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Summary

Zero-Knowledge Proofs (ZKPs) have recently emerged as cutting-edge technologies capable of
verifying the truthfulness of a statement without revealing any underlying information but only
proving its correctness.

This thesis takes a closer look at the study of ZKPs and in particular investigates the zk-STARK
(Zero-Knowledge Scalable Transparent Arguments of Knowledge) protocol. It also studies the
property of verifiable computation, analysing protocols in which this is combined with ZKP tech-
nologies.

The main objective of this thesis is to realise and discuss the implementation of a software called
VerComp, which simplifies and verifies the execution of software in server infrastructures. It allows
even machines with reduced computational capacity to delegate the execution of applications to
external servers and then obtain back ZKP proofs attesting to their correct execution.

This study examines the state of the art with regard to ZKPs and verifiable computation,
with the aim of providing an overview of current progress. The thesis then presents a detailed
description of VerComp talking about its design, implementation and presents some possible uses.

Key findings of the thesis highlight the possibility of integrating and using ZKPs in new
environments outside the blockchain environment, thus enabling their global use for all kinds
of applications. In addition, it shapes new use cases and scenarios in which mutually unknown
(untrusted) entities can still communicate and share proofs to prove possession of information or
the execution of an operation.
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5



Contents

1 Introduction 8

2 Zero Knowledge Proofs 10

2.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 NP problems and language . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Arithmetic circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Turing machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Interactive zero knowledge proof system . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Schnorr’s protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Non-interactive zero knowledge proof system . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Fiat-Shamir heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Common Reference String (CRS) . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Zero knowledge types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 zk-SNARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 Setup phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.2 Rank-1 constraints system (R1CS) . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 zk-STARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Execution trace and Low Degree Extension (LDE) . . . . . . . . . . . . . . 18

2.7.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.3 Fast Reed-Solomon Interactive (FRI) protocol . . . . . . . . . . . . . . . . . 19

2.7.4 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.1 Privacy-preserving authentication . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.2 Decentralized finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.3 E-voting protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Verifiable Computation 21

3.1 Assumptions based VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Proofs based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 VC frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1 ZEKRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.2 Circom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3 RISC Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6



4 RISC Zero 27

4.1 RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 zkVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 ImageID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.2 Receipt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 Compliant application: password checker . . . . . . . . . . . . . . . . . . . . . . . . 30

4.7 Cryptographic security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 VerComp Design 33

5.1 Purpose and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Actors and protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Additional components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Software design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Security reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5.1 Possible attack vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 VerComp Implementation 37

6.1 Data serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.2 Technical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Test and Validation 39

7.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2 Functional Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3.1 Execution on the machine and without generating the receipt . . . . . . . . 40

7.3.2 One or more parallel executions . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3.3 Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Conclusion 46

Bibliography 48

A User’s manual 50

A.1 Server installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.2 User installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B Developer’s manual 52

B.1 VerComp Server APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.2 Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7



Chapter 1

Introduction

Until a few years ago, microservices architectures and the potential of virtualisation were niche
technologies known only to a few, but today they have spread like wildfire in the IT environment,
finding use in both large and small to medium-sized companies. In the former case, microser-
vices are used to ensure greater isolation from application to application, greater flexibility (it
is possible to create a virtual machine without having to buy a physical machine specifically),
better scalability and, above all, consolidation: it allows the consumption of energy and hardware
resources to be optimised by trying to saturate the capacity of each individual machine as much
as possible. To take advantage of these technologies very often companies, especially small and
medium-sized ones, turn to other companies that specifically provide their hardware and/or soft-
ware resources, known as Cloud Service Providers (CSP). Small companies turn to these all the
more so since, rather than making a large initial investment to buy machines and manage and
maintain their IT infrastructure themselves, they decide to rent the infrastructure provided by
the CSP at a significantly lower price.

However, this model presents critical issues from a security point of view. Inevitably, the
company’s data is managed within the CSP’s machines, and as a result, the information leaks out
of the customer’s so-called trusted domain, thus becoming risky information. Security solutions
can be implemented to try to curb this problem (e.g. firewalls), but it remains more difficult
to protect the data against possible internal attacks, since control of the hardware and low-level
software must still remain in the hands of the CSP.

There then arises a need on the part of the customer to receive greater guarantees concerning
the operations performed on the machines provided by the CSP. In technical terms, the customer
wants to be guaranteed verifiable computation, i.e. the property that ensures that the operation
delegated to the CSP’s machine is carried out correctly, maintaining computational integrity. The
most popular solution today to guarantee that the computer’s behaviour is as expected is trusted
computing. To be able to make use of trusted computing systems, a suitable hardware component
is required, providing Trusted Platform Module (TPM) or extensions such as Intel SGX for enclave
technologies. Furthermore, this is based on EK (Endorsement Key) certificates created during the
manufacture of the TPM, in which the asymmetric key generated in the TPM is not exportable.
So given the context there must be an inherent trust in the hardware manufacturers.

Given the inherent architecture of TPM-based models and thus trust in hardware manufac-
turers, a trusted authority is strictly necessary to guarantee system integrity, thus not allowing
for a decentralised architecture.

This work deals with a technology that makes it possible to generate a cryptographic “result”
of the operations performed on a machine. Such a result can be generated independently of the
presence of hardware with support for trusted computing. The final result of the thesis was made
possible by developments in research in recent years in the field of Zero Knowledge Proof (ZKP)
technologies and related protocols. Today, ZKPs are mostly used in the context of blockchain,
where they allow the privacy of transactions to be guaranteed, making it possible to prove their
validity without revealing the details. Another use concerns the aggregation of several transitions
into a single proof, so that they can be verified in less time.

8



Introduction

Specifically, the zk-STARK (Zero-Knowledge Scalable Transparent Argument of Knowledge)
protocol is used to guarantee verifiable computation, confidentiality of the data processed during
the app’s execution, and the possibility for anyone in possession of the app to verify that it was
executed correctly. More precisely, it is possible to check whether the app in question was actually
executed, whether it was tampered with during execution and whether the output associated with
it was tampered with.

VerComp, the framework developed in this thesis, addresses a critical gap in cloud computing
security. While cloud services offer convenience and scalability, they present an inherent trust
issue: clients must rely on CSPs to handle their applications and data accurately. Traditional
security measures, including virtual machines and containers, fall short of providing guarantees
against potential misuse by CSP operators. VerComp faces this challenge by enabling verifiable
computation and ZKP in cloud environments. Its approach allows clients to confirm the integrity
of their cloud-based operations without needing direct access to the underlying infrastructure.
Although this system increases the computational load on the service provider’s end, it signifi-
cantly simplifies the verification process for clients. This trade-off is particularly advantageous,
as it eliminates the need for clients to duplicate entire computations to ensure accuracy, thereby
saving considerable time and resources.

9



Chapter 2

Zero Knowledge Proofs

Zero Knowledge Proof (ZKP) represents a cryptographic method between two parties: the Prover
and the Verifier. The Prover aims to convince the Verifier of the validity of a specific statement
without revealing any additional information. These proofs find several applications in blockchain
technology, digital signatures, and identification protocols, with a strong focus on privacy guar-
antees and information confidentiality.

2.1 Historical background

It was 1985 when reference was first made to this technology by Goldwasser, Micali and Rack-
off [1]. In the first part of the paper, they introduced a new method for communicating proofs,
emphasising the efficiency. In the second part of the paper, they addressed the critical question
of how much knowledge must be communicated to convincingly prove a theorem. It is here that a
system, in which only the information strictly necessary to verify the truthfulness of the theorem
is disclosed, is first referred to as a zero-knowledge proof system.

In 1987, Fiat and Shamir [2] defined a signature and identification protocol based on ZKP.
The revolutionary aspect, that made this paper fundamental in the field of ZKPs, is the adoption
of a cryptographic hash function, or more generally a random oracle, to simulate the random
challenges in an interactive protocol, eliminating the need for direct communication between the
prover and verifier. This approach, by reducing the data exchanged between prover and verifier,
improved the practicality and scalability of zero-knowledge proofs, making them applicable in
real-world cryptographic systems.

A few years later, another paper was published that turned out to be crucial in the field of suc-
cinct interactive proofs [3]. The proposed method ensures that each language in the polynomial-
time hierarchy has an interactive proof system. As a result of this assumption, it is possible to
reduce a claim over the sum of a multilinear polynomial’s evaluations to a single evaluation at a
randomly chosen point. This makes the verifier process more efficient.

Thanks to these publications, there have been substantial advances in ZKPs to date, especially
dictated in recent years by blockchain privacy requirements.

2.2 Preliminary concepts

In this subchapter, the mathematical and other notions necessary for understanding ZKP systems
are provided.

10
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2.2.1 NP problems and language

A formal language L is composed of a sequence of words, which in turn are composed of letters.
These words are well-formed and conform to a set of rules called formal grammar. If we denote
by Σ∗ all the possible finite strings that can be created from a finite alphabet Σ, then a language
L over Σ is a subset of Σ∗, L ⊆ Σ∗. Any language can have finite, infinite or null cardinality.

A wide variety of computational problems can be distinguished, but the one dealt with in P
and NP problems is that of decision problems. This category contains all those algorithms that,
given a certain input, always return an output of boolean type.

P indicates the class of problems that can be solved in polynomial time. In other words, it
consists of problems for which there exists an algorithm that can provide a “yes” or “no” answer
in time bounded by a polynomial function of the problem’s input size.

NP (Non-deterministic Polynomial time) problems are a class of decision problems for which
a proposed solution can be verified as correct or incorrect in polynomial time by a deterministic
Turing machine. This means that if a solution is given, it can be checked quickly, even if finding
the solution may take an indeterminate amount of time. The class NP is crucial in computational
theory and includes many important problems like the Travelling Salesman Problem, Knapsack
Problem, and Boolean Satisfiability Problem (SAT).

In his foundation work, Stephen Cook [4] established the connection between these two classes
by defining a specific type of relation.

Let’s consider the binary relation R ⊆ Σ∗ × Σ∗
1 for Σ,Σ1 all possible finite sequences from

finite alphabets Σ∗,Σ∗
1. Let LR be a language over Σ ∪ Σ1, defined as follows:

LR = {w#y|R(w, y)}

The relation R is said to be polynomial-time if deciding whether a pair w#y belongs to LR can be
done in polynomial time, meaning LR ∈ P . L over Σ is in NP iff ∃k ∈ N and a polynomial-time
checking relation R : ∀w ∈ Σ∗,

w ∈ L ⇔ ∃y(|y| ≤ |w|k and R(w, y))

where |w| and |y| represents the lengths of w and y.

2.2.2 Arithmetic circuit

An arithmetic circuit C over the field F and the set of variables X = {x1, ..., xn} is a directed
acyclic graph [5], allowed to either add or multiply, where:

• The vertices are called gates;

• Every gate that has no input wire can assume a value k ∈ F or a variable xi ∈ X;

• The other gates can be labelled by either × or + and have 2 input.

The arithmetic circuit is used in several ZKP protocols to represent polynomials. Figure 2.1 is
an example of polynomial representation using an arithmetic circuit.

2.2.3 Turing machine

The Turing machine defines a theoretical model of computation, introduced by Alan Turing in
1936. It was created to help investigate what can and cannot be computed by a computational
device. The Turing machine is fundamental in computer science, as it provides a precise definition
of what it means for a function to be computable. It forms the basis for understanding concepts
like algorithms, decidability, and complexity, and is essential for exploring advanced topics such
as Zero-Knowledge Proofs (ZKPs).

According to De Mol [6] a Turing machine can assume a finite set of configurations q1, . . . , qn.
There are different variants of the Turing machine, the one under consideration has 3 tapes
available:

11
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Figure 2.1. Arithmetic circuit of the polynomial −3x2 + 5x.

• Read-only input tape;

• Work tape;

• Random tape.

In each variant, the way the tape is accessed (e.g.: sequential access, one-way etc.) may be
different.

These characteristics make the Turing machine an automatic machine, which means that the
behaviour of the machine is always determined by the current state and scanned symbol. The
Turing machines that will be considered are:

• Polynomial time Turing machine: the amount of read and write operations done is upper
bounded by a polynomial S(n) = O(nk), k ∈ N and n input size;

• Infinite power Turing machine: it has no computational limitations.

2.3 Interactive zero knowledge proof system

The interactive ZKP system includes the set of protocols in which the prover and verifier interact
with each other by exchanging messages with the aim of verifying whether the prover’s statement
is true or false. The zero knowledge property is what makes interactive ZKP system different from
interactive proof system. Many of these protocols iterate multiple times in the same process to
achieve the desired level of security.

In order to explain the system properties, it is necessary to explain another actor: the simulator
S. It is a polynomial time Turing machine capable of replicating the prover behaviour, so it can
interact with the verifier in the same way the prover would. It also can do the rewind operation:
whenever the verifier asks a question that it is not able to reply to, it rewinds the interaction to
the previous state and continues from there. Potentially, after many rewards, the simulator can
generate a proof that is accepted by the verifier. This means that the verifier cannot distinguish
between the prover and a simulator but, more importantly, means that the protocol does not leak
anything to the verifier [7].

The prover (P) is represented by an infinite power Turing machine, the verifier (V) is repre-
sented by a polynomial time Turing machine. In addition to the tapes mentioned in 2.2.3, (P, V)
share two additional tapes:

• Tape PV: the prover reads and the verifier writes;

12
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• Tape VP: the verifier reads and the prover writes.

Let L ⊆ {0,1}∗ be a language known by the prover and verifier, ε a negligible value and (x,w) a
proof statement composed of the public input and the witness respectively. (P, V) is an interactive
ZKP system if it satisfies these properties:

• Completeness: the probability that a correct proof produced by an honest prover is con-
sidered as such is close to 1;

∀(x,w) ∈ L, P robability[⟨P (x,w), V (x)⟩ = 1] ≥ 1− ε

• Soundness: the probability that a verifier considers a false proof produced by a cheating
prover P ′ as correct is close to 0;

∀(x,w) /∈ L, P robability[⟨P ′(x), V (x)⟩ = 1] ≤ ε

• Zero knowledge: There is no distinguisher capable of distinguishing protocol execution
between simulator and verifier and protocol execution between prover and verifier.

P ′ represents a cheating prover that only knows x. The distinguisher is a polynomial-time algo-
rithm that compares the interactions of the real protocol (between P and V ) and the simulated
protocol (between S and V ) [8]. As mentioned above, by definition the simulator does not know
the witness. The property of zero knowledge states that the distinguisher cannot tell which of the
two interactions is the real one, so the real protocol does not disclose any information about the
witness.

Another type of soundness should also be mentioned, computational soundness. This gives
the same guarantees as soundness but considers a polynomial time Turing machine prover.

2.3.1 Schnorr’s protocol

Schnorr’s identification protocol is a fundamental example of a zero-knowledge protocol [9]. The
purpose of this protocol is to realise a process for making digital signatures so efficient that they
can be executed by processors with limited computational power, i.e. smart cards. The protocol
is based on the discrete logarithm problem in a finite cycle group.

Let x the secret value that the prover wants to prove it knows. More precisely, the prover
proves it knows h = gx, x ∈ Zq = {0, 1, 2, . . . , q − 1}, q large prime number and h ∈ cyclic group
G of prime order q. g is a generator of G. The prime number q must be large enough to exploit
the discrete logarithm problem.

Figure 2.2. Schnorr’s interactive identification protocol.

13
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The interactive version of the protocol is shown in figure 2.2. The symbol “
$←”, used to define

r and c, indicates that the value is chosen randomly within the given set.

The operations done in this protocol can be split in three parts:

• Commitment: the prover, using a randomly generated number, commits to the verifier;

• Challenge: the verifier replies with a challenge, usually based on a randomly generated
number;

• Response: the final computation based on the use of the values exchanged and calculated
so far.

This common pattern describes a large category of protocols for proving statements and is called
Σ-protocols [10].

2.4 Non-interactive zero knowledge proof system

The first ZKP protocols implemented were of the interactive type: it was necessary for the
verifier to be present in order to carry out the interaction with the prover. The absence of the
verifier means that the proof cannot be generated. However, this mode of proof generation is not
compatible with the various scenarios in which it is used, including the blockchain environment
or in general in contexts where the simultaneous presence of both entities cannot be guaranteed
and again, when the number of interactions must be minimised in order to make it more efficient
and practicable.

This need led to the development of techniques to transform interactive systems into non-
interactive systems.

2.4.1 Fiat-Shamir heuristic

The Fiat-Shamir transformation is the most efficient construction of non-interactive zero-knowledge
proofs. It transforms the 3-round protocol to a non-interactive ZKP protocol that only requires
one round from the prover to the verifier. The only necessary assumption is that both the prover
and verifier have access to a random oracle (RO), a pseudorandom function that takes an argu-
ment as input and returns a pre-specified length output. The random oracle function is of the
form RO : {0,1}n × {0,1}a → {0,1}b. The hash function is often used as RO. So the random
oracle is a one-way function whereby, given distinct xi, uniquely uniformly random outputs yi are
returned.

Let c0 = Hash(g, q, h, u) be the first computed challenge in a protocol that performs several
iterations in order to achieve a sufficient level of security. For each iteration (after the initial one)
the challenge value will be

ci = Hash(ci−1)

That sequence makes it more difficult for a dishonest prover to forge the value of c0, ..., cn.

The figure 2.3 shows how Schnorr’s protocol changes in the non-intearctive version, designated
using the Fiat-Shamir transformation. The big change is therefore the computation of c. The
more elements are concatenated in the hash calculation, the more unpredictable and unique the
value of c becomes. This is why it is recommended to include all the public information necessary
to compute the proof in c. Furthermore, the hash function, or more generally the random oracle,
has the characteristic of not revealing any information.

14
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Figure 2.3. Schnorr’s non-interactive identification protocol.

2.4.2 Common Reference String (CRS)

The CRS component serves as a pre-established, shared string of data used by both the prover
and verifier to efficiently facilitate the secure non-interactive proof generation and verification.
The string consists of homomorphic encodings 1 of specific multiples of z ∈ Fp, where p is a
large prime number. The aim of the prover is to demonstrate to the verifier the knowledge of the
polynomial representing the problem on these values unknown to him, by exploiting the linear
combination of the group elements of the CRS. Furthermore, the creation of these values prevents
the verifier from having to generate them again each time to avoid replay attacks [11]. Finally,
they make the protocol non-interactive.

2.5 Zero knowledge types

The simulator has been previously defined as a polynomial time Turing machine capable of com-
municating with the verifier without the verifier noticing. However, the indistinguishable nature
of the simulator can have various shades that lead to the distinction of various types of zero
knowledge.

In the perfect zero knowledge proof the simulated protocol is exactly equal to the actual
protocol, so no information is leaked.

The statistical zero knowledge proof only discloses negligible information. More precisely,
simulated and actual distributions are statistically close.

The weaker type is the computational zero knowledge proof, where the actual and simulated
protocol are indistinguishable only in polynomial time.

2.6 zk-SNARK

zk-SNARK (Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge), like ZKP def-
inition says, allows proving that something is true without revealing any other information by
exchanging messages. It potentially has infinite possibilities for applications:

1An injective homomorphism E : Fp → G such that it is hard to find x given E(x).
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• Prove statement on sensitive data: declare a financial situation or make anti-fraud checks
while preserving privacy of the audited;

• Authorisation: acquire permissions to perform operations by means of privacy-aware au-
thentication (no personal information disclosure);

• Outsourcing computational tasks: ask external entities to do complex computation and
validate it rapidly, without redoing the computation.

In today’s landscape, zk-SNARK is integral to enhancing privacy and scalability across various
applications. It is massively used in blockchain technologies to create privacy-preserving cryp-
tocurrencies, one among all Zcash [12] that permits the anonymous exchange of cryptocurrencies.
Still in the area of cryptocurrencies, zk-SNARK is also present in Ethereum, giving the possibility
of creating distributed application (smart contracts) with a focus on confidentiality.

It also allows good performance in terms of scalability, given the speed with which the verifica-
tion process is performed. This speed is enhanced when it comes to complex computation where
verification remains a fast operation, and also in contexts such as blockchains where multiple
nodes need to verify the outcome of the same operation.

This is the meaning of the SNARK acronym [13]:

• Succinct: because the sizes of the messages are tiny compared to the length of the compu-
tation;

• Non-interactive: there is no or minimal interaction, only a setup phase and then just a
message from the prover to the verifier;

• ARguments: the security is guaranteed against provers with limited computational power
(computational soundness);

• of Knowledge: the only way the prover can generate a valid proof is by knowing the witness
(the private data).

zk-SNARK can be used for any problem belonging to the NP class. However, instead of adapting
the various NP problems to the zk-SNARK protocol, there is a tendency to make use of NP-
complete problems. In addition to having the characteristics of NP-problems, these work as
a “bridge” to other NP problems: an input to any problem in NP can be transformed to an
equivalent input for a NP-complete problem.

Let C ∈ NP-complete:

∀p ∈ NP ∃ f s.t. p(x) = C(f(x))

where f is called reduction function and can be computed in polynomial time. The NP-complete
considered problem is Quadratic Arithmetic Programs (QAP).

According to the work of Gennaro, Gentry, Parno and Raykova [14], Q is a Quadratic Arith-
metic Program over the field F , where Q = {V,W, Y,D}:

• V = {vk(x) : k ∈ {0, ...,m}}

• W = {wk(x) : k ∈ {0, ...,m}}

• Y = {yk(x) : k ∈ {0, ...,m}}

• D(x) divisor polynomial

• f : Fn → Fn′
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Q is a QAP that computes f ⇒ a1, ..., an, am−n′+1, ..., am ∈ Fn+n′
is a valid assignment to

the input/output variables of f ⇔ ∃ (an+1, ..., am−n′ ) ∈ Fm−n−n
′

:

D(x)

∣∣∣∣ (
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

ak · wk(x)

)
−

(
y0(x) +

m∑
k=1

ak · yk(x)
)

Given a generic NP problem, the relation Rv on that problem is defined as the one that,
through a verification algorithm V that takes the witness as input, returns the satisfiability of the
NP problem as output.

2.6.1 Setup phase

The setup phase begins with the conversion of the NP relation R into the arithmetic circuit C.
As anticipated above, the CRS is the set of elements from the finite cyclic groups in the elliptic
curves. These act as homomorphic hidings of the random secret z. The elliptic curve is chosen
because it offers the possibility of doing homomorphic encryption. It has to be chosen together
with the pairing function e:

e(gx, gy) = e(g, g)xy

As already mentioned in the section 2.4.2, these secret values must remain as such to ensure
security. In fact, they must not be known to either the prover or the verifier. This is why
they are called “toxic waste”. Complying with this requirement in the generation of the CRS is
fundamental, since the entire security of the protocol is based on it. It is therefore necessary for
this phase to be carried out by reliable third parties who, once the string has been generated,
destroy the secret values.

2.6.2 Rank-1 constraints system (R1CS)

R1CS defines a format for representing a polynomial. It is composed of four vectors a, b, c, s ∈ Fn
p

where the equation to be satisfied is:

as · bs− cs = 0

where s is the solution vector and as is the dot product. Given a vector s, the constraint system
is satisfied if the result is 0. Before using this representation, it is necessary to “flatten” the
polynomial. It is to be manipulated in order to obtain a system of equations, each with a form of
the type:

x = y OPERATOR z

This is the form achieved using the arithmetic circuit, where each gate represents a simple equation
that can only use the addition or multiplication operator [15]. By combining all the gates together,
the R1CS representation becomes

As ·Bs− Cs = 0

where A,B,C ∈ Fn×m
p ,m number of gates. Once this form is achieved, it is possible to transform

into R1CS.

Once obtained the R1CS, a further conversion must be done. QAPs extend the concept
of R1CS by transforming the polynomial constraints into a form that is more friendly to zk-
SNARK. Using the Lagrange interpolation the R1CS is transformed in QAP with 3 polynomials
L(x), R(x), Q(x), respectively the left input wires, the right wires and the output wires of all
multiplication gates.

Q(x)v = L(x)v × (R(x)v) , v = [1, xT , wT ]T

where x is the public input and w the witness. The polynomials are the representation of the
original circuit, and its constraints hold when the prover can generate P (x) = L(x)R(x)−Q(x) =
0 [16].
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2.7 zk-STARK

Zero-Knowledge Scalable Transparent Arguments of Knowledge (zk-STARK) represent an ad-
vancement in cryptographic proofs, addressing the need for scalable, transparent, and post-
quantum secure methods for verifying computational integrity [17]. zk-STARK offer a way to
prove the correctness of computations without revealing the underlying data or requiring trust in
a third party. Ben-Sasson, one of the zk-STARK authors [18], stated that:

“Computational integrity means that the output of a certain computation is correct.”

As the acronym says, the two properties used to describe this protocol are: scalable and
transparent. The first one is the same as zk-SNARK. The second one refers to the lack of need
for a trusted setup phase, which does not make it dependent on a trusted party for its execution.

At the root of it all is a computational problem (C) whose correct execution the prover wishes
to prove. The verifier therefore wants to be certain that this computation (and the output
associated with it) is carried out correctly, and that the prover has no possibility of falsifying the
output. One precarious method the verifier could use to ascertain the correct execution is to run
C again and compare the results. The zero knowledge property, on the other hand, takes over
in cases where C must be executed on secret data S to which the verifier does not have access.
In this, the verifier could not even re-execute C, but even worse, the prover could mask a lack of
computational integrity by manipulating false data.

2.7.1 Execution trace and Low Degree Extension (LDE)

As a first step, the prover executes C. During execution, it writes the execution trace, a table
where each column describes an algebraic register and each row the state of the computation
for each instant of time. To make the explanation simpler from now on, only one register (one
column) will be considered. The demonstration is however applicable to the case with multiple
registers.

Let S, S′ ⊂ F : |S′| > |S|, f : S → F ⇒ the LDE of f to S′ is f ′ : S′ → F such that
∀x ∈ S, f(x) = f ′(x).

First, an interpolation algorithm is applied to the column, using additive Fast Fourier Trans-
form (FTT), and then the LDE. The resulting function is called trace polynomial. At this point,
the first commitment (c1) is calculated as the Merkle Tree root, in which all column values are
given as input (one commitment per column).

2.7.2 Constraints

The prover and verifier not only agree on the computation but also on the constraints: polynomial
conditions which, applied to the execution trace, must be satisfied for the computational integrity.
Let g1(x), ..., gm(x),∀i ∈ [1,m] gi : S

′ → F the constraints, then ∀i ∈ [1,m] is defined pi(x) as
rational function of gi such that gi(k) = 0 ∀k ∈ S′ where that constraint is applied. In other
words, pi(x) is a rational function that only vanishes where the constraint is applied. This
constraint manipulation makes it possible to demonstrate that the constraints are satisfied iff the
prover knows a trace polynomial such that p1, ...pm are polynomials. For convenience, a linear
combination of these polynomials is defined as composition polynomial

CP (x) = α1p1(x) + ...+ αmpm(x)

Again, the constraints are satisfied iff CP (x) is a polynomial and not a rational function. Another
Merkle Tree commitment (c2) on CP is done.
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2.7.3 Fast Reed-Solomon Interactive (FRI) protocol

Up to this point, the only check the verifier can make with the information provided by the prover
(i.e. the commitments) concerns the satisfiability of the constraints. This check is carried out by
means of the commitment and decommitment (they will be explained later in section 2.7.4). At
this point, it is necessary to use the FRI protocol to do low degree testing. This test serves to
prevent a malicious prover from searching for a higher-degree composition polynomial that still
satisfies the constraints for most x.

Let S a multiplicative subgroup of a finite field F. The FRI protocol is used to prove that a
given polynomial CP : S → F has at most a given degree d. It works in such a way that, for each
query, the degree of the polynomial is halved.

The FRI operator is applied at each iteration (round). For each ith-iteration, it takes a random
value βi to be executed. These are the steps:

1. The even and odd parts of CP (x) are separated

CP (x) = g0(x
2) + xh0(x

2) (2.1)

where g0 is the even part and h0 the odd one.

2. β1 is used to calculate a new function CP1 : S2 → F

CP1(x) = g0(x) + β1h0(x), x ∈ S2

Finally, the commitment on CP1(x) is done.

This algorithm is repeated λ times until CPλ is a constant. The prover sends CPλ to the
verifier. The complexity of the whole algorithm is O(logN) [19].

2.7.4 The proof

The verifier is currently in possession of the commitments provided by the prover:

• Commitment on the trace polynomial f ′;

• Commitment on the composition polynomial CP ;

• Commitment on CP1 obtained by applying the FRI operator to CP ;

• ...

• Commitment on CPλ obtained by applying the FRI operator to CPλ−1.

These commitments are represented by the Merkle Tree root calculated on their evaluation.

On the basis of how the polynomial constraints p1, ..., pm are defined, the verifier, in order to
ensure that the calculation of the composition polynomial (which in turn is function of p1, ..., pm)
is correct, needs the prover to provide the value of f ′ at some random points x1, ..., xn strictly
necessary for the calculation of the constraints. With this information, the verifier is able to
calculate the composition polynomial at point x (CP0(x)).

In reality, the prover does not only provide the calculation of f ′ at certain points. Along with
this comes the authentication path of the Merkle tree. It consists of the leaf to which the value
corresponds and the various hashes needed to allow the verifier to recalculate the Merkle tree
and finally compare the autonomously calculated root with the one committed. This procedure
is called decommitment.

The decommitment is done for f ′(x1), ..., f
′(xn) and for CP (x). From now on, each value that

the prover provides is accompanied by the authentication path.
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Based on the definition 2.1

CPi(−x) = g(x2)− xh(x2)⇒

{
g(x2) = CPi(x)−CPi(−x)

2

h(x2) = CPi(x)−CPi(−x)
2x

⇒ CPi+1(x
2) = g(x2) + βh(x2)

All these steps so show a result: CPi+1(x
2) can be computed by knowing CPi(x) and CPi(−x).

Thanks to this the verifier can go on with the verification. It asks for CP0(x) and computes by
itself CP1(x

2). This is repeated until CPλ and concludes the proof.

2.8 Use cases

The ZKP technology started to see the light with actually usable and efficient protocols around
2016. It is still an early stage technology. Nevertheless, it has been tested in business areas by
corporates such as J.P. Morgan and Ernst & Young.

2.8.1 Privacy-preserving authentication

ZKP-based identification solutions allow users to prove their identity without sharing personal
details. An individual can prove they are who they claim to be without sharing anything. The
most effective example is that of adulthood: it can be used to verify that a customer is of a legal
age without needing to see their birthdate.

Financial institutions can meet regulatory requirements by using ZKP to verify customer iden-
tities. This method ensures compliance and safeguards customer privacy by allowing customers
to prove they meet the necessary criteria without sharing sensitive documents.

2.8.2 Decentralized finance

Common blockchains like Bitcoin or Ethereum do not implement properties of anonymity but
rather pseudonymity. This is because they make public all transactions which, yes, are associated
with addresses, but which can still be aggregated and traced back to the same person. To cope
with this situation, ZKPs are introduced in many blockchains, firstly, in chronological terms,
zCash but also Monero. The latter anonymises user balances and transactions (sender, recipient,
amount).

2.8.3 E-voting protocols

There are currently a myriad of proposals promising voting systems based on ZKP technologies and
often coupled with blockchain infrastructures. These systems apparently have many advantages.
First, the ability to vote remotely. Thanks to the use of decentralised data structures (like
blockchains), the risk of manipulation of election result is reduced. In addition, the integrity of
the election process is guaranteed, confidentiality with regard to the anonymity of the vote and
the possibility of verifying that one’s vote has actually been counted.
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Chapter 3

Verifiable Computation

With the increasing adoption of cloud computing, a crucial problem that arises is the potential
untrustworthiness of data processing results. Users lose full control over their outsourced data
stored outside their trust domains, raising concerns about the correctness of data processing and
the possibility of their raw data being learned or exploited by a semi-trusted cloud service provider
(CSP).

Traditional measures, such as firewalls and virtualization, are employed to safeguard user data
security and privacy from external attackers. However, these mechanisms are insufficient against
internal attackers within the CSP, as the provider controls the hardware and lower-level software.

Conventional encryption techniques fail to address this concern effectively because perform-
ing meaningful computations on encrypted data is challenging. Fully Homomorphic Encryption
(FHE) offers a potential solution by allowing computations on encrypted data without decryption,
but current schemes are impractical due to their high computational complexity [20].

This context underscores the need for research in verifiable computation to ensure the trust-
worthiness of cloud data processing. Verifiable computation enables clients to verify the correct-
ness of the results returned by the cloud, thus enhancing the overall trust in cloud services (see
Figure 3.1).

Cloud computing offers several advantages, including:

• no need to buy and maintain hardware;

• you pay what you use;

• scalability;

• location independent.

On the other hand, there might be no guarantees about data confidentiality, the correctness of
the executed operations and the result might be returned incorrect on purpose. For example, a
dishonest CSP could edit the operations to be executed for financial reasons. In addition to the
cloud context, there are other areas of use in the real world that require verifiable computation [21].

Volunteer computing is a form of distributed computing where individuals contribute their
computational resources, such as storage and processing power, to help compute small tasks for
various projects. The process involves breaking down large computations into smaller units, dis-
tributing these units to volunteers for processing, and then aggregating the results in a simplified
manner. The Great Internet Mersenne Prime Search (GIMPS) was the pioneering project that
introduced the concept of volunteer computing. The Berkeley Open Infrastructure for Network
Computing (BOINC) is a comprehensive middleware system for volunteer computing, encom-
passing a client, a graphical user interface for the client, an application runtime system, server
software, and software for managing a project website. It supports a wide range of scientific

21



Verifiable Computation

projects from the fields of astronomy, biomedicine, mathematics, climate change, physics, and
chemistry.

The key factors that make a verifiable computation system successful, in order of relevance,
are:

1. client’s confidential information must not be leaked;

2. the client uses way less resources than that are needed to perform the computation;

3. SP cannot use extra resources than the actually required for performing the computation;

where the client is intended as the CSP client, which requires the execution of some operations.

Figure 3.1. Verifiable computation scheme.

3.1 Assumptions based VC

Some of these solutions are focused on specially designed trusted hardware, while others pre-
sented audit-based solutions for ensuring security and verifying the correctness of computations.
Additionally, other proposals suggested using assumptions of replication or attestation to achieve
these goals.

Although secure coprocessors have been proposed for commercial use, these are limited in terms
of tamper resistance. Indeed today trusted platform modules (TPMs) are the standard for secure
crypto-processor. They offer secure storage and cryptographic key generation. Although TPMs
are available commercially at reduced costs, they present certain issues related to client privacy
and offer limited physical tamper resistance. Furthermore, TPMs do not ensure the integrity and
confidentiality of the physical memory space, which are critical concerns in verifiable computation.
Trusted hardware based solutions require high design and maintenance cost.

Other solutions make use of attestation mechanisms. Pioneer [22] is one of them. It is a
software based attestation system that can report failures at run-time using a challenge-response
model. As a drawback, it is required to the verifier to know the prover hardware configuration.

Another field of research focuses more on replication of computation by several servers. These
kinds of solutions put more emphasis on data consistency and availability, in fact they guarantee
the execution of operations even in case of failures (up to a threshold). However, this method
completely disregards the privacy aspect of the client.

3.2 Proofs based approaches

In this context, proofs are used, based on cryptographic and mathematical protocols, which allow
efficient verification of the correctness of the computation. In this way, the verifier is convinced
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by the proof and without the need to perform the computation again. As noted by Ahmad et
al. [21], there are different types of proof based approaches.

Interactive proof system (IP) takes into account an untrusted exponential time prover and
polynomial time verifier. It has been formalised for the first time by Goldwasser [1]. The properties
of these kinds of systems are:

• Completeness: the verifier accepts the correct statements returned by the prover.

• Soundness: the verifier can be convinced with a very small probability about an incorrect
statement returned by the prover.

Probabilistic checkable proof system takes into account a verifier that runs a polynomial-time
randomised algorithm with restrictions r(n) on the amount of randomness it can use and on the
maximum number of bits q(n) it can read from the proof. Given an input x and a membership σ,
the verifier must accept correct proofs and reject incorrect ones with very high probability. The
properties are:

• Completeness: the verifier accepts every random string of correct proof with probability 1.

• Soundness: the verifier rejects all the random strings of incorrect proof with probability
more than 1/2.

Computationally sound proof system aims to efficient verifiability, provability and recursive uni-
versality. Differently from other systems, in computationally sound proof systems, it is straight-
forward to compute a proof for a true statement, but difficult or nearly impossible to compute a
proof for a false one.

Zero knowledge proof system takes into account a prover that tries to convince a verifier about
a statement without disclosing any related information.

3.3 Formalisation

Verifiable computation enables a computational weak client to outsource its operations to any
untrusted party. The outsourced operation is represented by f that is computed on some in-
put x1, ..., xn dynamically provided to the powerful but untrusted worker. Once it finishes the
computation, it returns back the result y and the proof σ (as shown in Figure 3.1).

Gennaro et al. formalised the verifiable computation scheme in 2010 [23].

The first phase is preprocessing : the client computes public and private auxiliary information
associated with f . It can take as long as computing f itself, but since it is done only once, its cost,
in terms of time, is amortised. Then the input preparation takes place: it consists in computing
auxiliary information about the input x. Again, information is in the public and private domain.
Public information is sent to the worker. Once the worker finished computing f , it returns πx to
the client. πx is a string that encodes the result and the necessary information later used by the
client to verify the correctness.

The verifiable computation scheme can be summarised by 4 algorithms [23]: V C = (KeyGen,
ProbGen, Compute, Verify).

1. KeyGen(f, λ) → (Pk, Sk): according to the security parameter λ the key generation algo-
rithm returns a keypair where the public one is used by the worker to compute F . Sk is
kept private by the client.

2. ProbGenSk
(x)→ (σx, τx): it returns the above mentioned auxiliary information about the

input x. σx is encoded using the Sk and is meant as public value. τx is kept private by the
client.
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3. ComputePk
(σx) → σy: using the encoded input the worker computes the encoded output

σy ← y = f(x).

4. V erifySk
(τx, σy)→ (y,⊥): this algorithm uses the private input auxiliary information and

the encoded output to calculate y, otherwise returns ⊥ when σy does not represent a valid
output of f(x).

3.4 VC frameworks

This section describes three protocols based on zero knowledge proof that allow verifiable com-
putation.

3.4.1 ZEKRA

ZEKRA, Zero Knowledge Control Flow Graph, is a novel approach to control flow graph (CFG)
attestation [24]. ZEKRA is the first privacy-preserving control flow attestation protocol and
involves 3 actors (see figure 3.2. The prover is considered untrusted and underpowered. It must
only be capable of tracing the program execution and authenticating it. The verifier is another
untrusted device that only requires the execution of a program. It does not necessarily have the
appropriate hardware characteristics (i.e.: IoT device). For this reason, a semi-untrusted worker
is also employed. The worker is in charge of generating the proof on behalf of the prover of the
computation requested by the verifier. It uses zk-SNARK thanks to which it is possible to hide
inputs, such as attested execution path and program details, from an untrusted verifier. The
execution path is the ordered set of memory addresses that are taken during the execution of the
program. ZEKRA contributes to transforming the verification of the attested execution path into
a verifiable computational task that can be delegated to an untrusted worker.

The control flow attestation is mainly efficient against runtime attacks. Among possible run-
time attacks, ZEKRA counteracts those of the control and data types. The control-based attacks
aim to manipulate the control flow of a program during its execution. These include code injec-
tion and code reuse. The first one consists of diverting the execution path to external malicious
code. The second one “recycles” benign pieces of code (often called gadgets) that end with return
or indirect jump instructions. The non-control-data attacks aim to leak sensitive memory area
that are not directly used in control transfer instructions. Attacks have been discovered that are
capable of escalating program privileges to root through the only modification of a variable [25].

As mentioned before the nodes taken during the execution are stored as memory addresses.
However, representing the CFG using the memory addresses is not an efficient solution in terms
of lookups. This is why a mapping has been adopted. The mapping is used to translate the
list of possible memory addresses to indexes. These labels are stored in a IndexedBitArrayEdges,
structure suggested when consecutivity between neighbours of vertex is present [26]. In this
specific case it exploits the concentration of edges in specific area of the adjacency matrix (2×N×N
matrix where M(ni)(nj) = 1 means the existence of an edge from ni to nj).

The proof generated by the worker states that it successfully verified that the execution path
taken by the prover belongs to a legal control flow graph referred to by its image h = hash(CFG).
The verifier sends the execution request by the program reference and a nonce (for freshness rea-
son), respectively, @P and r1. The prover executes the program P and the trusted traces con-
temporary. It elaborates the execution path εP that is hashed with the verifier nonce and signed
with the prover secret key tsk. At the end the worker converts the execution path representation
in labels and then generates the proof. The worker sends the proof, public inputs y and prover
signed message to the verifier. y is composed of the digest of CFG, the mapping, the execution
path, the entry and exit nodes and r1.

3.4.2 Circom

Circom is a framework that allows developers to design arithmetic circuits at a constraint level.
The language offers a clear and intuitive syntax, making it more accessible to define complex
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Figure 3.2. Simplified representation of the ZEKRA protocol.

circuits. The primary output of Circom is a file that describes the circuit in the Rank-1 Constraint
System (R1CS) format (see Section 2.6.2). Circom defines a language with syntax specific to
circuit construction and provides a compiler. The generated circuit can be then used with zk-
SNARK to generate and validate zero knowledge proofs associated to the circuit.

The template in Circom is the structure corresponding to the circuits. They are characterised
by the input and output signals and describe the relationship between them. Templates allow
the realisation of more or less complex circuits thanks to their modularity: it is possible to define
small circuits and compose them together to form a more complex one. The Circom compiler
gives the possibility to compile the program in both C++ and WebAssembly. Additionally the
compiler offers the possibility to generate the binary representation of the R1CS. This second
option is given so that the ZKPs are brought to the web. Regardless of which two programs is
used, it, by providing the input values, calculates the remaining circuit values. In case the input,
intermediate and output values are valid, they are called witness. A scheme of Circom’s operation
is shown in figure 3.3. Circom being a mature ecosystem, it also offers the possibility of debugging
through the use of a logging function that can be of great help in debugging circuits. Circom also

Figure 3.3. Circom compilation scheme.

provides a wide variety of ready to use templates of all kinds called circomlib. As said before,
they can be used to build larger circuits. The available templates are for simple operations like
logic gates, comparators and multiplexers but also for more complex computations like digital
signatures and hash functions.

Among the possible applications of Circom there is hashing. Thanks to all the available
hashing functions in the circomlib, it possible to construct a template that generates a proof that
the prover knows a given value from which the public output hash has been computed. The
drawback of this implementation relates to the fact that common hash functions such as sha256
are computationally complex, and this one in particular is described in Circom by means of 29450
constraints. For this reason, there are templates in circomlib for other hash functions that are
more suitable for arithmetic circuits (e.g., Poseidon and Pedersen hash).

It is also easy to define a template for the generation of a public key generated on an elliptic
curve. Once the two parties agree on the generator (G), through a suitably structured short
template, it is possible to generate the secret key (Sk) as a random scalar and the public key as
Sk ×G.
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3.4.3 RISC Zero

RISC Zero provides an open source virtual machine with a zero knowledge proof system that, used
together, gives the possibility of guaranteeing computational integrity (Section 2.7) of a binary.
The ZKP system generates a zk-STARK proof which, together with other information, is called
receipt that is paired with the program output. Any binary compiled for RISC-V can be executed
within the zkVM (zero knowledge Virtual Machine), so even untrusted third parties can verify if
the computational integrity is respected.

This is the framework chosen for the implementation of the orchestrator, and is therefore
explored in more detail in the chapter 4.
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RISC Zero

The zkVM is the core component that makes RISC Zero a remarkable technology. It enables
developers to take advantage of an environment where it is no longer needed to code a circuit but
an app. This brings with it the possibility of exploiting the Rust ecosystem of libraries, without
worrying about rewriting them.

Guest code

RISC-V
Executable

Build

ImageID

Receipt

ImageID

Receipt

Verification

Execution trace

zkVM

Figure 4.1. RISC Zero architecture.

4.1 RISC-V

Before proceeding with the zkVM, it is necessary to mention the RISC-V Instruction Set Ar-
chitecture (ISA). First of all, the name is an acronym standing for “Reduced Instruction Set
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Computer”. The “V” indicates that this ISA is the product of the fifth edition of UC Berkeley’s
RISC architecture. Like its predecessors, this architecture is open, so anyone can inspect and
modify it as they wish. This key feature ties into the primary goal of the architecture: making
the ISA usable across as many devices as possible. It must therefore be implemented in such a
way that it does not reference or rely on pre-existing microarchitectural patterns [27].

Being an open and free standard, consumers are more incentivised to adopt this ISA rather
than a paid one, whose actual implementation is not fully known. Finally, it is ideal for those who,
distrusting closed-standard implementations and fearing industrial or governmental espionage,
choose to rely on transparent and modifiable standards.

As for the innovations in this latest version, they include:

• Support for 32-bit and 64-bit address spaces.

• Support for variable-length instruction set extensions.

• Hardware support for C11 and C++11.

• Separation between the ISA and optional extensions, aimed at streamlining the base ISA
while simultaneously improving performance.

The RISC-V version used in RISC Zero is rv32im. As mentioned earlier, in RISC-V, there is a
distinction between the base version of the ISA and the extensions. In this case, the base ISA is
rv32i and M is the extension.

rv32i is a base integer instruction set and, as such, is designed to support operations on 32-bit
integer numbers. It provides 40 unique instructions that enable arithmetic, logical, control flow
operations, and data movement between memory and registers. The “M” extension implements
multiplication and division operations between two integers in registers [28].

4.2 zkVM

The zkVM is a software emulator that implements rv32im and enables the generation of a zk-
STARK proof for the program executed within it.

Both in the zkVM and in the physical CPU, the clock cycle is used as the smallest unit of time.
It is marked by the tick of the CPU’s internal clock and, in this architecture, represents the time
required to perform a basic operation. Indeed, as in many architectures, not all operations have
the same cost. Logically, an add instruction requires fewer cycles compared to a div instruction.
According to the RISC Zero documentation [29], the peculiar aspect of the zkVM is that div
takes twice as long as add. In physical CPUs, however, the div instruction takes between 15 to
40 times [30] as long as the add instruction.

Regarding the actual execution of the program, it is single-threaded and does not differentiate
between privileged and user modes. Instructions are always executed in order and are never
re-ordered by the zkVM.

4.3 Concepts

4.3.1 ImageID

The verifier is able to check whether the computation has been altered in some way by only having
the receipt (see 4.3.2) and the app identifier, that is known as ImageID. This identifier has been
defined to face the need to uniquely refer to an app without the need of having it. Doing so, the
verifier can check without having the app stored in local but the ImageID, which is the root hash
given by the Merkle tree of the memory right after the binary is loaded. Thanks to the way it is
defined, the ImageID ensures that the identifier changes together with the guest code, even for
minor changes. SHA-256 is used as hash function.
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4.3.2 Receipt

Once the execution is completed in the zkVM, it is not produced a common zk-STARK proof
but a receipt. This structure is RISC Zero specific (Figure 4.2), and it is useful for a variety of
reason. The claim contains the public data. The most relevant information is the journal: the

Figure 4.2. Receipt structure.

developer of the guest code can decide whether and which variables to make public during the
execution. They all are then appended to the journal. The claim also includes information about
the program exit (in order to understand if it terminated correctly or not), the memory state at
the end of the execution and the ImageID too.

The seal is the actual zk-STARK proof. Thanks to the receipt, it not only binds to the app
execution but also to the claim information. In fact, if the claim data is changed, it can be found
out. At the same time, if the zk-STARK proof is changed or substituted with another proof, it is
detected because of the information in claim section (i.e.: ImageID).

4.4 Roles

In the RISC Zero architecture there are three roles:

• Guest

• Host

• Verifier

The guest knows the source code (also called guest code) and thus also the input and output
of the app. Only those in possession of the guest code (i.e. the guest) are able to generate the
ImageID. The executable produced from the guest code is executed on a machine called the host,
which handles the input values given to the zkVM and the output values returned from it. The
host machine, in the original RISC Zero architecture, is considered untrusted. Even if it has
malicious intentions, the host can only read and write the zkVM I/O, but it can’t tamper the
ZK app execution inside the zkVM without being detected. In case the zkVM runs in a trusted
domain, the generated proof, even if computed using private data, does not disclose any of it.

In the end the verifier (considered untrusted as the host) is anyone who knows the ImageID
and has a receipt. In RISC Zero the verification in some contexts can be very convenient as
multiple proofs can be aggregated into a single proof. Thus the verification of a single proof
guarantees the computational integrity of multiple ZK apps.

4.5 Workflow

In this section the architecture of the framework, its components, and how they interact with
each other are introduced. Figure 4.1 provides a summary diagram of the components and how
they are interconnected.
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First the guest code is written and, along with it, the inputs and outputs received, their types
and, if desired, the variable to commit are defined. Outside these operations the application can
be written with Rust, by also relying on the wide offer of available libraries (as today more than
70% are natively compatible with RISC Zero). The guest code is now ready to be compiled.
As the framework suggests, the binary is compiled in order to be executed later in the zkVM
that indeed adopts an ISA inspired to RISC-V rv32im specification. This architecture also allows
developers to write code in other RISC-V compatible languages, such as Go and C.

At this point, the host relieves. For it to be able to perform its tasks, it must have at its
disposal:

• ELF file;

• input (also the type of it).

The host instantiates the Executor, the component in charge of generating the execution trace
(mentioned on Section 2.7.1), set the maximum number of cycles, set environment variables,
arguments and writing to the standard input to communicate to the guest app. The executor
collects the data representing a snapshot of the full state of the machine at each clock cycle. The
transition from execution trace to receipt is carried out in a manner similar to that of zk-STARK.
The peculiarity is that in this case the execution trace consists of:

• data columns comprising the processor status, ISA registers, the program counter, ALU
registers and other microarchitecture details;

• control columns are responsible for managing system initialisation and termination pro-
cesses, establishing the page table with the program’s memory image, and orchestrating
various control signals that operate independently of the program’s execution;

• accumulator columns for emulating RISC-V memory.

With this data at hand, the procedure is the same as for zk-STARK: padding of the execution
trace is done, trace polynomials, constraints polynomials and FRI protocol are generated (see
Section 2.7).

The next zkVM component is the Prover that transforms the execution trace into a receipt.

Once the receipt has been created and distributed, anyone can check its validity by just knowing
the ImageID. The verification process is the same as that of zk-STARK which is explained in
the 2.7.4 section. The only differences are that in this case there is no continuous communication
but the protocol is non-interactive: all the information the verifier needs is contained in the
receipt. Furthermore, the proof not only attests the correct execution of the program, but also
links to the public output, the journal. The proof is false if the journal is tampered with.

4.6 Compliant application: password checker

An example of a possible application of RISC Zero is the password checker. The operation of
the program is as follows: given as input a string and an array of bytes, password and salt
respectively, the validity of the password is checked (see Figure 4.3). The criteria by which this
password is considered valid or invalid are specified in a constant called PasswordPolicy, in
which parameters such as min length, max length, min lowercase and others are specified. In
this specific case, the policies to be observed are those indicated in the snipped 4.1, which can
of course be completely changed and managed as required. If the parameters are not met, the
application panics, otherwise it proceeds with the generation of the hash (using the salt provided)
and finally commits the password hash to the journal, so that the proof is bound to the public
data (hash).
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const POLICY: PasswordPolicy = PasswordPolicy {

min_length: 7,

max_length: 64,

min_numeric: 2,

min_uppercase: 2,

min_lowercase: 2,

min_special_chars: 1,

};

Listing 4.1. Possible implementation of password policy.

PasswordPolicy validation

Abort Derive password hash

Figure 4.3. Password checker algorithm.

This specific application is useful because it allows plain password checks to be carried out locally,
thus avoiding having to do them on a web page. It could be said that doing so reduces the possible
shared information and thus reduces the surface attack.

4.7 Cryptographic security

In the RISC Zero documentation, cryptographic security is also discussed. More specifically, two
potential threats are considered: the difficulty for a malicious user to generate a valid proof without
knowing a valid execution trace, and the difficulty for a malicious user to extract information from
a proof. Assuming the presence of a Random Oracle Model, the RISC-V Prover achieves 98-bit
security while maintaining quantum-safe property.

Further studies have also been conducted on the STARK Prover (that is used in the RISC
Zero prover). The problem analysed is that of collision brute force against the STARK protocol.
It was assumed that an attacker has access to 1 million high-performance GPUs (RTX 4090).
According to the benchmark published on GitHub [31], this graphics card has a hash rate of less
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than 25 billion hashes per second. Based on the following calculation, it would take 400,000 years
to brute force a collision:

298

25,000,000,000Hashes/s · 1,000,000GPUs
= 1.27 · 1013 seconds = 401,969 years (4.1)
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VerComp Design

The designed application aims to provide an environment for the execution of software with
verifiable computation and ZKP included. The environment under consideration consists of a
client and a server. One or more clients can share an app with the server and request its execution.
The server will respond with a receipt demonstrating the actual execution of the software. In this
way, after the execution, the client is assured that its app has been executed correctly, in its
entirety.

5.1 Purpose and motivation

The reasons why VerComp was created are many and will be discussed in this section. When a
customer decides to take advantage of cloud services such as the use of instances in remote servers,
he must also be aware that, despite all the possible guarantees given by the CSP (Cloud Service
Provider), the customer can never be certain that what he asks to be executed, will be executed
without a hitch (as explained in chapter 3). VerComp provides more guarantees in this context.

This tool allows customers to delegate computationally intensive tasks to untrusted cloud
service providers, while guaranteeing the correctness of the results. It ensures that computations
are performed correctly, and that results can be verified by the customer, increasing security and
trust in the cloud environment. In addition, the decision to use VerComp in the cloud could be
advantageous for small and medium-sized companies in terms of cost. Delegating computationally
intensive tasks to a CSP can reduce the costs of maintaining and scaling their infrastructure. So
far, computationally intensive operations have been mentioned because the involvement of ZKP
and verifiable computation techniques (hence the use of RISC Zero) is expensive in terms of
required resources.

This solution guarantees verifiable computation with the addition of ZKP. This additional fea-
ture ensures that the proof does not disclose any information relating to the computation (except
intentionally, as explained in the section 4.3.2). In this way, the receipt may be inspected first and
foremost by the client, but also by third parties, without them learning any private information.
Moreover, in the event of unauthorised disclosure of this data, due to the characteristics just
mentioned, the attacker would not be able to steal information.

If on the generation side, proof represents a great effort in terms of computation, on the other
hand, at the verification side, it can benefit from the possibility of performing verification in
a very short time. It thus becomes fast and convenient to verify the proof and thus the correct
execution of applications that on the client side could not even be executed without the appropriate
hardware. In conclusion, as this is an innovative area and still under development, VerComp
could solve existing problems or create new opportunities. Since the exchange of receipts between
untrusted third-parties is possible, there is the possibility of interaction even in the absence of
trust (trustless interaction), creating new scenarios and use cases in which verifiable computation
and ZKP can come to the rescue, especially in cases where very sensitive data such as health,
finance and digital governance are involved.
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5.2 Actors and protocol

Figure 5.1. Receipt generation process actors.

As depicted in Figure 5.1, there are three actors:

• Client: it owns the source code of the application to be executed in the zkVM and to be
proved. It is possible to generate the ImageID from the source code, so only he is able to
generate it.

• Server: the machine that handles the execution requests and instantiates the VMs on which
the applications are executed. It uses HTTP REST API requests to communicate with the
client.

• Third-party client: this is the only optional actor. Based on the kind of application, they
can be part of the process. They might be interested in making sure the application has
been correctly executed. Again, based on the scenario, they might already be in possession
of the ImageID or they might ask it to client.

Proceeding in order, the data involved in this process are as follows:

• Source code: This is written by the client using a programming language compatible with the
RISC-V architecture (in VerComp is used Rust). It is also possible to distinguish within the
code the parts that require verification from those that do not. Additionally, the application
must be developed using the RISC Zero library, which allows integration with the zkVM,
as it provides methods for reading inputs (which are passed by the host at runtime) and
appending public outputs to the journal.

• The application (as ELF file), and the ImageID (discussed in section 4.3.1 are generated as
a result of the build process.

• Input values: referring to Figure 5.1, at point (3), input values are passed to the server.
These are written in JSON format, for a reason that will be specified later (Section 6.1).
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• Receipt (discussed in section 4.3.2), serialised and forwarded to the client, who writes it into
a file. For simplicity, although there are no constraints on this, the receipt is usually saved
in a file, with the extension .risc0.

The Figure 5.1 also describes the interactions between the actors and shows when the above-
mentioned data are used. Initially, the client, in possession of the source code, (1) performs the
build process, resulting in the ELF binary file (app1) and the ImageID, obtained from the Merkle
tree root calculated on the state of the virtual machine after the executable has been loaded
into memory (represented by a SHA-256). Subsequently, using the APIs provided by the server,
(2) the client requests the server to upload the executable so that it can be executed at a later
time. If successful, (3) the server will respond with an identifier that the client can use later to
reference the uploaded executable. The client then makes a second request to the server and, if
necessary, also attaches the input values. At this point, (4) the server instantiates a zkVM, loads
the requested binary file, and executes it using the input provided by the client. Upon completion
of the execution, a receipt will be generated and returned to the client. Finally, (5) the client
can verify that the application was indeed executed by the server and, if needed, examine the
additional public information (journal). Optionally, as a final step, the client may (6) share this
receipt with third parties interested in the outcome of the execution. These parties will only need
the ImageID and the receipt to verify the result.

5.3 Additional components

Overall, two additional components are utilised to complete the process. The first is employed
during the build phase. As explained in Section 4.3.1, the ImageID is represented by an SHA-
256 hash, which depends on the binary file loaded into memory. Since compilation with Cargo
is typically non-deterministic, the developers of RISC Zero have defined a method to make the
build phase reproducible by using Docker.

The other additional component is used during the verification phase. It consists of a CLI
interface that includes a command which, when provided with the ImageID and receipt, swiftly
verifies the correctness of the execution. It was also necessary to develop this software in order to
allow the verifier to control the receipt easily with a simple terminal command.

5.4 Software design

The server provides routes that can be reached via HTTP requests. Recalling what was said in
section 4.4, the host has the task of creating and managing the zkVM. Again, the VerComp host
does the same job as the RISC Zero host in addition to handling the requests received. So once it
receives a request to execute a certain program, using the RISC Zero library, it creates the zkVM,
passes it the input and starts execution. On the other hand, when it is asked to save a program so
that it can be executed later, a simple data copy operation is performed from the HTTP request
body to the server’s file system.

Figure 5.2 shows the sequence diagram that describes the entire VerComp process.

35



VerComp Design

Figure 5.2. VerComp sequence diagram.

The client instead only needs to send HTTP requests with a more or less automated tool of
his liking.

5.5 Security reflections

Before proceeding further, it is necessary to provide a specification regarding the server. It is
firstly assumed that the server is accessible upon an authentication layer (e.g.: via site-to-site
VPN).

Furthermore, due to the nature of the protocol, the server must receive input from the client
in order to forward it to the application running within the zkVM. This implies that the server
has the ability to read the data in clear text. For this reason, to maintain the integrity and
confidentiality of this sensitive information, Homomorphic Encryption techniques should be used.
However, due to the early stage of Homomorphic Encryption, it is necessary to wait for the
advancement of study and research in this area in order to implement it in real scenarios.

5.5.1 Possible attack vectors

A malicious attacker could try to act and tamper with the system in various ways. Let us assume
that the attacker has taken control of the host machine. In this way, he could intercept and observe
all executables at his disposal (saved locally) and intercept all requests received from the client.
In this case, the attacker could only observe the execution of the program, always considering
that it is executed within a virtual machine. He could also decide to divert the normal execution
flow of the program, which would then be a control-based attack, also mentioned in section 3.4.1.
Should the attacker do this successfully, verifiable computation, the property that VerComp aims
to guarantee, remains unchanged. In fact, once the execution is complete and the receipt is
generated, it will be incorrect, and thus the client will be aware that something has gone wrong.
The attacker could also try to modify a receipt, with the intention of faking it. For instance, he
might try to modify the output of the program, the journal information. Again, the client would
become aware of this during verification. Finally, as far as replay attack is concerned, this is not
directly counteracted by VerComp. To prevent an attacker from modifying the execution flow by
sending the client a receipt relating to a correct but previous execution, a nonce must be added as
an additional input to the application and committed. In this way, when the client later goes to
check the receipt, it would also check the nonce in the Journal to ensure that it is not the victim
of a replay attack.
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VerComp Implementation

In this section, practical aspects of the implementation are explored in greater detail. First, the
handling of data formats will be explained, followed by a description of the routes implemented
by the server to manage requests.

6.1 Data serialization

The ELF file running within the virtual machine reads input data when necessary using a method
provided by the RISC Zero library. This method allows for the reading of data of any type,
including classes defined by the guest itself. This approach gives the developer complete freedom to
handle input data as she pleases. However, in VerComp, this flexibility introduces a compatibility
issue, as it is not possible to know in advance the type of variable that a program will take as
input.
To resolve this issue while still allowing the use of all data types, the input is conventionally
serialized as JSON. This approach ensures that the user retains full flexibility in handling data,
but it also requires them to independently manage the serialization and deserialization of the
data.
The format of the Receipt has also been modified. The original format, as defined by RISC Zero,
is not directly usable. For this reason, each time before returning the receipt to the client, the
server serializes it using bincode, a well-known Rust crate for serializing and deserializing structs1

into bytes [32].
The last and only object whose management cannot be facilitated and improved is the Journal.
This is defined as a vector of bytes and as such, in order to allow for better understanding and
interpretation of the information contained within it, it would be necessary to know how to
interpret the bytes at the time of reading. The process of verifying the receipt, and thus the
reading of the Journal, takes place via a CLI which, in order to keep the command simple, cannot
also handle this aspect. This is why the Journal array is printed as a sequence of bytes during
verification.

6.2 Server

6.2.1 APIs

Two APIs are made available by the server, which manage the two possible client requests. The
endpoint POST executable/add requires the binary ELF file to be inserted within the POST

1In Rust the struct is the equivalent of class.
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body. The server subsequently saves this file in the local directory executables with a ran-
domly generated 6-character identifier. In the event that the file is successfully transmitted and
copied, the server returns a 201 status code and a JSON object containing only the ID value
to communicate the executable’s identifier.

The other endpoint is POST executable/run/<elf id>, where the path parameter includes
the file extension (e.g., bkos2x.elf). The POST method was chosen because the input to be
subsequently fed to the application is passed in JSON format within the body. It will then be
the Executor’s responsibility, if the input is present, to communicate it to the application within
the zkVM. In the event that the application’s execution terminates without errors, the Receipt
is returned serialized using bincode. Otherwise, text containing the error that interrupted the
execution is returned.

6.2.2 Technical implementation

On the server side, as on the client side, the software was implemented in Rust. This choice was
guided by the characteristics of this programming language, including the resolution of dangling
pointers, protection against buffer overflows, critical runs, arithmetic overflows and much more.
The checks on these criticalities and many others, unlike many other languages, are done at
compile time, thus avoiding unexpected behaviour and devastating consequences. Wanting to
make a comparison with Java, Rust does not need a garbage collector, precisely because of this
long series of checks that are done at compile time and not at runtime. Besides the great potential
of the language, the choice of the latter is also due to the fact that the RISC Zero library is written
in Rust, so it was also easier to integrate RISC Zero into a program written directly in Rust. This
library, like Rust on the other hand, is based on strong typing, which helps to avoid errors and
especially to reveal them at compile time. Another useful feature is JSON deserialisation, which
is automatically handled by Rocket. In terms of security, it facilitates the implementation of
HTTPS, data limits to prevent DoS attacks and much more. Finally, it also provides tools for
carrying out unit and integration tests.

The CLI tool made available to the client is also written in Rust. The decision to realise
this tool is driven by the objective of increasing the usability of the software, more precisely the
verification phase. This phase can be encapsulated by the execution of a verification function,
made available by RISC Zero, which, receiving the imageID and receipt as input, determines
the correctness of the latter. However, performing this operation without the help of this tool
would mean having to manually launch a script each time to which these arguments are passed.
Moreover, the ImageID is managed internally by RISC Zero with the type Digest, which is
obviously not directly compatible with the base64 string returned as a result of the build (see
section 5.3). It is therefore also necessary to perform a decode operation. All these operations
are handled by this tool, defined using the clap [33] library, which stands for Command Line
Argument Parser. It was very helpful because it was sufficient to define an enum variable with the
command and the various options with their characteristics (data type, optional, etc.). Providing
the essential information then takes care of everything else, including the generation of error
messages, help messages and even giving the shell hints on how to complete an argument (as in
the case of the receipt where the argument is accepted as long as it points to an existing file).
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Test and Validation

7.1 Testbed

In order to assess the proper functioning of VerComp and its security, a single machine acting as
both client and server was used. Below are the technical specifications:

• CPU: Intel® Core™ i5-4440 × 4.

• RAM: 16,0 GiB.

• OS: Fedora Linux 40 (Workstation Edition).

• Kernel version: Linux 6.10.11-200.fc40.x86 64.

• rust: 1.77.2.

• cargo: 1.77.2.

• RISC Zero toolchain: 0.19.1.

7.2 Functional Test

PasswordChecker is used to prove that the receipts are strictly related to the ImageID, hence to
the source code. In this test, a receipt is generated after execution of the PasswordChecker app.
The application code is then modified, omitting the policy check. These lines of code shown in 7.2
are then commented out. By doing so, the chosen password is not checked, but the application can

if !POLICY.is_valid(&request.password) {

panic!("Password invalid. Please try again.");

}

still be executed successfully. What is important is that the ImageID changes from the previous
one. A new receipt is generated for the app with the policy check removed, with the following
command:

curl $endpoint/executable/run/du3hsv.elf \

--data '{"password": "password","salt":

[12, 198, 45, 128, 250, 67, 14, 89, \

255, 3, 172, 201, 90, 37, 112, 56, \

144, 220, 7, 33, 244, 188, 67, 0, \

154, 200, 47, 69, 120, 213, 88, 132] \

}'
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At the end of execution, a valid receipt is generated. Through the verify command, it is possible
to distinguish and recognise that a receipt is related to the first version of the password checker
or related to the version that does not check the policy. This distinction is possible thanks to
the imageID, which, regardless of how large the changes to the code are, changes. Consequently,
when verifying the same receipt (the last one generated) by referring to the imageID of the original
PasswordChecker (which correctly checks the policy), the verification ends with a negative result:

The receipt is not valid.

image_id mismatch

If, on the other hand, the verificatio is carried out with a correct receipt and the right ImageID,
it is printed:

The receipt is valid. This is the journal:

Journal {...}

7.3 Performance Tests

Considering the hardware limitations of the machine used, performance tests were carried out in
the following situations:

• The server runs the application on bare metal and in the zkVM without generating the
receipt.

• The server runs only one application at a time.

• The server runs two applications at a time.

• The server runs three applications at a time.

In each of these four cases, measurements of the same application were repeated 10 times, in fact,
10 different trends over time can be distinguished in the following graphs.

7.3.1 Execution on the machine and without generating the receipt

With the aim of having a basis for comparison, further measurements were first carried out with
regard to the execution of the PasswordChecker application without the aid of RISC Zero. Only
the code actually executed by the guest, i.e. the generation of the password hash if the policy
is complied with. Given the speed of this operation, the only approximate metric that could be
grasped from this application was the execution time. Even in this case, the measurement was
taken 10 times and the result is 0,031s per execution.
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Figure 7.1. Measurement of the CPU consumption of the PasswordChecker application within
the zkVM (without generating the receipt).

The second measurement was made on the application that makes use of RISC Zero, thus also
of zkVM, but does not generate the receipt. To do this, it was sufficient to place the environment
variable RISC0 DEV MODE=1 before the executable to be launched. Obviously, the execution time
and the expenditure of resources is greater than if the application was executed directly on the
machine.The figure 7.1 shows the CPU consumption over time and the figure 7.2 the memory
consumption. These graphs show that using the zkVM increase the execution time by an order
of magnitude compared to execution on the machine. However the running time remains below
0.156 seconds and on average 0.148.

Figure 7.2. Measurement of the memory consumption of the PasswordChecker application within
the zkVM (without generating the receipt).
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7.3.2 One or more parallel executions

Regardless of the number of applications launched in parallel, the method for measuring perfor-
mance was as follows. Using a script written in Python, the command to start the Vercomp server
is launched. Of this, the PID and all its child processes are considered. At an interval of one
second, measurements of CPU and RAM consumption are taken and written to a CSV file. Once
the measurement was finished, using another script also written in Python, two different graphs
were generated representing the consumption of each of these two resources.

All cases in which the receipt is generated are enclosed here. Since the generation of the receipt
is the most onerous task of Vercomp, the time will be incredibly long compared to the previous
ones. Table 7.1 summarises the results of these tests.

Considering the previous measurements taken while not generating the receipt, it can be seen
that the execution itself has a minimal, practically negligible time compared to the generation of
the receipt. In fact in figure 7.3 can be seen that the average duration is 406 seconds, reaching
a maximum of 452 seconds (approximately 7 minutes). Figure 7.4 shows memory consumption.

Figure 7.3. Measurement of the CPU consumption of one PasswordChecker application.

Compared to the memory consumption shown in figure 7.2, in this case it can be seen that
in all executions, at around the second 170, there is a brief plunge and shortly afterwards a
small rise, to then remain practically constant until the end. When running two applications in
parallel, the peak CPU consumption is around 95% 7.5, as in the case of a single application.
However, the average CPU consumption increased from 72% to 87%. In fact, the curve in the
first phase is steeper than in the previous case. Memory had a predictable trend as average
and peak consumption doubled to 7846 MiB and 10002 MiB, respectively (7.6). The valley
previously described continues to be seen to occur proportionally at the same spot. With one
more application than in the previous case, the time increased by 1.7 times, almost doubling.

In the last case under consideration (Figures 7.7 and 7.8), the memory consumption growth
remained constant and the average CPU consumption increased by 4 percentage points to 91%.

As had been the case when switching from one to two applications, the average execution time
increase by about 300 seconds (5 minutes) to an average time of 1058 seconds and a maximum
time of 1066 seconds (more than 7 minutes).

Finally, the table 7.1 is shown, in which all the results discussed so far are merged to give a
general overview of how the increase in applications running in parallel increased the resources
used.
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Figure 7.4. Measurement of the memory consumption of one PasswordChecker application.

Figure 7.5. Measurement of the CPU consumption of two PasswordChecker applications.

7.3.3 Verifier

Lastly, a mention of the tests carried out on the verifier. In order to understand its performance,
the execution of the verify command was considered, which determines whether a receipt relating
to an ImageID is correct or not. The duration of the execution was then measured 10 times. The
time over the various measurements remained fairly constant, with an average duration of 0.12
seconds. The command launched is as follows:

risc0_receipt_verifier verify \

--image-id a08818cc157091e7b36f0f68754e75f5ce23bee478b83e157ae93243574da40d \

--receipt receipt.risc0
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Figure 7.6. Measurement of the memory consumption of two PasswordChecker applications.

Figure 7.7. Measurement of the CPU consumption of three PasswordChecker applications.

Time (seconds) CPU (%) Memory (MiB)
Min AVG Max Min AVG Max Min AVG Max

Without receipt 0.14 0.14 0.15 0 18.17 23.65 0 33.08 81.59
One application 375.17 406.13 452.74 0 72.80 94.14 0 3756.96 5006.02
Two applications 704.97 715.37 734.88 0 87.08 95.76 0 7846.42 10002.77
Three applications 1050.89 1058.57 1066.28 0 91.12 96.44 0 11430.52 14872.66

Table 7.1. Overview of time and resources in the various performance tests carried out.
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Figure 7.8. Measurement of the memory consumption of three PasswordChecker applications.
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Chapter 8

Conclusion

The main objective of this thesis was to investigate the area relating to secure remote execution,
i.e. verifiable computation. To this was added the study and use of ZKP technologies. In fact,
before developing the final solution, several solutions were explored and evaluated to implement
the verifiable computation mechanism with the addition of ZKP. In the end, the choice fell back on
the zk-STARK protocol. Numerous reasons guided this choice, among which, the non-compulsory
trusted setup phase and above all the fact that it is post-quantum resistant since, unlike zk-
SNARK, it is based on technologies that, for example, do not rely on the discrete logarithm
problem.

Once a receipt for an application has been generated, VerComp allows anyone in possession
of that application, or its identifier, to ensure that the execution was correct, thus guaranteeing
verifiable computation without disclosing private information. In addition to being certain that
the application was executed correctly, the output of the program (also protected from tampering)
is also attached. It is also possible to integrate most of the available external libraries, distributed
by the Rust package manager, into the application. This possibility makes the development of
such applications easier and faster for developers.

On the other hand, VerComp, as demonstrated by the conducted tests, exhibits execution
times that are several orders of magnitude higher due to the generation of the receipt, compared
to execution without receipt generation. This significant slowdown is primarily attributable to
the zk-STARK protocol, which, in order to generate the proof, must first meticulously save all
execution data (in this case, the virtual machine data) on a clock cycle by clock cycle basis, and
then process this vast amount of information to extrapolate the proof. This intricate process,
while ensuring a high degree of security and verifiability, introduces a substantial computational
overhead.

The complexity and computational intensity of the zk-STARK protocol directly impact the
system’s performance. Each operation must not only be executed but also recorded and sub-
sequently processed for proof generation, effectively multiplying the workload for every single
operation. This approach, while offering robust zero-knowledge proofs, comes at the cost of
increased time and resource consumption.

Consequently, at present, to adapt such a solution to real-life scenarios, it would be necessary
to provide adequate hardware support. This might involve high-performance computing systems,
possibly including specialised hardware accelerators designed to optimise zk-STARK computa-
tions.

Furthermore, an additional consideration arises from the architecture of the library that has
been utilised. When running an application that receives data as input, the server (or host)
receives this data in an unencrypted form. This architectural characteristic introduces a potential
threat for confidentiality. For this reason, to maintain the integrity and confidentiality of this
sensitive information, this machine must be considered trusted and must be physically located
within a secure, trusted domain.
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Conclusion

As far as possible developments and improvements of VerComp are concerned, the APIs made
available could be extended. Security mechanisms could be added, including the authorisation
whereby, when uploading, the user specifies whether the uploaded application can be executed by
anyone, only by himself or by a specific group of users. Obviously, such an underlying mechanism
would need an authentication mechanism to identify the various users. Finally, as a matter of
readability, the display of the Journal (public output) could be improved. At present, this is
printed out as a sequence of bytes, since the server is not aware of the type of object being
transported in it. Furthermore, this object could be of a custom class, specially created by the
client, which the server does not even know exists. It could be considered to bind the journal
output type to Rust’s standard types, or to make a more complex modification that allows the
server to also be provided with the class that defines the object transported in the journal.
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Appendix A

User’s manual

This chapter explains the process for installing and using the VerComp framework. The in-
structions that the server machine must follow to install and run VerComp are first introduced,
and then those of the client. With regard to the executed application, the Password Checker
(mentioned in section 4.6) will be taken as an example.

A.1 Server installation

Since the server application is written in Rust, version 1.77.2 of Rust and Cargo must first be
installed, according to the official website [34]. Following installation, it will not only be possible
to build and execute projects, but also to manage and import dependencies, as installing Rust
also automatically installs Cargo, the package manager.

At this point, the RISC Zero toolchain must be installed. The RISC Zero documentation
mentions commands to be sent from the terminal to install the toolchain directly via Cargo.
However, this cannot be done, because the latest version would be installed, while VerComp
makes use of the 0.19.1 version. Therefore, the best solution is to retrieve it directly from the [35]
repository on GitHub and download the already compiled binary. It will then be necessary to move
the contents of the archive into the /.cargo/bin/ folder, where the globally installed executables
are located. Once the binaries are moved, the commands cargo-risczero risczero install

and cargo-risczero risczero build-toolchain must be run. In this way, it is possible to
immediately check whether everything is working by running the command cargo-risczero -V

to check whether the binary file has been saved in a folder in the $PATH variable or not. If the
result is positive, the next step is to proceed with the actual installation of the server application.

Assuming that the VerComp source code is available, move into the folder and compile the
project with the command cargo build or cargo build --release if it is desired to generate
the optimised executable. The result of the build will be found inside the target folder and
then on the corresponding subfolder, depending on which type of build was made. Finally, the
executable is launched, and the server is ready to receive and execute the client’s requests. From
the moment the application runs, the ELF executables received from the client will be stored in
the executables folder. In addition, a web server will be created that will respond to requests
received at port 8000.

A.2 User installation

In the same way as the server, the client also needs to install Rust and Cargo first. For the
client, they are even more necessary because it must develop the application and integrate it
with the libraries it needs. Therefore, it must follow the same procedure as mentioned above
(including moving the executables to the correct folder). Once the installation of Rust and
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Cargo is finished, RISC Zero will also be installed in the same way as the server. Next, it is
necessary to ensure that Docker is installed on the machine. The latter is essential because, as
mentioned in the section 5.3, the deterministic generation of the ImageID following the build
is guaranteed thanks to a reproducible build method implemented using the Docker container.
The last installation required concerns the software with which to send HTTP requests. During
development, cURL [36] was used, so follow the instructions on the official site for installation.

cargo risczero new my_project --guest-name guest_code_for_zk_proof

The client only has to deal with the module of the guest, and thus with its corresponding folder.
This is because, the executable that is generated after the build, and which is supplied to the
server, is the one related to the guest and not to the host, which is instead completely implemented
and managed server-side. It is important to remember that the data before being exchanged must
be serialised according to the logic explained in the 6.1 section, so it must be considered that the
input received from the host is encoded as JSON, so parsing must be done before it can be used.

To simplify the explanation and give a practical demonstration, assume that along with the
VerComp source code, the code for the PasswordChecker is supplied. The application is then
prepared and ready for the build process to be executed. Start the Docker service and then run
this application build command from inside the project folder:

cargo risczero build --manifest-path methods/guest/Cargo.toml

It is important that Docker is running because it is being used at the moment. In fact, by reading
the terminal logs, it can be clearly seen that a container is being launched. At the end of the
operation, the ImageID for the application and the path to the application compiled with the
corresponding identifier are printed out on the terminal.

At this point, the first request to the server can be made: uploading the app. Assume that
the IP address or URL of the server is stored in the system variable $server, then the command
must be run:

curl $server/executable/add --data-binary "@<elf_path>"

Where elf path is the path to the executable given along with the ImageID. The server will
return the application ID (id app). The second request that is sent by the client is to request the
execution of the application that has just been loaded:

curl $server/executable/run/<id_app> --data {"password":"<plain password>",

"salt": [161,252,...]} --output receipt.risc0

At the end of the request, the client will save the receipt transmitted by the server under the
name receipt.risc0, as specified in the command, in the current path.

The client may decide whether to verify the receipt itself and/or to communicate it to third
party clients. Regardless of this, anyone wishing to verify its correctness must fill out the ver-
ifier CLI. This is also made available with the VerComp source code and must be installed by
pointing to the verifier folder with the command cargo install --path . . The executable
risc0 receipt verifier will be installed into the .cargo/bin folder. At this point, simply run
this command:

risc0_receipt_verifier verify --image-id <image_id> --receipt <receipt_path>
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This chapter will describe the APIs made available by the server to manage the addition and
execution of applications.

B.1 VerComp Server APIs

Add executable

POST /executable/add

It uploads the executable to the server.

Request Object

• elf file (File): the file to be uploaded.

Response JSON Object

• id (string): randomly generated by the server. 6 random alphanumeric characters with an
elf extension.

Example response

{

"id": "fwo2j7.elf"

}

Run executable

POST /executable/run/<elf id>

It requires the execution of the app identified by <elf id>.

Request JSON Object

The JSON representation of the input data that the executable needs to run.
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Request JSON example

{

"password": "S3cretPla1nPWD!",

"salt": [

12, 198, 45, 128, 250, 67, 14, 89,

255, 3, 172, 201, 90, 37, 112, 56,

144, 220, 7, 33, 244, 188, 67, 0,

154, 200, 47, 69, 120, 213, 88, 132

]

}

This example takes up the PasswordChecker program discussed in the section 4.6.

Response Object

Regardless of the outcome of the computation, if the executable is correctly developed and thus
handles unrecoverable errors appropriately, the receipt is returned. The unrecoverable errors,
as specified in Rust [37], are the cases where the program panics, e.g. tries to access memory
locations beyond the size of the array.

B.2 Verifier

#[derive(Subcommand)]

pub enum Commands {

/// Verifies a receipt based on its path and base64 encoded imageID

Verify {

/// base64 encoded ImageID

#[arg(short, long)]

image_id: String,

/// Path of the receipt

#[arg(short, long, value_hint= clap::ValueHint::FilePath)]

receipt: String,

},

}

This is the enum variable which, thanks to clap, can define one or more commands with their
options attached. As can be seen, this library allows a simple and clear definition of the CLI. The
syntax of clap is so compact that even comments marked “\\\” are used as a description of the
related option. In the above case, the command is only one, as already mentioned, and checks
the receipt via the two options image id and receipt.

The result from the terminal is shown in the Figures B.1, B.2. The ImageID is decoded via
the trait From that converts from a base64 string to an object of type Digest (see code B.2. In
Rust, the trait defines a functionality that a given type has, which it also shares with other types.
For example, a function may also be defined in which the required parameter is not of a specific
type but implements a specific trait.

The receipt, as already mentioned in section 6.1, once produced, is serialised so that it can be
communicated via HTTP and deserialised once received. The command shown in the figure B.2
is used.
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Figure B.1. Risc ZERO receipt verifier description.

Figure B.2. Risc ZERO receipt verifier, verify command help.

let image_id_digest = Digest::from_hex(image_id)?;

Figure B.3. Decode base64 ImageID.

let receipt_serialized: Result<Vec<u8>> = bincode::serialize(&receipt);

Figure B.4. Receipt serialize.
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