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Summary

The work presented in this dissertation has been carried out in the context of an
internal R&D project of the Alphawaves Srl. company, which hosted the activities
of this thesis.

Specifically the project addresses the need for cybersecurity solutions within the
world of operational technology (OT), by proposing a plug and play tool capable of
performing automatic scanning, validation and reporting of the status of security
within an OT network, in a continuous monitoring cycle.

Within the context of the project, this thesis focuses on the development of a
formal verification engine that receives as input a network description, containing
information about host and network configuration, topology, and potential vulnera-
bilities; and generates possible attack paths and sequences of validation tasks to be
executed in order to test the actual exploitability of a target system.

The computation of the attack paths is achieved by leveraging MulVAL, as
suggested by the analysed literature, a popular open source framework that allows
to conduct multi-host and multi-stage vulnerability analysis through the use of
attack graphs, and extending it to better represent common OT scenarios.

In order to ensure easy integration within the global company project, a standard
network description model has been defined for representing OT networks in a
complete and structured manner. Consequently, a parser module has been developed
to translate the structured input data over to the modelling language used by
MulVAL to represent its target networks. A custom pruning algorithm has then
been deployed to reduce the high complexity of the attack graphs generated by
MulVAL. Following which, the attack paths are then extracted from the reduced
graph and saved into a corresponding data structure. For each successfully extracted
attack path, a sequence of validation tasks, for which task description models have
been defined, is selected according to the type of exploits the path entails. The
final output is then stored in an appropriately defined data model, ready to be
used for the execution phase (not included in the scope of this work).

The validity of the formal verification engine proposed in this work has been
tested against a manually constructed OT network configuration, considering two
different initial attacker access points. And for both cases it successfully identified
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and extracted a list of attack paths and corresponding validation tasks to execute.
Thanks to AlphaWaves, it has also been possible to present the findings of this

thesis in an academic research paper at the 2024 ICSC Intelligent Cybersecurity
Conference held in Valencia. The paper is entitled "Enhancing OT Threat Modelling:
An Effective Rule-Based Approach for Attack Graph Generation", and it documents
the methodology brought forward by this work regarding the use of attack graphs
for developing standard solutions in the context of OT security assessment.
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Chapter 1

Introduction

In the fast paced world that we live in today, always more dependent on technology
to satisfy everyone’s daily needs, the importance of cybersecurity is becoming
the utmost priority and therefore it requires special attention in all branches of
technology and must be addressed from the very beginning of the design phase of
each project, on a par with the actual functionality requirements.

In regards to the world of Operational Technology (OT), which is responsible
for automation and control of physical processes, cybersecurity was never given
enough importance, but never more so than today, with the increasing need of
internet connectivity, has it become one of those fields that requires it the most.

In order to address this issue, this work contributes to an internal project of
the AlphaWaves company, which, as a whole, aims at developing a plug and play
system capable of performing automatic scanning, vulnerability analysis, testing,
risk assessment, and impact analysis of OT networks, with the goal of producing
detailed reports about the overall status of security, including information regarding
discovered issues, criticality and suggested mitigation strategies.

Specifically, this thesis will focus on the development of a formal verification
engine capable of computing possible attack paths that an attacker could undertake
to compromise a target network, by exploiting information regarding topology and
vulnerabilities obtained from an initial scanning phase(which is not in the scope of
this project); and consequently planning a list of tasks to be executed, in order to
test the actual exploitability of the discovered paths(the execution of these tasks is
also not in the scope of this project).

The need for this project comes from the fact that there are not many viable
available solutions to automatically perform a complete security assessment of a
network from start to finish, especially when it comes to OT. So the goal of the
project is to provide a packaged, all-in-one and simple to use tool for automating
this process. This can be achieved by leveraging and extending already existing
tools, such as network scanners and attack graph generators, and integrating them
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Introduction

into a pipelined process.
The thesis is divided into six chapters.
Chapter 1 contains an introduction to the global project, and it briefly addresses

the goals and the need for such a project.
Chapter 2 contains the thesis’ background. It provides contextualization about

the world of OT and describes how cybersecurity relates to this field. Some examples
of attacks against OT infrastructures are also given in this chapter.

Chapter 3 discusses the state of the art. It starts by giving a brief theoretical
overview of the architectural design of the project. It then proceeds to provide
a detailed analysis of the existing literature and afterwards moves on to describe
why the MulVAL framework was chosen as the best option for the job compared
to others, how it works, and what are the limitations that this work will try to
overcome.

Chapter 4 discusses the methodology that has been used to build the formal
verification engine. It describes the main steps such as how the input model was
designed, how MulVAL was extended, how the attack graphs were pruned, and
how the validation task models were designed and selected.

Chapter 5 presents two test cases run on a test network configuration and
discusses the obtained results.

Lastly there is Chapter 6, containing final remarks about the project and how it
could be improved going forward.

Following the last chapter, Appendix A has been added for supplying the data
structures that are addressed throughout the thesis in order not to disrupt the flow
of the reader.

With the help of AlphaWaves, the work discussed in this thesis, has been used to
write an academic research paper that has been presented at the ICSC Intelligent
Cybersecurity Conference held in Valencia this year. The paper [1] is entitled
"Enhancing OT Threat Modelling: An Effective Rule-Based Approach for Attack
Graph Generation" and it summarizes the main methodology steps that have been
used to enhance the MulVAL framework in order to incorporate it into the context
of a standard solution for OT security assessment.
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Chapter 2

Background

This chapter focuses on providing the reader with a general overview of the world
of operational technology (OT), and how the need for security constitutes a key
role in this field, alongside providing the main concepts and definitions that are
used throughout the remainder of this thesis.

The chapter follows the definitions given by the National Institute of Standards
and Technology (NIST) in their guide to OT security [2].

In the final part of the chapter, the need for a standard automatic solution for
cybersecurity assessment in OT environments is introduced as it constitutes the
main topic that this work tries to address.

2.1 General overview of OT
Following the official definition given by NIST [2], Operational Technology consists
of a broad range of physical systems and devices that interact with the physical
environment. These systems and devices detect or cause a direct change through
the monitoring, and/or control of devices, processes, and events.

An OT system can be seen as a combination of a process and a controller.
The process is the actual physical procedure that produces outputs, which the
system is interested in regulating. While the controller is responsible for regulating
the process in order to maintain conformity between the output and the system
requirements.

There are three possible ways a system could be configured: open loop, closed
loop, manual mode. In the open loop configuration the output is controlled by
established parameters; closed loop differs from the previous, as in this case the
output is fed back to the system as input and therefore plays a part in maintaining
the desired control objective. Last but not least there is the possibility to have a
manual configuration in which the process is completely controlled by humans.
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Background

OT differs from traditional information technology (IT), as the first focuses on
the control and monitoring of physical systems, and therefore requires real time
management capabilities for maintaining efficiency and safety. While the latter
is more data oriented, as its main goal is to collect, process, and store data to
effectively support decision making and communication.

Also security priorities differ substantially between the two, as OT focuses
primarily on maintaining availability, real time operation, safety, component lifetime.
While IT, being more data oriented, prioritizes properties such as data integrity
and confidentiality at the cost of performance speed.

2.1.1 Role of OT in today’s world
Nowadays, with the increasing global population and the constantly growing demand
for resources, the need for automation is becoming of the utmost importance in
order to meet the needs of today’s life standards. Especially in regards to those
type of tasks that require constant and efficient monitoring and operation, don’t
have high error tolerance, and cannot afford much downtime. Many can relate to
this description and therefore fall under the category of OT.

This branch of technology is of paramount importance in today’s world, and even
though most people may not notice its presence in their everyday lives, everyone
relies on it and is somehow impacted by its correct functioning, as it drives most of
the processes that human life has become dependent on, some of which encountered
on a daily basis, such as public transportation.

Many industries and infrastructures also depend on OT to function properly,
including critical infrastructures of a variety of different fields, to name a few:
chemical, commercial facilities, critical manufacturing, energy, healthcare, food and
agriculture, transportation, water distribution, nuclear.

The subset of OT responsible for controlling automation within industrial
environments is denoted by the term ICS, which stands for industrial control systems.
Within this field the terms OT and ICS are frequently used interchangeably.

If for any reason an OT system responsible for controlling one of the previously
mentioned infrastructures were to encounter a failure, it could potentially result in
massive losses including financial, environmental damage, and straight up loss of
human life. These are the main reason why OT, specifically safety and security
in this context, play such an important role in seamlessly assisting the normal
unfolding of everyday life.

2.1.2 Evolution of OT over the years
Since it has been around, OT has evolved over the years trying to keep up with
the fast paced progress of IT technology. Many solutions that have in fact been
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developed in the context of IT, have been successively integrated into OT scenarios.
Analog mechanical controls, that used to be the backbone of OT, got replaced by
embedded digital controls, in order to favor inter-connectivity among devices and
the internet, which provides edge nodes with more computing power, effectively
decentralizing the decision making process. OT greatly benefits from these capabil-
ities, as they can be leveraged to boost productivity, decision making, safety, and
system lifetime.

This approach was inspired by the rise in popularity of the Internet of Things
(IoT) paradigm, which allows to make use of the more advanced features available
for IT, such as internet connectivity, data collection, data analytics, and security,
to improve automation capabilities.

However, although the deployment of smart devices able to connect to the
internet greatly enhances the scope of what OT is capable of handling, it also
increases the attack surface. In fact, the more functionalities and responsibilities
a device is associated with, the more likely it is to expose security issues that
could potentially lead to a system malfunctioning or being compromised. Therefore
cybersecurity in this field must be addressed with special care, risk and impact
parameters should be thoroughly evaluated, and proper measures must be chosen
on the basis of these parameters.

2.1.3 Components of an OT network
An OT system relies on control loops, consisting of sensors, actuators and controllers,
for performing some regulation of a physical process.

Sensors are responsible for taking real time measurements in order to produce a
clear snapshot of the process’ status to send to the controller.

Controllers are the actual brain of the regulating process, as it is responsible for
interpreting the input received by the sensors and computing values for the control
variables to conform the process behaviour to the desired one. This is achieved
through a control algorithm which performs calculations based on inputs and other
manually set parameters called set points.

While actuators are the physical components, such as valves and motors, that
are used to directly interact with and control the actual process behaviour at a
physical level.

In most cases there must be a way for personnel to interact with the system in
order to monitor its functioning, or to reconfigure set points and algorithms based
on the goals that must be reached. This is where human machine interfaces come
into play.

Last but not least, there must also be a module capable of providing support for
diagnostics and maintenance, in order to prevent or recover from possible failures.

A general overview of the system flow described above is given in Figure 2.1.

5



Background

Figure 2.1: Standard OT system control loop taken from the NIST guide for OT
[2]

In terms of the actual hardware equipment used to build such a system, the
main components that can be found in an OT network are: human machine
interfaces (HMI), programmable logic controllers (PLC), remote terminal units
(RTU), control servers, historian servers, engineering workstations (EWS), I/O
devices and intelligent electronic devices (IED).

PLC

PLCs are the actual controllers of the system. They are non other than industrial
computers, built to withstand the harsh environmental conditions that can be
found in industrial workplaces, such as extreme temperatures, electrical/mechanical
noise, low power quality, and so on.

Similarly to regular PCs, they are composed of a processing unit (CPU), a
memory unit, an input/output interface and a communications module to setup a
network configuration. Their main characteristics include: being equipped with a
real time operating system in order to perform real time computation and decision
making for time critical scenarios (such as industrial), ability to operate continu-
ously without much required maintenance for long periods of time, the possibility
to be easily reprogrammed without having to rewire any electrical/mechanical
components since the control operation is handled via software.

In order to work, a PLC must first be loaded with a program containing the
necessary control procedure to be executed cyclically throughout its operation. This
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program is responsible for interpreting sensor inputs coming from the I/O interface
and sending the calculated output signals to the necessary output modules.

The five most popular and widely supported programming languages for writing
PLC code, as defined by the IEC 61131-3 standard [3], are: ladder logic, function
block diagram, structured text, instruction list, sequential function chart.

Since PLCs possess a communications module, it is possible to link them together
in a network configuration, allowing them to send collected data to other devices
for analysis and visualization, and also receive new task details to commit there
effort to.

RTU

Like PLCs, also RTUs are responsible for monitoring and controlling field devices
within an automated industrial process.

RTUs however, are more sophisticated devices and are mainly used to supervise
and control more numerous and complex tasks, possibly distributed over a large
geographical area. Because of these characteristics, they are usually linked to a
Supervisory Control And Data Acquisition (SCADA) system (which is discussed
later in Section2.1.4).

Normally PLCs, with respect to RTUs, are more suitable for local centralized
control systems rather than distributed ones, as they have been designed to handle
high speed inputs and outputs, which is important for those critical processes
where time is of the essence. RTUs, on the other hand have been designed for
monitoring and controlling distributed systems, therefore they must be capable of
communicating with other control systems, possibly via wireless since they may be
spread out across large areas.

Because of their lower complexity, PLCs seem to be the better option when
it comes to automating simple centralized processes, such as assembly lines or
packaging equipment, as they are cheaper, more efficient, require less maintenance,
have lower energy consumption, and so forth. Vice versa, RTUs are more convenient
when the required functionalities include: possibility to operate remotely, general
monitoring and data exchange capabilities, ability to execute more complex control
algorithms, and so on.

HMI

HMI, as mentioned before, stands for human machine interface.
As the name suggests, a HMI is a device responsible for providing a user interface

to human personnel for displaying information about the status of a monitored
process and devices associated with it, along with the possibility to perform some
authorized basic interactions with the system, such as modifying operating speed
parameters.
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The introduction of these components in industrial environments helped to ease
the burden on human operators, who can now simply keep track of production
progress and machinery status without having to walk the plant floor to manually
assess everything. This results in increased productivity and reduced likely hood
of human error, since all the interesting information is automatically gathered and
neatly displayed in the form of graphs and charts on the HMI screens.

EWS

An engineering workstation, abbreviated as EWS, is a computer connected to
an OT network, that allows authorized personnel to interact with the system,
somewhat similarly to what a HMI does.

The difference between the two lies in the fact that a HMI, is often restricted by
access control and therefore provides only limited functionalities to the user, such
as displaying the status of a monitored process or allowing some basic parameter
reconfiguration. While an EWS, on the other hand, is more than a simple graphical
interface, as it typically possesses: a wider view of the system as a whole, sensitive
design documentation regarding the plant configuration and operation, necessary
tools that allow to configure and update the control equipment (PLCs, RTUs,
servers, and the like) responsible for driving the overall plant operation.

All of the previously stated resources contribute to make an EWS a higher valued
asset within an OT system with respect to a HMI. Therefore they require more
attention to cybersecurity even though the typical attack vectors used to compromise
them are not much different from the ones of a HMI, since the underlying purpose
they serve is the same.

Historian server

In order to keep track of operational data and compute process statistics, it is
necessary for OT infrastructures to include specialized servers within their networks.

These server are normally called historians, as they serve the purpose of storing
live data received from other devices, typically sensory data gathered by control
devices (e.g. temperature values, actuator speeds, energy consumption, and so on),
and maintaining the history of the plant’s operation. This particularly increases
the overall efficiency of the processes controlled by the system, as it is possible
to analyse the data collected over a large period of time and use it to produce
useful statistics that could reveal flaws and provide hints about what needs to be
improved to reduce cost and maximise productivity.

The historian can also be used to keep a log of system events such as user
interactions with the system and system alarms in order to provide security auditing
features which are fundamental for detecting system anomalies and potential threats.
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Control server

A control server is a network component responsible for providing the supervisory
and control software necessary for monitoring and coordinating the lower level
control devices of an OT infrastructure. It is the glue of the system that allows all
other previously stated components to communicate seamlessly by providing the
following functionalities:

• Control and automation: it manages the automation and control of indus-
trial processes by coordinating and dispatching tasks to the lower level control
stations which are handled by PLCs/RTUs.

• Data collection and storage: it collects system data from PLCs/RTUs
regarding field data obtained from I/O devices, such as temperature and
pressure values coming from sensors and actuators, and handles its storage at
the historian. This feature is crucial for conducting subsequent analysis on
the system’s past operation, allowing to detect possible anomalies that could
have occurred and supporting business planning and decision making.

• Real time monitoring, alarms and notifications handling: this func-
tionality is crucial for maintaining safety at all times. It allows to pickup on
possible anomalies and potential threats to the system in real time, notify
personnel about the issues that have been encountered and promptly take
decisions aimed at returning the system to a safe status before resuming
operation.

• System status visualization and reporting: provides a general overview of
the system’s operation by gathering and visually displaying useful information
about the running physical processes (charts, diagrams, and so on) and
automatically generating detailed reports about the OT infrastructure’s status.

• Security and access control: it can also be configured to manage security
parameters to protect the system against possible external or internal threats.
Some of the implemented features could be: setting user privileges, regulating
access control, handling data traffic encryption, maintaining user access logs,
providing authentication mechanisms, and so forth.

• Integration with higher level systems: it is possible for the control server
to communicate also with higher level systems, such as enterprise resource
planning (ERP) or manufacturing execution system (MES). These systems
will be discussed further on in more detail, however it is important to note that
they manage production information at higher and more business oriented
level, so they are to be considered part of the IT world.
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Depending on the chosen architecture and the geographical scope of the system,
there could be several control servers working together and grouped in a hierarchy.

IED

The acronym IED stands for Intelligent Electronic Device. This term is used to
represent I/O devices that directly integrate control, supervisory, and communica-
tion functionalities without necessarily having to rely on a PLC/RTU to handle
them, as they are capable of directly interacting with the control server.

The introduction of these smart components can reduce cost and boost efficiency
in an OT system, as more computational power is embedded into edge devices,
thus promoting independence among system components. This an example of how
the IoT paradigm influenced the world OT and industrial automation.

2.1.4 Architecture of an OT network
Depending on the requirements and scope of the system looking to integrate OT
into its functioning, there are several available options to choose from in order to
select the most suitable architecture for the particular case at hand.

The main factors that help design and discriminate among the different possibil-
ities are:

• Safety: relates to how the system detects and reacts to the occurrence of
hazardous conditions; most times human oversight proves to be essential for
maintaining safety during operation.

• Control timing requirements: groups the different time related require-
ments for process automation, such as high speed, consistency, synchronization,
regularity; all of which are of fundamental importance for the safe execution
of the assigned process.

• Geographic distribution: defines the physical scope of the system, which
can range from a small local process to a distributed, large system like an
electric power grid.

• Hierarchy: describes the level of aggregation of a system consisting of multiple
locations.

• Control complexity: specifies the level of complexity that must be tackled
by the system in order to meet the prescribed goals.

• Availability: defines the up-time requirements that have to be met and
therefore is influenced by the level of redundancy within the system.
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• Impact of failures: defines how the system should cope with failures de-
pending on the impact degree caused by the anomaly.

Based on these factors, the architectures that are going to be presented in the
following subsections are: SCADA (Supervisory Control And Data Acquisition),
DCS (Distributed Control Systems), IIoT (Industrial Intenet of Things). The main
focus will be on SCADA since it is the architecture that has been considered in
the case study.

SCADA

SCADA stands for Supervisory Control And Data Acquisition.
The goal of SCADA is to collect and display operational data coming from

distributed control stations managed by PLCs/RTUs responsible for locally con-
trolling the physical processes that make up an OT system, so that an operator can
easily monitor and control the operation of the entire system from a centralized
location.

Normally SCADA is used to manage geographically dispersed systems consisting
of several field stations covering wide areas, such as oil and natural gas pipelines,
water distribution, railways and other types of public transportation, and so on. For
these mentioned infrastructures it is of the utmost importance to have a centralized
control location from which it is possible to get a global overview of the system,
since failures in one field station could compromise the functioning of all the others.

As can be seen in the general SCADA architecture depicted in Figure 2.2, the
control centre is configured as a local area network (LAN) consisting of a control
server, a HMI, a EWS a data historian and the gateway communication routers
necessary to communicate with the field stations.

As mentioned in Section 2.1.3, the control server is the brain of the SCADA
system, as it is responsible for all of the supervisory tasks of the system, such as
collecting and logging data from field sites, triggering control actions based on
occurring events and parameter ranges in field sites, handling alarm procedures,
displaying information to HMIs and providing support for analysis and reporting.

Because of the geographic nature of these systems, long range communication
mediums must be supported to allow the transmission and reception of data between
the field stations and the control centres, and also to support remote access to
field sites in order to perform remote diagnostics and repair. Also because of
the criticality of the processes that these infrastructures typically control, it is of
fundamental importance to have some form of redundancy to ensure the availability
of the system at all times.

In Figure 2.2, it is possible to see that four different types of long range commu-
nication are supported, such as wide area network (WAN), satellite communication,
radio/cellular, and switched telephone/power line.
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The field sites consist of sensors and actuators monitored and controlled by PLCs
or RTUs which communicate with the control server through their communications
module.

Typically field sites also offer remote access capabilities to operators in order to
allow them to run system diagnostics and repair operations when needed.

It also possible for a field site to have IEDs which are capable of directly
communicating with the control server and have embedded control functionalities,
therefore the presence of a RTU/PLC to locally control the process is not stricly
required in these cases.

Figure 2.2: Standard SCADA architecture taken from the NIST guide for OT [2]

Depending on its size, the system could employ a number of control servers
organized in a hierarchy, in order to ease the load on the central hub and increase
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management efficiency by allowing the different nodes to work as independently as
possible, as shown in Figure 2.3.

Figure 2.3: SCADA with multiple control servers taken from the NIST guide for
OT [2]

DCS

Distributed control systems, abbreviated by the acronym DCS, is a control architec-
ture typically used for controlling a production system that is localized within the
same geographical region, as opposed to SCADA. Some examples of where a DCS
could be found would be: oil refineries, automotive production, pharmaceutical
processing, and so on.
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As can be seen in Figure 2.4, a DCS consists of a supervisory level composed of
control servers, EWSs, data historians, and a field level composed of controllers
(such as PLCs), sensors, actuators, and HMIs.

The supervisory level is responsible for supervising the various distributed field
station by selecting set points and collecting data from the controllers. It hosts a
historian for storing the collected field data, a control server which communicates
directly with the field controllers and monitors and controls their behaviour, an
EWS for allowing operators to interact and reconfigure control parameters of
the control server, and a general console for displaying information to the plant
operators.

The field level is split into several field station, each responsible for controlling
a specific process. Each station is locally managed by a controller, which could
be a generic PLC but could also be a more capable controller, specifically built
and tuned for handling the task it has been assigned to (in Figure 2.4 there are
three stations, one is controlled by a PLC, while the other two are controlled by
specific controllers). These controllers operate in either feedback or feed-forward
control loops, by receiving input signals from sensors and computing output signals
to send to the actuators regulating the physical processes.

It is possible for field station devices, such as HMIs, sensors, actuators, remote
access computers, to be connected to the corresponding controller through a field
bus rather than having to rely on a point to point connection. This type of bus
connection allows for more efficient communication, as it avoids routing back every
control signal through the controller, however it requires support for specific bus
protocols which is discussed later in Section 2.1.5 .

In modern systems, DCS are typically interfaced also with the enterprise network
in order to provide a view of the lower level production status to the higher level
business operation infrastructure. In Figure 2.4 this corresponds to the top layer
which hosts various IT devices such as application servers, printers, workstations,
and connects to the management information system (MIS) and enterprise resource
planning (ERP) systems, which provide support for business decision making
through automation and real time data analysis.

IIoT

Since nowadays IT and OT are converging ever more, there is no reason not to
benefit from solutions that have been developed for their counterpart.

The acronym IIoT stands for industrial internet of things, and it refers to the
attempt to deploy the classical internet of things paradigm aimed at IT scenarios
to OT environments. This consists in introducing smart devices that can harness
internet connectivity in order to enhance industrial processes.

The standard architecture for IIoT is the one depicted in Figure 2.5. It is based
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Figure 2.4: Standard DCS architecture example taken from the NIST guide for
OT [2]

on a three tier model consisting of an edge tier, a platform tier, and an enterprise
tier. This subdivision into tiers allows to separate the processing of data into
different levels, from the lower level data generated from the edge devices (sensors,
actuators, and so forth), to the higher level data concerning enterprise specific
production planning and business decisions. This provides greater modularity
and lower coupling within the system, which results in increased efficiency and
scalability, therefore allowing to move towards a distributed system that can exploit
the cloud to provide enhanced data analytics capabilities.

The enterprise tier provides an interface for end users and supports domain
specific applications for decision making. It is responsible for receiving data and
sending control commands to the underlying tiers.

The platform tier’s main job is to act as an intermediate step between the
enterprise tier and the edge tier. This is achieved by providing non domain specific
services for processing data coming from other tiers, forwarding control commands
to the edge tier, and managing devices and assets.

The connectivity between the enterprise tier and the platform tier is managed by
the service network, which could take the form of a virtual private network, whose
goal is to allow the authorized domain applications to access the functionalities
provided by the services hosted by the platform tier.
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Last but not least is the edge tier, which is responsible for collecting data from
the single devices (sensors, actuators, and the like) which it can communicate with
through the proximity network. This data can be either processed at the edge level
itself or forwarded to the superior tiers.

The advantage of having an edge tier is that rather than only collecting and
forwarding data for future processing, it could be used to directly manage and control
the underlying edge devices, therefore effectively decentralizing the computing
infrastructure and consequently improving overall speed and efficiency.

Figure 2.5: Standard IIoT architecture model taken from the NIST guide for OT
[2]

2.1.5 Commonly used protocols
When it comes to networking, OT and IT have developed different standards to rely
upon over the course of their history, since initially there was never no intention
of combining them together. With regards to this, the protocols that have been
deployed in OT networks are specifically tailored to properly handle the needs that
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OT scenarios typically entail. Therefore they substantially differ from the common
protocols used in IT infrastructures.

Some of the most commonly used protocols in the context of industrial automa-
tion are: OPC-UA, MODBUS, PROFIBUS/PROFINET.

OPC-UA

OPC-UA stands for Open Platform Communication Unified Architecture.
It consists in an open source, platform independent standard developed by the

OPC foundation and used for communication within industrial networks.
A complete dissertation on this protocol is given by [4]. However, for the sake of

brevity and simplicity, it can be summarized as a service oriented, application layer
protocol commonly deployed in OT environments in order to support horizontal
communication between PLCs, but also vertical between PLCs and control servers
or data aggregation servers.

OPC-UA supports both a client server communication model, based on either
TCP/IP or HTTPS for the transportation of data, and a publisher subscriber
communication model, compatible with protocols such as MQTT.

A common place to find this protocol used in client server mode would be within
SCADA architectures. In these scenarios, the PLCs act as OPC servers allowing
the control servers, which act as clients, to request field data or to configure set
points for the controlled processes.

Since its release in 2006, OPC-UA has undergone several updates, some of
which include the improvement of security features by adding support for data
authentication, confidentiality, and integrity.

MODBUS

As described in [5], MODBUS is an old protocol developed by Modicon in the 1970s
for supporting point to point communcation between their PLCs. Since then, due
to the popularity its simplicity and popularity, MODBUS has been openly released
and has become a standard for PLC communication in the industrial scene.

As for OPC-UA, it is mainly used for communication between PLCs and
superviosory computers. It is an application layer protocol that works in a client
server fashion, however it presents different specifications based on the underlying
transport protocol in use. These specification are the following: Modbus RTU,
which uses a simple binary representation for data, including basic integrity features,
and operates over serial bus connections in a master slave mode; Modbus TCP/IP,
which reaps the benefits of TCP/IP protocol and is typically used when speed and
long range communication are of the essence, however as a drawback adds more
complexity and overhead to the process.
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From a security stand point, seen as it is a much older protocol compared to the
previously described OPC-UA, MODBUS does not protect against unauthorized
commands.

PROFIBUS/PROFINET

As described in [6], PROFIBUS consists of a serial bus protocol. In OT systems, it
is mainly used for the field level communication between PLC controllers and field
devices such as sensors and actuators, all connected in bus formation.

According to the system requirements, it is possible to choose between two
different specifications of PROFIBUS, being: Profibus DP and Profibus PA. The
first stands for decentralized peripherals, and is to be used when speed is of the
essence. While the second stands for process automation, and is mainly concerned
with maintaining safety of operation in hazardous environments at the cost of
transmission speed.

PROFINET, on the other hand, is an ethernet based communication protocol
that leverages the advantages of ethernet and TCP/IP protocols, allowing for
easy integration of both factory and process automation, including higher-speed
applications and more complex setups.

2.2 Security in OT
Cybersecurity over the past decades had never been given the importance it truly
deserved among the fields of computer sciences. However, nowadays things are
changing and the importance of cybersecurity has grown to everyone’s attention.

Especially over the last five years, due to unpleasant events, technology and
internet connectivity have become crucial for the regular unfolding of everyday life,
impacting all fields, from social to health and work. All of these circumstances
served to highlight the shortcomings of the current state of cybersecurity in a
variety of different fields.

One of the most impacted fields, lacking the most in terms of cybersecurity,
turns out to be non other than OT. This should be extremely worrying given the
role it plays in the management of critical processes. If a malicious attacker were
to somehow gain control of one of these systems, the damage he could cause could
be incalculable.

The main reason behind these security related issues in OT is the fact that for
years these systems have been kept isolated from the internet, relying on the so
called air gap as the primary (and in some cases the only) form of security put in
place to defend themselves from threats. This form of security does indeed narrow
down the attack surface by eliminating the possibility of external attacks originating
from outside the local network infrastructure. However it still is not enough to
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guarantee the necessary security standards, as it does not provide protection against
insider threats, which in the last couple of years have affected more than 60% of
companies globally.

Now that also these type of systems are being connected to the internet, in order
to provide support for remote operation, data analytics and remote diagnostics, the
main defence mechanism they relied upon, being the air gap, is gone. Resulting in
the exposure of all the internal security issues to the public internet.

This is a perfect example of how one of the core principles of cybersecurity,
being defense in depth, has not been applied properly.

The defense in depth principle specifies how security must be structured on
multiple layers so that if one line of defense were to fail there would still be other
ones to fallback on.

2.2.1 Security priorities in OT versus IT systems
Even though OT and IT are converging, they still present different characteristics,
given the diversity of their nature.

The first is built specifically for the management and control of physical processes,
while the second focuses more on providing data oriented functionalities such as
communication and analysis.

Since OT and IT priorities differ, also cybersecurity strategies for the two must
differ, as they should be tailored to the corresponding environmental properties.

As stated in [2] the main properties around which security must be built for OT
scenarios are:

• Timeliness and performance requirements: typically OT systems cannot
handle time delay and jitter, as most of the processes they control are time
critical and therefore require real-time responsiveness in order to enforce
deterministic behaviour. From a cybersecurity standpoint this requirement
might rule out the application of solutions that could introduce some sort of
overhead, such as traffic encryption.

• Availability requirements: availability is another important characteristic
of OT systems, as they are responsible for running important processes that
cannot afford downtime and must therefore be available at all times. This
normally entails different forms of redundancy to maintain operation in case
of components becoming unavailable. Due to this requirement, cybersecurity
solutions must be exhaustively tested before deployment, as it is not possible
to interrupt the system’s operation every time a security update needs to take
place, or when an accident happens, on the contrary to what happens in IT.
It is although still possible to perform security updates during the lifetime of
the system, but they must happen during previously planned periods when it
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is alright to stop the system’s operation, therefore they cannot be scheduled
frequently.

• Risk management requirements: arguably the most important concern
of OT is safety as opposed to IT which is more concerned with maintaining
confidentiality and integrity of data. Cybersecurity solutions must therefore
focus on maintaining safety at all times by implementing measures such as
proper access control, least privilege, adequate network segmentation, safety
shutdown mechanisms, alarm notification system.

• Communications: even though nowadays OT systems are becoming more
compatible with common IT protocols such as ethernet/IP, they still rely on
different ad-hoc protocols some of which could even be proprietary. These
type of protocols did not get the same focus on security improvement that
their IT counterparts did, therefore they could present several potentially
exploitable vulnerabilities.

• Managed support: most modern day IT systems make use of third party
software to provide different functionalities (e.g. online payment processing).
In OT however, many systems are supported by a single vendor, not allowing
for any third party solutions to be used without breaking prior licenses and
service agreements.

• Component lifetime: in contrast to IT technology, in which components
typically last for short periods of time (about 4-5 years) due to the rapid
evolution characterizing this branch of technology, components of an OT
system are built to last for longer time spans (up to 15 years) allowing
for prolonged operation before having to block any controlled processes for
hardware upgrades. This point also plays a part in security, as it requires a lot
of care and attention in selecting good hardware equipment and ensuring they
meet the necessary security standards before including them in the operation
cycle.

• Component location: as opposed to IT components, it is common to find OT
components hosted in remote facilities, which are difficult to reach physically
by human personnel due to the nature of the processes they control. Therefore
security measures must also address this characteristic by providing alternative
ways to react or reach these devices in a secure way in case something goes
wrong.

2.2.2 MITRE ATT&CK framework for ICS threats
In addition to the previously highlighted properties, which greatly restrict the
ability of OT systems to adopt the same security measures of their IT counterparts,
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the main concerns with the current state of security in this field of application stem
from the low level of understanding shown by many network administrators when
configuring these systems. It is not uncommon in fact to find real world scenarios
for which no sort of access control or segmentation has been put in place, allowing
anyone with basic access to any machine (e.g. wifi printer) in the network, to reach
critical control device without proper authorization. In even worse cases, it has
been possible to find ip addresses of PLCs publicly exposed to the internet and
accessible through their hosted web portal service by simply reusing the vendor’s
provided default credentials. It is therefore needless to say that the best way to
start improving security in OT environments, would be to educate the companies
on the possible risks that could be encountered, and the best practices to adopt
in order to mitigate them. Because the chances are that most of these systems
would not even require a big financial investment to achieve an acceptable level of
security.

In regards to the common attacks affecting OT technology, the MITRE ATT&CK
framework for ICS, described in [7], has put a lot of effort into providing a detailed
and organized representation of the common tactics and techniques employed by
these attacks. Tactics represent the goals that each attack action tries to accomplish
within the targeted system. Techniques on the other hand correspond to the actual
steps an attacker could use in order to achieve a tactical goal.

Popular examples of tactics could be the following: code execution, privilege
escalation, lateral movement, data collection, impair process control, and many
others. While techniques could be: exploitation of remote services, network sniffing,
unauthorized command message, adversary in the middle, denial of service, and
many more. From these examples, it is pretty easy to notice how these two
categories correlate between each other. As the code execution tactic code be
achieved by the exploitation of remote services technique, while data collection
could leverage network sniffing, impair process control could be linked to denial of
service, and so on so forth.

Some of these techniques provided by the MITRE ATT&CK framework have
been used to model the types of attacks later described in Chapter 4.

2.2.3 Security assessment process
The process of security validation is the step by step procedure that is carried out
to frame the overall security status of a system, in order to notify the people of
interest about the discovered issues and potential consequences that could happen
if not promptly handled.

This procedure is extremely important when it comes to securing any type of
system. If not performed accurately it could lead to the exposure of the system to
all sorts of threats, some of which could be critical, therefore major care must be
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taken when executing this process.
The main steps that constitute the validation process are:

• Reconnaissance: regards the process of gathering all of the information
about the system (hosts, subnets, protocols, services, vulnerabilities, topology,
asset values, and other useful data) that is needed to conduct the following
steps. This could be achieved for example through passive/active scanning
techniques by making use of popular open source scanning tools such as Nmap
or Nessus. This is the most important part of the process, as all of the
following steps depend on the information gathered during the this phase,
therefore if the produced data weren’t accurate enough many attacks could go
undetected, causing a cascading effect in the rest of the procedure.

• Attack modelling and planning: this point is about constructing a model
for representing and enumerating the potential attacks that could be attempted
by malicious actors to compromise the system by exploiting discovered vulner-
abilities and network configuration.

• Attack validation. concerns selecting and executing the appropriate tasks
to test the actual exploitability of the potential attack paths, modelled at the
previous step, as some may be false positives.

• Attack risk analysis: involves the definition of metrics for expressing the
risk associated with the discovered potential attacks in a measurable way. The
overall risk should take into account metrics describing probabilities of threat
occurrences, asset values, impact in case of failures.

• Mitigation strategy support: indicates how the system should be modified
in order to reduce the risk parameters, calculated at the previous step, so that
they comply with defined acceptable value ranges. The proposed modification
strategies could be of different forms, such as software vulnerability patching,
introduction of firewalls for providing access control and network segmentation,
addition of servers for increasing redundancy and ensuring greater availability,
termination of all non necessary open ports, and so on.

• Reporting: revolves around the production of a human readable report
detailing all the information generated in the previous steps.

In order to automate this process, suitable models should be defined for struc-
turing all of the required data so that it can be represented in a standard way,
allowing it to be understood and processed automatically by the various modules
responsible for managing the previously listed steps.
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2.2.4 Famous attacks against OT

Over the last decade the number of attempts to attack OT systems has grown
exponentially. The low security measures combined with the great potential impact
of a threat occurrence greatly appeal to malicious attackers seeking anything from
financial gain to physical disruption fueled by geopolitical motives.

Some attacks against OT systems stood out in particular, as they helped to
raise awareness about the gaps and shortcomings in the current state of security
for these systems, and how important it is to address these issues given the huge
impact that some of these attacks had.

Following will be a brief overview of a two of the most famous attacks that
shook the world of OT at its core.

Stuxnet

Stuxnet is widely regarded as one of the most famous examples of successful attacks
against SCADA driven infrastructures. It has been the focus of numerous works
such as [8], [9], [10], [11] to name a few.

As described by these works, the Stuxnet attack consisted of a worm crafted
with the purpose of disrupting the standard functioning of centrifuges responsible
for regulating the process of uranium enrichment in a nuclear power plant located
in Iran.

The malware was discovered in 2010 and was subsequently classified as an
advanced persistent threat, due to its capability of hiding and replicating itself to
other connected devices.

The reason it became famous is because it was the first major attack against
critical infrastructures, showcasing how cyber attacks could also affect physical
systems and deal enormous amounts of damage.

The worm exploited four zero day vulnerabilities and made use of two stolen
public key certificates in order to target Windows systems to spread through the
network without being detected while meanwhile searching for vulnerable SCADA
software (WinCC, Siemens PCS 7, STEP 7) which could be exploited to compromise
Siemens S7 PLCs responsible for controlling the centrifuges.

The initial vector used to deliver the payload was likely a compromised USB flash
drive, which demonstrated how air-gapped systems could be easily bypassed and
how the lack of proper defensive measures could lead to catastrophic consequences.

Due to the high degree of complexity demonstrated by Stuxnet, and to the
geopolitical context, its development has been attributed to the USA secret services,
highlighting how cybersecurity could play an important role in matters of national
interest.
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Triton

Another attack that has been widely covered since its appearance is Triton [12].
What made Triton stand out is the fact that it was the first attack to target

safety instrumented systems (SIS1).
The attack was carried out in the summer of 2017 and the intended victim was

a petrochemical plant located in Saudi Arabia.
The perpetrators of the attack were able to gain initial access to the IT network of

the company by leveraging easily detectable vulnerabilities. Thanks to this foothold,
they were then able to pivot over to the OT network controlling the plant. From
there they managed to reach an engineering workstation of the SIS and through
social engineering they had an operator download a malicious executable file to
the machine. Once executed, the malware would exploit a zero day vulnerability of
Triconex controllers (PLCs) responsible for the SIS, allowing to upload arbitrary
programs to the memory of these devices.

Fortunately, following an attempt to upload malicious programs to the controllers,
for some unknown reason, the SIS system went into shutdown and the presence
of the malware was discovered before any real damage could take place. If this
had not happened the consequences of the attack could have been catastrophic for
human and environmental safety.

The key takeaways from this event regard the security of SIS systems, and
also the problems brought on by the convergence of IT and OT systems. In the
discussed case in fact, the SIS system was reachable from the OT control network,
which in turn was connected to the IT network accessible from the outside. This
by no means should have been possible and it represents the main reason why
SIS systems should run on physically separated networks. All it took was some
common IT vulnerabilities and a likely misconfigured firewall to grant external
attackers the power to cause incalculable damage.

2.2.5 Lessons learned
As discussed in Section 2.2.2 and demonstrated by the real world attacks discussed
in Section 2.2.4, the most common problems affecting OT scenarios consist in a
combination of misconfigurations made by network administrators and low security
support for the vulnerable protocols and devices common to this field.

In order to help companies to identify and deal with the security issues exposed
by their systems in a complete and deterministic manner, a standard tool for

1SIS are systems charged with the task of detecting and preventing the occurrence of mal-
functions in the operation of regular OT control systems. They are crucial for ensuring safety in
industrial environments and therefore they have low to zero tolerance for failures.
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automating the security assessment steps described in Section 2.2.3 would be of
great benefit. Such a solution would allow network administrators to reliably
protect their systems in the hope that events such as the ones described previously
would not happen again.

The following chapters will address the steps that this work took, in the scope of
the company project mentioned in the introduction, to get a step closer to realising
a fully automated solution for security assessment in OT infrastructures. And in
doing so, it will also analyse relevant works available in the literature.
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Chapter 3

An automated solution for
security validation of OT
infrastructures

Still to this day, their is a lot of human effort that goes into the cybersecurity
assessment of networked infrastructures, as the complexity of the task makes it
difficult to create fully automated solutions. This manual procedure has proven to
be costly and time consuming, as it requires good technical expertise and never
the less is still subject to errors due to its reliance on the human eye.

Over the years, several tools have been developed to automate certain steps of
the security assessment process of a system, such as network vulnerability scanners,
and exploit auxiliary modules. Most of them have been developed for IT scenarios
but can now find themselves to be useful also in OT scenarios, because of the
convergence that is happening between the two. Although the usage of such tools
greatly improves the efficiency of the overall assessment process, at the moment
there still are not any standard solutions capable of performing a full assessment
whilst requiring minimum human expertise and manual intervention, especially
in regards to OT scenarios. Hence the need for an all-in-one solution capable of
performing a complete and automatic assessment of OT infrastructures from start
to finish, resulting in the reduction of overall cost and effort that is required by the
manual procedure.

3.1 Context of the project and scope of this work
The global context, within which the project collocates itself, is the creation
of a standard solution for automating the process of security validation of OT
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infrastructures, therefore addressing the problem highlighted in the introduction of
this chapter.

In order to achieve this, the proposed tool must be capable of performing the
main security assessment steps described in Section 2.2.3. All of which should
happen in a continuous update fashion, allowing to adapt when changes take place.

From a physical stand point the proposed tool is a plug-and-play device that
once connected to a network should be able to dynamically assess its security
without the need for prior knowledge (black box approach). However, if more
detailed results wish to be produced, it could be possible for administrators to
provide the tool with some additional information about the network (grey box
approach).

The general workflow of the project is given in Figure 3.1.
As can be seen in the figure, the proposed tool relies on five engines in order to

carry out a complete security assessment process:

• Reconnaissance engine: is the engine responsible for scanning the network
and producing a detailed description containing information such as device con-
figurations, network configuration, network topology, exposed vulnerabilities,
and access restrictions.

• Formal verification engine: is the engine responsible for computing possible
attack paths and generating a validation task execution plan based on the
information gathered by the reconnaissance engine.

• Task execution engine: is the engine responsible for running the validation
tasks selected by the formal verification engine, in order to detect which
discovered attack paths are actually exploitable and which are false positives.
The output of this step is the set of the refined attack paths obtained by
eliminating the false positives.

• Risk assessment engine: this engine is responsible for ranking the attack
paths, obtained by the combined effort of the previous engines, based on risk
analysis metrics and formulas.

• Reporting engine: is the engine responsible for summarizing all the useful
information generated during the whole process and use it to automatically
generate a complete report about the overall status of security within the
system under evaluation.

With respect to this architecture, this work focuses on the design and develop-
ment of a prototype for the formal verification engine.
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Figure 3.1: Workflow of the full company project

3.2 Need for attack graphs
Typically, in the process of security assessment, the modelling of potential attacks
that could compromise the security of a networked system is handled by means
of automatic vulnerability scanners, which provide detailed reports containing
information regarding the presence of vulnerabilities along with possible mitigation
strategies.

These tools however, tend to be mostly host centered, as they provide host
specific information in isolation from the global system, therefore they do not
capture the relationships that exist between different vulnerabilities, which is a very
important point when it comes to attack modelling. In fact, on many occasions it is
not possible to simply patch every detected vulnerability on each host due to cost
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and operational constraints, therefore it is essential to have a clear understanding
of how the identified issues relate to each other when choosing the mitigation
strategies to apply. As a matter of fact, most successful attacks against critical
assets come from chaining together multiple elementary exploits across multiple
hosts in what is called a multi-stage, multi-host attack.

In order to tackle this problem, the concept of attack graph has been introduced
as a possible solution for accurately representing in a standardized way the inter-
dependencies that exist between host vulnerabilities and other network information
(topology, security policy, and the like).

Through attack graphs it is possible to visually represent, in a concise and
exhaustive manner, all of the paths an attacker could take to compromise a
target system. And because of all the research that has been done in regards to
incorporating automation in this field, the use of attack graphs seemed to be the
best option for the job.

3.2.1 History of attack graphs

Since its introduction in 1998, the concept of the attack graph has garnered
significant attention from researchers, leading to considerable research efforts in
developing both the theory and practical applications [13]. As a matter of fact, the
literature presents numerous studies and surveys on various attack graph generation
tools.

In [14], the authors reviewed and compared several academic and commercial
tools for attack graph generation and visualization.

In [15, 16, 17, 18], researchers provided a comprehensive overview of attack
graph generation and analysis methodologies by summarizing different approaches
to attack modelling, including attack graphs and attack trees.

In their manuscript [19], Hong et al. analyzed the state of graphical security
models across four phases: generation, representation, evaluation, and modification.

More recently, in this research work [20], the authors examined several unknown
vulnerability risk assessments using directed graph models and categorized their
security metrics.

In the meantime, in [21] the authors conducted empirical research on over 180
attack graphs and attack trees, analyzing their visual syntax for representing cyber
attacks.

Over the years, different types of attack graphs have been proposed, the most
common being: attack trees, state graphs, exploit dependency graphs, and logical
attack graphs.
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Attack trees

Attack trees, abbreviated with AT, have been introduced in 1999 by Schneier in
[22].

As can be seen in Figure 3.2, attack trees consist of a set of nodes linked in a
tree like configuration. The nodes of the tree represent the attacker’s actions, with
the root node being the main goal of the attack, and the others being the steps the
attacker could take in order to reach the root node.

Even though attack trees do not model all of the possible states of a system,
their size still relies upon the number of possible events that could happen within
the system, making them a poorly scalable option.

Figure 3.2: Example of attack tree taken from [22]

State graphs

As implied by the "state" term, a state graph models all of the possible states
of a networked system, represented as nodes in the graph, along with the all
of the possible attacker actions that trigger state transitions within the system,
represented as edges in the graph, as can be seen in Figure 3.3.

Based on this concept, Sheyner presented the Attack Graph Toolkit [23] in 2002,
an attack graph generation tool based on the NuSMV symbolic model checker.
However, the main issue with this solution consisted in poor scalability caused
by the state space explosion phenomenon, which characterizes state graphs, as
addressed by [24].
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Since then, several studies have tried to tackle this problem in order to make
state graphs a viable option for modelling real world attack scenarios.

In [25], an assumption was made stating that preconditions of an attack could
not be invalidated by the execution of another attack. This reduced the complexity
required to generate the graphs from exponential to polynomial.

Figure 3.3: Example of state graph

Exploit dependency graphs

Exploit dependency graphs, abbreviated as EDG, were introduced to model attack
scenarios as a sequence of exploits.

As showcased by [26], in this type of structure each node represents either an
exploit that an attacker can execute, or an exploit precondition, and each edge
expresses the dependency that exists among the exploit nodes. In other words,
each exploit node depends on its parent nodes. So in order to successfully execute
an exploit, it is necessary that at least one path of parent exploit nodes leading to
it has been correctly executed.

In Figure 3.4, it is possible to notice that the nodes of the graph representing the
actual exploits themselves, are enclosed in circles, e.g. sshd_bof(0,1), corresponding
to a buffer overflow exposed by ssh which results in the attacker gaining user
privileges on machine 1. While the open nodes are the preconditions required by
the exploits, e.g. sshd(0,1), corresponding to the presence of an accessible ssh
channel from machine 1 to machine 2.

The size of attack graphs based on EDG is quadratic in the number of exploits,
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however the complexity required to enumerate all possible exploit combinations is
exponential.

In 2005 [27], presented the TVA tool, which relies on EDGs to produce attack
graphs. In order to effectively reduce the complexity and size of the produced
graphs, the TVA tool generates all the attack paths starting from a predefined
attack goal and working its way backwards. In doing so, only the exploits that are
required to reach the prescribed attack goal are considered during the computation,
as opposed to the forward dependency graph generation which blindly combines
the exploits.

Figure 3.4: Example of exploit dependency graph
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Logical attack graphs

Logical attack graphs, LAG in short, were introduced in 2006 by [28] as a means
to represent the logical dependencies among attack goals and configurations.

In order to achieve this, LAGs consist of three types of node: primitive facts,
derived facts, and rules.

Primitive facts are the nodes responsible for describing network assets and their
configuration, so therefore include information about hosts, protocols, services,
exposed vulnerabilities, topology, and the like.

Derived facts describe the information obtained via the application of a rule,
and can therefore represent attack goals and intermediate steps needed to reach
them.

As for rule nodes, they are the link between the different fact nodes, and represent
the reasoning logic that drives the construction of the graph. They represent the
actions that, given a certain input, described by a set of primitive and/or derived
facts, produce a corresponding output, described as a single derived fact.

Attacker actions and exploits are modelled by means of rule nodes. Through
these type of nodes it is possible to construct attack graphs that are polynomial in
size with respect to the network being analysed.

An example graph is given later on in Figure 3.7.

3.3 MulVAL rule based inference engine
The authors of [29] compare all the most popular solutions for attack graph
generation based on the different attack graph types described in Section 3.2.1,
and also some others, and report them in Table 3.1. Among the available options,
MulVAL is the one that has been selected for this work, as it has the benefits
of being open source, easily extendable, provides good enough scalability, and
has been referenced by many papers making it one of the most popular options
according to the research community.

MulVAL is an open source multi-host multi-stage vulnerability analysis frame-
work, presented by Ou et al. in [30] with the goal of modelling the interaction
between network configurations and exposed vulnerabilities in order to produce a
detailed LAG displaying the main security concerns that system administrators
should worry about. At its core it consists of a rule inference engine, that runs in a
Prolog environment as shown in Figure 3.5, which takes as input a set of primitive
facts describing the target network and computes a set of derived facts through
the application of a set of interaction rules. In order to perform this computation,
the MulVAL framework leverages Datalog as modelling language for defining the
elementary components of a LAG, being primitive facts, derived facts and rules.
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Figure 3.5: MulVAL framework from [30]

3.3.1 Datalog modelling language
Datalog is a declarative logic programming language that is considered a subset
of the Prolog programming language. As opposed to Prolog, Datalog relies on a
bottom-up approach which turns out to be particularly useful for dealing with
deductive databases and applies well to networking scenarios. Datalog consists of
facts and rules. Facts are simple atomic statements that hold true and are used to
symbolically describe the properties of the system being analysed. Rules on the
other hand define how new facts can be derived as a logical consequence from other
facts. The syntax used to define facts is the following:

parent(mario, luca).

This fact specifies a parent relationship and is read as "mario is a parent of luca".
As for rules they are defined in the following way:

sibling(PersonA, PersonB):-
parent(Parent, PersonA).
parent(Parent, PersonB).

Which is read as: "if Parent is a parent of PersonA and Parent is a parent of
PersonB, then PersonA is a sibling of PersonB".

All properties that start with a lowercase letter are considered constants, while
the ones starting with uppercase letters are variables.

In the previous case the rule is defined with uppercase properties because it
applies to any two people that have the any same parent.

In MulVAL, Datalog is used to model all of the input described in Section
3.3.2. This input gets loaded into the XSB environment [31], which supports
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Name Developers Accessible AG Type Scalability Intuitive Level Year No. of
References

Attack
Graph
Toolkit

Carnegie Mellon
University Open source SG Poor,

Exponential Fair 2005 52

MulVAL Kansas State
University Open source LAG O(N2) - O(N3) Good 2005 938

TVA George Mason
University

Not open
source,
difficult to
obtain

EDG O(N3) Good 2005 578

SkyBox
View

SkyBox Security,
Inc.

Commercial
Software Unknown O(N3) Good 2005 39

NetSPA
Massachusetts
Institute of
Technology

Not open
source,
difficult to
obtain

MPAG O(NLgN) Fair 2006 493

SeaMonster

Norwegian Univ.
of Science and
Technology and
SINTEF research
foundation

Open source AT Polynomial Fair 2008 59

Cauldron
PROINFO
Company, George
Mason University

Commercial
Software EDG O(N3) Good 2011 150

FireMon

FireMon,
Massachusetts
Institute of
Technology

Commercial
Software MPAG O(NlgN) Good 2012 16

CySeMoL
Royal Institute of
Technology
Stockholm, Sweden

Not open
source,
difficult to
obtain

Unknown Polynomial Not
Provided 2013 196

CyGraph MITRE

Not open
source,
difficult to
obtain

Unknown Scales
Well

Very
Good 2016 94

SAGE

Delft University of
Technology,
Netherlands,
Rochester Institute
of Technology, US

Open source Alert-driven NA Good 2021 8

AttacKG

Zhejiang
University,
National University
of Singapore,
Northwestern
University

Open source CTI-based NA Fair 2021 0

Table 3.1: Summary of various Attack Graph Tools, taken from [29]

tabled execution of Prolog programs. Tabling allows to skip the recomputation
of previously computed facts, making the reasoning process of building an attack
graph much faster. Moreover with tabled execution, the order in which rules are
specified does not affect the end result, therefore providing a declarative style
programming paradigm.
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3.3.2 MulVAL input
As shown in Figure 3.5, in order to carry out its analysis, MulVAL receives as
input information regarding advisories, host configuration, network configuration,
principals, interaction rules, and policy, all of which must be expressed in the
form of Datalog clauses. The main input concerning information about advisories,
host configuration, and network configuration, which accounts for the greater part
of the input data, is gathered by means of network and vulnerability scanners
running independently on different hosts. MulVAL as of itself presents integrated
compatibility with two popular vulnerability scanners, being OVAL [32], and Nessus.
In fact built-in parser functionalities have been put in place by the developers
in order to automatically convert the output of these two scanners to Datalog
primitives.

Advisories

Advisories comprise the vulnerabilities that have been reported from the scanners,
which run independently on each host. As can be seen in Figure 3.5, MulVAL
is integrated with the OVAL scanner [32]. Vulnerabilities are represented by the
following Datalog clauses:

vulExist(webServer, 'CAN-2002-0392', httpd).
vulProperty('CAN-2002-0392', remoteExploit, privilegeEscalation).

The first one specifies the existence of a certain vulnerability with code "CAN-
2002-0392" affecting the https service hosted by the webServer machine. While
the second one defines the exploitability range and consequence properties of the
vulnerability identified by "CAN-2002-0392", which in this case are the possibility
to be exploited remotely and the higher privilege obtained when the vulnerability
is successfully exploited. These clauses are primitive facts that will be used by
MulVAL to derive the final attack graph. Since the default vulnerability scanners
do not provide information about the range and consequence properties linked to
a given CVE identifier, MulVAL is capable of assigning them automatically by
extracting the needed information from the NVD database, which at the time of
developement was still known as the ICAT database as can be seen in Figure 3.5.

Host configuration

Host configuration gathers information regarding each host, such as exposed network
services, local client programs, set uid executables, file paths privileges, exported
network file systems. This data is mapped to the following primitives:

networkService(Host, Program, Protocol, Port, Priv).
clientProgram(Host, Program, Priv).
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setuidProgram(Host, Program, Owner).
filePath(H, Owner, Path).
nfsExport(Server, Path, Access, Client).
nfsMountTable(Client, ClientPath, Server, ServerPath).

This data combined with the network configuration data provides a complete
overview of the system chosen as target of evaluation, therefore the accuracy of
this information is crucial for performing multistage attacks.

Network configuration

Network configuration models everything that has to do with how hosts commu-
nicate with each other. This includes information about network topology and
firewall rules. In order to achieve this in the most simple way possible, MulVAL
relies on the concept of host access control list (hacl). Hacl specifies for each host,
who is able/allowed to reach it, and through which protocol and port.

hacl(SrcHost, DstHost, Protocol, Port).

Through hacl clauses it is possible to model in a simple and effective way the
otherwise complex rules and conditions that influence the reachability of each host,
such as switch and router locations, and firewall rules. Network information can
be either provided manually or by some other automatic tool capable of scanning
topology and accessibility of a system (OVAL does not provide this information).
In the latter case a parser must be put in place to translate the data into the
corresponding Datalog clauses.

Principals

This is where the correspondence between user accounts, hosts, and privilege level is
specified. These bindings are modelled must be provided manually by the system’s
administrator, as scanners are not capable of extracting this information.

hasAccount(admin, dbServer, root).

The example above states that there is an admin user account with root privileges
on the dbServer host. The properties are all lower case because they are constant
strings representing an instantiation of the hasAccount primitive.

Interaction rules

The interaction rules represent the logical steps through which it is possible to derive
new facts from already existing ones. Interaction rules are used by MulVAL to
model the generic attack strategies rather than the single vulnerabilities, therefore
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they do not need to be updated every time a new bug is discovered. MulVAL uses
its own default set of interaction rules in order to produce attack graphs, however
it also allows users to provide custom sets of rules in order to tailor the resulting
output to their liking. The syntax through which interaction rules are expressed is
the one already discussed in Section 3.3.1. The following example is taken from
the default set of rules, and shows how a code execution attack can be inferred.
execCode(Attacker, Host, Priv) :-

vulExists(Host, VulID, Program),
vulProperty(VulID, remoteExploit, privEscalation),
networkService(Host, Program, Protocol, Port, Priv),
netAccess(Attacker, Host, Protocol, Port),
malicious(Attacker).

It is possible to see that a malicious attacker can obtain code execution on a host
with a certain privilege level (which varies depending on the privilege held by the
vulnerable program), if the attacker has network access to a remotely exploitable
service hosted by the target host resulting in privilege escalation.

All in all interaction rules embody one of the most important ingredients of
the whole analysis process, therefore special care must be put into their selection,
especially for non common scenarios such as OT. If they are not designed properly,
some attacks might go undetected, leaving potentially critical system assets exposed
to malicious actors.

Policy

Policies are made up of allow clauses which bind data access to specific users. They
follow a whitelist architecture so everything that is not explicitely permitted is
forbidden.
allow(admin, write, dbUserTables).

The previous is an example of a policy which only allows the admin user to write
data to the user database. As interaction rules and principals, if there are policies
in place, they must be provided by the system administrators.

Attack information

MulVAL also requires information about attacks in order to compute attack graphs.
This information includes initial attacker location and privileges within the target
of evaluation network, and also the list of attack goals to check for. This data is
expressed through the following Datalog clauses.
malicious(attacker).
attackerLocated(ews).
attackGoal(dos(attacker, plc)).
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In the example above the first primitive clause defines a new malicious principal
in the system identified by the attacker symbol. The attackerLocated primitive
states that attacker has access to the ews host. And the attackGoal primitive
instructs MulVAL to check for a possible denial of service attack launched from
the previously defined attacker principal targeting the plc device.

It is very important to specify the attack goals, as they represent the terminating
conditions of the recursive graph building algorithm. And also if not carefully
selected it is possible for some potentially dangerous attacks to go undetected.

3.3.3 MulVAL architecture
A global overview of the file structure is given in Figure 3.6.

As can be seen, MulVAL as a whole is quite a big project, therefore it is made
up of many different modules each working in conjunction with one another, and
due to its size and computational nature, multiple programming languages have
been adopted across the various modules depending on the role of each one within
the overall framework.

Starting from the top layer of the tree and proceeding from left to right, the
first found directory is bin. The bin directory contains all of the compiled binary
executable files corresponding to the source code files contained in the src directory.

Next in the list is the doc directory, which only contains a readme file detailing
the usage of the software.

The first interesting folder to be found is the kb folder. This is where all the
interaction rule files should be stored for usage. Here in fact it is possible to find
also the default rules which are saved in the interaction_rules.P file (.P is the
extension used for identifying Prolog files).

Moving on there is the lib directory, which contains all the external library files
required by MulVAL, such as the mysql-java-connector for interfacing with the
vulnerability database.

The src directory is where all the source code lies. It consists of four subdirecto-
ries: analyzer, attack graph, metrics, and adapter.

The analyzer subdirectory contains the XSB Prolog files for setting up and
running the XSB environment, and actually computing the attack trace.

The attack graph subdirectory contains the code for constructing the graph
data structure from the attack trace produced by the analyzer. This task has been
implemented in C++.

The metrics subdirectory contains the Java coded algorithms for performing
a metrics based analysis on the graph, taking into account information about
vulnerabilities, such as impact, CVSS score, risk probability, and possible others.

The last subdirectory of src is the adapter subdirectory, which contains all of
the Java implemented features for parsing the output of the compatible network
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vulnerability scanners and generating the corresponding primitive Datalog clauses
to then be passed to MulVAL. Among these features there is also a functionality
for retrieving range and consequence properties given a CVE code from a local
vulnerability sql database synched with NVD.

Moving back up a level, there is the testcases directory, which includes a few
test network configurations in Datalog format, ready to be passed to MulVAL as
input.

The last directory that is displayed in Figure 3.6 is the utils directory. This
is where all the utility bash scripts reside, including the graph_gen.sh file, which
is the main command that should be run in order to launch MulVAL from the
command line.

Figure 3.6: MulVAL directory tree
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3.3.4 MulVAL usage
MulVAL is designed to be used from the command line. In order to run it needs
the XSB and dot commands to be already installed on the system and included in
the $PATH environment variable.

XSB, as mentioned before, is a compiled dialect of the Prolog programming
language that allows to execute Prolog programs with the addition of the so called
tabling feature, addressed in Section 3.3.1. This point is very important because
without tabling MulVAL would not be scalable to big network scenarios as the
attack graph generation would take too long to complete.

On the other hand, dot is a file format extension that is used for textually
representing graph structures so that they can be interpreted and rendered by the
GraphViz graph visualization software through the dot command.

In order to run properly it is necessary to define an environment variable called
$MULVALROOT, and to set its value to the absolute path to the root MulVAL
folder shown in Figure 3.6.

Once this configuration is out of the way, it is then possible to launch MulVAL
from the command line by executing the graph_gen.sh bash script in the utils
folder. This program takes as mandatory argument the file (with a .P extension)
containing the Datalog primitives describing all the information discussed in Section
3.3.2.

The set of facts and rules used by MulVAL can be specified through the -r
option followed by the path to the rule file of choice. If the -r option is not specified,
the default interaction rules apply (which are the ones saved in the kb folder shown
in Figure 3.6).

For the output it is also possible to specify the -v option, which produces a pdf
visual representation of the graph through GraphViz.

3.3.5 MulVAL output
After having performed the computation of the attack graph for the given input,
MulVAL proceeds to output the result in several different formats. The main ones
are txt, xml, csv, dot, pdf, and eps. The first four are textual and the latter are
graphical.

In order to textually represent these graphs, information about nodes and their
corresponding connections must be stored. For each node of the graph, the following
information is defined: node id, node label, node type, and metrics.

• Node id: is a unique integer number that identifies the corresponding node
within the graph.

• Node label: is the text associated with a fact or an interaction rule.
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• Node type: specifies whether the node is a LEAF node, which is a node
that has no parents, basically it is a primitive fact node; an AND node, which
identifies rule nodes because by definition a rule applies when all of its input
facts hold true, therefore it represents an and condition; or an OR node, which
identifies derived facts, as they can be reached through different paths among
which it is enough for at least one to hold true.

• Node metrics: represent information about the risk associated with vulnera-
bilities, for example probability coefficients.

An example graph is given in Figure 3.7. The content of each node is reported
in Table 3.2, which also shows how the textual files would store the information
about each node. By inspecting the graph, it is possible to note that MulVAL
utilizes different shaped boxes to represent each node according to its type. Primi-
tive facts, corresponding to LEAF nodes, are enclosed by rectangles, interaction
rules, corresponding to AND nodes, are enclosed by ellipses, and derived facts,
corresponding to OR nodes, are enclosed by diamonds.

Graph edges, on the other hand, are stored as ordered pairs of node ids (source
node followed by destination node), as can be seen in Table 3.3.

For the txt, xml, and dot formats, all the information belonging to nodes and
connections are stored in the same file.

For the csv format on the other hand, the output is divided into two files.
One stores the previously described information about each node, and is called
VERTICES.CSV. While the other stores all the edge connections of the graph as
ordered pairs of node ids, and is called ARCS.CSV.

The pdf and eps formats are used to store the graph in its graphical representation.
They are generated from the dot file (which is a textual representation that can be
interpreted by GraphViz) by GraphViz when the -v option is specified.

ID Label Type Metrics
1 attackerLocated(laptop1) LEAF 1.0
2 hacl(laptop1, webServer, https, 443) LEAF 1.0
3 RULE 6 (Direct network access) AND 1.0
4 networkService(webServer,webPortal,https,443,admin) LEAF 1.0
5 vulExists(webServer,9,webPortal,remoteExp,privEsc) LEAF 1.0
6 netAccess(webServer, https, 443) OR 1.0
7 RULE 2(remote exploit of a server program) AND 0.75
8 execCode(webServer,admin) OR 0.75

Table 3.2: Example of node information
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Source Node ID Destination Node ID
1 3
2 3
3 6
6 7
4 7
5 7
7 8

Table 3.3: Examples of node connections

Figure 3.7: MulVAL attack graph example

3.4 Limitations of MulVAL
Even though MulVAL is the best option for effectively computing attack graphs
in reasonable time, it still presents some limitations. Many of which have been
analysed to some extent by the available literature.

The authors of [33, 34] proposed a set of extended interaction rules for modelling
more complex network scenarios.

In [35, 36], the authors attempted to build an automated interaction rule gener-
ator which is capable of creating new interaction rules by extracting vulnerability
information from the NVD given a CVE code.
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In [37, 38, 39], the authors worked on improving the output of MulVAL by
refining the output graphs with custom data reduction algorithms.

[40, 41] concentrated on improving MulVAL by adding support for risk analysis
through the use of Bayesian models.

[42, 43] proposed a MulVAL based end-to-end framework enhanced by deep
reinforcement learning for identifying the optimal attack paths and performing a
automatic penetration testing on basic networks.

This work focuses mainly on extending MulVAL to support OT environments,
and reducing the complexity of the output attack graphs. Additionally, it also
focuses on another limitation that hasn’t been analysed much so far, which is the
low input compatibility of MulVAL with automated scanning solutions. Each of
the previous limitations is explained in the following subsections.

L1 - Low input interoperability

This limitation stems from the fact that MulVAL’s input is defined in the form of
Datalog facts, as discussed in Section 3.3.2. The problem with this is that most of
the information gathered during network reconnaissance must be manually mapped
to the corresponding Datalog primitives, with the exception of data related to
vulnerabilities obtained from the supported scanners (Nessus, OVAL).

Since in the greater scope of the project the entire security assessment process
must be fully automated, it is necessary for MulVAL’s input to be generated
automatically from the output of the reconnaissance step. In order to face this
issue, a standard input model must be defined along with a custom parser for
mapping the populated data structure to Datalog clauses.

The methodology that has been used for this is the one discussed in Section 4.2.

L2 - Low network modelling capabilities

This limitation addresses the poor network modelling capabilities of MulVAL’s
default interaction rule set, especially when applied to OT scenarios.

When it comes to modelling different attack techniques, and consequently all of
the linked vulnerabilities, MulVAL’s default interaction rule set falls short, as it
only allows to represent issues that are linked to hosts and services.

However in the world of OT, the most commonly exposed vulnerabilities are
the ones linked to network protocols, specifically serial protocols such as Modbus
or even data link protocols such as ARP.

By enriching MulVAL’s default rule set with new interaction rules, it becomes
possible to generate attack graphs that can detect certain types of attacks that
would previously go unnoticed, such as man in the middle attacks, sniffing and
spoofing attacks, all while maintaining compatibility with the default rules. In order
to support this, it is necessary to add new primitive and derived facts for describing
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the network in a more granular way, including information about configured network
protocols, subnets and their various types, and more.

The methodology for this step is discussed later in Section 4.4.

L3 - High attack graph complexity

This other limitation regards the complexity in terms of readability and moreover
general understandability of attack graphs generated by MulVAL. It is in fact quite
easy to notice how quickly the size of the graphs scale with the size of the network.
If on top of that new and more granular facts and rules are considered, the size of
the graph scales even faster.

This constitutes a problem, as an overly complicated graph does not bring any
added value to the assessment, and if a human were to supervise the process it
would not be of any use. Additionally it is important to highlight that most of
the nodes in the graph correspond to transient network information derived by
applying the interaction rules and therefore do not carry useful knowledge about
the actual attack actions an attacker would take.

The methodology steps discussed in Section 4.6, describe how all these unneeded
nodes can be filtered out resulting in a more compact and simplified graph without
the loss of any attack related information.
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Methodology

This chapter presents the main methodology steps that have been taken in this work
to design and build the first prototype of the engine for modelling OT networks,
deducing possible attacks depending on the vulnerabilities and misconfiguations
discovered during the reconnaissance phase (which is not included in the scope of
the work as mentioned in the previous chapters), and selecting the list of validation
tasks to be performed in order to test the feasibility of the detected attacks (also the
execution of the tasks is not included in the scope of the work). The chapter will
start from giving a global overview of the design of the engine to make it easier for
the reader to understand the general architecture of the tool and the relationship
between the various modules. Next it will move on to describe in greater detail the
purpose of each module, highlighting some of the technical choices that were made
during the actual implementation phase.

4.1 Design of the engine
The goal of the engine is to receive as input the full description of the network
that has been selected as target of evaluation, enumerate the possible attack paths
that an attacker could decide to undertake in order to compromise the system, and
select and schedule the most suitable tasks from a collection in order to test the
discovered paths.

As discussed in the Chapter 3, the method that has been chosen for modelling
the possible attack scenarios is the generation of logical attack graphs. Through
these it is possible to represent the information about network configurations and
the relationships between the latter and existing issues, which could range between
specific vulnerabilities linked to CVE ids and simple misconfigurations.

The framework that has been selected as the best option for the job is MulVAL,
as discussed in the previous chapter.
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Figure 4.1: General architecture of the proposed engine
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In regards to the input, a model has been defined for representing in one place
all of the information gathered during reconnaissance in a standard and structured
manner so that it could be easily generated automatically in the future and provide
a simple way to be accessed by the resources requiring it.

From a design point of view, the engine has been split into four distinct modules:

• Parser: this module is responsible for receiving the network description and
translating it into the corresponding set of MulVAL primitives represented as
Datalog clauses, as discussed in the section about MulVAL in the previous
chapter.

• Extended MulVAL: this module is the actual attack graph builder, and
consists of the chosen open source framework MulVAL. This module takes as
input the set of primitives that model the network, generated by the parser
module, joined with the information about the attack goals to check against,
along with the attacker’s supposed location, which are stored in an attack
template file. Additionally it can also receive an interaction rule file containing
the set of rules that wish to be used to derive generic facts and attacks. This
is where the actual extension is applied, by supplying MulVAL with a set of
new interaction rules crafted to model OT scenarios and attacks in greater
detail, allowing to produce more fine grained outputs and detect a wider range
of attacks. From these inputs MulVAL computes the corresponding attack
graph and saves it in different formats, such as graphical and textual.

• Path extractor: this module receives the textual representation of the
attack graph generated by MulVAL, and by applying a pruning algorithm,
transforms it from a logical attack graph into an exploit dependency graph.
This step is important as ultimately the interesting information that needs
to be extracted from the graph is the one concerning vulnerabilities, attacks,
and the dependency relationships that exist among them. Therefore all of
the information regarding network configuration, which accounts for a large
quantity of the graph, is useful initially for computing the attack graph, but
afterwards it can be removed as it already served its purpose. From the new
reduced graph the module then extracts the single attack paths, consisting of
an ordered succession of attacks linked to the corresponding vulnerabilities,
and stores them in an appropriate data structure.

• Task selector: the task selector module, is the one responsible for interpreting
the attack paths produced by the path extractor module, and applying a search
algorithm for selecting the appropriate tasks to execute in order to test each
path. The selection can be done on the basis of parameters such as vulnerable
service versions, vulnerable protocols, CVE codes, exploit types, and so on.
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The output will be a file containing a data structure representing all the
different tests that have been selected for each discovered attack path.

Figure 4.1 visually represents the architecture described above. It is easy to see
how the previously stated modules, which are coloured in light blue, link together,
and also what are the required inputs and produced outputs, which correspond to
the orange files in the image.

4.2 Definition of a network description model
One of the first and most important steps to attend to when trying to automate
almost any kind of process, is the definition of standard models for representing the
input data in a complete and structured way. This is particularly important because
it represents the blueprint of the data that all of the different modules require
throughout their operation. It should therefore describe the common knowledge
base in an easily accessible way, allowing the modules to perform queries and cross
reference data in an efficient manner.

When designing the model it is paramount to keep in mind that the goal is to
allow for data to be generated, represented, and accessed automatically, therefore it
must be structured in a machine readable format. This step of the design addresses
the L1 - Low input interoperability discussed in Section 3.4 by standardizing the
input that will later be parsed and sent to MulVAL.

When it comes to modelling network configurations and its corresponding
security related characteristics, the first step should be to identify the main data of
interest, which in this case corresponds to information regarding hosts, protocols,
topology and vulnerabilities.

The relationships among elements of these categories dictate whether certain
attacks could be carried out successfully or not. In fact, the presence of vulnerabili-
ties is not enough to conclude that a system can be exploited, as said vulnerabilities
might be isolated from the hypothetical attacker.

The proposed model follows a hierarchical structure consisting of a root object
containing an array of subnets, an array of vulnerabilities and an array of data
flows.

The format that has been used to represent this information is JSON, as it is
a popular standard for modelling hierarchical relationships in the form of strings
and allows for easy parsing due to the wide support offered by many programming
languages. However this is only a matter of preference, the most important part
is the actual data structure, which is independent from the underlying modelling
language of use.

An example data structure is provided in Section A.1 of the appendix. In the
future more information could be added to the model if needed but for now only
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the essential data has been considered, as this work is an initial prototype.

Subnet information

Each subnet contains the general information about itself, such as subnet name,
subnet type, which could correspond to ipSubnet, bus, physical, wireless (in the
example referred to in Section A.1 they are all ipSubnet), subnet ip address, subnet
mask, the array of layer 2 protocols in use, and last but not least the array of host
objects which are part of it.

The information about the layer 2 protocols is useful for modelling possible man
in the middle attacks caused by inherent protocol weaknesses.

Host information

The information regarding the single hosts connected to the network is modelled to
include the following data: ip addresses, host names, operating systems, open ports,
running services (local or remote), privilege levels, device name, device vendor.

As can be seen in Section A.1, this information resides inside each host object
contained in the hosts array of each subnet. All of this info will be useful for task
selection and task execution phases, since many exploits rely on this data in order
to be searched or executed.

Topology and access information

In real world case scenarios, attackers usually don’t have access to most of the
devices connected to the target network, and therefore must be able to work with
the few access points they can interact with. This requires them to infiltrate the
network one step at a time, by first compromising the direct entry points and then
pivoting from one machine to the next by exploiting newly exposed vulnerabilities
that previously weren’t reachable due to topology and access restrictions.

If an attacker knew the topology prior to launching an attack, he could pin
point critical assets and plan out the optimal path to reach his goal without having
to go through blind attempts.

Knowledge about topology is therefore fundamental for modelling multistage
attacks, and must be properly represented by the chosen model.

In this work, information about topology has been modelled through an access
control list which is represented as a hacl array in each host object, as can be
seen in Section A.1. This list specifies for the corresponding host, which hosts can
communicate with it, through which protocol and on what port.

For simplicity, it is assumed that all hosts within the same subnet can reach
each other on any port, this is the reason why all the hacl arrays are empty, as
all connections are implicitly modelled in this way. In the future this ought to be
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changed, since it is not always guaranteed that all hosts within the same subnet
can communicate with each other freely.

Data flows

Also data communication sessions could be added to the model in order to represent
the open channels established between network devices and data in transit. This
would be useful for modelling vulnerabilities and misconfigurations of application
layer protocols, such as unencrypted traffic.

Data flows are stored in the data_flows array, which contains a list of objects
representing each data flow through a flow name, a source host, a destination host,
an application layer protocol used for communication, and the corresponding port.

Vulnerability information

The model must provide a way for representing the potential vulnerabilities discov-
ered during the reconnaissance phase. These vulnerabilities could be of different
types depending on the corresponding resource they expose.

For the purpose of this work, vulnerabilities can be linked to a host’s service, a
layer 2 protocol or a data flow.

They are stored in an array of objects denoted as vulnerabilities, and for each
of them several properties are defined, such as: id, which is a unique identifier
within the model; cve code, which specifies the global identifier that has been
assigned by MITRE in their Common Vulnerability Enumeration framework; type,
which specifies the type of target the vulnerability exposes (service, l2_protocol,
data_flow); the corresponding target, which is represented as a set of properties
that vary depending on the type of vulnerability (service type implies host and
service properties, l2_protocol type implies l2_protocol and subnet properties,
and data_flow type implies data_flow and vul properties); range, which spec-
ifies whether the vulnerability can be exploited locally, remotely, or adjacently
from within the same subnet (localExploit, remoteExploit, adjacent), and conse-
quence, which specifies the result of successful exploitation (sniffing, privEscalation,
impersonateDst, accessControlBypass, and so on).

4.3 Description of the parser module
The parser module addresses the L1 - Low input interoperability described in
Section 3.4. It is responsible for transforming the input description model into a set
of Datalog clauses representing primitive facts used by MulVAL to generate attack
graphs. The existence of this module is important in the context of automation, as
it allows to decouple the input format of MulVAL from the input description model

51



Methodology

which can easily be generated automatically from scanning tools. The MulVAL
primitives could be part of the default set, defined in the default interaction rules
file, as well as custom sets, defined in user supplied interaction rules which extend
the default ones.

In the context of this work the parser is implemented as a Python script based
off of six functions, each responsible for extracting specific data and mapping it to
the corresponding primitives.

Following is a brief description of each of the six parsing functions, the primitives
however will be discussed in greater detail in Section 4.4 about extending MulVAL.

• parse_subnets: which iterates through the hosts array of each subnet and
generates MulVAL primitives of the form:

located(Hostname, Subnet, Type).

The output falls under the subnet information category described in the
previous section, as it provides correspondence between host and subnet of
belonging along with the type of the subnet.
In the case of this work, the output could also be considered to fall under the
topology and access information category, seen as for simplicity it is assumed
that hosts within the same subnet can freely communicate with each other.

• parse_l2_protocols: this function extracts the layer 2 protocols in use in
each subnet, from the l2_protocols array field, and for each one it generates a
MulVAL primitive of the form:

existingProtocol(Subnet, Protocol).

These primitives constitute part of the subnet information category, as they are
specific to each subnet rather than to each host. It is important to have this
information included separately as some of the attack tactics and techniques
in ICS (that can be found in MITRE’s ATT&CK framework) may depend on
vulnerabilities related to these protocols, especially since some of them have
been specifically crafted for ICS scenarios, e.g. the profibus protocol.

• parse_hacl: maps each host’s access control list to a primitive of the form:

hacl(SrcHost, DstHost, Prot, Port).

This falls under the topology and access information, as through these primi-
tives it is possible to describe the reachability conditions of each host which
depends on the presence of physical/virtual connections (two hosts could be
directly connected through a bus, or indirectly through a switch/router, or
furthermore virtually connected through a vpn) and of access restriction rules,
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which normally take the form of firewall rules put in place to limit the accessi-
bility of each host to the bare minimum whilst maintaining correct network
operation (example application of the least privilege principle of security).

• parse_data_flows: this function is responsible for parsing the active com-
munication channels established between hosts in the network for the exchange
of data. For each channel it generates a set of two primitives of the form:

dataFlow(SrcHost, DstHost, FlowName).
flowBind(FlowName, Prot, Port).

The data is extracted from the data_flows array field and therefore falls under
the data flows category.

• parse_services: extracts information about running services from each host
and depending on whether they are local or remote (specified by the type field
for each service in the services array field of each host), generates one of the
two following primitives:

localService(Host, Service, Priv).
remoteService(Host, Service, Prot, Port, Priv).

Seen as each active service is specific to each host, this information falls under
the host information category.

• parse_vulnerabilities: is responsible for mapping the information regard-
ing vulnerabilities (found in the vulnerabilities array of objects field in the
model) to the corresponding primitives, which are different depending on the
type of the vulnerability (defined by the type property in each object in the
vulnerability array of the model and described in the previous chapter).

vulLinkProtocol(LinkID,VulID,Protocol,Range,Consequence).
vulE2EProtocol(Host,VulID,Protocol,Port,Range,Consequence).
vulData(Data,VulID,VulType,Consequence).
vulExists(Host, VulID, Service).
vulProperty(VulID, Range, Consequence).

The last two primitives refer to host vulnerabilities, they are split into two
separate clauses because they are default primitives.

It is possible to see that the all of the needed network information described
in Section 4.2 section has been encompassed by the defined parsing functions.
However, since the model is likely to be extended in the future, also the parser will
have to be extended accordingly.
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4.4 Extending MulVAL interaction rules

In this section the L2 - Low network modelling capabilities limitation of MulVAL
presented in Section 3.4 is addressed.

The default interaction rule set provided by MulVAL only allows to model
certain types of network configurations and attacks. Specifically only vulnerabilities
linked to hosts can be modelled and the types of attacks that can be detected are
code execution, denial of service, and privilege escalation (which is a subset of code
execution).

As for network configurations, all connections between hosts are expressed
through hacl clauses. It therefore is not possible to model important topological
information such as network segmentation, subnet connection type, adopted network
protocols, and so forth.

These two points prove to be especially important for modelling OT scenarios.
This low modelling capability clearly is not good enough for producing accurate
results. As a consequence of this, many potentially critical attacks could go
undetected and the use of MulVAL would lose most of its significance. A solution is
therefore required in order to ensure a good coverage of the possible attack scenarios,
especially when dealing with OT infrastructures. As the main vulnerabilities that
can be found in these environments are in fact linked to the poor security of the
deployed protocols, and to how the different devices are connected together.

The methodology presented in this work consists in extending the default
interaction rules with a new set of custom rules and facts in order to map different
kinds of attacks that are common to OT. For the scope of this work, the spectrum
of attacks techniques that have been added to the default ones has been restricted
to account for spoofing, traffic sniffing, and man in the middle (which is a subset
of spoofing).

The rules and facts that have been used are the ones provided by [34], with
the addition of a few customized ones. In [34] in fact the authors developed these
rules with the specific goal of modelling network vulnerabilities linked to protocols
and also different types of communication such as wireless and bus communication
(which is common in industrial environments).

4.4.1 Physical topology and network communication

In order to better represent the typical layered structure of computer networks, the
following facts have been added:
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located(Host, Subnet, Type).
existingProtocol(Subnet, Protocol).
relay(RelayHost, SrcHost, DstHost, Prot, Port).
isMaster(Host, BusId).
isSlave(Host, BusId).
isAP(AP, WirelessRange, DstZone, Prot, SecurityConf).
dataFlow(SrcHost, DstHost, FlowName).
flowBind(FlowName, Prot, Port).
l2Connection(Dev1, Dev2, LinkId, Prot, Type).

Listing 1: MulVAL facts for topology and communication taken from [34]

All of them are primitive facts except for the last one which is derived.
The located clause allows to define subnets of different types through the Type

parameter. The supported types are: bus, for serial bus communication; ipSubnet,
for hosts within the same IP subnet; physical, for hosts located within the same
wireless physical range.

The existingProtocol primitive allows to define layer 2 network protocols and
bind them to the subnets where they’re deployed.

The relay primitive specifies the presence of hosts configured to act as relay
points for the communication between other hosts.

The isSlave and isMaster primitives are used for serial bus configurations, since
they adopt a master-slave architecture.

The isAP primitive is used for representing wireless access points, bind them to
the protocol they use to establish connections (e.g. WEP, WPA2, and the like),
and whether it has secured access or it allows open access.

dataFlow and flowBind are used to model application level data flowing across
the network from a source host to a destination host and bind the communication
to a specific port and protocol.

The l2Connection derived fact represents layer 2 connectivity 1 among hosts. It
is obtained by combining the previous primitives through different variations of
the following interaction rule.

1The term layer 2 refers to the layered OSI architecture for network communication. Specifically
to the second layer of the OSI model which is the data link layer used for routing data between
hosts in the same local area network.
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interaction_rule(
(l2Connection(Dev1,Dev2,LinkId,Prot,ipSubnet):-

located(Dev1,LinkId,ipSubnet),
located(Dev2,LinkId,ipSubnet),
existingProtocol(LinkId,Prot)),

rule_desc('Ethernet link', 1.0)).

Listing 2: Layer 2 connection rule taken from [34]

The rule shown above deduces that there’s a layer 2 connection between two
devices (Dev1 and Dev2 ) that are located within the same IP subnet using protocol
Prot.

Another important thing to point out is that the use of hacl clauses is maintained
for host access control and also for compatibility with the default rules. For
simplicity the assumption that all hosts located within the same subnet can freely
communicate with each other was made, which holds true in most network scenarios,
in order to eliminate the need to specify all possible combinations of hosts with
hacl clauses. This assumption is enforced through the following rule.

interaction_rule(
(hacl(X,Y,_,_):-

located(X,S,_),
located(Y,S,_)),

rule_desc('Two hosts in the same subnet can reach each other', 1.0)).

Listing 3: Custom rule for connection within same subnet

This rule states that any two devices X and Y located within the same subnet
can access each other on any port and any protocol.

4.4.2 Host configuration
When it comes to host configuration mainly includes information about the different
services running on each host. These services can be of three different types: local,
remote, or login; and they are modelled by means of the following primitives.

localService(Host, Prog, User).
networkService(Host, Prog, Prot, Port, User).
isLoginService(Prog).

Listing 4: Host configuration primitives taken from [34]
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The User property indicates the privilege level under which the service is being
run. This information is especially important for code execution and privilege
escalation attacks.

The isLoginService specifies that the program denoted by Prog allows users to
login (e.g. ssh, ftp, and the like).

4.4.3 Principal access

Principal access refers to how a human actor, called principal, can access system
assets, and also which assets he’s allowed to access.

The extension rules provided in [34], differentiate between host access, network
access, and data access.

Host access

Host access regards the ability of principals to login to hosts. The main fact used
to represent this is the following.

localAccess(Principal, Host, User)

Listing 5: Access to host fact taken from [34]

This specifies that a certain principal can login to a host as a certain user. This
fact is a primitive clause but at the same time it is also a derived clause, as it can
be the consequence of other interaction rules.

interaction_rule(
(localAccess(attacker,Host,User):-

execCode(Host,User)),
rule_desc('Principal can execute any codes', 1.0)).
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interaction_rule(
(localAccess(Principal,HostB, User):-

hasAccount(Principal,HostB,User),
networkService(HostB,Prog,Prot,Port,LoginServiceUser),
netAccess(Principal,HostA,HostB,Prot,Port),
hacl(HostA, HostB, Prot, Port),
isLoginService(Prog)),

rule_desc('A principal that has local access to a host (HostA)
can use it to gain access via the network to a remote
host (HostB) by using a network login service and a
previously obtained account', 1.0)).

Listing 6: Local access rules taken from [34]

As it is possible to see, the first rule shows that local access can be obtained by an
attacker who achieved code execution, while the second one shows that it can also
be obtained remotely through a login service for which the principal owns a user
account.

Network access

Network access regards the ability of a principal to access and interact with network
resources such as communication channels and network services exposed by hosts.

Network access is in turn subdivided into link layer access and end-to-end access
depending on whether a principal can directly access a host through the link layer
or whether he can use an end-to-end protocol.

Link layer access is represented by the following derived clause.

l2Access(Principal, SrcHost, DstHost, Prot, LinkID, Type).

Listing 7: Layer 2 access derived fact taken from [34]

And it is obtained from the following interaction rule.

interaction_rule(
(l2Access(Principal, SrcHost, DstHost, Prot, LinkID, Type):-

localAccess(Principal, SrcHost, User),
l2Connection(SrcHost, DstHost, LinkID, Prot, Type)),

rule_desc('Access to a host through the link layer', 1.0)).

Listing 8: Layer 2 access rule taken from [34]
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As shown in the code above, a principal can access a destination host from a
source host if these he already has local access to the source host and if there is
layer 2 connection between the two.

As for end-to-end access, the following derived clause is used.

netAccess(Principal, SrcHost, DstHost, Prot, Port).

Listing 9: Net access derived fact taken from [34]

The corresponding interaction rule is the following.

interaction_rule(
(netAccess(Principal, SrcHost, DstHost, Prot, Port):-

localAccess(Principal, SrcHost, SrcUser),
hacl(SrcHost, DstHost, Prot, Port)),

rule_desc('Access to a host through an end-to-end protocol', 1.0)).

Listing 10: Net access rule taken from [34]

A principal who has local access to a source host has network access to a
destination host only if that the destination host is inside the source’s access control
list.

Data access

Data access regards the ability of a principal to access data in the network. This
data could either be at rest, if stored on a host, or in motion, if transiting as traffic
through the network.

In the case of data at rest the following default MulVAL primitive is used.

accessFile(Principal, Host, AccessPerm, Path).

Listing 11: Default MulVAL file access primitive fact

This primitive specifies that Principal can access a file at Path on Host with
AccessPerm (read, write, execute).

Data in motion however is not supported by MulVAL’s default rules. Therefore
the following facts and rules have been added by [34] in order to allow this feature
to be modelled.
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accessDataFlow(Principal, FlowName, AccessPerm).

interaction_rule(
(accessDataFlow(Principal, FlowName, view):-

l2Connection(HostA, HostB, WirelessRange, Prot, wireless),
located(SideHost, WirelessRange, physical),
localAccess(Principal, SideHost, admin),
dataFlow(HostA, HostB, FlowName, Direction)),

rule_desc('ATTACKER_ACTION Access to data in motion', 1.0)).

interaction_rule(
(accessDataFlow(Principal, FlowName, view):-

l2Connection(HostA, RelayHost, WirelessRange, Prot, wireless),
located(SideHost, WirelessRange, physical),
localAccess(Principal, SideHost, admin),
dataFlow(HostA, FlowName),
relay(RelayHost, FlowName)),

rule_desc('ATTACKER_ACTION Access to data in motion', 1.0)).

interaction_rule(
(accessDataFlow(Principal, FlowName, view):-

located(SideHost, Link, ipSubnet),
located(HostA, Link, ipSubnet),
located(HostB, Link, ipSubnet),
localAccess(Principal, SideHost, admin),
dataFlow(HostA, HostB, FlowName),
vulFlow(FlowName, unencrypted, sniffing)),

rule_desc('ATTACKER_ACTION Access to data in motion', 1.0)).

Listing 12: Data flow access rules taken from [34]

The first rule shows how a flow of data between two hosts connected through
the same wireless link can be viewed by a principal that has local access as admin
to a third host also connected to the same link.

The second rule is similar to the first one, with the difference that the commu-
nication between the source and destination hosts passes through a relay as they
are not connected to the same wireless link. In this case a principal can access the
data flowing between the source and the relay host if he’s connected to the same
wireless link.

The third rule is a custom rule that has been added in order to model access to
data flowing in an ip subnet, if that data is not encrypted.
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4.4.4 Vulnerability modelling

The whole point of using an extended rule set was to allow different types of
vulnerabilities to be modelled in MulVAL, rather than only host related ones.

In fact, in [34] the authors differentiate between host related vulnerabilities,
network related vulnerabilities, and data related vulnerabilities.

Host vulnerabilities

In order to model host related vulnerabilities, which consist in vulnerabilities linked
to programs running on hosts, the default primitives have been maintained.

vulExists(Host, VulID, Program).
vulProperty(VulID, Range, Consequence).

Listing 13: Default MulVAL primitives for host vulnerabilities

These two primitives allow to bind vulnerable programs to the hosts they’re
running on, and also assign range (local, remote, adjacent) and consequence (dos,
privEscalation) properties to them.

Network vulnerabilities

Network vulnerabilities consist in vulnerabilities that affect protocols that are
deployed in the network, therefore they are not linked to any specific hosts.

In order to express this new type of vulnerability, the following primitives have
been defined.

vulLinkProtocol(LinkID, VulID, Protocol, Range, Consequence).
vulE2EProtocol(SrcHost, DstHost, VulID, Protocol, Port, Range, Consequence).

Listing 14: Network vulnerability primitives taken from [34]

The first one relates to link layer protocols (e.g. ethernet, arp, and the like), which
are the ones defined through the previously discussed existingProtocol primitive.

The second one, on the other hand, relates to end-to-end protocols, and therefore
affects protocols used for host to host communication, hence the need for source,
destination, and port properties to be specified. It is also possible to define a single
host if the vulnerability is not affected by the direction of the communication.
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Data vulnerabilities

Also data can present vulnerabilities. For example it might be unencrypted, allowing
malicious actors who have access to the network to sniff it. Or it could also be
unauthenticated, in which case attackers could hijack it and completely modify it
without anyone noticing.

In order to express vulnerable data, the following clauses are used.

vulData(Data, VulID, VulType, Consequence).
vulFlow(FlowName, VulID, Consequence).

Listing 15: Data vulnerability facts taken from [34]

The first one is a primitive fact, and it is use to model intrinsically vulnerable
data. The VulType property expresses whether the data is unencrypted or unsigned,
while the consequence represents what could be the effect of this vulnerability, such
as eavesdropping (eavesdropping), or data falsification (dataFalsification).

vulFlow on the other hand is a derived fact used to represent a vulnerability
that affects the whole process of data communication. Just because the raw data
might be unencrypted, it does not necessary mean that it can be sniffed by an
attacker, as the underlying protocol used for transferring it could include some sort
of builtin encryption.

interaction_rule(
(vulFlow(FlowName, unencrypted, eavesdropping):-

vulLinkProtocol(SrcHost, DstHost, VulID, Protocol, Range, eavesdropping),
vulData(FlowName, VulID, unencrypted, Consequence),
dataFlow(SrcHost, DstHost, FlowName),
flowBind(FlowName, Protocol, _)),

rule_desc('Eavesdropping on an unencrypted link', 1.0)).

Listing 16: Vulnerable data flow rule taken from [34]

As can be seen in the interaction rule above, eavesdropping on an unencrypted
link is possible only if the data is unencrypted and the link protocol is vulnerable
to eavesdropping.

Other variations of the interaction rule above have been used, but for the sake
of brevity they haven’t been reported in this work.
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4.4.5 Attack modelling
When it comes to modelling attacks, as explained previously, MulVAL by default
only considers code execution, privilege escalation, and denial of service.

Thanks to the newly added rules, it is now possible to model network specific
attacks. At the moment, only spoofing, man-in-the-middle, eavesdropping, and
access control bypass attacks have been added, however modelling new types of
attacks is straightforward now that the network description capabilities have been
enhanced.

The interaction rules below correspond to the previously mentioned attacks,
however only one variation for each rule has been reported for the sake of brevity.

interaction_rule(
(execCode(Host, Perm) :-
vulExists(Host, VulID, Software, remoteExploit, privEscalation),
networkService(Host, Software, Protocol, Port, Perm),
netAccess(Host, Protocol, Port)),
rule_desc('ATTACKER_ACTION remote exploit of a server program', 1.0)).

Listing 17: Default MulVAL code execution rule

The rule above is one of the default rules that correspond to code execution,
which consists in an attacker gaining control of a system with some level of privilege.

In this case the reported variant of this rule represent code execution obtained
by exploiting a remote network service hosted on a machine to which the attacker
has net access.

Privilege escalation is a subset of this rule, as through code execution it is also
possible, but not certain, that an attacker can elevate his privileges in order to
gain a higher level of control over the compromised machine.

interaction_rule(
(dos(Principal, DstHost):-

networkService(DstHost, Prog, Prot, Port, NetworkServiceUser),
hacl(SrcHost, DstHost, Prot, Port),
vulExists(DstHost, VulID, Prog, remoteExploit, dos),
netAccess(Principal, SrcHost, DstHost, Prot, Port),
malicious(Principal)),

rule_desc('ATTACKER_ACTION Network based DoS', 1.0)).

Listing 18: Denial of service rule taken from [34]

The rule above corresponds to a network based denial of service attack. By
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leveraging this type of attack, an attacker can effectively block the correct operation
of network connected machines running potentially critical tasks.

In the syntax of the rule it is possible to notice in fact that, in order for the
attack to take place, a malicious principal must have net access to a host running
a network service vulnerable to DoS attacks.

In the full set of rules there are other variants for modelling also host based DoS
attacks, and also bus based DoS attacks.

interaction_rule(
(spoofLinkHost(Principal, ImpHost, FoolHost, AttackerHost, trafficTheft):-

vulLinkProtocol(FoolHost, ImpHost, VulID, Prot, adjacent, impersonateDst),
l2Access(Principal, AttackerHost, ImpHost, Prot, Zone, ipSubnet)),

rule_desc('ARP spoofing in the same subnet', 1.0)).

Listing 19: Link layer spoofing rule taken from [34]

The spoofLinkHost rule is used to represents spoofing attacks, which consist in
malicious impersonation of a host participating in a communication by an attacker
located on another host.

The rule reported above specifically refers to link layer spoofing attacks, as it
only applies to hosts connected to the same layer 2 network link, which must be
vulnerable to impersonateDst.

interaction_rule(
(mitmLink(Principal, SrcHost, DstHost, SpoofingHost):-

spoofLinkHost(Principal, SrcHost, DstHost, SpoofingHost, trafficTheft),
spoofLinkHost(Principal, DstHost, SrcHost, SpoofingHost, trafficTheft)),

rule_desc('ATTACKER_ACTION MITM attack in the link layer', 1.0)).

Listing 20: Link layer man in the middle rule taken from [34]

Man-in-the-middle attacks are a subset of spoofing attacks. In these type of
attacks in fact, the attacker is able to hijack a communication between two hosts
by spoofing in both directions. This results in the attacker being capable of
manipulating the intercepted traffic to his liking by posing as both the sender and
the receiver of the communication.

The reported rule refers to man-in-the-middle attacks at the link layer, therefore
it only works for hosts sharing the same link connection.

In the full rule set that was used in this work, there are also other variations of
this attack, such as end-to-end man-in-the-middle, which is the same concept but
applied to application layer communication.
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interaction_rule(
(accessControlBypass(SrcHost, DstHost, Prot, Port):-

located(SrcHost, SubnetA, ipSubnet),
located(DstHost, SubnetB, ipSubnet),
located(Gateway, SubnetA, ipSubnet),
located(Gateway, SubnetB, ipSubnet),
vulExists(Gateway, VulID, _, remoteExploit, accessControlBypass)),

rule_desc('ATTACKER_ACTION Access control bypass', 1.0)).

interaction_rule(
(hacl(SrcHost, DstHost, Prot, Port):-

accessControlBypass(SrcHost, DstHost, Prot, Port)),
rule_desc('Two hosts can reach each other if access restrictions

have been bypassed', 1.0)).

Listing 21: Custom access control bypass rule

The access control bypass above was not part of the rule set provided by [34].
It has been added in order to model vulnerabilities of gateway firewalls, allowing
attackers to bypass network access restrictions if successfully exploited.

The two rules above state that if a gateway between two subnets is vulnerable
to access control bypass, then it is possible for two hosts to reach each other even
if they are located in different subnets.

4.5 Attack template
Other than its main input, which should provide a full description of the network
in need of evaluation, MulVAL also requires the attacker’s initial location and
attack goals to be explicitly specified. The main reason for this is that without
the attacker’s supposed location, MulVAL would not know where to start looking
for attack paths, while the attack goals represent the termination conditions of
the attack graph generation algorithm, so without them MulVAL would not know
when to stop executing.

Since the engine must be integrated into a fully automated pipeline process, it
should not be possible to have the user manually insert the attack goals to check
for before every execution.

In order to face this problem, an attack template has been created. In this
template (template.P) all of the main attack goals are specified by default, and
every time the engine runs they get loaded automatically into an file (input.P),
to which the input generated by the parser module (tmp.P) is then appended, as
shown in Figure 4.2.
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Figure 4.2: MulVAL input file generation schema

For the purpose of this work, the template file contains the following MulVAL
clauses.

malicious(attacker).
attackerLocated(Host).
attackGoal(dos(attacker, _)).
attackGoal(execCode(_, _)).
attackGoal(mitmLink(attacker, _, _, _)).
attackGoal(accessDataFlow(attacker, _, _)).

The first line specifies the existence of a malicious attacker.
The second line defines the attacker’s initial location, which must be changed in

order to test for different access points.
The other lines correspond to the attack goals that must be considered. In this

case they correspond to denial of service, code execution, man in the middle, and
traffic sniffing (accessDataFlow). The underscores are wild cards used to represent
any host.

4.6 Pruning the attack graph
This section addresses the L3 - High attack graph complexity limitation discussed
in Section 3.4. This limitation concerns the fact that the size of the attack graphs
generated by MulVAL scales very quickly with the size of the network, the number
of considered vulnerabilities, and the number of facts and interaction rules used to
model the system. As a direct consequence of this behaviour, also the complexity
and readability of the graph rapidly increase, making it impossible for human
operators to understand and for automated programs to navigate.
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In order to solve this issue, this work proposes a custom graph pruning algorithm
based on depth first search. This step of the process is included in the path extractor
module of Figure 4.1.

The goal of the algorithm is to reduce the overall size and complexity of the graph
as much as possible, by eliminating all nodes carrying unnecessary information.
Before doing this however, it is important to define what kind of information
must be kept and what can be done away with. Since the global objective of the
verification engine is to produce a list of possible attack paths and corresponding
tasks to be executed, the only useful information to maintain is the one regarding
vulnerabilities and exploits. Hence, all the other nodes representing network
configuration, which constitute the majority of the output graphs, can be safely
removed, as they already served their purpose when generating the attack graph
and no longer carry any utility when it comes to modelling attack paths.

After having defined which nodes can be kept and which can be deleted, a
solution must be put in place in order to differentiate automatically between them.
For what concerns vulnerabilities, it is pretty simple as all the related rules start
with the string vul, which can therefore be used as a filtering criteria for selecting
these types of node. As for exploit nodes, since there is no clear way to identify them,
an ATTACKER_ACTION label has been added to the corresponding interaction
rule descriptions, as can be seen for example in some of the rules shown in Section
4.4.5.

The algorithm itself, as mentioned previously, is based on the classic depth first
search (DFS 2) algorithm for graphs.

More precisely, it runs a DFS process starting from every attack goal node
previously discovered by MulVAL. Which happen to be all the nodes of the graph
that don’t have any children and therefore correspond to path termination nodes.

Each instance of the DFS recursively explores the graph backwards starting from
the attack goal that has been assigned to it. At every step of the process, it checks
whether the current node is a vulnerability or an attacker action. If the considered
node is neither a vulnerability nor an attacker action, the search continues to the
next node and nothing else is done at this step. Otherwise, the behaviour of the
process depends on whether the node happens to be a vulnerability or an attacker
action. In case of vulnerability, the node is simply copied over to the resulting
pruned graph, if not already present. While in case of attacker action, the node’s

2The depth first search algorithm, in graph theory, is a recursive algorithm built for the
exploration of graph structures. Given a starting node, the recursive procedure explores all the
possible paths originating from it. The term depth first is used because the exploration process
goes all the way to the end of a path at first and then backtracks to try all the other alternative
routes it did not take before. The complexity of DFS is proportional to the number of vertices
and edges of the graph to which it is applied.
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child is copied over to the resulting pruned graph, also if not already present. This
is because the actual attacker action is represented by the derived fact obtained by
applying the rule labelled with the ATTACKER_ACTION string, as opposed to
the rule node itself.

The final result, obtained once all the DFS processes have finished running, will
be an attack graph containing only the nodes corresponding to attacker actions and
to the vulnerabilities that are linked to them. In other words an exploit dependency
graph. Example results are provided and discussed in section Section 5.2.

4.7 Extraction of attack paths from the graph
After having pruned the attack graph, it is necessary to separately extract all the
possible different attack paths, in order to automatically plan out the sequence of
attacks to test for in the future.

To achieve this, a data structure for representing attack paths has been defined.
This structure contains for each path the sequence of exploits required to reach the
final goal, and the identifiers of the vulnerabilities on which the exploits depend on.

As for the input data model described in Section 4.2 and showcased in Section
A.1, also for the attack paths the JSON notation has been adopted, therefore
maintaining consistency between the data representations used by the different
modules.

In Section A.2, an example of extracted attack paths has been reported. From
this example it is possible to see how each path is identified by a unique path
id (e.g. path_1 ), and consists of an ordered array of objects. Each one of these
objects corresponds to an exploit, and therefore contains: the identifier of the node
in the original MulVAL graph, which is the same as the one used in the pruned
graph; the exploit name, which is the text label found on the corresponding node
of the graph; and an array containing the identifiers of all the vulnerabilities that
the exploit depends on, which are the same identifiers used to uniquely define the
vulnerabilities in the input model (id field of the vulnerabilities array reported in
Section A.1).

The order in which the exploit objects are defined in each path is very important,
as each exploit depends on the previous ones. Therefore if at least one of the
exploits in any given path were to fail, all of the following ones cannot be executed.

Another important point to note is that the vulnerability identifiers allow to
cross reference the input data model, making it simple to obtain all relevant
information regarding the specific vulnerabilities, such as target host, protocol,
range, consequence, and so on.

In order to extract the attack paths from the pruned graph, another DFS based
algorithm has been developed. As in the pruning case, a separate DFS search
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process is run starting from every goal node (nodes with no children). Each process
recursively traverses the graph backwards, while keeping track of the current path
by means of a path array. If an exploit node is reached, a new entry corresponding
to it is added to the path array. If instead a vulnerability node is reached, its
identifier gets added to the vulnerability array of the exploit it relates to.

Every time the recursion procedure reaches its termination condition (which
happens when the current node has no parent nodes) a new path is obtained.
Consequently the current contents of the path array are reversed (since the DFS
search constructs the paths in reverse order starting from the final goal nodes) and
saved in the JSON formatted structure described above.

4.8 Definition of a task description model
Referring to the engine architecture design shown previously in Figure 4.1, the step
following path extraction is task selection.

This part of the overall security assessment processes consists in selecting the
sequence of automated tasks (which are non other than automated exploits) to run
in order to test the actual exploitability of the considered systems.

Before jumping straight into the task selection module, a task description model
is defined in order to properly represent each task according to its properties. As
for all the other data structures that have been addressed throughout this work,
also the task description model adopts the JSON formatting notation.

In Section A.3, it is possible to see the data structure that has been used to
define represent the task collection that has been used in this work. As can be
seen, the task collection consists of a JSON array containing a list of objects, each
corresponding to a task descriptor. Each task descriptor includes the following
properties:

• id: the unique integer identifier.

• qualified_name: the name denoting the task.

• criticality: gives a measure of the potential impact of the exploit tested by
the task (high, medium, low).

• category: an array containing all the labels related to the type of exploit
tested by the task (rce, privEscalation, dos, and so forth).

• range: specifies whether the exploit related to the task is local, remote, or
adjacent.

• vulnerabilities: array containing all the specific CVE codes linked to the
task (it is an array because it is possible for a single task to exploit multiple
vulnerabilities).
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• preconditions: array which contains restrictions on the use of the task, such
as required user interaction, required user authentication, and the like. In this
work this field is left empty, but it will turn out useful for modelling more
complicated tasks in the future.

• input: an array of objects used to define the input required by the task in
order to run. Normally exploits require information such as target ip addresses,
target ports, subnet ip addresses, files, and more. As can be seen in Section
A.3, each input object has a type field, which defines what kind of input
the object refers to (host, subnet, file). And a list of parameters (param_1,
param_2, and so on) which specify the specific type of information required
by the exploit (address, port, path, and the like).
For example the ignition-breaker-rce task requires the ip address and port
of the target host in order to be launched, while the eavesdropping exploit
requires the ip address of the targeted subnet and the protocol that wants to
be sniffed.

• output: defines the output format of the task. For all of the tasks considered
in this work the output is of the form of a Passed or Not passed string,
indicating whether the exploit was executed successfully.

4.9 Task selection
In order to select the sequence of tasks that need to be executed to test the actual
exploitability of the system, a simple task search algorithm has been developed as
part of the task selector module.

As shown in the general architecture of the image Figure 4.1, the inputs required
by the task selector in order to work are: the task collection (discussed in Section
4.8 and given in Section A.3), the computed attack paths (discussed in Section 4.7
and given in Section A.2), and the system description (discussed in Section 4.2 and
given in A.1).

The task selector algorithm then loads the contents of these data structures con-
taining the discovered attack paths, and iterates over them. For each vulnerability
identifier linked to the exploit nodes of each path, the algorithm performs cross
referencing with the system description data, in order to extract the consequence
property related to the considered vulnerability. The value of the extracted conse-
quence is then used to filter the task collection by checking whether it is included
within the category array of each task.

The selected tasks are then saved in an appropriate data structure, of which an
example is shown in Section A.4.
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As can be seen in the provided example, the deployed data structure contains
an object representing each attack path corresponding to the attack paths found
by the path extractor.

Inside each path object, it is possible to find other objects corresponding to the
single exploit nodes of the path. These exploit objects are identified by the value
of the exploit field of the corresponding nodes in the attack path structure.

Each exploit object in turn contains two arrays. One is the vul_ids array, which
keeps track of the vulnerabilities related to the exploit, and is the same array of
the attack path structure. While the other is the task_ids array, which stores the
list of identifiers of all the possible tasks that could be executed in order to test
the specific exploit.

At the moment the task selection process filters the task collection only on the
basis of the category of the tasks. However in the future this could be improved
to allow the users to set custom filtering conditions on any of the task descriptor
properties.

4.10 Overall pipeline
In order to run the whole verification engine and properly coordinate the operation
of all the modules shown in Figure 4.1, that have been presented in the previous
sections, a custom bash script has been developed and placed in the utils folder
shown in Figure 3.6 and described in Section 3.3.3. The script goes by the name of
pipeline.sh.

The formal verification procedure can then be executed by simply running the
pipeline.sh command and passing the location of a network description file (Section
A.1) as input parameter, therefore acting as black box and abstracting all the inner
workings of the different modules. This allows for easy integration of the engine
presented in this work within the process pipeline of the bigger project.

The script itself is responsible for separately executing the four main modules
in the correct order, and linking the outputs of each with the inputs of the next.

1. The first module to be executed is the parser Section 4.3, which receives
the description model of the target network and produces as output the
corresponding Datalog primitives. This output gets concatenated to the
attack information present in the attack template file Section 4.5 in order to
create the MulVAL input file (input.P)

2. The second module to be executed is the extended MulVAL, discussed in
Section 4.4, which receives the output of the previous step (input.P) and
the extended interaction rules file as input, and generates all the different
formatted attack graph files as output (Section 3.3.5).
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3. The third module to be executed is the path extractor, which receives as input
the VERTICES.CSV and ARCS.CSV files, generated at the previous step,
and produces as output the corresponding pruned graph (Section 4.6 and the
file containing the extracted attack paths (Section 4.7).

4. The last module to be executed is the task selector (Section 4.9), which
receives as input the location of the task collection file (Section 4.8), the
location of the attack paths file computed at the previous step, and the initial
network description, and produces as output data structure containing the
task execution plan for each attack path (Section 4.9).

The final output of the engine therefore consists of the list of tasks planned for
execution, which will be processed by the task execution engine in the future, and
the pruned attack graph, which could prove itself useful for human operators who
wish to monitor the correct operation of the engine.

Now that the whole methodology has been presented, it is possible to see how
the overall formal verification engine proposed in this work simply requires a generic
network description in order to perform its assessment duties. And thanks to the
defined input data model, it can be easily integrated with any sort of network
scanner, customized or commercial, as all that must be done is express the gathered
information according to the simple standard that has been presented in Section
3.3.2.
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Results and discussions

This chapter analyzes the main results that were obtained from validating the
engine’s operation when applied to a test network configuration.

Due to time related constraints, and to the focus of the work being mainly
on methodology; the engine has been tested for two different cases of a single
network configuration, in order to provide a simple proof of concept of the correct
functioning of the proposed solution.

This chapter is therefore divided into two main sections. The first section,
contains a complete description of the manually constructed network configuration
that has been used as a testing environment. While the second one, illustrates the
two considered test cases, corresponding to the different initial access points of the
hypothetical attacker, and analyzes the results obtained for each one.

5.1 Test network configuration
In order to test the formal verification engine, a network configuration was manually
setup to act as a test environment. This test environment is the one depicted in
Figure 5.1. As can be deduced from the image, the test case scenario proposed
in this work corresponds to that of a typical OT network infrastructure, seen
as it hosts devices commonly found in this branch of technology (Section 2.1.3).
Among these devices it is in fact possible to notice the presence of PLCs, HMIs,
EWS, SCADA control server, and many I/O devices corresponding to sensors and
actuators for controlling physical processes. The network architecture on the other
hand also corresponds to that of a typical OT architecture, being SCADA (Section
2.1.4), as suggested by the presence of the SCADA server.

The data model reported in Section A.1 corresponds to the description of the
network shown in Figure 5.1, including information about vulnerabilities, topology,
and host configuration.
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Figure 5.1: Test network configuration

As can be seen in the network schema, the network as a whole is subdivided
into three different subnets, being: the ENTERPRISE subnet, the SCADA subnet,
and the PLC subnet.

ENTERPRISE subnet

Nowadays, as already mentioned in Section 2.1.2, OT and IT are rapidly converging
under the influence of the IoT paradigm. Due to this convergence, it is no longer
uncommon to find IT systems interconnected with OT infrastructures, working
together in order to enhance productivity and provide remote operation and
monitoring capabilities to physically controlled processes.

Keeping this in mind, it is possible to see how the specific network scenario,
addressed in this work, was built to include this IT-OT relationship. To this point
in fact, the ENTERPRISE subnet, depicted in the top left of Figure 5.1, represents
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the IT side of a company infrastructure responsible for managing some sort of
industrial production line.

Since the test scenarios is mainly concerned with assessing the security of the
OT part of the network, the architecture of the ENTERPRISE subnet has been
represented as single node consisting of local area network of normal company PCs.

In order to limit the access to the OT infrastructure, a FIREWALL has been
deployed to act as a gateway between the ENTERPRISE subnet and the SCADA
subnet.

For more detailed information it is better to consult the JSON description
model in Section A.1. It is in fact possible to see that the ENTERPRISE subnet,
denoted as enterpriseLan in the model, consists of a companyPC, which is a normal
Windows 10 desktop PC, and of the fortim firewall produced by Fortinet, which
runs a remote service for filtering incoming traffic called customPacketFilter on
port 9001. This service however presents a remotely exploitable vulnerability, with
code "CVE-2022-40684", which allows attackers to bypass access restrictions and
reach the SCADA subnet even without proper authorization.

SCADA subnet

The SCADA subnet, denoted as scadaLan in the JSON model, corresponds to the
supervisory network. This part of the network, as explained in Section 2.1.4, is
responsible for managing and coordinating the underlying control network (PLC
subnet), by collecting, analysing and displaying plant data, computing useful
statistics, and allowing operators to configure set points, and schedule automated
production procedures.

As shown in the network schema, the SCADA subnet is composed by all the
devices connected to SWITCH 1, which are: the FIREWALL, the SCADA PC, the
EWS, and the HISTORIAN.

The FIREWALL has already been described in the ENTERPRISE subnet
section. It has been included also in the SCADA subnet because it acts as a
gateway, therefore it is equipped with two different network interface cards.

The SCADA PC, presented in Section 2.1.3, is the heart of the whole OT
network, as it is the device responsible for managing all the main control features
listed earlier. As can be seen in the JSON description, it consists of a normal
HP desktop PC hosting an Inductive Automation Ignition web portal (denoted
as ignitionPortal in the JSON model), which provides a graphical web interface
that can be accessed through the https protocol on port 443 by authorized actors.
By accessing this web service, plant operators can easily interact and work with
the control functionalities offered by the system. The "Inductive Automation
Ignition" portal however presents a vulnerability ("CVE-2023-39476"), which allows
unauthenticated attackers to obtain remote code execution on the host machine by
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exploiting an insecure deserialization bug inside of a required Java class.
Seen as the SCADA PC must be capable of interacting with the devices of the

PLC subnet, it must also be equipped with two network interface card in order to
communicate on both subnets.

The EWS, presented in Section 2.1.3, is the engineering workstation. This device
simply is a normal HP PC that plant operators use to access the services offered
by the SCADA PC and by the HISTORIAN.

The HISTORIAN, presented in Section 2.1.3, is a HP server used for collecting,
storing, and displaying real-time operational data received from the PLCs of the
PLC subnet, allowing plant statistics to be computed over large periods of time.

Since the HISTORIAN receives its real-time data from the PLCs, it must also
be equipped with a second network interface card for communicating with the PLC
subnet.

The main advantage of having this device as a separate component, consists
in reducing the traffic load on the SCADA PC, especially since real-time data
generated by field devices, such as sensors, accounts for a large part of the network
load.

In order to perform its duties, the HISTORIAN hosts three different services
which are: grafana, mosquittoBroker, and influxDB.

Grafana is a powerful open source platform for providing advanced data analytics
and visualization features. It is mainly used by authorized employees as a support
for business decision making.

As can be seen in the scadaLan subnet of the JSON model, Grafana can be
accessed through a web interface on port 3000.

Both the influxDB and mosquittoBroker services will be discussed in the following
section, due to the fact that they can only be reached by devices of the PLC subnet,
as opposed to Grafana, which can be reached only from the SCADA subnet.

PLC subnet

The PLC subnet, denoted as plcLan in the JSON model, corresponds to the control
network. This part of the OT network, as explained in Section 2.1.4, is responsible
for ensuring that the physical processes, that the production plant depends on,
function correctly.

These physical processes are controlled by PLCs, which, as described in Section
2.1.3, consist of basic computers capable of receiving input signals from the field
sensors and calculating corresponding output signals to send to the field actuators.
Each PLC is responsible for controlling the I/O devices of the field station it has
been assigned to. These devices are non other than the previously mentioned
sensors and actuators that constitute the physical processes. As shown in the
schema, they are individually connected to their master PLC as peripheral devices,
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rather than to the PLC subnet itself.
In order to allow the plant operators who walk the floor to monitor the operation

of each process, each PLC is equipped with a HMI, which, as explained in Section
2.1.3, consists in a graphical interface offering basic monitoring and configuration
functionalities.

As can be seen in the network schema, the PLC subnet includes all the devices
connected to SWITCH 2, which are: the three PLCs, the three HMIs, the SCADA
PC, and the HISTORIAN.

From the JSON model it is possible to see that the PLCs are Allen-Bradley
PLCs, sold by Rockwell Automation, and they all run a service called opcuaServer
on port 4840. This specific service allows the PLCs to act as servers by sending
their operational data on demand to requesting client devices. This data is sent
through the OPC-UA protocol, which is a typical protocol used in OT and has
been already described in Section 2.1.5.

The opcuaServer service however presents a denial of service vulnerability (CVE-
2022-25888), which allows attackers, who can reach it, to send an unlimited number
of huge chunks of data, due to a bug in the opcua package, and therefore block the
operation of the device.

The HMIs are Allen-Bradley Panel View devices configured also to be accessed
remotely through ssh on port 22.

In regards to the role of the SCADA PC within the PLC subnet, it simply acts
as a client that pulls data and pushes configuration changes to the PLCs by means
of the opcuaServer service.

As for the HISTORIAN, the previous section already explained that it hosts
two specific services for communicating within the PLC subnet.

The first one, as can be seen in the JSON model regarding the plcLan subnet,
is an instance of influxDB running on port 8086. Influx DB is an open source
database developed specifically for storing real-time data. In this case it will store
the operational data received from the PLCs, which will then be analysed and
displayed by Grafana in order to support business decision making.

The other service hosted by the HISTORIAN is the mosquittoBroker service.
This service is based on the MQTT (Message Queue Telemetry Transport) protocol,
which is a light weight publisher-subscriber protocol that has recently become very
popular in the IoT field of application.

The MQTT protocol relies on a message broker, which is an intermediate entity
that listens for data coming from publishers and notifies subscribers when new
information becomes available. In the case at hand the mosquittoBroker service
acts as the broker, which receives the data published by the PLCs, denoted as
plcData in the data flows array of the JSON model, and relays it to the influxDB
database, which acts as the MQTT subscriber. In this scenario however, the MQTT
protocol presents a misconfiguration (CWE-319), as reported in the JSON model,
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which allows attackers located within the same network to access the data being
sent over it, seen as it hasn’t been configured to provide any sort of encryption.

Last but not least, in regards to the link layer protocols, the PLC subnet deployes
the ethernet protocol for layer 2 communication, and the ARP (Address Resolution
Protocol) protocol for resolving link layer addresses. The ethernet protocol in
this scenarios presents the same misconfiguration of the MQTT protocol, which
consists in null encryption. While the ARP protocol is affected by a vulnerability
(CVE-1999-0667) that allows attackers connected to the same link to spoof ARP
responses and therefore impersonate other hosts on the network, leading to possible
man in the middle scenarios.

5.2 Analysis of obtained results
The verification engine has been tested considering two different initial access
points for an attack. The first case supposes that the hypothetical attacker has
local access to the EWS and therefore is already located inside the SCADA subnet.
For the second case, on the other hand, the attacker is supposedly located in the
ENTERPRISE subnet and has local access to a companyPC (as denoted in the
JSON model reported in Section A.1).

In order to reduce the size of the attack graphs and of the discovered attack
paths, the engine has been set to search for the following attack goals: man in the
middle between PLC 1 and HMI 1, dos on PLC 1, and traffic sniffing on plcData1,
which corresponds to the data flow going from PLC 1 to HISTORIAN.

This restriction has been imposed because otherwise the results would include all
the possible combinations of these attacks on the other PLCs, since they all expose
the same vulnerabilities. In which case, the final resulting graphs and extracted
attack paths would prove to be too large to display, and would not contribute to
adding any meaningful information to what has already been produced.

5.2.1 Case of attacker located in the SCADA subnet
This is the simplest case of the two that have been considered. In this scenario in
fact the attacker, as mentioned previously, is already inside the SCADA subnet and
has local access to the EWS. This case is less likely to occur in the real world with
respect to the second case, as it would require the attacker to have physical access
to the network. However the eventuality of it occurring should not be completely
discarded, as it would not be the first time an intruder gained physical access to
restricted zones by impersonating authorized personnel.

After having set the attacker location to be EWS in the template file described
in Section 4.5, and having defined the attack goals to the ones mentioned above,
the engine produced the attack graph shown in Figure 5.2. This graph corresponds
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to the final attack graph obtained after the pruning step discussed in Section
4.6. The content of each node of the graph is reported in Table 5.1 in favor of
understandability.

For the sake of completeness also the full graph before pruning is shown in
Figure 5.3. This has been included for the sole purpose of showing the difference
in size and complexity between the pruned and non pruned version, therefore the
content of the nodes has been removed for better representation.

As can be deduced from the pruned graph, in order to reach the prescribed
goals, the attacker located at the EWS must first exploit the vulnerability of the
ignitionPortal service (node 1) to obtain code execution on the SCADA PC as
admin (node 7).

After having successfully compromised the SCADA PC, he is then able to reach
the devices located in the PLC subnet, he can therefore leverage the access level
he just obtained to launch three different attacks.

The first option being a dos attack on PLC 1 (node 9), by exploiting the
vulnerability of the opcuaService (node 5).

The second being a man in the middle attack (node 10), achieved by exploiting
the impersonateDst vulnerability exposed by the link layer ARP protocol (node
6) which allows the attacker, located at the SCADA PC, to manipulate the
communication between PLC 1 and HMI 1 by impersonating each of them.

And the last being a traffic sniffing attack (node 8), through which the attacker
can access the operational data flowing from PLC 1 to the HISTORIAN by
exploiting the fact that nor ethernet (node 3), nor MQTT (node 4), nor the PLC
itself (node 2) encrypt the sensitive data before transfer.

In regards to the extracted attack paths and the selected tasks, only the ones
corresponding to the case of the attacker located in the ENTERPRISE subnet have
been reported in Section A.2, and Section A.4. Since, as will be explained in the
following section, the paths corresponding to the SCADA subnet case constitute a
subset of the paths corresponding to the ENTERPRISE subnet case.

Figure 5.2: Pruned attack graph for case of attacker located in SCADA subnet
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Node ID Node label
1 vulExists(scadaPC,9,ignitionPortal,remoteExploit,privEscalation)
2 vulData(plc1Data,10,unencrypted,sniffing)
3 vulLinkProtocol(plcLan,5,ethernet,adjacent,eavesdropping)
4 vulE2EProtocol(plc1,historian,6,mqtt,1883,adjacent,eavesdropping)
5 vulExists(plc1,1,opcuaServer,remoteExploit,dos)
6 vulLinkProtocol(plcLan,4,arp,adjacent,impersonateDst)
7 execCode(scadaPC,admin)
8 accessDataFlow(attacker,plc1Data,view)
9 dos(attacker,plc1)
10 mitmLink(attacker,hmi1,plc1,scadaPC)

Table 5.1: Node labels corresponding to Figure 5.2

Figure 5.3: Complete attack graph for attacker located in SCADA subnet
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5.2.2 Case of attacker located in the ENTERPRISE subnet

This case supposes the attacker to be located in the ENTERPRISE subnet and
to have access to a companyPC. As opposed to the last case, this scenario is a lot
more likely to happen, as it doesn’t require physical access to the plant premises.
The attack could coincide either with an insider attack performed by a disgruntled
employee, or with an external attack performed by a malicious actor who managed
to gain access to the IT system through some preliminary attack (e.g. phishing
email).

After having changed the initial attacker location from EWS to companyPC in
the attack template file, the engine produced the attack graph shown in Figure
5.4, for which Table 5.2 reports the content. This graph corresponds to the pruned
version of the attack graph. Also in this case, as in the previous, the complete
graph, stripped of node content, has been given in Figure 5.5 in order to provide a
means of comparison with the pruned version.

By closely inspecting the pruned graph, it is possible to notice that it is exactly
the same as the one discussed in the previous case with the addition of three extra
nodes (node 1, node 3, and node 4) in the top part.

This is because the ENTERPRISE subnet, where the attacker is initially located,
is separated from the SCADA subnet by means of a FIREWALL. Therefore in
order to perform the same attacks of the previously discussed scenario, the attacker
must first find a way to access the SCADA subnet. As shown by the graph, this
can be done by exploiting the access control bypass vulnerability (node 1) exposed
by the customPacketFilter service running on the fortim firewall. The successful
exploitation of this vulnerability leads to the attacker being able to bypass traffic
restrictions and reach the devices of the SCADA subnet from the companyPC he
already has access to. This can be seen in node 3, which shows how the companyPC
can now reach the SCADA PC of the SCADA subnet.

From this point onwards the attack scenario is exactly the same as the one
of the previous case. The attacker in fact can now leverage his access to the
SCADA subnet to exploit the code execution vulnerability of the SCADA PC to
compromise the machine, and consequently use it as a base for launching the other
three described attacks targeting the PLC subnet.

In regards to the extracted attack paths in Section A.2 and the corresponding
selected tasks in Section A.4, it is possible to notice, in accordance with the results
obtained by the graph, how all three of them start by exploiting the access control
vulnerability and then move on to gaining privileged access to the SCADA PC by
exploiting the code execution vulnerability affecting the Ignition web portal. Only
after having reached this point they split into three different paths, one for each of
the possible attacks that can be carried out in the PLC subnet.

By returning the attention to the pruned graph however, it is possible to notice
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the presence of a particular node (node 4) corresponding to an access control
bypass that allows the SCADA PC to reach itself. This is a problem that has
been encountered during the generation of attack graphs by MulVAL, and it
manifests itself in some of the interaction rules including a source and destination
host property (e.g. accessControlBypass, mitmLink, and the like). In such cases,
MulVAL doesn’t enforce the condition that the considered hosts must be different,
therefore this might results in the generation of meaningless nodes like the one that
has just been discussed.

Figure 5.4: Pruned attack graph for case of attacker located in ENTERPRISE
subnet

Node ID Node label
1 vulExists(fortim,13,customPacketFilter,remoteExploit,accessControlBypass)
2 vulExists(scadaPC,9,ignitionPortal,remoteExploit,privEscalation)
3 accessControlBypass(companyPC,scadaPC,https,443)
4 accessControlBypass(scadaPC,scadaPC,https,443)
5 vulData(plc1Data,10,unencrypted,sniffing)
6 vulLinkProtocol(plcLan,5,ethernet,adjacent,eavesdropping)
7 vulE2EProtocol(plc1,historian,6,mqtt,1883,adjacent,eavesdropping)
8 vulExists(plc1,1,opcuaServer,remoteExploit,dos)
9 vulLinkProtocol(plcLan,4,arp,adjacent,impersonateDst)
10 execCode(scadaPC,admin)
11 accessDataFlow(attacker,plc1Data,view)
12 dos(attacker,plc1)
13 mitmLink(attacker,hmi1,plc1,scadaPC)

Table 5.2: Node labels corresponding to Figure 5.4

82



Results and discussions

Figure 5.5: Complete attack graph for attacker located in ENTERPRISE subnet
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Chapter 6

Conclusions and future work

This work attempts to address the growing concerns with the status of cybersecurity
within OT infrastructures by proposing an automated solution, based on formal
verification techniques, in order to lend support to the security assessment process.

It is to be said however, that the prototype engine presented in this work is by
no means to be considered a stand alone solution. On the contrary, it has been
designed to be easily integrated within the overall company project, as part of the
automated security assessment process pipeline. To this point in fact, a standard
input description model for representing network information within the project
has been defined.

Within the context of the project, the main objective that this work tries to
accomplish is the automatic generation of an execution plan, consisting of ordered
sequences of validation tasks to be run in order to test the security of the system
in need of evaluation.

In order to achieve its prescribed goal, the presented prototype engine leverages
the MulVAL framework for attack graph generation, as the core part of the project.
It then proceeds to build upon it by adding the following features: new network and
attack modelling capabilities, most of which presented by [34], with the exception
of a few customized ones; parsing functionalities for favoring compatibility with
the defined standard data models; and a custom pruning algorithm for reducing
attack graph complexity and increasing readability. From the results produced
by the enhanced MulVAL framework, the attack paths are then extracted and
subsequently the sequences of validation tasks are selected thanks to the path
extractor, and task selector module described in Chapter 4.

As showcased in Chapter 5, the engine prototype is capable of correctly identi-
fying possible attack paths, and correspondingly generating task execution plans.
However, this has only been tested for two cases of a single OT network config-
uration that has been manually constructed to include five main types of attack
modelled in the extended MulVAL framework. Going forward, it would therefore
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be of great benefit to add support for more types of attack, aiming at covering the
tactics and techniques of the MITRE ATT&CK framework for ICS [7] as much as
possible.

Also the attack graph pruning algorithm could definitely undergo some improve-
ment, such as adding more filtering conditions in order to remove useless nodes like
the one mentioned in the example discussed in Section 5.2.2, or being parallelized
in order to run more efficiently.

Since the number of possible attack paths scales with the size of the considered
network, it could be worth considering to take inspiration from [44] and leverage
deep reinforcement learning algorithms in order to extract the optimal options,
discarding the rest.

In regards to the task selection module, the current implementation searches for
validation tasks solely based on the type of attack (e.g. code execution, dos, and
so on). This could be bettered by adding different filtering criteria, such as CVE
code, criticality, or given attack preconditions.

All in all the solution proposed in this work represents a first concrete step
towards the development of an automated tool for security assessment of OT
networks, which hopefully in the future could be used a standard in the industrial
scene.
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Appendix A

Supplementary material

This appendix provides supplementary material that is referenced throughout the
dissertation. It includes some relevant data models that have been used during
the development phase of the project, accompanied by a brief description, as the
key features will be addressed and explained in more detail in the specific chapters
referencing them.

A.1 JSON model of the tested network environ-
ment

This section provides the JSON data structure modelling one of the two network
scenarios for which the proposed tool has been tested.

It is important to note that, for the purpose of this work, the following file was
created manually, as at the time of development, the module of the tool responsible
for performing automatic network reconnaissance was under construction. However,
in the feature this model is expected to be generated automatically.

The network configuration that this file refers to is described in Section 5.1, and
corresponds to the case scenario with the attacker placed in the company network
which is separated from the internal network by a firewall enforcing access control
policies.

{
"subnets": [

{
"name": "enterpriseLan",
"system.network.subnet.address": "10.8.3.0",
"system.network.subnet.mask": "255.255.255.0",
"type": "ipSubnet",
"l2_protocols": [
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"ethernet",
"arp"

],
"hosts": [

{
"hostname": "fortim",
"diana.network.host.address": "10.8.3.171",
"device": "Fortinet Fortigate 600D",
"vendor": "Fortinet",
"state": "active",
"os": "linux",
"services": [

{
"name": "customPacketFilter",
"type": "remote",
"version": "_",
"port": 9001,
"prot": "_",
"state": "open",
"priv": "admin"

}
],
"hacl": []

},
{

"hostname": "companyPC",
"diana.network.host.address": "10.8.3.172",
"device": "HP compaq pro 6300",
"vendor": "HP",
"state": "active",
"os": "windows 10",
"services": [],
"hacl": []

}
]

},
{

"name": "plcLan",
"type": "ipSubnet",
"system.network.subnet.address": "10.8.4.0",
"system.network.subnet.mask": "255.255.255.0",
"l2_protocols": [

"arp",
"ethernet"

],
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"hosts": [
{

"hostname": "plc1",
"diana.network.host.address": "10.8.4.171",
"device": "Allen-Bradley Micro 870",
"vendor": "Rockwell Automation",
"state": "active",
"os": "linux",
"services": [

{
"name": "opcuaServer",
"type": "remote",
"version": "_",
"port": 4840,
"prot": "opcua",
"state": "open",
"priv": "admin"

}
],
"hacl": []

},
{

"hostname": "plc2",
"diana.network.host.address": "10.8.4.172",
"device": "Allen-Bradley Micro 870",
"vendor": "Rockwell Automation",
"state": "active",
"os": "linux",
"services": [

{
"name": "opcuaServer",
"type": "remote",
"version": "_",
"port": 4840,
"prot": "opcua",
"state": "open",
"priv": "admin"

}
],
"hacl": []

},
{

"hostname": "plc3",
"diana.network.host.address": "10.8.4.173",
"device": "Allen-Bradley Micro 870",
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"vendor": "Rockwell Automation",
"state": "active",
"os": "linux",
"services": [

{
"name": "opcuaServer",
"type": "remote",
"version": "_",
"port": 4840,
"prot": "opcua",
"state": "open",
"priv": "admin"

}
],
"hacl": []

},
{

"hostname": "hmi1",
"diana.network.host.address": "10.8.4.174",
"device": "Allen-Bradley Panel View",
"vendor": "Rockwell Automation",
"state": "active",
"os": "linux",
"services": [

{
"name": "sshd",
"type": "remote",
"version": "OpenSSH_6.6.1p1",
"port": 22,
"prot": "ssh",
"state": "open",
"priv": "admin"

}
],
"hacl": []

},
{

"hostname": "hmi2",
"diana.network.host.address": "10.8.4.175",
"device": "Allen-Bradley Panel View",
"vendor": "Rockwell Automation",
"state": "active",
"os": "linux",
"services": [

{
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"name": "sshd",
"type": "remote",
"version": "OpenSSH_6.6.1p1",
"port": 22,
"prot": "ssh",
"state": "open",
"priv": "admin"

}
],
"hacl": []

},
{

"hostname": "hmi3",
"diana.network.host.address": "10.8.4.176",
"device": "Allen-Bradley Panel View",
"vendor": "Rockwell Automation",
"state": "active",
"os": "linux",
"services": [

{
"name": "sshd",
"type": "remote",
"version": "OpenSSH_6.6.1p1",
"port": 22,
"prot": "ssh",
"state": "open",
"priv": "admin"

}
],
"hacl": []

},
{

"hostname": "scadaPC",
"diana.network.host.address": "10.8.4.177",
"device": "HP Workstation Z230",
"vendor": "HP",
"state": "active",
"os": "linux",
"services": [],
"hacl": []

},
{

"hostname": "historian",
"diana.network.host.address": "10.8.4.178",
"device": "HPE ProLiant DL380",
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"vendor": "HP",
"state": "active",
"os": "linux",
"services": [

{
"name": "influxDB",
"type": "remote",
"version": "_",
"port": 8086,
"prot": "http",
"state": "open",
"priv": "admin"

},
{

"name": "mosquittoBroker",
"type": "remote",
"version": "_",
"port": 1883,
"prot": "mqtt",
"state": "open",
"priv": "admin"

}
],
"hacl": []

}
]

},
{

"name": "scadaLan",
"system.network.subnet.address": "10.8.5.0",
"system.network.subnet.mask": "255.255.255.0",
"type": "ipSubnet",
"l2_protocols": [

"ethernet",
"arp"

],
"hosts": [

{
"hostname": "fortim",
"diana.network.host.address": "10.8.5.171",
"device": "Fortinet Fortigate 600D",
"vendor": "Fortinet",
"state": "active",
"os": "linux",
"services": [],
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"hacl": []
},
{

"hostname": "scadaPC",
"diana.network.host.address": "10.8.5.172",
"device": "HP Workstation Z230",
"vendor": "HP",
"state": "active",
"os": "linux",
"services": [

{
"name": "ignitionPortal",
"type": "remote",
"version": "_",
"port": 443,
"prot": "https",
"state": "open",
"priv": "admin"

}
],
"hacl": []

},
{

"hostname": "ews",
"diana.network.host.address": "10.8.5.173",
"device": "HP compaq pro 6300",
"vendor": "HP",
"state": "active",
"os": "windows 10",
"services": [],
"hacl": []

},
{

"hostname": "historian",
"diana.network.host.address": "10.8.5.174",
"device": "HPE ProLiant DL380",
"vendor": "HP",
"state": "active",
"os": "linux",
"services": [

{
"name": "grafana",
"type": "remote",
"version": "_",
"port": 3000,
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"prot": "https",
"state": "open",
"priv": "admin"

}
],
"hacl": []

}
]

}
],
"data_flows": [

{
"flow_name": "plc1Data",
"src_host": "plc1",
"dst_host": "historian",
"prot": "mqtt",
"port": 1883

},
{

"flow_name": "plc2Data",
"src_host": "plc2",
"dst_host": "historian",
"prot": "mqtt",
"port": 1883

},
{

"flow_name": "plc3Data",
"src_host": "plc3",
"dst_host": "historian",
"prot": "mqtt",
"port": 1883

}
],
"vulnerabilities": [

{
"id": 1,
"cve": "CVE-2022-25888",
"type": "service",
"host": "plc1",
"service": "opcuaServer",
"range": "remoteExploit",
"consequence": "dos"

},
{

"id": 2,
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"cve": "CVE-2022-25888",
"type": "service",
"host": "plc2",
"service": "opcuaServer",
"range": "remoteExploit",
"consequence": "dos"

},
{

"id": 3,
"cve": "CVE-2022-25888",
"type": "service",
"host": "plc3",
"service": "opcuaServer",
"range": "remoteExploit",
"consequence": "dos"

},
{

"id": 4,
"cve": "CVE-1999-0667",
"type": "l2_protocol",
"subnet": "plcLan",
"l2_protocol": "arp",
"range": "adjacent",
"consequence": "impersonateDst"

},
{

"id": 5,
"cve": "CWE-319",
"type": "l2_protocol",
"subnet": "plcLan",
"l2_protocol": "ethernet",
"range": "adjacent",
"consequence": "eavesdropping"

},
{

"id": 6,
"cve": "CWE-319",
"type": "e2e_protocol",
"src_host": "plc1",
"dst_host": "historian",
"e2e_protocol": "mqtt",
"port": 1883,
"range": "adjacent",
"consequence": "eavesdropping"

},
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{
"id": 7,
"cve": "CWE-319",
"type": "e2e_protocol",
"src_host": "plc2",
"dst_host": "historian",
"e2e_protocol": "mqtt",
"port": 1883,
"range": "adjacent",
"consequence": "eavesdropping"

},
{

"id": 8,
"cve": "CWE-319",
"type": "e2e_protocol",
"src_host": "plc3",
"dst_host": "historian",
"e2e_protocol": "mqtt",
"port": 1883,
"range": "adjacent",
"consequence": "eavesdropping"

},
{

"id": 9,
"cve": "CVE-2023-39476",
"type": "service",
"host": "scadaPC",
"service": "ignitionPortal",
"range": "remoteExploit",
"consequence": "privEscalation"

},
{

"id": 10,
"cve": "CWE-319",
"type": "data_flow",
"data_flow": "plc1Data",
"vul": "unencrypted",
"range": "",
"consequence": "sniffing"

},
{

"id": 11,
"cve": "CWE-319",
"type": "data_flow",
"data_flow": "plc2Data",
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"vul": "unencrypted",
"range": "",
"consequence": "sniffing"

},
{

"id": 12,
"cve": "CWE-319",
"type": "data_flow",
"data_flow": "plc3Data",
"vul": "unencrypted",
"range": "",
"consequence": "sniffing"

},
{

"id": 13,
"cve": "CVE-2022-40684",
"type": "service",
"host": "fortim",
"service": "customPacketFilter",
"range": "remoteExploit",
"consequence": "accessControlBypass"

}
]

}

A.2 JSON model of attack paths
This section provides an example of the JSON data structure used to model the
attack paths extracted by the algorithm discussed in Section 4.7.

The data structure below showcases three of the possible attack paths discovered
for the network scenario presented in Section 5.1, specifically for the case of the
attacker located in the company network, which is analysed in Section 5.2.2.

For the sake of brevity, only three attack paths have been reported, as all the
other discovered paths correspond to the same attack sequences but targeting
different hosts.

{
"path_1": [

{
"id": 26,
"exploit": "accessControlBypass",
"vul_ids": [13]

},
{
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"id": 16,
"exploit": "execCode",
"vul_ids": [9]

},
{

"id": 1,
"exploit": "accessDataFlow",
"vul_ids": [10, 5, 6]

}
],
"path_2": [

{
"id": 26,
"exploit": "accessControlBypass",
"vul_ids": [13]

},
{

"id": 16,
"exploit": "execCode",
"vul_ids": [9]

},
{

"id": 62,
"exploit": "dos",
"vul_ids": [1]

}
],
"path_3": [

{
"id": 33,
"exploit": "accessControlBypass",
"vul_ids": [13]

},
{

"id": 16,
"exploit": "execCode",
"vul_ids": [9]

},
{

"id": 91,
"exploit": "mitmLink",
"vul_ids": [4]

}
]

}
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A.3 JSON model of the task collection
In this section the JSON model used to represent the task collection addressed in
Section 4.8 (which describes the schema of the following structure) is provided.

For the scope of this work, only five tasks have been modelled in order to give
a proof of concept of how the task selection process happens. These five tasks
correspond to the main attacks illustrated in the attack modelling Section 4.4.5,
which are: code execution, denial of service, man in the middle, access control
bypass, and traffic sniffing.
[

{
"id": 1,
"qualifiedName": "ignition-breaker-rce",
"criticality": "High",
"category": ["rce", "privEscalation"],
"range": "remoteExploit",
"vulnerabilities": ["CVE-2023-39476"],
"description": "This task attemps to exploit a vulnerability that

affects Ignition web portal software for SCADA systems
(version < 4.3.1), that allows to obtain remote code
execution with root privileges on host",

"preconditions": [],
"input": [

{
"type": "host",
"param_1": "address",
"param_2": "port"

}
],
"output": "string('Passed', 'Not passed')"

},
{

"id": 2,
"qualifiedName": "opc-ua-dos",
"criticality": "High",
"category": ["dos"],
"range": "remoteExploit",
"vulnerabilities": ["CVE-2022-25888"],
"description": "This task attemps to exploit a vulnerability that

affects the opcua package, allowing attackers to cause
denial of service on hosts running an opcua server",

"preconditions": [],
"input": [

{
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"type": "host",
"param_1": "address",
"param_2": "port"

}
],
"output": "string('Passed', 'Not passed')"

},
{

"id": 3,
"qualifiedName": "arp-spoofing",
"criticality": "High",
"category": ["mitm", "impersonateDst", "impersonateSrc", "spoofing"],
"range": "adjacent",
"vulnerabilities": ["CVE-1999-0667"],
"description": "This task attemps to exploit a vulnerability that

affects layer 2 arp protocol, allowing an attacker
to poison the ARP tables of hosts connected to the
same link and impersonate other hosts",

"preconditions": [],
"input": [

{
"type": "host",
"param_1": "address",
"param_2": "port"

},
{

"type": "host",
"param_1": "address",
"param_2": "port"

}
],
"output": "string('Passed', 'Not passed')"

},
{

"id": 4,
"qualifiedName": "access-control-bypass",
"criticality": "High",
"category": ["accessControlBypass"],
"range": "remoteExploit",
"vulnerabilities": ["CVE-2022-40684"],
"description": "This task attemps to exploit a vulnerability that

affects FortiProxy firewalls allowing malicious
attackers to bypass access restrictions",

"preconditions": [],
"input": [
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{
"type": "host",
"param_1": "address",
"param_2": "port"

}
],
"output": "string('Passed', 'Not passed')"

},
{

"id": 5,
"qualifiedName": "eavesdropping",
"criticality": "Medium",
"category": ["accessDataFlow", "sniffing", "eavesdropping"],
"range": "remoteExploit",
"vulnerabilities": ["CWE-319"],
"description": "This task attemps to intercept unencrpyted traffic

flowing through the network due to protocol
misconfigurations",

"preconditions": [],
"input": [

{
"type": "subnet",
"param_1": "address",
"param_2": "protocol"

}
],
"output": "string('Passed', 'Not passed')"

}
]

A.4 JSON model of selected task plans
This section provides an example of the JSON data structure used for the output
of the task selector module, for which the schema is discussed in Section 4.9. The
three paths shown below correspond to the attack paths listed in Section A.2.

{
"path_1": {

"accessControlBypass": {
"task_ids": [4],
"vul_ids": [13]

},
"execCode": {

"task_ids": [1],
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"vul_ids": [9]
},
"accessDataFlow": {

"task_ids": [5],
"vul_ids": [10, 5, 6]

}
},
"path_2": {

"accessControlBypass": {
"task_ids": [4],
"vul_ids": [13]

},
"execCode": {

"task_ids": [1],
"vul_ids": [9]

},
"dos": {

"task_ids": [2],
"vul_ids": [1]

}
},
"path_3": {

"accessControlBypass": {
"task_ids": [4],
"vul_ids": [13]

},
"execCode": {

"task_ids": [1],
"vul_ids": [9]

},
"mitmLink": {

"task_ids": [3],
"vul_ids": [4]

}
}

}
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