
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Design and Implementation of a Microservices-Based
Serialization System

Supervisors Company Candidate
Prof. Stefano Quer AROL Group Alessio Chessa

October 2024

Summary

Digital innovation is transforming tools and processes across all industries, and adapting
to these changes is essential for companies that aim to stay competitive in their field.
Integration of new technologies, tools and software can significantly improve communi-
cation between businesses and clients, speed up crucial processes, and increase overall
productivity.

One critical internal process affected by this digital transformation is product serial-
ization. An effective serialization system simplifies the tracking a product’s lifecycle for
company operators and provides customers with accessible product information. There-
fore, enhancing this process can lead to improvements in production management and
customer relationship management.

This thesis focuses on the development of a system to digitalize the serialization pro-
cess and to support business-customer interactions through a customer portal for AROL
company. Serialization allows operators to generate a unique QR code for each product,
which can be scanned by customers or operators to obtain product-specific information,
differentiated based on user permissions. To achieve these goals, the system consists of a
frontend web application, discussed in a parallel thesis by another PoliTo student, and a
backend system, which is the main focus of this project.

Following the current best practices in modern web application development, the back-
end system will be built using a microservices architecture. It will not only manage prod-
uct serialization, but also provide functionalities to support a customer portal for client
interactions. A crucial feature of this system is user verification and permission manage-
ment, which determines what information users can access by scanning a QR code and
what operations they are authorized to perform. This security layer is handled by an
IAM (Identity and Access Management) microservice. Additionally, the system includes
a machinery microservice that manages AROL product data, enabling users to fetch in-
formation about specific products. The ticket microservice, which constitutes the core of
the serialization mechanism, translates unique string identifiers into internal serial codes
and vice versa. These identifiers are then used to generate QR codes for the corresponding
AROL products.

The thesis covers the design and implementation of these microservices and concludes
with the release a proof-of-concept software that will be evaluated by the company to
assess its feasibility and potential integration into the existing IT ecosystem.

1

Contents

List of Figures 5

List of Tables 6

Acronyms 7

1 Introduction 9
1.1 AROL . 9
1.2 Project Aim: Enhancing Digital Integration 10

1.2.1 Digital Integration Benefits . 11

2 Requirements 13
2.1 Informal description . 13
2.2 Stakeholders and Context Diagram . 13
2.3 Functional Requirements . 14
2.4 Use Cases . 15

2.4.1 Use Case 1: User Registration . 17
2.4.2 Use Case 2: User Login . 17
2.4.3 Use Case 3: User Logout . 17
2.4.4 Use Case 4: QR Code Generation 18
2.4.5 Use Case 5: Scan QR Code (Authenticated User) 18
2.4.6 Use Case 6: Scan QR Code (Unauthenticated User) 19
2.4.7 Use Case 7: Manage Products (Create, Retrieve, Update, Delete) . 20
2.4.8 Use Case 8: Manage Users (Create, Retrieve, Update, Delete) . . . 20

3 Architecture 23
3.1 Monolithic architecture . 23
3.2 Microservices architecture . 24

3.2.1 What is a microservice? . 24
3.3 Monolithic vs. Microservices . 25
3.4 Proposed solution . 26

2

4 Technologies and Tools 29
4.1 .NET Platform and C# language . 29
4.2 Docker and Docker Compose . 30
4.3 PostgreSQL . 32
4.4 RabbitMQ . 32
4.5 Azure Container Registry . 32
4.6 Kubernetes . 32
4.7 Git and Bitbucket . 33
4.8 Jira . 33

5 Microservices design and implementation 35
5.1 Common patterns . 35

5.1.1 Controller-Service-Repository . 35
5.1.2 Dependency Injection . 37
5.1.3 RESTful API . 37

5.2 IAM microservice . 38
5.2.1 Identity Management API . 38
5.2.2 Role Assignment Criteria . 39
5.2.3 User Management API . 39
5.2.4 Entities . 40
5.2.5 Access tokens and refresh tokens . 40
5.2.6 Authentication flow . 41
5.2.7 Refresh token revocation and rotation 43
5.2.8 API endpoints . 45

5.3 Machinery microservice . 46
5.3.1 Entities . 46
5.3.2 Database Relationships and Hierarchical Retrieval 48
5.3.3 API endpoints . 49

5.4 Ticket microservice . 49
5.4.1 Entities . 49
5.4.2 Permissions . 50
5.4.3 API endpoints . 50

5.5 API Gateway . 50
5.5.1 NGINX . 51

6 Logging, Metrics Collection and Monitoring 53
6.1 Logging . 53
6.2 Metrics Collection . 55
6.3 Monitoring with Grafana . 55

7 Application Deployment 57
7.1 Kubernetes Setup . 57

7.1.1 Azure Container Registry Integration 59
7.1.2 Defining Resources with Manifests 59
7.1.3 Resource scaling . 60

3

8 Performance 61
8.1 Low Traffic Scenario . 62
8.2 Medium Traffic Scenario . 63
8.3 High Traffic Scenario . 64
8.4 Results . 66

9 Conclusions and future work 69

Bibliography 71

4

List of Figures

1.1 EURO PK: example of AROL capping machinery[4] 10
1.2 Porter value chain representation[5] . 11

2.1 Context Diagram of the system . 14
2.2 Use Case Diagram . 16

3.1 Monolithic architecture vs. microservice-based architecture 25
3.2 Architecture Overview Diagram . 27

4.1 Multiple containers running on the same machine[23] 31
4.2 Docker architecture[26] . 31

5.1 Controller-Service-Repository Pattern . 36
5.2 Example of a JWT token, on the left the encoded string and on the right

the decoded content of the token[40] . 41
5.3 Login flow to access protected resources . 42
5.4 Example of login response (tokens have been trimmed due to excessive length) 43
5.5 Flow of refresh token mechanism . 44
5.6 nginx.conf file content . 51

6.1 Example of a log event from the IAM microservice formatted in JSON and
collected by Loki. 54

6.2 Grafana Dashboard used for monitoring in this project 56

7.1 Kubernetes Cluster Architecture Diagram[52] 58

8.1 Resource consumption of microservices in low traffic situation 63
8.2 Resource consumption of microservices in medium traffic situation 64
8.3 Resource consumption of microservices in high traffic situation 65
8.4 Average response time per request . 67

5

List of Tables

2.1 Functional requirements of the system . 15
2.2 Use case 1 - User Registration . 17
2.3 Use case 2 - User Login . 18
2.4 Use case 3 - User Logout . 18
2.5 Use case 4 - QR Code Generation . 19
2.6 Use case 5 - Scan QR Code (Authenticated User) 19
2.7 Use case 6 - Scan QR Code (Unauthenticated User) 20
2.8 Use case 7 - Manage Products . 21
2.9 Use case 8 - Manage Users . 22

5.1 API endpoints exposed by the IAM microservice 46
5.2 API endpoints exposed by the Machinery microservice 49
5.3 API endpoints exposed by the Ticket microservice 50

8.1 Low traffic: total requests and response times for each tested request . . . 63
8.2 Medium traffic: total requests and response times for each tested request . 64
8.3 High traffic: total requests and response times (in milliseconds) for each

tested request . 65
8.4 Comparison of the average response times in the three scenarios per request 67

6

Acronyms

ACID Atomicity, Consistency, Isolation, Durability.

ACR Azure Container Registry.

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

AWS Amazon Web Services.

BC Bounded Context.

CI/CD Continuous Integration and Continuous Deployment.

CLI Command-Line Interface.

CRUD Create, Retrieve, Update, Delete.

DB Database.

DBMS Database Management System.

DDD Domain-Driven Design.

DevOps Development and Operations.

DI Dependency Injection.

DNS Domain Name System.

HPA Horizontal Pod Autoscaler.

HTTP HyperText Transfer Protocol.

IAM Identity and Access Management.

JSON JavaScript Object Notation.

JWT JSON Web Token.

7

KPI Key Performance Indicator.

ORM Object-Relational Mapper.

OS Operating System.

R&D Research and Development.

RBAC Role-Based Access Control.

REST Representational State Transfer.

SDK Software Development Kit.

SPA Single Page Application.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

UUID Universally Unique Identifier.

YAML Yet Another Markup Language.

8

Chapter 1

Introduction

In today’s interconnected world, the industrial sector is making efforts towards digital
transformation and companies must adapt in order to remain competitive. This shift
towards digital integration is often referred to as "digital transition".

Digital tools not only can enhance interactions between customers and companies, but
also they allow business processes to be more efficient and less time-consuming. Opera-
tions such as storing and retrieving product information within seconds, tracking product
history, and quickly identifying products are just a few examples of how digital transfor-
mation can benefit companies.

These advancements can result in increased user satisfaction and higher throughput in
company operations.

1.1 AROL
AROL Closure Systems is an Italian company specializing in capping solutions, founded
in 1978 in Canelli (AT)[1]. Over the years, AROL has expanded globally and now has
many branches all over the world to meet growing international market demands.

The company designs and manufactures capping solutions for its customers, with ma-
chinery produced and assembled in AROL plants. An example of capping machine built
by AROL can be seen in Figure 1.1. These products are then delivered to customers, with
AROL also providing installation and after-sales services[2].

AROL Closure Systems company is part of AROL Group, which also includes: MACA
Engineering, specialized in machines for the production, assembly and cut of aluminium
and plastic caps and closures; Tirelli, specialized in machines for the cosmetics and home
and body care industry, and Unimac-Gherri, specialized in filling and capping of containers
with twist-off caps for dense, semi dense and pasty products[3].

9

Introduction

Figure 1.1. EURO PK: example of AROL capping machinery[4]

1.2 Project Aim: Enhancing Digital Integration

In line with its commitment to innovation, AROL aims to develop a web portal accessible
to customers, AROL operators, and external stakeholders interested in AROL’s products.
A key feature of this application will be the ability to scan a QR code on an AROL
machine or component and retrieve the corresponding information based on the user’s
role. Authorized AROL operators will have access to detailed and restricted data, while
customers will access general product information. External users will be redirected to
the company’s landing page without accessing specific machine data.

This service will be implemented as a web application accessible via a dedicated URL.
The aim of this thesis is to develop and deploy the back-end infrastructure necessary to
support the front-end application and to expose an API for administrators to perform
restricted management operations. The service must be globally reachable, guaranteeing
both availability (i.e., the system is operational most of the time) and reliability (i.e.,
operations are performed without failures).

10

1.2 – Project Aim: Enhancing Digital Integration

1.2.1 Digital Integration Benefits
The QR code project offers significant benefits from both a horizontal perspective, which
is related to the primary business activities of the company, and a vertical perspective,
which includes the activities that support those primary functions. This categorization
can be traced back to Michael Porter with his famous value chain concept, which differ-
entiates between these two types of activities in a business (see Figure 1.2).

Figure 1.2. Porter value chain representation[5]

The vertical and horizontal axes are closely related, with both contributing to the
creation of value for the company. The QR code serialization mechanism improves the
efficiency of horizontal activities by supporting accurate tracking of AROL products. For
example, warehouse operators can identify a product almost instantly by scanning its QR
code, a process that is significantly quicker and more efficient than manually searching for
shipping documents or internal codes to retrieve product information.

From a vertical perspective, providing a QR code to customers means offers them easier
access to product data. Instead of manually typing a long identifier into their computer,
users can simply scan the QR code to be quickly directed to the relevant product infor-
mation, enhancing the user experience and saving time[6].

The vertical and horizontal axes intersect when the internal product-tracking system
used for operational efficiency also supports the customer portal. The same serialization

11

Introduction

mechanism used to track products within the company can be employed to provide cus-
tomers with the information they are looking for. In this way, a single QR code can
improve internal workflows and strengthen the customer relationship.

12

Chapter 2

Requirements

The first step in the project is to define the requirements for the system, producing
the necessary artifacts that can be used to design the architecture later on. From the
discussion with the stakeholders, some important features of the application came out
and they are here described.

2.1 Informal description
The system must support a customer portal, serving as an interface between AROL and
its customers, as well as a serialization mechanism used by both AROL operators and the
portal. This serialization mechanism allows AROL operators to identify products during
their work activities, and the portal leverages it to display product-specific information
to users.

The serialization mechanism is based on QR codes. Authorized AROL operators can
generate new QR codes for specific products by assigning a unique serial code to each
product. Both AROL customers and operators can authenticate through the portal and
scan QR codes within the application to retrieve the corresponding product information,
if the QR code is valid. Operators are granted access to more detailed product information
that is not visible to customers. Additionally, external users who are not authenticated
in the system can also scan a QR code. In such cases, they are redirected to the AROL
portal’s main page, where they can explore available products. System administrators
have the highest privileges, allowing them to manage users, products, and QR codes.

2.2 Stakeholders and Context Diagram
After collecting an informal description of the project, we started with analyzing the
requirements to produce more useful artifacts that can support us in the next steps.
One of the first things to do is identifying the actors (or stakeholders) that may interact
with the system, without going into the details of what operations they perform. The
stakeholders that we identified in the system are four:

13

Requirements

• AROL system administrator: manages the system;

• AROL operator: works for AROL as operator that can use the system to manage
QR codes and products;

• Customer: owns AROL products and can use the system to obtain information
about those products;

• External user: unknown to AROL systems, wants to discover AROL products.

The context diagram of the system that is represented in Figure 2.1 helps to easily
identify the actors at a glance.

Figure 2.1. Context Diagram of the system

2.3 Functional Requirements
Functional requirements help defining the actual operations that the system should per-
form in a more formal way. We gathered the list of all the functional requirements in
the Table 2.1. There are four macro functionalities (FR1, FR2, FR3, FR4) that group
common functional requirements into a single one that represents the overall operations.
For example, FR2 (User management) includes the operations on the user entities, such as
creation, update, retrieval and deletion. This list of functional requirements is extremely
useful during the phase of architecture design, because they can be delegated to specific
parts of the system and they provide a guide to test their functionality.

14

2.4 – Use Cases

Requirement Description
FR1 User authentication

FR1.1 Login
FR1.2 Logout
FR1.3 Registration
FR2 User management

FR2.1 Create user
FR2.2 Retrieve user
FR2.3 Update user
FR2.4 Delete user
FR3 Product management

FR3.1 Create product
FR3.2 Retrieve product
FR3.3 Update product
FR3.4 Delete product
FR4 QR code management

FR4.1 Create QR code
FR4.2 Retrieve information from QR code
FR4.3 Update QR code
FR4.4 Invalidate QR code

Table 2.1. Functional requirements of the system

2.4 Use Cases
In order to understand how the system should behave under different circumstances, it
is essential to outline the typical usage flows, also known as use cases. A use case is a
structured description of an interaction between the actors and the system to achieve a
specific goal or complete a task. Use cases are important in the requirements’ analysis,
because they help to clarify system behavior from an end-user perspective while focus-
ing on the tasks that the system must support. Additionally, they guide developers and
stakeholders in verifying that the system satisfies the intended requirements.

In this context, the system is treated as a single entity, without making distinctions
among the various microservices that compose it. Each use case provides a high-level de-
scription of the interaction between external actors and the system to fulfill a particular
function or operation.

Use cases can be further decomposed into more detailed scenarios, which describe
specific paths through the system based on varying conditions or inputs. These scenarios
allows to explore different flows, error-handling paths, and edge cases that ensure the sys-
tem’s robustness. Typically, a scenario includes: pre-conditions, conditions that must
be satisfied for this scenario to be reachable, post-conditions, which represent the state

15

Requirements

of the system after the scenario ends, and a goal, which is as brief description of what we
expect to achieve.

All use cases are represented in a use case diagram that connects the actors with
the use cases they are involved in[7]. The diagram provides an overall view of the system
features and the various scenarios. The use case diagram of the system is depicted in
Figure 2.2

Figure 2.2. Use Case Diagram

16

2.4 – Use Cases

2.4.1 Use Case 1: User Registration
This use case describes the steps required for an external user, not registered in the system
yet, to create a new account in the AROL Customer Portal. The user is required to enter
some basic information, a unique username, email, and a secure password. The system
checks if the inserted data is valid and if there is no other user with the same username
or email, then registers the new user into the system. More details are included in Table
2.2.

Actors External User

Goal Register a new user into the portal

Preconditions The user must not have an existing registered account

Main Scenario
1. The user navigates to the registration page.
2. The user enters their new credentials and required data.
3. The system verifies the validity of the data.
4. The system creates a new user with the specified data.
5. The user can log in after successful registration.

Alternate Scenarios Invalid Input Data, User Already Registered

Table 2.2. Use case 1 - User Registration

2.4.2 Use Case 2: User Login
This use case describes the process of logging an existing user (Customer, Operator, or
Administrator) into the AROL Customer Portal. The user must provide valid credentials
(email/username and password), and the system verifies this information to grant access
with the appropriate permissions. If the user inserts wrong credentials or is not registered
yet, the system returns an error. The Table 2.3 describes the steps in more detail.

2.4.3 Use Case 3: User Logout
This use case details the steps required for a logged-in user (Customer, Operator, or
Administrator) to log out of the system. The user must be logged in first, otherwise the
logout operation will not have any effect. More details are included in Table 2.4.

17

Requirements

Actors Customer, Operator, Administrator

Goal Sign in an existing user into the portal

Preconditions The user must have an existing registered account

Main Scenario
1. The user navigates to the login page.
2. The user enters their credentials.
3. The system verifies the validity of the credentials.
4. The system grants access with appropriate permissions.
5. The user can log out.

Alternate Scenarios Invalid Credentials

Table 2.3. Use case 2 - User Login

Actors Customer, Operator, Administrator

Goal Sign out a logged-in user

Preconditions The user must be logged in

Main Scenario
1. The user requests to be logged out of the system.
2. The system invalidates the current session.
3. The user can log in again.

Alternate Scenarios Not Authenticated

Table 2.4. Use case 3 - User Logout

2.4.4 Use Case 4: QR Code Generation
This use case outlines how an Operator or Administrator can generate a QR code for a
specific product in the system. The system links the generated QR code to the product’s
serial code and part number. More details are included in Table 2.5.

2.4.5 Use Case 5: Scan QR Code (Authenticated User)
This use case describes how authenticated users (Customer, Operator, or Administrator)
can scan a QR code to retrieve product information. The system ensures that operators
and administrators have access to more detailed information than customers. More details
are included in Table 2.6.

18

2.4 – Use Cases

Actors Operator, Administrator

Goal Generate a QR code for a specific product

Preconditions The operator or administrator must be logged in

Main Scenario
1. The user navigates to the QR code management section.
2. The user selects to create a new QR code.
3. The user enters the product’s serial code and part number.
4. The system generates a QR code and associates it with

the product.

Alternate Scenarios Invalid Serial Code, Duplicate QR Code

Table 2.5. Use case 4 - QR Code Generation

Actors Customer, Operator, Administrator

Goal Scan a QR code and retrieve product information

Preconditions The user must be logged in

Main Scenario
1. The user scans a QR code using the portal.
2. The system verifies the validity of the QR code.
3. The system retrieves and returns product information.
4. Operators are shown additional details not visible to cus-

tomers.

Alternate Scenarios Invalid QR Code, Unauthorized Access

Table 2.6. Use case 5 - Scan QR Code (Authenticated User)

2.4.6 Use Case 6: Scan QR Code (Unauthenticated User)
This use case covers how external users (not logged into the portal) can scan a QR code
to access basic information about products on the AROL portal. These users are limited
to general browsing unless they register. More details are included in Table 2.7.

19

Requirements

Actors External User

Goal Scan a QR code without authentication

Preconditions The user is not logged in to the portal

Main Scenario
1. The user scans a QR code.
2. The system verifies the QR code’s validity.
3. The system redirects the user to the main page of the

AROL portal.
4. The user can explore available products but cannot access

specific product details.
5. The user can register into the system.

Alternate Scenarios Invalid QR Code

Table 2.7. Use case 6 - Scan QR Code (Unauthenticated User)

2.4.7 Use Case 7: Manage Products (Create, Retrieve, Update,
Delete)

This use case describes how an administrator manages product information in the system.
The administrator can add, retrieve, update, or delete products as needed. The system
ensures data validity and prevents duplication. It returns an error if the user is not logged
in or does not have permissions. More details are included in Table 2.8.

2.4.8 Use Case 8: Manage Users (Create, Retrieve, Update,
Delete)

This use case describes how the administrator can create, retrieve, update, or delete user
information. Administrators can assign different roles (Customer, Operator, Administra-
tor) when creating users. It returns an error if the user is not logged in or does not have
permissions. More details are included in Table 2.9.

20

2.4 – Use Cases

Actors Administrator

Goal Retrieve, update, or delete products

Preconditions The administrator must be logged in

Add New Product
1. The administrator enters required product data.
2. The system verifies the validity of the data and possible

duplication.
3. The system saves the new product.

Retrieve Product
1. The administrator searches a product by its identifier.
2. The system shows the information about the product.

Update Product
1. The administrator searches a product by its identifier.
2. The system shows the information about the product.
3. The administrator enters the new product information.
4. The system verifies the validity of the data.
5. The system saves the changes to the product.

Delete Product
1. The administrator searches a product by its identifier.
2. The system shows the information about the product.
3. The administrator chooses to delete the product from the

system.
4. The system removes the product.

Alternate Scenarios Product Not Found, Unauthorized

Table 2.8. Use case 7 - Manage Products

21

Requirements

Actors Administrator

Goal Retrieve, update, or delete user information

Preconditions The administrator must be logged in

Create New User
1. The administrator enters required user’s information and

credentials, choosing a role.
2. The system verifies the validity of the data and possible

duplication.
3. The system saves the new user.

Retrieve User
Information 1. The administrator searches a user by its username or iden-

tifier.
2. The system shows the information about the user.

Update User
Information 1. The administrator searches a user by its username or iden-

tifier.
2. The system shows the information about the user.
3. The administrator enters the new user information.
4. The system verifies the validity of the data.
5. The system saves the changes to the user.

Delete User
1. The administrator searches a user by its username or iden-

tifier.
2. The system shows the information about the user.
3. The administrator chooses to delete the user.
4. The system removes the user.

Alternate Scenarios User Not Found, Unauthorized, Duplicated User

Table 2.9. Use case 8 - Manage Users

22

Chapter 3

Architecture

Designing a distributed system is a complex task[8], that needs to careful analyze the
requirements, both functional and non-functional, to create an architecture that is not
only robust but also scalable and maintainable. In the initial phase we identified the
requirements of the system to have an idea of how it should work and what should be its
main features. To summarize, we identified some high level functionalities based on the
project requirements:

1. User authentication and authorization

2. User management

3. Machinery and parts management

4. QR code creation and information retrieval

These four points represent distinct concerns and could logically correspond to differ-
ent modules of the architecture. The first two about users identification and management
are tightly related, so we decided to handle them in the same module.

After having outlined the core modules, we evaluated the type of architecture to adopt
in the project, considering the two most common options for this type of system: a
monolithic approach and a microservice-based approach.

3.1 Monolithic architecture
The monolithic architecture represents the traditional approach to application design[9],
where a single application performs all the tasks defined previously as a single process
running on a machine. While this approach may simplify initial development and deploy-
ment, it often leads to significant challenges as the application grows.

23

Architecture

In a monolithic system, modules are tightly coupled, thus any change to a module
requires redeploying the entire application, which can be risky and expensive as the code-
base expands. Furthermore, as teams working on different modules must coordinate to
avoid conflicts, development and release speed can drastically slow down. This approach
also limits the ability to use different programming languages or technologies for different
modules, as a monolithic application is usually developed using a single technology stack.

3.2 Microservices architecture
A modern approach that has been increasingly adopted to build distributed systems is the
microservices architecture[10]. Instead of a single, monolithic application, the system is
broken down into smaller, independent sub-systems, each focusing on a specific business
functionality, known as microservices[11]. As depicted in the Figure 3.1, in a monolithic
system there is a single database for all the modules, and no independence between mod-
ules. In the microservices architecture instead, modules are independent and use their
own data source.

Each of them operates as an independent process running on a machine, which can be
developed, deployed and scaled independently. Despite the name, microservices can vary
in size and complexity. This type of architecture requires careful design, ensuring that
each service follows some general principles, such as separation of concerns, well defined
interfaces, and single responsibility principle[12].

3.2.1 What is a microservice?
We can think of the entire system as a collection of smaller, autonomous services that in-
teract with each other over well defined interfaces. Each microservice typically represents
a specific business capability or domain, not strictly related to the others, allowing it to
be developed, deployed, and scaled independently by different teams.

The concept of microservice is closely related to the idea of a Bounded Context
(BC)[13] in the Domain-Driven Design (DDD). According to Martin Fowler, DDD
is "an approach to software development that centers the development on programming a
domain model that has a rich understanding of the processes and rules of a domain"[14].
Applying DDD principles can often help define the boundaries of a microservice, as these
boundaries generally align with the bounded contexts’ ones. This approach also high-
lights the independence of each microservice and the points of contact between them,
which might help defining the communication interfaces.

Another important aspect of a microservice is also the independence of data, meaning
that the data stored and used by one microservice is not directly accessible by others
but can only be accessed through the interfaces exposed by that microservice. This
independence simplifies the process of updating the internal implementation of a service or
even of replacing an entire service, provided that the interface contracts remain unchanged.

24

3.3 – Monolithic vs. Microservices

Figure 3.1. Monolithic architecture vs. microservice-based architecture

3.3 Monolithic vs. Microservices

The decision to adopt a monolithic or microservices architecture should be carefully eval-
uated from both a technical and an economic perspective. Developing and deploying a
monolithic application usually requires fewer resources and less time to release, but it may
present challenges in the long term. For example, if one module needs to scale, the entire
application must be scaled, leading to increased resource usage and higher costs. Addi-
tionally, expanding or updating a monolithic application can be difficult due to tightly
coupled modules and a change in one part of the code can have effects to other parts.
This can slow down development and cause delays in meeting release deadlines.

On the other hand, adopting a microservice-based approach requires changes not only
in the infrastructure but also in the company’s working culture and organization. Each
microservice should be assigned to a different team, with both the microservices and the
teams operating independently. This does not mean that teams do not communicate, but
rather that they can have independent meetings, processes and so on.

From a technical standpoint, building a microservices-based application requires an ar-
chitecture that can support it. The infrastructure must allow for scalability, orchestration
of microservices, monitoring, health checks, and Continuous Integration and Continuous
Deployment (CI/CD) pipelines[15], often within a DevOps culture[16].

25

Architecture

In summary, the monolithic approach requires less initial effort but may present scal-
ability and maintainability issues in the long run. In contrast, the microservice-based
approach may require more effort and resources initially but in the long term it offers
better scalability, faster feature delivery, and fewer coordination problems among teams.

For the purposes of this thesis, after careful consideration with the company, we have
decided to adopt a microservice-based approach. The goal is to build a scalable and
maintainable infrastructure that can grow with the company’s needs and to evaluate
whether the benefits of this type of architecture justify the initial investment. Given
that AROL has thousands of machines distributed globally, a microservices architecture
is well-suited to meet these demands. It allows for easy scaling and distribution across
multiple nodes, ensuring high performance and availability from all locations.

3.4 Proposed solution
To meet the requirements outlined by the company, we came up with a possible solution
that is here presented. As explained in the previous section, the application is based on
microservices architecture and each module handles a specific business area. We identified
three main microservices that are able to cover all the functionalities defined during the
requirements’ collection phase.

The first one is the Identity and Access Management (IAM), that handles the
authentication and authorization in the system. As this is a cross-cutting concern, it
is beneficial to delegate it to a dedicated microservice like the IAM. This service allows
users to register, login and logout, but also manages their permissions for resource access.
System administrators can use this microservice to manage users’ information and much
more. Without exploring some technical details that will be covered in the next chapter
with the proper attention, we can say that this microservices follows the most common
way to deal with authorization, that is by using objects called tokens. Those special ob-
jects are generated and signed by the IAM and are then used in all the microservices to
claim and verify user identity.

The Machinery microservice has the responsibility to store the information about all
the machines and their components, exposing functionalities to add, update, remove but
also retrieve product-specific data. Based on users’ permissions it will return the appro-
priate amount of information.

Finally, there is the Ticket microservice, that enables the actual serialization and iden-
tification of products through their QR codes. This service allows to create and manage
tickets, entities that map a unique identifier to a machine or component stored in the
Machinery microservice. The generated identifier is then used to generate the correspond-
ing QR code in the frontend application.

As depicted in the Figure 3.2, the independence of microservices is guaranteed also

26

3.4 – Proposed solution

by data independence. This is achieved through the use of a separate database for each
context, meaning that different services are connected to different databases. While this
approach leads to more challenges with data consistency across all the system, it ensures
that different microservices remain available even when a failure occurs in one data source.

Figure 3.2. Architecture Overview Diagram

Each of these microservices exposes a REST API through which it can be accessed
via HTTP requests. Microservices are not directly exposed to the external world, but all
requests are routed through a single entry point, known as the API Gateway, which
redirects them to the appropriate microservice. The requests can be performed by the
Customer Portal frontend application, that provides a user friendly interface for interact-
ing with the customer or the operator, or they can be directly sent using specific tools
without using the web application. We decided to keep this last option open so that
system administrators can perform management operations that are not supported in the
Customer Portal. Additionally, it can also benefit new applications that may want to
leverage on the system’s functionalities through HTTP protocol. Internally, microservices
communicate with each others using an asynchronous messaging system, rather than syn-
chronous HTTP protocol as used for external requests. This approach contributes to
reducing coupling and increasing the system’s resilience.

Each microservice can be deployed independently and horizontally scaled as needed,
depending on available resources and request volume. For example, the IAM service may
need to be scaled more frequently than others due to high number of requests for user
registration, login and logout. In such cases, only the IAM service would be scaled, rather
than all services. For this reasons, a microservice is deployed as an independent process
inside a Docker container, ensuring complete isolation between microservices, even if
they run on the same machine. More details about Docker are covered in the next chapter.

27

28

Chapter 4

Technologies and Tools

There are many programming languages and tools available for developers, and each one
of them has pros and cons. It is important for a developer to know which tools to use
depending on the circumstances. The right choices can significantly impact the efficiency,
scalability, and maintainability of the application. For this reason, in this chapter are
described all the tools selected for this project, with some details about every one of them
and the reason behind each choice.

4.1 .NET Platform and C# language
The first choice was about what language to use to develop each microservice. In this
case, the most sensible approach was to use a single language for all of them, because
there would be just one developer on the project. This led to the decision to use C# and
the .NET platform, which is aligned with the existing technological stack within the com-
pany, guaranteeing easier integration with other existing systems and facilitating future
improvements.

.NET is an open-source developer platform maintained by Microsoft for building a wide
range of applications, from desktop and web applications to cloud services and microser-
vices[17]. It supports multiple programming languages, with C# being the most used
among them[18]. The platform offers several features for developers, such as garbage col-
lection, asynchronous programming support and concurrency primitives. .NET includes
a runtime to execute applications, additional libraries, compilers for the supported lan-
guages, and Software Development Kit (SDK) to help building applications.[19]. .NET
comes in different flavors, such as .NET Core, .NET Framework, and Mono. For this
project, .NET Core was selected due to its cross-platform capabilities, allowing develop-
ment and deployment across Windows, Linux and MacOS. .NET Core is also optimized
for performance and scalability, making it an ideal fit for microservice-based architectures.

As mentioned before, C# was chosen as the programming language, because it is well
supported by .NET Core and it is widely used in various scenarios, from object-oriented

29

Technologies and Tools

to functional programming[20]. The language offers powerful abstraction, making it easier
for programmers to write clean and maintainable code. Moreover, C# has a robust type
system and supports many modern programming paradigms, which makes it a flexible
choice for building complex systems.

.NET Core also integrate ASP.NET Core framework[21], a high performance frame-
work that provides support for building web applications and APIs. This framework, in
conjunction with C# language, simplifies the development of HTTP-based services, offer-
ing built-in support for routing, middleware, and dependency injection. This allows the
developers to focus on implementing the business logic part, while leveraging on ASP.NET
Core’s abstractions for handling HTTP requests and responses efficiently.

4.2 Docker and Docker Compose
As explained in the previous chapter, each microservice should be independent and some-
what isolated from the others. Running it as a separated process might be enough, but
usually an higher level of isolation is required, and the solution is containerization[22].
The concept of containers is to create an environment on top of the host operating system,
adding layers to provide additional functionalities and libraries, where the process can run
without directly interfering with the host Operating System (see Figure 4.1). In this way,
if something bad happens, no damage will be done to the machine where the process is
run, but just inside its container. This allows to run multiple containers on the same
machine (or also virtual machine), thus optimizing the server resources.

Docker is a platform that allows to develop, deploy and manage applications leveraging
on the containerization technology. Docker Engine constitutes the core of the platform,
a powerful engine that acts as a client-server application. The Figure 4.2 provides an
overview of the main components of the Docker architecture and how it works. First of
all, a daemon process called "dockerd" runs as a server and exposes an API which can be
used to make requests to it. To provide an easier interaction with Docker for the user,
there is also a Command-Line Interface (CLI) client called "docker".[24] Every container
is instantiated from a Docker image, which is an object that contains the information of
how the corresponding container environment should be built. An image can be stored
in a Docker registry, for example Docker Hub, or it can be built locally following a con-
figuration written in Dockerfiles. Basically, a container can be seen as an instance of a
Docker image, in the same way as a process is an instance of a program.

Another Docker client called Docker Compose[25] was used to manage multiple con-
tainers simultaneously. Docker Compose can read the configuration of containers and
how to build them from a YAML file, usually called compose.yml or docker-compose.yml.
The compose file can specify what services should be started, how the containers should
be built, the network and volume configuration required by the application. In this way,
the project’s microservices can be started, stopped, and scaled together, simplifying the
management of the system’s lifecycle.

30

4.2 – Docker and Docker Compose

Figure 4.1. Multiple containers running on the same machine[23]

Figure 4.2. Docker architecture[26]

31

Technologies and Tools

4.3 PostgreSQL
For persistent data storage, each microservice is connected to a PostgreSQL database.
PostgreSQL is a powerful, open source relational Database Management System (DBMS)[27],
known for being robust and flexible. It supports a wide range of data types, indexing tech-
niques, and ACID transactions. In this project, each microservice is paired with its own
PostgreSQL instance, deployed as a Docker container. This kind of setup allows each
service to manage its own database independently, ensuring better scalability and fault
isolation.

4.4 RabbitMQ
The internal communication among microservices is based on asynchronous messages,
which is crucial to ensure loose coupling between them and consequently improve scal-
ability[28]. The communication is mediated by an additional process called "message
broker", that allow clients to send and receive messages.

For this project, RabbitMQ was chosen as the message broker[29]. RabbitMQ is a re-
liable, open source message broker that supports multiple protocols, including Advanced
Message Queuing Protocol (AMQP). It is lightweight and easy to deploy, making it a per-
fect fit also for production. RabbitMQ is available via Docker container and microservices
can communicate with it sending and receiving messages through message queues. This
allows them to operate independently and handle messages at their own pace, which is
especially beneficial under high loads.

4.5 Azure Container Registry
During development, Docker images are frequently updated as the corresponding mi-
croservices evolve. Those image are important because they are used to instantiate the
microservices. Thus, they should be stored and managed securely and the safest choice is
to use a private container registry. While public registries like Docker Hub are available,
they do not offer the same level of security needed for enterprise applications.

For these reasons, Azure Container Registry (ACR) was chosen in this project.
ACR is a private Docker registry service provided by Microsoft[30]. It offers geo-replication
across different regions, Role-Based Access Control (RBAC) and other advanced features.
It also supports workflows such as CI/CD.

4.6 Kubernetes
For orchestrating and managing containerized microservices, Kubernetes was chosen.
Kubernetes is an open-source platform that automates deployment, scaling, and man-
agement of containerized applications[31]. It groups containers into units called Pods,

32

4.7 – Git and Bitbucket

which can be distributed across multiple machines to ensure better resource utilization
and high availability. Kubernetes also automates load balancing, scaling based on traffic,
and provides self-healing capabilities, such as automatically restarting failed containers.
This makes it an ideal solution for deploying and managing the microservices architecture
used in this project.

4.7 Git and Bitbucket
As mentioned in the introduction, this project is developed in collaboration with another
thesis project based on the corresponding front-end part. An important part in the devel-
opment of an application is how to coordinate the work between team members, how to
see and change the code written by the other members, and also how to check the previous
versions of the same code, which sometimes might be useful in order to find where was a
bug introduced and why.

This is why version control is important in software development, enabling teams to
collaborate, manage code changes, and track project history[32]. Git is a distributed ver-
sion control system and it is undoubtedly the most popular tool for this purpose. Git
allows developers to create repositories where the code is hosted, commit changes, branch
off new features or bug fixes, and merge them back into the main project, maintaining a
detailed history of the project’s evolution.

Bitbucket is a collaboration tool and Git-based hosting system provided by Atlas-
sian[33]. Bitbucket offers integration with other Atlassian tools, such as Jira, facilitating
seamless team collaboration and project management. The codebase for this project is
hosted in a private Bitbucket repository, making sure that is is accessible only to autho-
rized team members.

4.8 Jira
When working in a team and managing a project, it is critical to use tools that help us
working efficiently. Jira is a project management tool created by Atlassian, that supports
tracking issues, managing tasks, and integration with agile workflows[34].

In this project, we used Jira to track the progress, manage tasks, and document issues
and bugs. The integration between Jira and Bitbucket turned out to be extremely useful
to synchronize codebase changes with project’s progress tracking. During regular meetings
with the company, we created new tasks, assigned them to the appropriate member and
monitored their status to ensure that the project progressed and remained on schedule.

33

34

Chapter 5

Microservices design and
implementation

This chapter focuses on the description of the actual implementation of each one of the
microservice. The requirements collection phase outlined some of the features that the
system should provide and the most important use cases, that help to understand how
the system should behave in different scenarios. The next step is to translate those speci-
fications into code, building a robust code base that follows the best practices for creating
web API services.

Here the most important design patterns used in the project are described, followed by
a detailed explanation of the design choices behind each microservice and their internal
structure.

5.1 Common patterns
Before starting, I want to talk about the common patterns used for all microservices. A
design pattern is a possible solution for a common problem, providing a sort of guide or
template to follow in order to solve that problem. Design patterns are really helpful for
developers because they allow to write cleaner, more efficient, and more modular code.
There are lots of patterns commonly used during development, but here only the most
important ones are listed and described.

5.1.1 Controller-Service-Repository
The most important is the Controller-Service-Repository pattern. This simple pat-
tern is about organizing the code in layers, and it is very effective to enhance modularity,
because it enforces separation of concerns between layers[35]. Each layer calls the func-
tions exposed by the layer below and returns some results to the layer above. This type of
structure allows to change a layer without affecting to other ones, given that the interfaces
between layers do not change.

35

Microservices design and implementation

Figure 5.1. Controller-Service-Repository Pattern

The Controller layer handles the incoming HTTP requests and produces the corre-
sponding HTTP response. A controller usually does not perform any significant operation,
but it just calls the lower layer in order to obtain the results which are then sent in the
response. Sometimes a controller can perform validation on the input or on the user au-
thorization.

Below there is the Service layer, where all the business logic is contained. This is
the core of the application, because it is here that the input data is managed in order
to produce the output data. Service functions can store and retrieve data indirectly by
calling the Repository layer.

A repository is an entity that exposes functions to manage the data in the database,

36

5.1 – Common patterns

so that the service functions don’t have to interact directly with it. To understand the
importance of this layer, if the team wants to migrate from a DBMS to another one,
this is the only layer that will change. In fact, if the interface of the repository does not
change, we can modify the internal implementation as we want, but the upper layers won’t
need intervention. The Figure 5.1 summarizes this pattern highlighting the connections
between the layers.

This pattern is really helpful when testing the application. Each layer can be tested in
isolation from the other two by providing a mock implementation of the called functions,
and allowing developers to easily write unit and integration tests for each part of the code
base.

5.1.2 Dependency Injection
Dependency Injection (DI) is a design pattern that promotes loose coupling and flexibility
in the code[36]. Typically, there is some class or function (often called a consumer or
client) that relies on another entity to perform its tasks, known as a service or de-
pendency. Using Dependency Injection, the consumer requests a service to be passed
through a constructor or as function parameter, rather than instantiating it directly. This
approach allows the consumer to depend on an interface that represents the "behavior"
of the requested service, which the service must implement in order to be used by the
consumer.

The framework, often called injector, stores the service instances, manages their life-
cycle, and injects them as needed, in that way reducing the amount of code the developers
must write and freeing them from the responsibility of managing object lifecycles. Depen-
dency Injection enhances flexibility, because new implementations of an interface can be
added without changing the classes that depend on it. Additionally, it benefits testability,
because by using interfaces it is easy to swap out real implementations for mock or stub
versions, which is essential for unit testing. This allows developers to test the behavior
of a class in isolation, without needing the actual implementation, leading to faster and
more reliable tests. .NET Core framework supports DI, that can be achieved by register-
ing each dependency as a service in the program setup[37]. After that, the framework
will instantiate the objects as needed and will inject them where they are requested at
runtime.

5.1.3 RESTful API
A RESTful API (Representational State Transfer Application Programming Interface)
is a web service architectural style that leverages standard HTTP methods to facilitate
communication between systems over the internet. RESTful APIs adhere to a set of con-
straints and principles designed to create scalable, lightweight, and efficient services. These
APIs use common HTTP methods such as GET, POST, PUT, DELETE, and PATCH
to perform Create, Retrieve, Update, Delete (CRUD) operations on resources, which are

37

Microservices design and implementation

uniquely identified by an Uniform Resource Identifier (URI). One of the key character-
istics of RESTful APIs is being stateless, which means that each request from a client
must contain all the necessary information for the server to understand and process it,
without relying on any previous interactions. This stateless nature simplifies the server’s
design, improves scalability, and allows different servers to handle requests independently,
making RESTful APIs highly suitable for distributed systems like microservices.

In the context of microservices, RESTful APIs play a crucial role in enabling inde-
pendent services to provide a communication interface for accessing their functionalities.
Each microservice can expose its functionality via RESTful endpoints, using a common
data format such as JavaScript Object Notation (JSON) for communication. JSON is
lightweight, easy to read and write, and widely supported across different programming
languages, making it an ideal choice for data exchange. RESTful APIs’ ability to support
stateless communication ensures that each microservice remains autonomous, reducing
dependencies and allowing for more flexible and resilient system architectures. This ap-
proach enhances the overall reliability and performance of the microservices ecosystem,
and also allows for better scalability of each microservice.

5.2 IAM microservice
The IAM service is essential for providing a centralized system for user registration, au-
thentication, and authorization across all microservices. It not only handles user au-
thentication but also provides system administrators with tools to manage user roles and
permissions effectively. This document outlines the design and implementation of the
IAM API, emphasizing its role in maintaining security and access control within the mi-
croservices ecosystem.

To provide its functionality, the IAM microservice is divided into two main parts:

• Identity Management: Manages user authentication and identity verification
across the microservices ecosystem.

• User Management: Allows system administrators to manage user details and
roles, ensuring proper access control.

5.2.1 Identity Management API
The Identity Management API focuses on enabling users to authenticate and verify their
identity within the microservices environment. This includes functionalities such as user
registration, login, logout, and session management.

Security is a primary concern and the API is designed to handle multiple scenarios:

• Unique user identification to avoid ambiguity.

• Role-based operation permissions to control access based on user roles.

38

5.2 – IAM microservice

• Time-limited sessions for authenticated users to manage access duration.

• Session extension through identity verification before expiration.

• Immediate session termination upon user request or if validity conditions change.

Each user is identified uniquely by an integer ID, automatically assigned during reg-
istration. Users also provide a unique username and email address, alongside personal
information such as first and last names. To support organizational needs, a company
attribute is included for associating users with specific companies.

User roles are integral to implementing RBAC, which grants permissions based on
predefined roles. Role assignment is controlled by the system to prevent unauthorized
role escalation, such as users assigning themselves an admin role.

5.2.2 Role Assignment Criteria
Access permissions are managed using Role-Based Access Control (RBAC). This technique
assigns a role to each user and the role determines the user’s permissions, specifying which
actions they can perform and which resources they can access. In the system we used three
roles: administrator, customer and AROL operator. The administrator role represents
the users that can manage all the system’s resources, such as CRUD operations on users,
machines, parts and tickets. The AROL operator can generate and retrieve QR codes
and obtain private information on AROL machines and components. The last role is the
customer, that represents an AROL customer and can only scan QR codes and access the
corresponding unrestricted data, such as name, description and other basic information.

5.2.3 User Management API
The User Management API provides functionalities for system administrators to manage
user data securely. Each endpoint is protected by authorization mechanisms to prevent
unauthorized access.

The key functionalities include:

• Adding new users.

• Removing users.

• Editing user details and attributes.

• Retrieving specific user information.

• Retrieving all users with optional filtering criteria.

These functions are generally restricted to administrators, ensuring that only autho-
rized personnel can perform sensitive operations. Endpoints for user creation (e.g., POST
/users) are admin-only, while general users can interact with their profiles through au-
thenticated endpoints.

39

Microservices design and implementation

5.2.4 Entities
Each domain entity is represented by a class that maps directly to database tables, facil-
itated by Entity Framework Core, an Object-Relational Mapper (ORM).

Key entities include:

• User: Represents a system user, capturing attributes such as ID, username, email,
company, password, and role.

• Refresh Token: Represents a refresh token associated with a user, allowing secure
token rotation and session management.

The Refresh Token entity is linked to the User entity in a one-to-one relationship, en-
suring that each user has a maximum of one active refresh token. On one hand, this setup
simplifies token revocation and rotation, as tokens can be easily invalidated by deleting
the corresponding database entry. On the other hand, this mechanism doesn’t allow users
to have multiple sessions opened at the same time, which constitutes a limitation.

5.2.5 Access tokens and refresh tokens
Until now, access and refresh tokens were mentioned, related to the user identification and
permissions. Therefore, it is necessary to explain in more detail what are those tokens,
their format, how they are generated and used.

An access token[38] is an entity that should contain the basic information about the
user who is making the authenticated requests, but also the information about the user
permissions. A refresh token[39] has a different purpose, because it does not contain all
the information stored in the access token, but just some information that can be used
to create another access token. For example, inside a refresh token can be stored the
identifier of a user, so the user can be retrieve from the database and a new access token
can be generated using that data. The refresh token can be used by the user to request a
new access token, when its previous one expired, therefore the refresh token usually lasts
much longer then the access one. These mechanism allows the user to maintain a valid
authenticated session for a longer period of time, until the refresh token expires.

In this project, both the access and refresh token are formatted as base 64 strings of
characters. The chosen token type is JSON Web Token (JWT), which is a very convenient
and widespread way of representation[41]. A JWT token is formed by three sections:

• Header: Contains a field "alg" that specifies the algorithm used for signing the token
and a field "typ" that specifies the type of token, in this case "JWT".

• Payload: This section contains the so called claims, that are important information
about the user and the token itself. There are 7 registered claims:

1. iss: issuer, specifies the principal that issued the token; typically it corresponds
to the hostname.

40

5.2 – IAM microservice

Figure 5.2. Example of a JWT token, on the left the encoded string and on the right
the decoded content of the token[40]

2. sub: subject, identifies the subject of the JWT, usually the user.
3. aud: audience, the recipients of the token.
4. exp: expiration timestamp of the token.
5. nbf : not before, the date before which the token is not valid yet.
6. iat: issued at, the timestamp when the token was issued.
7. jti: JWT ID, a code that identifies the token.

Additional claims can be added on creation.

• Signature: the section validates the integrity and authenticity of the token. It is
obtain by encoding the first two sections using Base64 encoding and concatenating
them with a period as separator. Then the resulting string is hashed using the
cryptographic algorithm specified in the header section (the "alg" field).

All three fields are encoded into Base64 strings and then concatenated with periods.
The resulting string is the final JWT token.

5.2.6 Authentication flow
Users must be authenticated in order to perform restricted requests to the system. Mi-
croservices can identify the user and authorize them using the access token released by

41

Microservices design and implementation

the IAM microservice. JWT tokens are self-contained, which means that all the necessary
information is included in the token, without the need to contact the IAM service each
time a new request comes in. This stateless mechanism enhances scalability and perfor-
mance, because it cuts off a major number of verification requests to the authentication
microservice.

Figure 5.3. Login flow to access protected resources

The Figure 5.3 describes the flow to make an authenticated request to access a pro-
tected resource from one of the microservices. Making authenticated HTTP requests
means adding the access token to an authentication header, using bearer token authenti-
cation. When a new request comes in, the corresponding microservice checks if the token
is present, then it verifies the signature, to ensure integrity and authenticity of the token,
and then it decodes it. After that, the token is checked to validate the issuer and other
fields, among which there is also the expiration date. If some validation step fails, the
token is considered invalid and the request fails with code 401 (i.e., not authenticated). If
instead the token is valid, the next step is the role validation. In this step, the microser-
vice checks that the role claim’s value matches the role needed to access the requested

42

5.2 – IAM microservice

resource, otherwise code 403 (i.e., not authorized) is returned.

Figure 5.4. Example of login response (tokens have been trimmed due to excessive length)

In order to access the protected resource, the user should have obtained beforehand
an access token from the IAM, which can be put inside the request headers. To obtain
the pair of access and refresh tokens, the user must sign in into the system, performing a
POST request to /api/auth/login and passing in the body their username and password.
This assumes that the user has been registered before, either by an administrator that
created their account or by themselves, doing a POST request to /api/auth/register end-
point. The login request, if successful, returns an object containing the user information,
an access token, a refresh token and the expiration timestamps of both the access token
and refresh token (see Figure 5.4).

The user is responsible for the secure storage of the tokens, and also for setting the
headers before sending the authenticated requests. In the front-end web application that
uses this project’s microservices, tokens are stored in the local storage of the browser.
This isn’t the most secure way for a Single Page Application (SPA), because a malicious
attacker can steal them. However, for development purposes, this solution is enough to
guarantee secure communication between front-end and back-end. To minimize the risk,
it has been decided to set the lifespan of each access token to 15 minutes.

5.2.7 Refresh token revocation and rotation
The access token is short-lived, it lasts only some minutes, and it isn’t stored anywhere
in the server, meaning that it is stateless, and once it is generated, it cannot be revoked

43

Microservices design and implementation

in any way. For this reason, it is short-lived, usually shorter than an hour; in this project,
it lasts 15 minutes as mentioned before. In this way, an attacker only has a short span
of time to steal and use an access token, and it can’t be refreshed without stealing also
the refresh token. The refresh token should have a longer time to live, because it is used
to renew an expired access token and it would not be useful otherwise. In the context
of this project, the lifespan of a refresh token is 24 hours, which means that a user can
request a new access token within a day from the moment the login is performed. This is
a good compromise between security and convenience, because it allows the user to sign
in no more than once a day, or even less thanks to the token rotation mechanism.

Token rotation is a simple technique that means changing the refresh token every time
it is used[42]. Basically, every time the user calls the endpoint to refresh the access token
and provides the refresh token, not only a new access token is released, but also a new
refresh token, invalidating the previous one (see Figure 5.5). This mechanism enhances
security, because a refresh token will be exposed for a shorter time than its lifespan,
and also it prolongs the authenticated session of the user, meaning that the user does not
have to perform login for a long time, if he keeps refreshing the token before its expiration.

Figure 5.5. Flow of refresh token mechanism

The invalidation of a refresh token is also called revocation. As previously mentioned,

44

5.2 – IAM microservice

in the IAM microservice’s Database are stored both the users and their refresh tokens, and
there is at most one refresh token associated to each user. Using this stateful mechanism
to manage the tokens, it is easy to verify the validity of a refresh token every time a user
tries to call the refresh endpoint. These are the steps for the validation:

1. Verify signature and expiration date of the refresh token provided by the user in the
request’s headers

2. Retrieve the user Id claim from the token and use it to retrieve the corresponding
user info and refresh token in the database

3. If no token was found in the database, the user session expired and the user must
perform the login again, thus no new tokens are provided

4. Compare the two tokens: if they are the same, proceed to the creation of the new
access and refresh tokens

5. Save the new refresh token in the database, replacing the old one

6. Return the tokens to the user in the HTTP response

Refresh tokens are revoked also when the user explicitly performs the logout operation.
In that case, the refresh token associated to the current authenticated user is deleted from
the database and, the next time the user wants to perform authenticated requests, he
must sign in again. Being the access tokens stateless, they can’t be revoked, which means
that the logout is not a "full" logout. For this reason in the front-end application, it is the
application itself that proceeds to erase both tokens from the local storage after the user
logs out.

5.2.8 API endpoints
As explained in the previous paragraphs, the IAM microservice exposes API endpoints
for user authentication and for user management. The Table 5.1 describes each endpoint
with the corresponding HTTP method, the path and a brief description of the operation
performed.

45

Microservices design and implementation

Method Path Description
POST /auth/register Register new user into the system
POST /auth/login Sign in with credentials

DELETE /auth/logout Sign out from current session
GET /auth/current Retrieve info about current logged in user
POST /auth/refresh Refresh tokens
GET /auth/users Retrieve all the registered users
POST /auth/users Add new user
GET /auth/users/{userId} Retrieve user by their identifier
PUT /auth/users/{userId} Update user information

Table 5.1. API endpoints exposed by the IAM microservice

5.3 Machinery microservice
The Machinery microservice is responsible for managing all requests related to AROL
machinery and its components. Its primary function is to handle requests that are initi-
ated when an AROL product’s QR code is scanned, providing detailed information about
the product based on the QR code’s data. Upon scanning, the client application sends
a request to the Machinery service, passing the unique identifier embedded in the QR
code content as a parameter. The service processes this request by extracting the ticket
identifier, which is then used to interact with the Ticket service to retrieve the relevant
part number and, if available, the serial number associated with the ticket.

Using the part number and serial number, the Machinery service queries its database
to find the corresponding part or machinery information. The data returned to the client
is tailored based on the user’s permissions, ensuring that sensitive information is protected
and only accessible to authorized users. Additionally, the service maintains records of the
link between customers and the machinery they have purchased. This linkage is crucial for
determining ownership; if a component is linked to machinery purchased by a user, that
user is considered the owner of the component, thus granting them access to information
not available to non-owners.

5.3.1 Entities
The entities defined within the Machinery microservice are the following:

• User: Represents any individual interacting with the system, including AROL cus-
tomers, AROL employees (with or without administrative privileges), or external
users.

• Machinery: Represents an individual piece of AROL machinery, uniquely identified
by both a serial number and a part number. Each piece of machinery is distinct and
tracked separately within the system.

46

5.3 – Machinery microservice

• Machinery Part: Refers to any component of AROL machinery. Parts may be
serialized, meaning each instance is individually tracked with a unique identifier, or
non-serialized, where instances are not individually tracked but are identified by a
part number, name, and description.

There are several important aspects of the system’s design and structure that need to
be understood:

• Hierarchical Structure
Machinery components are organized hierarchically, matching with a tree structure.
This hierarchy captures the parent-child relationships among components, allowing
complex assemblies to be represented accurately. For example, a main machinery
unit may contain several sub-components, each of which could have further sub-
components.

• Serialized vs. Non-Serialized Parts
Components can either be serialized or non-serialized. Serialized parts have unique
identifiers, allowing them to be tracked individually. This is crucial for parts where
individual tracking is necessary, such as critical components or customized compo-
nents. Conversely, non-serialized parts, like standard screws, are not tracked indi-
vidually but are identified by their type. These parts share common attributes but
are otherwise indistinguishable from one another.

• Inheritance in Hierarchical Structure
The serialization status impacts the hierarchy. A serialized part may contain both
serialized and non-serialized sub-parts (e.g., a main unit containing individually
tracked sensors and indistinguishable screws). However, non-serialized parts do not
contain serialized sub-parts, maintaining the rule that if a component is not uniquely
tracked, none of its sub-components will be uniquely tracked either. This maintains
consistency in the tracking logic, ensuring that the hierarchy aligns with the serial-
ization strategy.

The Machinery microservice exposes a set of API endpoints, primarily dedicated to
administrators, which allow for the management and retrieval of machinery and parts
information. These endpoints include functionality for creating, updating, and deleting
machinery and parts, as well as retrieving detailed information about specific entities.

When retrieving data, the API supports selective information retrieval to optimize
performance and relevance. For instance, when a request is made to retrieve details about
a particular machinery or part, the response may include only basic information. Then, if
the user wants to obtain additional data about its sub-components, they can make sub-
sequent requests to specialized endpoints. This approach ensures that the system is not
overloaded with unnecessary data and that clients receive the most relevant information
first, focusing on lightweight and quick responses.

47

Microservices design and implementation

5.3.2 Database Relationships and Hierarchical Retrieval
The database is structured to reflect the hierarchical nature of machinery and their com-
ponents, where machinery items serve as the highest-level entities. These machinery items
do not store references to any parent components, as they represent the root of the hier-
archy. In contrast, child components are designed to maintain references to their parent
components, allowing for navigation upwards through the hierarchy. However, parent
components do not hold any references to their children, which means that moving down-
ward through the hierarchy cannot be done in constant time.

Serialized parts are specifically linked to the root machinery item to ensure traceabil-
ity back to the machine they belong to. Additionally, every serialized part also references
another serialized part as its parent. Non-serialized parts, on the other hand, may refer to
either serialized or non-serialized components as their parent, depending on their location
within the hierarchical structure. These non-serialized parts do not have direct references
to machinery items, as they could be part of multiple machines, which complicates direct
tracing back to a single machine. To optimize retrieval operations, each part, whether
serialized or not, contains a boolean indicator that flags whether it has any child com-
ponents. This improves the efficiency of querying and hierarchical navigation within the
database.

A typical sequence of HTTP requests to construct the full hierarchy from a piece of
machinery might look like this:

1. GET /machinery/{serial} - Retrieves basic details about the specified machinery.

2. GET /machinery/{serial}/parts - Retrieves serialized parts associated with the
specified machinery.

3. For each serialized part use GET /parts/serialized/{serial}/children to retrieve all
its child parts.

4. For each non-serialized part, use GET /parts/not-serialized/{partNumber}/children
to retrieve all its child parts.

This recursive querying continues until all parts of the tree are retrieved, including all
leaf nodes, ensuring that the entire machinery component structure is captured.

The endpoints that facilitate these retrievals are accessible to authenticated users, with
restrictions in place to protect sensitive information. Serialized part details are limited
to AROL employees and verified customers who have purchased machinery containing
those parts. This ensures that proprietary and sensitive information is not exposed to
unauthorized users.

48

5.4 – Ticket microservice

5.3.3 API endpoints
The Machinery microservice exposes a set of REST API endpoints that can be called
via HTTP to perform the requested operations. The Table 5.2 lists all the available
calls, among which there are CRUD operations for the machines and parts, but also the
decoding functionality used when scanning a QR code from the application.

Method Path Description
GET /machinery Retrieve machinery list
POST /machinery Add machinery
GET /machinery/{serial} Retrieve machinery by its serial
GET /machinery/{serial}/parts Retrieve machinery parts by its serial
GET /parts/serialized/{serial} Retrieve serialized part by its serial
GET /parts/not-serialized/{partNumber} Retrieve not serialized part
POST /parts/serialized Add new serialized part
POST /parts/not-serialized Add new not serialized part
GET /decode/{ticketId} Obtain product info from ticket id
GET /decode/{ticketId}/expanded Obtain hierarchical product info

Table 5.2. API endpoints exposed by the Machinery microservice

5.4 Ticket microservice
The ticket microservice is the core of the serialization and deserialization processes between
QR codes and corresponding AROL identifiers. This microservice works as a transcoding
service from ticket identifier to a pair of serial number and part number, and vice versa.
The unique identifier of each ticket can be used to create a unique QR code for an AROL
product.

5.4.1 Entities
The only entity in this program is the Ticket entity. A ticket is uniquely identified by a
Ticket Id, which is a Universally Unique Identifier (UUID), in form of string. A ticket
also contains the serial number and the part number of the product which is referred
by it. Despite their names, those two are not necessarily number, but strings of characters.
The serial is associated with a serialized product, and it is unique inside AROL company.
The part number describes the type of product, thus it is common to all the parts with
the same characteristics and it is not unique. Non serialized parts don’t have any serial
number, therefore the system sets a default value for them, which implies that the QR
code will not be unique for those parts. Another field associated to a ticket is the scope,
which is a string of characters that indicates the scope of validity of the QR code related
to that ticket. For example, when creating a new ticket, the operator can type "test" as
scope, to specify that the corresponding QR code is valid just for test purposes and it

49

Microservices design and implementation

can’t be used on actual shipped products.

5.4.2 Permissions
This microservices allows the creation of identifiers and, consequently, the generation of
the corresponding QR codes. For this reason, it is not accessible by all users, but its usage
is limited to administrators only. Therefore, all the incoming HTTP requests must carry
a bearer token, signed by the IAM microservice, which contains the role "admin". In case
the user is not authenticated, the service will return a 401 status, and if authenticated
but not authorized, it will return 403.

5.4.3 API endpoints
The API exposed by the Ticket microservice is simple and straightforward. As represented
in Table 5.3 the endpoints support basic operations to retrieve, add, update and delete
tickets.

Method Path Description
GET /tickets Retrieve list of tickets
POST /tickets Create new ticket
GET /tickets/{ticketId} Retrieve ticket by its identifier
PUT /tickets/{ticketId} Update ticket fields

DELETE /tickets/{ticketId} Delete ticket

Table 5.3. API endpoints exposed by the Ticket microservice

5.5 API Gateway
All requests coming into the microservices ecosystem pass through a single point, called
API Gateway. This service can be very useful in some cases, because it can take care of
cross-cutting concerns among all the microservices, such as security, logging, redirecting
requests, aggregating data from microservices, and so on.

In this project, the API gateway has only one task, that is taking care of all the incom-
ing requests and redirecting them to the appropriate microservice to which the requests
are destined. This functionality is called reverse proxy. Reverse proxying the incom-
ing requests is important to make sure that the specific microservices can’t be directly
contacted from the external world, forcing the requests to pass through the gateway. As
mentioned before, this system may be used to check the content and permissions on every
single request, forwarding only the ones that pass the checks.

50

5.5 – API Gateway

The API gateway pattern has some disadvantages. First of all, it constitutes a single
point of failure for the entire system, thus if the gateway goes down, all the system becomes
unreachable. Another problem is scalability: every request passes through the gateway,
which means that when the traffic increases, it will require many resources to scale up this
service. Furthermore, if the API gateway contains business logic related to some other
service, it should change accordingly to the changes happening in the other service. For
example, if the gateway makes a call the machinery service to aggregate some data but
the API changes, also the gateway logic must be changed. This can be expensive in terms
of time and it might be the source of bugs in the system.

5.5.1 NGINX
In order to provide reverse proxy functionality, the system uses a Docker container with
NGINX, that is a widely used web server[43]. NGINX is very flexible and it can be use
as proxy, reverse proxy, load balancer and much more. The service can be setup writing
a configuration file and mounting it as a Docker volume.

Figure 5.6. nginx.conf file content

The configuration file used for the API Gateway in this project can be seen in Figure
5.6. In the configuration file, http server is the section where the nginx server is setup.
It is instructed to listen on the port 80 and to perform redirection to microservices based
on the path of the incoming requests. The syntax is "location <request path to match>"
and "proxy_pass <redirection url>"[44]. For example, when a request comes on port 80
with path starting with /auth, all the prefix part (including host and port) is stripped

51

Microservices design and implementation

and replaced with http://auth-service/, which redirects the request to the IAM service.
The headers are kept, which means that the authentication tokens are forwarded together
with the request. Docker or Kubernetes DNS functionality[45][46] allows us to write the
name of the service (e.g., auth-service, machinery-service, ticket-service) instead of the
host and port. This is also beneficial if we deploy more than one instance of the same
microservice to perform load balancing.

52

Chapter 6

Logging, Metrics Collection
and Monitoring

When the system is deployed and running, it is essential to regularly monitor its current
state to ensure that all components are working correctly. This is especially important
in microservice-based architectures, where multiple services work independently but are
responsible for the system’s overall performance. Effective monitoring not only helps
identify and fix bugs but also provides valuable insights about the system’s behavior,
which can lead to performance improvements[47].

6.1 Logging
At runtime, the applications produce logs, pieces of textual information about events
and actions occurring within the system. Logs are one of the most important sources of
real-time information for understanding system operations and for diagnostic. Each log
entry is associated with a level, which indicates the severity or importance of the event
being recorded. The most common logging levels are:

• Trace: Extremely granular information about the system’s behavior, providing pre-
cise details about code execution. This level is used primarily during development
for debugging specific parts of the code.

• Debug: Provides more useful debugging information than the trace level, while
being less verbose. It is typically used to understand how the system is functioning
in real-world scenarios when the system is already deployed in production.

• Info: Represents general events that describe the normal operation of the system.
These logs document successful operations and typical events in the system.

• Warning: Indicates that something unexpected occurred, but without affecting
system functionality. Warnings often highlight potential problems that may require
attention to prevent more critical errors.

53

Logging, Metrics Collection and Monitoring

• Error: Signals that an error has occurred and is causing certain operations to fail.
Errors require immediate attention, but the system may continue to function.

• Fatal: Indicates a severe problem that prevents the system from functioning cor-
rectly, often causing the service to crash or become unusable.

Logs are a crucial tool for system monitoring, allowing administrators and developers
to track both the history and real-time behavior of the system. In the context of mi-
croservices, logging can become challenging because each service produces its own logs,
making it really complex to centralize and analyze them. For this reason, it is important
to collect and aggregate logs in a centralized location, where logs from different services
can be viewed in chronological order and filtered based on severity or origin. To ensure
consistency, all microservices must follow a unified log format. This makes it easier to
process and analyze logs across the system.

Serilog is an open-source logging library that produces structured logs in a prede-
fined format[48]. In this project, Serilog is configured for each microservice to generate
JSON-formatted logs, containing also additional metadata such as log level, application
name, and host machine details. This structured approach facilitates easier searching and
analysis of logs.

Loki is a tool developed by Grafana Labs used in the project for centralized log collec-
tion[49]. Loki collects and indexes logs from all microservices, improving log management
and search. By using a sink, Loki can be integrated with Serilog, ensuring that all logs are
streamed to Loki in real-time. Operators can then query logs using Loki’s query language,
LogQL, to filter, group, or aggregate log data based on specific criteria.

Figure 6.1. Example of a log event from the IAM microservice formatted in
JSON and collected by Loki.

54

6.2 – Metrics Collection

6.2 Metrics Collection
While logs provide insight into events that have occurred, they do not offer a complete
view of the system’s real-time performance. For that, we need metrics, that are numer-
ical measurements collected over time that reflect various aspects of system health and
performance. Metrics allow for a more quantitative view of how the system is functioning,
often helping to identify issues or performance bottlenecks.

In the context of web API applications, the following metrics are particularly useful:

• Number of incoming requests per second: This indicates the overall load on
the system and helps monitor traffic.

• Average request latency: This measures the time taken to process requests, in-
dicating performance and responsiveness.

• Error rate: The percentage of failed requests, which is critical for monitoring system
reliability.

• Request distribution: The number of requests handled by each microservice,
helping detect load imbalances and thus helping system administrators to know
when a microservices requires to be scaled.

• Microservice health status: Health checks of individual services to ensure that
they are up and working correctly.

Each microservice in this project exposes its metrics through a dedicated endpoint. A
monitoring tool, Prometheus, is used to periodically "scrape" (i.e., collect) metrics data
from these endpoints. Prometheus is an open-source toolkit widely adopted for monitoring
and alerting[50]. Metrics are stored as time-series data, allowing operators to track how
these metrics change over time and therefore to analyze the evolution of the system.
Prometheus also provides its own query language, PromQL, which allows users to filter,
aggregate, and analyze metrics data. With PromQL, system administrators can query
for specific metrics, set up custom alerting rules, and analyze the overall performance of
microservices.

6.3 Monitoring with Grafana
While Prometheus and Loki are powerful tools for collecting logs and metrics, they do not
provide a visualization layer. This is where Grafana comes in. Grafana, developed by
the same team behind Loki (i.e., Grafana Labs), serves as a visualization platform that
can connect to various data sources, including Prometheus and Loki[51].

Grafana allows users to build custom dashboards by creating panels that display logs
and metrics in the form of charts, graphs, or tables. These dashboards provide an intuitive
overview of the system, making it easy to track Key Performance Indicators (KPIs) and

55

Logging, Metrics Collection and Monitoring

spot potential issues early. For example, a dashboard can display metrics such as CPU
usage, memory consumption, or request latency in real-time, alongside logs from Loki,
showing a complete view of the system’s health and performance status.

Dashboards can be customized to meet the specific needs of the operations team,
allowing them to monitor microservices, set up alerts for critical events, and quickly
respond to anomalies. With Grafana’s capabilities and its integration with PromQL and
LogQL query languages, users can explore metrics and logs to analyze specific problems,
helping reducing downtime and improving overall system reliability.

Figure 6.2. Grafana Dashboard used for monitoring in this project

56

Chapter 7

Application Deployment

After several months during which the application was under continuous changing, the
system was finally ready for deployment. Deploying an application means making it avail-
able to end-users. As stated earlier, this project focuses on the backend system, which
supports a frontend layer that has been thoroughly analyzed in another thesis. While
both the backend and frontend components are deployed, this chapter will primarily focus
on the deployment of the backend microservices system.

Deploying an application based on microservices is a complex task that requires not
only knowledge of best practices but also hands-on experience in configuring the deploy-
ment environment. This process includes managing the deployment of microservices along
with the infrastructure for data storage, logging, and system monitoring. Ideally, the ser-
vices should remain available at all times and should be scalable to handle increased loads.

Each microservice is containerized in a Docker image, allowing the creation of multiple
containers from the same service image. These images are stored in the Azure Container
Registry, with tags used to identify different image versions. Storing images in a container
registry simplifies the deployment process, as the services do not need to be rebuilt,
but they can simply be instantiated as containers from the pre-built images. Once all
the microservices are containerized, the next steps involve setting up the deployment
environment and running the complete system.

7.1 Kubernetes Setup
When deploying an application, there are two primary options: using a managed cloud
service (e.g., AWS, Azure) or hosting the application on-premises using the company’s
own servers. The first option is faster and more convenient but can be costly. The second
option is more complex to manage, but it can reduce long-term costs if the system’s work-
load is manageable and the application requires minimal maintenance after deployment.
Since the AROL R&D team had access to machines capable of hosting the services, we
decided to take the opportunity to deploy the system on-premises.

57

Application Deployment

To orchestrate and manage the deployment, we used Kubernetes. The core concept
of Kubernetes deployment is the cluster, that is a group of nodes, working machines in
which the containerized services run. A cluster also contains a control plane, a set of
components that make global decisions about the cluster[52]. The control plane is a cru-
cial part of the Kubernetes architecture and it should be always available and reachable.
For this reason, it is usually replicated on multiple machines to provide fault-tolerance
and availability. In a worker node, multiple pods can be created. A pod represents a set
of running containers in the cluster. There is an agent, kubelet, that runs inside every
node and that ensures that containers are running in a pod and are healthy. Figure 7.1
represents the architecture described above.

In order to run the microservices on multiple machines, the first step was to install
Kubernetes on the chosen machines, that would act as worker nodes in the cluster. Each
machine was set up with the required resources to handle the container workloads. The
cluster was created using k3s, a lightweight version of Kubernetes, which is enough for
our purposes.

Figure 7.1. Kubernetes Cluster Architecture Diagram[52]

58

7.1 – Kubernetes Setup

7.1.1 Azure Container Registry Integration
The microservices were containerized using Docker and the images were stored in the
Azure Container Registry (ACR). The registry was not accessible without appropriate
permissions. In the CI/CD Bitbucket pipeline, an account with "push" permissions was
used to store the built images in the repository. In the deployment environment, an ac-
count with "pull" permissions was used to retrieve and download the images from the
registry.

Kubernetes allows to configure the so called image pull secrets, that are secret
configurations to pull images with authentication. Before running the containers, it is
necessary to authenticate with Azure and sign in the ACR using credentials with pull
permissions. Then a kubectl command allows the creation of the corresponding image
pull secret with an access token obtained in the login step. This secret is used to pull the
image before the container creation.

7.1.2 Defining Resources with Manifests
Kubernetes operates with a "desired state" methodology, that means that the user speci-
fies the desired state of the cluster and Kubernetes tries to reach and maintain that state.
The configuration is specified using YAML files called manifests. Usually each manifest
file describe a single resource that we want to define in the cluster.

There are many types of resources, but for the microservices the used ones are the
following:

• Deployments: Each microservice was defined with a Deployment object in Kuber-
netes. A Deployment manages a set of Pods to run an application workload, usually
one that doesn’t maintain state[53]. In the corresponding manifest the desired num-
ber of replicas of the microservice can be set.

• Services: Each microservice was exposed within the cluster and to the outside
world using Service objects. All microservices were exposed for internal communi-
cation with ClusterIP services. The API Gateway service instead was exposed as
a NodePort service, to be reachable from the external world. In this way, external
communication is possible only passing through the gateway.

• ConfigMaps and Secrets: Microservices require some configuration settings, such
as database connection strings or environment variables. These variables were stored
using ConfigMaps for non-sensitive information and Secrets for sensitive data. Ku-
bernetes automatically injects these configurations into the containers, ensuring that
the services can be reconfigured without rebuilding the images.

59

Application Deployment

7.1.3 Resource scaling
An important aspect of the deployment phase is scaling the service when the incoming
requests are overloading the system. Kubernetes provides a way to manage scalability
automatically for each Deployment resource. First of all, in the manifest we can specify
the minimum number of replicas that we want to have up and running at all times. For
example, in our case using a minimum of two replicas for each microservice and for the
API gateway guarantees a certain level of availability, because we are reducing the down-
time of each microservice if a fatal error occurs. Also, requests can be better distributed
by the load balancer, leading to a better resource usage for each Pod.

The interesting parts happens when the minimum number of replicas is not enough to
handle all the incoming traffic. In this case, it is necessary to increase that number, but
doing it manually is inconvenient and also, once the new minimum number is set, it is
necessary to manually intervene again to set it back to the previous value. For this reason,
having a way to automatically scale horizontally would be a game changer. Kubernetes
provides an Horizontal Pod Autoscaler (HPA) that is very useful for this task. As
specified in the official documentation, the HPA includes a controller that "periodically
adjusts the desired scale of its target (for example, a Deployment) to match observed
metrics such as average CPU utilization, average memory utilization, or any other custom
metric you specify."[54] In this way, when the metrics are below certain thresholds the
number of Pods reflects the minimum number set in the manifests, but when the resource
utilization increases, the HPA intervenes and creates new Pods as required to lower down
the usage levels below the thresholds again. When the resources consumption goes down
and becomes manageable again, the HPA shuts down the extra Pods that were added.

This mechanism not only automates the horizontal scaling of the microservices, but
also allows to consume just the required resources at every moment. This means that it
is not necessary to always allocate a huge amount of resources that won’t be used, just in
prediction that the load will increase, but with the HPA the resources will be allocated
dynamically. Having a dynamic allocation of resources is crucial to pay only what is used
and also allows to have more resource to run parallel tasks in the machines, thus not
having to add more machines to perform various activities.

60

Chapter 8

Performance

When building and deploying an application, it’s important to have an idea of its resource
usage over time. In the context of microservices, monitoring the resources can help system
operators to know when it’s time to scale a service or set a usage threshold after which
the service is scaled up automatically. An excessive stress on the system can lead to bad
performances, because requests require more time to be processed and this leads to slower
responses and to accumulate requests in the queue.

In order to collect useful data for usage metrics, there are two main cases that should
be considered: a standard traffic scenario and a high traffic scenario. The first one sim-
ulates the system behavior most of the time, because usually the system won’t be too
stressed. The second scenario is the most challenging one, because it reproduces a situa-
tion of overload in the system. It is important that the system can respond quickly to a
rapid increase in the number of requests, before it is too late.

AROL has more than 20.000 capping machines installed all over the world and hun-
dreds of customers and operators scattered in different geographical areas. Customers
can access the customer portal to scan a machine or a part inside it and examine the
corresponding information. AROL operators might want to scan a QR code to access
information needed for some internal operation, but also they can generate a new QR
code associated to an existing product.

Provided this context, the most frequent operations on the system are:

• Check if user is authenticated (used by the frontend SPA very frequently)

• Refresh login session

• Login

• Scan QR code to retrieve product information

Other operations that may be performed with less frequency are:

61

Performance

• Generate a new QR code

• Logout

• Register new user

• Admin management operations on machines, users or tickets

Admin management operations are so rare in the daily context that they can be ex-
cluded from the traffic analysis, also because there is generally no more than a couple of
system administrators that can access the system with that level of permissions. Thus,
there is a very low probability of multiple and frequent parallel requests from them.

In order to simulate real situations, both with low traffic and high traffic, we wrote a
script to perform HTTP requests to the system. The requests are the following:

1. GET /api/auth/current - Get current authenticated user to check session validity

2. POST /api/auth/refresh - Refresh current session

3. GET /api/decode/ticketId - Retrieve info from QR scan

4. POST /api/login - Perform login

5. POST /api/tickets - Generate new ticket for creating a QR code

6. DELETE /api/logout - Sign out

7. POST /api/auth/register

The script associates a probability value to each request, based on their probable fre-
quency. The first three requests are the most probable, the login request a bit less because
usually the refresh request is enough to prolong an existing session. The last three instead
have the lower probability associated.

The script randomly chooses a request based on the associated weights and makes the
corresponding call, tracking the response time. Then it waits for a random time before
making the next request. The number of parallel requests and the waiting time between
them determines the load on the system.

8.1 Low Traffic Scenario
The low traffic situation has been recreated by adding a high random waiting time be-
tween sequential HTTP requests. The waiting time range was set to not exceed 2 seconds.
This produced a very light load situation, that the microservices handled very well. As
shown in the Figure 8.1, all microservices stayed below 4% of CPU usage and between
5% and 10% of memory. Given that the most frequent request are performed to the
IAM service, that’s also the microservice that handles most request per second, but still

62

8.2 – Medium Traffic Scenario

a manageable rate, being lower than 1 req/s on average. The slowest calls to respond are
the user registration and login, that achieved an average response time of 175.5 ms and
180.5 ms respectively. Both operations internally hash the password sent by the user and
then write on the database or generate authorization tokens. Cryptographic operations
like password hashing with salt are particularly resource and time demanding and that’s
why the IAM service takes more time and CPU for registration and login. This can also
explain why the IAM uses more CPU then the other microservices on average. We can
also notice that the three most frequent requests (i.e., current, scan and refresh) all re-
spond in less then 30 ms on average.

Request Total requests Avg. res. time
(ms)

Min. res. time
(ms)

Max. res. time
(ms)

current 76 14.3 4 53
scan 78 30.0 7 87

refresh 75 22.3 8 69
login 32 180.5 158 193

logout 19 7.1 3 10
register 18 175.5 144 214
generate 10 27.7 10 62

Table 8.1. Low traffic: total requests and response times for each tested request

Figure 8.1. Resource consumption of microservices in low traffic situation

8.2 Medium Traffic Scenario
The medium load scenario is very similar to the previous one, but with less waiting time
between requests (500 ms maximum in this case), which now are more frequent. We can see

63

Performance

from Table 8.2 that there are now more requests on each microservice, in particular on the
IAM service, for the same reasons mentioned before. It’s easy to spot an increased CPU
utilization in the IAM service (see Figure 8.2, that settles between 2% and 8% on average,
but not a significant memory usage which stays between 5% and 10%, probably because
the performed operations don’t use much memory. About the other two microservices,
there seems to be little difference in resources consumption, which means that they can
handle higher traffic just fine.

Request Total requests Avg. res. time
(ms)

Min. res. time
(ms)

Max. res. time
(ms)

current 282 10.4 3 40
scan 293 18.8 5 176

refresh 284 15.9 5 62
login 98 175.1 136 271

logout 63 6.1 2 16
register 47 178.0 145 226
generate 34 16.8 5 30

Table 8.2. Medium traffic: total requests and response times for each tested request

Figure 8.2. Resource consumption of microservices in medium traffic situation

8.3 High Traffic Scenario
Finally, this test targets the high traffic scenario, when many frequent incoming requests
must be handled by the microservices, without slowing down excessively or crashing and
become unavailable. To simulate this scenario, the waiting time between requests has
been removed, in order to make sequential requests as fast as possible. This time the

64

8.3 – High Traffic Scenario

probability of making a decode request (i.e., scanning a QR code, here called "scan") is
higher, because it is probable that this scenario occurs when many QR scans are per-
formed by many customers in a short span of time. As shown by the chart in Figure 8.3,
also in this case memory remained stable between 5% and 10%. In Table 8.3 we can see a
significant growth in the number of incoming requests, which is now more than 10 times
the quantity of the previous scenario. Again, the majority of them are routed to the IAM
microservice. While it is clear that both the machinery and the ticket services can easily
handle this traffic, using less than 5% of CPU, this is not true for the IAM. In fact, the
IAM significantly increased the CPU usage, reaching almost 40%, which is 4 times more
than the medium traffic scenario and almost 10 times higher than the consumption of the
other microservices. Even if this seems bad, the CPU percentage increased by 4 times
in spite of a number of requests per second that was 10 times higher than before. It is
improbable that this scenario will ever take place, so it can be considered the worst case
scenario, at least until real performance test are done with actual customers.

Request Total requests Avg. res. time
(ms)

Min. res. time
(ms)

Max. res. time
(ms)

current 3135 1.7 1 22
scan 3934 3.5 2 82

refresh 3196 3.1 2 47
login 1323 136.7 130 325

logout 63 1.1 0 15
register 407 134.9 130 207
generate 369 2.8 2 13

Table 8.3. High traffic: total requests and response times (in milliseconds) for
each tested request

Figure 8.3. Resource consumption of microservices in high traffic situation

65

Performance

8.4 Results
Those tests were useful to have an idea about how the system behaves in normal and
critical conditions, both from an external standpoint, which is represented by the re-
sponse times of the incoming requests, and an internal standpoint, represented by the
resource consumption. The analysis of the results leads to some considerations. First of
all, the IAM is definitely the microservice that handles more requests. Even if the tests are
scripted and therefore not entirely realistic, it seems true that this service is called very
frequently to check the user identity or to manage an authenticated session. It uses a lot
of CPU to perform important cryptographic operations and therefore the CPU consump-
tion drastically increases when many registration or login calls are handled concurrently.
This behavior suggests that this microservice should be constantly monitored to scale it
horizontally when the CPU usage reaches a certain threshold. Ideally this threshold can
be set at 60% or more, given that at 40% the service was operating correctly without any
type of errors or delays. In any case, it is a good idea to always have two instances of the
microservice up and running, with a load balancer that evenly distributes the requests
among them, in order to lower the load on the service. The same operation can be done
for all the other microservices and for the API gateway in particular, not just because of
the traffic overloading, but also for resilience. In fact, having two instances means that if
one goes down, all request can be temporarily redirected to the other one with minimal
downtime.

Finally, comparing the average response times over the three scenarios for each request
(see Table 8.4 and Figure 8.4), we can see that in the high traffic scenario, the microservices
tend to respond faster. This might seem a strange behavior but it is not so uncommon.
Multiple factors can contribute to the increased speed; for example, when more resources
are requested, more CPU cores and threads are used and multiple operations can be
parallelized, which may lead to quicker response times. Another reason, due to the nature
of the simulation script, might be the re-utilization of already opened connections, that
leads to cut the three way handshake phase, thus saving some time. Even if the scripted
simulation is not completely realistic and the results can be different in a real production
scenario, it was useful to analyze the obtained results to better understand some details
on the system behavior, which would have been difficult to understand without stressing
the application.

66

8.4 – Results

Request Avg. in low traffic
(ms)

Avg. in medium traffic
(ms)

Avg. in high traffic
(ms)

current 14.3 10.4 1.7
scan 30.0 18.8 3.5

refresh 22.3 15.9 3.1
login 180.5 175.1 136.7

logout 7.1 6.1 1.1
register 175.5 178.0 134.9
generate 27.7 16.8 2.8

Table 8.4. Comparison of the average response times in the three scenarios per request

Figure 8.4. Average response time per request

67

68

Chapter 9

Conclusions and future work

This thesis has covered the entire lifecycle of the system’s development, from require-
ments collection to design, implementation, and deployment. Additionally, performance
tests were conducted to evaluate the robustness and responsiveness of the system. Based
on the work done until now, several conclusions can be drawn about the system and its
suitability for the company’s needs.

One of the key objectives of this project was to build a system capable of support-
ing AROL’s interactions with their customers. The distributed and modular architecture
chosen for the application meets this need effectively. With AROL’s customers located
across different areas of the world, it was crucial to design a system that could help users
to interact with the application without introducing excessive delays in response times. A
user-friendly and responsive system is important for both external customers and internal
AROL operators to ensure that interactions with AROL’s products are seamless and ef-
ficient. A slow system would not only discourage customers from using the platform but
also introduce delays in AROL’s internal processes. The architecture’s flexibility plays
a critical role in the success of this project, because it allows for scaling and optimized
performance.

The simulations have demonstrated that the system performs well, even under more
demanding scenarios. Most operations have low response times, ensuring that users ex-
perience minimal delays during interactions. Furthermore, the microservices architecture
ensures that each service consumes minimal CPU and memory resources relative to the
incoming traffic load. Only the Identity and Access Management (IAM) service might
require additional scaling as computationally heavy operations, such as logins and reg-
istrations, increase. However, the architecture’s modular nature makes it easy to scale
individual services as needed, providing flexibility and availability, thanks to the capabil-
ity of having multiple parallel copies of the same microservice that handle the requests.

The system developed thus far meets the primary goals outlined during the require-
ments’ collection phase. The application prototype is functional and delivers the necessary
features to enhance both internal processes and customer communication. The current

69

Conclusions and future work

state of the application is a significant step forward, but further steps are required to tran-
sition the system into full production. Specifically, the prototype is not yet connected to
AROL’s real data sources and it’s not yet distributed across the world. However, thanks to
the modular microservices architecture, integrating these real-world data sources is trivial.

To move closer to a production-ready system, there are some important tasks missing.
A possible next step could be to make the application available to a controlled group of
internal AROL operators and external customers. This would allow the collection of real
usage metrics and feedback from end users, which can identify potential issues, bottle-
necks, and areas for improvement. While the initial performance tests provided useful
insights, they were based on simulated scenarios. Real-world data instead would provide
a more accurate representation of system load, user behavior, and overall performance in
a production environment.

In conclusion, this thesis has taken significant steps towards the development of a
system that meets AROL’s goals of improving internal processes and enhancing customer
engagement. The architecture and design choices made in the project allowed to build a
solid base for future work. While there is still progress to be made before the system is
ready for production, the work done thus far has moved the project significantly closer
to that objective. With more development and real-world testing, the application can
potentially become a key tool for AROL’s competitiveness in the global market.

70

Bibliography

[1] AROL Closure Systems - About Us. url: https://www.arol.com/arol-canelli/.
(accessed: 10/08/2024).

[2] AROL Customer Care. url: https : / / www . arol . com / customer - care - for -
capping-machines/. (accessed: 10/08/2024).

[3] AROL Group. url: https://www.arol.com/arol-group-canelli/. (accessed:
10/08/2024).

[4] url: https://www.arol.com/beverage-capping-machines/capping-machines-
for-pre-threaded-flat-plastic-caps. (accessed: 10/08/2024).

[5] Wikipedia. Value chain. url: https://en.wikipedia.org/wiki/Value_chain/.
(accessed: 28/09/2024).

[6] Elizabeth Green. The Rise of QR Codes: Transforming Customer Engagement in
a Digital-First World. url: https://www.starleaf.com/blog/the-rise-of-
qr-codes-transforming-customer-engagement-in-a-digital-first-world/.
(accessed: 08/10/2024).

[7] What Is Use Case Diagram? url: https://www.visual-paradigm.com/guide/
uml- unified- modeling- language/what- is- use- case- diagram/. (accessed:
28/09/2024).

[8] Chrissy Kidd. Distributed Systems Explained. url: https://www.splunk.com/en_
us/blog/learn/distributed-systems.html/. (accessed: 20/08/2024).

[9] Matt Tanner. What Is a Monolithic Application? Everything You Need to Know. url:
https://vfunction.com/blog/what-is-monolithic-application/. (accessed:
10/10/2024).

[10] Mike Loukides and Steve Swoyer. Microservices Adoption in 2020. url: https:
//www.oreilly.com/radar/microservices- adoption- in- 2020/. (accessed:
20/08/2024).

[11] Microservice Architecture pattern. url: https://microservices.io/patterns/
microservices.html/. (accessed: 10/08/2024).

[12] Mehmet Ozkaya. Software Architecture Design Principles: SoC, SOLID. url: https:
//medium.com/design-microservices-architecture-with-patterns/software-
architecture-design-principles-soc-solid-98611997c30e/. (accessed: 10/10/2024).

71

https://www.arol.com/arol-canelli/
https://www.arol.com/customer-care-for-capping-machines/
https://www.arol.com/customer-care-for-capping-machines/
https://www.arol.com/arol-group-canelli/
https://www.arol.com/beverage-capping-machines/capping-machines-for-pre-threaded-flat-plastic-caps
https://www.arol.com/beverage-capping-machines/capping-machines-for-pre-threaded-flat-plastic-caps
https://en.wikipedia.org/wiki/Value_chain/
https://www.starleaf.com/blog/the-rise-of-qr-codes-transforming-customer-engagement-in-a-digital-first-world/
https://www.starleaf.com/blog/the-rise-of-qr-codes-transforming-customer-engagement-in-a-digital-first-world/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.splunk.com/en_us/blog/learn/distributed-systems.html/
https://www.splunk.com/en_us/blog/learn/distributed-systems.html/
https://vfunction.com/blog/what-is-monolithic-application/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://microservices.io/patterns/microservices.html/
https://microservices.io/patterns/microservices.html/
https://medium.com/design-microservices-architecture-with-patterns/software-architecture-design-principles-soc-solid-98611997c30e/
https://medium.com/design-microservices-architecture-with-patterns/software-architecture-design-principles-soc-solid-98611997c30e/
https://medium.com/design-microservices-architecture-with-patterns/software-architecture-design-principles-soc-solid-98611997c30e/

BIBLIOGRAPHY

[13] Martin Fowler. Bounded Context. url: https : / / martinfowler . com / bliki /
BoundedContext.html. (accessed: 10/08/2024).

[14] Martin Fowler. Domain Driven Design. url: https://martinfowler.com/bliki/
DomainDrivenDesign.html. (accessed: 10/08/2024).

[15] David Mosyan. CI/CD for Microservices. url: https://medium.com/@dmosyan/
ci-cd-for-microservices-1b5582f3e1fd/. (accessed: 10/10/2024).

[16] DevOps in the Era of Microservices: Challenges and Solutions. url: https : / /
medium.com/@Wicultylearningsolution/devops-in-the-era-of-microservices-
challenges-and-solutions-87a5cfe6f384/. (accessed: 10/10/2024).

[17] Microsoft. Introduction to .NET. url: https://learn.microsoft.com/en-us/
dotnet/core/introduction. (accessed: 11/08/2024).

[18] Most popular technologies survey. url: https://survey.stackoverflow.co/2024/
technology#most-popular-technologies/. (accessed: 10/10/2024).

[19] Microsoft. What is the .NET SDK? url: https://learn.microsoft.com/en-
us/dotnet/core/sdk. (accessed: 11/08/2024).

[20] C# docs. url: https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-
csharp/. (accessed: 10/10/2024).

[21] Microsoft. Overview of ASP.NET Core. url: https://learn.microsoft.com/en-
us / aspnet / core / introduction - to - aspnet - core ? view = aspnetcore - 8 . 0.
(accessed: 11/08/2024).

[22] What is Containerization? url: https://aws.amazon.com/what-is/containerization/.
(accessed: 10/08/2024).

[23] Docker. What is a Container? url: https://www.docker.com/resources/what-
container/. (accessed: 12/10/2024).

[24] Docker. Docker Engine overview. url: https://docs.docker.com/engine/. (ac-
cessed: 12/08/2024).

[25] Docker Compose overview. url: https://docs.docker.com/compose/. (accessed:
20/08/2024).

[26] Docker. Docker overview. url: https://docs.docker.com/get-started/docker-
overview/. (accessed: 20/08/2024).

[27] PostgreSQL. url: https://www.postgresql.org/. (accessed: 20/08/2024).
[28] Asynchronous message-based communication. url: https://learn.microsoft.

com/en-us/dotnet/architecture/microservices/architect-microservice-
container-applications/asynchronous-message-based-communication/. (ac-
cessed: 20/08/2024).

[29] RabbitMQ. url: https://www.rabbitmq.com/. (accessed: 20/08/2024).
[30] Azure Container Registry. url: https://azure.microsoft.com/en-us/products/

container-registry/. (accessed: 03/09/2024).
[31] Kubernetes. url: https://kubernetes.io/. (accessed: 16/10/2024).

72

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://martinfowler.com/bliki/DomainDrivenDesign.html
https://medium.com/@dmosyan/ci-cd-for-microservices-1b5582f3e1fd/
https://medium.com/@dmosyan/ci-cd-for-microservices-1b5582f3e1fd/
https://medium.com/@Wicultylearningsolution/devops-in-the-era-of-microservices-challenges-and-solutions-87a5cfe6f384/
https://medium.com/@Wicultylearningsolution/devops-in-the-era-of-microservices-challenges-and-solutions-87a5cfe6f384/
https://medium.com/@Wicultylearningsolution/devops-in-the-era-of-microservices-challenges-and-solutions-87a5cfe6f384/
https://learn.microsoft.com/en-us/dotnet/core/introduction
https://learn.microsoft.com/en-us/dotnet/core/introduction
https://survey.stackoverflow.co/2024/technology#most-popular-technologies/
https://survey.stackoverflow.co/2024/technology#most-popular-technologies/
https://learn.microsoft.com/en-us/dotnet/core/sdk
https://learn.microsoft.com/en-us/dotnet/core/sdk
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-8.0
https://aws.amazon.com/what-is/containerization/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://docs.docker.com/engine/
https://docs.docker.com/compose/
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://www.postgresql.org/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/asynchronous-message-based-communication/
https://www.rabbitmq.com/
https://azure.microsoft.com/en-us/products/container-registry/
https://azure.microsoft.com/en-us/products/container-registry/
https://kubernetes.io/

BIBLIOGRAPHY

[32] What is version control. url: https://www.atlassian.com/git/tutorials/
what-is-version-control/. (accessed: 10/10/2024).

[33] Bitbucket. url: https://bitbucket.org/product/. (accessed: 10/10/2024).
[34] Jira. url: https://www.atlassian.com/it/software/jira/. (accessed: 10/10/2024).
[35] Tom Collings. Controller-Service-Repository. url: https://tom-collings.medium.

com/controller-service-repository-16e29a4684e5. (accessed: 25/08/2024).
[36] Understanding Dependency Injection: A Powerful Design Pattern for Flexible and

Testable Code. url: https://medium.com/@sardar.khan299/understanding-
dependency- injection- a- powerful- design- pattern- for- flexible- and-
testable-code-5e1161dd37dd. (accessed: 16/10/2024).

[37] Dependency injection in ASP.NET Core. url: https://learn.microsoft.com/
en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-
8.0. (accessed: 16/10/2024).

[38] Access Tokens. url: https://auth0.com/docs/secure/tokens/access-tokens.
(accessed: 16/10/2024).

[39] Refresh Tokens. url: https : / / auth0 . com / docs / secure / tokens / refresh -
tokens. (accessed: 16/10/2024).

[40] JWT debugger. url: https://jwt.io. (accessed: 10/08/2024).
[41] Introduction to JSON Web Tokens. url: https://jwt.io/introduction. (ac-

cessed: 10/08/2024).
[42] Refresh Token Rotation. url: https://auth0.com/docs/secure/tokens/refresh-

tokens/refresh-token-rotation. (accessed: 16/10/2024).
[43] NGINX. url: https://nginx.org/en/. (accessed: 16/10/2024).
[44] NGINX Configuration File’s Structure. url: https : / / nginx . org / en / docs /

beginners_guide.html#conf_structure. (accessed: 16/10/2024).
[45] Docker Networking Overview. url: https://docs.docker.com/engine/network/.

(accessed: 16/10/2024).
[46] Kubernetes DNS for Services and Pods. url: https://kubernetes.io/docs/

concepts/services-networking/dns-pod-service/. (accessed: 16/10/2024).
[47] Joey Bartolomeo. The benefits of observability. url: https://grafana.com/blog/

2020/03/03/the-benefits-of-observability/. (accessed: 16/10/2024).
[48] Serilog. url: https://serilog.net/. (accessed: 16/10/2024).
[49] Grafana Loki. url: https : / / grafana . com / docs / loki / latest/. (accessed:

16/10/2024).
[50] Prometheus. url: https : / / prometheus . io / docs / introduction / overview/.

(accessed: 16/10/2024).
[51] Grafana. url: https://grafana.com/grafana/. (accessed: 16/10/2024).
[52] Kubernetes. Cluster Architecture. url: https://kubernetes.io/docs/concepts/

architecture/. (accessed: 28/09/2024).

73

https://www.atlassian.com/git/tutorials/what-is-version-control/
https://www.atlassian.com/git/tutorials/what-is-version-control/
https://bitbucket.org/product/
https://www.atlassian.com/it/software/jira/
https://tom-collings.medium.com/controller-service-repository-16e29a4684e5
https://tom-collings.medium.com/controller-service-repository-16e29a4684e5
https://medium.com/@sardar.khan299/understanding-dependency-injection-a-powerful-design-pattern-for-flexible-and-testable-code-5e1161dd37dd
https://medium.com/@sardar.khan299/understanding-dependency-injection-a-powerful-design-pattern-for-flexible-and-testable-code-5e1161dd37dd
https://medium.com/@sardar.khan299/understanding-dependency-injection-a-powerful-design-pattern-for-flexible-and-testable-code-5e1161dd37dd
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-8.0
https://auth0.com/docs/secure/tokens/access-tokens
https://auth0.com/docs/secure/tokens/refresh-tokens
https://auth0.com/docs/secure/tokens/refresh-tokens
https://jwt.io
https://jwt.io/introduction
https://auth0.com/docs/secure/tokens/refresh-tokens/refresh-token-rotation
https://auth0.com/docs/secure/tokens/refresh-tokens/refresh-token-rotation
https://nginx.org/en/
https://nginx.org/en/docs/beginners_guide.html#conf_structure
https://nginx.org/en/docs/beginners_guide.html#conf_structure
https://docs.docker.com/engine/network/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://grafana.com/blog/2020/03/03/the-benefits-of-observability/
https://grafana.com/blog/2020/03/03/the-benefits-of-observability/
https://serilog.net/
https://grafana.com/docs/loki/latest/
https://prometheus.io/docs/introduction/overview/
https://grafana.com/grafana/
https://kubernetes.io/docs/concepts/architecture/
https://kubernetes.io/docs/concepts/architecture/

BIBLIOGRAPHY

[53] Kubernetes. Deployments. url: https://kubernetes.io/docs/concepts/workloads/
controllers/deployment/. (accessed: 28/09/2024).

[54] Kubernetes. Horizontal Pod Autoscaling. url: https://kubernetes.io/docs/
tasks/run-application/horizontal-pod-autoscale/. (accessed: 10/10/2024).

74

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

	List of Figures
	List of Tables
	Acronyms
	Introduction
	AROL
	Project Aim: Enhancing Digital Integration
	Digital Integration Benefits

	Requirements
	Informal description
	Stakeholders and Context Diagram
	Functional Requirements
	Use Cases
	Use Case 1: User Registration
	Use Case 2: User Login
	Use Case 3: User Logout
	Use Case 4: QR Code Generation
	Use Case 5: Scan QR Code (Authenticated User)
	Use Case 6: Scan QR Code (Unauthenticated User)
	Use Case 7: Manage Products (Create, Retrieve, Update, Delete)
	Use Case 8: Manage Users (Create, Retrieve, Update, Delete)

	Architecture
	Monolithic architecture
	Microservices architecture
	What is a microservice?

	Monolithic vs. Microservices
	Proposed solution

	Technologies and Tools
	.NET Platform and C# language
	Docker and Docker Compose
	PostgreSQL
	RabbitMQ
	Azure Container Registry
	Kubernetes
	Git and Bitbucket
	Jira

	Microservices design and implementation
	Common patterns
	Controller-Service-Repository
	Dependency Injection
	RESTful API

	IAM microservice
	Identity Management API
	Role Assignment Criteria
	User Management API
	Entities
	Access tokens and refresh tokens
	Authentication flow
	Refresh token revocation and rotation
	API endpoints

	Machinery microservice
	Entities
	Database Relationships and Hierarchical Retrieval
	API endpoints

	Ticket microservice
	Entities
	Permissions
	API endpoints

	API Gateway
	NGINX

	Logging, Metrics Collection and Monitoring
	Logging
	Metrics Collection
	Monitoring with Grafana

	Application Deployment
	Kubernetes Setup
	Azure Container Registry Integration
	Defining Resources with Manifests
	Resource scaling

	Performance
	Low Traffic Scenario
	Medium Traffic Scenario
	High Traffic Scenario
	Results

	Conclusions and future work
	Bibliography

