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Summary

Nowadays, cloud computing is widely utilised in the Information Technology (IT)
industry to support critical infrastructure and services. Cloud services play a crucial
role across private, public, and commercial sectors, where many are expected to
operate continuously and support critical infrastructure. As cloud services become
more essential, they face increasing security threats, both from known vulnerabili-
ties and emerging challenges. To remain resilient, cloud infrastructures must be
protected not only against familiar threats but also against unknown, zero-day
malicious software. As a result, ensuring robust security has become increasingly
crucial.
In this context, the Reduced Instruction Set Computer Fifth Version(RISC-V)
architecture has seen growing adoption for its flexibility and scalability in cloud en-
vironments. However, the increased use of this open-source hardware also amplifies
the risk of sophisticated malware attacks targeting cloud infrastructure.
This thesis focuses on the development of a hardware-based malware detection frame-
work for RISC-V processors in cloud environments. By collecting and analysing
Hardware Performance Counters (HPCs) data during the execution of applications
and malware, a machine learning-based system is developed to differentiate between
benign and malicious software.
The methodology involves using the Gem5 simulator to gather detailed HPC metrics
from RISC-V processors running various applications and malware, followed by
the use of multiple machine learning algorithms to detect benign and malicious
behaviour. The thesis evaluates the effectiveness of different machine learning
models. Preliminary results demonstrate the potential of combining HPC data with
machine learning techniques to achieve over 80% accuracy in malware detection.
This approach could provide a lightweight and scalable solution for enhancing the
security of cloud services using RISC-V architecture.
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Chapter 1

General Introduction

1.1 Problem Statement

Nowadays, Cloud Computing has become a foundational pillar of modern IT,

playing a crucial role in transforming how businesses operate and deliver services.

Organizations worldwide have rapidly adopted cloud solutions as the core of their

operations, drawn by the cloud’s unique scalability, flexibility, and cost-effectiveness.

The on-demand nature of cloud computing enables businesses to expand their in-

frastructure and enhance performance while minimizing costs. Consequently, cloud

adoption has grown exponentially across diverse industries—from finance and

healthcare to retail—as companies leverage cloud platforms to manage data, run

critical applications, and deliver seamless services to their customers.

According to the International Data Corporation (IDC), the global public cloud

market was valued at approximately $669 billion in 2023, reflecting a 19.9% in-

crease compared to 2022[1]. It is projected to reach $1.20 trillion by 2028, with a

compound annual growth rate (CAGR) of 15% during this period. Industry leaders

such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud are at
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General Introduction

the forefront, collectively capturing a significant portion of the market. For instance,

AWS reported cloud-related revenue of $90.8 billion in 2023, while Microsoft’s

Intelligent Cloud segment, which includes Azure, exceeded $68 billion during the

same period[2].

New trends such as Artificial Intelligence (AI), Machine Learning (ML),

and the widespread adoption of Internet of Things devices(IOT) are driving

unprecedented demand for cloud computing resources. These technologies often

require significant processing power, storage capabilities, and scalability to train

complex models and analyze large datasets. Cloud platforms provide the necessary

infrastructure to support these demanding workloads, making them essential for

organizations leveraging cutting-edge technologies. As a result, the cloud market

is experiencing rapid growth, with industry leaders like AWS, Microsoft Azure,

and Google Cloud investing heavily in expanding their capabilities and offerings.

This ongoing evolution is expected to continue, further solidifying the role of cloud

computing as a foundational technology for businesses across various industries.

As the cloud market continues to grow, organizations need to adopt robust security

measures to protect their data and applications from emerging threats. Despite con-

tinuous advancements in cloud technologies, the cloud still presents several unique

security challenges. One particularly critical issue is the effective identification and

detection of malware, as it often serves as the first line of defence against more

significant security threats, such as Distributed Denial of Service (DDoS) attacks

or data breaches[3].

Malware, short for malicious software, is designed to disrupt, damage, or gain

unauthorised access to systems, often stealing sensitive information or corrupting

data[4][5].
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Malware targeting cloud environments has become a serious concern, often leading

to data breaches, service disruptions, and substantial financial losses. Common

types of malware targeting cloud environments include ransomware, trojans, cryp-

tojacking, and botnets. To address the escalating threat of malware in cloud

environments, organizations are increasingly turning to advanced security solutions

specifically designed to safeguard cloud infrastructures. In this thesis, the approach

used to address this challenge is Hardware-based Malware Detection (HMD).

It involves the dynamic analysis of micro-architectural events within a processor,

utilising ML algorithms to differentiate between benign and malicious applications.

1.2 Objectives

In today’s digital landscape, many software-based malware detection solutions,

such as traditional antivirus programs, are no longer sufficient for protecting cloud-

computing environments, given the constantly evolving and dynamic nature of

these systems. These solutions primarily rely on signature-based detection methods,

which can easily be fooled by the clever techniques used by advanced malware.

This type of malware often employs obfuscation and other misleading strategies to

evade detection, resulting in a growing number of successful attacks within cloud

environments. Additionally, software-based solutions often are not fast enough for

real-time malware detection, especially in safety-critical systems where immediate

threat response is essential.

This thesis aims to address these significant limitations by evaluating a HMD

Framework on the Reduced Instruction Set Computer Fifth Version

(RISC-V) architecture within a complete computer system running a Linux

operating system and real-world applications. This represents a novel contribution,

as such an approach has not been explored in previous research.
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The evaluated framework is illustrated in Figure 1.1.

Figure 1.1: Evaluated hardware-based detection framework

RISC-V is an open-source Instruction Set Architecture (ISA) chosen for its

transparency, modularity, and flexibility. This flexibility allows organizations and

companies to tailor solutions according to their unique requirements.

The evaluated framework leverages Hardware Performance Counters (HPCs),

which are already integrated into modern processors, to detect malware more effec-

tively than traditional software solutions. These counters provide valuable insights

into the behaviour of programs, which often exhibit distinct phase behaviours.

By monitoring program behaviour through HPCs, it is possible to identify time-

behavioural patterns in micro-architectural events, thus allowing for the distinction

between benign applications and malware. Examples of these micro-architectural

events include cache accesses, instruction counts, and branch prediction outcomes.

All experiments are carried out using a specific simulator:Gem5[6]. This powerful

tool is capable of simulating complete computer system architectures, running a

Linux operating system and real applications, and extracting various hardware

metrics. Additionally, it allows users to specify the micro-architectural events to
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collect during simulations. The data collected from HPCs for both selected malware

and benign applications will be used to create multiple training and test sets,

which will serve as inputs for various ML algorithms. This approach significantly

improves malware detection accuracy and reduces false positives, especially in cloud

environments where the dynamic nature of the infrastructure can make traditional

detection methods less effective.

In conclusion, the investigated framework has the potential to significantly reduce

the number of successful malware attacks and mitigate the financial losses asso-

ciated with data breaches, ultimately contributing to the establishment of more

secure and resilient cloud computing environments.

1.3 Thesis Structure

To effectively address the challenges of malware detection in cloud computing

environments, the thesis is organised into five remaining chapters, each dedicated

to a critical aspect of the research.

Chapter 2: Malware Basics. This chapter provides a foundational understand-

ing of malware and its detection. It covers malware classification, various malware

detection methods, and the differences between software-based and hardware-based

detection techniques. In addition, it discusses measurement metrics, the role of

hardware events and performance counters in detecting malicious code, and the

strengths and limitations of hardware-based malware detection.

Chapter 3: Simulation Environment. This chapter provides an in-depth

overview of the simulation environment employed in the research. It introduces

the gem5 simulator, detailing its architecture, configuration, and the specific pa-

rameters used to simulate RISC-V processors. The chapter also explains the use of

configuration and simulation scripts in setting up experiments and describes the
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benchmarks applied to evaluate both benign and malicious software.

Chapter 4: Data Analysis. This chapter outlines the methodologies used for

analysing data generated from the simulations. It covers the selection of relevant

hardware events, the extraction and selection of features from the HPC data, and

the procedures for training and testing ML models.

Chapter 5: Experimental Results. This chapter presents experimental results

that evaluate the performance and effectiveness of different ML algorithms in de-

tecting malware. It presents a detailed comparison of these algorithms, highlighting

their strengths and limitations across different target application datasets.

Chapter 6: Conclusion and Future Work. The final chapter summarises the

findings of the thesis and suggests future research directions. It highlights the

successful integration of HPC data with ML techniques while identifying areas

for improvement and further exploration to enhance the security of cloud services

using RISC-V processors.
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Chapter 2

Malware basics

The proliferation of internet-connected devices and the growing sophistication of

digital applications have made systems increasingly vulnerable to a wide range of

malware-driven cyberattacks. Malicious software, commonly known as malware, is

a piece of code designed to harm or subvert the functionalities of systems and their

users by stealing sensitive information, corrupting files, or engaging in activities to

annoy users[4][5].

It represents one of the most significant and persistent security threats to the

modern Internet, continually evolving in complexity and scale to exploit new vul-

nerabilities and target critical systems.

Recent studies underscore the alarming rise of malware incidents and their conse-

quences. According to Statista Research[7], in 2023, 6.06 billion malware attacks

were detected worldwide, with the majority occurring in the Asia-Pacific region rep-

resenting 31% of all reported incidents, with Europe and North America following at

28% and 25%, respectively[8]. Among the most frequently blocked types of malware

were worms, viruses, ransomware, trojans, and backdoors. Remarkably, the two

primary attack vectors are email and websites, which are used more commonly for

phishing attacks[9].
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The financial impact of malware is equally alarming. According to Cybersecurity

Ventures, cybercrime, largely driven by malware, is projected to cost the global

economy over $10.5 trillion annually by 2025[10]. For instance, the CodeRed virus

outbreak infected over 359,000 hosts and led to financial losses estimated at $2.4

billion[11]. Beyond financial losses, the effects of malware extend to operational

disruptions, reputational damage, and even legal consequences for organisations.

These statistics highlight the critical importance of cybersecurity, with the World

Economic Forum’s 2023 Global Risks Report ranking cyber insecurity as the fifth

greatest global threat[12].

Given the devastating impact that malware can inflict on both organisations and

individuals, the identification and containment of malicious programs has become

a critical priority in cybersecurity. The growing complexity of malware necessitates

the development of more advanced detection techniques to ensure a secure cy-

berspace. However, malware detection is a challenging task, with threats constantly

evolving and malware types becoming more diverse.

This chapter examines the current malware detection techniques, discussing their

strengths and limitations. Additionally, it highlights the importance of hardware-

based malware detection, which is central to this thesis for its ability to address

the limitations of traditional software-based methods.

2.1 Malware Classification

The classification of malware depends on several criteria, including the propagation

mechanisms, intended objectives, or how it exploits or makes the system vulnerable.

Three approaches are generally adopted in the literature: the classical approach,

the approach based on the concealment strategy, and the approach based on the

data structures manipulated by the malware.

In the classical approach, malware is categorised based on the propagation method.
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The main categories are discussed below[13][14][15].

• Virus: It attaches to legitimate software, replicating and spreading by infecting

files or systems. Viruses typically spread via shared files, email attachments,

or removable media, making them a persistent threat in both personal and

organizational environments.

• Worm: self-replicating malicious code that spreads autonomously across

networks without the need for user interaction. By exploiting security vul-

nerabilities, worms propagate rapidly, often causing network congestion and

significant slowdowns as they consume bandwidth and processing resources.

• Trojan horse: commonly referred to as Trojan, it is designed to appear

as legitimate software. Unlike viruses and worms, Trojans do not replicate

themselves. However, they can be equally destructive, often creating backdoors

that grant attackers unauthorized access to the infected system.

• Ransomware: it encrypts the files on a victim’s system and demands a

ransom, typically in cryptocurrency for the decryption key, which makes it

difficult to track the recipient of the transaction. The widespread use of

ransomware has escalated to the point where entire networks or industries

can be crippled by a single attack. It is commonly spread through email

attachments.

• Spyware: it is designed to spy and collect sensitive information about a

user’s activities without their knowledge or consent. This information, which

may include browsing habits, login credentials, and other sensitive data, is

then transmitted back to the attacker. They can compromise user privacy,

leading to identity theft, financial loss, and other security breaches. Spyware

propagates by embedding itself in legitimate software, Trojan horses, or

software vulnerabilities.
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• Adware: it displays unwanted computer advertisements, often in the form of

pop-ups or banners. Generally considered less destructive than other forms of

malware. Some adware may be bundled with spyware, making it particularly

dangerous as it can monitor user activity and steal sensitive information.

• Back door: malicious code that opens the system to external entities by-

passing the local security policies to allow remote access and control over a

network.

• Key loggers: malicious code designed to record which keys are pressed on a

computer keyboard. Generally used to obtain passwords as well as encryption

keys.

• Rootkits: set of malicious applications designed to conceal the presence of

malicious software within a system, enabling attackers to maintain persistent,

unauthorized access. Rootkits often operate at a low level, deep within the

operating system, making them difficult to detect with conventional antivirus

tools.

• Botnet: it is a network of compromised computers, known as bots or zombies,

which are controlled by a central Command-and-Control (C&C) server, known

as the master. These networks can be leveraged for a variety of malicious

purposes, such as launching Distributed Denial-of-Service (DDOS) attacks,

sending massive volumes of spam, or stealing data.

• Fileless Malware: it operates entirely within a system’s memory. This type

of malware leaves little to no trace on the hard drive, making it much harder

to detect using traditional antivirus software.

The table 2.1 presents a selection of real-world malware examples across different

types and years. These examples highlight various malicious software that has had

significant impacts on systems, organizations, and individuals.
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Year Malware Name Malware Type Description

2007 Zeus Trojan It was primarily used to steal
banking information by exploit-
ing keyloggers. Over 74,000 FTP
accounts on high-profile sites like
NASA or Amazon, were compro-
mised by June 2009.

2017 WannaCry Ransomware Affected over 300,000 machines
across 150 countries.

2021 PhoneSpy Spyware With more than a thousand South
Korean victims, the attackers have
had access to all the data, com-
munications, and services on their
devices.

2001 Stuxnet Worm Mainly exploits undiscovered Win-
dows zero-day vulnerabilities to
infect Windows Systems. It was
used to infect Iranian nuclear
plants and a uranium enrichment
plant.

1999 NTRootkit Rootkit First rootkit malware dedicated to
Windows NT Operating System
(OS)

2017 Fireball Adware Acts as a browser hacker, turning
them into zombies to generate ad
revenue and manipulate search re-
sults.

2016 Mirari Botnet One of the first malware to scan
IoT vulnerable devices, mostly
CCTV cameras, and use them to
perform DDOS attacks on various
sites.

Table 2.1: Real-World Malware examples by type

Modern malware frequently combines features from traditional categories to enhance

its effectiveness and its ability to remain undetected. For example, Emotet is a

sophisticated banking trojan that incorporates multiple functionalities, such as

executing backdoor commands and spreading through phishing emails[16].
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The second approach focuses on the concealment strategy employed by malware.

Based on this, two main categories can be defined, as described below:

• Non concealed Malware: A type of malware that operates without em-

ploying any technique to hide itself. It is easy to design and can be easily

detected.

• Stealthy Malware: A type of malware specifically designed to hide from

users and detection mechanisms like static analysis and reverse engineering of

the malicious code. By using concealment techniques, malware can remain

undetected for a longer period in the system, stealing information or executing

malicious activities without being noticed. Several concealment techniques

can be employed[15][17]:

– Encryption/obfuscation: The earliest and simplest technique used

by malware developers. An encrypted malware consists of two main

components: a decryptor and an encrypted main body. A decryptor is a

small piece of code responsible for encrypting and decrypting the main

body’s code. The main body, generally a file, contains the malicious code,

which remains encrypted until the decryptor decodes it. By encrypting

its code, the malware makes the detection more challenging.

When the infected file is executed, the decryptor retrieves the main

body and executes the code. Encryption methods can vary significantly,

extending from simple mechanisms to more complex techniques.

– Oligomorphism and polymorphism: The main limitation of the

Encryption method is that the decryptor remains constant across different

exploitations, which facilitates detection through pattern recognition.

Oligomorphism is an advanced form of encryption that contains a small

collection of different decryptors. For each new infection, a random
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decryptor is selected from the set and applied accordingly.

Polymorphism represents a sophisticated form of both oligomorphism and

encryption. Polymorphic malware can generate a theoretically infinite

number of distinct decryptors, continuously altering the code from one

instance to another, and evading detection. They also employ obfuscation

methods, like dead-code insertion or substituting instructions.

– Metamorphism: Metamorphic malware does not include any encrypted

components, hence no decryptor is required. However, a mutation engine

is employed, which produces a new malware version for each new infection.

The mutation engine applies code transforming and obfuscation techniques

to alter the malicious code.

The third approach categorises malicious code based on the exploited software

vulnerabilities. Memory errors that enable memory corruption, are one of the most

common and critical software vulnerabilities. Depending on the data structures

manipulated during this memory corruption, two categories can be defined[15]:

• Control-flow attacks: they are common, easy to construct, and require

minimal application-specific knowledge. They exploit vulnerabilities such as

buffer overflows or injection flaws to modify the execution flow of a program,

enabling arbitrary code execution. The attacks usually make system calls, e.g.

starting a shell, with the privilege of the compromised victim process. Return-

Oriented Programming (ROP) and Jump-Oriented Programming (JOP) are

examples of techniques used in control-flow attacks.

• Data-only attacks: they are rare, and necessitate a more sophisticated

knowledge of the program’s semantics. However, they are more difficult to

detect using traditional mitigation techniques. Data-only attacks target the

program’s data rather than its control flow, hence no additional code is injected
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into the system. These attacks may corrupt applications for identification,

configuration, and user input.

2.2 Malware Detection Overview

Malware detection is the process of identifying malicious code from benign

code[13]. Malware detection can be seen as a "cat and mouse " game where

researchers design new methods for detection while the goal of a malware writer

(hacker) is to modify their malware to deceive the detectors. A malware detector

is a component designed to apply the detection technique, like a virus scanner

that uses signatures and other heuristics to identify malicious code. Malware

detectors take two inputs: one input is its knowledge of the malicious behaviour,

while the other is the program under inspection. Based on its knowledge, the

detector can apply its detection techniques to determine whether the program is

malicious or benign. Intrusion Detection Systems (IDS) and malware detectors are

often used interchangeably. However, a malware detector typically serves as just

one component of a comprehensive IDS[18]. Malware detection mechanisms are

categorised into two main groups: Software-based mechanisms and Hardware-based

mechanisms.

2.2.1 Software-based Malware detection

Software-based detection relies on specific software running in the system to detect

potential malware through various approaches. A traditional example is Antivirus

Software(AVS) using either signature or behaviour analysis. Despite being the most

prevalent detection mechanisms, software-based solutions often incur significant

computational overhead, making them unsuitable for resource-constrained systems

such as IoT Edge devices, which operate under real-time and energy limitations.
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Some of the most common approaches are[19]:

• Signature-based: One of the most popular commercial malware detection

techniques used by antivirus. This approach extracts a specific sequence of

bytes, the signature, from the malware executable. The signature is unique

and is utilised to identify the specific malware. Once extracted, the signature

is stored in a signature database. The database must be updated every time

new signatures are generated, thus every time a new malware is detected.

There are many different techniques to create a signature such as string

scanning, top-and-tail scanning, entry-point scanning, and integrity checking.

The detection process works in this way: the executable is scanned and the

signature is generated based on structural properties or run-time properties;

after that, the signature is compared with the signatures on the database; if a

match is found, the program is marked as malicious otherwise it is considered

benign. Although this approach is fast and efficient against known malware, it

struggles to perform effectively against zero-day malware since the respective

signature is not present in the database. In addition, malware from the same

family can easily evade signature-based detection by employing obfuscation

techniques[20][13].

• Behaviour-based: This approach observes the program behaviours using

dynamic analysis, executed by monitoring tools, and determines whether

the program is malware or benign. Dynamic characteristics might include

processor and memory information, kernel usage (system calls), file system

activities, and network communications. Behaviors are obtained by utilizing

procedures like monitoring the system calls or monitoring the file changes,

and they are stored in a dataset. Then, specific features from the dataset are

obtained and classification is done by using ML algorithms. Although these

techniques are largely immune to obfuscation, their applicability is limited by
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their performance as dynamic analysis requires time, and determining malicious

behaviours within the environment is an evolving challenge. Software behaviour

methods can detect malware variants often missed by the signature-based

approach[20][15].

• Heuristic-based: The idea behind heuristic-based detection is that there

is no need to know the internal structure or the logic of a scanned program,

but the aim is to reach the final decision with the best optimal path. To

accomplish this, rules or ML techniques, like Support Vector Machine and

Decision Tree, are employed. Although it has a high accuracy rate in detecting

zero-day malware, it is ineffective at identifying more sophisticated malware.

• Deep Learning: A new approach based on Deep Learning algorithms to

identify malware families. Although it is quite effective and reduces feature

space drastically, it is not resistant to evasion attacks.

• Other approaches: Cloud-based detection mechanism employs several

detection components hosted on cloud servers and offers security as a service.

It works as follows: a user uploads any file to the cloud and receives a report

indicating whether the file is malicious. However, this approach may lead to

sensitive information leakages, like passwords, location, and banking details.

Moreover, the detection is not performed in real-time, and an overhead is

introduced by the communication between the user and the cloud infrastructure.

Mobile-based detection focuses on malware developed for the Android

platform. According to recent studies, new malicious apps for Android are

introduced every 10s[20]. This mechanism uses ML algorithms on features

like system calls and security-sensitive Application Programming Interfaces

(APIs). IoT-based detection relies on log collectors to extract features from

malware binaries and then utilises a lightweight Convolutional Neural Network
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(CNN) for classifying their families[20].

Software-based malware techniques can also be classified according to their analysis

technique. Malware analysis involves determining the malware’s functionality and

addressing key questions, such as how the malware operates, which machines and

programs it affects, and which data is compromised or stolen. These techniques

can be classified as follows[18]:

• Static Analysis: the malware is inspected without executing its code. There-

fore, only the syntax and structural properties are considered.

• Dynamic Analysis: the malicious program is inspected while running its

code or after its execution, leveraging run-time information.

• Hybrid Analysis: a combination of static and dynamic analysis.

2.2.2 Hardware-based Malware detection

Hardware-based Malware detection, or HMD, relies on ML classifiers based on real-

time data collected from hardware components to detect malware applications[15].

The ML classifiers are trained using micro-architecture hardware events, which

are monitored through Hardware Performance Counters (HPCs)[21]. These

events are captured at runtime and represent the application behaviour. HPCs are

a set of special-purpose registers embedded within the processing units, designed

to improve various aspects of computing systems, such as performance and energy

efficiency or for debugging[22]. In the context of malware detection, these HPCs

are repurposed to enhance system security. The idea behind detecting malware

using HPCs is based on the concept of phase behaviour in programs. Programs

are executed in distinct phases, corresponding to patterns in architectural and

microarchitectural events[23]. These phase patterns vary significantly across differ-

ent programs, enabling malware identification by analysing the time-behavioural
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patterns captured by selected performance counters[22].

2.3 Measurement Metrics

Since malware detection is a classification problem, the overall quality and reliability

of the detectors rely on the standard classification metrics. They are essential

for evaluating how well the detection system can distinguish between benign and

malicious software. They can be grouped as performance metrics and efficiency

metrics[15].

Performance evaluates how effectively a detection system fulfils its assigned

tasks, specifically its ability to distinguish between malicious and benign software.

Efficiency measures how well a detection system performs its assigned tasks with

the minimum consumption of resources.

The first tool to visualize and assess performance is the confusion matrix. A

confusion matrix is a tabular representation of the system’s predicted outcomes

with the actual results.

For each prediction made by the detection system, there are four possible outcomes:
True Positives (TP): The system correctly identifies malware as malicious.

True Negatives (TN): The system correctly identifies benign software as non-malicious.

False Positives (FP): The system incorrectly classifies benign software as malware.

False Negatives (FN): The system incorrectly classifies malware as benign.

The confusion matrix for malware detection can be summarized in the following

table:

Predicted Negative Predicted Positive
Actual Negative TNs FPs
Actual Positive FNs TPs

Table 2.2: Confusion matrix for malware detection
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Key Performance metrics include:

• Accuracy(A): measures the proportion of correct predictions (both true

positives and true negatives) among all predictions made by the detector.

Accuracy(A) = TP + TN

TP + TN + FP + FN
(1)

• Precision(P): measures the proportion of true positive predictions among all

positive predictions made by the detector.

Precision(P) = TP

TP + FP
(2)

• True Positive Rate(TPR): measures the proportion of actual positives

correctly identified by the system, also known as recall.

Recall(R) = TP

TP + FN
(3)

• False Positive Rate(FPR): measures the proportion of actual negatives

incorrectly classified as positive.

False Positive Rate (FPR) = FN

FN + TP
(4)

• Specificity: measures the proportion of actual negatives correctly identified

by the system, also known as True Negative Rate(TRN).

Specificity(S) = TN

TN + FP
(5)
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• F1-Score: the harmonic mean of precision and recall.

F1score(F1) = 2 · P · R

P + R
(6)

• Receiver Operating Characteristic curve(ROC: offers a visual repre-

sentation of the performance. It plots the TPR against the FPR on a 2D

graph.

ROC = 1 − S = FP
FP + TN (7)

• Area Under the Curve(AUC): represents how effectively the classifier

distinguishes between malware and benign applications.

AUC =
Ú 1

0
R(FPR) dFPR (8)

Key Efficiency metrics include:

• Latency: refers to the time interval between the collection of all features

analysed by the malware detector and the final detection result. Minimizing

latency is essential for real-time detection of malware that operates within

brief time intervals[15].

• Power Consumption: indicates the energy consumed by the detector over a

given period. It is mainly influenced by two factors: the hardware technology

that implements the classifier and the ML algorithm[15].

• Hardware Cost: refers to the cost needed to build the detection system. The

main parameters in assessing hardware cost include the chip area (typically

measured in square millimetres) and the process technology employed (e.g.,

45 nm). Furthermore, the amount of memory, along with the costs associated

with the operating system and the design of the system, can also affect the
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overall cost assessment[15].

2.4 Hardware Events and Performance Counters

Hardware performance counters can access detailed information regarding the

processor’s functional units, caches, and memory. However, the types and meanings

of these counters vary across different processors as a consequence of architec-

tural differences[24]. These counters are collected through specialized hardware

monitoring components known as Performance Monitoring Units (PMUs),

which can track a wide variety of hardware events generally categorised into five

categories[25]:

• program characterization events, analyse the attributes of a program

independent of the underlying processor architecture. Common examples of

these events include the number and types of instructions completed by the

program, such as loads, stores, floating-point operations, and branches.

• memory accesses events, often the largest category, analyses the per-

formance of the processor’s memory hierarchy, helping to evaluate memory

latency, bandwidth usage, and cache performance.

• pipeline stalls events, reflect how effectively a program’s instructions move

through the processor’s pipeline.

• branch prediction events, related to the performance of the processor’s

branch prediction hardware.

• resource utilisation events, enable to monitor how effectively the processor

utilises various internal resources, such as the number of cycles spent using a

floating-point divider.
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Modern processors have hundreds of events that can be monitored. However, to

minimise the cost and hardware complexity, they have only a limited number

of HPCs (e.g., 2 to 8 in high-end processors). Each HPC can monitor only one

hardware event at a time to maintain accuracy. As a result, collecting various

performance events often requires running the application many times.

An HPC consists of 2 components: a performance event detector and an associated

counter. The event detector can be configured to monitor any one of several

performance events, typically using a bitmask to specify the event. The associated

counter increments by one each time the corresponding event occurs, or when the

event’s value exceeds a predefined threshold. These updated values are continuously

stored in an associated register, with the final count being available at the end of

execution[15][25].

2.5 Limitations of Hardware-based malware de-

tection

Compared to software-based detection methods, HMD offers several remarkable

strengths[15][26][27]:

• Run-time detection: The analysis is performed based on hardware data

collected in real-time, allowing for fast malware detection, often within mil-

liseconds.

• Low computational overhead: hardware-based detection methods are

implemented in microprocessor hardware with significantly low overhead as

compared to the software-based methods. The detection is very fast (a few

clock cycles).

• Resilience to Obfuscation: Traditional Software-based detection technique
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relies on static analysis to detect malware by identifying suspicious patterns.

However, malware authors can easily create numerous variants of the same

malicious code or deploy stealthy malware to evade detection. In contrast,

dynamic analysis via hardware-based approaches enables the detection of code

variants and unknown malware more effectively.

• Tamper Resistance: HMD relies on secure hardware components rather

than vulnerable software, reducing the risk of malware exploiting bugs or

vulnerabilities to bypass detection mechanisms.

• Cost efficiency: Since HPCs are typically already integrated into most

modern processors, HMD can leverage existing hardware, minimizing the need

for additional hardware.

When HPCs are used for security purposes, several factors may cause discrepancies

in event measurements, reducing the accuracy[27][15]:

• External sources: The runtime environment may differ across executions.

Elements such as OS activity, multitasking scheduling, memory layout, and

multi-processor interactions can vary between runs, resulting in differences.

Likewise, shifts in the micro-architectural state can alter event counts.

• Non-determinism: Many system-level events are inherently unpredictable

and largely influenced by OS behavior and the activity of other applications

running on the system. Hardware interrupts and page faults are common

examples of non-deterministic events.

• Overcounting: Certain processors, such as older Intel Pentium D models,

may occasionally count multiple times specific hardware events, leading to

inaccuracies in performance measurements.
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• Variations in tool implementations: Many tools (such as Perf in Linux

or Intel VTune) are employed for measuring HPC events, but they operate

in different ways. Despite running identical programs under controlled con-

ditions, different tools may yield differing results. This variability may be

attributed to differences in the techniques used for reading the counters, the

methods employed for acquiring the measurements, or the levels at which the

measurements are taken.

The effectiveness of HMD is influenced by both the type of ML employed and the

number and type of HPC events utilised. Moreover, malware detectors may be

designed for specific devices with specific characteristics defined by the architecture

and the manufacturer. For instance, processors may track different numbers of

events at a time, and discrepancies in instruction counting methods are possible.
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Chapter 3

Simulations Environment

This chapter will present the simulation workflow employed in this thesis, starting

with an overview of the gem5 simulator, which was utilised to run the applications

under investigation. The chapter details the configuration and simulation setup

necessary to ensure accurate and effective use of the simulator’s HPC. It also

presents the set of applications used to collect the HPC data provided to the ML

classifiers, explaining the rationale behind their selection.

3.1 Introduction to Gem5 Simulator and RISC-V

Gem5 provides a robust and flexible virtual environment for simulating RISC-V

processors[6][28]. It is a highly customisable, modular, and widely used simulator

for computer architecture research. Gem5 enables detailed and flexible simulations

of complex hardware systems, making it particularly suited for HPC data gathering.

It offers a comprehensive selection of CPU, RAM, and device models, along with

support for various ISAs, including x86, ARM, and RISC-V.

This thesis focuses on HMD applied to systems based on a specific ISA: RISC-V.

RISC-V, an open-source ISA, has gained significant attention in the research
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community for its flexibility, extensibility, and growing ecosystem. Its open nature

contrasts with proprietary alternatives, such as ARM or x86, offering researchers and

developers the ability to customise it by adding or removing features. Its modular

architecture, with variants in address space sizes, makes it suitable for a range of

applications, from lightweight edge devices to high-performance servers, thereby

applicable to diverse fields including embedded systems and cloud computing. The

evaluation of application trustworthiness involves more than just basic performance

metrics like execution time or clock cycles. It requires a comprehensive assessment

of multiple factors, including pipeline stages, execution ports, associated latencies,

reorder buffers, load/store queues, and cache organization. To gain insights into

these aspects, capturing and analysing detailed performance metrics through HPC

becomes essential.

3.2 Gem5 Architecture

Gem5 is characterized by several key features that enhance its versatility and

flexibility[6]:

• Pervasive object orientation: Gem5 features an object-oriented design,

where all major simulation components are implemented as SimObjects. A

SimObject serves as an abstraction of real hardware components such as

CPUs, caches, interconnects, and devices. Each SimObject is defined by a

Python class for configuration and a C++ class for managing its state and

performance-critical simulation behaviour.

• Python integration: Python in gem5 allows users to script and configure

simulations. The common Python base class ensures consistent mechanisms

for instantiation, naming, and parameter setting of SimObjects. Consequently,

this allows for a highly dynamic and configurable simulated system.
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• Domain-specific languages: To increase flexibility, Gem5 supports domain-

specific languages for two key areas: ISA and cache coherence protocols. This

allows full support of ISA details and facilitates the implementation of more

complex components.

• Standard interfaces: Standard interfaces ensure that various components

can communicate regardless of their specific implementations. This is vital for

simulating diverse architectures and configurations.

When simulating a system with gem5, the key options to consider include:

• CPU model: Gem5 offers four distinct CPU models, each with different

trade-offs between speed and accuracy. AtomicSimpleCPU is a minimal, single-

Instruction Per Cycle (IPC) model that uses atomic memory accesses for fast

functional simulation. TimingSimpleCPU is similar but incorporates timing

memory accesses for more accurate performance simulation. InOrderCPU

is a pipelined CPU that processes instructions in a strict, sequential order,

and O3CPU is a pipelined, out-of-order model that allows for more advanced

instruction reordering. The O3 and InOrder models use an "execute-in-execute"

approach, meaning that the instructions are executed during the pipeline’s

execution stage. This contrasts with many simulators that execute instructions

either at the start or the end of the pipeline, resulting in greater timing accuracy

for gem5.

• System Mode: Each CPU model can function in one of two modes. In

System-call Emulation (SE) mode, Gem5 avoids simulating devices and the

OS by emulating key system-level services. In this mode, the simulator runs a

single static application and the system calls are emulated or forwarded to

the host OS. On the other hand, Full-System (FS) mode simulates a complete

system, executing both user-level and kernel-level instructions while modelling
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the OS and hardware devices. Figures 3.2 and 3.1 illustrate the different

system modes.

• Memory System: Two memory system models are available: Classic and

Ruby. The Classic model delivers a fast and easily configurable memory system

for simpler simulations. In contrast, the Ruby model provides a more flexible

infrastructure capable of accurately simulating a wide range of cache-coherent

memory systems with greater detail. The memory system components are

implemented using a MemObject and communicate with other components

(SimObjects) via a master/slave interface. Typically, each master port is

connected to an interconnect component, like a bus or bridge. Once connected,

the system can exchange messages, such as a Request or a Packet.

An additional key feature of gem5 is its ability to create checkpoints. A checkpoint

is a simulation snapshot, allowing users to resume the system from that exact

state later. This is particularly advantageous in scenarios where simulations may

take an extended period to boot the OS or execute applications. In this thesis

the checkpoints are used to resume the system, switching the CPU model from a

simpler CPU to the O3CPU, which is essential for gathering the HPC data.

Figure 3.1: Gem5 System-
Call mode. Figure from [29]

Figure 3.2: Gem5 Full Sys-
tem mode. Figure from [29]
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3.2.1 HPC System Configuration

In a typical Linux environment, the PMU is managed by Hardware Performance

Monitoring tools (HPM), such as Perf, which provide detailed information by

accessing HPCs directly. However, in the gem5 simulator, the full set of HPCs

available on real hardware is not implemented. As a result, the Linux Perf tool is

not applicable for simulations in gem5. Instead, HPCs are integrated within the

gem5 simulation framework itself. These counters can only be accessed when using

the DerivO3CPU, a specific implementation of the O3CPU model.

The HPCs, ranging from hpmcounter3 to hpmcounter31, can be accessed via the

thread context of the simulation process. At a lower level, each counter tracks

specific events within the processor and is stored and accessible through a set of

Control Status Registers (CSRs)[22]. Figure 3.3 presents the implementations

of the functions that enable safe manipulation of HPC values within the simulation

environment.

1 /∗ Function to read the HPC ∗/
2 #d e f i n e read_csr_safe ( reg ) ({
3 r e g i s t e r long __tmp asm( " a0 " ) ;
4 asm v o l a t i l e ( " c s r r %0, " #reg : "=r " (__tmp) ) ;
5 __tmp;
6 })
7

8 /∗ Function to wr i t e a value to an HPC event r e g i s t e r ∗/
9 #d e f i n e wr i te_csr_safe ( reg , va l )

10 do {
11 r e g i s t e r long __val asm( " a0 " ) = ( va l ) ;
12 asm v o l a t i l e ( " csrw " #reg " , %0" : : " r " (__val ) : "memory" )

;
13 } whi l e (0 )

Figure 3.3: Functions to read and write HPC values in gem5

The write_csr_safe function writes a specified event to the corresponding CSR
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using the csrw instruction, enabling tracking of that event. Conversely, the

read_csr_safe function reads the value from the specified CSR using the csrr in-

struction, allowing retrieval of the performance counter associated with the tracked

event. Together, these functions enable the interaction with HPCs within the gem5

simulation framework.

3.3 Experimental Workflow

In this thesis, the Gem5 simulator is employed to conduct detailed simulations,

enabling the collection of HPC data specific to RISC-V systems. The overall

experimental workflow follows several key steps:

• Configure the Gem5 Full System environment: Set up the gem5 simu-

lator in full-system mode to accurately model hardware and OS behaviours.

• Select applications benchmark: Choose the appropriate benchmark appli-

cations and malware.

• Configure the Gem5 Simulation and start the simulation: Define the

necessary simulation parameters and run the simulations.

• Data Collection: Gather HPC data during the simulation which will be

used as input for ML classifiers.

• Data Analysis: Run the ML classifiers using the collected HPC data to

evaluate the malware detection accuracy.

3.4 Gem5 Configuration

In today’s cloud environments, the Linux OS is widely adopted for its open-source

nature and the flexibility it offers to developers. This thesis aims to replicate
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similar environments in simulation, utilising Gem5 Full System mode for RISC-V

to closely model cloud-based systems.

3.4.1 Gem5 Full System

Gem5’s Full System mode models bare-metal hardware, meaning all system compo-

nents must be defined from scratch. To emulate a RISC-V platform, it is necessary

to specify both the hardware features and an OS that supports RISC-V. This

process involves several key components, all of which must be compatible with the

RV64GC variant of the RISC-V ISA:

Toolchain: The riscv64-linux-gnu toolchain enables cross-compiling software on

a host machine (x86) to run on a RISC-V 64-bit target machine running Linux. It

is crucial for cross-compiling both application and malware binaries for RISC-V.

Static Linux Kernel Binary: This binary is sourced directly from the official

Linux repository and statically cross-compiled using the RISC-V toolchain.

Bootloader: The RISCV Proxy Kernel (pk) serves as an application exe-

cution environment. It incorporates the Berkeley Bootloader (BBL) source

code, which takes the Linux kernel as a payload and generates a bootable binary,

enabling the system to boot successfully within the gem5 simulation environment.

Disk Image: The BusyBox image provides a lightweight set of Unix utilities

commonly used in embedded systems. BusyBox offers a collection of various stan-

dard Linux commands into a single executable, making it ideal for environments

with limited resources, such as simulation setups. In this setup, the BusyBox image

serves as the root filesystem in the gem5 simulation, providing basic utilities and a

minimal environment to support the execution of applications and the kernel.
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3.4.2 Gem5 Configuration Script

Once the resources intended for use in GEM5 Full System simulations have been

defined, the next step is to configure the GEM5 Simulator. This configuration is

carried out using a designated file known as RunSystem.

The Listing 3.1 provides a simplified version of the script used for the final simula-

tions. A complete system setup, including all necessary device initialization, can

be found in Appendix A.

1 c l a s s RiscvSystem ( System ) :

2 de f __init__( s e l f , bbl , disk , cpu_type , num_cpus , s c r i p t ) :

3 super ( RiscvSystem , s e l f ) . __init__ ( )

4 # I n i t i a l i z e c l o ck and memory

5 s e l f . setupClock ( )

6 s e l f . setupMemory ( )

7 # Create CPUs and s e t up plat form

8 s e l f . createCPU ( cpu_type , num_cpus)

9 s e l f . p lat form = HiFive ( )

10 s e l f . i n i t D e v i c e s ( d i sk )

11 # Create cache h i e ra r chy and memory c o n t r o l l e r

12 s e l f . c reateCacheHierarchy ( )

13 s e l f . createMemoryControllerDDR4 ( )

14 # Set the workload ob j e c t f i l e ( boot loader )

15 s e l f . workload . o b j e c t _ f i l e = bbl

16 boot_options = [

17 " con so l e=ttyS0 " ,

18 " root=/dev/vda " ,

19 " rw "

20 ]

21 s e l f . workload . command_line = " " . j o i n ( boot_options )

22

23 de f createCPU ( s e l f , cpu_type , num_cpus) :

24 # Create CPU i n s t a n c e s based on the s p e c i f i e d type
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25 i f cpu_type == " Atomic " :

26 s e l f . cpu = [ AtomicSimpleCPU ( cpu_id=i ) f o r i in range (

num_cpus) ]

27 e l i f cpu_type == " DerivO3 " :

28 s e l f . cpu = [ RiscvO3CPU( cpu_id=i ) f o r i in range (num_cpus)

]

29 f o r cpu in s e l f . cpu :

30 cpu . createThreads ( )

31

32 de f i n i t D e v i c e s ( s e l f , d i sk ) :

33 # I n i t i a l i z e dev i c e s and I /O components

34 s e l f . i n i t V i r t I O ( d i sk )

35 s e l f . i n i t B r i d g e ( )

36 s e l f . s e tup In t e r rup t s ( )

37

38 de f setupClock ( s e l f ) :

39 # Set up the c l o ck domain and vo l tage domain

40 s e l f . clk_domain = SrcClockDomain ( c l o ck=’ 3GHz ’ , voltage_domain

=VoltageDomain ( ) )

41

42 de f setupMemory ( s e l f ) :

43 # Create memory ranges and main memory bus

44 s e l f . mem_ranges = [ AddrRange ( s t a r t=0x80000000 , s i z e=’ 2GB’ ) ]

45 s e l f . membus = SystemXBar ( )

46 s e l f . membus . badaddr_responder = BadAddr ( )

Listing 3.1: RunSystem snippet

This script is used to create a RiscvSystem object, instantiating all the necessary

components. Several key objects are instantiated:

• CPU: The system’s CPUs can be configured as either Atomic or DerivO3,

with the capability to instantiate multiple CPUs.
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• Memory Controller: This component manages the connection between the

processor and various types of memory.

• Disk Image: A Copy-On-Write (COW) image of the specified disk is created.

• Bus: This component enables data transfer among the CPU, memory, and

peripheral devices.

• Interrupt Controllers: handle interrupt requests.

• Workload: This object configures the simulation environment for executing

the RISC-V bbl and, consequently, the Linux kernel. It ensures that essential

parameters, including the device tree, command-line options, and object files,

are correctly configured.

Several components make up the overall architecture of the system. The organi-

zation of these components follows the schematic shown in Figure 3.4, where the

interactions between the CPU, caches, buses, and memory controller are illustrated.
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Figure 3.4: Architecture Hardware Configuration. Figure from [30]

3.5 Gem5 Simulation

The Configuration Script is responsible for creating the RiscvSystem, which defines

all the low-level characteristics of the simulated system. On the other hand, the

Simulation Script instantiates this object, allowing the system to be simulated.

This simulation is executed using a designated file called RunSimulation.

3.5.1 Simulation Script

The Simulation Script specifies important parameters for the simulation, such as

the bbl, the disk image, and the number and type of CPUs to be used. Additionally,

it defines an rcS file, which acts as the primary means of passing input to the

simulator. The rcS file can be accessed within the simulation and is used to
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provide applications for execution along with their corresponding input parameters.

This file, described in Listing 3.2, is essential for running specific workloads or

benchmarks on the system.

1 de fau l t_kerne l = ’ . / r e s o u r c e s /bbl_5 .18 ’

2 de fau l t_d i sk = ’ . / r e s o u r c e s / r i s cv_d i sk . img ’

3 default_cpu_type = ’ atomic ’

4 default_num_cpus = 2

5 checkpoint_dir = " . / checkpo int "

6 s c r i p t = " . / c o n f i g s /example/ r i s c v / rcS "

7

8 de f run ( ) :

9 pr in t ( " Running the s imu la t i on " )

10 c p t d i r = checkpoint_dir

11 pr in t ( " Checkpoint d i r e c t o r y : %s " % c pt d i r )

12

13 whi le True :

14 event = m5. s imulate ( )

15 exit_msg = event . getCause ( )

16 i f exit_msg == " checkpo int " :

17 pr in t ( " Dropping checkpoint at t i c k %d" % m5. curTick ( ) )

18 cpt_dir = os . path . j o i n ( cptd i r , " cpt .%d" % m5. curTick ( ) )

19 m5. checkpo int ( os . path . j o i n ( cpt_dir ) )

20 pr in t ( " Checkpoint done . " )

21 e l s e :

22 pr in t ( exit_msg , " @ " , m5. curTick ( ) )

23 pr in t ( " S imulat ion ended " )

24 break

25 sys . e x i t ( event . getCode ( ) )

26

27 i f __name__ == "__m5_main__" :

28 # s e t up the root SimObject and s t a r t the s imu la t i on

29 system = RiscvSystem ( default_bbl , de fau l t_disk , default_cpu_type ,
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30 default_num_cpus , s c r i p t )

31 root = Root ( fu l l_system=True , system=system )

32 g l o b a l S t a r t = time . time ( )

33

34 # Check i f r e s t o r a t i o n i s needed

35 r e s to re_checkpo int = None

36 i f r e s to re_checkpo int i s not None :

37 pr in t ( " Restor ing from checkpo int " )

38 cpt_dir = os . path . j o i n ( checkpoint_dir , " cpt .%d" %

res tore_checkpo int )

39 m5. i n s t a n t i a t e ( cpt_dir )

40 e l s e :

41 pr in t ( "No r e s t o r a t i o n , s t a r t i n g f r e s h " )

42 m5. i n s t a n t i a t e ( )

43 # Run the s imu la t i on

44 run ( )

Listing 3.2: RunSimulation snippet

This script is a simplified version of the one used for the final simulations. In

the full simulation script, arguments can be passed to override the default values

defined here. Running this script initiates the simulation, with checkpoints saved

in a designated .cpt folder.

3.6 Applications Benchmarks

After defining the simulation and configuration parameters, the next step is to

initiate the simulations. In addition to this, the thesis also focuses on curating a

balanced selection of benign and malicious applications to be used as input for the

machine learning classifiers. A well-constructed dataset, composed of both benign

and malicious applications, is crucial for training accurate and reliable ML models.
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3.6.1 Benign Apps

For the benign application samples, a diverse set of programs is utilised, including

Linux system utilities, text editors, benchmarking suites like MiBench, as well

as tools for file compression, media processing, network scanning, and backup

management. The table 3.1 provides a list of all eight applications used in this

thesis.

Application Description

SUSAN An image recognition application designed for detecting

corners and edges in Magnetic Resonance Images (MRI)

of the brain. Typically used in real-world, vision-based

quality assurance systems[31].

GSM A voice encoding/decoding application that utilises Time-

and Frequency-Division Multiple Access (TDMA/FDMA)

for processing data streams[31].

FFMPEG A media converter application capable of reading various

input formats, including live devices, and transcoding

them into multiple output formats. It allows users to

specify input and output files via command-line options,

supporting complex stream selections while emphasising

the importance of file order and stream indexing[32].

RESTIC A backup application that supports backing up files from

Linux, BSD, macOS, and Windows to various storage

options, including self-hosted and online services. It also

ensures security through cryptography[33].
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Application Description

AG A fast command-line tool for searching through code, de-

signed to enhance search speed and efficiency compared

to similar tools. It is particularly useful for developers

looking to find text patterns within large codebases on

Linux systems quickly[34].

UNRAR A command-line utility used to extract files from RAR

archives. It allows users to easily access and manage

compressed content[35].

NMAP An utility for network exploration and security auditing,

widely used by system and network administrators as well

as hackers. It utilises raw IP packets to identify available

hosts on a network, determine the services they offer, detect

OSssand versions, and assess firewall characteristics[36].

NPING A tool for network packet generation, response analysis,

and response time measurement. In addition to these

features, it can also be used for DDOS attacks and route

tracing[37].

Table 3.1: List of Applications and Their Descriptions

3.6.2 Malicious Apps

The selected collection of malware applications is sourced from various datasets,

which are hosted on GitHub repositories. These datasets typically consist of

numerous malware samples that are categorised by type, intended effects, and the

systems they target. However, a significant portion of the available malware targets
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Windows systems, making them unsuitable for the Linux-based system being

developed in this thesis. As such, only Linux-based malware has been considered.

Additionally, many datasets contain only precompiled binaries, which are not ideal

as they often depend on system libraries or functionalities that are not present

in the disk images used. As a result, only malware with accessible source code

was selected, with a focus on C/C++ code, since other languages like Python are

incompatible with the system being created. The table 3.2 lists the six malware

applications used in this thesis.

Malware Description

GONNACRY A ransomware that targets Linux systems. It

encrypts files using the AES-256 algorithm and

appends the ".GonnaCry" extension to them.

Notably, it operates without a Command-and-

Control(C&C) server, displaying a ransom note

directly on the infected system for payment in-

structions[38].

RANDOMWARE A ransomware that encrypts a victim’s files using

XOR with a secret key and data and demands

payment to restore access[39].
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Malware Description

LINUX-PARASITE A Linux-based virus that opens a backdoor to

provide unauthorized remote access. It operates

as part of a (C&C)system, where a central server

can control multiple infected clients. This type

of malware typically establishes deep control over

the OS, enabling attackers to perform various ma-

licious actions, such as stealing data or executing

commands remotely[40].

POP3 TROJAN A Remote Access Trojan(RAT) specifically de-

signed to exploit the POP3 email protocol. Upon

execution, the malicious binary opens a backdoor

on the victim’s machine, enabling the attacker to

issue specific commands remotely or execute com-

mands embedded within the binary itself. This

functionality can lead to the theft of sensitive

information, such as email credentials, and may

result in broader system compromise[40].

SATAN-BOMB A botnet malware designed to execute DDOS at-

tacks against the target system by utilising the

fork function, which allows the malware to gen-

erate multiple processes to flood the victim with

requests[39].
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Malware Description

TRIGEMINI A sophisticated botnet malware capable of launch-

ing various types of DDOS attacks. It supports

multiple attack vectors such as TCP (SYN, FIN,

ACK), UDP, and ICMP, making it versatile in

overwhelming network defences[41].

Table 3.2: List of Malware Applications and Their Descriptions

3.6.3 Application and Malware Execution

Once the applications and malware are selected, the Gem5 simulations can be run.

The applications are automatically executed within the simulated environment

using the RunAppMalware Script 3.3.

This script is crucial to the entire simulation process, as it manages the automated

execution and monitoring of applications, serving as the core component in collecting

the necessary data for analysis. It is executed once the system boot process is

complete and operates in distinct parts:

• Event Configuration: In this initial phase, the script specifies which events

to monitor by writing them to the relevant HPC counters.

• Counter Initialization: The second part involves reading the initial values

of the HPC counters.

• Application Execution: The third part executes the application, which

can be either a benign application or a combination of benign and malicious

software.

• Post-Execution Measurement: After executing the application, the script
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re-reads the HPC counter values and calculates the difference from the initial

readings. This result represents the HPC measurement obtained during the

application’s execution.

• Output File Generation: Finally, the results are saved to a file, which can

be exported from the simulation environment using the m5 write command.

1 /∗ Function D e f i n i t i o n s ∗/

2 void run_app ( ) {

3 /∗ I n i t i a l i z e HPM event t ra ck ing ∗/

4 write_counters ( ) ;

5 /∗ Capture i n i t i a l counter va lue s ∗/

6 read_counters (0 ) ;

7

8 /∗ Execute the benign a p p l i c a t i o n from input ∗/

9 system (command) ; // Example : " . / r e s t i c i n i t −−repo r e s t i c −copy "

10 /∗ Execute the malware a p p l i c a t i o n or remove i t i f only the

a p p l i c a t i o n i s executed ∗/

11 system ( " . / pop3 −b −p 90 " ) ; // Example : POP3 malware

12

13 /∗ Capture f i n a l counter va lue s ∗/

14 read_counters (1 ) ;

15 /∗ Calcu la te and save the d i f f e r e n c e in counter va lue s ∗/

16 compute_results ( ) ;

17 /∗ Save the s imu la t i on r e s u l t to the host system ∗/

18 save_re su l t s ( ) ;

19 }

20

21 i n t main ( i n t argc , char ∗∗ argv ) {

22 /∗ Create the checkpo int ∗/

23 system ( "m5 checkpo int " ) ;

24 /∗ Read input f i l e with a p p l i c a t i o n commands ∗/

25 system ( "m5 r e a d f i l e > input . txt " ) ;
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26 /∗ Execute the a p p l i c a t i o n ( with or without malware ) ∗/

27 run_app ( ) ;

28 m5_exit (0 ) ;

29 re turn 0 ;

30 }

Listing 3.3: RunAppMalware snippet

The snippet in the Listing 3.3 is a simplified version of the script used in the

final simulations. Each simulation follows this structured procedure, generating a

file that contains all relevant HPC data. These files will subsequently be used to

construct the training and test datasets.

3.6.4 Simulation Host Environment

All simulations are conducted within a Singularity container running Ubuntu 22.04.3

LTS. The Gem5 simulations are executed on a system equipped with an AMD

Ryzen 9 7950X CPU, with 3.0 GHz frequency, and 60 GB of RAM. The Listing

3.4 is the Bash script used to launch multiple simulations and define checkpoints.

1 #! / bin /bash

2

3 # Check i f the number o f arguments i s c o r r e c t

4 i f [ " $#" −ne 2 ] ; then

5 echo " Usage : $0 <Input f i l e with in the s imulat ion > <Output f o l d e r

>"

6 e x i t 1

7 f i

8

9 # Path to the rcS f i l e where the input f i l e w i l l be wr i t t en

10 SCRIPT_PATH=" . / c o n f i g s /example/ r i s c v / rcS "

11

12
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13 # Function to modify the rcS s c r i p t with the input f i l e content

14 modi fy_scr ipt ( ) {

15 echo " Writing input f i l e content to rcS s c r i p t . . . "

16 echo " $1 " > "$SCRIPT_PATH" # Overwrite rcS s c r i p t with the

input f i l e

17 content

18 }

19

20 # Function to run the gem5 s imu la t i on

21 # $1 : Output f o l d e r name

22 run_gem5 ( ) {

23 echo " S ta r t i ng gem5 s imu la t i on . . . "

24 . / bu i ld /RISCV/gem5 . opt −d s t a t s _ f o l d e r / " $1 " c o n f i g s /example/ r i s c v

/ run_scr ipt . py \

25 . / r e s o u r c e s / bbl . / r e s o u r c e s /disk_image . img \

26 −−r e s t o r e=checkpo int −−cpu_type=DerivO3

27 }

28

29 # Modify the rcS s c r i p t with the input f i l e content

30 modi fy_scr ipt " $1 "

31

32 # Run the gem5 s imu la t i on in the background

33 p i d _ l i s t =() # I n i t i a l i z e array to s t o r e p roce s s IDs

34

35 run_gem5 " $2 " & # Run gem5 in the background

36

37 pid=$ ! # Capture proce s s ID o f the background job

38

39 p i d _ l i s t+=($pid ) # Add PID to the l i s t

40

41 # Wait f o r a l l background p r o c e s s e s to f i n i s h

42 echo " Waiting f o r a l l background p r o c e s s e s to complete . . . "

43
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44 f o r p in " ${ p i d _ l i s t [@] } "

45 do

46 wait $p

47 done

Listing 3.4: LaunchScript snippet

Initially, the Bash script is executed using the AtomicCPU for faster simulation.

After saving the checkpoint, the simulations are re-run with the DerivO3 CPU

model to gather the necessary HPC data for analysis.
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Data Analysis

Once all the simulations are completed, the remaining key components of the eval-

uated framework 1.1 are data collection and preprocessing, and malware detection

process.

Data collection and Preprocessing is the process of gathering HPCs data from

both benign and malicious applications, while preprocessing prepares this data for

model training and testing.

The Malware Detection Process is the core of this thesis, as it allows for the

distinction between benign and malicious applications. In the evaluated HMD

framework, the malware detection process relies on Anomaly Detection to

identify patterns or behaviours that deviate from normal system activity. Unlike

conventional solutions, anomaly detection uses only benign applications as the

training set, which is then employed to train the ML classifiers.

In this chapter, each of these components will be explored in detail. The methods

used to analyse the data to detect malware effectively will be highlighted, along

with the presentation of the final results.
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4.1 Data Collection and Preprocessing

After establishing the simulation environment and selecting both benign and

malicious applications for analysis, the subsequent phase focuses on gathering,

processing, and analysing the data to detect malicious behaviour. To achieve this,

two types of executions are conducted:

• Benign application mode: tests the normal behaviour of the system under

benign conditions.

• Benign application with malware mode: each benign application is

executed followed by the execution of each malware, simulating potential

attack scenarios.

In the first mode, for each benign application, a variety of inputs are applied to

capture a comprehensive range of behaviours, including normal execution as well as

scenarios involving errors or malfunctions. These inputs are designed to replicate

diverse real-world conditions. The application is then tested with these inputs,

where each test run constitutes a simulation. After each simulation, the HPC

values, for that specific simulation, are saved in a file with the following format:

{application_name + input_parameter}

In the second mode, each benign application is executed with the same input

parameters followed by the execution of malware. This process is repeated for all 6

malware. In this case, the format is:

{application_name_malware_name + input_parameter}

The captured data represents the system’s behaviour under both benign and

malicious conditions, serving as the foundation for the detection mechanism.

Data Collection and Preprocessing comprises two steps:

• Feature extraction: This step consists of capturing and storing the selected

HPC values.
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• Feature selection: also called feature reduction, this process involves identi-

fying and selecting the most relevant attributes or characteristics from data

in input to improve classification accuracy while minimizing computational

complexity.

4.1.1 Feature Extraction

Feature Extraction involves extracting and saving the HPC data, which serve as

the key features analysed by ML classifiers. HPCs can be extracted through two

main methods: time-based and event-based extraction[15][25].

• Time-based extraction: collects HPC data at fixed intervals, either after a

certain interval of time or a set number of processor cycles.

• Event-based extraction: collects data after a specific number of events

have occurred or after a certain number of instructions have been executed.

There are several ways to extract HPC data: using specific kernel tools such as

Perf ; incorporating specialized libraries like PAPI directly into the source code;

utilising proprietary kernel modules or drivers; or employing a simulator to emulate

the processor and collect data. In this thesis, the last option is employed. The

Gem5 simulator is used, along with the RunAppMalware in Listing 3.3, to extract

and store HPC values. For the extraction process, a time-based approach has been

chosen, specifically a single analysis per detection method[42]. This method

differs from typical periodic sampling approaches, where data are collected at

intervals throughout execution. Instead, HPC values are recorded only at the end

of the application execution. This approach is used for both benign applications as

well as for instances where benign and malware applications are executed together.

Time-based sampling does not have strict rules for determining the exact intervals

at which data should be collected. In the context of HMD, sampling intervals often
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range from milliseconds to seconds. Lower sampling rates are less computationally

demanding, producing fewer data points but potentially offering an incomplete

representation of program behaviour. Higher sampling rates generate more detailed

data, but at the cost of frequent system interruptions and increased computational

overhead. The single analysis method is chosen because Gem5 simulates execution

cycle-by-cycle, making it inherently slow. Implementing high-frequency sampling

(e.g., every second or millisecond) would significantly slow down the simulation

and impose an excessive computational overhead. Thus, the chosen approach

balances the need for data collection with the practical constraints of the simulator’s

performance. Table 4.1 provides an example of feature extraction, illustrating the

output file obtained from a simulation.
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Metric Value
Elapsed cycles 26,538,207
Elapsed time (ns) 883,721
Elapsed instructions 33,880,677
L1 instruction cache misses 29,380
L1 data cache misses 59,412
ITLB Misses 664
DTLB Misses 3,674
NumOfExceptions 4,315
ERET instructions 446
Pipeline Nukes 489
Branch Misfetches 3,985
Branch Mispredictions 33,733
Load instructions 7,334,500
Store instructions 4,250,425
Control flow instructions 5,941,716
L2 cache hits 27,041
L2 cache misses 200,932
Number of instructions committed (Count) 33,880,677
Data Memory Accesses 12,041,262
L1 Instruction cache access 5,828,902
L2 cache access - Instructions 0
L2 cache write-backs 56,610
L2 cache access - Data 0
L2 cache access - Page Walker(Data) 0
L2 cache access - Page Walker(Instructions) 0
L1 data cache accesses 12,041,262
D-TLB miss - Read 2,694
D-TLB miss - Write 980
L1 data cache write-backs 7,287
Branch Predictions 7,753,603
Conditional Branch Predictions 3,722,222

Table 4.1: Simulation Statistics example

4.1.2 Feature Selection

Feature selection (FS) involves reducing the initial set of features, in this

case, the HPC values, to a subset of relevant inputs. This process minimizes the

impact of noise and irrelevant variables, leading to more efficient analysis and

better predictive performance. When working with ML algorithms, a large dataset
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with many features can result in high-dimensional data processing, introducing

significant computational overhead and complexity. This situation leads to the

Curse of Dimensionality, where the performance of ML classifiers decreases as

the number of features increases. Furthermore, including irrelevant features can

further reduce the accuracy of the classifier. For these reasons, FS is essential. It

also enhances data visualization and comprehension, decreases measurement and

storage requirements, and minimizes training and execution times[43]. There are

several ways to classify the FS techniques. In this context, they can be categorised

into the following groups:

• Wrapper Methods: These methods use algorithms to search for an optimal

subset of features by evaluating different combinations with a learning algo-

rithm. This process is repeated until certain stopping criteria are satisfied,

such as achieving the highest quality of FS or obtaining a predetermined

number of features[44].

• Filter Methods: These methods do not rely on a specific learning algorithm,

making them quicker and simpler compared to wrapper methods. They rank

features according to specific evaluation criteria, assessing their relevancy

through either univariate methods (ranking features individually) or multi-

variate methods (ranking multiple features simultaneously). Features that

fall below a certain threshold are then removed from the dataset[44]. Several

algorithms are based on filter methods, including Principal Component

Analysis (PCA), which is the method used in this thesis.

• Embedded Methods: These methods represent a trade-off between filter

and wrapper methods, as they integrate FS into the training process[44].

• Hybrid Methods: These methods can be viewed as combining various FS

algorithms (e.g., wrapper, filter, and embedded). Their primary goal is to
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address the instability of many existing FS techniques[44].

To ensure effective FS a thorough understanding and description of the relevant

hardware events is essential. All hardware events in the RISC-V HPM used for sim-

ulations are implemented through the Zicntr and Zihpm RISC-V extensions. These

extensions provide pseudo-instructions, detailed in Figure 3.3, that allow access to

HPM-related CSR registers, which manage the HPCs. Although approximately

60 hardware events are available for tracking, only 31 HPCs are implemented and

available for practical use in Gem5[45]. The selection of events is performed manu-

ally by writing the corresponding code within the specific counter, as illustrated

by the Listing 3.3. The hardware events monitored during simulations can be

categorised based on the specific aspects of system performance they track. The

tables from 4.2 to 4.9 provide an overview of the key hardware events, grouped by

type.

Hardware events related to Performance:

Event Description
Elapsed Cycles Total number of cycles taken to execute the program.
Elapsed Time (ns) Total execution time measured in nanoseconds.
Elapsed Instructions Total number of instructions executed.

Table 4.2: Performance Metrics
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Hardware events related to Instructions:

Event Description
Number of Load Instructions Count of load instructions executed.
Number of Store Instructions Count of store instructions executed.
Number of Control Flow Instructions Total control flow instructions executed.

Table 4.3: Instruction Metrics

Hardware events related to Cache:

Event Description
L1 Instruction Cache Misses Count of missed accesses in L1 instruction cache.
L1 Data Cache Misses Count of missed accesses in L1 data cache.
L2 Cache Hits Number of successful accesses in L2 cache.
L2 Cache Misses Count of missed accesses in L2 cache.
L1 Data Cache Accesses Total number of accesses to the L1 data cache.
L2 Cache Write-Backs Number of write-backs to L2 cache.

Table 4.4: Cache Metrics

Hardware events related to Pipeline:

Event Description
Number of Pipeline Nukes Pipeline flushes resulting from mispredictions

or exceptions.

Table 4.5: Pipeline Metrics

Hardware events related to TLB:

Event Description
ITLB Misses Count of instruction TLB misses.
DTLB Misses Count of data TLB misses.
D-TLB Miss - Read Number of read misses in the data TLB.
D-TLB Miss - Write Number of write misses in the data TLB.

Table 4.6: TLB Metrics
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Hardware events related to Branch Prediction:

Event Description
Number of Branch Mispre-
dictions

Count of incorrect branch predictions.

Number of Conditional
Branches Predicted

Number of conditional branches predicted.

Table 4.7: Branch Prediction Metrics

Hardware events related to Exception and Error:

Event Description
NumOfExceptions Total number of exceptions encountered during execution.
ERET Instructions Count of ERET (exception return) instructions executed.

Table 4.8: Exception and Error Metrics

Hardware events related to Memory Access:

Event Description
Data Memory Access Total number of data memory access operations.

Table 4.9: Memory Access Metrics
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4.1.3 Applied Feature Selection

In this thesis, FS is initially conducted manually, as some HPCs are unsuitable for

analysis. Specifically, events that always remain in zero, such as ’L2 cache access

- Instructions’, ’L2 cache access - Data’, ’L2 cache access - Page Walker

(Data)’, and ’L2 cache access - Page Walker (Instructions)’ are excluded.

Furthermore, the first three hardware events ’Elapsed Cycles’, ’Elapsed time

(ns)’, and ’Elapsed Instructions’ are excluded, as they typically capture general

system performance and do not provide detailed insights into the program’s be-

haviour or distinguish between benign and malicious activities[21][46].

The final set of features offered to the ML classifiers is reduced to 24, down from

the initial 31, after excluding irrelevant and redundant events. Referring to Table

4.1, the metrics highlighted in bold represent the 24 features selected for further

analysis following the FS process.

At this point, PCA was employed to rank the 24 features. PCA is a multivariate

statistical technique used to reduce the dimensionality of datasets to a smaller

set of features while enhancing the clarity of the results and preserving as much

information as possible[15]. It accomplishes this by generating orthogonal (uncor-

related) components, called the principal components, that sequentially capture

the maximum variance in the data.

PCA helps mitigate the curse of dimensionality, and the reduction of noise in the

data allows better visualisation of the data set. To perform PCA, various tools can

be employed; in this case, the Scikit-learn library in Python is utilised.

4.1.4 Training and Test Procedures

The final step in Data Collection and Preprocessing is the generation of the Training

and Testing datasets. In this phase, raw HPC data from simulations is processed
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and organized into a structured format for use in the subsequent analysis. Figure

4.1 provides an overview of the dataset generation process.

Figure 4.1: Overview Dataset Generation

Two datasets are created:

• Training Dataset: This dataset is used to train the ML classifiers to recognise

the patterns of benign applications. In anomaly detection, the training set is

crucial, as the algorithm learns exclusively from benign data, enabling it to

become adept at identifying deviations from normal patterns.

• Test Dataset: This dataset is used to evaluate the performance of the

trained classifier. It contains both benign and malicious applications and is

used to assess the classifier’s ability to correctly distinguish between benign

and malicious behaviour. The dataset is balanced, with 50% of the samples

randomly selected from the Training Set, while the remaining 50% are randomly

drawn from the results of the app+malware executions. The six chosen

malware are executed for each benign application, with each malware instance

contributing to the data set. The malware samples are randomly drawn from

these executions, ensuring that the malware portion is evenly represented

across all six malicious applications and preventing any single malware from

dominating the dataset. This approach guarantees a comprehensive coverage
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of malicious behaviours allowing the classifier to be tested fairly across both

benign and malicious data, and preventing bias in the evaluation process.

The tables 4.10 and 4.11 provide a detailed breakdown of the number of samples

considered:

Application Training Set (Benign)
SUSAN 10000 samples
GSM 200 samples
NMAP 250 samples
NPING 150 samples
FFMPEG 550 samples
RESTIC 200 samples
UNRAR 150 samples
AG 350 samples

Table 4.10: Training Set for each application

Application Training Set (50%) Malware Set (50%) Total Test Set
SUSAN 5000 samples 5000 samples 10000 samples
GSM 100 samples 100 samples 200 samples
NMAP 125 samples 125 samples 250 samples
NPING 75 samples 75 samples 150 samples
FFMPEG 275 samples 275 samples 550 samples
RESTIC 100 samples 100 samples 200 samples
UNRAR 75 samples 75 samples 150 samples
AG 175 samples 175 samples 350 samples

Table 4.11: Test Set composition for each application
Note: The test set consists of 50% data from the training set and 50% from malware samples.
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4.2 Malware Detection Process

The final step of the evaluated HMD framework involves employing ML classifiers.

These classifiers are trained using the input training set, following the principles of

anomaly detection. Once trained, the performance of these detectors is evaluated

using the generated test sets.

4.2.1 Introduction to Machine Learning

ML is a subset of AI that includes a variety of techniques that enable systems

to automatically identify patterns and structures in data. By leveraging these

patterns, ML algorithms can make predictions, support decision-making, and auto-

mate tasks[47]. These algorithms learn from data and improve their performance

over time without needing explicit programming. This learning process involves

training a model on a dataset, enabling it to identify patterns and relationships

within the data. Once trained, the model can be applied to predict or classify

new, unseen data. In this thesis, ML algorithms are used to automatically classify

applications as benign or malicious, allowing the development of an accurate and

efficient malware detection system.

There are various learning techniques, and ML is generally categorised into two

main types.

In Predictive or Supervised learning approach the model is trained on labelled

data, meaning the input data is paired with the correct output. The goal is for

the model to learn the relationship between inputs and outputs so it can predict

outcomes for new, unseen data. Classification and regression are examples of

supervised algorithms.

The second main type of ML is the Descriptive or Unsupervised learning

approach, where the model is given data without explicit labels. The goal is to

uncover hidden patterns, structures, or anomalies within the data itself. Popular
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unsupervised learning algorithms include K-means clustering and anomaly detec-

tion. Another approach is the Semi-supervised learning method, which combines

both labelled and unlabeled data. This technique leverages the smaller amount of

labelled data to guide learning while making use of the larger, unlabeled portion to

improve model accuracy.

In HMD, both supervised and unsupervised techniques are utilised. In the super-

vised approach, the ML classifier is trained on labelled data, where each input

is explicitly labelled as either malware or a benign application. This allows the

classifier to learn how to distinguish between the two categories.

In contrast, the unsupervised approach involves training the model on a dataset

that consists solely of benign applications. The objective here is for the model

to learn the normal patterns of benign behaviour. When new, unseen data is

introduced, any significant deviations from the learned patterns may be flagged as

potentially malicious.

In the HMD framework assessed in this thesis, anomaly detection, a technique

closely related to unsupervised learning, is employed. This approach offers two key

advantages: it removes the need for a labelled malware dataset during training,

as the classifier is trained exclusively on benign applications, and it enables the

system to detect unknown or zero-day malware. However, the downside of this

method is that the analysis is more challenging to manage and requires a more

complex hardware implementation.

4.2.2 Machine Learning Classifiers

In the realm of machine learning, various classification algorithms can be applied

within the HMD framework, typically categorised into different families. For

this thesis, four distinct unsupervised anomaly detection algorithms have been

chosen: One-class SVM, Local Outlier Factor, Isolation Forest, and Elliptic
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Envelope. These algorithms have been implemented and experimentally validated

within the HMD framework to evaluate their accuracy in detecting malicious

applications.

• One-Class Support Vector Machine (OC-SVM): It is a variant of the

standard SVM algorithm. It works by constructing a hyperplane that encloses

the majority of normal data points, assuming that normal data points are

tightly clustered and closer to each other, while anomalies (such as malicious

activities) are further away from this cluster[42]. Data points that fall outside

this boundary are flagged as anomalies. OC-SVM is particularly effective when

the number of anomalous instances is relatively small compared to normal

data.

• Local Outlier Factor(LOF): It works by calculating the local density of each

data point and comparing it to the densities of its nearest neighbours[48][42].

If a data point’s local density is significantly lower than that of its neighbours,

it is considered an outlier. This suggests that the point does not belong

to the same cluster or distribution as its neighbours, indicating it could be

an anomaly. These outliers could represent new, unseen malware samples

that exhibit abnormal behaviour compared to benign applications. LOF is

particularly effective in datasets where normal points form dense clusters, and

outliers are sparse or isolated.

• Isolation Forest (IF): It works by recursively partitioning the data into a

tree structure, aiming to isolate each point[49][42]. The idea is that anomalies,

due to their rarity and distinction from the rest of the data, require fewer splits

to be isolated compared to normal instances. This makes anomalies easier to

separate. IF is particularly efficient for detecting outliers in high-dimensional

datasets with many irrelevant or redundant features. Its scalability makes it

well-suited to handle such complex data structures.
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• Elliptic Envelope (EE): It works by constructing an elliptical boundary

around the normal data points in a high-dimensional space[50][42]. The model

assumes that the data follows a Gaussian distribution and estimates the

covariance matrix of the data to determine the shape and orientation of the

ellipse. Any data points that fall outside this elliptical region are flagged as

anomalies, which can be indicative of malicious activity. EE is particularly

effective when the data points are normally distributed and can be accurately

represented by an elliptical shape.

These models play a crucial role in ensuring the effectiveness of the HMD framework

by providing diverse approaches for anomaly detection. Each model offers distinct

advantages and trade-offs, making it important to evaluate their performance in

the context of the specific characteristics of the data. All four models can be imple-

mented using the Scikit-learn library in Python. The following key configurations

were applied for the classifiers used in Scikit-learn:

• OC-SVM: A non-linear kernel (Radial Basis Function (RBF)) with nu set to

0.01.

• LOF: contamination set to 0.01 and novelty enabled.

• IF and EE: Both used contamination set to 0.01 and random_state set to 0.

These configurations were chosen to handle rare anomalies (with contamination

set to 0.01) and to capture complex patterns in the data (non-linear kernel in

OC-SVM). The novelty setting in LOF allows the detection of new outliers, and

random_state ensures reproducibility in IF and EE.
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Experimental Results

In this final section, the experimental results are presented, highlighting key perfor-

mance metrics and visualisations, such as PCA, to demonstrate the effectiveness of

the classifiers. The primary metric used to evaluate ML classifier performance is

Accuracy, measured by analysing subsets of 1, 2, 4, 8, 16, and 24 hardware events.

In most cases, the classifiers achieved accuracy rates exceeding 80%. An intriguing

observation regarding HPC values is that some simulation results, particularly for

complex inputs or those requiring extensive execution time in Gem5, exhibit either

negative HPC values or values significantly larger than others. To address this,

both the training and test sets for each application (eight in total) were analysed

under two conditions.

• Keeping the negative values as they are.

• Removing the negative values and retaining only the positive ones.

In both scenarios, the extremely large values were retained, as they may reflect the

extended execution time and the increased computational resources utilised by the

system during these demanding simulations.
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Feature Selection Contribution

The FS process helps identify the most critical HPCs for malware detection.

After initial manual removal of irrelevant or always-zero HPCs, FS ranks the

remaining features based on their significance. The table 5.1 presents the HPCs

rankings according to PCA. Notably, the Number of instructions committed

is consistently ranked as the most important feature across all applications. This

suggests that malware often behaves differently from benign applications in terms of

instruction execution, either by executing an unusually high volume of instructions

or generating abnormal instruction patterns, both of which can signal malicious

behaviour. Other highly ranked HPCs include L1 data cache accesses and Data

Memory Access, frequently ranked 2nd or 3rd. These counters indicate that

memory access patterns are highly informative. Malware often exhibits irregular

memory access behaviour, such as frequent cache access or unusual memory usage,

particularly in attacks like buffer overflows, where memory manipulation is common.

Conversely, least-ranked HPCs, such as ERET instructions, pipeline nukes,

and branch misfetches, represent hardware events that occur infrequently or

have minimal impact on distinguishing benign from malicious applications. These

counters, while not completely irrelevant, probably offer little predictive value

in malware detection due to their rarity and limited variability during typical

execution.
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HPC susan gsm nmap nping ffmpeg restic unrar ag
Number of instructions committed (Count) 1 1 1 1 1 1 1 1
L1 data cache accesses 2 3 2 4 4 2 2 2
Data Memory Access 3 4 3 5 5 3 3 3
Number of BP lookups 5 5 5 3 8 4 5 4
Number of load instructions 4 2 4 2 3 9 4 5
Number of control flow instructions 6 8 7 6 7 5 7 6
L1 Instruction cache access 7 7 9 7 2 6 6 7
Number of conditional branches predicted 9 9 8 8 10 7 8 8
Number of store instructions 8 6 6 9 6 8 9 9
L2 cache misses 14 11 10 10 12 12 12 10
L1 data cache misses 10 13 11 13 9 10 10 11
Number of branch mispredictions 11 10 12 12 11 13 11 12
L1 instruction cache misses 13 14 21 15 16 14 18 13
L2 cache write-backs 17 15 13 11 13 18 13 14
L2 cache hits 21 12 16 14 15 20 16 15
L1 data cache write-backs 12 18 17 21 14 19 14 16
DTLB Misses 15 19 14 18 17 17 15 17
D-TLB miss - Read 18 20 15 19 18 22 17 18
NumOfExceptions 19 17 19 16 19 11 20 19
Number of branch misfetches 20 16 20 17 21 16 21 20
D-TLB miss - Write 16 23 18 24 20 15 19 21
ITLB Misses 22 24 22 20 22 21 22 22
Number of pipeline nukes 24 21 23 22 23 23 23 23
ERET instructions 23 22 24 23 24 24 24 24

Table 5.1: HPCs Rankings based on PCA for the target applications

Figures from 5.1 to 5.4 show the PCA decomposition for some interesting cases.

The figures present the results of the PCA analysis, illustrating the distribution

of data points. A clear separation between malware and benign clusters suggests

that PCA has captured important features that can aid in detection. However, the

effectiveness of detection also depends on the choice of classification algorithm and

its ability to leverage these features.
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Figure 5.1: Susan without negative
values PCA

Figure 5.2: Susan with negative val-
ues PCA

Figure 5.3: Gsm without negative
values PCA

Figure 5.4: Gsm with negative val-
ues PCA

Compared to other applications, whose graphs exhibited minimal or unclear sepa-

ration, the Susan and Gsm PCA graphs display more discernible clusters, despite

some overlap. This suggests that the most important features, captured by the prin-

cipal components, are effectively differentiating between data points. This aids in

distinguishing patterns and anomalies, potentially enhancing detector performance

in identifying normal and anomalous data.
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Detection Performance

The performance of malware detection heavily depends on the type of ML classifier

employed, as well as the number and types of HPCs used to collect features for

classification. Figures from 5.5 to 5.8 present the accuracy results for all the tested

applications, considering all four ML classifiers employed. The datasets presented

in the graphs contain negative values, though similar results were observed with

datasets containing only positive values. Generally speaking:

• Elliptic Envelope: Performs inconsistently across different applications. While

it achieves high accuracy in the ag dataset (up to 94-95%) and unrar (up

to 77%), its performance in other datasets like Ffmpeg, Nmap, and Nping

remains relatively low, with accuracy generally below 60-70%. Although there

is some improvement in accuracy with an increasing number of HPCs, the

overall accuracy rarely exceeds 80%, indicating that EE does not consistently

benefit from additional HPCs and is less effective in many applications.

• Isolation Forest: Shows varying performance, with some applications benefiting

significantly from its use, particularly in the ag dataset, where it maintains an

accuracy of around 97-98% across all HPC levels. However, in the restic and

susan datasets, IF’s accuracy improvement is more moderate, moving from

53% with 1 HPC to 75-77% with 16 and 24 HPCs. Other datasets, such as

gsm and unrar, exhibit smaller gains, with accuracy improving gradually from

around 50% to around 75% as HPCs increase, but not as dramatically. This

suggests that IF benefits from larger HPC configurations across most datasets,

but the degree of accuracy gain is not as pronounced in some applications

compared to others. Compared to EE, IF shows more consistent performance

across HPC levels, with fewer dramatic spikes or drops.

• OneClass SVM: Consistently achieves high accuracy(above 80%), especially

with larger numbers of HPCs. This suggests that OC-SVM is better at
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leveraging more complex feature sets to enhance detection accuracy. For

example, in the nping dataset, it achieves 97% accuracy with 16 HPCs, up

from 56% with only 1 HPC, indicating a 73% improvement. Similarly, in

restic, OC-SVM moves from 55% (1 HPC) to 81% (24 HPCs), a 47% accuracy

boost.

• Local Outilier Forest: Often has lower accuracy than the other algorithms,

suggesting it might be less effective in distinguishing between benign and

malicious applications based on HPC features. Its performance is particularly

poor for a small number of HPCs, and its accuracy remains around 50-55% in

most datasets, even as the number of HPCs increases. In the unrar data set,

for example, the LOF only increases from 50% to 67% when moving from 1

to 24 HPCs, highlighting its limited ability to leverage additional HPC data.

The trend is similar in ffmpeg, where LOF remains consistently around 50%.

A particularly interesting aspect of the results is observed with the Susan application,

with a much larger dataset of 10,000 samples compared to the others, which shows

a notable trend in accuracy improvement as the number of HPCs increases. Across

all classifiers, even with a small number of HPCs, the initial accuracy is relatively

high. For example, with just 1 HPC, accuracies start between 54% and 75%,

depending on the algorithm used. As the number of HPCs increases, there is a

significant jump in accuracy. By 16 HPCs, most classifiers achieve or exceed 90%

accuracy. This demonstrates that larger datasets with more samples provide more

detailed information for the classifiers, allowing them to make better distinctions

between benign and malicious behaviour.

Overall, the Susan dataset highlights the importance of both a sufficiently large

sample size and the availability of HPCs to achieve high malware detection accuracy.
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Figure 5.5: EE Accuracy Figure 5.6: IF accuracy

Figure 5.7: OCSVM Accuracy Figure 5.8: LOF Accuracy

The findings suggest that to exceed 80% accuracy across most of the ML classifiers

examined, a significant number of HPCs is necessary(16-24), as a limited set of

HPCs proves insufficient. Most of the classifiers perform poorly for sets with few

features. However, this requirement presents a significant challenge, as modern

processors do not provide access to such a large number of HPCs.
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Figures from 5.9 to 5.16 show in detail the accuracies of each application. To further

complement the analysis presented earlier, these figures provide a more granular

view of algorithm accuracy within the context of individual applications. This

representation enhances the overall understanding of the algorithms’ behaviour

and accuracy for each specific application, completing the analysis.

Figure 5.9: Susan Accuracy Figure 5.10: Gsm Accuracy

Figure 5.11: Nmap Accuracy Figure 5.12: Nping Accuracy
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Figure 5.13: FFmpeg Accuracy Figure 5.14: Restic Accuracy

Figure 5.15: Unrar Accuracy Figure 5.16: Ag Accuracy
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Chapter 6

Conclusion and Future

Works

This thesis presents a comprehensive exploration of the malware landscape, includ-

ing an overview of malware classification methods and a review of current detection

techniques widely adopted in the research community.

A significant focus was placed on HMD detection, particularly through the use of

HPCs and ML techniques. By highlighting the potential of leveraging HPC data,

this thesis demonstrated the promising advantages of HMD in terms of resilience

to obfuscation, low computational overhead, cost efficiency, and run-time detection.

However, despite these advantages, HMD also presents several challenges. One

of the primary obstacles is the non-determinism and complexity associated with

setting up and maintaining HPC systems. The unpredictable nature of the OS can

further complicate this, making it challenging to ensure consistent performance

across different configurations and setups. In this context, the simulation environ-

ment employed in this thesis is thoroughly analyzed, proposing a full system setup

utilizing the Gem5 simulator, based on the RISC-V ISA.
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RISC-V, which has gained increasing adoption in modern cloud-computing so-

lutions, offers significant flexibility and scalability, positioning itself as a viable

alternative to traditional proprietary architectures.

The experimental results demonstrated varying levels of accuracy across different

ML algorithms and target applications. with most classifiers achieving an average

accuracy of around 80%. Certain classifiers, such as OC-SVM and IF, achieve

higher performance on some datasets. In particular, OC-SVM consistently showed

higher accuracy across a broader range of applications, while IF performed well in

specific cases. However, for some applications, the accuracy levels, while promising,

still require improvement to meet the stringent requirements of real-time malware

detection. Differences in the datasets also highlighted the variability in malware

behaviour, which suggests that further refinement of FS and classifier optimization

is needed to ensure robust and consistent detection performance across all use cases.

However, this also presents a challenge, as modern CPUs are still limited in the

number of HPCs available, which can restrict the potential for further accuracy

improvements. The final findings suggest that with continued development and

refinement, an HMD framework built upon HPC and ML could become an invalu-

able tool in the field of cybersecurity. Such a framework would offer robust defence

mechanisms against evolving threats, including unknown and zero-day malware.

Despite the promising potential of HMD, several challenges remain, with detection

accuracy being the most significant. The inherent statistical nature of classifiers

introduces non-deterministic results, which can lead to variability in detection

performance. Ongoing research is focused on reducing these errors by exploring

more sophisticated and advanced classifier models.

Additionally, scaling HMD frameworks for cloud computing and large-scale data

centres is crucial as these environments continue to expand. Research into dis-

tributed systems capable of efficiently gathering and analyzing HPC data across
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multiple nodes in real-time is essential for strengthening defences against advanced

and sophisticated cyber threats.

Moreover, ensuring the consistency, accuracy, and standardization of HPCs, is

essential for building trust and reliability in HMD systems. In this regard, chip

manufacturers play a pivotal role by designing dedicated monitoring modules and

providing detailed documentation to ensure seamless integration and operation.

However, the limited availability of HPCs in mobile and IOT devices introduces a

feasibility challenge, particularly in resource-constrained environments. Address-

ing these challenges will not only drive innovation and enhance the effectiveness

of malware detection but also play a pivotal role in securing the evolving cloud

infrastructure, ensuring a safer and more resilient digital ecosystem.
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Gem5 Configuration Script

This appendix contains the configuration script used to simulate a RISC-V full

system using gem5. The script defines the system’s architecture, including the CPU,

memory hierarchy, cache setup, and peripheral devices. It also includes methods

for initialising the platform, handling interrupts, and specifying the bootloader and

disk images required for running a Linux workload on a RISC-V architecture.

The modular script allows different CPU types (such as AtomicSimple or O3 CPUs)

and supports flexible cache hierarchies. The boot options include parameters to

initialize the console and mount the root filesystem from a virtual disk image. This

configuration is specifically designed for a HiFive platform, providing a detailed

setup for VirtIO devices and memory-mapped I/O (MMIO) components.

1 # RISCV Ful l System c o n f i g u r a t i o n c l a s s .

2 # Att r ibute s :

3 # bbl ( s t r ) : Path to the boot loader .

4 # disk ( s t r ) : Path to the d i sk image .

5 # cpu_type ( s t r ) : Type o f the CPU ( e . g . , " atomic " , " DerivO3 " ) .

6 # num_cpus ( i n t ) : Number o f CPUs to c o n f i g u r e .

7 # s c r i p t ( s t r ) : Path to the i n i t i a l i z a t i o n s c r i p t
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8

9 c l a s s RiscvSystem ( System ) :

10 de f __init__( s e l f , bbl , disk , cpu_type , num_cpus , s c r i p t ) :

11 super ( RiscvSystem , s e l f ) . __init__ ( )

12

13 ##################################

14 # I n i t i a l i z a t i o n and Setup

15 ##################################

16

17 # Set up the c l o ck domain and the vo l tage domain

18 s e l f . clk_domain = SrcClockDomain ( )

19 s e l f . clk_domain . c l o ck = ’ 3GHz ’

20 s e l f . clk_domain . voltage_domain = VoltageDomain ( )

21

22 # Create the memory range (2GB s t a r t i n g at 0x80000000 )

23 s e l f . mem_ranges = [ AddrRange ( s t a r t=0x80000000 , s i z e=’ 2GB’ ) ]

24

25 # Create the main memory bus

26 s e l f . membus = SystemXBar ( ) # 64−byte width

27 s e l f . membus . badaddr_responder = BadAddr ( )

28 s e l f . membus . d e f a u l t =s e l f . membus . badaddr_responder . p io

29

30 # Set up the system port f o r f u n c t i o n a l a c c e s s from the

s imula to r

31 s e l f . system_port = s e l f . membus . cpu_side_ports

32

33 i f s c r i p t i s not None :

34 s e l f . r e a d f i l e = s c r i p t

35

36 # Create the CPUs f o r the system .

37 s e l f . createCPU ( cpu_type , num_cpus)

38

39 # HiFive plat form
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40 s e l f . p lat form = HiFive ( )

41 s e l f . p lat form . pci_host . p io = s e l f . membus . mem_side_ports #

added by me

42

43 # c r e a t e and i n t i a l i z e dev i c e s

44 s e l f . i n i t D e v i c e s ( s e l f . membus , disk , num_cpus)

45

46 # Create the cache he i ra r chy f o r the system .

47 s e l f . c reateCacheHierarchy ( )

48

49 s e l f . createMemoryControllerDDR4 ( )

50

51 s e l f . s e tup In t e r rup t s ( )

52

53 # using RiscvLinux as the base f u l l system workload

54 s e l f . workload = RiscvLinux ( )

55

56 # workload ob j e c t i s the bbl

57 s e l f . workload . o b j e c t _ f i l e = bbl

58

59 generateDtb ( s e l f ) #func t i on from l inux_fs . py

60 s e l f . workload . dtb_fi lename = path . j o i n (m5. opt ions . outd ir , ’

dev i c e . dtb ’ )

61 s e l f . workload . dtb_addr = 0 x87e00000

62

63 # Boot opt ions : Console device , root f i l e s y s t e m , and read /

wr i t e mode

64 boot_options = [

65 " con so l e=ttyS0 " ,

66 " root=/dev/vda " ,

67 " rw "

68 ]

69 s e l f . workload . command_line = " " . j o i n ( boot_options )
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70

71 ##################################

72 # CPU Creat ion and Cache Hierarchy

73 ##################################

74

75 de f createCPU ( s e l f , cpu_type , num_cpus) :

76 i f cpu_type == " atomic " :

77 s e l f . cpu = [ AtomicSimpleCPU ( cpu_id = i )

78 f o r i in range (num_cpus) ]

79 s e l f .mem_mode = ’ atomic ’

80 e l i f cpu_type == " DerivO3 " :

81 s e l f . cpu = [ RiscvO3CPU( cpu_id = i )

82 f o r i in range (num_cpus) ]

83 s e l f .mem_mode = ’ t iming ’

84 e l s e :

85 m5. f a t a l ( "No CPU type {} " . format ( cpu_type ) )

86

87 f o r cpu in s e l f . cpu :

88 cpu . createThreads ( )

89

90 de f createCacheHierarchy ( s e l f ) :

91 c l a s s L1Cache ( Cache ) :

92 " " " Simple L1 Cache " " "

93 as soc = 16

94 s i z e = ’ 64kB ’ #512

95 tag_latency = 1

96 data_latency = 1

97 response_latency = 1

98 mshrs = 30 # 16

99 tgts_per_mshr = 20

100

101 de f __init__( s e l f ) :

102 super ( L1Cache , s e l f ) . __init__ ( )
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103

104 de f connectBus ( s e l f , bus ) :

105 " " " Connect t h i s cache to a memory−s i d e bus " " "

106 s e l f . mem_side = bus . cpu_side_ports

107

108 de f connectCPU ( s e l f , cpu ) :

109 r a i s e NotImplementedError

110

111 c l a s s L1ICache ( L1Cache ) :

112 de f connectCPU ( s e l f , cpu ) :

113 " " " Connect t h i s cache ’ s port to a CPU icache port " " "

114 s e l f . cpu_side = cpu . icache_port

115

116 c l a s s L1DCache ( L1Cache ) :

117 de f connectCPU ( s e l f , cpu ) :

118 " " " Connect t h i s cache ’ s port to a CPU icache port " " "

119 s e l f . cpu_side = cpu . dcache_port

120

121 c l a s s L2Cache ( Cache ) :

122 " " " Simple L2 Cache " " "

123 s i z e = ’ 128kB ’ #1024

124 as soc = 8

125 tag_latency = 20

126 data_latency = 20

127 response_latency = 20

128 mshrs = 20

129 tgts_per_mshr = 12

130

131 de f __init__( s e l f ) :

132 super ( L2Cache , s e l f ) . __init__ ( )

133 de f connectCPUSideBus ( s e l f , bus ) :

134 s e l f . cpu_side = bus . mem_side_ports

135
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136 de f connectMemSideBus ( s e l f , bus ) :

137 s e l f . mem_side = bus . cpu_side_ports

138

139

140 s e l f . l2_cache=L2Cache ( )

141 s e l f . t o l 2bus = L2XBar ( )

142 s e l f . l2_cache . connectCPUSideBus ( s e l f . t o l 2bus )

143 s e l f . l2_cache . connectMemSideBus ( s e l f . membus)

144

145 f o r cpu in s e l f . cpu :

146 # Create an L1 i n s t r u c t i o n , data and mmu cache

147 cpu . i c ache = L1ICache ( ) # cache f o r I n s t r u c t i o n

148 cpu . dcache = L1DCache ( ) # cache f o r Data L1Cache

149 cpu . mmucache = L1Cache ( )

150 cpu . i c ache . connectCPU ( cpu )

151 cpu . dcache . connectCPU ( cpu )

152 cpu . i c ache . connectBus ( s e l f . t o l 2bus )

153 cpu . dcache . connectBus ( s e l f . t o l 2bus )

154 cpu . mmucache . mmubus = L2XBar ( )

155 cpu . mmucache . cpu_side = cpu . mmucache . mmubus .

mem_side_ports

156 cpu . mmucache . mem_side = s e l f . membus . cpu_side_ports

157

158 # Connect the i t b and dtb to mmucache

159 cpu .mmu. connectWalkerPorts (

160 cpu . mmucache . mmubus . cpu_side_ports , cpu . mmucache .

mmubus . cpu_side_ports )

161

162 # c r e a t e the i n t e r r u p t c o n t r o l l e r CPU and connect to the membus

163 de f s e tup In t e r rup t s ( s e l f ) :

164 f o r cpu in s e l f . cpu :

165 cpu . c r e a t e I n t e r r u p t C o n t r o l l e r ( )

166
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167 de f createMemoryControllerDDR4 ( s e l f ) :

168 s e l f . mem_cntrls = [

169 MemCtrl (dram = DDR4_2400_8x8( range = s e l f . mem_ranges [ 0 ] ) ,

170 port = s e l f . membus . mem_side_ports ) ]

171

172 ############################################

173 # Device I n i t i a l i z a t i o n ( VirtIO , Bridge , MMU)

174 ############################################

175

176 de f i n i t V i r t I O ( s e l f , d i sk ) :

177 #I n i t i a l i z e VirtIO and s e t up the d i sk image .

178 # Create the CowDiskImage with the g iven d i sk path

179 image = CowDiskImage ( c h i l d=RawDiskImage ( read_only=True ) ,

read_only=False )

180 image . c h i l d . image_f i l e = d i sk

181

182 # I n i t i a l i z e VirtIOMMIO dev i ce f o r the plat form

183 s e l f . p lat form . d i sk = RiscvMmioVirtIO (

184 v io=VirtIOBlock ( image=image ) ,

185 i n t e r rupt_id=0x8 ,

186 p io_s i ze =4096 ,

187 pio_addr=0x10008000 # Using r e s e rved memory space

188 )

189

190 de f i n i t B r i d g e ( s e l f ) :

191 #I n i t i a l i z e br idge between memory and I /O buses .

192 # Create the I /O cro s sba r ( IOXBar)

193 s e l f . i obus = IOXBar ( )

194

195 # Set up the Real−Time Clock (RTC) f o r the plat form

196 s e l f . p lat form . r t c = RiscvRTC( frequency=Frequency ( " 100MHz" ) )

197 s e l f . p lat form . c l i n t . int_pin = s e l f . p lat form . r t c . int_pin #

Connect RTC to CLINT
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198

199 # Create the Bridge between the I /O bus and the memory bus

200 s e l f . b r idge = Bridge ( de lay=’ 50 ns ’ )

201 s e l f . b r idge . mem_side_port = s e l f . i obus . cpu_side_ports

202 s e l f . b r idge . cpu_side_port = s e l f . membus . mem_side_ports

203 s e l f . b r idge . ranges = s e l f . p lat form . _off_chip_ranges ( )

204

205 # Connect on−chip and o f f −chip IO

206 s e l f . p lat form . attachOnChipIO ( s e l f . membus)

207 s e l f . p lat form . attachOffChipIO ( s e l f . i obus )

208

209 # Attach the PLIC ( Platform−Level In t e r rup t C o n t r o l l e r )

210 s e l f . p lat form . a t t a chP l i c ( )

211

212 de f setNumCores ( s e l f , num_cpus) :

213 #s e t the number o f cpu

214 s e l f . p lat form . setNumCores (num_cpus)

215

216 de f initMMU( s e l f ) :

217 #I n i t i a l i z e MMU and s e t up PMA checker f o r each CPU.

218 uncacheable_range = [

219 ∗ s e l f . p lat form . _on_chip_ranges ( ) ,

220 ∗ s e l f . p lat form . _off_chip_ranges ( )

221 ]

222 f o r cpu in s e l f . cpu :

223 cpu .mmu. pma_checker = PMAChecker( uncacheable=

uncacheable_range )

224

225 de f i n i t D e v i c e s ( s e l f , membus , disk , num_cpus) :

226 # I n i t i a l i z e dev ices , br idge , and plat form components .

227 # Store the memory bus f o r l a t e r use

228 s e l f . membus = membus

229
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230 # I n i t i a l i z e VirtIO and d i sk

231 s e l f . i n i t V i r t I O ( d i sk )

232

233 # Set up the br idge between memory and I /O buses

234 s e l f . i n i t B r i d g e ( )

235

236 # Set the number o f co r e s on the plat form

237 s e l f . setNumCores (num_cpus)

238

239 # Set up PMA checker s ( Phys i ca l Memory Att r ibute s )

240 s e l f . initMMU ( )
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