 5 [0, π]

Periodic 2, 3, 4, 5 [−10, 10]

Perm0dBeta 2, 3, 4, 5 [−d, d]

PermdBeta 2, 3, 4, 5 [−d, d]
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Name Dimensionalities Input domain

Powell 2, 3, 4, 5 [−1, 1]

Qing 2, 3, 4, 5 [−500, 500]

Quartic 2, 3, 4, 5 [−1.28, 1.28]

Rastrigin 2, 3, 4, 5 [−5.12, 5.12]

Rastrigin 2, 3, 4, 5 [−30, 30]

Rastrigin 2, 3, 4, 5 [−40, 40]

Rastrigin 2, 3, 4, 5 [−60, 60]

Ridge 2, 3, 4, 5 [−5, 5]

Rosenbrock 2, 3, 4, 5 [−5, 10]

Rotated-Hyper-Ellipsoid 2, 3, 4, 5 [−65.536, 65.536]

Salomon 2, 3, 4, 5 [−100, 100]

Salomon 2, 3, 4, 5 [−5, 5]

SchafferN1 2 [−100, 100]

SchafferN2 2 [−100, 100]

SchafferN3 2 [−100, 100]

SchafferN4 2 [−100, 100]

Schwefel 2, 3, 4, 5 [−500, 500]

Schwefel2 20 2, 3, 4, 5 [−100, 100]

Schwefel 2.21 2, 3, 4, 5 [−100, 100]

Schwefel 2.22 2, 3, 4, 5 [−100, 100]

Schwefel 2.23 2, 3, 4, 5 [−10, 10]

Shekel 4 [0, 10]

Shubert 2, 3, 4, 5 [−10, 10]

Shubert N. 3 2, 3, 4, 5 [−10, 10]

Shubert N. 4 2, 3, 4, 5 [−10, 10]

Sphere 2, 3, 4, 5 [−5.12, 5.12]

Styblinski Tank 2, 3, 4, 5 [−5, 5]

Sum Squares 2, 3, 4, 5 [−10, 10]

Three-Hump 2 [−5, 5]

Trid 2, 3, 4, 5 [−d2, d2]
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Name Dimensionalities Input domain

Wolfe 3 [0, 2]

Xin She Yang 2, 3, 4, 5 [−5, 5]

Xin She Yang N.2 2, 3, 4, 5 [−2π, 2π]

Xin She Yang N.3 2, 3, 4, 5 [−2π, 2π]

Xin-She Yang N.4 2, 3, 4, 5 [−10, 10]

Zakharov 2, 3, 4, 5 [−5, 10]

Table 1: Functions included in the training dataset F before data augmentation.
Some functions appear with multiple allowed input domains.

From this early set, the actual dataset of functions is expanded by apply-
ing random transformations, such as rotations, scale, and traslations, to the
function space, and randomly producing weighted sums or multiplications of
functions, culminating in 3216 functions in total. This kind of data augmenta-
tion improves the model generalizability because optimization algorithms can be
influenced by rotations and traslations of functions [62] [56], and the recursive
process of defining new functions as sums or multiplications of previously defined
ones (that could be themselves sums or products of other functions) produces
a high variability of function landscapes. For the non-deterministic version of
the model, the generated set of functions is further wrapped into stochastic
functions that add or multiply noise to them. The total set of functions for the
non-deterministic version is 6232.

Figure 6: Examples of composite functions from the dataset. The first function
is a sum between the Schwefel function on range [-10, 10] and the Weierstrass
function on range [-4, 4]. The second is a multiplication between the Schaffers
function on range [-10, 10] and the Weierstrass function on range [-4, 4].
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3.1.4 Building the dataset and training process

Having defined the set of algorithms A, the universe of functions F and a repre-
sentative subset of it Ftrain and the descriptor D, the training dataset is defined
as a set of tuples (a,D(f), Score(a, f)) where

• a is a specific algorithm

• D(f) is the FDA description of f

• Score(a, f) is a performance score of algorithm a on f .

The function Score(a, f) hasn’t been mentioned yet. Once the function f has
been optimized by a set of different algorithms A, the difference in the fitness of
their respective best solutions can be observed. Building a regression model on
these exact values is likely impossible, as they depend not only on the algorithms’
performances but also on the ranges of the specific fitness functions, which is
unlikely to be explained by the FLA measures, and not useful anyway for the
purpose of the meta-optimization model.
For this reason, it is useful to convert the raw fitness values into standardized
scores that are independent from the actual fitness range of the functions f .
Two different Score functions have been tried:

• Comparison-oriented: linearly scales the best fitness found by each al-
gorithm so that the best performing algorithm will score 1, and the worst
will score 0. This measure maintains information on how each algorithm
performs compared to the others, but discards information about the fit-
ness range, the fitness average and the overall difference in performances
between the best and the worst.

• Performance-oriented: linearly scales the best fitness found by each
algorithm using the percentiles extracted from the fitness values. Solutions
with fitness equal to the 75th percentile equal to 0 and solutions with
fitness equal to the 25th percentile equal to 1. This measure discards
information about the overall fitness ranges and the fitness average, but
maintains information about individual algorithms performances.

The set of tuples(a,D(f), Score(a, f)) is then computed for each combination
of algorithms in A and functions in F.
First the FLA measures are computed on each function in F, then each function
is optimized by each algorithm, and the scores are computed from the results.
To reduce the effect of the intrinsic randomness of these algorithms, each fitness
score is averaged over 4 independent runs.

3.1.5 Model M and training process

The model has to estimate the mapping (a,D(f))→ Score(a, f) and is trained
on the set of tuples (a,D(f), Score(a, f)).
This is a simple regression problem, and a number of models implemented in
sklearn have been tried with increasing levels of complexity:
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Figure 7: Average and variance of full comparison oriented scores of different
algorithms over Ftrain.

• Linear Regressor.

• Support Vector Regressor with linear, polynomial and radial basis
function kernels.

• Random Forest Regressor tested with different estimator sizes and
criteria.

• Stacking Ensemble model consisting in 5 base models (SVR with poly-
nomial kernel, SVR with radial basis function kernel, random forest with
50, 100 and 150 estimators) and a random forest regressor as meta-model.

A neural network regressor has been tested but later discarded because of the
difficulty of using FDA measures, which show a high variability and a high num-
ber of outliers, as inputs.
The different models have been trained independently on the two sets of func-
tions FD and FND and for the two score functions.
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3.2 Optimization of Multi-Scale Tumor Growth simula-
tion

The second part of this thesis deals with the specific problem of optimizing the
supply strategy for cancer treatments using the tumor growth model introduced
in section 1.2. The fitness function is built upon the PhysiBoSs 2.0 simulator
used by [57]; the independent variables to optimize are the duration and period
of the TNF pulses, the concentration of TNF and the depth of the tumor at
which the TNF is delivered. The fitness value used is the number of tumor cells
alive at the end of the simulation, defining a minimization problem.
The meta-optimization model predicts similar results for most of the configu-
rations of GA and DE, a slightly lower prediction for ABC and a significantly
lower one for the configurations of PSO. Therefore, the first test consisted of
running these three most promising algorithms on the fitness function. The
results highlight the main challenges posed by this specific problem.

3.2.1 Noise

Randomness is an inherent characteristic of biological systems; moreover, it
is common to adopt probabilistic phenomenological models to explain certain
complex phenomena when their underlying mechanisms are not fully understood
or too complicated to model [10][7].
For these reasons, the tumor growth simulator is characterized by a strong
amount of noise, which presents substantial challenges for optimization. None
of the algorithms included in the meta-optimization model are well-suited to
handle this level of noise:

• The high variability in the sampled fitness values introduces noise into
the search process, causing algorithms to mistakenly exploit solutions that
appear favorable purely by chance.

• Additionally, the algorithms typically output the solution with the best
observed fitness. However, due to the noise, this solution is unlikely to ac-
tually be the true optimal solution but merely one that yielded a fortunate
sample.

This phenomenon creates a dual challenge: on one hand, the algorithms are
misled away from converging toward the best solutions, and on the other hand,
even when they output a seemingly good solution, we cannot trust that it is
truly optimal.
Empirical estimates suggest the variance and standard deviation of the fitness
function’s noise are 511.9 and 22.6 surviving cells. To gain insight into how this
level of noise impacts the evolution process of GA, the average positive difference
of individual’s fitness between generations, ∆i, has been recorded while optimiz-
ing the problem, showing an average improvement of 11.6 surviving cells. This
value is about half of the standard deviation of the noise. This means many of
the improvements found by the algorithm, which affect the genomes passed to
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later generations, are simply caused by sampling errors. When the average ∆i

is measured for individual generations the problem becomes even more concern-
ing, as some generations show very small ∆i, further increasing the likelihood
that the algorithm is replacing individuals with worse-performing ones rather
than improving the population.

Given this issue, it is useful to quantify the likelihood of replacing an indi-
vidual with a worsening one when the observed ∆i fitness is positive or zero.
A p-value can be defined given the following assumptions: that the noise in the
fitness function can be approximated by a truncated normal distribution, the
standard deviation S is constant across the search space and the fitness values
are evenly distributed. Empirical tests suggest that the first two assumptions
hold; regarding the third, it seems to be a valid approximation for most of the
range of fitness values, while it is unlikely to hold for very low values. This
means the defined p-value is an approximation and a lower bound, especially
for low observed fitness values.
Given:

• X i and X i+1: random variables corresponding to the fitness of two solu-
tions, in iterations i and i+ 1.

• x̃i and x̃i+1: observed (sampled) fitness values of the two solutions.

• Assumptions: the two random variables distribute as truncated normal
distributions, with unknown averages µi and µi+1 and standard deviation
S = 22.6.

The p-value can then be defined, on a minimization problem, as:

P (µi+1 > µi|x̃i+1 <= x̃i)

With this definition of the p-value and the confidence defined by (1 - p-
value), the probability of the individual showing an empirical improvement of
∆ = 11.6, from the average observed between GA iterations, to be an actual
improved individual, can be measured for different fitness values.
As can be observed for the figure 8, the confidence plateaus at 0.65 for solutions
with a high number of surviving cells, indicating a 35% probability of accepting
a worsening solution as an improvement. With better solutions, as the number
of surviving cells drops to 0, the confidence drops to a minimum of approxi-
mately 0.3.
The truncated normal distribution is particularly unfavorable for the minimiza-
tion problem because as the algorithm moves toward better solutions the dis-
turbance caused by the noise increases to the point where the algorithm simply
cannot keep improving.
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Figure 8: Confidence computed between solutions with a positive ∆i of 11.6.
With constant ∆i, the confidence is extremely low for solutions close to 0, and
plateaus below 0.65.

Figure 9: Average positive ∆i of individuals between generations of GA.

Another useful measure is the confidence interval of sampled fitness mea-
sures. This allows us to understand how reliable the solutions outputted by the
algorithms are. With the most desirable outcome of 0 surviving cells, a 95%
confidence interval would place the value in the range [0, 50.6], while a more
realistic result of 10 surviving cells would result in the range [1, 58]. In other
words, the result of the optimization algorithm measured with a sin-
gle sample is fundamentally meaningless, as there’s no way to distinguish
a good solution from a lucky sampling.
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The original authors repeated each simulation three times [16], reducing the
standard deviation by a factor of

√
3. A standard deviation of approximately

13 reduces the uncertainty, but still leaves significantly large confidence inter-
vals around the solutions found. For instance, the sampled solution with 10
surviving cells would have its confidence interval reduced only to [0.83, 36.84].

Figure 10: 95% confidence interval for solutions with different observed fitness
values

This affects the predictions of the meta-optimization model on two different
levels. First, since none of the algorithms included in the meta-model is suited
to optimize this problem, it’s clear the problem is outside of the meta-model’s
scope. Secondly, while the FLA measures are by nature statistical, a high level
of noise in the fitness values makes them less reliable.
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Figure 11: Best fitness and average distance of individuals in GA without ex-
plicit sampling. Fitness decreases in steps and plateaus early, while the popula-
tion does not converge. The observed fitness improvements are likely to be, at
least partially, fortunate samples.

3.2.2 Adapting GA for high-noise functions

Between the algorithms considered so far, GA is the one with the richest liter-
ature about the effects of noise.

J.Jin and J. Branke provide a rich survey of the effects of noisy functions on
GA and possible solutions [77]. The most obvious countermeasure is explicit
sampling: repeat each simulation multiple times and use the sample mean as
the fitness value. Sample mean reduces the observed variance by the number of
samples taken N .
Another solution is implicit sampling [77], which consists in increasing the pop-
ulation size: since GA tends to sample promising schemas repeatedly, with a
large enough population the sampling errors from single individuals are likely
to be compensated by the errors of other, similar individuals.
Both explicit and implicit sampling have the effect of linearly increasing the
number of simulations run and consequently the computation time. Moreover,
there is no evidence of one of the two techniques being preferable to the other.
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Another common countermeasure consists of progressively increasing the sample
size over the generations of GA. This approach can be interpreted as using the
intrinsic noise of the fitness function to modulate the exploration vs exploitation
balance, a concept that will be explored further later. Branke and Schmidt [37]
follow a similar but more formalized approach, proposing to modulate the sam-
ple size to achieve the desired level of stochasticity in the Stochastic Tournament
Selection operator. This strategy of progressively increasing the sample size also
aligns with the previously discussed p-values: as the population moves toward
more promising solutions, the uncertainty due to noise increases, requiring more
samples.

To deal with the problem three different algorithms have been developed and
tested. The first one is a hybrid algorithm consisting of a Genetic Algorithm
followed by a noise-resistant implementation of Simulated Annealing. The other
two are custom implementations of GA and a DE specifically adapted to work
in the noisy environment.

3.2.3 Hybrid approach, GA+SANE algorithm

The hybrid algorithm developed combines two different components:

• First Component: Genetic Algorithm (GA) - In the initial step, a
genetic algorithm is used to explore the search space, identifying promising
areas and selecting a set of candidate solutions.

• Second Component: Noise-Resistant Simulated Annealing (SANE)
- Once promising areas are identified, the algorithm switches to a noise-
resistant variant of Simulated Annealing. This phase focuses on refining
and evolving a set of candidate solutions.

This hybrid approach aims to balance the exploration capabilities of GA
with the exploitation and noise resistance of the Simulated Annealing variant,
providing a more effective optimization strategy in the noisy environment.

First Component: exploration of promising areas The goal of the first
component is to explore promising areas of the search space and find a set of
candidate solutions passed to the next component. The candidate solutions
must cover high fitness areas of the search space and maintain a high diversity
(or distance) between them. This component is implemented by a GA.

While a simple Genetic Algorithm with no explicit sampling fails to effectively
optimize the problem, it can be observed by the average fitness of the population
over generations that the algorithm does evolve toward more promising areas
to some extent, especially in the early iterations. This is consistent with the
considerations about implicit sampling: while each individual’s fitness contains

38



noise, the whole population statistically evolves toward more promising areas.
The impact of noise grows as the algorithms get closer to the most promising
solutions, because the observed ∆ becomes smaller and the p-values increase.
We also observe from figure 11 that GA, when applied to the model, fails to con-
verge toward a reduced area: the population remains spread across the search
space. This is an advantage for the hybrid strategy, as having a set of promising
but distant individuals increases the probability of finding the global optimum.

The applied GA implementations use steady-state parent selection, single points
crossover and a relatively high mutation probability of 0.3. Implicit and ex-
plicit sampling are defined differently in three different strategies that have
been tested:

1. Low Confidence Strategy:

• This strategy is straightforward and selects the top N individuals
with the best observed fitness across all iterations. It employs no
explicit sampling and relies on implicit sampling to evolve, with a
large population of 64 individuals.

• Advantage: It’s simple and fully utilizes all the simulation budget
to evolve the population. The high noise favors a high diversity in
the candidate set.

• Disadvantage: This strategy explicitly accepts the high uncertainty
of the measured fitness and consequently introduces sub-optimal in-
dividuals in the candidate set.

2. Higher Confidence Strategy:

• This strategy uses the same population size as the previous one,
but introduces an explicit sampling of 10 in its final two iterations.
Only individuals from these final two iterations are considered for the
candidate set, resulting in more accurate estimations of their fitness
potential.

• Advantage: By reducing the noise’s impact, this strategy lowers the
risk of including sub-optimal candidates. Applying explicit sampling
only to the last two iterations limits the budget consumption.

• Disadvantage: Focusing only on the last two iterations for extract-
ing the candidate set could reduce diversity; the budget consumption
caused by explicit sampling results in fewer generations, which might
limit the exploration of the search space.

3. Increasing Confidence Strategy:

• This strategy gradually increases the explicit sampling size as the GA
progresses. The sampling size grows linearly throughout the gener-
ations, and candidates are chosen from the best individuals found
during the last 50% of the generations.

39



• Advantage: This approach limits the impact of noise in the selection
of the candidate set, while favoring a better evolution of the GA
population through iterations.

• Disadvantage: Like the second strategy, this method reduces the
number of generations used for exploration.

With each of these strategies, the candidate solutions are collected and fil-
tered by removing ones too similar to others. The distance metric used is
geometrical distance, as it is the one considered by the next component’s algo-
rithm. To reduce the impact of the different scales of the different dimensions,
solutions are standardized by fitting each dimension in a [0, 1] range; then a
threshold of 0.08 minimum distance is imposed.

Second component: refining candidate solutions The second component
individually optimizes each candidate solution with a noise resistant, single-state
algorithm.
While a simple Hill Climbing with an explicit sampling size of 10 has been
tested too, the main choice is a variation of the Simulated Annealing algorithm,
explicitly adapted for noisy environments, called SANE (Simulated Annealing
in Noisy Environments), designed by J. Branke, S. Meisel and C. Schmidt.[15]
The premise of Simulated Annealing is similar to Hill Climbing: it iteratively
explores the neighborhood of the current solution, chooses a more promising
one and repeats until a stopping criterion is met. Differently from Hill Climb-
ing, Simulated Annealing adopts a stochastic acceptance criterion, where the
probability of accepting a given solution is proportional to the observed fitness
improvement, but worsening solutions have a non-null acceptance probability;
this probability is modulated by the temperature T [64]. As the temperature
gets close to Infinite, the algorithm behaves more similarly to a random walk,
not considering fitness at all, while with a temperature close to 0 it would be-
have closely to a Hill Climbing. This should allow the algorithm to escape small
local minima and keep exploring the area, while gradually reducing exploration
in favor of exploitation.
This acceptance probability can be implemented by different criteria, such as
the Metropolis criterion:

Pmetrpolis(∆E) =

(
1 : ∆E ≤ 0

e-∆E/T : ∆E > 0

or the Glauber criterion

P glauber(∆E) = 1/(1 + e∆E/T )

In both cases the criterion computes a probability of accepting the consid-
ered solution that is a function of the ∆ fitness and the temperature.

Simulated Annealing not only voluntarily introduces noise into its decision pro-
cess, but formalizes it, making it the perfect candidate to employ the powerful
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strategy of using the fitness function’s intrinsic noise to the algorithm’s advan-
tage.
SANE is based on two main principles:

• Since SA introduces randomness into its decision process, it is possible to
neutralize at least part of the fitness function’s intrinsic noise by making
the decision process more deterministic.

• Since the decision’s probability is a function of the temperature and the
observed ∆, multiple samples can be taken during the decision process
until the required level of certainty is met; a concept called sequential
sampling.

The work of J. Branke et. al is built upon previous works from other au-
thors. In particular Fink [23] observed that a cumulative normal distribution
with a given variance approximates the Glauber acceptance criterion with a
given T. Fink observed that by making the decision process deterministic and
modulating the variance of the noise by resampling until necessary, it is possible
to approximate the behavior of the Gluber criterion on a deterministic fitness
function. This approach has three drawbacks, as highlighted by the authors:
there is an implicit maximum temperature allowed, defined by the variance of
the fitness function’s noise distribution, the discrete nature of the number of
samples does not allow for arbitrary temperatures T and the procedure requires
an impossibly high number of samples for low temperature values.
Ceperley and Dewing instead proposed an acceptance criterion that includes
the noise’s variance into account [19].

PCeperley Dewing(δ̂) =

(
1 : δ̂ ≤ − 1

2σ
2/T

e−(δ̂/T + 1
2σ

2/T ) : else

This formula approximates the Metropolis criterion for small variances, but for
temperatures low enough or excessive variances the probability of accepting new
solutions drops significantly. Ceperley and Dewing’s solution does not explicitly
modulate the number of samples to take, but they observe that the number of
samples required to accept a neutral move (δ = 0) is proportional to the ratio
σ2/T 2.
The proposal of the authors of SANE is to use the Ceperley and Dewing criteria
when the temperature T is ¿= Tmax, with Tmax being the maximum temper-
ature allowed by the stochastic annealing defined by Fink with a sample size
of 1, and to extend the work of Flink and use sequential sampling to efficiently
allow for arbitrary temperatures in the remaining cases.
The threshold for determining the maximum temperature obtainable with a
single sample depends on the variance of the measured δ and is given by the
expression:

Tmax(σ2) = 1/
p

8/(πσ2)
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While the probability of committing an error (accepting a worsening solution)

given an observed δ̂ and a measured σ2 is given by

P err(δ̂)Psi(
−|δ̂|
√
n

σ
)

With Ψ being the CDF for the normal distribution.
The final algorithm takes the form of:

Algorithm 1 SANE

1: state← initialstate
2: repeat
3: Generate xn in the neighborhood of state
4: if T >= Tmax then
5: acceptance← CeperleyDewingCriteria
6: else
7: repeat
8: Draw 1 sample from xn, update δ̂ estimate
9: until P err < PGlauber(|δ̂|)

10: acceptance← 1if δ̂ ≤ 0else0
11: end if
12: state← xnifacceptance == 1
13: update temperature
14: until Exit condition

Compared to the work of Fink this algorithm allows for arbitrary temperatures,
not restricted by the intrinsic Tmax or by the discrete nature of the number of
samples, but also allows to reduce the number of samples needed. When Fink
proposed to modulate the sample size N to regulate the noise and consequently
to regulate the temperature, with no regard for the magnitude of δ, this ap-
proach allows to set a desired temperature and then use the smallest number of
samples needed to maintain the correct probability of committing errors.
On top of the defined algorithm, a maximum number of samples per iteration
has been added, to prevent the method from consuming all the available budget
on the acceptance criterion of solutions with low δ.
The hyper-parameters have been fine-tuned using grid search on the original
fitness function using real candidate individuals found by GA. Results indicate
that the best temperature is between 50 and 65, α at 0.9. The maximum num-
ber of samples degrades the performances when is too small or too big, with the
best performances found around 100.

Hybrid algorithm implementation The final implementation of the hybrid
algorithm employs a Genetic Algorithm implemented by the package PyGAD
[24], wrapped in a custom class that uses the callbacks offered by the imple-
mentation to record individuals at each generation. The algorithm is run with
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a budget of 10, 000 simulator runs, regardless of the number of samples defined
by the strategy employed. After its completion, a set of 20 candidate solutions
is extracted.
The candidate solutions are then individually optimized by the SANE algo-
rithm, with a budget of 5000 simulations each. The best result provided by the
fine-tuning of the candidate solutions is accepted as the final solution.
To measure the performances of SANE as the fine-tuning algorithm, the candi-
date solutions have been fine-tuned by an implementation of Hill Climbing as
well, using explicit sampling with a fixed number samples equal to 10.

3.2.4 Noise Resistant Genetic Algorithm

A custom implementation of aNoise Resistant Genetic Algorithm (nrGA)
has been designed to address the specific challenges posed by the noisy fitness
function of the multi-scale model of tumor growth. The algorithm incorporates
several key design considerations:

• GA deliberately introduces randomness into its search process, through
its crossover and mutation operators.

• Depending on the operator chosen, parent selection can introduce noise as
well. With a simple, deterministic operator, the best N individuals can be
chosen. Differently, the roulette wheel selection operator is probabilistic,
and each individual is assigned a probability of being chosen proportional
to its fitness.

• A probabilistic parent selection operator slows down convergence, but
maintains a higher population diversity, favoring a deeper exploration [22].

• In the presence of a noisy fitness function, a deterministic selection pro-
cess behaves like a probabilistic one. Due to noise, the perceived fitness
of solutions can vary, causing sub-optimal individuals to be selected as
parents occasionally.

These considerations suggest that a noisy fitness function might enhance
the exploration process in a Genetic Algorithm (GA) by preventing pre-
mature convergence and encouraging population diversity, as long as it is
managed correctly. To manage it correctly, two main challenges must be
dealt with:

• The amount of randomness introduced in the selection operator must be
explicitly controlled. If the noise is too strong, it prevents the population
from evolving in a meaningful direction, or it slows convergence down too
much. At the same time, since limiting the impact of noise requires costly
re-samplings, the exact number of samples needed must be computed to
avoid wasting computational resources. The number of samples needed
depends on the specific δ̂ observed in the fitness between two individuals,
as a bigger δ̂ requires fewer samples to reach the desired level of confidence.
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• Since the fitness function’s noise distributes similarly to a truncated nor-
mal distribution, the uncertainty is higher with better solutions. This
produces an effective ceiling to the quality that can be reached by the
evolution process, as, once a certain level of fitness is reached, the parent
selection operator becomes fully random, preventing further evolution.
Moreover, the amount of randomness of the parent selection operator
would grow as the algorithms proceed with iterations, which is the op-
posite of the desired behavior.

The proposed solution explicitly includes the previously defined p-value into
the parent selection operator. The p-value allows us to estimate, from any two
different individuals and their measured fitness difference δ̂, the probability of
the one with better observed fitness being effectively the best one. From this, a
statistically significant comparison operator can be implemented by iteratively
drawing samples until the computed p-value reaches the desired level, and then
returning the solution with the best observed fitness.

Base implementation Considering the simplest implementation of a Genetic
Algorithm, with deterministic parent selection, full replacement and no elitism,
the main algorithm is defined as follows:

Algorithm 2 Basic GA

1: population← initial population
2: repeat
3: //parent selection
4: parents← Best NumParents Individuals(population)
5: //apply crossover operator
6: population← Crossover(parents)
7: //apply mutation operator
8: population←Mutation(population)
9: until Exit condition

In this procedure, the only operator in which the fitness function’s noise plays
a role is Best NumParents Individuals, the parent selection operator.
With a simple, deterministic parent selection, the operator is meant to return
the best NumParents individual, with no constraint on the specific ordering of
these selected parents, nor the need to sort the remaining individuals by fitness.
This means there is no need to accurately predict each individual’s fitness and
not all individuals need to be compared with the others. In other words, this
operator simply needs to split the population into two sets, parents and not
parents.
With a deterministic fitness function, this operator would likely be implemented
with a sort function followed by a slice operator. But with a noisy fitness func-
tion and the need to re-sample until the required confidence is reached, higher
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efficiency can be met by following the split into two unsorted sets strategy.

Figure 12: Required comparisons between individuals. Each arrow represents a
statistically significant comparison.

An implementation of this strategy would be a variation of the quick sort
algorithm that, compared to the standard implementation, makes only one re-
cursive call after each pivot operation, depending on the pivot point being larger
or smaller than the NumParents.
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Algorithm 3 QuickSort parent selection

1: procedure ParentSelection(start, end)
2: pivot← NumParents− 1
3: pivot← SplitPopulation(start, end, pivot)
4: //Invariant: individuals in [0, pivot] are ≤ pivotalpoint
5: //Invariant: individuals in [pivot+ 1, end) are > pivotalpoint
6:

7: if pivot == NumParents− 1 or End == NumParents then
8: return
9: end if

10:

11: if pivot >= NumParents then
12: ParentSelection(Start, pivot+1)
13: else
14: ParentSelection(pivot+1, End)
15: end if
16: end procedure

Where the SplitPopulation needs to perform N statistically significant com-
parisons.

While this strategy provides the lowest asymptotic complexity in the number of
comparisons between individuals, it results in a far greater number of samples
taken compared to the following, less asymptotical efficient algorithm:
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Algorithm 4 nrGA parent selection procedure

1: // Sort population based on current knowledge of fitness values
2: POPULATION ← Sort(POPULATION, observedFitness)
3: i← 0
4: while i < NumParents do
5: j ← NumParents
6: while j < len(POPULATION) do
7: p value← ComputePValue(POPULATION[i], POPULATION[j])
8: if (1− p value) ≥ confidence then
9: j ← j + 1

10: else
11: // Re-Sample from the two individuals
12: POPULATION[i].evaluate(())
13: POPULATION[j].evaluate(())
14: // Re-sort population based on updated knowledge
15: POPULATION ← Sort(POPULATION, observedFitness)
16: // Reset i to re-evaluate the new population
17: i← −1
18: break
19: end if
20: end while
21: i← i+ 1
22: end while

While this second procedure is slower and involves a significantly greater
number of comparisons, empirical results indicate that the total number of
samples drawn from the fitness function is reduced by a factor of 3 to 6. This
reduction can be attributed to the strategy of using sampled fitness values to
sort individuals, and then comparing solutions in the parent set with those in
the non parent set, which generally exhibit a greater difference in fitness, while
the algorithm based on Quicksort compares solutions based on a random pivot
point, requiring expensive comparisons between similar individuals. The effi-
ciency of this approach increases as the top NumParents solutions exhibit a
more pronounced difference in fitness compared to the rest of the population.
On this base procedure a few small optimizations have been added, such as
not always re-sampling from both the individuals involved in the comparison
but preferring to draw samples from the one with fewer ones taken already or
skipping unnecessary p-value computations for solutions that have worse fitness
and lower standard deviation than other solutions already compared to.
The correct implementation to use between these two depends strongly on how
slow the fitness function is to compute compared to the rest of the computations
done by the optimization algorithm. In the OvS scenario, the run-time of the
optimization algorithm is irrelevant compared to the run-time of the simulator,
thus the second procedure is preferable.
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Allowing for No-Replacement and Elitism strategies The procedure
described so far works only for the selection of the best NumParents individuals
to be chosen as parents. A Genetic Algorithm with full replacement and no
elitism does not need further comparisons, as each generation is made entirely
of the offspring from the previous one. But other implementations introduce
Elitism, meaning the best N individuals from the previous generation are pre-
served into the following, and No-Replacement strategies, such as steady-state,
which add the new offsprings to the population and then filter out the worst
OffspringSize individuals.
These two strategies require further comparisons between individuals. However
the solution can be obtained using the same splitting procedure twice.

• Elitism: it requires three sets: the best ElitismSize individuals, which
need to be better than all the others, the (NumParents - ElitismSize)
individuals, which need to be better than the remaining ones, and then the
remaining ones. This can be obtained by running the split operator twice,
first on the entire population to find the best ElitismSize individuals, then
on the remaining population to find the other parents.

• Replacement: again it requires three sets: NumParents that must be
better than all the others, and OffspringSize individuals in excess that
must be discarded, which need to be worse than all others. Again we can
first split the population into parents and others, and then split the others
into the sets of individuals kept and individuals removed.

Confidence schedule and hyper-parameters This parent selection oper-
ator requires specifying a desired confidence level. When a solution cannot be
determined to be better than another with the level of confidence, resampling
takes place. This confidence can be a simple hyper-parameter, but it makes
sense to introduce a scheduled increase over the iterations, allowing for more
exploration during early steps, progressively reduce it as the algorithm con-
verges, and eventually increase it again if the optimization process reaches a
plateau, meaning it hasn’t been able to find new solutions for a certain number
of iterations. The implementation inherits the term temperature from Simu-
lated Annealing, and defines confidence as 1− temperature. The temperature
thus represents the accepted risk of making a mistake during the comparisons
between individuals.
The algorithm accepts four hyper-parameters: a starting temperature, the tem-
perature reducing factor alpha, the number of iterations with no improvement
found after which the temperature is reset, and the minimum temperature value.
This last hyper-parameter is useful to prevent the algorithm from reaching ex-
cessively small temperatures, which would result in consuming the entire budget
in a single iteration.
Hyper-parameters have been optimized using grid search and a set of benchmark
functions explicitly developed to mimic the noise produced by the simulator.
The results suggest that the best performance is found with a range of temper-
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atures in [0.1, 0.4], a relatively fast temperature decay of 0.9, and a relatively
high number of parents of 1/3 ∗ PopulationSize. The temperature reset seems
to play a small role but allows for slight improvements when set around a low
number of iterations such as 20.

Standard deviation estimation In order to estimate the p-values, the al-
gorithm needs an estimate of the standard deviation of the fitness function’s
distribution. In order to keep the estimate as accurate as possible while avoid-
ing drawing additional samples, the following procedure is employed:

• A first std estimate can be provided by the user when instantiating the
nrGA instance. If it is not provided, the algorithm produces it by taking
100 samples before starting the optimization procedure.

• The std estimate is updated at each iteration using the individuals from
which samples have been taken during the parent selection phase. The new
estimate is computed from individuals with at least 5 samples taken, and
the current estimate is updated as a mean between the previous estimate
and the new one.

This solution is a compromise between using all individuals from all previous
generations, which would result in more samples available, but solutions would
be widespread across the search space, reducing accuracy for local differences in
std, and using only the one in the current generation, which would only estimate
from points in the search space that are currently relevant but use fewer samples.

Returned solution As seen before, a noisy fitness function does not only
influence the algorithms’ performances, but it also reduces the confidence in the
final result, as the good fitness observed in the returned solution might be a
simple sampling error. The previously discussed hybrid algorithm tackles this
problem by simply returning the mean from a significant number of samples.
But with nrGA, since the whole algorithm is structured around the ability to
estimate confidence intervals around solutions, a more methodical approach can
be taken.
After the last generation, the algorithm estimates a 90% confidence interval for
each solution, and returns the smallest set of solutions for which it’s not possible,
with the current sampling size, to confidently tell which one is the best. For a
minimization problem, this correspond to the smallest set of solutions having a
lower bound that is lower than the lowest upper bound.
From this set a single interval can be computed using the lowest lower bound
and the higher upper bound. The returned solutions are wrapped into a class
that allows the user to access them and to draw additional samples, reducing
the final interval, until eventually only one solution is accepted as the best.
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Algorithm 5 nrGA solution interval

1: // Compute confidence intervals for the final population
2: Intervals ← [ Confidence interval(S) for S in Population ]
3: // Compute the lowest upper bound
4: Highest Upper Bound ← MIN( [ interval.UPPER BOUND for interval in

Intervals ] )
5: // Filter intervals, keep the ones with lower bound lower than

best upper bound
6: Intervals ← Intervals.FILTER( condition: interval.LOWER BOUND ≤

Highest Upper Bound)
7: // Global interval - given current sampling size and confidence
8: Lower, Higher ← MIN( [ interval.LOWER BOUND for interval in Intervals

]), MAX(MIN( [ interval.UPPER BOUND for interval in Intervals ])

Figure 13: The population is considered as a set of intervals. Only individuals
such that their lower bound is lower than the lowest higher bound are kept as
solutions.

nrGA implementation Having defined the parent selection process and the
hyper-parameters relative to it, the final implementation of nrGA is a standard
Genetic Algorithm implementation with a confidence-based parent selection that
performs re-sampling while necessary, a single point crossover, both a normal
and a uniform mutation operators and that allows for both replacement and no-
replacement strategies and elitism. Tests have shown that the best performance
is obtained with a steady-state (no replacement) strategy, a population size of
32 and 10 parents mating at each generation.

50



3.2.5 Noise Resistant Differential Evolution

The same principles applied in the design of nrGA algorithm can be used to
design a noise resistant variant of the Differential Evolution algorithm
(nrDE).
The original implementation of the Differential Evolution algorithm, proposed
by Storn and Price in 1997 [68], is based on a randomized crossover operator,
which selects three random individuals from the current population in order
to produce one mutant vector. The mutant vector is defined as mutant =
random 1 + F (random 2 − random 3), where the first random solution is the
starting point, and the second and third random solutions are used to apply a
perturbation to it. The mutation operator then performs a random mutation,
and the selection operator compares each individual in the population with its
own corresponding mutant vector to select the best one for the next generation.

This definition of the algorithm is particularly simple to adapt to the noisy
environment as the only phase that requires comparisons, the selection opera-
tor, is applied exclusively to pairs of solutions. At each iteration, a constant
N , equal to the population size, number of comparisons have to be made. This
constant and small number of comparisons results in a low budget consumption
for the algorithm compared to nrGA, allowing it to perform more iterations.

Figure 14: Required comparisons between individuals in Differential Evolution.
Each arrow represents a statistically significant comparison.

The selection operator can be easily modified to include the p-value and
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perform iterative re-sampling, as defined in the following pseudo-code:

Algorithm 6 nrDE selection operator

1: //Individual and Candidate are the two solutions to compare
2: repeat
3: Smallest sample size ← MIN(Individual, Candidate, key :

sample size)
4: Draw Sample(Smallest sample size)
5: p value← PV alue(Individual, Candidate)
6: until (1− p value) ≥ Confidence
7: Return solution with smallest empirical fitness

Adaptive Unified Noise Resistant DE From the simple crossover opera-
tor defined by Storn and Prince in 1997, many variations have been proposed,
based on three strategies:

• Computing crossover from two difference vectors instead of one results in
better perturbations [61].

• Adding the difference vector(s) to the best known solution instead of a
random one results in a faster convergence rate [50].

• Adding the difference vector(s) to the current individual instead of a ran-
dom one adds the rotation-invariance property to the operator [59].

J. Qiang and C. Mitchell proposed a unified, adaptive Differential Evolution
implementation [60], based on the following definition of the crossover operator:

vi = xi + F 1 ∗ (xbest − xi) + F 2 ∗ (xr1 − xi) + F 3 ∗ (xr2 − xr3) + F 4 ∗ (xr4 − xr5)

Where vi is the new mutant vector, xr1, r2, r3, r4, r5 are five different random
vectors and xbest is the best known solution.

This operator implements ten different traditional crossover operators corre-
sponding to different set of values for F 1, F 2, F 3 and F 4, as well as combina-
tions of them.
The authors then proposed an adaptive implementation where the fours F pa-
rameters, as well as the mutation rate, are initially randomly generated from
a uniform distribution, then preserved or changed depending on whether the
latest iteration improved the best known solution.

This adaptive strategy cannot be directly included in the nrDE implementation
because computing the known best solution with sufficient confidence, which
J. Quiang and C. Mitchell used both in the crossover operator and to update
the adaptive parameters, is an expensive process that would result in a fast
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consumption of the optimization budget. The proposed definition of a noise
resistant adaptive unified DE implements two changes:

1. The strategies that make use of xbest are removed from the adaptive
crossover operator.

2. The parameters update operator is based on the percentage of individuals
selected instead of the improvement of the best solution. This allows to
use the results of the comparisons already made by the selection operator,
without further budget consumption.

The crossover operator is then reduced to

vi = xi + F 1 ∗ (xr1 − xi) + F 2 ∗ (xr2 − xr3) + F 3 ∗ (xr4 − xr5)

The decision to replace or keep the current parameters is probabilistic and based
on the difference between the percentage of improving individuals in the current
and previous generations.

• If the percentage improves, the parameters are preserved for the next
generation.

• If the percentage does not improve, a random number in the range [0, previous percentage]
is generated. If the number is ≥ current percentage, then the parameters
are changed, otherwise they are preserved.

As in the implementation proposed by [60], when parameters are changed, they
can be either sampled again from the uniform distribution or taken from a pool
of previously successful parameters, with equal probability. Differently from the
original implementation, which used a vector as a pool of successful parameters,
where parameters that have been successfully used for N generations appear
N times, this implementation uses a set, so each unique configuration that was
successful at least once will have the same probability of being re-selected.

Confidence schedule and hyper-parameters The confidence level is de-
fined as in nrGA, with the concept of temperature and the confidence defined
as 1− temperature.
In nrGA, a confidence schedule was introduced, allowing to specify a temper-
ature reducing factor alpha and a number of iterations without improvements
after which the temperature is reset. This was meant to increase the randomic-
ity of the parent selection operator, which affects the crossover operator, when
a fitness plateau is encountered.
Compared to Genetic Algorithms, Differential Evolution is more exploration-
oriented, with a crossover operator characterized by a high amount of ran-
domicity. Moreover, in GA the operator affected by noise is the parent selection
operator, and it was seen that a moderate amount of noise in this operator fa-
vors exploration, possibly allowing for unexpected and advantageous evolution
directions. However, in Differential Evolution, the operator affected by noise
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is the selection operator, which doesn’t choose which individuals are used as
parents but which individuals are kept or removed. The effect of randomicity in
this operator is simply to risk replacing better solutions with worsening ones.
With this in mind, nrDE implements no temperature reset and a simpler con-
fidence schedule, where the user specifies only two hyper-parameters, tempera-
ture max and temperature min. The schedule linearly reduces the temperature
from the maximum value to the minimum based on the percentage of the budget
already consumed.

The standard Differential Evolution implementation requires only three addi-
tional hyper-parameters: the population size, the scaling factor F , which con-
trols the differential variation in the crossover operator [60], and the mutation
rate CR, which controls the probability of each value in the candidate vector to
be replaced by the corresponding element of the parent vector. With the adap-
tive unified implementation the F hyper-parameter is removed as the algorithm
itself will self regulate, and the CR hyper-parameter is defined as a range with
minimum and maximum mutation rate.
Hyper-parameters have been optimized using grid search; The results indicate
that best performances are found with a temperature min value around 0.1 and
0.2, where higher values result in a final confidence interval too wide and lower
values in worse results, likely due to the faster consumption of the budget. The
population size doesn’t seem to affect the performances deeply, but the results
suggest that a population between 40 and 50 is preferable. For the standard
configuration, CR has been found to provide the best performances around 0.8
and F around 0.5, while for the adaptive configuration CR can be assigned the
wide range of [0.5, 0.9], letting the algorithm choose its best value.

Standard deviation estimation and returned solutions The on-line std
estimation and the returned solutions are implemented as in nrGA.
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4 Results

This section presents the results of the meta-optimization model applied to
generic problems and the performance of the three noise-resistant algorithms
applied to the cancer growth model.

4.1 Meta-Optimization model

As previously mentioned, the meta-optimization model was trained separately
for both deterministic and noisy functions. Since the results are similar, they
will be presented together. Additionally, the two scoring functions correspond
to separate models, resulting in a total of four distinct models.

4.1.1 Predicted scores

Before presenting the model’s results, it is useful to examine the averages and
variances of the two scoring functions, comparison oriented and performance
oriented, on the training dataset. As illustrated in Fig. 15, the performance
oriented scores show a low average across all included meta-heuristics, with
minimal differences between algorithms, but exhibit high variance, particularly
with PSO variants. This suggests that the performance oriented score is more
challenging to predict, likely due to its role in not only comparing algorithms
but also encoding the quality of the solutions they produce. In other words, this
measure contains more information than the performance oriented score, which
in contrast has a much smaller variance as well as clearer distinctions in mean
performance across algorithms.

Figure 15: Averages and variances of the comparison oriented (left) and perfor-
mance oriented (right) scoring functions on the training dataset. The data is
presented for all meta-heuristics included in the meta-model. Variance is shown
as a black line centered around the average.

4.1.2 Models’ performance

The model has been tested and validated using k-fold with K = 5. Early tests
tried simpler models, as a linear regressor, producing unsatisfactory results.
Later, 4 different models have been trained and tested:
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• Random forest model, with 100 estimators and the squared error criterion.

• Random forest model, with 100 estimators and the absolute error criterion.

• Random forest model, with 100 estimators and the sqrt error criterion.

• A custom developed Stacking Ensemble Model consisting of three Ran-
dom Forest models, with 50, 100 and 150 estimators, a Support Vector
Regressor with polynomial kernel and a Support Vector Regressor with a
randiant basis kernel.

The figures 16 and 17 show the performances of the different meta-models
employed on each individual meta-heuristic on the non-deterministic dataset,
while figure 18 shows the result for the deterministic dataset. The measure used
is the squared error divided by the variance observed in the score functions. A
value of 1 would correspond to a model that simply predicts the score’s average
independently from the FLA measures. The colored bars indicate the error on
the validation set, while the black dots the training errors.
Regarding the comparison oriented scoring, in the deterministic dataset, the
best performances are achieved by the Random forest model with sqrt error
criterion, with an average squared error of 0.690 of the original variance, very
similar to the results of the Ensemble model, while for the non-deterministic
datasets the Ensemble model performs the best with an average squared error
of 0.586.
There are several key insights from these results:

• Some meta-heuristics exhibit significantly lower errors than others, though
this trend generally aligns with the variance in their original data. No-
tably, Particle Swarm Optimization with the comparison oriented scoring
function is somewhat harder to predict, showing similar errors to GAs and
DE despite its higher initial variance.

• The relationship between FLA measures and the performance scores is
intricate. Simpler models yield higher errors in both training and valida-
tion. In contrast, the ensemble model reduces validation error slightly and
nearly eliminates training error, indicating that further increasing model
complexity may not lead to performance gains.

This result might seem underwhelming at first sight, but considering the
scale of the challenge posed by the original problem, explaining respectively
31% and 40% of the variance from the statistical FLA measures is a satisfactory
result.
Another interesting validation measure is considering the difference in perfor-
mances between the algorithm chosen by the meta-model on a given problem and
one that would be chosen by a perfect decider. This measure is easy to compute
on the validation dataset, since ABEST is known and AMETA-MODEL can be es-
timated. The measure is then defined as Score(ABEST)−Score(AMETA-MODEL).
With the comparison oriented score function, the deterministic and non-deterministic
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Figure 16: Results of different meta-models on the scores of each meta-heuristic
- Non-deterministic dataset

.

Figure 17: Errors of different meta-models on the scores of each meta-heuristic
- Non-deterministic dataset
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Figure 18: Results of different meta-models on the scores of each meta-heuristic
- Deterministic dataset

dataset yields a value of respectively 0.094 and 0.096, indicating that while the
meta-model may not always select the best algorithm, it generally chooses one
that is close to optimal.

4.1.3 Computational cost of running the model

Once the meta-optimization model is trained and ready to be applied to a given
fitness function, the primary computational cost to consider is the calculation
of the FLA measures, which requires sampling from the fitness function.
The number of samples required for the FLA computation is specified in the
meta-model configuration, and it can be freely modified. The currently used
configuration requires:

• 600 samples from random points in the search space.

• 150 additional samples for the random walk required by the FEM measure.

• 250 additional samples required by the Jensen’s Inequality Ratio measure.

• 304 additional samples required by the GA and DE specific evolvability
operators.

This results in a total budget of 1304 samples from the fitness function required
to compute the FLA measures.
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4.2 Hybrid approach - GA + SANE

The hybrid algorithm has been tested with three different configurations to
produce the candidate population, corresponding to different results.

4.2.1 Algorithm performance

Figure 19 shows the best results provided by the hybrid algorithm in the three
configurations low confidence, high confidence and increasing confidence, as well
as the average between the best five solutions. The results obtained by replac-
ing SANE with a Hill Climbing with a fixed sampling size of 10 as the refining
algorithm are provided for comparison. The increasing confidence configuration
produces the best overall result, with the low confidence finding a close one.
The difference reduces when considering the best 5 solutions, but the order in
which the three configurations perform remains the same.
Regarding the performance of SANE compared to a simple Hill Climbing, in
all of the three configurations there is a significant improvement in the results
when using SANE.

Figure 20 shows the correlation between the candidate individuals’ fitness and
the fitness found by SANE and Hill Climbing. It can be observed that the low
confidence configuration produces a significantly smaller correlation compared
to the others: this is explained by the strong effect of noise on the candidate
individual’s fitness. However, in both the low confidence and the high confidence
configurations, SANE exhibits a lower correlation compared to Hill Climbing,
suggesting that its exploration capabilities make a difference, rendering the ini-
tial observed fitness less predictive of the final result.

Figure 19: Best result and best 5 results with SANE and with Hill Climbing.
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Figure 20: Correlation between candidate individuals’ fitness and refined indi-
vidual fitness.

Finally, figure 21 highlights how, while SANE generally moves further away
from the starting solution compared to Hill Climbing, both algorithms remain
in the general proximity of the initial solution.

Figure 21: Average distance between candidate individuals and refined individ-
uals.

4.2.2 Computational cost of running the hybrid algorithm

The hybrid algorithm is computationally expensive to run, because it requires
running a Genetic Algorithm to produce the candidate solutions, and then run-
ning the Simulated Annealing algorithm individually on each one of them.
With the current configurations, the Genetic Algorithm component is assigned
a budget of 10, 000 samples from the fitness function, and the Simulated An-
nealing component another 5, 000 samples. With a candidate population size
of 20, the total cost amounts to 110, 000 simulations run. The average time
for running one simulation on a 8-cores, 2.80GHz Intel i7 CPU with 16GB of
RAM is approximately 4.25 seconds, taking the runtime of the entire algorithm
to approximately 5.4 days.

4.3 Noise Resistant Genetic Algorithm

The Noise Resistant GA has been tested in two different configurations, with
and without replacement, each using a budget of 8, 000 samples. Both configu-
rations were assigned a population size of 32, with 10 parents at each generation,
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a temperature in the range [0.4, 0.3] with a reset interval of 20 generations with-
out improvements. The configuration with elitism hasn’t been tested on the
tumor growth model as early benchmarks indicated poor performances, likely
due to the additional comparison costs.
The following section presents both the best solutions found by the algorithms
and the confidence intervals defined by the set of overlying solutions. An ad-
ditional budget of 500 has been used to refine the set of overlying solutions by
drawing additional samples.
As shown in figure 22, the cost of running the algorithm without replacement
is significantly higher, leading to fewer iterations within the fixed budget. How-
ever, this reduction in iterations does not impact performance, as the configu-
ration without replacement converges early, making subsequent iterations un-
necessary.

Figure 22: Best fitness by iteration of nrGA with and without replacement. The
version with replacement is able to run longer, as it requires fewer comparisons,
but reaches an early plateau.

4.3.1 Algorithm performance

The two configurations provided similar results. Both the replacement and
steady-state configurations found the best fitness at 17 surviving cells, with a
confidence interval of [11.4, 22.59] and [6.8, 27.3] respectively.
A notable difference emerged in the overlying solutions. The steady-state config-
uration returned 14 overlying solutions, which are then reduced to 1 by drawing
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additional samples. In contrast, the replacement configuration yielded 257 over-
lying solution, which was narrowed to 4 using the additional 500-sample budget.
This discrepancy is due to the replacement strategy where the entire population
is replaced each iteration, resulting in solutions with only one sample by default.
Conversely, the steady-state strategy retains fit individuals across generations,
preserving all samples taken during parent selection.
However, as shown in figures 23 and 24, after additional sampling to refine the
intervals, both configurations converge toward similar results, with the replace-
ment configuration providing slightly better results.

Figure 23: Confidence interval of the set of overlying solutions as additional
samples are drawn. Configuration with replacement.

Figure 24: Confidence interval of the set of overlying solutions as additional
samples are drawn. Configuration with no replacement.
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4.4 Noise Resistant Differential Evolution

The Noise Resistant Differential Evolution (nrDE ) algorithm has been tested
with an assigned budget of 10, 000 samples and a population size of 48 in both
its standard and adaptive configurations.
The standard configuration is assigned a mutation rate of 0.8 and a scaling
factor of F = 0.5, while for the adaptive configuration the mutation rate range
is specified at [0.5, 0.9]. The temperature is assigned a range of [0.4, 0.1]. Since
the adaptive configuration showed a slower convergence rate, which might lead
to a deeper exploration and consequently better results when given a higher
budget, the algorithm has been tested with an assigned budget of 20, 000 as
well.
As with the nrGA algorithm, both the best solution and the range characterizing
the set of overlying solutions are presented, and the range is further refined with
an additional budget of 500 samples.

4.4.1 Algorithm performance

Regarding the standard configuration, the algorithm’s best solution presents a
measured 8 surviving cells, with a confidence interval of [1, 17]. The set of over-
lying solutions presents an interval of [8, 28], which reduces to [23, 24] after the
additional samples are drawn. The evolution of the intervals produced by nrDE
once again highlights the likelihood of good observed solutions to be simply
fortunate samples.
Figure 25 shows the best fitness found by the algorithm during iterations. Sim-
ilarly to nrGA with replacement, despite the exploration oriented strategy of
Differential Evolution and the large population size, the standard configuration
of nrDE converges early, limiting its ability to make use of the budget available.

Figure 25: Best fitness during iterations of DE.

The adaptive implementation of nrDE shows a different behavior, with a
slower convergence rate. With the assigned budget of 10, 000, the algorithm
produces almost the same result as the standard configuration, with a sampled
best fitness of 8 and a confidence interval of [1.35, 19.35], but takes more than
double the number of iterations to reach it. This slower convergence is eas-
ily explained by the adaptive nature of the algorithm. As its parameters are
produced randomly and replaced or kept depending on the improvement of the
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current generation, the algorithm will likely perform many iterations with sub-
optimal parameters, producing little or no improvements. At the same time,
this adaptive behavior might allow it to overcome fitness plateaus that the base
configuration would get stuck into. To test this hypothesis, the algorithm has
been run with a higher budget of 20, 000 samples.
This hypothesis seems valid, as the adaptive implementation with a higher bud-
get yielded the best results, with a sampled fitness of 8 and a confidence interval
of [0.67, 14.39] for its best result. After refining the interval defined by the over-
lying solutions, the final interval is [21.96, 22.82], once again the best result
produced.

Figure 26: Confidence interval of the set of overlying solutions as additional
samples are drawn.

4.5 Final considerations, limitations and future work

Meta-Optimization model : the results of the meta-optimization model
demonstrate that it is possible, to some extent, to estimate the performance of
optimization meta-heuristics using a set of statistical FLA measures; a result
consistent with the work of K. M. Malan et al., who tried to apply a similar
approach to PSO [43].
With a sampling budget of 1304 for the FLA measures computations, the meta-
model predicts approximately 40% of the variance observed in the dataset and
requires a complex ensemble model to achieve this. This suggests that while
FLA measures provide useful information for explaining algorithm performance,
the relationship between the variables is complex, and the available data can
only account for part of the observed performance diversity.
It is worth considering how the budget allocated for FLA measures computa-
tions impacts meta-model performance. While naturally a higher budget will
lead to more precise estimations, it is not certain that these would in turn
lead to improvements in the meta-model’s performance, as it’s possible that
the measures considered can simply not explain more than this amount of di-
versity. Future work could involve systematically optimizing the meta-model’s
hyper-parameters to evaluate performance with varying FLA measure budgets.
However, this approach would be both computationally expensive and time-
consuming.
Another interesting experiment would be to explore the performance of a meta-
model using more complex and informative FLA measures. All the measures
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currently employed are relatively inexpensive to compute, as they either share
the same set of samples or require a low number of additional ones. Advanced
measures, such as the Barrier Trees and Local Optima Networks, though requir-
ing a higher budget, might provide valuable information to enhance meta-model
performance. Ultimately, a balance must be struck between the accuracy of the
meta-model and the computational cost of obtaining these measures.
Another limitation is the diversity of the function set FTRAIN. As mentioned
earlier, this set includes functions with dimensionalities between 2 and 6, and the
generalizability to functions with higher dimensional functions is not assured.
Additionally, the non-deterministic set is limited to functions with relatively
low levels of noise. As demonstrated by the cancer growth model, the specific
distribution of noise also significantly impacts performance.

The meta-model has been designed with modularity in mind, adopting an
object-oriented approach for the relevant components that the user might want
to extend. This design makes it easy to implement changes, such as adjusting
the FLA measures’ budget, adding new functions to the training dataset, incor-
porating additional stochastic wrappers for different noise types, or expanding
the range of optimization meta-heuristics and their configurations.

Hybrid approach: The hybrid algorithm provides excellent results, but at
the cost of a high run-time.
The relatively low correlation between the candidate individuals’ fitness and the
results of SANE indicates that reducing the candidate population’s size is not
a suitable method to reduce the computational cost, as there isn’t a high prob-
ability of finding the best solution between the fittest candidate individuals. At
the same time, empirical tests suggested that reducing the budget allocated to
the individual runs of SANE results in a detriment in the results.
The high computational cost of the hybrid algorithm is likely an inevitable con-
sequence of the hybrid approach based on multiple applications of a single-state
algorithm to many starting points. Compared to a population-based algorithm,
which can exploit information from all of its population to guide the search
process, the single state algorithm has to iteratively explore the neighborhood
of its current state to guide its next step, and not use this extracted information
again.

Noise-Resistant population-based algorithms : the two noise resistant
variations of Genetic Algorithms and Differential Evolution provided the most
interesting results.
Both the nrGA and the base configuration of nrDE algorithms produced excel-
lent results, comparable to those of the hybrid approach but at a significantly
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lower computational cost. Compared to the 5.4 days of runtime of the hybrid al-
gorithm, nrGA and nrDE run respectively 9.4 and 11.8 hours, while the adaptive
unified nrDE runs for 23.6 hours. The strategy of explicitly introducing sequen-
tial sampling in the computation in the parent selection operator effectively and
efficiently limits the impact of noise on the evolution process. The algorithms
can be adapted to different types of problems corresponding to different noise
distributions.
Both algorithms converge early, meaning they could provide the same results
with an even lower computational cost. At the same time, they are not able
to take advantage of the assigned budget of 10, 000 samples, since they plateau
early. The adaptive configuration of nrDE on the other hand shows a slower con-
vergence behavior, due to its inner search for better parameters for its crossover
and mutation operators. This configuration reaches better results when the
budget is increased to 20, 000 samples, and could provide even better ones if
allowed to run for longer.

However, the evolution of the confidence interval of the overlying solutions as
it is refined by drawing additional samples once again highlights the difficulty
of the problem at hand. In all of the experiments, the empirical fitness of the
best solution worsens as estimates become more precise and the intervals tighten
toward their centers.
As mentioned in section 3.2, the p-value is computed under the assumption
that fitness values are evenly distributed; an assumption that is approximated
for most of the fitness range, but that becomes less and less effective when con-
sidering fitness values around the best possible.
Observing the set of overlying solutions returned by all the noise-resistant algo-
rithms’ configurations, there are a total of 96 solutions with an observed fitness
value below 20, with values as low as 4. All of them are the result of the al-
gorithms’ search for the best fitness values and their measure is averaged over
multiple samples. Nevertheless, none of them remains under the threshold of 20
when additional samples are taken. This suggests that near-zero solutions are
rare, if existing.
If near-zero solutions actually exist, guiding the algorithm toward them is ex-
tremely difficult due to the high uncertainty around good sampled fitness values.
The problem can be alleviated further by reducing the temperature to an even
lower value, or by artificially requiring a minimum number of samples when the
measured fitness value is below a certain empirical threshold that, observing the
plots with the reducing intervals, could be placed around the value of 20. How-
ever, this would require a significantly higher computational budget, not only
to run the algorithm but to test different configurations and find a satisfactory
one.
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[12] Ezio Bartocci and Pietro Lió. “Computational modeling, formal analy-
sis, and tools for systems biology”. In: PLoS computational biology 12.1
(2016), e1004591.

[13] B. Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez, and A. Abraham.
“Differential Evolution: A review of more than two decades of research”.
In: Engineering Applications of Artificial Intelligence 90 (2020), p. 103479.
issn: 0952-1976. doi: https://doi.org/10.1016/j.engappai.2020.
103479. url: https://www.sciencedirect.com/science/article/
pii/S095219762030004X.

[14] H. R. Boveiri and R. Khayami. On the Performance of Metaheuristics:
A Different Perspective. 2020. arXiv: 2001.08928 [cs.NE]. url: https:
//arxiv.org/abs/2001.08928.

[15] J. Branke, S. Meisel, and C. Schmidt. “Simulated annealing in the presence
of noise”. In: Journal of Heuristics 14 (2008), pp. 627–654. url: https:
//api.semanticscholar.org/CorpusID:13264288.

[16] L. Calzone, L. Tournier, S. Fourquet, D. Thieffry, B. Zhivotovsky, E. Bar-
illot, and A. Zinovyev. “Mathematical modelling of cell-fate decision in
response to death receptor engagement”. In: PLoS computational biology
6.3 (Mar. 2010), e1000702. issn: 1553-734X. doi: 10.1371/journal.
pcbi.1000702.

[17] Y. Carson and A. Maria. “Simulation optimization: methods and applica-
tions”. In: Proceedings of the 29th conference on Winter simulation. 1997,
pp. 118–126.

[18] A. Castrignano, R. Bardini, A. Savino, and S. Di Carlo. “A methodology
combining reinforcement learning and simulation to optimize the in silico
culture of epithelial sheets”. In: bioRxiv (2023). url: https : / / api .
semanticscholar.org/CorpusID:266574348.

[19] D. Ceperley and M. Dewing. “The Penalty Method for Random Walks
with Uncertain Energies”. In: The Journal of Chemical Physics 110 (Dec.
1998). doi: 10.1063/1.478034.

[20] S. Chinnasamy, M. Ramachandran, M. Amudha, and K. Ramu. “A re-
view on hill climbing optimization methodology”. In: Recent Trends in
Management and Commerce 3.1 (2022).

[21] N. Collier and J. Ozik. “Distributed Agent-Based Simulation with Repast4Py”.
In: Proceedings of the Winter Simulation Conference. WSC ’22. Singapore,
Singapore: IEEE Press, 2023, pp. 192–206.

[22] A. H. Damia, M. Esnaashari, and M. Parvizimosaed. “Adaptive Genetic
Algorithm Based on Mutation and Crossover and Selection Probabili-
ties”. In: 2021 7th International Conference on Web Research (ICWR)
(2021), pp. 86–90. url: https://api.semanticscholar.org/CorpusID:
235308329.

3

https://doi.org/https://doi.org/10.1016/j.engappai.2020.103479
https://doi.org/https://doi.org/10.1016/j.engappai.2020.103479
https://www.sciencedirect.com/science/article/pii/S095219762030004X
https://www.sciencedirect.com/science/article/pii/S095219762030004X
https://arxiv.org/abs/2001.08928
https://arxiv.org/abs/2001.08928
https://arxiv.org/abs/2001.08928
https://api.semanticscholar.org/CorpusID:13264288
https://api.semanticscholar.org/CorpusID:13264288
https://doi.org/10.1371/journal.pcbi.1000702
https://doi.org/10.1371/journal.pcbi.1000702
https://api.semanticscholar.org/CorpusID:266574348
https://api.semanticscholar.org/CorpusID:266574348
https://doi.org/10.1063/1.478034
https://api.semanticscholar.org/CorpusID:235308329
https://api.semanticscholar.org/CorpusID:235308329


[23] T.M.A. Fink. “INVERSE PROTEIN FOLDING HIERARCHICAL OP-
TIMISATION AND TIE KNOTS”. PhD thesis. St. John’s college, Uni-
versity of Cambridge, 1998. url: https://api.semanticscholar.org/
CorpusID:62786994.

[24] A.F. Gad. “Pygad: An intuitive genetic algorithm python library”. In:
Multimedia Tools and Applications (2023), pp. 1–14.

[25] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, and
P. Macklin. “PhysiCell: An open source physics-based cell simulator for
3-D multicellular systems”. In: PLOS Computational Biology 14.2 (Feb.
2018), pp. 1–31. doi: 10.1371/journal.pcbi.1005991. url: https:
//doi.org/10.1371/journal.pcbi.1005991.

[26] L. Giannantoni, R. Bardini, and S. Di Carlo. “A methodology for co-
simulation-based optimization of biofabrication protocols”. In: bioRxiv
(2022). url: https://api.semanticscholar.org/CorpusID:246418793.

[27] L. Giannantoni, A. Savino, and S. Di Carlo. “Optimization of synthetic os-
cillatory biological networks through Reinforcement Learning”. In: bioRxiv
(2023). doi: 10 . 1101 / 2023 . 11 . 19 . 567717. eprint: https : / / www .
biorxiv.org/content/early/2023/11/19/2023.11.19.567717.full.

pdf. url: https://www.biorxiv.org/content/early/2023/11/19/
2023.11.19.567717.

[28] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. 1st. USA: Addison-Wesley Longman Publishing Co., Inc., 1989.
isbn: 0201157675.

[29] A. Goldman, B. Majumder, A. Dhawan, S. Ravi, D. Goldman, M. Ko-
handel, P.K. Majumder, and S. Sengupta. “Temporally sequenced an-
ticancer drugs overcome adaptive resistance by targeting a vulnerable
chemotherapy-induced phenotypic transition”. In: Nature Communica-
tions 6 (Feb. 2015). Published 2015 Feb 11, p. 6139. doi: 10 . 1038 /

ncomms7139.

[30] A. A. Goldstein. “Optimization of Lipschitz Continuous Functions”. In:
Mathematical Programming 13.1 (1977), pp. 14–22. doi: 10.1007/BF01584320.
url: https://doi.org/10.1007/BF01584320.

[31] S. M. Hadian, H. Farughi, and H. Rasay. “Development of a simulation-
based optimization approach to integrate the decisions of maintenance
planning and safety stock determination in deteriorating manufacturing
systems”. In: Computers Industrial Engineering 178 (2023), p. 109132.
issn: 0360-8352. doi: https://doi.org/10.1016/j.cie.2023.109132.
url: https : / / www . sciencedirect . com / science / article / pii /

S0360835223001560.

4

https://api.semanticscholar.org/CorpusID:62786994
https://api.semanticscholar.org/CorpusID:62786994
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1371/journal.pcbi.1005991
https://api.semanticscholar.org/CorpusID:246418793
https://doi.org/10.1101/2023.11.19.567717
https://www.biorxiv.org/content/early/2023/11/19/2023.11.19.567717.full.pdf
https://www.biorxiv.org/content/early/2023/11/19/2023.11.19.567717.full.pdf
https://www.biorxiv.org/content/early/2023/11/19/2023.11.19.567717.full.pdf
https://www.biorxiv.org/content/early/2023/11/19/2023.11.19.567717
https://www.biorxiv.org/content/early/2023/11/19/2023.11.19.567717
https://doi.org/10.1038/ncomms7139
https://doi.org/10.1038/ncomms7139
https://doi.org/10.1007/BF01584320
https://doi.org/10.1007/BF01584320
https://doi.org/https://doi.org/10.1016/j.cie.2023.109132
https://www.sciencedirect.com/science/article/pii/S0360835223001560
https://www.sciencedirect.com/science/article/pii/S0360835223001560


[32] A. Hanif Halim, I. Ismail, and Swagatam Das. “Performance assessment
of the metaheuristic optimization algorithms: an exhaustive review”. In:
Artificial Intelligence Review 54.3 (2021), pp. 2323–2409. doi: 10.1007/
s10462-020-09906-6. url: https://doi.org/10.1007/s10462-020-
09906-6.

[33] C. Hao, H. Jian-Qiang, and L. Teng. “Blackbox Simulation Optimiza-
tion”. In: Journal of the Operations Research Society of China (July 2024),
pp. 2194–6698. issn: 1367-4803. doi: 10.1007/s40305-024-00549-w.
url: https://doi.org/10.1007/s40305-024-00549-w.

[34] J.H. Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence.
MIT press, 1975.

[35] J.H. Holland. “Genetic Algorithms”. In: Scientific American 267.1 (1992),
pp. 66–73. issn: 00368733, 19467087. url: http://www.jstor.org/
stable/24939139 (visited on 09/20/2024).

[36] Kashif Hussain, Mohd Najib Mohd Salleh, Shi Cheng, and Yuhui Shi.
“Metaheuristic research: a comprehensive survey”. In: Artificial Intelli-
gence Review 52.4 (2019), pp. 2191–2233. doi: 10.1007/s10462-017-
9605-z. url: https://doi.org/10.1007/s10462-017-9605-z.

[37] J.Branke and C. Schmidt. “Selection in the Presence of Noise”. In: Ge-
netic and Evolutionary Computation — GECCO 2003. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 766–777.

[38] D. Karaboga, B. Gorkemli, C.Ozturk, and N. Karaboga. “A comprehen-
sive survey: artificial bee colony (ABC) algorithm and applications.” In:
Artif Intell Rev 42 (2014). doi: 10.1007/s10462-012-9328-0.

[39] P. Kerschke and H. Trautmann. “Comprehensive Feature-Based Land-
scape Analysis of Continuous and Constrained Optimization Problems
Using the R-package flacco”. In: Applications in Statistical Computing
– From Music Data Analysis to Industrial Quality Improvement. Ed. by
Bauer et al. Studies in Classification, Data Analysis, and Knowledge Or-
ganization. Springer, 2019, pp. 93–123. doi: 10.1007/978-3-030-25147-
5_7. url: https://link.springer.com/chapter/10.1007/978-3-030-
25147-5_7.

[40] Lambora, Annu, Gupta, Kunal, Chopra, and Kriti. “Genetic Algorithm-
A Literature Review”. In: 2019 International Conference on Machine
Learning, Big Data, Cloud and Parallel Computing (COMITCon). 2019,
pp. 380–384. doi: 10.1109/COMITCon.2019.8862255.

[41] G. Letort, A. Montagud, G. Stoll, R. Heiland, E. Barillot, P. Macklin, A.
Zinovyev, and L. Calzone. “PhysiBoSS: a multi-scale agent-based mod-
elling framework integrating physical dimension and cell signalling”. In:
Bioinformatics 35.7 (Aug. 2018), pp. 1188–1196. issn: 1367-4803. doi:
10.1093/bioinformatics/bty766. eprint: https://academic.oup.com/
bioinformatics/article-pdf/35/7/1188/48967792/bioinformatics\

5

https://doi.org/10.1007/s10462-020-09906-6
https://doi.org/10.1007/s10462-020-09906-6
https://doi.org/10.1007/s10462-020-09906-6
https://doi.org/10.1007/s10462-020-09906-6
https://doi.org/10.1007/s40305-024-00549-w
https://doi.org/10.1007/s40305-024-00549-w
http://www.jstor.org/stable/24939139
http://www.jstor.org/stable/24939139
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1007/s10462-017-9605-z
https://doi.org/10.1007/s10462-012-9328-0
https://doi.org/10.1007/978-3-030-25147-5_7
https://doi.org/10.1007/978-3-030-25147-5_7
https://link.springer.com/chapter/10.1007/978-3-030-25147-5_7
https://link.springer.com/chapter/10.1007/978-3-030-25147-5_7
https://doi.org/10.1109/COMITCon.2019.8862255
https://doi.org/10.1093/bioinformatics/bty766
https://academic.oup.com/bioinformatics/article-pdf/35/7/1188/48967792/bioinformatics\_35\_7\_1188.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/7/1188/48967792/bioinformatics\_35\_7\_1188.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/7/1188/48967792/bioinformatics\_35\_7\_1188.pdf


_35\_7\_1188.pdf. url: https://doi.org/10.1093/bioinformatics/
bty766.

[42] J. Ma et al. “Active Broadband Absorber Based on Phase-Change Ma-
terials Optimized via Evolutionary Algorithm”. In: Coatings 13.9 (2023).
issn: 2079-6412. doi: 10.3390/coatings13091604. url: https://www.
mdpi.com/2079-6412/13/9/1604.

[43] K. Malan and A. Engelbrecht. “Fitness Landscape Analysis for Meta-
heuristic Performance Prediction”. In: vol. 6. Springer, Berlin, Heidelberg,
Jan. 2014, pp. 103–132. isbn: 978-3-642-41887-7. doi: 10.1007/978-3-
642-41888-4_4.

[44] K.M. Malan. “A Survey of Advances in Landscape Analysis for Optimi-
sation”. In: ().

[45] K.M. Malan and A.P. Engelbrecht. “A survey of techniques for character-
ising fitness landscapes and some possible ways forward”. In: ().

[46] S. Mansour, A. Jalali, M. Ashjaee, and E. Houshfar. “Multi-objective op-
timization of a sandwich rectangular-channel liquid cooling plate battery
thermal management system: A deep-learning approach”. In: Energy Con-
version and Management 290 (2023), p. 117200. issn: 0196-8904. doi:
https://doi.org/10.1016/j.enconman.2023.117200. url: https://
www.sciencedirect.com/science/article/pii/S0196890423005460.

[47] M. Melanie. “Genetic algorithms: An overview”. In: Complex. 1 (1995),
pp. 31–39. url: https://api.semanticscholar.org/CorpusID:8916413.

[48] O. Mersmann, B. Bischl, H. Trautmann, P. Mike, W. Weihs, and G.
Rudolph. “Exploratory landscape analysis”. In: ().

[49] J. Metzcar, Y. Wang, R. Heiland, and P. Macklin. “A Review of Cell-Based
Computational Modeling in Cancer Biology”. In: JCO Clinical Cancer
Informatics 3 (Feb. 2019), pp. 1–13. doi: 10.1200/CCI.18.00069.

[50] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello. “A com-
parative study of differential evolution variants for global optimization”.
In: Proceedings of the 8th annual conference on Genetic and evolution-
ary computation (2006). url: https://api.semanticscholar.org/
CorpusID:9027450.

[51] L.J.V. Miranda, A. Moser, and S.K. Cronin. PySwarms. url: https:
//github.com/ljvmiranda921/pyswarms.

[52] M. Mitchell, S. Forrest, and J. H. Holland. “The royal road for genetic al-
gorithms: Fitness landscapes and GA performance”. In: 1991. url: https:
//api.semanticscholar.org/CorpusID:7041271.

[53] J. Nayak, H. Swapnarekha, B. Naik, G. Dhiman, and V. Shanmuganathan.
“25 Years of Particle Swarm Optimization: Flourishing Voyage of Two
Decades”. In: Archives of Computational Methods in Engineering 30 (Dec.
2022). doi: 10.1007/s11831-022-09849-x.

6

https://academic.oup.com/bioinformatics/article-pdf/35/7/1188/48967792/bioinformatics\_35\_7\_1188.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/7/1188/48967792/bioinformatics\_35\_7\_1188.pdf
https://doi.org/10.1093/bioinformatics/bty766
https://doi.org/10.1093/bioinformatics/bty766
https://doi.org/10.3390/coatings13091604
https://www.mdpi.com/2079-6412/13/9/1604
https://www.mdpi.com/2079-6412/13/9/1604
https://doi.org/10.1007/978-3-642-41888-4_4
https://doi.org/10.1007/978-3-642-41888-4_4
https://doi.org/https://doi.org/10.1016/j.enconman.2023.117200
https://www.sciencedirect.com/science/article/pii/S0196890423005460
https://www.sciencedirect.com/science/article/pii/S0196890423005460
https://api.semanticscholar.org/CorpusID:8916413
https://doi.org/10.1200/CCI.18.00069
https://api.semanticscholar.org/CorpusID:9027450
https://api.semanticscholar.org/CorpusID:9027450
https://github.com/ljvmiranda921/pyswarms
https://github.com/ljvmiranda921/pyswarms
https://api.semanticscholar.org/CorpusID:7041271
https://api.semanticscholar.org/CorpusID:7041271
https://doi.org/10.1007/s11831-022-09849-x


[54] C. H. Norn et al. “Protein sequence design by explicit energy landscape
optimization”. In: bioRxiv (2020). url: https://api.semanticscholar.
org/CorpusID:220836140.

[55] S.C.P. Oliveira. BeeColPy. url: https : / / github . com / renard162 /

BeeColPy.

[56] K. R. Opara and J. Arabas. “Differential Evolution: A survey of theoretical
analyses”. In: Swarm and Evolutionary Computation 44 (2019), pp. 546–
558. issn: 2210-6502. doi: https://doi.org/10.1016/j.swevo.2018.
06.010. url: https://www.sciencedirect.com/science/article/
pii/S2210650217304224.

[57] M. Ponce-de-Leon, A. Montagud, C. Akasiadis, J. Schreiber, T. Ntiniakou,
and A. Valencia. “Optimizing Dosage-Specific Treatments in a Multi-
Scale Model of a Tumor Growth”. In: Frontiers in Molecular Biosciences
9 (2022). issn: 2296-889X. doi: 10.3389/fmolb.2022.836794. url:
https://www.frontiersin.org/journals/molecular-biosciences/

articles/10.3389/fmolb.2022.836794.

[58] V. K. Prajapati, M. Jain, and L. Chouhan. “Tabu search algorithm (TSA):
A comprehensive survey”. In: 2020 3rd International Conference on Emerg-
ing Technologies in Computer Engineering: Machine Learning and Inter-
net of Things (ICETCE). IEEE. 2020, pp. 1–8.

[59] K.V. Price. “An introduction to differential evolution”. In: New Ideas
in Optimization. 1999. url: https : / / api . semanticscholar . org /

CorpusID:120341790.

[60] J. Qiang and C. E. Mitchell. “A Unified Differential Evolution Algorithm
for Global Optimization”. In: IEEE Transactions on Evolutionary Com-
putation (2014). url: https://api.semanticscholar.org/CorpusID:
55922233.

[61] K. Qin, V. Huang, and P. Suganthan. “Differential Evolution Algorithm
With Strategy Adaptation for Global Numerical Optimization”. In: Evo-
lutionary Computation, IEEE Transactions on 13 (May 2009), pp. 398–
417. doi: 10.1109/TEVC.2008.927706.

[62] K. Rajwar and K. Deep. “Uncovering structural bias in population-based
optimization algorithms: A theoretical and simulation-based analysis of
the Generalized Signature Test”. In: Expert Systems with Applications 240
(2024), p. 122332. issn: 0957-4174. doi: https://doi.org/10.1016/j.
eswa.2023.122332. url: https://www.sciencedirect.com/science/
article/pii/S0957417423028348.

[63] K. Rajwar, K. Deep, and S. Das. “An exhaustive review of the metaheuris-
tic algorithms for search and optimization: taxonomy, applications, and
open challenges”. In: Artificial Intelligence Review 56 (Apr. 2023). doi:
10.1007/s10462-023-10470-y.

[64] R.A. Rutenbar. “Simulated annealing algorithms: An overview”. In: IEEE
Circuits and Devices magazine 5.1 (1989), pp. 19–26.

7

https://api.semanticscholar.org/CorpusID:220836140
https://api.semanticscholar.org/CorpusID:220836140
https://github.com/renard162/BeeColPy
https://github.com/renard162/BeeColPy
https://doi.org/https://doi.org/10.1016/j.swevo.2018.06.010
https://doi.org/https://doi.org/10.1016/j.swevo.2018.06.010
https://www.sciencedirect.com/science/article/pii/S2210650217304224
https://www.sciencedirect.com/science/article/pii/S2210650217304224
https://doi.org/10.3389/fmolb.2022.836794
https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2022.836794
https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2022.836794
https://api.semanticscholar.org/CorpusID:120341790
https://api.semanticscholar.org/CorpusID:120341790
https://api.semanticscholar.org/CorpusID:55922233
https://api.semanticscholar.org/CorpusID:55922233
https://doi.org/10.1109/TEVC.2008.927706
https://doi.org/https://doi.org/10.1016/j.eswa.2023.122332
https://doi.org/https://doi.org/10.1016/j.eswa.2023.122332
https://www.sciencedirect.com/science/article/pii/S0957417423028348
https://www.sciencedirect.com/science/article/pii/S0957417423028348
https://doi.org/10.1007/s10462-023-10470-y


[65] SciPy. url: https://github.com/scipy/scipy.

[66] E. R. Soltani, H. A. Panahi, E. Moniri, N. T. Fard, I. Raeisi, J. Beik, and
A. Y. Siavoshani. “Construction of a pH/Temperature dual-responsive
drug delivery platform based on exfoliated MoS2 nanosheets for effective
delivery of doxorubicin: Parametric optimization via central composite
design”. In: Materials Chemistry and Physics 295 (2023), p. 127159. issn:
0254-0584. doi: https://doi.org/10.1016/j.matchemphys.2022.
127159. url: https://www.sciencedirect.com/science/article/
pii/S0254058422014651.

[67] P.F. Stadler. “Fitness Landscapes”. In: ().

[68] R. Storn and K. Price. “Differential Evolution - A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces”. In: Journal
of Global Optimization 11 (Jan. 1997), pp. 341–359. doi: 10.1023/A:
1008202821328.
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