POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

b~
A I
::54&_ A%V Politecnico

Ly di Torino
N\ 1859 g
‘\‘\...,‘d.

L4
ii

Master’s Degree Thesis

Automatic generation of User Interface
(UI) with the help of AI technologies

Supervisor Candidate

Prof. Giovanni MALNATI Arash HONARVAR

October 2024

Abstract

The widespread adoption of digital technologies has resulted in an unparalleled
need for user interfaces (Uls) that are both efficient and intuitive on a variety
of platforms and devices. Software applications cannot be developed as quickly
using traditional approaches of Ul design, which frequently take a lot of time and
experience. This thesis suggests a novel method for UI generation by integrating
artificial intelligence (AI) technology in response to this difficulty.

The main goal of this research is to automate the creation of Ul components
and layouts using Al algorithms, thus streamlining the UI design process. However,
the primary purpose of this thesis is information engineering, aimed at informing
designers about the elements that comprise the Ul pages based on user-provided
project descriptions. This thesis specifically focuses on creating a Figma plugin that
works with a Django API server and uses Al capabilities—especially the OpenAl
platform and ChatGPT—to understand user-provided project descriptions and
produce related user interface designs.

By developing a tool that can quickly prototype user interfaces (Uls) based on
high-level project criteria, the proposed system hopes to empower designers and
developers and cut down on the time and effort needed for manual design iterations.
By utilizing AI, this method not only increases output but also fosters creativity
by providing a variety of design ideas that are customized to meet project needs.

The research technique entails designing and implementing the Django API
server and Figma plugin, integrating AI models for natural language generation
and processing, and evaluating the system through a cost analysis of the plugin
and a showcase of the Ul designs generated by the Figma plugin. These efforts
assess the system’s scalability, adaptability, and overall effectiveness in producing
high-quality Ul designs, with a focus on cost-efficiency and user satisfaction.

The results of this study show the viability and advantages of Al-driven au-
tomation in the creative process, which advances Ul design approaches. This
approach has broad ramifications across multiple areas, such as Al-driven design
tools, software development, and human-computer interaction. In the end, the sug-
gested approach has the potential to transform user interface design methodologies,
stimulate creativity, and enable designers to fulfill the changing demands of digital
consumers in a quickly advancing technological environment.

Acknowledgements

“I would like to express my deepest gratitude to my supervisor, Professor Giovanni
Malnati, for his invaluable quidance and support throughout this project. His
expertise and encouragement were instrumental in the completion of my thesis. I
also wish to extend my heartfelt thanks to my friends and family for their
unwavering support and understanding during this journey. Their encouragement
and patience provided me with the strength and motivation to persevere.”

Arash Honarvar, Turin, October 2024

11

Table of Contents

List of Tables

List of Figures

Acronyms

1

Introduction

1.1 Overview and Motivation
1.2 Contribution
1.3 Organization of the thesis

Related Works

2.1 The Significance of Artificial Intelligence
2.1.1 The Importance of AT
2.1.2 Key Components of AT
2.1.3 The Rise of Al in Today’s World
2.1.4 Conclusion

2.2 Generative AT
2.2.1 ChatGPT

2.3 Figma: A Comprehensive Overview
2.3.1 Introduction to Figma
2.3.2 Key Features and Functionalities
2.3.3 Figma Plugin Ecosystem
2.3.4 Advantages of Using Figma
2.3.5 Significance in Contemporary Design Workflows
2.3.6 Limitations and Considerations

24 Uizardo
2.4.1 Introduction to Uizard
242 Key Features oo
2.4.3 Advantages of Using Uizard
2.4.4 Limitations and Considerations

v

VII

VIII

2.5 Galileo AT 13

2.5.1 Introduction to Galileo AT 14
2.5.2 Key Features and Functionalities 14
2.5.3 Advantages of Using Galileo AT 15
2.5.4 Limitations and Considerations 15
2.6 Mage (useMage.ai) 15
2.6.1 Key Features and Functionalities 16
2.6.2 Example Use Case 16
2.6.3 Advantages 17
2.6.4 Disadvantageso 17
Architecture 19
3.1 Introduction 19
3.2 Overall System Architecture 19
3.3 Client-Side Architecture: Figma Plugin 19
3.3.1 Component-Based Design 20
3.3.2 State Management 20
3.3.3 Event-Driven Architecture 20
3.3.4 Integration with Figma API 21
3.4 Server-Side Architecture: Django Python Backend 21
3.4.1 RESTful API Design 21
3.4.2 Request Handling and Routing 21
3.4.3 Integration with External Services 21
3.4.4 FError Handling and Logging 22
3.5 Technologies and Frameworks 22
3.6 Conclusions 22
Implementation 23
4.1 Introduction 23
4.2 Setting Up the Development Environment 23
4.2.1 Version Control with Git 23
4.2.2 GitHub Repositoryo 23
4.2.3 Integrated Development Environment (IDE) 24
4.2.4 Frontend Development Setup 24
4.2.5 Backend Development Setup 25
4.3 Frontend Implementation: Figma Plugin 26
4.3.1 Homepage Route, 27
4.3.2 Process Route oo 27
4.3.3 Project Description Route 28
4.3.4 Managing Plugin Logic with 'controller.ts’ 29
4.4 Backend Implementation: Django Python Server 33

\Y%

4.4.1 REST API for Managing the Application 33

4.4.2 Process Endpoint for ChatGPT Communication 33

4.4.3 Interaction with ChatGPT 33

4.4.4 Template-based UI Generation 33

4.4.5 Instruction and Rules for ChatGPT 34

4.4.6 Interaction with OpenAl API for Design Generation. 34

4.4.7 Error Handling for OpenAT APT 48

4.5 How to Write a Detailed Project Description 48

5 Result and Discussion 51
5.1 Introduction 51
5.2 Example Showcase: Ul Generation 51
5.2.1 The outlined project description 51

5.2.2 JSON Output from Django Server 52

5.2.3 Figma Ul Designs 52

53 Cost Analysis 52
5.4 Intended Purpose and Design Philosophy 53

6 Future Works 56
A JSON Output from Django Server 57
Bibliography 70

VI

List of Tables

5.1 Total Cost of Figma Plugin

VII

List of Figures

3.1

4.1
4.2
4.3

5.1
5.2
9.3

Client-server architecture L. 20
HomePage screen when the plugin has been launched 28
Process screen for generating appropriate user interface 28
Crafting an Effective Project Description Page 50
Screenshot of Figma Plugin 54
Screenshot of Figma Plugin - Image 4 55
Screenshot of Figma Plugin - Image 5. 55

VIII

Acronyms

Al
Artificial Intelligence

Ul

User Interface

UX

User Experience

API

Application programming interface

GAI

Generative modeling artificial intelligence

GAN

Generative Adversarial Network

GPT

Generative Pre-trained Transformer

NLP

natural language processing

ML

machine learning

IDE

Integrated Development Environment

X

CLI

command-line interface

XI

Chapter 1

Introduction

1.1 Overview and Motivation

The growth of digital technology and the development of design approaches have
caused a considerable upheaval in the field of design in recent years. Alongside the
rapid development of related tools and software, User Interface (UI) design has
emerged as a result of the Internet industry’s rapid progress and the widespread
use of new media. As a result, there have been notable improvements in the design
and use of software interfaces [1].

The field of User Experience and User Interface (UX/UI) is concerned with
the design and development of software applications’ interactive elements that
are visible to end users. It covers both the user’s experience—which is given by
the application’s overall logic and the actions the user must take to complete the
task—and the visual components, such as design, elements arrangement, colors,
and icons. A well-considered UX/UT design increases conversion rates, purchase
probability, and customer loyalty. It also increases recommendation rates and
decreases abandonment [2].

To achieve a well-considered UX/UI design, designers rely on powerful tools
like Figmal[3]. Figma is a cloud-based design tool that has completely transformed
the way that designers interact, experiment, and iterate on designs [4]. Figma,
which Dylan Field and Evan Wallace founded in 2016, has become well-known in
the design community thanks to its cutting-edge functionality and intuitive user
interface. In contrast to conventional design software that functions as stand-alone
programs, Figma can be accessed fully through a web browser, which makes it
platform-neutral and allows team members to collaborate easily from any place [5].

Though Figma comes with a robust feature set right out of the box, there is still
room to grow and modify the platform to better meet the particular requirements
and tastes of different designers and design teams. This is when creating unique

1

Introduction

Figma plugins becomes useful[6]. Using Figma plugins, designers can automate
repetitive activities, add new features, and integrate the platform with external
data sources to improve its functionality [7].

When designing user interfaces, wireframes, layouts, and visual components
are often the result of extensive time and effort invested in the process. It is the
responsibility of designers to translate abstract ideas and user requirements into
concrete solutions that satisfy both practical and aesthetic standards. But this
procedure can be time-consuming and labor-intensive, particularly for intricate
projects or design iterations [8].

A further level of difficulty for designers is the increasing desire for dynamic
and individualized user experiences. Designers must produce interfaces that are
not only aesthetically pleasing but also responsive and flexible since users expect
interfaces to adjust to their preferences, habits, and situations [9].

With the increased focus on Al approaches in recent years, they emerged as a
logical choice for automation, particularly when taking into account the human
aspects associated with Ul development and analysis.[10] Thanks to advancements
in artificial intelligence (AI), Developers can now include a range of AI functionalities
into user-facing systems [11].

By examining user behavior, tastes, and demographics, Al can also be a signifi-
cant factor in personalizing user experiences by enabling interfaces to be tailored
to specific users. Designers can produce dynamic and adaptable interfaces that
change in real-time in response to user interactions by utilizing machine learning
techniques. For instance, multimedia platforms can modify content suggestions
based on user interests and engagement metrics, while e-commerce websites can
use Al to recommend products based on a user’s browsing history and purchase
activity [12].

1.2 Contribution

This thesis project presents a novel method to design assistance by merging Ope-
nAIl's[13] ChatGPT model[14] with a Django server API, in addition to developing
a bespoke Figma plugin driven by AI. The primary contribution lies in the domain
of information engineering, providing a tool that helps designers understand the
structure and components of Ul pages based on project descriptions, thus facilitat-
ing informed design decisions. Through this interface, designers can enter project
descriptions into the Figma plugin. The Django server API with ChatGPT then
processes these descriptions to produce design recommendations. This partnership
between ChatGPT, the Django[15] server API, and the Figma plugin gives designers
a cutting-edge approach to Al-powered UI development and design advice. We aim
to make it easier for designers to start a project by helping them find the pages

2

Introduction

and user interface elements that are specific to their project. This will cut down
on the amount of time it takes to start design work.

1.3 Organization of the thesis

The thesis explores the intersection of design and technology through a series of
focused chapters.

o Chapter 2: Related Work: This chapter comprehensively reviews existing
research, literature, and recent advancements relevant to the thesis topic. It
critically analyzes the use of Figma, the integration of Artificial Intelligence
(AI) in design workflows, and other pertinent technologies to provide a strong
theoretical foundation for the project.

e Chapter 3: Architecture: This section delves into the technical details of the
thesis project’s architecture. It outlines the design choices and their rationale,
including the implementation of the Django API server, the integration of Al
technologies, and the development of a custom Figma plugin.

e« Chapter 4: Implementation: This chapter details the meticulous im-
plementation of the solution. It provides a comprehensive account of the
functionalities of the Figma plugin, the Django API server, and its interaction
with ChatGPT. Additionally, it discusses the specific technologies employed,
the challenges encountered during development, and the key features incorpo-
rated into the project.

o Chapter 5: Results and Discussion: This chapter presents the findings
from the implemented solution. It includes an analysis of the cost associated
with using the Figma plugin and showcases the Ul designs generated by the
plugin. The chapter discusses how these results demonstrate the effectiveness
of the proposed system in automating Ul design, contributing to the overall
understanding of Al-driven design processes.

o Chapter 6: Future Work: The thesis concludes with a forward-looking
perspective in Chapter 6: Future Work. Here, the chapter outlines potential
avenues for further development and improvement of the project. This might
include refining the Al algorithms, expanding the capabilities of the Figma
plugin, or exploring new applications or integrations for the technology.

Chapter 2

Related Works

2.1 The Significance of Artificial Intelligence

Artificial Intelligence (AI) has become a revolutionary force in the rapidly changing
technology landscape, transforming economies, cultures, and industries globally.
Fundamentally, artificial intelligence (AI) is the creation of computer systems
that can carry out operations that usually demand for human intelligence, like
comprehending natural language, identifying patterns, coming to judgments, and
picking up knowledge from past mistakes.

2.1.1 The Importance of Al

The potential of Al to enhance human talents, spur creativity, and resolve chal-
lenging issues in a variety of fields makes it significant. Organizations may increase
productivity, simplify processes, and seize new chances for expansion and develop-
ment by utilizing Al

2.1.2 Key Components of Al

Artificial Intelligence (AI) comprises a wide range of technologies, approaches, and
strategies, each with specific uses and functions. Among the essential elements of
Al are:

e Machine Learning: Without explicit programming, computers can learn
from data, spot patterns, and make judgments or predictions thanks to
machine learning algorithms. Common methods in machine learning include
reinforcement learning, supervised learning, and unsupervised learning.

o« Deep Learning: Artificial neural networks with numerous layers of ab-
straction are trained to do complicated tasks like speech recognition, natural

4

Related Works

language processing, and image recognition. Deep learning is a subset of
machine learning.

o Natural Language Processing (NLP): The goal of natural language
processing (NLP) is to make it possible for computers to comprehend, interpret,
and produce meaningful, contextually relevant human language. NLP is used
in a variety of applications, such as chatbots, virtual assistants, sentiment
analysis, and language translation.

e Computer Vision: Computers can comprehend the content of visual data,
such as photos and movies, and extract information from them thanks to
computer vision algorithms. Computer vision applications include image
classification, object identification, and facial recognition.

» Robotics: Robotics combines artificial intelligence (Al) algorithms with
physical machinery to allow for intelligent decision-making and autonomous
operation. Applications for robotics include driverless vehicles, industrial
automation, healthcare, and more.

2.1.3 The Rise of AI in Today’s World

There are various reasons why Al is becoming more and more important in today’s
world:

e« Advancements in Computing Power: Due to Moore’s Law and the
development of hardware technologies like GPUs and TPUs, computational
power has increased exponentially, making it possible to train large-scale Al
models and run sophisticated Al algorithms in real time.

o Availability of Big Data: Massive volumes of data have been made available
for training Al models and deriving insightful information due to the growth of
digital data collected from multiple sources, including as social media, sensors,
and Internet of Things devices.

o Algorithmic Innovations: Advances in Al algorithms, especially in the
fields of reinforcement learning and deep learning, have resulted in notable
gains in Al capabilities and performance.

o Industry Adoption: Al is being used more and more by a variety of indus-
tries, including healthcare, banking, retail, manufacturing, and transportation,
to spur innovation, increase productivity, and obtain a competitive edge.

« Ethical and Societal Considerations: As Al becomes more pervasive in our
daily lives, ethical and societal considerations surrounding issues such as bias,

5

Related Works

privacy, transparency, and accountability have come to the forefront, prompting
discussions and debates on responsible Al development and deployment.

2.1.4 Conclusion

In conclusion, artificial intelligence offers previously unheard-of possibilities for
advancement and change, thereby bringing about a paradigm shift in the way we
view and use technology. Through utilizing Al, we can open up new avenues, find
solutions to challenging issues, and build a more intelligent, effective, and inclusive
future. We will go into more detail on Al in the parts that follow, paying particular
attention to generative Al and how it affects creativity and innovation.

2.2 Generative Al

Generative modeling artificial intelligence (GAI) is an unsupervised or partially
supervised machine learning framework, which generates manmade relics via the
use of statistics, probabilities etc[16]. The two main generative Als recognized by
the body of literature are Generative Adversarial Networks (GAN) and Generative
Pre-trained Transformers (GPT) [17][16].

In generative Al, Generative Pre-trained Transformer (GPT) models are a
major breakthrough. These models perform exceptionally well in natural language
processing (NLP) tasks, exhibiting the capacity to understand and produce text
that is similar to that of a human being in a variety of languages [18]. Through the
use of massive volumes of publicly accessible digital content data, GPT models are
able to produce imaginative compositions that vary in length from brief paragraphs
to lengthy research articles [18].The recent development of Generative Pre-trained
Transformer-3 (GPT-3) represents a milestone in the field. With a staggering 175
billion parameters, GPT-3 exhibits enhanced task-agnostic capabilities, striving to
rival previous state-of-the-art fine-tuning techniques [19]. Following the popularity
of GPT-3, GPT-3.5 was released, expanding on the potential of generative Al by
utilizing new developments in model design and training techniques to enhance
effectiveness and performance.

GPT-3.5 is now the fundamental NLP engine behind the recently created
language model ChatGPT, which has garnered interest across a number of domains
[20]. In addition, progress has resulted in the creation of GPT-4, an enhanced
version that can handle inputs in the form of text and images [21].

6

https://chat.openai.com/

Related Works

2.2.1 ChatGPT
What is ChatGPT

ChatGPT is an intelligent conversational robot developed by OpenAl[22] that can
respond in-depth to a prompt by following instructions [23]. According to the official
statement, ChatGPT has demonstrated strong capabilities on a variety of language
understanding and generating tasks, including multilingual machine translation,
code debugging, sentence composing, acknowledging errors, and even rejecting
requests that aren’t acceptable.ChatGPT is a better chatbot than its predecessors
since it can recall past user comments, facilitating ongoing conversations [24].

Advantages and Strengths of ChatGPT

o The most natural sensation while utilizing ChatGPT is its ability to recognize
the user’s intent through text prompts (up to 2.5 million tokes) and picture
cues (further study is needed), and to produce a variety of text forms during
interactive chat [23].

e ChatGPT has surpassed human performance in a number of text creation
activities, including question-answering, offering advice, summarizing, and
refining documents [25]. When responding to a question, for instance, it will
not only provide an accurate response; the generated response text will also
disclose the reasoning behind the response and even continually modify and
amend the answer in accordance with the user’s instructions [23] .

o ChatGPT possesses strong reasoning skills, particularly when it comes to
responding to inquiries on science, knowledge, and intricate logic[26].

Disadvantages and limitations of ChatGPT

e ChatGPT can combine a variety of resources to produce fluid responses, but
these responses frequently contain factual inaccuracies (a phenomenon known
as "hallucination problem"). These factual mistakes could have resulted from
noise and mistakes in the training set [27].

e The GPT series models employ hundreds of billions of parameters and a vast
amount of data, but they just apply the most basic information processing

technique known to humankind—predicting a sentence’s next potential word
[23].

Related Works

OpenAl API

Large language models can be fine-tuned for particular purposes by users using
services offered by numerous well-known generative model providers, such as
OpenAl. An API is provided by OpenAl to adjust its fundamental GPT-3, GPT-
3.5 and GPT-4 models. This enables users to modify transformer models, such as
GPT-3, to enhance their performance in particular applications [28].

With its user-friendly interface, the OpenAI API simplifies the complex process of
training and optimizing large-scale models, thereby revolutionizing the accessibility
of advanced language models. Using only an OpenAl API key, developers can
easily access cutting-edge Al features without needing a great deal of experience
with machine learning or natural language processing.

By utilizing the extensive knowledge and contextual understanding built into
the underlying language models, the OpenAl API enables developers to improve
a multitude of elements of their apps. This makes it possible to develop more
intelligent, dynamic, and interactive applications in a variety of fields, from creating
sophisticated chatbots and virtual assistants to producing creative content and
document summaries.

The OpenAl API’s capability to comprehend and produce writing that resembles
that of a human being is one of its main features. The models are able to
generate responses that are both coherent and contextually relevant since they
have been trained on an enormous amount of different data. Because of its ability
to comprehend natural language, developers may create programs that can have
meaningful conversations, comprehend user inquiries, and produce excellent prose
that closely resembles information written by humans.

Additionally, the OpenAI API makes multilingual apps easier to create by sup-
porting a wide range of languages and enabling programmers to create applications
that can comprehend and produce content in multiple languages. This makes the
APT useful for businesses and organizations functioning in a multilingual environ-
ment by creating chances for cross-cultural communication, machine translation,
and worldwide content creation.

The OpenAl API has several difficulties and things to keep in mind, much like
any new technology. It’s important to give significant consideration to ethical issues
like bias in language models and the appropriate application of Al. Furthermore, it
is crucial to guarantee data security and privacy when utilizing the API. In order
to safeguard user information and uphold confidentiality, developers need to be
aware of potential hazards and take the necessary precautions.

To sum up, the OpenAl API is a significant advancement in Al technology
that enables programmers to incorporate cutting-edge language models into their
applications. Developers can produce more complex and intelligent software that
improves user experiences and opens up new opportunities in a variety of sectors

8

Related Works

by utilizing the API’s features. To guarantee the ethical and advantageous usage of
the OpenAl API in the larger Al ecosystem, it is crucial to address privacy issues,
ethical issues, and other difficulties.

2.3 Figma: A Comprehensive Overview

Figma has emerged as a leading collaborative interface design tool, revolutioniz-
ing the way designers and teams create digital products. This section provides
a comprehensive overview of Figma, encompassing its features, functionalities,
advantages, and significance in contemporary design workflows.

2.3.1 Introduction to Figma

Figma is a cloud-based design platform that enables seamless collaboration and
real-time editing among designers and stakeholders. Introduced in 2016, Figma
has quickly become well-known due to its versatility, accessibility, and ability to
streamline the design process [5].

2.3.2 Key Features and Functionalities
Collaborative Editing

Multiple users can collaborate in real-time on the same design file with Figma
thanks to its collaborative editing capability. In contrast to conventional design
approaches, this promotes collaboration, improves communication, and gets rid of
version control problems.

Cloud-Based Storage

With Figma, design files are kept on the cloud and can be accessed from any
internet-connected device. This makes sharing and collaborating easier, making it
possible for designers to work remotely and across time zones with ease.

Responsive Design

Because Figma adheres to the principles of responsive design, designers can create
layouts that adjust to different screen sizes and devices. In order to guarantee
consistency and usability across platforms, designers may quickly preview and test
their designs across various breakpoints.

9

Related Works

Prototyping and Interaction

Designers can produce interactive prototypes with animations, transitions, and user
flows with Figma’s powerful prototyping features. This facilitates feedback and
iteration by allowing stakeholders to experience the design in a real-world setting.

Design Systems and Component Libraries

Reusable component libraries and design systems can be created and managed
with Figma. By establishing standardized design patterns, styles, and components,
designers may enhance productivity and preserve design coherence over several
projects.

2.3.3 Figma Plugin Ecosystem

Figma’s plugin ecosystem extends its core functionality by allowing users to enhance
their design workflows with custom tools and integrations. Plugins are third-party
add-ons created by groups or the community that provide a variety of features and
functionality suited to certain design requirements.

Integration with External Tools

Plugins facilitate the smooth integration of external tools and services, giving
designers the ability to incorporate content, data, and assets straight into Figma
projects. Processes are streamlined, and copy-pasting and manual file transfers are
no longer necessary.

Automation and Productivity

Plugins automate repetitive tasks and streamline common design processes, boosting
productivity and efficiency. From batch resizing images to generating placeholder
text, plugins offer a plethora of time-saving functionalities that expedite the design
workflow.

Customization and Extensibility

Users can tailor their design environment to meet their unique needs by using
Figma plugins. Plugins enable designers to customize Figma to their own processes,
whether it’s by adding new features, making bespoke tools, or interacting with
proprietary systems.

10

Related Works

2.3.4 Advantages of Using Figma
Accessibility and Cross-Platform Compatibility

Because Figma is cloud-based, it is accessible from a variety of devices and operating
systems, including Windows, macOS, and Linux. This gets rid of compatibility
problems and makes it possible for teams to work together on any platform of their
choice.

Real-Time Collaboration

Real-time collaboration eliminates the need for long email exchanges and planned
meetings by promoting effective communication and teamwork. The design process
can be accelerated by designers’ ability to collaborate on decisions, iterate quickly,
and offer immediate feedback.

Version History and Revision Control

Design files are automatically versioned by Figma, enabling users to track changes,
examine prior iterations, and go back to older versions as needed. In addition to
guaranteeing responsibility, this offers protection against unintentional modifications
or data loss.

2.3.5 Significance in Contemporary Design Workflows

For design teams in a range of sectors, from startups to major corporations, Figma
has emerged as an essential tool. Its emphasis on design systems, adaptable
design capabilities, and collaborative features have revolutionized the conception,
development, and maintenance of digital goods.

2.3.6 Limitations and Considerations

Although Figma has many benefits, there are some restrictions and things to keep
in mind. These could include worries about privacy and data security, reliance on
internet access, and the learning curve involved in becoming proficient with the
technology. Additionally, while utilizing Figma for private or sensitive projects,
companies need to make sure that they are in accordance with all applicable laws
and guidelines.

11

Related Works

2.4 Uizard

Uizard is a cutting-edge platform that uses artificial intelligence (AI) to make the
user interface (UI) design process more efficient. Tony Beltramelli and Andreas
Hgye founded Uizard in 2017 with the goal of democratizing design by enabling
individuals and teams without a lot of design or coding skills to use it [29].

2.4.1 Introduction to Uizard

Using Uizard, a cloud-based design platform, users may create interactive prototypes
and fully functional digital interfaces from hand-drawn sketches or wireframes.
Uizard uses state-of-the-art Al technology to automate the time-consuming and
laborious parts of the design process, freeing up designers to concentrate on
originality and creativity.

2.4.2 Key Features
Instant UI Generation

Users only need to draw UI designs on paper or digitally with Uizard to swiftly
generate them. The drawings are analyzed by the platform’s Al algorithms, which
then automatically transform them into high-fidelity user interface designs with
interactive features. Furtheremore, With the help of Uizard’s robust Al features,
you can create Ul designs from text prompts and change them using a simple
drag-and-drop editor.

Real-Time Collaboration

Team members can collaborate easily with Uizard and work together in real-time
on UI designs. No matter where they are, designers can collaborate to iterate on
designs, share their work with others, and get feedback.

Customization and Iteration

The user-friendly interface of Uizard allows users to modify and refine their creations.
The platform provides a number of tools and capabilities that may be used to
change layouts, experiment with new designs and themes, and edit design aspects.

Integration with Design Tools

Uizard’s seamless integration with well-known design programs like Adobe XD,
Figma, and Sketch makes it simple for users to import and export their designs.

12

https://uizard.io/

Related Works

Due to its interoperability, Uizard may be integrated into users’ current design
workflows, hence increasing the platform’s flexibility and scalability.

2.4.3 Advantages of Using Uizard

Accelerated Design Process

Compared to traditional approaches, Uizard allows designers to produce high-
fidelity prototypes and digital interfaces in a fraction of the time by automating
repetitive operations and streamlining the design process. As a result, the design
iteration cycle is sped up and the time to market for digital products is accelerated.

Accessibility and Ease of Use

Because of its simple features and intuitive interface, Uizard is usable by designers
with varying degrees of technical competence. Designers may easily realize their
ideas with the platform’s drag-and-drop interface, pre-built templates, and Al-
driven support tools.

Seamless Integration

Prototypes can be easily exported to other applications or existing designs can be
effortlessly imported into Uizard because to its seamless integration with common
design tools and platforms. Designers can use Uizard’s capabilities in their preferred
design workflow, be it Sketch, Adobe XD, or Figma.

2.4.4 Limitations and Considerations

Accuracy of Code Generation

Although Uizard’s sketch-to-code capability is amazing, the resulting code’s accu-
racy could vary based on the design’s intricacy and the user’s level of detail.
Dependency on Al Algorithms

Because Uizard depends on Al and machine learning algorithms, the platform’s
functionality and performance could be impacted by the caliber of its training data
and the continuous improvement of its algorithms.

2.5 Galileo Al

Galileo Al is an all-inclusive Al-powered platform designed with designers in
mind. It provides a variety of tools and features with the goal of improving the

13

https://www.usegalileo.ai/

Related Works

design process, encouraging teamwork, and stimulating creativity. An extensive
introduction to Galileo Al is given in this section, along with an emphasis on its
salient characteristics, benefits, and relevance to the creative and design industries.

2.5.1 Introduction to Galileo Al

Galileo Al is an Al-powered design platform that helps designers with different
parts of the design workflow by utilizing machine learning algorithms and natural
language processing (NLP) approaches. Galileo Al is a set of tools and capabilities
that was created to help designers overcome common issues. These tools and
capabilities are intended to spark creativity, expedite the design process, and make
teamwork easier.

2.5.2 Key Features and Functionalities
AlI-Powered Design Assistance

Galileo AT helps users with intelligent design by employing cutting-edge Al tech-
niques. This includes tools that make it easier for designers to explore creative
options and make well-informed decisions, like automatic layout suggestions, color
palette selections, and typography guidance.

Contextual Design Insights

The platform provides pertinent design insights and recommendations by analyzing
contextual data and user input. Galileo Al can provide customized recommendations
and optimizations that are suited to the unique requirements of each user by
comprehending the project context, target audience, and design objectives.

Collaboration and Feedback

Collaboration capabilities in Galileo Al facilitate easy communication and feedback
sharing amongst team members. Within the platform, designers may collaborate
to iterate on designs, share their work, and get input from stakeholders, promoting
a more transparent and iterative design process.

Integration with Design Tools

Popular design tools and software are easily integrated with Galileo AI, enabling
users to take use of its Al-powered features from within their current workflows.
Using only one program to access Galileo Al’s functionality, designers can utilize
its features in Sketch, Figma, or the Adobe Creative Suite.

14

Related Works

2.5.3 Advantages of Using Galileo Al
Enhanced Design Efficiency

Galileo AT makes design work easier and more productive for designers by automat-
ing tedious chores, offering insightful design recommendations, and promoting
teamwork. Instead of spending time on tedious manual labor and administrative
duties, designers may concentrate their time and energy on innovative ideation and
problem-solving.

Data-Driven Decision Making

Galileo AT gives designers the ability to make well-informed decisions at every stage
of the design process by utilizing data analytics and Al-driven insights. Through
the analysis of user behavior, market trends, and design performance data, the
platform assists designers in identifying areas that may be optimized and improved.

Improved Collaboration and Communication

Galileo AT encourages cooperation and communication among design teams with
its tools for collaboration and feedback exchange. Regardless of distance or time
zone differences, designers may collaborate on projects in real-time, share their
work, and get comments from peers.

2.5.4 Limitations and Considerations
Learning Curve

Users who are used to other design tools or traditional design workflows may need
some time to become used to Galileo Al’s functionality and interface.

Algorithmic Bias

Galileo AT might have biases or limits as a result of the algorithms and training
data it uses, just like any other Al-driven platform. It is imperative for designers
to conduct a critical assessment of the comments and suggestions supplied by the
platform, while considering variables such as cultural background, diversity, and
inclusivity.

2.6 Mage (useMage.ai)

The Wasp team created Mage, a cutting-edge web application generator, to make
full-stack web application development easier. With the help of the Wasp framework

15

https://usemage.ai/

Related Works

and Al technology, Mage lets users give a concise description of the web application
they want. A complete React-based web application codebase, fueled by Node.js,
Prisma, and Wasp, is built and made accessible for download in a matter of minutes.
An overview of Mage is given in this section, with emphasis on some of its salient
characteristics.

2.6.1 Key Features and Functionalities
Automated Code Generation

With Mage, users may express in simple terms what kind of web application they
want to construct. Users can create a fully functional codebase that meets their
criteria by providing data about the app’s functionality, branding choices, and
authentication method. All required parts, written in React, Node.js, Prisma, and
Wasp, are included in the generated code, including front-end interfaces, back-end
functionality, and database interactions.

Customization Options

Users can alter the brand colors, degree of originality, and authentication mechanism,
among other elements of their web application. Users are able to customize their
application to match their own needs and vision by adding details like a name and
description.

Integration with AT and ChatGPT

Mage uses artificial intelligence (Al) technologies, such as ChatGPT, to help users
precisely describe the needs for their online applications. ChatGPT enables smooth
communication between the user and the program by interpreting user input and
making suggestions that are contextually relevant.

2.6.2 Example Use Case

For instance, a user who wants to build a social media site can use natural language
to tell Mage what they need. They might list features like real-time communications,
posting capabilities, and user profiles. After that, Mage creates the entire codebase
for the required web application, including database schemas for storing user data,
frontend interfaces for user profiles and publishing, and backend logic for managing
user interactions.

16

Related Works

2.6.3 Advantages

Speed and Efficiency

Mage drastically cuts down on the time and effort needed to construct full-stack
web apps by automating the code generation process. In only a few minutes,
users may move from a concept to code, speeding up the development process and
facilitating quick prototyping and iteration.

Accessibility and User-Friendliness

Users with varying degrees of expertise can utilize Mage due to its user-friendly
interface and guided workflow, even those with no prior coding experience. Because
of the platform’s natural language processing capabilities, customers may define
their application needs in simple terms without using technical jargon, which
streamlines the input process.

Scalability and Versatility

Because of Mage’s scalable and adaptable output, users can develop web applications
for a variety of industries and use cases. Whether creating content management
systems, e-commerce platforms, or data visualization tools, Mage’s adaptable
architecture guarantees that the applications it generates may change to meet
changing business demands and specifications.

2.6.4 Disadvantages
Limited Customization Options

While Mage does offer some customization, customers might discover that there
aren’t as many alternatives as if they were hand-coding a web application. Mage’s
automated technique might not offer enough flexibility for projects demanding
highly particular design components or sophisticated functionalities.

Dependency on AI Accuracy

Mage’s ability to comprehend user input and produce code is mostly dependent on
AT algorithms. Therefore, the effectiveness of these techniques determines the pro-
duced codebase’s correctness and dependability. Errors or less than ideal results in
the generated code may result from inaccurate interpretations or misinterpretations
of the user descriptions.

17

Related Works

Learning Curve

Despite its goal of streamlining the web development process, Mage may still
require some learning on the side of users, especially those who are not familiar
with Al-driven development tools or the Wasp framework. To fully utilize Mage’s
capabilities and optimize the generated code for particular project requirements,
training and familiarization may be necessary.

Limited Support for Complex Projects

Web applications that are extremely sophisticated or specialized may be too com-
plicated for Mage’s automated technique to manage. More manual involvement or
customization may be needed for projects with complex business logic, sophisticated
data processing needs, or unique architectural limitations than what Mage can
offer.

18

Chapter 3

Architecture

3.1 Introduction

This chapter explores our project’s architectural foundation, which acts as the
solution’s structural blueprint. With ChatGPT’s help, we hope to create a de-
pendable and expandable architecture that unifies the Django Python backend and
the Figma plugin frontend, enabling the creation of user interfaces from project
specifications.

3.2 Overall System Architecture

As illustrated in Figure 3.1 our system follows a client-server architecture, where
Django Python powers the server and the TypeScript and React-developed Figma
plugin acts as the client. The architecture facilitates a distinct division of responsi-
bilities, allowing the frontend and backend components to function separately and
communicate fluidly to achieve our project’s goals.

3.3 Client-Side Architecture: Figma Plugin

The Figma plugin functions as the frontend element of our architecture, seamlessly
integrating with the Figma environment to offer designers a seamless user experience.
Based on the concepts of modularity, extensibility, and reusability, the plugin’s
architecture makes use of TypeScript and React to produce an engaging and
dynamic user interface.

19

Architecture

HTTP Request

Y

Figma Plugin [« Django Server

HTTP Request

OpenAl Server

Figure 3.1: Client-server architecture

3.3.1 Component-Based Design

The user interface of the plugin is divided into reusable parts that each contain
particular features and actions. With its easy expansion and maintenance, this
modular design facilitates the gradual addition of new features and improvements.

3.3.2 State Management

Maintaining the Figma plugin’s state is essential to making sure the user experience
is responsive and seamless. User input, Ul interactions, and asynchronous activities
are managed by the application state using state management frameworks like
Redux or React Context API. This facilitates fluid data flow and interaction by
allowing the plugin to keep a consistent state across many components and panels.

3.3.3 Event-Driven Architecture

The plugin has an event-driven design, meaning that events are handled by event
listeners in response to user inputs. This makes it possible for interactive and
responsive behavior, guaranteeing a seamless user experience in the Figma environ-
ment.

20

Architecture

3.3.4 Integration with Figma API

To access project data, modify Ul elements, and engage with the Figma environment,
the Figma plugin tightly interacts with the Figma API. When interacting with
Figma documents, the Figma API offers a wide range of activities, such as obtaining
project descriptions, generating and editing layers, and initiating UI modifications.
The plugin uses libraries like axios or fetch to make API calls in order to interact
with the Figma API through HTTP queries.

3.4 Server-Side Architecture: Django Python
Backend

The server-side part of our design is the Django Python backend, which handles
requests from the Figma plugin and uses ChatGPT to coordinate the Ul devel-
opment process. Leveraging the powerful features of the Django framework, the
backend architecture is developed with scalability, stability, and maintainability in
mind.

3.4.1 RESTful API Design

A RESTful API defined by the backend can be used to handle different tasks
like collecting project descriptions, starting Ul generation, and sending generated
UI designs back to the Figma plugin. To maintain uniformity, readability, and
simplicity of use, the API endpoints adhere to RESTful standards for resource
name, HTTP method usage, and request/response formats.

3.4.2 Request Handling and Routing

Using URL patterns and view functions, incoming requests from the Figma plugin
are forwarded to the relevant handler methods inside the Django application. These
handler routines receive the requests, process the data entered, and initiate the
appropriate actions (e.g., generating text with ChatGPT).

3.4.3 Integration with External Services

To improve its functionality and offer new features, the Django backend connects
with outside services like ChatGPT. Through API calls supplied by the other
services, this integration is made possible, enabling the backend to utilize Chat-
GPT’s sophisticated Al capabilities for text synthesis based on project descriptions
obtained from the Figma plugin.

21

Architecture

3.4.4 Error Handling and Logging

To properly manage exceptions, errors, and unforeseen circumstances, the backend
has strong error handling and logging features. To aid in troubleshooting and
debugging during development and deployment, comprehensive logs are generated
and helpful error messages are returned to the Figma plugin in error responses.

3.5 Technologies and Frameworks

o TypeScript and React: used to create the Figma front-end plugin, which
offers a cutting-edge and effective framework for creating interactive user
interfaces in the Figma environment.

e Django Python: used in the construction of the backend server, providing a
stable and expandable framework for processing HTTP requests, organizing
data, and carrying out business logic.

3.6 Conclusions

We have given a thorough rundown of our project’s architecture, including client-
side and server-side elements, in this chapter. We have established the framework
for a scalable, modular, and extendable solution to the problem statement by
utilizing a client-server architecture and the powers of TypeScript, React, and
Django Python. We will explore the implementation specifics in the upcoming
chapter, offering more information on how our architecture is put into effect.

22

Chapter 4

Implementation

4.1 Introduction

In this chapter, we transition from theoretical framework to a functional software
solution. Our focus is on developing the backend Django Python server and the
frontend Figma plugin, aiming to seamlessly integrate AI technologies for Ul
generation within the Figma environment. This chapter provides a comprehensive
overview of the development process, detailing environment setup, frontend and
backend implementation, testing, deployment, and other related tasks.

4.2 Setting Up the Development Environment

We will cover in this section the essential steps in creating the development environ-
ment both for frontend and backend development. Once established, it guarantees a
seamless blending of resources and tools that are indispensable for efficient software
development, during collaboration.

4.2.1 Version Control with Git

Version control is essential in modern software development for tracking changes,
managing code efficiently, and maintaining project integrity. For this thesis project,
I utilize Git as the version control system. Git provides a robust and flexible frame-
work for preserving project histories, enabling a seamless development workflow.

4.2.2 GitHub Repository

To leverage additional features and centralize my project codebase, I hosted my
Git repository on GitHub. GitHub serves as a central hub for organizing project

23

Implementation

milestones, tracking issues, and storing project files. Utilizing GitHub’s features
such as branches, commits, and pull requests enhances project management and
organization, fostering accountability and transparency in the development process.

4.2.3 Integrated Development Environment (IDE)

[use Visual Studio Code (VS Code) as my primary Integrated Development
Environment (IDE) for coding and development tasks. VS Code offers a wide
range of features including code editing, debugging, version control integration,
and extensibility through plugins and extensions. Its extensive ecosystem and
user-friendly interface provide the necessary tools to write, test, and debug code
efficiently, contributing to the overall success of this thesis project.

4.2.4 Frontend Development Setup

Setting up the frontend development environment for creating the Figma plugin
requires several steps to ensure seamless integration with the Figma desktop
application. Here is a detailed explanation:

e Login and Access Plugin Development Section: After installing the
Figma desktop application, I signed into my Figma account and accessed the
"Development" submenu within the "Plugins" section, typically found in the
left sidebar menu.

o Create a New Plugin: I initiated the creation of a new plugin by clicking
the "New Plugin' button within the "Development" submenu. I was prompted
to name the plugin and select a project type. Selecting the "Figma" project
type aligned with my goal to develop a Figma plugin.

e Choose Figma Design: Upon selecting the "Figma' project type, I chose a
design template for the plugin. Figma offers various design templates tailored
for different functionalities. I selected the "Figma Design' template, ideal for
Ul-focused plugins.

e Generate Plugin Folder: Upon completion of the plugin creation process,
Figma automatically generated a folder on my local machine. This folder
contained boilerplate code and template files essential for plugin development.
I opened this folder in Visual Studio Code, my preferred code editor, to begin
development.

e Add TypeScript and React: To enhance type safety and development
efficiency, I utilized TypeScript as the foundation for the Figma plugin template.
Additionally, I incorporated React, a popular JavaScript library for building

24

Implementation

user interfaces. Integrating React into the Figma plugin enabled dynamic and
interactive Ul components, benefiting from its extensive range of components
and state management features.

This setup, tailored to my work style and project requirements, establishes a
solid foundation for effective frontend development, allowing me to create innovative
and user-friendly plugins for the Figma platform.

4.2.5 Backend Development Setup

Setting up the backend development environment for my Django Python server
involved several steps to ensure seamless integration and efficient implementation.
Below is a detailed explanation of the setup process:

Python Installation: The first step was to install Python on my local
machine, as Django development is done in Python. I downloaded and
installed the latest version of Python from the official Python website to
ensure compatibility with Django and other dependencies.

Virtual Environment Setup: To keep my Python project isolated and
manage dependencies effectively, I set up a virtual environment using the
'venv’ module. This allowed me to install packages specific to my project
without affecting the global Python environment.

Django Installation: With the virtual environment activated, I installed
Django using pip, the Python package manager. This command installed the
latest version of Django and its dependencies within the virtual environment,
ensuring a clean and isolated development setup.

Project Initialization: Using Django’s command-line interface (CLI), I
initialized a new Django project by running the django-admin startproject
command followed by the project name. This command generated the neces-
sary project files and directory structure to set up the initial scaffolding for
the Django application.

App Creation: Within the Django project, I created one or more Django
apps to encapsulate specific functionalities or features. Each app is a modular
component of the larger project, containing models, views, templates, and
other resources relevant to its domain.

Configuration Settings: I configured various settings in the Django project,
including middleware, URL routing, static file handling, and database settings.
These configurations were specified in the settings.py file within the project
directory, allowing customization and flexibility as needed.

25

Implementation

« URL Routing: Using Django’s URL routing mechanism, I defined URL
patterns and linked them to views or viewsets responsible for handling incoming
HTTP requests. This facilitated the mapping of URLs to specific endpoints
within the Django application, enabling the creation of RESTful API endpoints.

o Integration with External Services: As part of the backend setup, I
integrated external services such as ChatGPT with the Django application
to enable seamless communication and collaboration between the frontend
and backend components. This involved setting up data serialization and
deserialization processes, authentication methods, and API endpoints to
facilitate data exchange between the Django server and the Figma plugin.

Following these steps and adhering to Django best practices, I established a
solid foundation for building and implementing the Django Python server. This
setup enabled effective backend development for my thesis project, facilitating
smooth integration with external services and reliable communication with frontend
components.

4.3 Frontend Implementation: Figma Plugin

In this section, I provide a detailed account of how I implemented the frontend
for my Figma plugin using React. The frontend consists of two main routes: the
homepage route ("/") and the process route ("/process"). The following code snippet
demonstrates how I configured these routes using React Router:

import React from ’react’;

import {

MemoryRouter,

Routes,

Route,
} from "react-router-dom";
import ’../styles/ui.css’;

import Homepage from ’./Homepage’;
import Process from ’./Process’;
import Layout from ’./Layout’;

function App() {
return (
<MemoryRouter>
<Routes>
<Route path=’/’ Component={Layout} >

26

Implementation

<Route path="/" Component={Homepage} />

<Route path="/process" Component={Process} />

<Route path="/prject-description" Component={ProjectDescription} /3

</Route>
</Routes>
</MemoryRouter>
)3
}

export default App;

The above code sets up three routes using React Router: one for the homepage
("/"), one for the process page ("/process"') and another for the project description
page ("/prject-description"). Each route is associated with a different component:
HomePage, Process and ProjectDescription, respectively.

4.3.1 Homepage Route

The homepage route ("/") serves as the landing page for the Figma plugin. It
provides users with an overview of the plugin’s features and capabilities. As shown
in Figure 4.1, the homepage acts as an introductory page, guiding users through
the initial steps required to use the plugin effectively. Key features include:

o OpenAl API Key: A critical step for using ChatGPT is obtaining an
OpenAl API key. Users are prompted to enter this key to enable the plugin’s
functionality.

« Billing Setup: Users must ensure that billing is enabled in their OpenAl
account to cover the costs associated with API calls.

« Navigation Buttons: The "Let’s Start" button redirects users to the Process
route, while the "Give Feedback" button links to a Google Form for collecting
user feedback.

4.3.2 Process Route

Users are guided through the process of creating user interfaces with Al technology
by the process route ("/process"). Users can input their OpenAl API key and
project description using an organized, step-by-step interface, as demonstrated
in the image 4.2. Furthermore, the route is built to handle common issues that
could occur during communication between the Django server and the OpenAl
API, giving users helpful feedback to aid in troubleshooting.

27

Implementation

n Fignetic - Al-Powered User Interface Generator (Developer... X n Fignetic - Al-Powered User Interface Generator (Developer... X

Generate User Interface

| =0 H H
gg: Project Description @

Describe your project in details

An Al-powered plugin that helps you design user interfaces based
on your project description.

Before getting started, please ensure you have the necessary
prerequisites:

How to write a good Project Description?

Create an OpenAl account
o OpenAl key @

Get your OpenAl AP| ke)
e yourp v Enter your OpenAl key started with 'sk-_."

e Ensure Billing is enabled in your OpenAl account

Once you've completed these steps, make sure to describe your
project in detail.
Let's Start

#® Give Feedback @ Give Feedback

Made with & by Arash Honarvar Beta Version Made with & by Arash Honarvar Beta Version

Figure 4.1: HomePage screen when the Figure 4.2: Process screen for generat-
plugin has been launched ing appropriate user interface

4.3.3 Project Description Route

The application includes a dedicated page to assist users in writing a clear and
comprehensive project description as demonstrated in the image 4.3. This page,
accessible via a link labeled "How to write a good Project Description?" below the
project description text box, in the process page as it shown in the image 4.2. It
provides essential guidelines to ensure users can maximize the benefits of the plugin.
The page titled "Crafting an Effective Project Description" outlines three key areas
which is described in the chapter 4.5. The page concludes with a call-to-action
button, encouraging users to start generating their Ul components based on the
crafted description.

28

Implementation

4.3.4 Managing Plugin Logic with ’controller.ts’

The ’controller.ts’ file functions as the Figma plugin’s main logic handler, coor-
dinating user input, server connectivity, and plugin functionality. It functions
mostly through event handling, which is an essential component of Figma plugin
development.

Event-Driven Architecture

The use of event-driven architecture in the ’controller.ts’ file is essential to its
functionality. The 'figma.ui.onmessage’ event handler, which listens for incoming
messages from the plugin Ul or other sources, is essential to this design. These
messages typically contain instructions or data payloads that trigger specific actions
within the plugin.

figma.ui.onmessage = async (msg) => {
// Handle incoming messages based on their type
switch (msg.type) {
case ’start-process’:
// Perform actions based on the message type
/...
break;
default:
// Handle other message types
/...
break;
+
I

Message Handling

The message is processed by the ’controller.ts’ file based on its kind upon receipt.
This may entail a variety of duties, including starting a process, resolving issues,
or changing the user interface. For example, the controller starts the process by
sending the OpenAl API key and project description to the server for analysis in
response to a "start-process’ message.

case ’start-process’:
let projectDescription = msg.description;
let openAIKey = msg.openAIKey;

// Start the process by sending the project description
// and OpenAI API key to the server

29

Implementation

await startProcess(projectDescription, openAIKey);
/] ...

break;

async function startProcess(projectDescription, openAIKey) {
try {
// Send a POST request to the server’s process API endpoint
const response = await fetch(api_url prefix + ’api/process/’, {
method: ’POST’,
headers: {
’Content-Type’: ’application/json’,
3,
body: JSON.stringify({
projectDescription: projectDescription,
openAIKey: openAIKey
2,
1)

// Check if the response status is OK (HTTP status code 200)
if (response.ok) {
return response.json();
} else {
// 1f the response status is not OK
await response.json().then((data) => {
figma.ui.postMessage ({
type: ’process—failed’,
message: data.error,
1)
3
}
} catch (error) {
// If an error occurs during the request
figma.ui.postMessage ({
type: ’process—-failed’,
message: ’Process failed. Server error.’,

B

30

Implementation

Manipulating Figma Documents for Ul Generation

The ability of the 'controller.ts’ file to manipulate Figma documents programmat-
ically by utilizing the Figma API is one of its key features. With this feature,
the Figma plugin may create user interfaces (Uls) inside the Figma environment
that are dynamically generated and customized to meet the unique needs of every
project.

The plugin may create UI elements dynamically within the Figma document,
including text layers, shapes, photos, and more, by having access to the Figma
API. For example, the plugin might generate buttons for navigation, input fields
for user input, text layers to show project details, and other UI elements necessary
for the project’s interface.

Moreover, Ul elements can be extensively customized and adjusted using the
Figma API in accordance with project requirements and design preferences. The
position, size, color, font, and styling of UI elements are among the many properties
that developers can manage to guarantee uniformity and adherence to design
guidelines.

The ’controller.ts’ file allows designers and developers to iterate on Ul designs
immediately within the familiar Figma environment by integrating smoothly with
the Figma document editing workflow. By doing away with the need for additional
design tools or manual modifications, this integration improves productivity, speeds
up collaboration, and streamlines the design process.

The supplied createText and createRectangle functions serve as an example of
how the plugin may be used to programmatically create text layers and rectangles
inside of a Figma document. The foundation of the plugin’s ability to create
dynamic, adaptable user interfaces (Uls) that meet project needs is formed by
these and related functions.

// Function to create a text node
function createText(parent, x, y, content,
fontSize, type = ’normal’) {

const text = figma.createText();

text.x = X;

text.y = vy;

// Check if text length is more than 60 characters
if (content.length > 60) {
text.characters = content;
text.fontSize = fontSize;
// Allow the text to resize vertically
text.textAutoResize = "HEIGHT";

31

Implementation

// Set a maximum width of 300 pixels
text.resize (300, text.height);

} else {
text.characters = content;
text.fontSize = fontSize;

}

// Make text bold
if (type === ’bold’) {

text.fontName = { family: "Inter", style: "Bold" };
}

parent.appendChild(text);

return text;

// Function to create a rectangle (representing a navigation
//bar, content area, and footer)
function createRectangle(parent, x, y, width,
height, color, type) {

const rect = figma.createRectangle();

rect.x = X;

rect.y =y,

rect.resize(width, height);

rect.fills = [{

type: ’SOLID’,

color: { r: color[0], g: color[1l], b: color[2] }

1

// Set name based on type for identification
if (type) {
rect.name = type;

b

parent.appendChild(rect);
return rect;

32

Implementation

4.4 Backend Implementation: Django Python
Server

The Backend Implementation of the Figma plugin relies on a Django Python Server
to manage the application’s logic and handle communication with external services
such as ChatGPT. This server-side component serves as the backbone of the plugin,
coordinating various tasks and facilitating seamless interaction between different
components.

4.4.1 REST API for Managing the Application

The main interface for controlling the functionality of the program is the REST
APT exposed by the Django Python Server. With the help of this API, clients—Ilike
the Figma plugin—can interact with the server and carry out particular tasks, like
starting the Ul creation process.

4.4.2 Process Endpoint for ChatGPT Communication

The process’ endpoint, which is intended to handle requests related to UI generation
using ChatGPT, is one of the main features of the REST API. The project
description and OpenAl key are extracted by the server from the request payload
when it receives a POST request to the 'process’ endpoint.

4.4.3 Interaction with ChatGPT

After the required data has been retrieved, the Django server contacts ChatGPT
to provide user interface designs based on the project description that has been
supplied. In order to retrieve the necessary UI elements, the communication
procedure usually entails sending queries to ChatGPT and processing the results.

4.4.4 Template-based UI Generation

The server uses a template-based technique to speed up the UI generation process.
A pre-made JSON template is created, detailing the UI design’s hierarchy down to
the page names and related components. The template has different user interface
(UT) components in each part, including buttons, lists, forms, navigation bars, and
more.

33

Implementation

4.4.5 Instruction and Rules for ChatGPT

Furthermore, the server incorporates particular guidelines and directives into the
conversation with ChatGPT. Following predetermined criteria and design concepts,
ChatGPT is guided by these instructions while generating Ul designs using the
template that has been provided.

Sample Workflow:

1. The Figma plugin sends a POST request to the Django server’s process
endpoint, providing the project description and OpenAl key.

2. The Django server initiates communication with ChatGPT, requesting Ul
design generation based on the provided project description.

3. ChatGPT responds with UI design suggestions, which are processed by the
Django server.

4. The Django server constructs a JSON template based on the received sugges-
tions, specifying the structure of the UI design.

5. The Django server sends additional instructions and rules to ChatGPT, guiding
the Ul generation process.

6. ChatGPT generates a JSON-based Ul design according to the provided tem-
plate and instructions, which is then returned to the Django server.

7. The Django server processes the final JSON-based UI design and sends it to
the Figma plugin.

8. The Figma plugin uses the Figma API to render the designs within the Figma
environment based on the received JSON.

4.4.6 Interaction with OpenAlI API for Design Generation

In this section, I describe the interaction with the OpenAl API to generate the
necessary design elements for a specific project in Figma. This interaction involved
crafting specific prompts to describe the required pages and user interface elements,
and then generating a JSON structure containing all the information needed for
creating these designs in Figma.

Prompt Crafting and API Interaction

To effectively communicate with the OpenAl API and obtain the necessary design
elements, I used two main prompts. The first prompt was to describe all the
pages required for the project along with their user interface elements. The second

34

Implementation

prompt was to generate a JSON containing all the user interface elements following
specific rules.

First Prompt: Describing Pages and UI Elements

The first prompt was designed to list all the pages required for the project along
with their user interface elements. Here is the Python code snippet used to send
this prompt to the OpenAl API:

response_first_api = client.chat.completions.create(
model="gpt-3.5-turbo",

temperature=0,

messages=[

{

"role": "user",

"content": f£"""With the help of the project description below,
describe all the pages required for this project with the user
interface elements that the page needs.

Output template: list all of the pages with a numerical list
and for each page list all of

the user interface elements and the items that they contain.
Don’t put any additional text.

Project description: {project_description} """,

3,
{
"role": "system",
"content": "I want you to act as a web designer"
b
1,
)
Description:

o Purpose: The primary goal of this prompt is to obtain a detailed list of pages
and their respective user interface elements required for the project. This
helps in creating a structured blueprint of the website’s design.

e Structure: The prompt is structured to include a concise and clear project
description, followed by a specific output template. This ensures that the API
response is formatted in a way that is easy to parse and use in subsequent
steps.

« Components:

35

Implementation

— Role of User: The user provides a detailed project description and
requests a structured output.

— Role of System: The system is instructed to act as a web designer,
ensuring the response aligns with design principles.

o Output: The expected output is a numerical list of pages, each containing
a list of user interface elements. This output serves as the groundwork for
generating the JSON structure used in Figma.

Example Response:

. Home Page

- Header: Navigation Bar (Home, About, Services, Contact)
- Main Section: Welcome Text, Image Carousel

- Footer: Contact Information, Social Media Links

. About Page

- Header: Navigation Bar (Home, About, Services, Contact)
- Main Section: Company History, Team Members

- Footer: Contact Information, Social Media Links

. Services Page

- Header: Navigation Bar (Home, About, Services, Contact)
- Main Section: Service List, Service Descriptions

- Footer: Contact Information, Social Media Links

. Contact Page

- Header: Navigation Bar (Home, About, Services, Contact)

- Main Section: Contact Form (Name, Email, Message, Submit Button)
- Footer: Contact Information, Social Media Links

Second Prompt: Generating JSON for Figma

The second prompt was designed to generate an RFC8259 compliant JSON structure
containing all the user interface elements for each page based on the result gathered
from the first prompt. This JSON structure follows a specific template and rules.
Here is the Python code snippet used to send this prompt to the OpenAl API:

response_second_api = client.chat.completions.create(
model="gpt-3.5-turbo-1106",
response_format={"type": ’json_object’},

36

Implementation

temperature=0,
messages=[
{

"role": "user",

"content": """Please generate a RFC8259 compliant
JSON containing all of the user interface
elements for each page based on the provided text,
following the template below:

Template:
{
"pages": [
{
"page_name": "Page 1",
"sections": [
{
"label": "Header",
"elements": [
{
"type": "navigation_bar",
"label": "Navigation Bar",
"items": []
}
]
},
{
"label": "Column 1",
"elements": [
{
"type": "list",
"label": "List 1",
"headers": [
"Item 1",
"Item 2"
]
}
]
.
{

"label": "Column 2",
"elements": [

{
37

Implementation

lltypell . |lf0rmll ,

"label":
"inputs":

{

-

Il-t.y:pe n :

"label":

"type n :

"label":

Il-ty:pe n :

"label":

Iltype n :

"label":

"Add Book Form",
[

"text"
"Title"

"text"
"Purchase Date"

"teXt n
"Description"

"button",
"Submit"

lltypell : |lform|l s
"label": "Update Book Form",

"inputs":

{

};

Il-t.y-pe n :

"label":

"type n :

"label":

lltype n :

"label":

Iltype n :

"label":

[

"text"
"Title"

"date" ,
"Purchase Date"

"text"
"Description"

"button",
"Update"

38

Implementation

]
}
]
¥,
{
"label": "Footer",
"elements": []
}
]
},
{
"page_name": "Page 2",
"sections": [
{
"label": "Header",
"elements": [
{
"type": "navigation_bar",
"label": "Navigation Bar",
"items": [
"Home",
"About"
]
}
]
¥,
{

"label": "Column 1",
"elements": [

{
"type": "image",
"label": "Image Label",
3
{
"type": "button",
"label": "Button 1"
3,
{
"type": "button",
"label": "Button 2"
b

39

Implementation

]
3,
{
"label": "Column 2",
"elements": [
{
"type": "list",
"label": "List 1",
"headers": [
"Item 1",
"Item 2"
]
5
{
"type": "text",
"label": "Title",
"content": "This is a test text."
b
]
3,
{
"label": "Footer",
"elements": []
+
]
+
1,
’connections’: [
{
’from_page’ : ’page_name’,
’from_type’ : ’button’,
’>from_label’ : ’Button 1’,
’to_page’ : ’page_name’,
+.1
’from_page’ : ’page_name’,
’from_type’ : ’navigation_bar’,
>from_label’ : ’Navigation Bar’,
’to_page’ : ’page_name’,
+
]

40

Implementation

Instructions:

- Generate a JSON that adheres to the RFC8259 standard.

- Generate only the JSON without any additional information and check that]
output is a valid JSON.

- The JSON should contain the user interface elements for each page
mentioned in the provided text.

- Include all the pages mentioned in the text.

- Each page should have a name and a list of sections.

- Each section should have a label and a list of elements.

label is mandatory for all sections.

- Detect appropriate label for the sectioms.

- The "Header" section should contain a navigation bar (menu)

as a '"navigation_bar" element.

- If a section can be shown as a table, include a "list" element insideg
the section and detect the appropriate headers for the table.

- Forms should be represented as "form" elements with their respective
inputs included inside the "inputs" label.

Do not add elements of the form inside another section.

- Buttons related to a form should be added as elements within the forml
- The "Footer" and "Header" section should be available on each page|

- Do not modify the template; strictly follow the template rules.

Detect a label for each element inside sections.

- If the element is a not a list or a form , it should be a type "text'|
with the appropriate content inside "content"

and an appropriate "label" or it can be an image

with type "image" and an appropriate "label".

— If the element is a filter, it should be added

as type "form" with appropriate inputs.

- If the connection item type is ’navigation_bar’, in the ’from_label’ put|
the label of link item instead of label of Navigation Menu.

- If the navigarion_bar elements are long and more than 5 elements, try to
add only 4 of them as navigation_bar

and add others as buttons inside the pages.

- Try to detect all elements inside the output.

IIIIII, }’
{
"role": "system",
"content": "i want you to act as a web designer"
T,
{

41

Implementation

"role": "assistant",
"content": response_first_api.choices[0] .message.content
}
1,
)

e Purpose: The main objective of this prompt is to generate a structured
JSON that adheres to the RFC8259 standard. This JSON contains detailed
information about each page and its user interface elements, facilitating the
design process in Figma.

e Structure: The prompt is structured to provide a comprehensive template
and set of rules that the API response must follow. This ensures that the
output JSON is consistent, well-organized, and suitable for direct use in Figma.

« Components:

— Role of User: The user provides specific instructions and a detailed
template that the output JSON must adhere to.

— Role of System: The system is instructed to act as a web designer,
ensuring the response aligns with design principles and standards.

— Content of First API Response: The response from the first API call
is included in the prompt to provide the necessary context and details
about the pages and their elements.

o Output: The expected output is an RFC8259 compliant JSON structure that
contains all the user interface elements for each page, following the provided
template and instructions.

Example Response:

"pages": [
{
"page_name":"Home Page",
"sections": [
{
"label":"Header",
"elements": [
{
"type":"navigation_bar",
"label":"Navigation Bar",

42

Implementation

(-]

"items": [
IlHome n
"About",
"Services",
"Contact"

"label":"Main Section",
"elements": [

{
"type":"text",
"label":"Welcome Text",
"content":"Welcome to our website!"
},
{
"type":"image",
"label":"Image Carousel"
}

"label":"Footer",
"elements": [

{
"type'":"text",
"label":"Contact Information",
"content":"123 Main St, Anytown, USA"
},
{
"type":"text",
"label":"Social Media Links",
"content":"Follow us on social media!"
}

43

Implementation

"page_name':"About Page",
"sections": [

{
"label":"Header",
"elements": [
{
"type'":"navigation_bar",
"label":"Navigation Bar",
"items": [
"Home",
"About",
"Services",
"Contact"
]
}
]
},
{
"label":"Main Section",
"elements": [
{
"type":"text",
"label":"Company History",
"content":"Our company was founded
1,
{
"type":"text",
"label":"Team Members",
"content":"Meet our team..."
}
]
},
{

"label":"Footer",
"elements": [

in...

{
"type'":"text",
"label":"Contact Information",
"content":"123 Main St, Anytown, USA"
1,
{

44

Implementation

lltype n : lltethl s
"label":"Social Media Links",
"content":"Follow us on social medial!"

"page_name':"Services Page",
"sections": [

{
"label":"Header",
"elements": [
{
"type'":"navigation_bar",
"label":"Navigation Bar",
"items": [
"Home" ,
"About",
"Services",
"Contact"
]
}
]
},
{

"label":"Main Section",
"elements": [

{
"type":"list",
"label":"Service List",
"headers": [
"Service Name",
"Description"
]
,
{

l|type n : lltextll s
"label":"Service Descriptions",
"content":"We offer the following services..."

45

Implementation

"label":"Footer",
"elements": [

{
}:
{
}
]
b
]
}’
{

Iltype n : lltethl s
"label":"Contact Information",
"content":"123 Main St, Anytown, USA"

Iltype n : "teXt" s
"label":"Social Media Links",
"content":"Follow us on social medial"

"page_name":"Contact Page",

"sections": [

"label":"Header",
"elements": [

{
{
b
]
}’
{

"type'":"navigation_bar",
"label":"Navigation Bar",
"items": [

IlHome n

"About",

"Services",

"Contact"

"label":"Main Section",
"elements": [

46

Implementation

' "type":"form",
"label":"Contact Form",
"inputs": [

{
"type":"text",
"label":"Name"

1,

{
"type":"text",
"label":"Email"

¥,

{
"type":"text",
"label":"Message"

¥,

{
"type":"button",
"label":"Submit"

}

]
}
]
1,
{

"label":"Footer",
"elements": [

{
"type n : "‘teXt"
"label":"Contact Information",
"content":"123 Main St, Anytown, USA"
},
{
"type n : "teXt"
"label":"Social Media Links",
"content":"Follow us on social media!"
}

47

Implementation

1,
"connections": [
{
"from_page":"Home Page",
"from_type":"button",
"from_label":"Button 1",
"to_page'":"About Page"
I
{
"from_page":"Home Page",
"from_type":'"navigation_bar",
"from label":"About",
"to_page":"About Page"
b
]

4.4.7 Error Handling for OpenAl API

Moreover, error handling techniques for known OpenAl API failures are built into
the Django server. This includes looking for typical problems like misplaced API
keys or not enough funds in the user’s OpenAl account. The server makes sure
that the Ul generation process runs more smoothly and robustly by proactively
addressing these problems.

4.5 How to Write a Detailed Project Description

Writing a detailed and clear project description is crucial for generating useful Ul
recommendations with the Figma plugin. Here are some key points to consider
when crafting your project description to ensure the best possible results:

1. Define the Scope: Outline the scope of your project. Specify the application
type (e.g., web, mobile), primary user tasks and specific necessary features in
detail.

2. Identify the Target Audience: Explain the end-users including their
demographics, user needs and specifics of the users scenarios that the Ul must
support.

3. Specify Functional Requirements: Identify the primary functions that
should exist in the application. Outline precisely what every function should

48

Implementation

achieve.

It is necessary to follow these guidelines so as to ensure that the project descrip-
tion is comprehensive and informative, therefore, allowing the Figma plugin to create
UI elements that are perfectly suitable for your project needs and expectations.

49

Implementation

m Fignetic - Al-Powered User Interface Generator (Developer... X

Crafting an Effective Project Description

Providing a clear and detailed project description is essential for
getting the most value from the Fignetic plugin. Here are some key
guidelines to follow:

o Define the Scope: Specify the application type (e.qg., web,
mabile), core user tasks and specific necessary features in detail.

Identify the Target Audience: Describe the end-users

including their demographics, user needs and explain the specific
user scenarios the Ul must support.

e Specify Functional Requirements: |dentify the primary

functions the application must provide and clearly define what each
function should achieve.

By adhering to these principles, you can create a comprehensive
project description that enables the Fignetic plugin to generate Ul
elements and informations perfectly suited to your unique
requirements. This will result in Ul recommendations that closely
match your vision and seamlessly meet the needs of your target

USers.
Let's Start Generating
#® Give Feedback
50
Made with ¥ by Arash Honarvar Beta Version

Figure 4.3: Crafting an Effective Project Description Page

Chapter 5

Result and Discussion

5.1 Introduction

The results of the implemented solution are shown in the "Result and Discussion"
chapter, which also provides a useful example of UI generation utilizing the Figma
plugin and Django Python server. This chapter offers a critical analysis of the
generated Ul designs in addition to insights into the efficiency and performance of
the developed system.

5.2 Example Showcase: Ul (eneration

We demonstrate the features of the Django Python server and the Figma plugin
with a particular Ul generating scenario. This example shows the entire procedure,
from sending a request to the Django server to using the Figma environment to
render the final Ul designs.

5.2.1 The outlined project description

A system that makes managing assistance tickets possible for consumers of electronic
items. There should be a variety of users using the system. Consumers who have
the option to register their purchases and open support tickets with the vendor.
Professionals are charge of handling open tickets, helping clients, and maybe fixing
or replacing damaged goods. Managers are in charge of assigning tickets to experts
and must have a dynamic view of how the system is being used.

51

Result and Discussion

5.2.2 JSON Output from Django Server

The JSON output returned by the Django server is presented in the appendix
A. This JSON structure outlines the hierarchical organization of the generated
UTI designs, including page names, sections, and Ul elements. A comprehensive
analysis of the JSON output provides insights into the structure and composition
of the UI designs.

5.2.3 Figma UI Designs

Accompanying the JSON output, screenshots of the Figma UI designs are provided
in the figures 5.1, 5.2 and 5.3 to visually depict the generated user interfaces. These
screenshots showcase the rendered UI elements within the Figma environment,
highlighting the layout, styling, and overall presentation of the designs. In addition,
it also contains a table which illustrates the connections and links between elements
across different pages, showing how navigation and interactions are structured
within the application.

5.3 Cost Analysis

Undertaking a cost analysis is an essential step in assessing the proposed solution’s
viability and efficacy. The cost effects of using the Figma plugin for Ul generation
are discussed in this analysis. Through the process of calculating the expenses linked
to different use cases, interested parties can make well-informed choices about the
acceptance and application of the plugin. For detailed pricing information, readers
are directed to refer to the OpenAl pricing page at https://openai.com/pricing.

The cost analysis’s findings are displayed in the Table 5.1, which shows the
average cost of using the Figma plugin for ten distinct requests. This table acts as
a helpful resource for resource allocation and budgeting, as well as transparency
regarding the cash outlay made by users.

Table 5.1: Total Cost of Figma Plugin

Number of Requests Number of Context Tokens Number of Generated Tokens Total Cost ($)

10 1395 3483 0.07
2 342 684 0.01
3 531 906 0.015

52

https://openai.com/pricing

Result and Discussion

5.4 Intended Purpose and Design Philosophy

Clarifying the intended aim of the generated solution is crucial while discussing the
outcomes of this thesis project. This thesis project takes a different approach than
standard Ul-to-code plugins, which are mostly used by developers to speed up the
coding process. It is intended to help designers expedite their workflow by offering
recommendations on the structural architecture of user interfaces. This project is
created as an information engineering tool rather than merely an Al-driven design
generator. The primary purpose is to inform designers about the elements that
comprise Ul pages based on user-provided project descriptions, thereby enhancing
their understanding and decision-making processes. The approach helps designers
better conceptualize and organize their concepts, rather than producing code
directly. The tool provides significant insights on the arrangement of items on
individual pages and the overall interface structure, making it an invaluable tool
for designers looking to improve productivity and optimize their design process.

53

Result and Discussion

— =
Iﬁgo Home Login Register Iﬂo Home Profile Support Tickets

Login Form Registration Form Profile Inform: Open Support Tickets

Data 1 Data2 | Data3

Name ricke

umber Status Date Opened|

Password Email Detal | Data2 | Data3
Register
Johndoe@Example.Com
item Name Quantity
Datal | Data2
Datal | Data2
Datal | Data2
Button To Open New Support Ticket
@ “] © 2024 Company, Inc. O] n 3] © 2024 Company, Inc.
(a) Image 1
— —
Li?o Home Profile Support Tickets Iﬁ?o Home Profile Support Tickets
Profile Information Open Support Tickets Assigned Profile Information Overview Of Open Support Tickets
Name Name Total Number Of Open Tickets
Jane Smith Data 1 Data 2 Data 3 Michael Johnson 25
Dstal | Data2 | Data3
Email Data 1 Data 2 Data 3 Email Assigned To Experts
Janesmith@Example.Com Michaeljohnson@Example.Com 15
Expertise Role Pending
Technical Support Manager 10
Button To View Details Of A Support Ticket Button To Assign Tickets To Experts
@ “ - ® 2024 Company, Inc. @ “ . ® 2024 Company, Inc.
(b) Image 2
—_ —_
lﬁ?o Home About Services Contact Iﬂo Home About Services Contact
Ticket Information Communication Thread User Information Edit Profile Form
Ticket Number Message 1 Name
12345 Customer: Issue With Product Delivery. John Doe
Status Message 2 Email
Open Expert: Will Investigate And Provide Update. Johndoe@Example.Com
Date Opened Role
2023-01-15 Customer

Customer Details

John Doe (Johndoe@Example.Com)

Button To Update Ticket Status

f@ ﬂ . © 2024 Company, Inc. @ H . © 2024 Company, Inc.

(c) Image 3

Figure 5.1: Screenshot of Figma Plugin

Result and Discussion

=
Iﬂo Home Profile Reports

Overview Of System Usage Button To Add New Users

This table illustrates the connections and links between elements
across different pages, showing how navigation and interactions
are structurad within the application.

Total Customers

1000
Total Experts SourcePage Imeraction Type Interaction Label Destination Page
50
" Customer
Home Faga Eutton Login Dachboard
Total Managers
" Home Page Buttan Register Eail
Dashboard
Button To View Reports And Analytics
Open New Suppart
I;:a‘;‘ggfa Button Support | Ticket Details
Ticket Page
View Details Support
D:ﬁ;‘" . Button of Support | Ticket Details
hhaarn Ticket Page
Assign
DMa;\agmn Button Tickets to o E’;f'm["
(6] £1:] © 2024 Company, Inc. wshboar Experts ashboar
Support
Update: Manager
t
Tlckgt el ek Ticket Status | Dashboard
age
. . .
Figure 5.2: Screenshot of Figma Plugin o
Profile Paga Button Home Page
I 4 Changes
Admin Add New
Deshbaard R Users iapebens
Admin View Reports
Dashboard Button and Analytics | HOme Page
Home Page Navég;tlon Prafile Profile Page
Navigatian Support Customer
Hame Paga Bar Tickets Dashboard
Mavigatian Support Expert
AR Bar Tickets Dashbaard
Navigation Support Manager
Hame Faga Bar Tickets Dashboard
Admin Navigatian
Tt Profile Profile Page
Admin Mavigatian
R
Dashboard Bar eports Home Page

Figure 5.3: Screenshot of Figma Plugin
- Image 5

55

Chapter 6

Future Works

When considering how this project will develop in the future, a number of opportu-
nities for improvement and growth become apparent. Enhancing the user interface
(UI) of the created user interface elements is one of the main priorities. Although
this version offers insightful information about the structural design of interfaces,
both the usability and visual appeal might be strengthened. Future revisions will
prioritize implementing design upgrades to guarantee a more visually appealing
and intuitive experience for users.

Moreover, a wider range of design elements can be included in the area of
approved user interface elements. By providing advanced Ul features and adopting
a contemporary design approach for interface elements, the tool can significantly
enhance the creative freedom and adaptability available to designers. With addi-
tional flexibility to accommodate a wider range of project objectives and design
preferences, designers will be able to produce more comprehensive and dynamic
user interfaces.

As the project enters its next phase of development,it is well-positioned to
develop naturally, customizing its features and functionalities to meet the unique
requirements and preferences of its user base, thanks to user feedback acting as a
compass.

In conclusion, this project’s future is quite promising for additional innovation
and progress in the field of user interface design. The project is well-positioned
to significantly advance the facilitation of more effective, intuitive, and visually
appealing user interface design workflows because of its focus to fulfilling the
changing needs of designers and its commitment to ongoing improvement.

56

Appendix A

JSON Output from Django
Server

n pages n . [
{
"page name":"Home Page",
"sections ":]

"label ":" Header",
"elements ":|
{
"type":"navigation_bar",
"label ":" Navigation Menu",
"items ":|
"Home" |
"Login",
"Register"

"label ":"Login Form",
"elements ": |

{

n type n : n form n ,
"label ":" Login Form"
"inputs ":|

{

“type n . n teXt n ,
57

JSON Output from Django Server

"label ":" Username"

||t},I)e " : " text " ,
"label ":" Password"

"type":"button",
"label ":" Login"

"label ":" Registration Form",
"elements ": |
{
"type II:" fOrm ll7
"label ":" Registration Form"
"inputs ":|
{
||type n . n teXt n ,
"label ":" Name"

text ",
:"Email"

||t},I)e “:
"label

text ",
:"Password"

||t},I)e ||:
"label

"type":"button",
"label ":" Register"

"label ":" Footer",
"elements ": |

58

7

JSON Output from Django Server

79 "page_name":" Customer Dashboard",

80 "sections ":|

81 {

82 "label ":" Header",

83 "elements ": |

84 {

85 "type":"navigation_bar",
86 "label ":" Navigation Menu",
87 "items ": |

88 "Home" ,

89 "Profile",

90 "Support Tickets"

96 "label ":" Profile Information",
o7 "elements ": |

98 {

99 "type':"text",

100 "label ":"Name",

101 "content ":" John Doe"

102 },
103 {

104 "type':"text",
105 "label ":" Email ",
106 "content ":" johndoe@example .com"

107 },
108 {

109 "type":"list ",

110 "label ":" Purchased Goods",
11 "headers ":|

112 "Item Name",

113 "Quantity"

119 "label ":"Open Support Tickets",
120 "elements ": |

121 {

122 "type":"list ",

123 "label ":" Support Tickets",
124 "headers ":|

125 "Ticket Number",

126 "Status ",

59

JSON Output from Django Server

127 "Date Opened'

133 "label ":"Button to Open New Support Ticket",
134 "elements ":|

135 {

136 "type":"button",

137 "label ":"Open New Support Ticket"

138 }

139]

142 "label ":" Footer",
143 "elements ": |

144

145]

150 "page _name":" Expert Dashboard",

151 "sections ":]

152 {

153 "label ":" Header",

154 "elements ": |

155 {

156 "type":"navigation__bar",
157 "label ":" Navigation Menu",
158 "items ":[

159 "Home" ,

160 "Profile",

161 "Support Tickets"

162]

163 }
164]

165 } ,

166 {

167 "label ":" Profile Information",
168 "elements ":|

169 {

170 "type':"text",

171 "label ":"Name",

172 "content ":" Jane Smith"

173 },
' {

175 "type ":" text",

60

JSON Output from Django Server

176 "label ":" Email ",
177 "content ":" janesmith@example .com

3
-,

180 "type':" text",

181 "label ":" Expertise ",

182 "content ":" Technical Support"
183 }

184]

186 {

187 "label ":"Open Support Tickets Assigned"',
188 "elements ":|

189 {

190 "type":"list ",

191 "label ":" Assigned Support Tickets",
192 "headers ":|

193 "Ticket Number"

194 "Status ",

195 "Date Assigned'

196]
197 }

198]

199 } ,

200 {

201 "label ":" Button to View Details of a Support Ticket",
202 "elements ": |

203 {

204 "type":"button",

205 "label ":"View Details of Support Ticket"

210 "label ":" Footer",
211 "elements ": |
212

[\v]
S
—~——

218 "page_name":" Manager Dashboard",

219 "sections ":|

220

221 "label ":" Header",

222 "elements ": |

223 {

224 "type":"navigation_bar",

61

JSON Output from Django Server

"label ":" Navigation Menu",
"items ": |

"Home" ,

"Profile",

"Support Tickets"

"label ":" Profile Information",
"elements ": |
{
"type":"text",
"label ":"Name",
"content ":" Michael Johnson"

"type ll:ll teXt " ,
"label ":"Email ",
"content ":" michaeljohnson@example .com

lltype ":ll teXt n ,
"label ":"Role",
"content ":" Manager"

"label ":" Overview of Open Support Tickets",
"elements ": |
{
"type":"text",
"label ":" Total Number of Open Tickets",
"content ":"25"

lltype ":" teXt "7
"label ":" Assigned to Experts',
"content":"15"

"type n . n teXt n ,
"label ":" Pending ",
"content ":"10"

62

JSON Output from Django Server

275 "label ":"Button to Assign Tickets to Experts"',
276 "elements ":|

277 {

278 "type":"button",

279 "label ":" Assign Tickets to Experts"

280 }

284 "label ":" Footer ",
285 "elements ": |
286

202 "page_name":" Support Ticket Details Page",
293 "sections ":]

294 {

295 "label ":" Ticket Information",
296 "elements ": |

297 {

298 "type":"text",

299 "label ":" Ticket Number",
300 "content ":"12345"

301 },

302 {

303 "type":"text",

304 "label ":" Status",

305 "content ":" Open'

306 } s
307 {

308 "type":"text",
309 "label ":" Date Opened",

310 "content":"2023—-01—15"

313 "type":"text",
314 "label ":" Customer Details",
315 "content ":"John Doe (johndoe@example.com)"

320 "label ":" Communication Thread",
321 "elements ": |

322 {

63

361

362

363

364

365

366

367

368

369

JSON Output from Django Server

lltype n . n teXt n ,
"label ":" Message 1",
"content ":" Customer: Issue with product delivery

llt},I)e ":"teXt ll7
"label ":" Message 2",
"content ":" Expert: Will investigate and provide

update ."

"label ":"Button to Update Ticket Status"',
"elements ": |
{
"type":"button",
"label ":" Update Ticket Status'

"label ":" Footer",
"elements ": |

"page_name":" Profile Page",
"sections ":|
{
"label ":" User Information",
"elements ": |
{
lltype ll;ll teXt " ,
"label ":"Name" ,
"content ":" John Doe"

—~——

lltype ll:ll teXt " ,
"label ":" Email ",
"content ":" johndoe@example .com

—~——

lltype lI:ll teXt n ,
"label ":"Role",

64

JSON Output from Django Server

370 "content ":" Customer"

374

375 "label ":" Edit Profile Form",

376 "elements ": |

377 {

378 "type":"form",

379 "label ":"Edit Profile Form",
380 "inputs ":|

381 {

382 "type":"text",

383 "label ":" Name"

text ",
:"Email"

386 "type":
387 "label
388 } 5

389 {

390 "type":
391 "label
392 } R

393 {

394 "type":"button",

395 "label ":" Save Changes'
396 }

397]

398 }

399]

100 1,

101 {

text",
:"Password"

102 "label ":" Footer ",
103 "elements ":|

404

405]

106 }
107]

108 } ,

409 {

410 "page_name ":" Admin Dashboard",

11 "sections ":]

112

13 "label ":" Header",

114 "elements ": |

415 {

116 "type":"navigation_bar",
17 "label ":" Navigation Menu",
118 "items ": |

65

136

438

139

458
459
160
161
162
163
464
465
166

167

JSON Output from Django Server

"Home“,
"Profile",
"Reports "’

"label ":" Overview of System Usage",
"elements ": |
{
"type":"text",
"label ":" Total Customers",
"content ":"1000"

lltype ll:ll text ll,
"label ":" Total Experts"',
"content ":"50"

lltype " : n teXt " ,
"label ":" Total Managers",
"content":"10"

"label ":"Button to Add New Users"
"elements ": |

{

"type":"button",
"label ":"Add New Users"

label ":" Button to View Reports and Analytics',
elements ": |

{

"type":"button",
"label ":" View Reports and Analytics"

"label ":" Footer",
"elements ": |

66

168

169

491
492

193

194

195
496
497

198

199
500
501
502
503
504
505
506
507
508

509

JSON Output from Django Server

}
I

"connections ":|

{

i

~——

"from_ page":"Home Page",

"from_ type":" button",
"from_label":" Login",
"to__page":" Customer Dashboard"

"from_ page":"Home Page",

"from_ type":" button",
"from_label":" Register ",
"to_page":" Customer Dashboard"

"from_page":" Customer Dashboard",
"from_type":" button",

"from_label ":"Open New Support Ticket",
"to_page":" Support Ticket Details Page"

"from_page":" Expert Dashboard",

"from_ type":" button",

"from_label ":" View Details of Support Ticket"
"to_page":" Support Ticket Details Page"

"from_page":" Manager Dashboard",

"from_ type":" button",

"from_ label ":" Assign Tickets to Experts",
"to_page":" Expert Dashboard"

"from_ page":" Support Ticket Details Page",
"from_ type":" button",

"from_ label ":" Update Ticket Status',
"to__page":"Manager Dashboard"

"from_page":" Profile Page",
"from_ type":" button",

"from_ label ":" Save Changes",
"to_page":"Home Page"

67

JSON Output from Django Server

517 "from_ page":" Admin Dashboard",

518 "from__type":" button",
519 "from_label":"Add New Users",
520 "to_page":"Home Page"

523 "from_ page":" Admin Dashboard",

524 "from_ type":" button",
525 "from_label ":" View Reports and Analytics",
526 "to_page":"Home Page"

529 "from_ page":"Home Page",
530 "from_type":"navigation__bar",
531 "from_ label ":" Profile",

532 "to_page":" Profile Page'

535 "from_ page":"Home Page",

536 "from_ type":"navigation_ bar",
537 "from_ label ":" Support Tickets",
538 "to_page":" Customer Dashboard"

o
s
—_——

541 "from_ page":"Home Page",
542 "from_type":"navigation_bar",
543 "from_ label ":" Support Tickets",

544 "to__page":" Expert Dashboard"

547 "from_ page":"Home Page",

548 "from_type":"navigation_ bar",
549 "from_ label ":" Support Tickets",
550 "to_page":" Manager Dashboard"

553 "from_ page":" Admin Dashboard",
554 "from_type":"navigation_ bar",
555 "from_label ":" Profile",

556 "to_page":" Profile Page"

559 "from_page":" Admin Dashboard",
560 "from_type":"navigation__bar",
561 "from_ label ":" Reports",

562 "to_page":"Home Page"

563 }

564]

565 }

68

JSON Output from Django Server

69

Bibliography

Junfeng Wang, Zhiyu Xu, Xi Wang, and Jingjing Lu. « A Comparative Re-
search on Usability and User Experience of User Interface Design Software».
In: International Journal of Advanced Computer Science and Applications
13.8 (2022). DOL: 10.14569/IJACSA.2022.0130804 (cit. on p. 1).

Denis Pimenov, Alexander Solovyov, Nursultan Askarbekuly, and Manuel
Mazzara. «Data-Driven Approaches to User Interface Design: A Case Study».
In: Journal of Physics: Conference Series 2134 (2021). Published under licence
by IOP Publishing Ltd, p. 012020. bor: 10.1088/1742-6596/2134/1/012020
(cit. on p. 1).

Figma. https://www.figma.com/. Accessed on February 25, 2024 (cit. on
p. 1).

ZE Ferdi Fauzan Putra, Hamidillah Ajie, and Ika Anwar Safitri. «Designing
A User Interface and User Experience from Piring Makanku Application by
Using Figma Application for Teensy. In: IJISTECH (International Journal
of Information System and Technology) 5.3 (2021), pp. 308-315 (cit. on p. 1).

Fabio Staiano. Designing and Prototyping Interfaces with Figma: Learn es-
sential UX/UI design principles by creating interactive prototypes for mobile,
tablet, and desktop. Packt Publishing Ltd, 2022 (cit. on pp. 1, 9).

Melissa Zhang. «Speeding Up the Prototyping of Low-Fidelity User Interface
Wireframes». PhD thesis. 2022 (cit. on p. 2).

Lena Hegemann, Niraj Ramesh Dayama, Abhishek Iyer, Erfan Farhadi, Eka-
terina Marchenko, and Antti Oulasvirta. « CoColor: Interactive Exploration
of Color Designs». In: Proceedings of the 28th International Conference on
Intelligent User Interfaces. 2023, pp. 106-127 (cit. on p. 2).

Brad Myers. «Challenges of HCI design and implementation». In: interactions
1.1 (1994), pp. 73-83 (cit. on p. 2).

70

https://doi.org/10.14569/IJACSA.2022.0130804
https://doi.org/10.1088/1742-6596/2134/1/012020
https://www.figma.com/

BIBLIOGRAPHY

[9]

[10]

[11]

Victor Alvarez-Cortes, Benjamin E. Zayas-Perez, Victor Huga Zarate-Silva,
and Jorge A. Ramirez Uresti. «Current Trends in Adaptive User Interfaces:
Challenges and Applicationsy». In: Electronics, Robotics and Automotive Me-
chanics Conference (CERMA 2007). 2007, pp. 312-317. DOI: 10.1109/CERMA.
2007.4367705 (cit. on p. 2).

Julian Grigera, Jordan Pascual Espada, and Gustavo Rossi. «Al in User
Interface Design and Evaluationy. In: IT Professional 25.2 (2023), pp. 20-22.
DOI: 10.1109/MITP.2023.3267139 (Cit. on p. 2).

Saleema Amershi et al. « Guidelines for Human-AI Interaction». In: Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems.
CHI "19. Glasgow, Scotland Uk: Association for Computing Machinery, 2019,
pp. 1-13. 18BN: 9781450359702. DOI: 10 . 1145 /3290605 . 3300233. URL:
https://doi.org/10.1145/3290605.3300233 (Cit. on p. 2).

Clare-Marie Karat, Jan O Blom, and John Karat. Designing personalized

user experiences in eCommerce. Vol. 5. Springer Science & Business Media,
2004 (cit. on p. 2).

OpenAl. OpenAl 2015. URL: https://openai.com/ (visited on 02/28/2024)
(cit. on p. 2).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
[lya Sutskever. «Language Models are Unsupervised Multitask Learners».
In: OpenAI Blog (2019). URL: https://openai.com/research/language-
unsupervised/ (visited on 02/28/2024) (cit. on p. 2).

Django Software Foundation. Django. 2022. URL: https://www.djangopro]
ect.com/ (cit. on p. 2).

Mladjan Jovanovic and Mark Campbell. «Generative Artificial Intelligence:
Trends and Prospectsy». In: Computer 55 (Oct. 2022), pp. 107-112. pDOT:
10.1109/MC.2022.3192720 (cit. on p. 6).

Mohanad Abukmeil, Stefano Ferrari, Angelo Genovese, Vincenzo Piuri, and
Fabio Scotti. «A survey of unsupervised generative models for exploratory
data analysis and representation learning». In: Acm computing surveys (csur)
54.5 (2021), pp. 1-40 (cit. on p. 6).

Omer Aydin and Enis Karaarslan. «Is ChatGPT leading generative AI? What
is beyond expectations?» In: What is beyond expectations (2023) (cit. on p. 6).

TB Brown et al. «Language Models are Few-Shot Learners Advances in Neural
Information Processing Systems 33». In: (2020) (cit. on p. 6).

Clare Williams. «Hype, or the future of learning and teaching? 3 Limits to
AT’s ability to write student essays». In: (2023) (cit. on p. 6).

71

https://doi.org/10.1109/CERMA.2007.4367705
https://doi.org/10.1109/CERMA.2007.4367705
https://doi.org/10.1109/MITP.2023.3267139
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233
https://openai.com/
https://openai.com/research/language-unsupervised/
https://openai.com/research/language-unsupervised/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://doi.org/10.1109/MC.2022.3192720

BIBLIOGRAPHY

[21]

[22]
23]

[24]

[25]

[26]

[27]

[28]

[29]

OpenAl. GPT-4 technical report. 2023. URL: https://cdn. openai . com/
papers/gpt-4.pdf (cit. on p. 6).

OpenAl. OpenAl 2024. URL: https://openai.com/ (cit. on p. 7).

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han,
and Yang Tang. «A brief overview of ChatGPT: The history, status quo and

potential future development». In: IEEE/CAA Journal of Automatica Sinica
10.5 (2023), pp. 1122-1136 (cit. on p. 7).

Wenxiang Jiao, Wenxuan Wang, JT Huang, Xing Wang, and ZP Tu. «Is
ChatGPT a good translator? Yes with GPT-4 as the engine». In: arXiv
preprint arXiv:2301.08745 (2023) (cit. on p. 7).

Percy Liang et al. «Holistic evaluation of language models». In: arXiv preprint
arXiv:2211.09110 (2022) (cit. on p. 7).

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Ya-
sunaga, and Diyi Yang. «Is ChatGPT a general-purpose natural language
processing task solver?» In: arXiv preprint arXiv:2302.06476 (2023) (cit. on

p. 7).
Ali Borji. «A categorical archive of chatgpt failures». In: arXiv preprint
arXiv:2302.03494 (2023) (cit. on p. 7).

Albert Yu Sun, Eliott Zemour, Arushi Saxena, Udith Vaidyanathan, Eric Lin,
Christian Lau, and Vaikkunth Mugunthan. «Does fine-tuning GPT-3 with
the OpenAl API leak personally-identifiable information?» In: arXiv preprint
arXiv:2307.16382 (2023) (cit. on p. 8).

Uizard. About Uizard. 2022. URL: https://uizard.io/about/ (cit. on p. 12).

72

https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf
https://openai.com/
https://uizard.io/about/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Overview and Motivation
	Contribution
	Organization of the thesis

	Related Works
	The Significance of Artificial Intelligence
	The Importance of AI
	Key Components of AI
	The Rise of AI in Today's World
	Conclusion

	Generative AI
	ChatGPT

	Figma: A Comprehensive Overview
	Introduction to Figma
	Key Features and Functionalities
	Figma Plugin Ecosystem
	Advantages of Using Figma
	Significance in Contemporary Design Workflows
	Limitations and Considerations

	Uizard
	Introduction to Uizard
	Key Features
	Advantages of Using Uizard
	Limitations and Considerations

	Galileo AI
	Introduction to Galileo AI
	Key Features and Functionalities
	Advantages of Using Galileo AI
	Limitations and Considerations

	Mage (useMage.ai)
	Key Features and Functionalities
	Example Use Case
	Advantages
	Disadvantages

	Architecture
	Introduction
	Overall System Architecture
	Client-Side Architecture: Figma Plugin
	Component-Based Design
	State Management
	Event-Driven Architecture
	Integration with Figma API

	Server-Side Architecture: Django Python Backend
	RESTful API Design
	Request Handling and Routing
	Integration with External Services
	Error Handling and Logging

	Technologies and Frameworks
	Conclusions

	Implementation
	Introduction
	Setting Up the Development Environment
	Version Control with Git
	GitHub Repository
	Integrated Development Environment (IDE)
	Frontend Development Setup
	Backend Development Setup

	Frontend Implementation: Figma Plugin
	Homepage Route
	Process Route
	Project Description Route
	Managing Plugin Logic with 'controller.ts'

	Backend Implementation: Django Python Server
	REST API for Managing the Application
	Process Endpoint for ChatGPT Communication
	Interaction with ChatGPT
	Template-based UI Generation
	Instruction and Rules for ChatGPT
	Interaction with OpenAI API for Design Generation
	Error Handling for OpenAI API

	How to Write a Detailed Project Description

	Result and Discussion
	Introduction
	Example Showcase: UI Generation
	The outlined project description
	JSON Output from Django Server
	Figma UI Designs

	Cost Analysis
	Intended Purpose and Design Philosophy

	Future Works
	JSON Output from Django Server
	Bibliography

