
POLITECNICO DI TORINO
Master’s degree in Data Science and Engineering

Master’s Degree Thesis

Are spiking neural networks resilient to internal

faults? A comparison with other neural network

models and an analysis of possible solutions to

increase resilience

Supervisors

Prof. Stefano DI CARLO

Prof. Alessandro SAVINO

Dr. Alessio CARPEGNA

Candidate

Francesco GRANDI

October 2024

Abstract

Spiking neural networks (SNNs) are a new type of computational model whose

potential is worth examining due to their similarity to the biological brain, of which

AI researchers hope to harness the power and capabilities. These networks achieve

comparable performances and accuracy to traditional neural networks in temporal

data-related tasks while employing fewer resources. Maintaining the comparison

with the biological brain, a question arises spontaneously: Are spiking neural

networks able to retain the biological brain capability of resiliency, allowing it to

remain functional even when damaged? The question is crucial when implementing

artificial neural networks since they play a role in many aspects of our daily lives,

including safety-critical areas like self-driving cars, disease detection, and more.

Therefore, it is essential to assess their resilience to degradation, which frequently

occurs throughout a typical software life cycle.

The main intent of this work is to compare the reliability of more traditional

Artificial Neural Networks (ANNs) with Spiking Neural Networks. The methodology

employed is based on conducting fault-injection campaigns. These processes entail

deliberately introducing faults into the target model to evaluate its performance

and robustness under faulty conditions. In particular, metrics such as accuracy

and class probability on different datasets assess fault-caused damages on ANNs.

In addition, a comparison with the most traditional types of Artificial Neural

Networks is provided.

i

Acknowledgements

A heartfelt thank you goes to my parents, who worked alongside me to reach this

goal, supporting me in every possible way. My grandmother Adele was always

there when I needed her, and for this, I am deeply grateful.

I also want to extend my sincere thanks to my friends Andrea and Alice, who

have known me for a long time and kept me great company during the days spent in

study rooms. Mattia, Matteo, and Sam helped me unwind and free my mind from

university worries on the weekends, and I thank them for that. A special thanks to

Francesca for all the shopping we did together and Lorenzo for the thousands of

trips we had together.

With Davide and Louiss, I shared the final stretch of this journey—moments I

will certainly miss. I also thank Alessio Carpegna for his time and collaboration on

this project, and Prof. Stefano Di Carlo for allowing me to work with his research

group.

Last but not least, I thank my siblings, Andrea, Ilaria, and Elena, along with

all my friends from Lucca and Torino, for their patience and support throughout

these years.

ii

Table of Contents

List of Figures vi

1 Introduction 1

1.1 Workflow . 2

1.2 Why Python . 3

2 Background 5

2.1 Traditional Neural Networks . 5

2.1.1 Multilayer perception and Feed Forward Neural Networks . . 7

2.1.2 Convolutional Neural Network 9

2.2 From ANNs to SNNs . 12

2.2.1 Neuron model . 13

2.2.2 Encoding and spikes . 17

2.2.3 Training . 19

2.3 Fault-injection . 22

2.3.1 Software implemented fault injection 23

3 Proposed Approach 27

3.1 ANNFI . 27

3.2 Simulation design and simulation life-cycle 30

3.3 Type of faults . 32

iv

4 Experimental Setup and results 34

4.1 Experimental Setup . 34

4.1.1 Datasets . 35

4.1.2 Preprocessing . 36

4.1.3 Feeding data to networks . 36

4.1.4 Neural Networks . 37

4.1.5 Fault tolerance metrics . 38

4.2 Experimental Results . 39

4.2.1 Fault injection times . 39

4.2.2 Simulations reliability . 40

4.2.3 SDC1 . 44

4.2.4 Spiking neural network overall results 45

4.2.5 Neural network overall results 47

4.3 Comparison between stuck-at-1 and stuck-at-0 fault 50

5 Conclusions 55

5.1 Future Developments . 56

A Models Architecture 58

B Weights distributions 61

Bibliography 63

v

List of Figures

2.1 Artificial Intelligence hierarchy . 6

2.2 Example of multilayer perceptron 7

2.3 Scheme of a LIF neuron mechanism 8

2.4 Architecture of the CNNs applied to digit recognition 10

2.5 Diagram of the SNNs main characteristics 13

2.6 From neurons to spikes [24] . 14

2.7 Scheme of a LIF neuron mechanism 14

2.8 Few frames of an element of datasets NMNIST 18

2.9 Plot of the S value, which is 0 until the spike is fired, plotted against

the potential. The latter allows for the spike firing only when θ is

reached. 21

2.10 Plot shifted sigmoid function and its derivates 22

3.1 Modified ANNFI framework . 30

3.2 Example of a heatmap used during data analysis. The lighter the

color the higher the correlation . 31

4.1 Comparison of SDC1 percentage for every network. Each color

represents a type of network and dataset. 44

vi

4.2 Comparison between SDC1 percentage caused by stuck-at-1 faults

injections. Plots have a type of layer granularity on the left vs a

type of parameter granularity on the right 45

4.3 Convolutional spiking neural network overall classification results

on SHD . 46

4.4 Convolutional spiking neural network overall classification results

on NMNIST . 46

4.5 Feed Forward spiking neural network overall classification results on

SHD . 46

4.6 Feed Forward spiking neural network overall classification results on

NMNIST . 46

4.7 Convolutional neural network overall classification results on SHD . 49

4.8 Convolutional neural network overall classification results on MNIST 49

4.9 Feed Forward neural network overall classification results on SHD . 49

4.10 Feed Forward spiking neural network overall classification results on

MNIST . 49

4.11 Overall classification results for every network after stuck-at-1 fault

injection . 50

4.12 Overall classification results for every network after stuck-at-0 fault

injection . 51

4.13 Comparison between SDC1 percentage caused by stuck-at-0 faults

injections. Plots have a type of layer granularity on the left vs a

type of parameter granularity on the right 52

4.14 Weight value distribution of the convolutional neural network on mnist 53

vii

Chapter 1

Introduction

Data analysis, object recognition, and audio classification are a few of the many fields

where Deep Neural Networks (DNNs) techniques are used to perform tasks that only

a few years ago were manageable solely by humans or machines under human super-

vision. Nonetheless, as technology advanced and computational power became more

and more available, Neural networks were able to perform more and more complex

tasks. One of the most significant examples is Tesla’s autonomous driving system,

known as Autopilot, which leverages machine learning extensively. Other everyday-

life examples are Netflix and Amazon machine learning systems used to personalize

user content recommendations. Finally, ChatGPT-3, a Neural language model, has

fundamentally changed the user experience of researching and gathering information.

These computational models have an architecture inspired by the biological brain

and take advantage of the enormous data available nowadays. While exploring

ANNs potential, the attempts to mimic a biological brain were intensified, resulting

in an increasing the number of neurons and complexity of the networks. For

instance, Recurrent Neural Networks (RNNs) are ANNs attempting to work with

temporal data, akin to the type of information processed by biological organisms in

real-world scenarios. Likewise, Convolutional neural networks (CNNs), engineered

1

Introduction

to classify images, were inspired by biological processes: The connectivity pattern

between neurons took inspiration from the organization of the animal visual cor-

tex [1]. The SNNs are therefore a mandatory step towards the perfection of ANNs,

since they mimic the biological brain, transforming inputs in asynchronous events

through action potentials or spikes, similar to how the neurons communicate. This

capability makes them ideal for real-time processing of dynamic, time-sensitive

data, particularly in edge-computing scenarios where energy and computational

power are constrained. Some examples are IoT sensors deployed in home appliances

or production sensors used to detect issues during machine operations. However,

to deploy SNNs in safety-critical systems, it is essential to evaluate their relia-

bility, as erroneous decisions could have serious consequences. One of the most

effective methods for assessing the robustness of SNNs is to conduct extensive

fault-injection campaigns. This process involves intentionally introducing faults

before and during the system’s inference operations and comparing the results

to fault-free execution. This approach helps determine the impact of faults on

the system performance, identify potential vulnerabilities, and improve the overall

reliability of SNN applications in critical settings.

1.1 Workflow

As stated before, the objective of this thesis is to compare the fault resiliency of

SNNs to that of traditional DNNs. In the process, two main frameworks were

employed:

• snnTorch: designed to be intuitively used with PyTorch, it allows inserting

special neuron layers into the networks allowing it to work with potentials

and spikes.

2

Introduction

• ANNFI: A fault injection tool operating on ResNet networks through both

stuck-at and bit-flip faults.

The choice of these tools was straightforward since the first is widely used and

well-documented. The latter was developed internally within Politecnico di Torino,

making it very easy to obtain assistance. From these initial points, the work was

divided into four main phases:

1. Choosing the type of Computational model to test: Both the number of

Layers and type of layers were a crucial choice since the simulation time, and

complexity of the experiments were directly related to them.

2. Adapting ANNFI framework to work with Spiking Neural Network because

Spiking neural networks have a different set of parameters.

3. Simulation on Linux server and result analysis: Since every simulation lasted

several hours, it was necessary to employ Linux servers equipped with NVIDIA

GPUs. The results obtained were then thoroughly examined with parameters-

per-layer granularity.

1.2 Why Python

The choice of Python programming language was straightforward. Python language

is known for its simplicity and consistency. The Python code is concise and readable,

which simplifies the presentation process. It is widely used in Machine learning

since it implements PyTorch and TensorFlow, two of the main frameworks in the

field. In addition, python implements libraries such as Numpy and Matplotlib,

that come in handy for data engineering and data Analysis. These two steps were

essential for elaborating faults-injection results. Finally, ANNFI and snnTorch

were built in Python, therefore, to avoid wasting time rewriting the same code in

different languages, Python was an obliged choice.

3

4

Chapter 2

Background

This chapter is a brief introduction to the main topics covered by the thesis. A

concise explanation of the functioning of machine learning algorithms implemented

is provided. In particular, it presents a brief explanation of the main theory behind

Convolutional and Feed Forward Neural networks. Afterward, it is well explained

why studying SNNs’ potential could prove very useful for future machine learning

developments while considering its pros and cons. It then follows an explanation

of the differences between Artificial Neural Networks and spiking neural networks.

Finally, the main elements constituting SNNs are outlined.

2.1 Traditional Neural Networks

Neural Networks are a kind of Artificial Intelligence able to perform complex tasks.

They are one of the more complex A.I. models and each recent DNN has at least

thousands of neurons if not billions. To tune these algorithms and teach them to

perform the task desired, it is necessary to have huge amounts of both data and

computational power.

Modern research in the field started in 1943, when Warren McCulloch and

5

Background

Walter Pitts published a pioneering work outlining a threshold linear combiner. It

is the first example of an Artificial neuron, composed of multiple binary inputs

and a single binary output. An appropriate number of such elements, connected to

form a network, is capable of computing simple Boolean functions [5]. Nonetheless,

it wasn’t until 1958, that psychologist Frank Rosenblatt invented the Perceptron,

the first implemented artificial neural network [6]. To provide a brief explanation

of their functioning, the case of a slightly more complex design is considered: the

Multilayer Perception (MLP).

Figure 2.1: Artificial Intelligence hierarchy

6

Background

2.1.1 Multilayer perception and Feed Forward Neural Net-

works

A multilayer Perceptron is a kind of feedforward Neural Network (FNNs) and is

one of the simplest examples of ANN. It comprises one input and one output layer

and one or more hidden layers between them. These hidden layers are formed by

neurons, working similarly to a perception. It is important to underline that ANNs

are fully connected networks, where every neuron of a layer is connected to every

other neuron of the previous and following layer.

Figure 2.2: Example of multilayer perceptron

Each input layer corresponds to a feature of any single sample of data. Its

purpose is to send to each next-layer neuron the input feature, scaled by a certain

7

Background

weight. Each internal neuron layer sums up the new scaled inputs while adding

a bias and an element of non-linearity by introducing an activation function (a

non-linear function). Afterward, each neuron sends to each next-level neuron the

newly generated information.

Figure 2.3: Scheme of a LIF neuron mechanism

This mechanism called forward propagation, goes on until the output layer

is reached. Here, after summing up the previous layer-generated inputs and

adding bias, a function is used to convert the information into probabilities, each

corresponding to a class. In general, each DNN has two main phases, training and

inference. The process described before is present in both phases, but while training

there is one more step needed. The values of the weights, present throughout the

network, need to be set since they are randomly determined as the network is

defined at the beginning. This happens through backpropagation, which takes

place by computing the loss, a measure computed, for example, as the squared

difference between the final probabilities obtained and the actual class. Afterward,

8

Background

while the Loss is backpropagated through the network, the weights are adjusted.

Finally, it is important to underline that the process described above is meant

only to outline the functioning of a neural network, which is regulated by complex

equations with many factors and variables to take into account.

2.1.2 Convolutional Neural Network

This algorithm represents the state-of-the-art solution for a wide range of computer

vision tasks, specifically those aimed at classifying one or more objects within

a single 2D image. Thereby, CNNs are widely used in image classification and

object detection applications due to their outstanding results, often matching

or surpassing human accuracy. A significant limitation of previously mentioned

approaches was their inability to ensure shift, scale, and distortion invariance of

input images. This may be partially addressed through image pre-processing, which

requires considerable effort for each image. CNNs, however, adopt a fundamentally

different method by learning features from sets of labeled images (training sets)

to classify various inputs. The structure of CNNs is quite similar to ordinary

neural networks, with neurons grouped into layers to extract informative features

from inputs. However, CNNs utilize smarter constraints on layer shapes. While

a simple neural network can perform image classification, it is impractical due

to the vast number of parameters needed, resulting in high training time and

memory requirements. For instance, an RGB image of 256 × 256 pixels would

require an input layer with approximately 300,000 neurons, potentially leading to

millions in the hidden layers. To address this issue, concepts from biology have

been incorporated. Studies on the cat’s visual cortex demonstrate that only small

regions of neurons are interconnected. This principle was first applied to neural

networks by Kunihiko Fukushima [1] with the development of the initial CNN

model, and later enhanced by Yann LeCun [7] in 1998 with the trainable CNN

9

Background

model, LeNet5. Key features introduced in these works include local receptive

fields, shared weights, and sub-sampling. These features significantly reduce the

number of parameters to be learned, as each neuron is connected only to a small

region of the previous layer, not all previous units.

As already underlined CNNs have a more complex structure that is used to filter

and select the most characteristic pattern of an image. In the following paragraphs,

a brief explanation of each layer is given.

Figure 2.4: Architecture of the CNNs applied to digit recognition

Convolutional layers

This is the foundational component of a CNN. As the name implies, its primary

mathematical operation is convolution, which involves applying a sliding window

function to a matrix of pixels representing an image. This sliding function, known as

a kernel or filter, can be used interchangeably. In the convolutional layer, multiple

filters of the same size are applied. Each filter detects specific patterns in the

image, such as the curves of digits, edges, or the overall shape. Simply put, in the

10

Background

convolutional layer, we use small grids (filters or kernels) that move across the

image. Each small grid searches for specific patterns like lines, curves, or shapes.

As it moves over the image, it creates a new grid that highlights the locations of

these patterns. For instance, one filter might be used to find straight lines, while

another might identify curves. By using multiple filters, the CNN can recognize a

wide variety of patterns within the image. Every Convolutional layer receives an

input image, called the input feature Map, while in output produces the output

feature map. They are represented in Tensor form, with dimensions (c × h × w),

respectively the number of channels, height, and width. The hyperparameters

that determine the shape of the convolutional layer are depth, stride, and padding.

Depth refers to the number of filters applied, each learning to detect specific

features. The stride indicates the number of pixels by which the window moves;

for example, a stride of 1 means the window moves one pixel at a time. Finally,

padding specifies the number of zero-valued pixels added around the border of the

input.

Pooling layers

The purpose of the pooling layer is to extract the most important features from

the convoluted matrix. This is achieved by performing aggregation operations that

reduce the dimensions of the input feature map, thereby decreasing the memory

required during network training. For example, max pooling selects the highest

value from the feature map while sum pooling aggregates all the values in the

feature map, and average pooling calculates the mean of all the values in the feature

map.

11

Background

Fully connected layers

In addition to the new layers mentioned above, fully connected layers are imple-

mented in CNNs as well. These layers are the final ones and their inputs correspond

to the flattened one-dimensional matrix produced by the last pooling layer. It is

important to underline that each convolutional and fully connected layer has a

ReLU activation function that helps the algorithm learn non-linear relationships

between the image and the extracted features.

2.2 From ANNs to SNNs

Why SNNs?

For how incredible the results achieved by CNNs and FNN are, many problems

may arise during their implementation. For example, the computational power

needed to run top-performing deep learning models has increased ten times each

year from 2012 to 2019 [8, 9]. Similarly, data generation is rising at an exponential

rate. OpenAI’s ChatGPT language model, GPT-3, which has 175 billion learnable

parameters, is estimated to require about 190,000 kWh [10, 12, 13] to train. In

contrast, our brains operate on just 12-20 W of power, handling numerous sensory

inputs while maintaining essential involuntary biological functions. In this context,

SNNs are very useful since they operate with a sparse process and need less energy.

They utilize an event-driven mechanism where neurons only fire or ‘spike’ in

response to specific stimuli. This sparsity of activity means that at any given time,

only a small fraction of neurons are active, drastically reducing energy consumption.

In addition, the intrinsic capability of Spiking Neural Networks (SNNs) to

handle temporal information grants them a significant advantage in tasks involving

sequences or time-based data. This advantage is crucial because biological brains

operate in dynamic environments, continuously receiving new information from

12

Background

our senses and internal organs. In contrast, traditional Artificial Neural Networks,

including those used in Large Language Models (LLMs), often need supplementary

mechanisms like recurrent neural networks (RNNs) or long short-term memory

(LSTM) units to manage temporal dependencies. SNNs, however, integrate time

directly into their computational processes, enabling them to model sequences and

temporal patterns more efficiently. The following paragraphs introduce the most

important elements of SNNs focusing on the elements implemented during the

project. Few interesting article on the SNN topic are [11], [2], [3], [4]

Figure 2.5: Diagram of the SNNs main characteristics

2.2.1 Neuron model

LIF neurons

One of the main topics of the whole spiking neural network subject is the neuron

mechanisms. In particular, leaky integrate-and-fire (LIF) neurons are the most

used and the most energy-efficient kind of SNNs neuron. Their mechanism is based

on receiving input spikes (a.k.a electrical impulses). Each increases the membrane

potential U(t) according to a scaling factor. Afterward, a weighted of the spikes is

13

Background

computed. A spike is generated and propagated to subsequent neurons if a certain

electrical threshold θ is reached.

Figure 2.6: From neurons to spikes [24]

It is important to emphasize that the capability of SNNs to manage sequential

and temporal data can be explained for the most part by the mentioned mechanism:

The potential reached through spikes’ contributions is constantly decreased by a

factor until it becomes null. Since only one spike contribution is probably insufficient

to reach the threshold, the timing and frequency of various spikes are essential to

sustain U(t) until the threshold is reached. Incoming spikes are given by the input

data of the whole network; if it is temporal-sequential data, the spiking neural

network will interpret it as such incorporating the time dynamics.

Figure 2.7: Scheme of a LIF neuron mechanism

14

Background

This neuron process resembles the ones observed by Louis Lapicque in his

experiments by stimulating a frog nerve through an electrical current. He was able

to understand when the leg frog would have twitched by varying the amplitude and

intensity of it. He understood that the nerve mechanism resembled coarsely a low-

pass filter circuit consisting of a resistor R and a capacitor C [?,14]. Physiologically

this holds up: the capacitance is due to the insulating lipid bilayer that constitutes

the neuron’s membrane. The resistance is a result of gated ion channels that open

and close, regulating the diffusion of charge carriers across the membrane.

To explain this mechanism well few formulas are derived from the standard

RC-circuit equation:

τ
dU(t)

dt
= −U(t) + Iin(t)R (2.1)

where Iin(t) is the input current to the neuron and τ = RC is the time constant

of the circuit. Typical values of τ fall on the order of 1-100 milliseconds. To adapt

this time-varying solution for a sequence-based neural network, the forward Euler

method is employed in the simplest scenario to obtain an approximate solution to

Equation 2.1 [16]:

U [t] = βU [t − 1] + (1 − β)Iin[t] (2.2)

β = e− 1
τ is the decay rate of the potential generated by the input spikes. The

smaller is τ the more the potential decreases with time and the more the new

input current is important to the present state. To give more freedom to the model

to learn, the scaling factor of the input current 1 − β is changed to a learnable

parameter W . Finally, the threshold reset factor is added to 2.2:

U [t] = βU [t − 1] + WX[t] − Sout[t − 1]θ (2.3)

where

15

Background

Sout[t] =

1 if U [t] > θ

0 otherwise

The above equation exemplifies the ‘reset-by-subtraction‘ (or soft reset) mech-

anism: when the threshold is reached at t − 1 a quantity equal to the maximum

potential reachable θ is subtracted, resetting U to zero.

Alternative to leaky neurons

To offer a more complete overview, a few other types of neurons are introduced:

• Integrate-and-Fire (IF): The leakage mechanism is removed; β = 1 in

Equation 2.3.

• Current-based (CuBa): These incorporate synaptic conductance variation

into leaky integrate and fire neurons. The potential has continuous values

rather than experiencing discontinuous jumps in response to incoming spikes.

They are more realistic but do not result in better performances.

• Higher-complexity neuroscience-inspired models: A large variety of

more detailed neuron models are out there. These account for biophysical re-

alism and/or morphological details not represented in simple leaky integrators.

The most renowned models include the Hodgkin-Huxley model [15]

• Recurrent Neuron: The output spikes of a neuron are routed back to the

input and can be implemented in different ways; i) one-to-one recurrence,

where each neuron routes its own spike to itself, or ii) all-to-all recurrence,

where the output spikes of a full layer are weighted and summed before being

fed back to the full layer.

16

Background

• Kernel-based Models: Also known as the spike-response model, where a

pre-defined kernel (such as the ‘alpha function’) is convolved with input spikes.

The option to define the kernel to be any shape offers significant flexibility.

• Deep learning inspired spiking neurons: Rather than drawing upon

neuroscience, it is just as possible to start with primitives from deep learning

and apply spiking thresholds. This helps with extending the short-term

capacity of basic recurrent neurons.

The model’s intent should ultimately determine the choice of the neuron to

implement. Energy efficiency calls for Leaky neurons while for accuracy is better

to implement Recurrent neurons.

2.2.2 Encoding and spikes

Input encoding

Just as the biological brain, multiple diverse inputs can be fed to the Spiking

Neural Network, may they be images or audio and signals. Of course, the SNNs

neurons do not convert autonomously inputs in spikes. Therefore, together with

the canonical data preprocessing, an additional step may be needed to convert

input data into spikes.

The main coding techniques are:

1. Rate coding: translates the intensity of an input into a firing rate or the

number of spikes. For instance, if a neural network is trained using a black-

and-white image dataset, the brighter a pixel is, the more spikes it generates.

One of the advantages of this method is to have a high error tolerance since if

a spike goes missing there are many more to signal the intensity of the input.

2. Latency (or temporal) coding: transforms input intensity into the timing

of spikes. In this case, it is more important when the spikes are generated

17

Background

rather than their quantity. Even if the method is more prone to noise is

less energy expensive: generating and communicating fewer spikes means less

dynamic power dissipation in a tailored hardware.

3. Delta modulation: converts changes in input intensity over time into spikes,

remaining silent otherwise. It is based on the notion that many receptive

organs in the biological realm are adapted to perceive rapid changes. Therefore,

introducing this technique allows for neural networks more similar to the

biological brain.

In general, Input data to an SNN does not necessarily have to be encoded

into spikes. It is acceptable to use continuous values as input, similar to how

the perception of light starts with a continuous stream of photons hitting our

photoreceptor cells.

In the case of this project, none of the above techniques has been employed since

biological realism was not required to test the fault tolerance of Neural Networks.

Instead, through Tonic Library it was possible to download the desired dataset in

the form of events and transform each dataset entry in a few frames, depicting the

data through time. For each timestep, a batch of frames was passed to the network

to train it. In the end, accuracy was computed over all timesteps.

Figure 2.8: Few frames of an element of datasets NMNIST

18

Background

Output Decoding

In addition to input encoding, a way to interpret the output spikes must be chosen.

In fact, how can we infer the quantity and the timing of the spikes that indicate

the classification of one class rather than another?

Also, in this case, the choice depends on the network’s main purpose. If energy

optimization is prioritized, then Latency coding is the choice. If error tolerance

is needed then Rate coding should be implemented. In addition to the above

methods, population coding can be implemented together with them. In this

case, multiple neurons correspond to a class. It must be underlined that the

output coding does not depend on the choice of input coding: During training,

the algorithm adapts both to inputs and output encoding as they determine the

loss and therefore the adjustments of weights. Regarding this project, rate output

coding has been implemented through snntorch.functional.acc.accuracy_rate since

it was not necessary to simulate biological realism.

2.2.3 Training

An essential part of ANNs functioning is how the network is trained. The same

stands for SNNs.

• Shadow training: A ANN is trained and then converted into an SNN by

interpreting the activations as either firing rates or spike timings

• Backpropagation using spikes: The spiking neural network (SNN) is

trained directly using error backpropagation, usually through time, akin to

the training process for sequential models.

• Local learning rules: Weight updates are determined by signals that are

specific to the local region and timing of the weight, instead of using a global

signal as in standard error backpropagation

19

Background

Backpropagation using spikes was implemented at this juncture. Therefore,

all SNNs implemented were trained as such from the beginning and without

local learning rules. Converting trained ANNs to SNNs implies abiding by a

number of restrictions for any of the currently available conversion methods to work

properly [17] and at the same time it is an underexplored area [16]. In addition,

since this thesis aims to be as general as possible without focusing on a particular

situation, local rules were not chosen to train SNNs as they are not very common

as well as not the main method to train ANNs in general.

Backpropagation

Backpropagation is a gradient estimation method used to train neural network

models. The gradient estimate is used by the optimization algorithm to compute

the network parameter updates. It consists of computing the gradient of the loss

with respect to the weights, which are the parameters to update. Finding the

zero of the gradient is equivalent to finding the minimum of Loss. To do so, the

gradient is computed through the chain rule, which is a method used to differentiate

composite functions. The whole process is iterated backward from the last layer to

avoid redundant calculations of intermediate terms.

In the case of SNNs, the loss regarding only one neuron can be computed as:

dL
dt

= |WoutSout − y| (2.4)

if we consider the gradient (which is one-dimensional in this case since we are

dealing with only one neuron) we obtain:

dL
dWout

= Sout (2.5)

while in order to compute Win we apply the chain rule starting from the output

spike Sout going backward until weights before the neuron Win:

20

Background

dL
dWin

= dL
dSout

dSout

dU

dU

dWin

(2.6)

This mechanism, fundamental for the functioning of a Neural Network, may

present many problems. One of the most important is the dead neuron problem

caused by the fact that the analytical solution of (2.6) results in a gradient that

does not enable learning. This derives from the the term dSout

dU
has only two solution:

0 or ∞. Thereby, no weight can be found to optimize (2.6) when nearly always 0,

effectively killing the neuron, by not allowing it to contribute to the overall learning

of the network.

Figure 2.9: Plot of the S value, which is 0 until the spike is fired, plotted against
the potential. The latter allows for the spike firing only when θ is reached.

From the above image, it can be seen that dSout

dU
is 0 if U /= 0 and ∞ if U = 0.

Surrogate gradient

To solve this problem a mathematical escamotage is implemented: The Surrogate

gradient. It involves leaving the forward pass unchanged while substituting a

continuous function during backpropagation to S(U). One example of a continuous

function that can be implemented in this context is the threshold-shifted sigmoid

function:

21

Background

σ = 1
1 + eθ−U

(2.7)

and its derivative is:

dS̃

dU
= σ′ = eθ−U

(1 + eθ−U)2 (2.8)

Figure 2.10: Plot shifted sigmoid function and its derivates

In this way, it was possible to bypass the dead neuron problem. Nonetheless,

for backpropagation to work a neuron needs to fire at least once. A dead neuron

is also a neuron that fails to activate and, as a result, does not impact the loss

function as its gradient is always 0. Consequently, the weights associated with this

neuron do not influence the credit assignment process. This prevents the neuron

from learning to activate in the future.

2.3 Fault-injection

Software and hardware testing is a mandatory phase in the development of any

cyber-physical system that will be ultimately released on the market. This is

22

Background

particularly relevant in safety-critical environments, where SNNs, like many ANNs

currently are, might be deployed. Safety-critical applications are governed by

numerous international standards that establish a framework of rules and metrics

developers must adhere to in their work. For example, ISO 26262 is a standard

specifically created to outline testing procedures and regulations for the automotive

industry, aiming to prevent fatalities resulting from both hardware and software

failures. In this context fault injection is one of the most used tools for detecting

software bugs and errors. In the next sections, some coordinates will be given to

navigate better the vast world of software testing.

2.3.1 Software implemented fault injection

The first attempts at fault injection go back to 1970 [18]. While mostly related to

hardware testing, they were based on the same principle of modern fault injection,

namely exploring the space of possible fault, to understand better hardware and

asses its reliability. It involved nothing more than shorting connections on circuit

boards and observing the effect on the system (bridging faults). Nowadays, as

already mentioned, fault injection is a common practice and usually it’s designed

keeping in mind a few variables:

• Type: What type of in injection is performed. To mention a few, it can

be bitwise, stuck-to-value, delayed, or simply ignored some parameters or

functions.

• Timing: The choice of the fault injection is very important as the impact of

the algorithm might change drastically.

• Location in the software: where should be in the system? For example,

faults can be located within the systems/subsystems/functions or in the

link/connection between systems.

23

Background

These parameters combined originate the fault space, intended as the set of

all possible combinations of faults. Its dimension increases exponentially as the

complexity of the tested system grows. Therefore, it is crucial to choose wisely the

before-mentioned variables as it would be impossible to examine all fault-injection

space given its dimension. This is directly reflected in this project: only a small

subset was selected from a complete list of all possible faults. Otherwise, days-long

simulations would have been necessary instead of hours-long ones.

In the context of this project, an exclusively Software Implemented Fault Injec-

tion (SWIFI) is implemented. This implies that no hardware factor was taken into

account to test SNNs. SWIFIs are mainly categorized into two types:

• Compile-time Injection: Compile-time fault injection is the simplest type of

fault injection because allows the injection of fault at compile-time, by changing

the code of the software module under test. One of the most widespread

example is called Mutation test, which changes code statements to insert data

or operation perturbations.

• Runtime Injection: Run time fault injection is more complex since requires

a software trigger that explicitly injects a fault into the source code. However,

it is more powerful, compared with compile-time injection, since allows the

simulation of either hardware or software faults. It takes place during the

execution of the program.

In the context of this work, both methods were employed. The fault injection

framework ANNFI creates a fault list which is a randomly chosen subset of the fault

space. Then, the faults are injected and the inference algorithm is run (compile-

time injection). Nonetheless, runtime injecting was a choice made necessary by

membrane potential and spike faults injection: they are generated during the

inference process and passed between layers. Since they are meaningful only in the

24

Background

iteration during which they are generated it would have been very time inefficient

to save them, inject the faults, and then feed them again to SNNs at the right

moment during compile-time. Thereby, the faults were injected in runtime during

the inference phase as they were computed.

25

26

Chapter 3

Proposed Approach

In this chapter, we outline the methodology used for fault injection while evaluating

its pros and cons. As already mentioned, the main objective of this thesis is to

conduct a reliability analysis focused exclusively on spiking convolutional neural

networks (CSNNs) and spiking feed-forward neural networks (FSNNs), assessing

their fault tolerance during the inference phase by identifying deviations from the

correct results. To accomplish this, a simulation-based fault injection method is

proposed, where faults are intentionally introduced into the system to evaluate the

response of the networks, also in comparison with standard CNNs and FNNs.

3.1 ANNFI

ANNFI is a framework that serves as the starting point for fault-injecting on SNNs.

The modules already present were adapted to the new model without changing

their logic. The modified ANNFI is mainly composed of two parts:

• Fault List Generator (FLM)

• Fault Injection Manager (FIM)

27

Proposed Approach

Fault List Generator

The FLM is used to generate the faults, based on the user-requested type of

parameters to inject. For each, according to the network architecture, all the

possible instances of the selected type are considered. Nonetheless, only a few are

selected, each characterized by layer and tensor indexes. In addition, to perform

a single-bit injection, the position of the bit is randomly chosen out of 32. The

possible parameters to choose from for fault injecting can be divided into three

categories:

• Parameters present both in ANNs and SNNs:

– Weight

– Bias

• Parameters present only in SNNs:

– Beta

– Threshold

• Parameters present only in SNNs injected in runtime:

– Spikes

– Membrane potential

Even if more parameters can be considered, the ones selected are the most

significant in the dynamics of SNNs and ANNs. It is worth mentioning that the

sample of parameters selected is chosen according to statistical fault injections

(SFIs) formulas, which are currently regarded as a valid method to estimate a

specific characteristic of a population of faults by observing only a sample. These

measurements are based on an error margin ϵ, a confidence level t, and the

28

Proposed Approach

numerosity of the complete sets of faults N . The numerosity of the sample is

computed as follows:

n = N

1 + e2 N−1
t2p(1−p)

(3.1)

Where p is the probability of success. This term is present in the equation

because SFI can be seen as repeated n trials of injection, with a p probability of

success (a trial is a success when a fault becomes a critical failure). In this context,

a conservative choice of p is 0.5 since it assumes the same probability of success or

failure of the network. The resulting fault list is therefore more comprehensive. In

addition, following [19] e and t have been set respectively to 1% and 99%.

Fault Injection Manager

The FIM’s purpose is to run the clean and faulty campaign. A clean campaign is

a cycle of inference over the dataset with a not-fault-injected network. A faulty

campaign comprises many cycles over the dataset, each with the same ANNs but

injected with a different fault. It is important to underline that the FLG, to

generate the complete Fault List (FL), needs information regarding the shape and

number of tensors representing spikes and membrane potential as they are difficult

to deduce before the machine learning algorithm is deployed. Therefore, at the first

iteration of the clean campaign, the information is passed to FLG to complete the

FL. Once the FL is created and saved, FIM feeds the dataset to the ANNs selected

for inference and saves golden values, namely the metric obtained from fault-free

networks. Afterward, the fault is injected and FIM runs the ANNs in inference

mode on the dataset. It does so one fault at a time, for the whole dataset, while

saving the necessary metrics for data analysis. Finally, the fault-free network is

restored and the following fault in the FL is inserted. The process repeats itself

until there are no more faults in the list. This process is schematized in 3.2.

29

Proposed Approach

Figure 3.1: Modified ANNFI framework

3.2 Simulation design and simulation life-cycle

During the development of the Fault injection, many simulations were performed

and the output was analyzed to verify that the data made sense in the context of

SNNs fault injection. In particular, instruments such as heat maps proved very

useful in quickly overviewing how the output data correlated. For instance, the

masked faults percentage is likely negatively correlated with the delta values since

30

Proposed Approach

the more masked faults there are, the lower the value of deltas. This is because

deltas are defined as the difference between golden accuracy and after-injection

accuracy. In general values between ±0.50 and ±1 suggest a strong correlation

while values between ±0.30 and ±0.49 indicate a moderate correlation. Instead,

values between ±0.29 suggest a weak correlation. These considerations helped

assess the correctness of outputs with thousands if not millions of entries each.

Figure 3.2: Example of a heatmap used during data analysis. The lighter the
color the higher the correlation

After the simulation mechanism was complete the second part, centered around

simulations and their analysis, started. In the process, a "life cycle" of simulation

can be identified. It comprises a few phases, repeated always in the same order,

which were the most present during the simulation process:

31

Proposed Approach

1. Simulation set-up: To perform a simulation, a few parameters must be set,

both through the command line and by modifying the program. Among the

most important: network to use, batch size, the flag for CUDA, and type

parameters.

2. Fault-injection: The simulation itself, which might have lasted several hours;

was crucial to choose wisely the parameters to inject since injecting all of them

together would have been very time-consuming.

3. Result Analysis: Through Jupyter notebooks the results have been analyzed

thoroughly implementing data engineering and using many kinds of plots (bar

plots, heatmaps, regression lines, and similar). This step was fundamental as

it set the next simulation setup, determining therefore the next cycle.

3.3 Type of faults

ANNFI framework supports the injection of two categories of faults, affecting

synaptic connections (weight and biases) and neuron activity, such as membrane

potential and spikes:

• Stuck-at: This technique allows to fix the value of the variable to 0 (suck-at-0)

or 1 (suck-at-1) during inference time. This is particularly meaningful for SNN

fault injection, as spike values are binary: A value equal to zero is equivalent

to the absence of a spike in a time t and vice versa.

• bit-flip: It consists of flipping one of the 32 bits representing a value.

In the context of this project, Stuck-at fault injection has been the most used to

asses network resilience. This is because bit-flipping a spike generates float values,

not directly compatible with binary spikes. Therefore is more straightforward, and

easy to evaluate stuck-at-type faults.

32

33

Chapter 4

Experimental Setup and

results

This chapter describes the experimental setup, including the software and frame-

works used. A detailed description of Datasets, neural network models, and the

experiment setup is mandatory to guarantee the repeatability of experiments.

To begin, the dataset implemented for model tuning and testing is described.

They represent two very different types of data and to obtain acceptable model

performances an important part of the thesis was devoted to preprocessing and

model tuning. In particular, the models considered are CNNs and FNNs and their

respective spiking versions (CSNNs and FSNNs). Once the models were obtained,

they were inserted into ANNFI, after the necessary changes to the framework.

4.1 Experimental Setup

As already mentioned, to launch a simulation few parameters must first be specified.

Accordingly, ANNFI automatically selects the model’s dataset. The following

sections will thoroughly examine the above elements in this chapter.

34

Experimental Setup and results

4.1.1 Datasets

The choice of datasets has been made according to the preexisting work on the topic.

Comparing results based on similar data decreases the variables to consider while

conducting experiments on the topic. In addition, they are very different datasets

as one is made of images of numbers, and the other is comprised of preprocessed

sound signals. This diversity should help to make the final analysis more robust.

The two chosen datasets are:

• Spiking Heidelberg Dataset (SHD): It consists of approximately 10000

high-quality aligned studio recordings of spoken digits from 0 to 9 in both

German and English language. Each element of the dataset is made of spikes

in 700 input channels that were generated using Lauscher, an artificial cochlea

model. Recordings exist of 12 distinct speakers two of which are only present

in the test set [20].

• Modified National Institute of Standards and Technology database

(MNIST): The MNIST is a database of handwritten digits with a training

set of 60,000 examples and a test set of 10,000 examples. The digits, from

0 to 10, have been size-normalized and centered in a fixed-size image. The

resulting images contain grey levels due to the anti-aliasing technique used by

the normalization algorithm. the images were centered in a 28x28 image [21].

• Neuromorphic MNIST (N-MNIST):: It is a spiking version of the original

frame-based MNIST dataset and It consists of the same 60000 training and

10000 testing samples as the original database. It was created by capturing

28x28 8-bit grayscale images of handwritten digits using an ATIS event camera.

The dataset consists of 10 classes, representing the digits 0 through 9 [22].

35

Experimental Setup and results

SHD NMNIST
CNN 70.79% 82.88%
CSNN 64.51% 87.64%
FNN 79.88% 95.96%
FSNN 82.40% 95.32%

Table 4.1: Models accuracies on datasets

4.1.2 Preprocessing

Neuromorphic datasets are arrays of zeros and ones representing spikes at a certain

time t. Feeding this data format to traditional neural networks would have been

very difficult. Tonic framework came in handy since it allowed for converting each

event into frames or images, once the time window or the number of events to

consider was specified.

The datasets mentioned above are well-balanced and representative of all labels.

Nevertheless, it was necessary to preprocess the dataset through pipelines to fit the

data into networks. The type of data fed to the model varied greatly according to

its type and whether the algorithm of choice incorporated the temporal dynamics.

Torchvision library were very helpful in creating preprocess pipelines that allowed

the right data format and data augmentation.

Finally, the canonical split between the test set and the train set has been made

to test the result. On the other hand, the evaluation set was not used to test the

adult tolerance of the models it did not require the perfect tuning of the model.

4.1.3 Feeding data to networks

A critical part of the thesis was how to feed data to networks to guarantee similar

accuracies between the same dataset across different models. In general, given

classical models such as CNNs and FNNs, it is enough to feed images to the former

36

Experimental Setup and results

and flatten images for FNNs. The MNIST is a dataset of images, while SHD is

made of arrays of inputs, which are converted into images before using them.

When dealing with SNNs a further step is needed since they implement temporal

dynamics and need therefore temporal data. NMNIST entry is already divided into

time windows, each of n time steps. It is then enough to set the forward function

to pass a frame (out a whole video) at a time for both spiking FNN and spiking

CNN. Of course, for FSNN a flattened image is passed at each time step of the

time window (For CSNN the same is true but without the flattening operation).

For SHD and FSNN it is simple enough as well: an array is passed at every time

step. To adapt SHD dataset to CSNN it was needed to first group all the arrays

in a single image representing an element of the dataset. But since this image is

static (each image represents a whole time window), to mimic a temporal dynamic,

it is fed to the network unchanged n times mimicking a static video.

4.1.4 Neural Networks

Each architecture’s design was created considering the constraints derived from

the simulation time. The more parameters are present in the network, the longer

the fault injection campaign takes. Therefore, optimizing each NNs with a limited

number of layers was necessary. This was especially true for CFNNs since convolu-

tional layers have many parameters. For this reason, the maximum depth of any

SNN designed is 4 core layers (meaning convolutional or fully connected layers).

In addition, while building SNNs for N-MNIST and SHD datasets didn’t require

many optimizations, Classical NN needed few adjustments and extra layers, to

reach comparable accuracies. In particular, Batch Normalization and Relu layers

were added to stabilize learning and increase accuracy.

The loss function used for NNs is CrossEntropyLoss, combined with Adam opti-

mizer. Instead, SNNs needed domain-specific loss functions such as mse_count_loss.

37

Experimental Setup and results

When called, the total spike count is accumulated over time for each neuron. The

target spike count for correct classes is computed as the number of steps multiplied

by the correct rate, while for incorrect classes it is the number of steps * incorrect

rate. The spike counts and target spike counts are then applied to a mean square

error loss function.

In appendix A each model structure on different datasets is highlighted. It can

be noticed that not neuromorphic models are more complex even if they retain the

same number of core layers (Convolutional and Linear ones) as their neuromorphic

versions. In conclusion, it must be underlined that the optimization of the selected

models does not aim at reaching State-of-the-art accuracy on the three benchmarks

but at evaluating the impact of the fault injection through ANNFI.

4.1.5 Fault tolerance metrics

To properly evaluate the simulation result, a few metrics were chosen to reflect

the effect of fault injections on the model prediction. A model output can be

interpreted as probabilities, each corresponding to a label. They indicate how

likely the network input corresponds to each class. A good system to evaluate

whether the fault injected was very effective is to track how much the probabilities

mentioned changed after the injection. In particular, it was chosen to consider only

the variation of top-ranked probability between a golden run and a faulty one. In

this context the Silent Data Corruption (SDC) term is key. It stands for errors

in the data output that may go undetected unless the system in which the model

is deployed systematically checks for them. In general, the variation of output

probabilities is classified into the following types:

• Masked: The output top-ranked probability of the model remains unchanged

after the fault injection. It is called masked because the network can mask

the effect of the fault.

38

Experimental Setup and results

• Non-critical SDC: This kind of network corruption does alter the top-ranked

output probability but not significantly enough to change the final prediction.

• SDC-1: Modifies the top-ranked output probability enough to change the

classification result. These kinds of corruption are the most critical.

4.2 Experimental Results

In this section simulation times and simulations reliability are examined and

commented on. It then follows a comprehensive analysis of the experimental results

attempting to point out the main weakness of the models considered.

4.2.1 Fault injection times

Each simulation takes a few hours. This number may vary a lot according to the

number of faults injected, the dimension of the network, and the data fed as input.

In table 4.2.1 are shown the fault injection time:

Network Model Dataset Injected Faults FI times [h:m:s]
CNN SHD 16895 1:50:24
CSNN SHD 7118 8:58:48
FNN SHD 89957 4:59:43
FSNN SHD 16876 2:04:05
CNN MINST 16864 0:24:41
CSNN NMINST 3022 1:03:36
FNN MINST 16709 0:21:24
FSNN NMINST 16840 2:00:42

Table 4.2: Models accuracies on datasets

In general spiking neural networks take more time to simulate. The only

exception is the SHD dataset for FNN, where images as big as 250x250 pixels have

been fed to the network consequently increasing simulation time. In addition, the

39

Experimental Setup and results

number of faults injected is very high since the number of injectable parameters

is very high. Overall the simulation time is short enough to allow for extensive

exploration of the fault space of many parameter networks.

4.2.2 Simulations reliability

It is important to underline that any simulation performed gives similar

results if repeated multiple times. This is because a representative portion

of each model parameter type has been fault-injected according to SFI formulas

mentioned in 3.1.

The following tables show the injection details for each model. The percentage

taken into account changes a lot depending on the numerosity of the parameter

examined. For example, if there are 100000 fc.weights only a small percentage of

them can be fault-injected otherwise the simulation would take too long. On the

other hand, if the numerosity of conv.bias is minimal, all of them can be examined,

even if not needed to reach a good representativeness of the set.

40

Experimental Setup and results

Table 4.3: Injection details for different models

Model Name n_injected total percentage_injected (%)
CNN_0_71_SHD conv1.bias 30 32 93.75

conv1.weight 25 128 19.53
conv2.bias 31 32 96.88
conv2.weight 1156 4096 28.22
conv3.bias 29 32 90.63
conv3.weight 1188 4096 29.00
conv4.bias 16 16 100.00
conv4.weight 608 2048 29.69
fc.bias 20 20 100.00
fc.weight 11056 38720 28.55

CNN_0_83_MNIST conv1.bias 24 24 100.00
conv1.weight 218 600 36.33
conv2.bias 40 48 83.33
conv2.weight 9403 28800 32.65
fc.bias 10 10 100.00
fc.weight 3984 12000 33.20

CSNN_0_66_SHD conv1.bias 6 6 100.00
conv1.weight 67 96 69.79
conv2.bias 24 24 100.00
conv2.weight 26 2304 1.13
fc.bias 20 20 100.00
fc.weight 2776 1060320 0.26
lif1.beta 66 98 67.35
lif1.mem 869 57624 1.51
lif1.spk 899 57624 1.56
lif1.threshold 55 98 56.12
lif2.beta 42 47 89.36
lif2.mem 805 53016 1.52
lif2.spk 815 53016 1.54
lif2.threshold 41 47 87.23
lif3.beta 20 20 100.00
lif3.mem 8 20 40.00
lif3.spk 7 20 35.00
lif3.threshold 20 20 100.00

41

Experimental Setup and results

Model Name n_injected total percentage_injected (%)
CSNN_88_NMNIST conv1.bias 2 2 100.00

conv1.weight 64 100 64.00
conv2.bias 4 4 100.00
conv2.weight 131 200 65.50
fc.bias 10 10 100.00
fc.weight 661 1000 66.10
lif1.beta 27 28 96.43
lif1.mem 247 392 63.01
lif1.spk 270 392 68.88
lif1.threshold 27 28 96.43
lif2.beta 10 10 100.00
lif2.mem 59 100 59.00
lif2.spk 65 100 65.00
lif2.threshold 10 10 100.00
lif3.beta 10 10 100.00
lif3.mem 6 10 60.00
lif3.spk 4 10 40.00
lif3.threshold 10 10 100.00

FNN_0_80_SHD fc1.bias 195 4000 4.88
fc1.weight 50630 40000000 0.13
fc2.bias 54 1200 4.50
fc2.weight 36038 4800000 0.75
fc3.bias 20 20 100.00
fc3.weight 991 24000 4.13

FNN_0_96_MNIST fc1.bias 11 1024 1.07
fc1.weight 9877 1048576 0.94
fc2.bias 7 682 1.03
fc2.weight 6592 698368 0.94
fc3.bias 10 10 100.00
fc3.weight 70 6820 1.03

42

Experimental Setup and results

Model Name n_injected total percentage_injected (%)
FSNN_0_82_SHD fc1.bias 16 300 5.33

fc1.weight 12254 210000 5.83
fc2.bias 7 200 3.50
fc2.weight 3509 60000 5.85
fc3.bias 20 20 100.00
fc3.weight 253 4000 6.33
lif1.beta 22 300 7.33
lif1.mem 16 300 5.33
lif1.spk 16 300 5.33
lif1.threshold 16 300 5.33
lif2.beta 6 200 3.00
lif2.mem 6 200 3.00
lif2.spk 11 200 5.50
lif2.threshold 11 200 5.50
lif3.beta 20 20 100.00
lif3.mem 6 20 30.00
lif3.spk 7 20 35.00
lif3.threshold 20 20 100.00

FSNN_0_95_NMNIST fc1.bias 9 200 4.50
fc1.weight 14472 204800 7.07
fc2.bias 12 100 12.00
fc2.weight 1393 20000 6.97
fc3.bias 10 10 100.00
fc3.weight 63 1000 6.30
lif1.beta 15 200 7.50
lif1.mem 13 200 6.50
lif1.spk 12 200 6.00
lif1.threshold 11 200 5.50
lif2.beta 6 100 6.00
lif2.mem 5 100 5.00
lif2.spk 12 100 12.00
lif2.threshold 4 100 4.00
lif3.beta 10 10 100.00
lif3.mem 6 10 60.00
lif3.spk 4 10 40.00
lif3.threshold 10 10 100.00

43

Experimental Setup and results

4.2.3 SDC1

Concerning the data obtained, the first element to notice is that in general SNNs are

more robust to fault injection as shown in figure 4.1. The data gathered generally

seems to agree with [23], where critical faults lie in the range [0% − 4%] for each

network examined.

Figure 4.1: Comparison of SDC1 percentage for every network. Each color
represents a type of network and dataset.

Three out of four examples show that spiking neural networks are more resilient

to changes, in particular in the case of fully connected Neural networks which are

6x times more resilient. The only exception is the convolutional neural network

deployed on mnist. The spiking version has a higher percentage of SDC1, meaning

the resulting prediction changed 3.6% after the fault injection. It can also be

noticed that CNN on mnist has the highest number of critical faults.

This makes particular sense with figure 4.2 where it is clearly shown that

44

Experimental Setup and results

convolutional and Leaky layers are the most influenced by faults. Therefore,

networks built with the above-mentioned types of layers for the most part are

shown to be most damage-prone in 4.1.

Figure 4.2: Comparison between SDC1 percentage caused by stuck-at-1 faults
injections. Plots have a type of layer granularity on the left vs a type of parameter
granularity on the right

Nonetheless, It is not clear why CSNN_0_88_NMNIST is less fault tolerant than

its classical version. One possible explanation can be attributed to the difference

in dimension between CSNN_0_88_NMNIST and CSNN_0_66_SHD since the

former is much bigger. A small number of neurons may cause decreased resiliency:

Injecting a fault in a large network may cause less damage since many other neurons

contribute to the final prediction together with the injected one. Therefore, while

CNN and CSNN on MNIST retain similar dimensions, CNN and CSNN on SHD

have very different numbers of neurons which results in CSNN_0_66_SHD being

more resilient.

4.2.4 Spiking neural network overall results

In 4.2 another important element is shown: spikes, thresholds, and bias are

the most critical parameters to inject. This trend is further confirmed by

Figure 4.3, 4.4, 4.5, 4.6 where all SNNs parameters are shown together with SDCs.

One possible explanation is that setting a spike to 0 or 1 during inference time

45

Experimental Setup and results

Figure 4.3: Convo-
lutional spiking neu-
ral network overall
classification results
on SHD

Figure 4.4: Convo-
lutional spiking neu-
ral network overall
classification results
on NMNIST

Figure 4.5: Feed
Forward spiking neu-
ral network overall
classification results
on SHD

Figure 4.6: Feed
Forward spiking neu-
ral network overall
classification results
on NMNIST

46

Experimental Setup and results

is equivalent to a powerful signal to the following layers that a feature is recognized

in the image. This is particularly true in the network’s last layer where the larger

sum of the spikes relative to a class is the network’s prediction. Also drastically

reducing or increasing threshold parameters has the same result as injecting faults

in spikes. This is because setting a low threshold is equivalent to always firing

spikes and vice versa: the slightest signal would increase U(t) enough to reach the

threshold and consequently trigger the firing of a spike or never trigger it if the

fault injected increased the threshold.

As already mentioned, fault-injecting bias values are impactful on network

performances. This phenomenon can be explained by the relatively few biases in

comparison with weight parameters, even in the same layer. This is exemplified by

the following equation describing the output of a neuron:

f(b +
nØ

i=1
xiwi) (4.1)

with xi being the input, wi the weights and b and f respectively bias and activation

function. For any b there are n weights, therefore, injecting any of the biases

results in a larger effect compared to the one obtained by injecting one of the many

weights. A similar logic can be used to explain why Fully connected layers are

usually more resilient convolutional layers. Convolutional weights are in fact

usually less then fully connected weights. Therefore, modifying a convolutional

weight results in more corruption caused to the network’s performances as shown

in Figure 4.2.

4.2.5 Neural network overall results

The plots below refer to classical neural network fault injection. They are very

different from the SNNs results: The percentage of non-critical SDC increased

greatly. This highlights once again that SNNs tend to be more robust, not just

47

Experimental Setup and results

against SDC1 faults. The tendency of NNs to produce a higher rate of non-critical

SDCs can be attributed to the differences in the nature of their final outputs

compared to SNNs. For SNNs the final output is the spike count while probabilities

are the outputs of classical NNs. The former are integer numbers and the latter

are floats with many significant figures. Therefore likely to have a non-critical SDC

on NNs since even the slightest change in the probability is accounted for by the

output float values and thereby classified as non-critical SDC or SDC1. Instead,

It is more difficult to cause a non-critical SDC in SNNs because the effect of the

fault on the output must be of at least a spike fired (+1) or not fired (−1) to be

accounted for as non-critical SDC.

Analyzing further the results in Figure 4.7 and Figure 4.8 obtained for CNNs on

MNIST and SHD we can observe a huge discrepancy between the fault resiliency

of these two networks even if they belong to the same type of network. It can be

explained by the difference in architecture as shown in the appendix A: A deep

CNN had to be developed to manage the large images from SHD dataset. Instead,

less than half the layers were enough to train a performing CNN on MNIST. We

can thus conclude that more complex networks obtain better fault resilience overall.

This is further corroborated by Figure 4.9 and Figure 4.10 where the larger FNN

deployed on SHD seems to have a lower rate of non-critical faults even if the

difference is less marked.

48

Experimental Setup and results

Figure 4.7: Convo-
lutional neural net-
work overall classi-
fication results on
SHD

Figure 4.8: Convo-
lutional neural net-
work overall classi-
fication results on
MNIST

Figure 4.9: Feed
Forward neural net-
work overall classi-
fication results on
SHD

Figure 4.10: Feed
Forward spiking neu-
ral network overall
classification results
on MNIST

49

Experimental Setup and results

4.3 Comparison between stuck-at-1 and stuck-at-

0 fault

As it’s possible to see from Figure 4.11 and 4.12 non-critical SDC and masked values

are in the same proportions for both stuck-at-0 and stuck-at-1 faults injection. The

only percentage changing is SDC1 values, which are considerably more present in

stuck-at-1 fault injection scenario. This corroborates the scenario described above,

where spiking neural networks generally performed better when fault-injected.

Figure 4.11: Overall classification results for every network after
stuck-at-1 fault injection

Dead neurons and distribution of weights

Looking at the above graphs one question arises: why do non-critical SDCs

and Masked percentages remain very similar while SDC1 reduces signif-

icantly? To understand this we have to look at more in-depth in the data. From

SDC1s in Figure 4.13 we can see a large variation in the parameters and layers

50

Experimental Setup and results

Figure 4.12: Overall classification results for every network after
stuck-at-0 fault injection

responsible for SDC1s in comparison with 4.2. Fully connected and convolutional

layers impact very little SDC1s percentage, while Leaky layers, especially threshold

parameters, are nearly the only ones responsible for SDC1.

As already mentioned, a threshold is a tricky parameter, which, if it

is set to a too large value, might metaphorically kill a neuron, inhibiting

any spike activity.

That is the case of Stuck-at-1 fault injections. On the contrary, setting a

threshold too low may cause an always-active neuron. In the stuck-at-0 scenario,

we can hypothesize that many neurons are made hyperactive by reducing their

thresholds, thereby explaining why threshold fault injections seem to be the main

cause of SDC1. On the other hand, spikes are often zeros, and setting their value

does not imply large SDC1 differences.

51

Experimental Setup and results

Figure 4.13: Comparison between SDC1 percentage caused by stuck-at-0 faults
injections. Plots have a type of layer granularity on the left vs a type of parameter
granularity on the right

Last but not least, what is causing the near-to-zero effect of injecting

faults in Fully connected and Convolutional layers? To answer the question

weight values distribution plots of the two types of layers must be taken into account.

One possible example is the distribution of the network CNN_0_83_MNIST (figure

4.14).

It is possible to see a distribution with mean of 0.001. The same stands for all

the other networks as shown in the appendix B. Given this, it can be explained why

SDC1 values are mostly not caused by the above-mentioned layers: By injecting

stuck-at-0 faults, weight floats are set to a value nearer to 0 compared to the golden

one and since most of the values are by default near to 0, the overall impact is

not significant. On the other hand, stuck-at-0 injections still cause an important

percentage of non-critical SDCs. This might be because setting a bit to zero causes

weight values far from the mean to change. Nonetheless, the process happens in a

lesser degree since the standard deviation is not large and it causes for the most

part only non-critical SDCs.

52

Experimental Setup and results

Figure 4.14: Weight value distribution of the convolutional neural network on
mnist

53

54

Chapter 5

Conclusions

This thesis aims to analyze and comprehend the differences in resilience between

spiking neural networks (SNNs) and classical neural networks (CNNs). This result

was achieved through the modification of the ANNFI tool to support SNNs, as

well as the implementation of various data analysis tools. As a result, the newly

adapted ANNFI tool is now capable of assessing the resilience of fully connected

and convolutional SNNs to faults, offering a platform that induces errors and injects

faults into critical components such as synaptic weights, neuron model parameters,

internal states, and activation functions.

Numerous simulations were performed using these tools, revealing that SNNs

tend to demonstrate superior performance following fault injections, as indicated

by various types of Silent Data Corruptions (SDCs). To sum up, a few key findings

emerged during this research:

• Biases, convolutional weights, thresholds, and spikes were identified as

the most critical parameters for fault injection.

• Leaky layers were observed to enhance network resilience, as they

tend to mitigate the overall impact of stuck-at faults on the network, despite

55

Conclusions

their susceptibility to stuck-at-0 faults.

• Generally, as the depth and size of the network increase, the impact

of a fault is reduced, as the significance of each neuron diminishes. It is

essential to avoid layers with a small number of parameters since faults in

these layers can disproportionately affect the network’s final output.

• Reducing the number of convolutional layers improves the overall resiliency of

the network.

It is important to note that activation functions in classical neural network

models were not subjected to fault injection. In contrast, SNNs are examined

from this point of view since Leaky layers already incorporate non-linearity through

Leaky layers. Therefore SNNs resilience is further underscored.

5.1 Future Developments

These findings can serve as a foundation for future research, especially as real-

world scenarios involve many more variables. Additional benchmark datasets

could be utilized to validate these results, and comparisons with other models

that incorporate temporal dynamics, such as Recurrent Neural Networks (RNNs),

could provide further insights. Finally, extending fault injection to the activation

functions of classical neural networks presents a promising direction for continuing

this work.

56

57

Appendix A

Models Architecture

Spiking CNN on SHD
Conv2d 6 filters 4x4 kernel size

MaxPool2d 2x2 pool size //
Leaky // //

Conv2d 24 filters 4x4 kernel size
MaxPool2d 2x2 pool size //

Leaky // //
Linear 53016 nodes //

DropOut // //
Leaky // //

Spiking CNN on NMNIST
Conv2d 2 filters 5x5 kernel size
Leaky // //

MaxPool2d 2x2 pool size //
Conv2d 4 filters 5x5 kernel size
Leaky // //

MaxPool2d 2x2 pool size //
Linear 100 nodes //
Leaky // //

58

Models Architecture

Spiking FNN on NMNIST
Linear 200 nodes
Leaky //
Linear 100 nodes
Leaky //
Linear 10 nodes
Leaky //

Spiking FNN on SHD
Linear 300 nodes
Leaky //
Linear 200 nodes
Leaky //
Linear 20 nodes
Leaky //

Table A.1: Spiking neural networks architectures

CNN on SHD
Conv2d 32 filters 2x2 kernel size

Relu // //
MaxPool2d 2x2 pool size //

Conv2d 32 filters 2x2 kernel size
Relu // //

BatchNorm2d 32 nodes //
MaxPool2d 2x2 pool size //

Conv2d 32 filters 2x2 kernel size
Relu // //

BatchNorm2d 32 nodes //
MaxPool2d 2x2 pool size //

Conv2d 16 filters 2x2 kernel size
Relu // //

BatchNorm2d 16 nodes //
MaxPool2d 2x2 pool size //

ReLu // //
Linear 20 nodes //

Softmax // //

CNN on NMNIST
Conv2d 24 filters 5x5 kernel size

MaxPool2d 2x2 pool size //
Conv2d 48 filters 5x5 kernel size

MaxPool2d 2x2 pool size //
ReLu // //
Linear 1200 nodes //

Softmax // //

59

Models Architecture

FNN on NMNIST
Linear 1024 nodes
ReLu //
Linear 682 nodes
ReLu //
Linear 10 nodes

Softmax //

FNN on SHD
Linear 4000 nodes
ReLu //

BatchNorm1d 4000 nodes
Linear 1200 nodes
ReLu //

BatchNorm1d 1200 nodes
Linear 20 nodes

Softmax //

Table A.2: Classical Neural Networks architectures

60

Appendix B

Weights distributions

61

Weights distributions

62

Bibliography

[1] Fukushima, Kunihiko, "Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position", Biolog-

ical Cybernetics, pp. 193–202, Springer-Verla, 1980.

[2] Carpegna, Alessio and Savino, Alessandro and Di Carlo, Stefano, "Spiker: an

FPGA-optimized Hardware accelerator for Spiking Neural Networks". 2022

IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 14-19,

July 2022.

[3] Carpegna, Alessio and Savino, Alessandro and Di Carlo, Stefano, "Spiker+:

a framework for the generation of efficient Spiking Neural Networks FPGA

accelerators for inference at the edge". http://arxiv.org/abs/2401.01141,

January 2024.

[4] Padovano, Dario and Carpegna, Alessio and Savino, Alessandro and Di Carlo,

Stefano "SpikeExplorer: Hardware-Oriented Design Space Exploration for

Spiking Neural Networks on FPGA", Electronics 13, no. 9: 1744. https:

//www.mdpi.com/2079-9292/13/9/1744, January 2024.

[5] W. McCulloch, W. Pitts, "A Logical Calculus of Ideas Immanent in Nervous

Activity", Mathematical Biophysics, pp. 115–133, 1943.

[6] Rosenblatt Frank. "The Perceptron: A Probabilistic Model For Information

Storage And Organization in the Brain". Psychological Review, pp. 386–408,

1958.

63

http://arxiv.org/abs/2401.01141
https://www.mdpi.com/2079-9292/13/9/1744
https://www.mdpi.com/2079-9292/13/9/1744

Bibliography

[7] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” in Proceedings of the IEEE, pp. 2278–2324,

1998.

[8] Neil C Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F Manso.

"The computational limits of deep learning", 2020.

[9] Dario Amodei and Danny Hernandez. "AI and compute". Online:

https://openai.com/blog/ai-and-compute/. 2019.

[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-

plan, Prafulla Dhariwal, Arvind, Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, et al. "Language models are few-shot learners", 2020.

[11] A. Dequino et al., "Compressed Latent Replays for Lightweight Continual

Learning on Spiking Neural Networks," 2024 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), Knoxville, TN, USA, 2024, pp. 240-245, doi:

10.1109/ISVLSI61997.2024.00052.

[12] Payal Dhar. "The carbon impact of artificial intelligence". Nature Mach. Intell.,

423–5, 2020.

[13] Lasse F Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Car-

bontracker: "Tracking and predicting the carbon footprint of training deep

learning models", 2020.

[14] Nicolas Brunel and Mark CW Van Rossum. Lapicque’s 1907 "From frogs to

integrate-and-fire. Biological Cybernetics", pp. 337–339, 2007.

[15] Alan L Hodgkin and Andrew F Huxley. "A quantitative description of mem-

brane current and its application to conduction and excitation in nerve". The

J. of Physiol., pp. 500–544, 1952.

[16] Eshraghian, Jason K and Ward, Max and Neftci, Emre O and Wang, Xinxin

and Lenz, Gregor and Dwivedi, Girish and Bennamoun, Mohammed and Jeong,

Doo Seok and Lu, Wei D, Training "spiking neural networks using lessons from

64

Bibliography

deep learning". Proceedings of the IEEE 2023.

[17] "T On the Future of Training Spiking Neural Networks", A Bendig, Katharina

A Schuster, René A Stricker, Didier, Conference Proceedings, ICPRAM, pp,

466-473, 2023.

[18] J. V. Carreira, D. Costa, and S. J. G, "Fault Injection Spot-Checks Computer

System Dependability", IEEE Spectrum, pp. 50–55, 1999.

[19] R. Leveugle et al. “Statistical fault injection: Quantified error and confidence”.

2009 Design, Automation & Test in Europe Conference & Exhibition, pp.

502–506, 2009.

[20] Benjamin Cramer et al. “The Heidelberg Spiking Data Sets for the Systematic

Evaluation of Spiking Neural Networks”. IEEE Transactions on Neural Net-

works and Learning Systems, pp. 2744–2757, July 2022.

[21] Y. Lecun et al. “Gradient-based learning applied to document recognition”.

Proceedings of the IEEE 86.11, November 1998.

[22] Garrick Orchard et al. “Converting Static Image Datasets to Spiking Neu-

romorphic Datasets Using Saccades”. Frontiers in Neuroscience 9, November

2015.

[23] Göğebakan, Anıl Bayram, et al. Spikingjet: "Enhancing fault injection for

fully and convolutional spiking neural networks". IEEE 30th International

Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE,

2024. p. 1-7.

[24] snnTorch tutorial website, Jason K. Eshraghian, 2024, https://snntorch.

readthedocs.io/en/latest/index.html

65

https://snntorch.readthedocs.io/en/latest/index.html
https://snntorch.readthedocs.io/en/latest/index.html

	List of Figures
	Introduction
	Workflow
	Why Python

	Background
	Traditional Neural Networks
	Multilayer perception and Feed Forward Neural Networks
	Convolutional Neural Network

	From ANNs to SNNs
	Neuron model
	Encoding and spikes
	Training

	Fault-injection
	Software implemented fault injection

	Proposed Approach
	ANNFI
	Simulation design and simulation life-cycle
	Type of faults

	Experimental Setup and results
	Experimental Setup
	Datasets
	Preprocessing
	Feeding data to networks
	Neural Networks
	Fault tolerance metrics

	Experimental Results
	Fault injection times
	Simulations reliability
	SDC1
	Spiking neural network overall results
	Neural network overall results

	Comparison between stuck-at-1 and stuck-at-0 fault

	Conclusions
	Future Developments

	Models Architecture
	Weights distributions
	Bibliography

