
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Data management system enabling digital
twin for resistance spot welding

Supervisors

Prof. Giulia BRUNO

Prof. Manuela DE MADDIS

Dr. Gabriel ANTAL

Dr. Emiliano TRAINI

Candidate

Andrea CENCIO

October 2024

Abstract

In today’s rapidly evolving manufacturing processes, the digital twin is revolu-
tionizing industrial processes through real-time data-driven insights. Resistance
Spot Welding (RSW), a commonly used joining technique in the automotive and
aerospace industries, is a key area where digital twin technology holds great promises
for improving quality, efficiency, and predictive maintenance. However, the integra-
tion of digital twin models with RSW requires robust data management systems,
capable of handling large volumes of data.

This thesis presents the design and implementation of a data management
system (DMS) that enables the development and operation of a digital twin for
Resistance Spot Welding. The proposed DMS addresses the critical challenges in
data collection, processing, storage, and analysis by incorporating modern data
architecture principles with advanced analytics. A scalable and flexible architecture
is developed, ensuring that the system can handle and process the data generated
by sensors and monitoring equipment during the RSW process.

The system’s data collection framework integrates a wide range of personal-
izations that capture key parameters, such as welding current, electrode force,
temperature, and results of the welding. This real-time data are then processed
using modern techniques, like edge computing, to minimize latency and ensure the
data’s availability for nearly immediate feedback in the digital twin environment.
The processed data are then stored in a microservices-based infrastructure, allowing
for centralized management, long-term storage, and easy access for future analysis.

One of the key point of this thesis is the unlock of the possibility to integrate a
predictive model in the framework within the digital twin that uses historical data
to forecast potential defects in the welding process. A Machine learning algorithm
is actually employed to predict outcomes such as weld quality, joint strength, and
the likelihood of equipment failure. These predictions enable proactive adjustments
to the welding process, reducing defects, optimizing production, and extending
equipment life.

The system also incorporates a visualization tool, providing operators with a
modern user-friendly interface to monitor welding performances and historical trends
of the welding process. By integrating this tool into the system, it facilitates real-
time decision-making and supports predictive maintenance strategies, ultimately
leading to improved production efficiency and reduced downtime due to machine
failures.

The results of this thesis demonstrate the effectiveness of the proposed data
management system in enabling a functional digital twin for Resistance Spot
Welding. Furthermore, the scalability of the system is validated by its ability to

handle increasing data loads as production environments become more complex
and sensor networks expand.

This thesis contributes to the growing body of knowledge in digital twin tech-
nology by offering a comprehensive data management solution tailored for high-
frequency, high-volume industrial processes such as RSW. Starting from these
points, future works can focus on refining the predictive models, integrating addi-
tional processing methods, and exploring the system’s application to other welding
techniques and manufacturing processes. Ultimately, the data management system
developed in this thesis paves the way for the broader adoption of digital twins in
advanced manufacturing, contributing to smarter and more efficient production
lines.

ii

Summary

This thesis explores the development of a data management system with the purpose
of enabling a digital twin of the resistance spot welding (RSW) process. The primary
aim is to enhance the efficiency, quality control, and predictive maintenance of
RSW operations by integrating advanced data management techniques with digital
twin technology.

• Theory Pills: The first chapter discusses about some theory pills, to better
help the understanding of the whole development. It expose the challenges
managing and retrieving data from the welding process to ensure consistent
quality.

• Methodology: The methodology section outlines the development of the data
management system. It involves several key components:

– Data Acquisition: Describes the sensors and data collection methods used
to gather real-time data from the welding process.

– Data Storage: Explains the database architecture designed to store large
volumes of heterogeneous data securely and efficiently.

– Data Processing: Details the algorithms and computational techniques
used to process raw data from the machinery into comprehensible charts.

– Integration with Digital Twin: Discusses how the processed data will be
integrated into the digital twin model to enable real-time simulation and
analysis.

• System Architecture: The system architecture chapter provides a detailed
description of the overall system design. It includes graphics and explanations
of the various modules and their interactions. Emphasis is placed on the
scalability, flexibility, and robustness of the system to handle diverse data
types and volumes.

• Implementation and Testing: This section covers the practical implementation
of the data management system. It describes the setup of the experimental

iii

test machine and the data collection process. Various tests, starting from real
data acquisition and already validated results, are conducted to validate the
accuracy and reliability of the data management system and its integration
with the digital twin.

• Results and Conclusion: The results section presents the findings from the
implementation and testing phase. It showcases how the whole storage data
management system, developed in this way, can be integrated with a digital
twin to predict welding outcomes, detect anomalies, and suggest corrective
actions. The discussion delves into the implications of these results for the
manufacturing industry, particularly in improving product quality and opera-
tional efficiency. The conclusion instead summarizes the key contributions of
the thesis. It emphasizes the successful development of a data management
system that can enable an effective digital twin for resistance spot welding.
The potential benefits for industry applications, such as reduced downtime,
enhanced quality control, and predictive maintenance, are highlighted. The
thesis also outlines areas for future research, including the expansion of the
system to other advanced AI model, other welding processes and further
refinement of predictive algorithms.

• References: A comprehensive list of references is provided, citing all sources
used in the research, including academic papers, industry reports, and technical
manuals relevant to digital twins, data management systems and resistance
spot welding.

iv

Acknowledgements

To all those who said I wouldn’t make it.

v

Table of Contents

List of Figures xi

1 Theory pills 1
1.1 Resistance Spot Welding . 1

1.1.1 Introduction . 1
1.1.2 RSW in detail . 2
1.1.3 The Physical Transformations 2
1.1.4 Present and Future of RSW 4
1.1.5 To Sum Up . 4

1.2 Digital Twin . 5
1.2.1 Introduction . 5
1.2.2 Theoretical Foundations of Digital Twin 5
1.2.3 Digital Twin’s components 6
1.2.4 Digital Twin typologies . 7
1.2.5 Fields of application . 7
1.2.6 Way of representation in CE Solutions 8
1.2.7 Simulation . 8
1.2.8 Challenges . 10
1.2.9 The future of Digital Twins 10

1.3 Microservices . 11
1.3.1 Introduction . 11
1.3.2 Principal Characteristics . 11
1.3.3 Microservices Advantages 13
1.3.4 Microservices Disadvantages 14
1.3.5 To Sum Up . 15

1.4 Docker . 16
1.4.1 Docker Principal Characteristics 16
1.4.2 Docker Advantages . 17
1.4.3 Docker Disadvantages . 17
1.4.4 To Sum Up . 18

1.5 Monolithic Architecture . 19

vii

1.5.1 Introduction . 19
1.5.2 Monolithic Advantages . 19
1.5.3 Monolithic Disadvantages 20
1.5.4 To Sum Up . 22

1.6 Relational Databases . 23
1.6.1 Introduction . 23
1.6.2 Relational Databases Advantages 23
1.6.3 PostgreSQL . 25
1.6.4 Principal Characteristics of PostgreSQL 25
1.6.5 PostgreSQL Architecture . 25
1.6.6 PostgreSQL Advantage Functionalities 27
1.6.7 To Sum Up . 27

1.7 Non Relational Databases . 28
1.7.1 Introduction . 28
1.7.2 Non Relational Databases Advantages 28
1.7.3 MongoDB . 29
1.7.4 Principal Characteristics of MongoDB 30
1.7.5 MongoDB Architecture . 30
1.7.6 To Sum Up . 31

1.8 Web App Frameworks . 32
1.8.1 Introduction . 32
1.8.2 Web App Framework Advantages 33
1.8.3 Streamlit . 35
1.8.4 Principal Characteristics of Streamlit 35
1.8.5 Streamlit Advantages . 36
1.8.6 Streamlit Disadvantages . 36
1.8.7 To Sum Up . 37

1.9 Reverse Proxy . 38
1.9.1 Introduction . 38
1.9.2 Reverse Proxy Advantages 38
1.9.3 Principal Usages . 39
1.9.4 Example of Reverse Proxy Servers 39
1.9.5 NGINX . 40
1.9.6 NGINX Advantages . 40
1.9.7 NGINX Disadvantages . 41
1.9.8 To Sum Up . 42

1.10 From Industry 4.0 to Industry 5.0 43
1.10.1 Introduction . 43
1.10.2 Main Principles . 43
1.10.3 Main Goals . 44
1.10.4 Main Strategies . 44

viii

1.10.5 To Sum Up . 44
1.11 Industry 5.0 . 45

1.11.1 The new concept behind Industry 5.0 45
1.11.2 What’s new in Industry 5.0 45
1.11.3 To Sum Up . 46

1.12 Machine Learning . 47
1.12.1 Introduction . 47
1.12.2 Types of Machine Learning 47
1.12.3 Key Concepts . 47
1.12.4 Engineering Applications . 48
1.12.5 To Sum Up . 49

2 Methodology 50
2.1 Introduction to System Data Management Methodologies 50
2.2 Data Acquisition . 50

2.2.1 Introduction . 50
2.2.2 Acquisition through user input 51
2.2.3 Acquisition through files . 51

2.3 Data Storage . 53
2.3.1 Introduction . 53
2.3.2 PostgreSQL . 53
2.3.3 MongoDB . 53

2.4 Data Processing . 57
2.4.1 Introduction . 57
2.4.2 PostgreSQL data management 57
2.4.3 MongoDB files management 57
2.4.4 Integration with Machine Learning 58

3 System Architecture 61
3.1 Introduction . 61
3.2 Experimental Campaign . 62

3.2.1 The goal . 62
3.2.2 Technical details and experimental tests 63

3.3 The Start . 65
3.4 The End . 66

4 Implementation and Testing 67
4.1 Introduction . 67
4.2 PostgreSQL . 67
4.3 MongoDB . 70
4.4 Streamlit . 72

ix

4.4.1 Login Page . 72
4.4.2 Insertion Page . 73
4.4.3 Visualization Page . 75

4.5 NGINX . 77
4.6 Microservices . 78
4.7 Data Acquisition . 79

4.7.1 Typical Data Output Format 80
4.7.2 Analysis of Data . 80

4.8 Data Storage . 82
4.9 Data Processing . 86
4.10 Integration with Machine Learning 93

5 Conclusion 94
5.1 Thesis Project . 94
5.2 Future Developments . 95

Bibliography 96

x

List of Figures

1.1 Scheme of Resistance Spot Welding process[2] 1
1.2 Detail of RSW process[3] . 3
1.3 High Level example of a Digital Twin[6] 5
1.4 Different Typologies of DTs[7] . 7
1.5 Example of Microservices Architecture[9] 11
1.6 Example of Docker Architecture[11] 16
1.7 Example of Monolithic Architecture[14] 19
1.8 Example of Relational Database JOIN with Foreign Keys[16] 23
1.9 Example of Postgres Architecture[17] 26
1.10 Example of a NoSQL JSON-based DB, compared to a traditional

RDBMS[18] . 29
1.11 MongoDB Architecture[19] . 30
1.12 Example of a Web App Framework Structure[21] 32
1.13 Details of a Streamlit App Structure.[22] 35
1.14 NGINX Reverse Proxy configuration[24] 40
1.15 Various technologies for Industry 4.0[28] 43
1.16 Progresses to Industry 5.0[29] . 45
1.17 Machine Learning Flow[33] . 48

2.1 An example of data insertion through GUI 51
2.2 An example of data file structure 52
2.3 An Example of usage of indexes . 54
2.4 MongoDB GridFS structure[34] . 55
2.5 GUI Filtering box . 58
2.6 An Example of how data are organized in human readable files . . . 58
2.7 A simple button that predict nugget diameter trained on Test Cam-

paign through a Linear Regression Model 59
2.8 A second test with a Decision Tree Regression algorithm that predict

nugget diameter trained on Test Campaign 60

xi

3.1 The Resistance Spot Welding Machine used for the experimental
campaign[35] . 62

3.2 Specimen geometry according to ISO 14273 63
3.3 The Front Part of a weld . 63
3.4 The Back Part of a weld . 64
3.5 The Detail of a weld . 64
3.6 The first schema designed for the implementation 65
3.7 The last schema designed for the implementation 66

4.1 The first relational schema designed for PostgreSQL 68
4.2 The final relational schema implemented for PostgreSQL 69
4.3 The simple GridFS schema implemented for MongoDB 70
4.4 An example of files loaded in MongoDB 70
4.5 Some chunks of a file . 71
4.6 The Login Page . 72
4.7 The Login Window, if successful . 73
4.8 The first draft for data insertion page 74
4.9 The first draft for data visualization page 75
4.10 The final data visualization page . 76
4.11 NGINX config file . 77
4.12 A screenshot of the running containers 78
4.13 A crop of an example file from TECNA TE700 79

xii

Listings

4.1 Sidebar select box . 82
4.2 Query to retrieve data for tabs . 82
4.3 Handling data of a tab . 83
4.4 Managing file upload . 84
4.5 Import Python libraries and page config 86
4.6 Permission Checking . 86
4.7 DB Connections . 87
4.8 Data retrieve and sidebar config . 87
4.9 Page config . 88
4.10 Load Data from files . 89
4.11 Data Calculation . 90
4.12 Data Plot . 91
4.13 Data print test . 92

xiii

Chapter 1

Theory pills

1.1 Resistance Spot Welding
1.1.1 Introduction
Resistance Spot Welding (RSW) is a welding process[1] commonly used in the
automotive, aerospace and electronics industries. The key advantage of this
technique is its ability to join thin metal sheets quickly and efficiently, allowing a
faster high-volume production.

Figure 1.1: Scheme of Resistance Spot Welding process[2]

Resistance Spot Welding is a type of welding through a fusion process where
two or more metal sheets are joined by applying pressure and a flow of current

1

Theory pills

through the materials at the joint (see Fig 1.1). Localized melting takes place due
to the heat generated from resistance along interface of both materials, and as weld
nugget is formed.

1.1.2 RSW in detail
The key components of a Resistance Spot Welding system are:

• Electrodes, that are typically made of copper, the electrodes conduct electricity
and apply pressure to the workpieces.

• Power Supply that provides the electrical current required for the welding
process.

• Control System, that regulates the timing, current and pressure to ensure
consistent weld quality.

The heat generated during the Resistance Spot Welding process can be described
by Joule’s law:

Q = I2Rt

In which:

• I is the current passing through the materials

• R is the electrical resistance at the joint,

• t is the time for which the current is applied.

1.1.3 The Physical Transformations
The electrical resistance, in fact, is a critical factor in determining the amount of
heat generated and is influenced by the material properties, surface condition and
electrode geometry. The heat must be sufficient to melt the metal at the interface
but not too much, continuously controlled by sensor and algorithms to prevent
excessive expulsion of molten material.

The Resistance Spot Welding process involves rapid consequential heating and
cooling, which significantly impacts on the microstructure of the welded materials.

The key metallurgical phenomena include:

• Nugget Formation: The weld nugget is the small, roughly spherical region of
molten metal that solidifies to form the joint.

2

Theory pills

Figure 1.2: Detail of RSW process[3]

• Heat-Affected Zone (HAZ): The area surrounding the weld nugget, where the
microstructure has been altered by the heat but has not melted.

• Phase Transformations: Depending on the material, phase transformations
may occur during the cooling process, influencing the mechanical properties
of the joint.

Quality of weld in RSW is affected by several parameters and they will be
discussed now:

• Welding Current, because higher current increases the heat generated, influ-
encing the size and strength of the weld nugget.

• Welding Time, because the duration of current flow must be optimized to
ensure proper nugget formation without excessive melting or expulsion.

• Electrode Force, because the pressure applied by the electrodes affects the
contact resistance and the heat distribution across the joint.

• Material Properties, because the electrical and thermal conductivity, as well
as the thickness and surface condition of the workpieces, play crucial roles in
determining the weld quality.

The optimization of these parameters is critical to guarantee consistent weld
quality and minimizing defects.

3

Theory pills

1.1.4 Present and Future of RSW
Recent innovations in sensor technology build material and control algorithms have
led to some significant improvements in the monitoring and control of the Resistance
Spot Welding process. In fact real-time feedback systems, incorporating sensors
for current, voltage and displacement, let be possible the dynamic adjustment of
welding parameters to compensate for variations in material properties or external
conditions.

With the usage even more common of advanced high-strength steels (AHSS),
aluminum alloys and composites in industries like automotive and aerospace,
Resistance Spot Welding techniques have evolved to deal the challenges of welding
these materials. Innovations like adaptive control systems and new electrode designs
have been developed to improve the weldability of materials with varying thermal
and electrical conductivities.

Hybrid welding techniques [4] applied by combining Resistance Spot Welding
with other welding or bonding methods, have been developed to improve joint
strength and durability, especially in multi-material assemblies. For example,
Resistance Spot Welding combined with adhesive bonding can provide improved
mechanical properties and corrosion resistance in automotive structures.

Advances in computational modeling have enabled more accurate predictions of
the RSW process, including heat generation, nugget formation and residual stresses.
Finite Element Analysis (FEA) and other simulation tools are increasingly used
to optimize welding parameters, reduce defects and design more robust welding
systems.

The demand for more sustainable manufacturing processes has led to innovations
aimed at reducing the energy consumption of RSW. New power supply designs,
optimized welding schedules and the development of more efficient electrode mate-
rials are among the approaches being pursued to make RSW more environmentally
friendly.

1.1.5 To Sum Up
Resistance Spot Welding remains a cornerstone technology in modern manufac-
turing, with ongoing research and development focused on enhancing its efficiency,
adaptability and applicability to new materials. The integration of advanced
monitoring systems, computational modeling and hybrid techniques are driving
the evolution of RSW, ensuring its continued relevance in the face of emerging
manufacturing challenges.

4

Theory pills

1.2 Digital Twin

1.2.1 Introduction
The concept of Digital Twin has gained significant interest in recent years, due to
the improvements in digital technologies, Internet of Things (IoT) and artificial
intelligence (AI). A Digital Twin is a virtual representation of a physical entity or
system, continuously fed with real-time data updates and capable of simulating,
predicting and optimizing the performance of its real-world counterpart[5].

Figure 1.3: High Level example of a Digital Twin[6]

1.2.2 Theoretical Foundations of Digital Twin
The term "Digital Twin" was first coined by Dr. Michael Grieves in 2003 during
a presentation on Product Lifecycle Management (PLM). At first the concept
was focused on creating virtual models of products to simulate their performance
throughout their entire lifecycle. Over the time, the idea has expanded to include
entire systems, their manufacturing processes, smart cities, healthcare devices and
more.

A Digital Twin can be defined as a dynamic, digital representation of a physical
object, system, or process. It integrates data from various sources, including sensors,

5

Theory pills

historical records and predictive models, to provide insights into the current state,
predict future behavior and optimize performance.

1.2.3 Digital Twin’s components
A fully functional Digital Twin typically consists of the following key components:

• Physical Entity: it is the real-world object, system, or process being represented
by the Digital Twin.

• Virtual Model: it is the digital counterpart that mirrors all the physical entity,
including its geometry, behavior and functional aspects.

• Data Integration: it is the flow of real-time data from sensors and other sources
into the virtual model that reflects the current state of the physical entity.

• Analytics and Simulations: they are tools and algorithms used to analyze the
data, run simulations and make predictions about the future behavior of the
physical entity.

• Communication Interface: that is a platform for interaction between the physi-
cal and digital twins, allowing for real-time feedback, control and optimization.

6

Theory pills

1.2.4 Digital Twin typologies
Digital Twins can vary in complexity and functionality, often categorized into
different levels of maturity:

Figure 1.4: Different Typologies of DTs[7]

• The most simplest one is the Digital Modelthat is a static digital representation
of a physical entity with no real-time data integration with it.

• Then it comes the Digital Shadow: it is A digital representation updated with
real-time data, but with limited interaction or feedback to the physical entity.

• Finally, the Digital Twin: a fully integrated model with bidirectional commu-
nication, real-time updates and the ability to influence the physical entity’s
operations.

1.2.5 Fields of application
In Industry 4.0 Digital Twins are an angular stone for smart manufacturing. They
enable real-time monitoring, predictive maintenance and optimization of production
processes, letting the possibility to reduce downtime and enhance efficiency. For
instance, a Digital Twin of a factory floor can simulate the impact of changes in
production schedules, machine configurations, or material flows, allowing managers
to make informed decisions about the lifetime cycle of the product.

Digital Twins are increasingly used year by year in urban planning and smart
city initiatives. By creating a virtual model of a city, urban planners can simulate
the effects of infrastructure projects, traffic management strategies or environmental

7

Theory pills

changes. In healthcare, Digital Twins are used to model individual patients, allowing
for personalized treatment plans and predictive healthcare, but also the aerospace
industry has been a pioneer in adopting Digital Twins for the design, testing and
maintenance of aircraft and spacecraft. Finally, digital Twins are used in the energy
sector to model power plants, grids and renewable energy sources.

1.2.6 Way of representation in CE Solutions
The backbone of a Digital Twin is the integration of data from the physical world
into its digital counterpart. In computer engineering this is achieved through IoT
devices and sensors that continuously collect and transmit data to the digital model.
These sensors monitor various parameters such as temperature, pressure, vibration
and more, providing a real-time view of the physical entity’s state.

IoT platforms and middlewares play a crucial role in aggregating, then processing
and finally managing the vast amounts of data generated. These platforms ensure
the data is accurately captured, then filtered and finally forwarded to the Digital
Twin model for further analysis.

Digital Twins often require significant computational resources for data process-
ing then run simulations and then generate predictions. Cloud computing could
offers the scalability and flexibility, allowing Digital Twins to reach powerful com-
putational capabilities without the need for extensive on-premises infrastructure.

For time-sensitive applications (where low latency is critical), edge computing is
employed. Edge computing brings computational resources closer to the data source,
reducing the delay in data processing and enabling real-time decision-making.

The data ingested by the Digital Twin must be analyzed to generate actionable
insights. This is where data analytics, machine learning (ML) and more generally
artificial intelligence (AI) come into play. These technologies enable the Digital
Twin to learn from historical data or recognize patterns and make predictions about
future states or failures.

For example in predictive maintenance, one of the possible field of application of
this thesis, machine learning algorithms can analyze sensor data to predict when a
machine part is likely to fail, allowing for proactive replacement before a breakdown
occurs. AI-driven optimization algorithms can also be used to adjust operations in
real-time to improve efficiency and reduce costs.

1.2.7 Simulation
Simulation is a core component of Digital Twin technology[8], enabling the virtual
model to mimic the behavior of its physical counterpart. In computer engineering,
various simulation tools and platforms are used to create and run these models:

8

Theory pills

• Finite Element Analysis (FEA): Used for simulating the physical behavior of
objects under stress, heat and other forces.

• Computational Fluid Dynamics (CFD): Used to simulate fluid flow, which is
essential in industries like aerospace, automotive and energy.

• Discrete Event Simulation (DES): Used for modeling the operation of complex
systems, such as manufacturing processes or logistics networks.

These tools are often integrated into the Digital Twin framework, allowing engineers
to test scenarios, validate designs and predict outcomes in a virtual environment
before applying them in the real world.

The effectiveness of a Digital Twin relies heavily on how its data and insights
are presented to users. Graphical interactive dashboards, 3D visualizations and
virtual/augmented reality (VR/AR) interfaces are commonly used to represent
Digital Twins.

• 3D Visualization: Tools like Unity, Unreal Engine and custom 3D engines are
used to create detailed visual representations of physical entities, enabling
users to interact with the Digital Twin in an intuitive way.

• Virtual and Augmented Reality: VR/AR technologies are increasingly used
in Digital Twin applications, especially for training, remote maintenance and
collaborative design. These technologies allow users to immerse themselves in
the virtual environment and interact with the Digital Twin as if they were
handling the real object.

• Interactive Dashboards: Platforms like Tableau, Power BI and custom-built
dashboards (like Streamlit in our case) are employed to visualize real-time data,
key performance indicators (KPIs) and simulation results. These dashboards
provide a comprehensive view of the Digital Twin’s status, helping users make
informed decisions quickly.

Effective communication between the physical and digital twins is essential for
the system’s functionality. Protocols like MQTT, OPC UA and RESTful APIs are
commonly used to ensure flawless data exchange. Additionally the security of this
data, especially in critical infrastructure or sensitive applications, is predominant.

In computer engineering security measures such as encryption, authentication
and access control are implemented to protect the integrity and confidentiality of
the data. Blockchain technology is also being explored as a way to ensure secure
and immutable data exchange between digital twins, particularly in distributed
systems.

9

Theory pills

1.2.8 Challenges
There are some key challenges in Digital Twin construction, such as:

• Data Quality and Integration: Ensuring the accuracy and consistency of data
from diverse sources can be challenging, particularly in complex systems with
multiple sensors and devices.

• Scalability: Maintaining their performance and scalability becomes a significant
challenge, because Digital Twins grow in complexity and scope, particularly
in global applications like smart cities or large industrial systems.

• Interoperability: The integration of Digital Twins across different platforms
and technologies requires standardized protocols and interfaces, which are still
evolving.

• Security and Privacy: The vast amounts of data collected and processed
by Digital Twins raise concerns about security and privacy, particularly in
sensitive applications like healthcare and critical infrastructure.

1.2.9 The future of Digital Twins
The development of industry standards for Digital Twin implementation will
improve interoperability and accelerate adoption across various sectors. The
integration of advanced AI techniques will enhance the predictive and prescriptive
capabilities of Digital Twins, enabling more autonomous and intelligent systems.
As the technology matures, Digital Twins are expected to expand into new domains
such as agriculture, education and entertainment, unlocking new opportunities
for innovation. The widespread use of Digital Twins, particularly in areas like
healthcare and smart cities, will necessitate a greater focus on ethical considerations,
including data privacy, transparency and the potential for AI-driven decisions.

10

Theory pills

1.3 Microservices
1.3.1 Introduction
In last years microservices architecture has emerged as a new methodology to
design and develop complex software applications. Unlike traditional and past
monolithic architectures, about which we will talk about in the next section, where
all components of an application are strongly developed, integrated and distributed
as a single unit, microservices break the whole application into a series of small,
independent services, each with its own simple specific task. This subdivision
offers numerous advantages in terms of scalability, maintainability and development
speed, that we will analyze more in deep in the next paragraphes.

Figure 1.5: Example of Microservices Architecture[9]

1.3.2 Principal Characteristics
Microservices have more than one peculiarity:

• Service Indipendence: every microservice functions as an autonomous applica-
tion with its own lifecycle1. This independence allows for the development,
testing, deployment and scaling of services independently from one another.

• Communication via API2: microservices communicate with each other through

1Every microservice can be developed, tested and released independently
2API = Application Programming Interface

11

Theory pills

well-defined APIs, typically using network protocols like HTTP/HTTPS. This
approach facilitates integration and cooperation between different services.
The use of RESTful3 APIs or gRPC (remote procedure calls) for synchronous
communication and message brokers for asynchronous communication ensures
that services can interact seamlessly, regardless of their underlying technologies.
This API-driven communication also makes it easier to expose functionalities to
external clients or third-party applications, enhancing the system’s extensibility
in the future steps of development.

• Heterogeneous Technologies: microservices are not limited to a single technol-
ogy stack or programming language and so it allows them to be developed
using the most appropriate tools for each specific requirement4. For instance,
one microservice might be written in Python due to its simplicity and ex-
tensive library support, while another might be in Java for its robustness
and performance in handling concurrent transactions. This heterogeneity
enables organizations to leverage the best features of different technologies,
optimizing each microservice for its intended purpose. Furthermore, this
flexibility allows teams to adopt new technologies and methodologies without
needing to overhaul the entire system, promoting innovation and technological
advancement.

• Failure Isolation: failures in microservices are mostly isolated to individual
services, reducing the impact on the overall system. This isolation improves
the system’s resilience and reliability. For example, if a payment processing
microservice encounters an issue, it won’t affect the user authentication or
product catalog services. This segregation of services ensures that the fail-
ure of one does not cascade into a systemic failure, enhancing the stability
and robustness of the application. Techniques like circuit breakers and bulk-
heads can be implemented to manage and contain failures effectively within
microservices.

• Scalability: microservices enable scaling of only those parts of the application
that require more resources, improving operational efficiency and optimizing
costs. This granular scalability is achieved by deploying instances of specific
microservices on demand, based on their load. For example, if an e-commerce
application might need to scale its order processing microservice during peak
shopping seasons, it can do it without scaling the user management microser-
vice. This targeted scaling ensures that resources are allocated precisely where

3REST = REpresentational State Transfer
4For example, you can develop a backend using NoSQL db that stores files and a RDBMS for

data handling, like in this application

12

Theory pills

needed, leading to significant cost savings and better performance. Cloud
platforms, ad exemple, offer auto-scaling capabilities that make it easier to dy-
namically adjust the number of instances of a microservice based on real-time
demand.

1.3.3 Microservices Advantages
• Deployment Flexibility: Microservices architecture consent for more flexible

deployment strategies. Continuous Integration and Continuous Deployment
(CI/CD) pipelines can be specifically tailored to the specific needs of each
service, enabling more frequent and reliable updates. This flexibility supports
rapid iteration and experimentation which are crucial for modern software
development practices5.

• Enhanced Security: By breaking down applications into smaller services,
microservices can improve security through isolation. Each service can be
secured independently, applying the principle of least privilege6. Access
controls and security policies can be fine-tuned for each service, avoiding that
a security breach can impact on whole system.

• Improved Fault Tolerance: Microservices can improve fault tolerance through
redundancy and failover mechanisms. Critical services can be duplicated across
multiple nodes or data centers, to guarantee redundancy, ensuring availability
even in the event of a hardware failure or network outage. This redundancy is
essential for maintaining high availability and ensuring business continuity.

• Organizational Alignment: Microservices are naturally used in agile develop-
ment practices and organizational structures. Teams can be organized around
specific services, fostering a sense of ownership and accountability. This align-
ment promotes cross-functional collaboration, as each team includes all the
necessary skills to develop, deploy and maintain their respective services.

• Cost Management: Enabling more precise resource allocation, microservices
help in managing costs more effectively. Resources can be provisioned based
on the actual needs of each service, avoiding over-provisioning and reducing
wastage. This cost efficiency is particularly beneficial in cloud environments,
where resource usage directly impacts billing.

5For example, you can work on a microservice and test new improvements without interrupting
the whole application

6If a payment system have an issue, the customer can still navigate through the site, even
though he cannot purchase anything

13

Theory pills

• Faster Time-to-Market: The independence and parallel development capa-
bilities of microservices shorten the time-to-market for new features and
improvements7. Organizations can respond more swiftly to market demands
and user feedback, maintaining a competitive edge in the fast-paced digital
landscape.

1.3.4 Microservices Disadvantages
• Service Coordination: With a large number of microservices, the need for

coordination increases. DevOps and developers must manage interactions,
dependencies and updates across various services, which can become very
complicated.

• Monitoring: Supervising a microservices-based architecture requires advanced
tools to monitor the status and performance of each service. Performance
issues or failures can be difficult to isolate, there are needed employees with
specifical background and knowledge.

• Configuration Management: Each microservice may have its own configuration
making then centralized configuration management more complex.

• Latency: Each call between microservices introduces latency. While a single
call might not be significant, in a highly interconnected system, cumulative
latency can become problematic.

• Points of Failure: The network itself becomes a potential point of failure.
Connectivity issues can disrupt the functioning of services. Security: Commu-
nication between microservices must be secure. This includes implementing
authentication and authorization, encrypting data in transit and managing
security keys.

• Consistency Models: In a distributed system maintaining data consistency
is complex. Many microservices-based systems opt for eventual consistency,
where data may not be immediately consistent across all services.

• Distributed Transactions: The capability to split transactions on multiple
services can be very complicated. Developers must implement mechanisms
like sagas or two-phase commit (2PC), which can be difficult to manage and
can introduce further complexity and latency.

7Very often companies allocate more than oone developers to work on the same application,
with each developer that have in charge one microservice

14

Theory pills

• Orchestration Tools: Deploying and managing a large number of microservices
requires tools like Kubernetes8 to orchestrate containers. These tools add
another layer of complexity and require specialized skills.

• Continuous Deployment: With many independent services, continuous deploy-
ment can become a nightmare if not managed properly. Each service needs
to be tested and deployed independently, increasing the risk of errors and
inconsistencies9.

• Operational Overhead: The need to manage multiple code repositories, CI/CD
pipelines and deployment configurations increases operational overhead.

• Staff Expertise: Implementing and maintaining a microservices architecture re-
quires staff with advanced skills in DevOps, container management, distributed
application security and monitoring.

• Debugging and Troubleshooting: Tracing and resolving bugs in a distributed
system can be extremely difficult. Distributed logs, call tracing and monitoring
metrics become crucial for diagnosing issues.

1.3.5 To Sum Up
Microservices offer many advantages, such as scalability and independent devel-
opment teams, but they also come with significant challenges. It is essential to
carefully evaluate these disadvantages and prepare to address them with the right
skills and tools before adopting a microservices architecture.

8Very often people interrogate about the differences between Docker and Kubernetes: the fact
is that they’re not in competition against each other, but they’re complementary!

9Very often non-structured developers releases microservice code without testing it. In case of
fault, this led to a very difficult problem solving, because it is more difficult to track the error
between microservices

15

Theory pills

1.4 Docker
Docker is an open-source platform that automates the deployment, scaling and
management of applications within lightweight and portable containers. Containers
package an application and its dependencies, providing a consistent environment
across various stages of development and deployment[10].

Docker was first released by Docker Inc. in 2013. It pulls out containerization
technology, which has been a part of the Linux kernel through namespaces and
control groups. Docker’s ease of use and comprehensive tooling made it popular,
leading to widespread adoption in both development and production environments.

Figure 1.6: Example of Docker Architecture[11]

1.4.1 Docker Principal Characteristics
Docker uses a client-server architecture:

• Docker Client: A command-line interface (CLI) that users interact with.

• Docker Daemon: A background service running on the host that builds, runs
and manages Docker containers.

• Docker Images: Pre-built templates used to create different containers.

16

Theory pills

• Docker Containers: Standalone, lightweight and executable software packages
that include everything needed to run a software, including also the code,
runtime, system tools, libraries and settings.

1.4.2 Docker Advantages
Docker has some advantages, that will be discussed now[12]:

• Portability: Containers can run on any system that is supported by Docker,
ensuring consistent behavior across different environments. It is easy to develop
on a platform (for example Windows PCs) and deploy on another (for example
Linux servers)

• Efficiency: Containers use the same host system’s kernel and resources, which
results in lower overhead compared to virtual machines, that have to replicate
all layers.

• Isolation: Containers have been developed to isolate applications and their
dependencies from the other containers and the host machine, ensuring that
they do not interfere with each other and that the communication between
them is only possible through user-defined bridges.

• Scalability: Docker integrates with orchestration tools like Kubernetes, making
it easier to scale applications horizontally.

• Rapid Deployment: Containers can be started and stopped quickly, which
facilitates rapid development, testing and deployment cycles10.

• Version Control: Docker images can be versioned, providing a clear history of
changes and the ability to roll back to previous versions if it is wanted to.

• Simplified Dependency Management: Containers include all necessary depen-
dencies, reducing issues related to environment configuration.

1.4.3 Docker Disadvantages
On the contrary, it has also some disadvantages[13]:

• Security Concerns: Since containers share the host OS kernel, a security
vulnerability in the kernel can potentially affect all containers.

10It is also possible to switch off some containers while problem debugging, letting others
running flawless

17

Theory pills

• Complexity in Orchestration: Managing multiple containers in production
requires orchestration tools like Kubernetes, which can add complexity. The
simple use of Docker could not be fully enough.

• Performance Overhead: Although lighter than virtual machines, containers
still introduce some overhead compared to running applications directly on
the host.

• Persistent Storage: The configuration to have the possibility of managing
persistent data in containers has to be carefully tied up, especially in a
distributed environment.

• Networking Overhead: Container networking introduces additional layers of
abstraction that can impact network performance.

• Limited Compatibility with Non-Linux Systems: Docker is primarily designed
for Linux and while it supports Windows and macOS, some features may not
be fully compatible or sharing the same performances.

• Learning Curve: For teams new to containerization, there is a significant
learning curve associated with Docker and its ecosystem11.

1.4.4 To Sum Up
Docker has revolutionized the way applications are developed by providing a consis-
tent, portable and efficient environment[11]. Its advantages have made it a vital tool
in modern software development. However, challenges such as security concerns,
orchestration complexity and performance overhead must be carefully managed to
fully have a positive return on Docker’s capabilities. Understanding these trade-offs
is crucial for effectively integrating Docker into a computer engineering workflow.

11Expecially while connecting containers between each other

18

Theory pills

1.5 Monolithic Architecture
1.5.1 Introduction
The monolithic architecture, in contrast with the newer and modern microservices
approach, represent the most traditional approach in software development. This
model is based on the theory about the fact that all application components (User
UI, business logic, data access and so on) are integrated in a unique block, not
separable. This typo of software architecture development is widely used in many
sectors, due to his simplicity and his easy development. it has to be remember
that, despite being and old conception of architecture, it is not necessarily bad,
compared to microservices one.

Figure 1.7: Example of Monolithic Architecture[14]

1.5.2 Monolithic Advantages
• Simplicity of Development and Debugging: one of the main advantages of

monolithic architecture is its simplicity. All the application code resides in a
single project, making it easier for developers to understand the entire system.
Debugging and testing a monolithic application can be simpler because all
components are present in the same memory space and can be tested together.

• Improved Performance: monolithic applications can offer better performance
compared to distributed architectures (like microservices) as they eliminate

19

Theory pills

the network latency associated with calls between separate services. This is
particularly beneficial for applications that require high response speed.

• Easy Deployment: with a monolithic architecture, the deployment process is
generally simpler. The entire application is developed and then mantained
as a single unit, reducing the complexity of the deployment process com-
pared to microservice-based applications, which require the coordination and
deployment of multiple independent services.

• Centralized Management: having a single code base centralizes dependency
and configuration management. This makes it easier to maintain and update
third-party libraries used in the project reducing the risk of incompatibilities.

• Lower Initial Costs: for startups and small businesses, a monolithic architecture
can be a more economical choice. The time and resources needed to develop
and manage a monolithic application are often less than those required for a
microservices-based architecture.

• Compatibility with Existing Frameworks: many development frameworks
are designed with a monolithic architecture in mind. This means developers
can leverage a wide range of mature tools and libraries, accelerating the
development process.

• Ease of Vertical Scalability: scaling a monolithic application can be simpler
in some scenarios, as it merely requires increasing the server resources (CPU,
RAM). This approach is straightforward and can be quickly implemented to
handle a temporary increase in load.

1.5.3 Monolithic Disadvantages
• Vertical Scalability Limits: Monolithic applications primarily rely on vertical

scaling, which involves adding more resources (CPU, RAM) to a single server.
This approach has physical and cost limitations, making it difficult to scale
beyond a certain point.

• Inefficiency in Horizontal Scaling: Horizontal scaling, which involves adding
more servers, is challenging with monolithic architecture because it requires
the entire application to be duplicated across servers, leading to inefficiencies.
Development and Deployment Challenges

• Slower Development Cycles: As the application grows, the codebase can
become large and complex, making it harder for developers to work on and
understand. This can slow down development and lead to longer release cycles.

20

Theory pills

• Deployment Bottlenecks: Any change in the code, even a minor one, requires
the entire application to be redeployed. This can cause downtime and increase
the risk of deployment errors, affecting the entire system.

• Codebase Complexity: Over time, a monolithic application can become cum-
bersome and difficult to manage due to tightly coupled components. Changes
in one part of the application can inadvertently affect other parts, leading to
increased maintenance efforts.

• Technology Lock-In: Monolithic architectures can be difficult to evolve with
new technologies. Introducing new frameworks or languages may require
significant rewrites of the entire application, which is both time-consuming
and risky.

• Single Point of Failure12: A failure in any part of the monolithic application
can potentially bring down the entire system. This lack of fault isolation can
lead to significant downtime and impact overall reliability.

• Difficulties in Fault Isolation: Identifying and isolating issues can be chal-
lenging because all components are interdependent. This can complicate
troubleshooting and prolong the time needed to resolve issues.

• Team Scaling Challenges: As the team grows, coordination becomes more
complex. Multiple developers working on the same codebase can lead to merge
conflicts, duplicated efforts and difficulties in maintaining code quality.

• Limited Parallel Development: Monolithic architecture limits the ability of
teams to work on different features or components independently because
changes in one area often require coordination and testing across the entire
application.

• Uniform Technology Stack: Monolithic applications often use a single technol-
ogy stack, which can limit innovation. Different parts of the application may
have different requirements and being restricted to a single technology stack
can be suboptimal.

• Comprehensive Testing Requirements: Testing a monolithic application re-
quires comprehensive testing of the entire system, even for small changes. This
can be time-consuming and resource-intensive.

• Difficulty in Automated Testing: Automation of tests becomes more complex
as the application grows, requiring extensive setup and maintenance of test
environments.

12A breach in a service can broke down the entire application

21

Theory pills

1.5.4 To Sum Up
Despite the growing popularity of microservice architectures, monolithic architecture
remains a valid choice for many applications, in particular for small and medium-
sized projects. Its simplicity, superior performance in certain contexts and ease
of management and deployment make it a pragmatic and effective solution. By
the way it is important to carefully consider the specific needs of the project and
potential future challenges related to scalability and maintenance before adopting
a monolithic architecture.

22

Theory pills

1.6 Relational Databases
1.6.1 Introduction
A relational database is a type of database that organizes data into interrelated
tables. This model, introduced by Edgar F. Codd in the 1970s, uses a column and
row structure to facilitate data management and manipulation. Each table, also
known as a relation, represents an entity and each row (or record) represents an
instance of that entity. The columns (or fields) define the attributes of the entities.

The key concept of relational databases is the usage of primary keys and foreign
keys to establish and maintain relationships between tables[15]. A primary key
is a unique identifier for each record in a table, while a foreign key is a field that
creates a link between two tables.

Figure 1.8: Example of Relational Database JOIN with Foreign Keys[16]

1.6.2 Relational Databases Advantages
• Data Integrity: The use of primary keys and foreign keys ensures data consis-

tency and integrity.

• Usability: Insert, update and delete operations are simple thanks to the SQL13

language.

13SQL = Structured Query Language

23

Theory pills

• Scalability: Relational databases can handle large volumes of data and users.

• Transactionality: Support ACID (Atomicity, Consistency, Isolation, Durability)
transactions which ensure reliable operations.

24

Theory pills

1.6.3 PostgreSQL
PostgreSQL is an open-source relational database management system (RDBMS14),
known for its stability, extensibility and compliance with SQL standards. Initially
developed as part of the POSTGRES project at the University of California,
Berkeley, it has become one of the most advanced RDBMS systems available.

1.6.4 Principal Characteristics of PostgreSQL
• Standards Compliance: PostgreSQL complies with ANSI SQL15 standards,

making it compatible with a wide range of applications and tools.

• Extensibility: Supports the addition of new functions, data types, operators
and procedural languages.

• Support for ACID Transactions: Ensures that all database operations are
atomic, consistent, isolated and durable.

• Advanced Index Management: Supports various types of indexes such as
B-tree, hash, GiST, SP-GiST, GIN and BRIN, improving query performance.

• Security: Offers robust authentication, authorization and data encryption
functions.

1.6.5 PostgreSQL Architecture
The PostgreSQL architecture is made up of several key components:

• Server Process (Postmaster): The main process that manages client connec-
tions, query execution and transaction control.

• Shared Buffers: Shared memory area used to store temporary data and table
pages.

• Write-Ahead Logging (WAL): Log system that guarantees the durability of
transactions16.

• Background Processes: Auxiliary processes that perform maintenance tasks
such as checkpointing, garbage collection and replication.

14RDBMS = Relational DataBase Management System
15SQL = Structured Query Language
16The changes are first written in logs. If the changing movement has success, it will be

propagated through the real database

25

Theory pills

Figure 1.9: Example of Postgres Architecture[17]

PostgreSQL supports a wide range of data types, including strings, numbers, dates,
arrays and custom types. Data management is based on CRUD (Create, Read,
Update, Delete) operations performed via SQL.

26

Theory pills

1.6.6 PostgreSQL Advantage Functionalities
• Functions and Procedures: PostgreSQL supports writing functions and proce-

dures in various languages such as pgSQL, Tcl, Perl and Python.

• Advanced Indexes: In addition to B-tree indexes, it supports GIN indexes for
full-text search and GiST indexes for spatial data.

• Table Partitioning: Allows you to split large tables into smaller sub-tables to
improve query performance.

• Replication and Clustering: Offers synchronous and asynchronous replication
mechanisms for fault tolerance and load balancing.

1.6.7 To Sum Up
PostgreSQL is a robust and versatile choice for data management, combining
advanced features with a strong emphasis on standards compliance and extensibility.
Its active community and extensive documentation make PostgreSQL one of the
most reliable and sustainable solutions for modern database needs.

27

Theory pills

1.7 Non Relational Databases
1.7.1 Introduction
NoSQL17 databases represent a category of database management systems that
deviate from the traditional relational model. Designed to handle large volumes of
unstructured or semi-structured data, NoSQL databases offer flexibility, scalability
and performance optimized for specific use cases. They emerge as a response to the
limitations of relational databases, especially in the context of web applications,
big data and cloud computing.

1.7.2 Non Relational Databases Advantages
• Schema-less: Data can be stored freely, without a predefined tabular schematic,

allowing for greater flexibility in managing data that can vary.

• Horizontal scalability: It has the ability to distribute the load across multiple
servers.

• High availability and fault tolerance: It is designed to guarantee service
continuity even in the presence of hardware failures.

• Variety of data models: Support different data models such as documents,
columns, graphs and key-values.

NoSQL data models type and some examples

• Document Databases: Use semi-structured documents, often in JSON or
BSON format. Examples are MongoDB and CouchDB.

• Columnar Databases: Organize data into tables, rows and columns, but with
greater flexibility than relational databases. Examples include Cassandra and
HBase.

• Graph Databases: Manage highly connected data, represented as nodes, edges
and properties. Examples include Neo4j and ArangoDB.

• Key-Value Databases: Store key-value pairs, ideal for applications that require
quick access to data. Examples include Redis and DynamoDB.

17NoSQL = Not Only SQL

28

Theory pills

Figure 1.10: Example of a NoSQL JSON-based DB, compared to a traditional
RDBMS[18]

1.7.3 MongoDB

MongoDB is one of the most popular NoSQL databases, known for its ability to
store data in document format using BSON18. MongoDB was designed to handle
modern applications that require agility, scalability and high performance.

18BSON = Binary JSON

29

Theory pills

1.7.4 Principal Characteristics of MongoDB
• Document-Oriented: Data is stored in JSON-like documents19, making them

easy for developers to read and write.

• Schema-less: It does not require a predefined data model, allowing dynamic
changes to the structure of documents.

• Scalability: Supports horizontal scalability through sharding, a technique that
distributes data across multiple machines.

• High Availability: Uses data replication to ensure fault tolerance and high
availability.

• Indexes: Supports various types of indexes to improve query performance.

Figure 1.11: MongoDB Architecture[19]

1.7.5 MongoDB Architecture
MongoDB’s architecture is based on three main components: databases, collections
and documents.

• Database: A container for collections of documents.

19BSON format

30

Theory pills

• Collections: Groups of documents stored within a database. it is similar to
tables in relational databases.

• Documents: Units of data stored in BSON format, containing fields and values.

It have also some advanced features, such as[20]:

• Indexes: MongoDB supports the creation of indexes to improve query perfor-
mance. Indexes can be created on one or more fields in a document.

• Sharding: The sharding technique allows you to distribute data across multiple
nodes, improving scalability and performance.

• Replica Set: A group of MongoDB instances that maintain the same data set,
providing redundancy and high availability.

• Safety: MongoDB offers various security mechanisms, including authentication,
authorization, data encryption at rest and in transit and audit logging.

1.7.6 To Sum Up
MongoDB, as a representative of NoSQL databases, offers a flexible and scalable
alternative to traditional relational databases. Its ability to handle semi-structured
data, combined with advanced features like replication and sharding, makes it an
ideal choice for many modern applications. Understanding its features, architecture
and basic operations is critical to unlocking the full potential of MongoDB in
software development projects.

31

Theory pills

1.8 Web App Frameworks
1.8.1 Introduction
In the modern digital era, web applications have become essential for all the people.
These applications, which run on web browsers and provide interactive services
to users, range from simple websites to complex systems handling millions of
transactions daily. Building such applications from scratch can be a daunting task,
requiring extensive knowledge of various programming languages, databases and
web technologies. This is where web application frameworks are the most common
used choice.

Web application frameworks are software libraries designed to simplify the
development of web applications. They provide a structured foundation, including
pre-written code, tools and libraries, which developers can use to build robust and
scalable applications more efficiently. By abstracting the common tasks involved in
web development, such as routing, authentication and data handling, frameworks
allow code developers to spend time in developing more functions of their application,
instead of thinking about redoing the same things already developed by others.

Figure 1.12: Example of a Web App Framework Structure[21]

32

Theory pills

Key Features of Web Application Frameworks:

• Modular Design: Frameworks are typically modular, offering components that
can be reused across different projects. This modularity promotes code reuse
and helps maintain consistency across applications.

• Scalability: Good frameworks are designed to support the growth of appli-
cations, ensuring they can handle increasing loads and complexities as user
demands grow.

• Security: Frameworks often include built-in security features, to protect against
common web vulnerabilities like SQL injection and cross-site scripting. This
helps developers build secure applications without needing to implement these
protections from scratch.

• Efficient Development: By providing ready-to-use components and automating
repetitive tasks, frameworks significantly reduce development time and effort.
This allows for quicker iterations and faster time-to-market.

• Community and Support: The most popular frameworks have large communi-
ties and extensive documentation over the internet. This support network can
be fundamental for troubleshooting issues, sharing best practices and staying
updated with the latest developments.

Different types of Web Application Frameworks:

• Front-end Frameworks: These focus on the user interface and experience.
Examples include React, Angular and Vue.js. They help create dynamic and
responsive web interfaces.

• Back-end Frameworks: These handle the server-side logic, database interac-
tions and application workflows. Examples include Django, Flask, Express
and Ruby on Rails. They provide tools for managing data, user authentication
and API development.

• Full-stack Frameworks: These provide both front-end and back-end capabilities,
allowing developers to build complete applications within a single framework.
Examples include Meteor and Next.js.

1.8.2 Web App Framework Advantages
• Consistency and Best Practices: Frameworks enforce best practices and coding

standards, which lead to more maintainable and reliable code.

33

Theory pills

• Rapid Development: Frameworks accelerate development processes through
reusable components and automated tasks.

• Reduced Errors: Pre-built components and standardized structures reduce
the likelihood of coding errors and security flaws.

• Scalability and Performance: Frameworks are optimized for performance and
scalability, ensuring applications can grow and handle increasing traffic.

• Community and Resources: Extensive community support and resources make
problem-solving easier and provide continuous learning opportunities.

34

Theory pills

1.8.3 Streamlit
Streamlit is an awesome web app framework, open-source, specifically designed
for Machine Learning and Data Science projects. It allows developers and data
scientists to create and share custom web applications for machine learning and
data science with minimal effort. Streamlit’s straightforward interface and powerful
features enable quick prototyping and deployment of interactive web apps, making
it a popular choice among professionals to visualize data and models.

Figure 1.13: Details of a Streamlit App Structure.[22]

1.8.4 Principal Characteristics of Streamlit
• Ease of Use: Streamlit applications are built with pure Python and the

framework allows for the transformation of Python scripts into interactive
apps effortlessly.

• Widgets: Streamlit provides a variety of widgets, most of them interactive,
such as sliders, buttons and text inputs, which can be used to create dynamic
applications.

• Real-time Updates: Apps built with Streamlit can be updated in real-time as
the code data changes, providing an up-to-date view of results.

• Flawless Integration: Streamlit integrates ideally with popular data science
libraries like NumPy, Pandas, Matplotlib and more.

35

Theory pills

1.8.5 Streamlit Advantages
• Rapid Prototyping: Streamlit allows for quick development and iteration of

prototypes. This is particularly useful for academic projects where iterative
testing and visualization of models and results are crucial.

• Simplified Development Process: Streamlit simplifies the process of creating
interactive web applications, because developers do not need to have extensive
knowledge of web development frameworks like HTML, CSS, or JavaScript,
as Streamlit handles the web interface automatically.

• Interactive Data Visualization: The framework supports a wide range of
interactive widgets that can be used to create rich and dynamic visualizations.
This is beneficial for exploring data and presenting findings in a more engaging
way.

• Open-Source and Community Support: Being open-source, Streamlit has a
robust community that contributes to its development and provides support.
This community aspect ensures that users can find help and share solutions
to common problems.

• Real-time Data Processing: Streamlit applications can be updated in real-time,
allowing users to interact with data and see immediate results. This feature
is advantageous for monitoring live data streams and conducting real-time
analyses.

1.8.6 Streamlit Disadvantages
• Performance Limitations: Streamlit can face performance issues with very

large datasets or highly complex applications, as it runs in a single-threaded
process and contents need to be refreshed at every change in input. This may
limit its use for applications requiring high computational performance.

• Limited Customization: While Streamlit is easy to use, it offers limited
customization options compared to more advanced web frameworks. Users
with specific design or functionality requirements may find it restrictive.

• Dependency on Python: Streamlit is built for Python, which means it cannot
be used with projects that are based on other programming languages. This
can be a limitation if the project involves a multi-language stack.

• Deployment Complexity: Deploying Streamlit apps can be straightforward for
simple use cases, but as the application grows in complexity, deployment can
become more challenging, especially when integrating with other systems or
when scaling.

36

Theory pills

• Learning Curve for Complex Widgets: While basic widgets are easy to im-
plement, more complex interactions may require a deeper understanding of
both Streamlit and the underlying Python libraries. This could increase the
learning curve for users new to these tools.

1.8.7 To Sum Up
Streamlit offers a robust and user-friendly platform to develop interactive applica-
tions for machine learning and data science. Its advantages make it an excellent
choice for rapid prototyping and interactive visualization of data. However, po-
tential limitations such as performance issues and limited customization should
be considered based on the specific requirements of the project. For projects
heavily relying on Python and requiring quick development cycles, like this thesis
project, Streamlit can be an ideal tool, while more complex applications may require
complementary solutions.

37

Theory pills

1.9 Reverse Proxy

1.9.1 Introduction
A reverse proxy server is an intermediary server that is posed between client devices
and a web server. Unlike a forward proxy, which simply manages traffic from clients
to the internet, a reverse proxy handles traffic coming from the internet and directs
it to the appropriate server in backend. This mechanism is widely used in modern
web architectures due to its numerous benefits.

1.9.2 Reverse Proxy Advantages
[23]

• Load Balancing: One of the primary functions of a reverse proxy is to distribute
incoming client requests across multiple backend endpoint. This ensures no
single server becomes overwhelmed with too many requests, improving overall
system performance and reliability.

• Security Enhancement: Reverse proxies can act as a shield between the client
and the backend servers, for example not directly exporting ports of the
services and filtering traffic using a set of rules, offering an additional layer
of security. They can hide the existence and characteristics of the backend
servers, preventing direct attacks on them. Moreover, they can perform tasks
like SSL termination, where the reverse proxy handles SSL encryption and
decryption, reducing the burden on backend servers and acting as a security
layer for web frameworks.

• Web Acceleration: By caching content, reverse proxies can serve repeated
requests for the same content quickly, reducing the load on backend servers
and speeding up response times. This is particularly useful for static content
like images, stylesheets and JavaScript files.

• Compression and Decompression: Reverse proxies can compress outgoing data
and decompress incoming data, reducing the amount of data transferred over
the network and improving load times.

• Application Firewall: Reverse proxies can inspect incoming requests and
filter out malicious traffic, providing an additional security layer through web
application firewalls.

38

Theory pills

• SSL20 Offloading: Handling SSL encryption and decryption can be resource-
intensive for backend servers. Reverse proxies can manage this process, freeing
up backend to handle more requests.

1.9.3 Principal Usages
• Content Delivery Networks (CDNs): CDNs often use reverse proxies to cache

content at various locations worldwide, reducing latency by serving content
from a location closer to the user.

• Microservices Architecture: In microservices, a reverse proxy can route requests
to different services, helping manage and scale services independently.

• High-Availability Systems: Reverse proxies help in creating redundant and
failover systems, ensuring high availability of services.

1.9.4 Example of Reverse Proxy Servers
Several reverse proxy solutions are widely used, each with its strengths and suited
to different scenarios:

• Nginx: Known for its high performance and flexibility, Nginx is often used as
a reverse proxy and load balancer.

• HAProxy: A robust and reliable solution for high availability and load balanc-
ing.

• Apache HTTP Server: Through the modproxy module, Apache can serve as a
reverse proxy.

• Traefik: A modern reverse proxy and load balancer designed for microservices
and containerized environments.

20SSL = Secure Socket Layer

39

Theory pills

1.9.5 NGINX
NGINX is an open-source web server used also as a reverse proxy server, load
balancer and HTTP cache. NGINX was designed originally to handle up to 10,000
simultaneous connections on a single server. Over the years, NGINX has grown in
popularity due to its high performance, stability, JSON-based configuration and
low resource consumption. NGINX is widely used by many high-traffic websites
such as Netflix, GitHub, WordPress.com and many others.

Figure 1.14: NGINX Reverse Proxy configuration[24]

1.9.6 NGINX Advantages
[25]

• High Performance and Scalability: NGINX is known for its ability to handle
a large number of simultaneous connections keeping low memory usage. This
makes it ideal for high-traffic websites and applications. It uses an event-
driven, asynchronous architecture that allows it to efficiently manage multiple
connections within a single thread.

• Reverse Proxy and Load Balancing: NGINX can be used as a reverse proxy to
distribute incoming traffic across multiple servers. This helps in achieving high
availability and reliability by balancing the load and ensuring that no single

40

Theory pills

server becomes a bottleneck. It supports various load balancing algorithms
like round-robin, least connections and IP hash.

• Security[26]: NGINX offers various security features such as SSL/TLS termi-
nation, access control and request rate limiting. This helps in protecting web
applications from common threats and vulnerabilities.

• HTTP/2 and gRPC Support[27]: NGINX supports modern web protocols like
HTTP/2, which improves web performance by allowing multiple requests and
responses to be multiplexed over a single connection. It also supports gRPC,
which is a high-performance RPC21 framework.

• Static Content Serving and Caching: NGINX excels at serving static content
such as images, videos and other static files. It can also cache responses
from upstream servers, reducing the load on backend servers and improving
response times for clients.

• Extensibility: NGINX is highly extensible through modules. There are many
third-party modules available that extend its functionality, including modules
for WebSocket proxying, image resizing and more.

1.9.7 NGINX Disadvantages
• Complex Configuration for Beginners: NGINX’s configuration syntax can

be complex and difficult to understand for beginners. This might lead to
misconfigurations and potential security issues if not handled properly.

• Limited Support for Dynamic Content: NGINX is optimized for serving static
content and acting as a proxy. While it can handle dynamic content through
FastCGI, SCGI and uWSGI interfaces, it is not as efficient as servers like
Apache in running dynamic web applications directly.

• Less Mature Ecosystem for Some Applications: Although NGINX has a strong
ecosystem, some specific applications and modules might have less community
support compared to more established web servers like Apache.

• Learning Curve for Advanced Features: Utilizing advanced features such as
complex load balancing configurations, SSL/TLS settings and custom modules
can have a steep learning curve and require in-depth knowledge of NGINX’s
inner workings.

21RPC = Remote Procedure Control

41

Theory pills

• Documentation and Community Support: While there is extensive documen-
tation available for NGINX, some users might find it less comprehensive
compared to other web servers. Community support, while strong, might not
be as vast as more established platforms like Apache.

1.9.8 To Sum Up
NGINX has become a fundamental component of modern web architecture due to
its advantages. While it offers numerous advantages it also comes with challenges
like a steep learning curve and complex configuration. NGINX presents a rich topic
for exploration, from its architectural design and implementation to its practical
applications and performance optimizations in various scenarios.

42

Theory pills

1.10 From Industry 4.0 to Industry 5.0
1.10.1 Introduction
The so named Industry 4.0 represents the fourth industrial revolution, characterized
by the fusion of digital, physical and biological systems. It takes advantage of
advanced technologies such as the Internet of Things (IoT), Artificial Intelligence
(AI), robotics, big data and cloud computing to create smart factories and enhance
manufacturing processes.

Figure 1.15: Various technologies for Industry 4.0[28]

1.10.2 Main Principles
Its development is based on these principles:

• Interconnectivity: it enables seamless communication between devices, ma-
chines and humans through IoT and industrial internet systems.

• Data-Driven Decision Making: it utilizes big data analytics to gain insights,
optimize processes and predict trends, leading to smarter and faster decisions.

• Automation and Autonomy: it integrates AI and robotics to automate complex
tasks, reduce human error and increase productivity.

• Customization and Flexibility: it supports mass customization and flexible
production lines that can quickly adapt to changing demands.

• Sustainability: it promotes energy efficiency and reduce waste through opti-
mized processes and circular economy practices.

43

Theory pills

• Cybersecurity: it ensures the security and integrity of interconnected systems
to protect against cyber threats.

1.10.3 Main Goals
These are the main objectives of Industry 4.0:

• Enhance Operational Efficiency: the goal is to improve manufacturing processes
through automation, reducing downtime and increasing output.

• Foster Innovation: the goal is to drive technological advancements and product
development through data insights and new capabilities.

• Create Smart Factories: the goal is to develop interconnected, autonomous
factories that can operate with minimal human intervention.

• Improve Quality: the goal is to utilize real-time data and machine learning to
detect defects early, ensuring higher product quality.

• Boost Competitiveness: the goal is to equip industries with the tools needed
to compete in the global market through superior technology and innovation.

1.10.4 Main Strategies
These are the main strategies:

• Adoption of Advanced Technologies: through the implementation of IoT, AI,
robotics and other Industry 4.0 technologies across production lines.

• Skill Development: training the workforce in the new skills required to operate
and manage Industry 4.0 technologies.

• Collaborative Ecosystems: promote the collaboration between companies,
research institutions and governments to accelerate Industry 4.0 adoption.

• Infrastructure Investment: investing in digital infrastructure, such as high-
speed internet and secure cloud computing, to support Industry 4.0 initiatives.

• Continuous Improvement: regularly assess and update processes to leverage
the latest technological advancements and maintain competitiveness.

1.10.5 To Sum Up
Industry 4.0 has marked a significant evolution in manufacturing and industrial
processes. Through embracing its principles and strategies, organizations can
achieve greater efficiency, innovation and sustainability, positioning themselves as
leaders in the new industrial era.

44

Theory pills

1.11 Industry 5.0
1.11.1 The new concept behind Industry 5.0
While Industry 4.0 has revolutionized manufacturing through automation, inter-
connectivity and data-driven processes, Industry 5.0 takes this evolution a step
further by emphasizing the collaboration between humans and machines. It seeks to
harness the strengths of both to create more personalized, sustainable and socially
responsible manufacturing practices.

Figure 1.16: Progresses to Industry 5.0[29]

1.11.2 What’s new in Industry 5.0
Industry 5.0 is based on these key features:

• Human-Centric Approach: the brand new Industry 5.0 places humans back at
the center of the production process, focusing on enhancing human capabilities

45

Theory pills

rather than replacing them. It emphasizes collaboration between humans and
robots cobots, where robots handle repetitive tasks, while humans focus on
creativity, problem-solving and decision-making.

• Personalization: through Industry 5.0 mass customization becomes possible
at an unprecedented scale. The integration of advanced technologies allows
manufacturers to produce highly customized products tailored to individual
customer preferences, without sacrificing efficiency.

• Sustainability: Industry 5.0 addresses the growing need for sustainable prac-
tices in manufacturing. It promotes the use of green technologies, circular
economy principles and energy-efficient processes, aiming to reduce the envi-
ronmental impact of industrial activities.

• Resilience and Flexibility: Industry 5.0 aims to create more resilient and
flexible manufacturing systems that can adapt to changes in demand, supply
chain disruptions and unforeseen events. This resilience is achieved through
advanced technologies like AI, which can predict and respond to disruptions
in real-time.

• Ethics and Social Responsibility: Industry 5.0 emphasizes the ethical use of
technology and the social responsibilities of companies. It supports fair labor
practices, data privacy and the ethical use of AI and automation.

1.11.3 To Sum Up
Industry 5.0 builds on the technological advancements of Industry 4.0 but with
a greater focus on human collaboration, personalization, sustainability and social
responsibility. It represents a shift towards a more balanced, ethical and sustainable
approach to industrialization, where technology and humanity coexist harmoniously
to drive innovation and create value.

46

Theory pills

1.12 Machine Learning
1.12.1 Introduction
Machine learning (ML) is a subset of artificial intelligence (AI) focused on the
development of algorithms that enable computers to learn from and make decisions
based on data[30]. Rather than being explicitly programmed to perform a specific
task, machine learning systems use statistical techniques to improve their perfor-
mance over time with the usage of more new data. This adaptive learning process
is particularly useful in solving complex problems where traditional algorithms may
fall short, such as image recognition, natural language processing and predictive
analytics.

In engineering, machine learning has become increasingly relevant due to its
ability to optimize processes, improve decision-making and automate tasks in
various domains. From predictive maintenance in manufacturing to optimizing
energy consumption in smart grids, ML applications are driving innovation and
efficiency.

1.12.2 Types of Machine Learning
There are three primary categories of machine learning:

• Supervised Learning: In supervised learning, the model is trained on a labeled
dataset, meaning the input data comes with corresponding correct outputs.
The goal is for the algorithm to learn the mapping from inputs to outputs
and be able to generalize this relationship to new, unseen data. Common
applications include regression and classification problems.

• Unsupervised Learning: In this type, the algorithm is provided with data that
is not labeled and the system tries to identify hidden patterns or structures
in the data. Clustering and dimensionality reduction are typical examples of
unsupervised learning tasks.

• Reinforcement Learning[31]: This approach involves an agent that learns
to make decisions by interacting with an environment. The agent receives
feedback in the form of rewards or penalties and uses this to improve its
decision-making policy over time. Reinforcement learning is particularly
applicable in robotics and control systems.

1.12.3 Key Concepts
• Training and Testing: The process of developing a machine learning model

involves splitting the data into two sets: the training set and the test set.

47

Theory pills

The training set is used to "teach" the model, while the test set evaluates its
performance on unseen data[32]. Cross-validation techniques are also employed
to prevent overfitting.

• Overfitting and Underfitting: Overfitting occurs when a model becomes too
complex and captures noise in the data rather than the underlying pattern,
leading to poor generalization. Underfitting, on the other hand, occurs when
the model is too simple to capture the complexities of the data, resulting in
low accuracy.

• Model Evaluation: Various metrics are used to assess the performance of a
machine learning model, such as accuracy, precision, recall, F1-score and mean
squared error (MSE), depending on the task. Proper evaluation ensures that
the model performs well not only on the training data but also on new data.

1.12.4 Engineering Applications

Figure 1.17: Machine Learning Flow[33]

In experimental engineering research, machine learning can be applied in several
ways:

Predictive Modeling: Machine learning models can predict outcomes based on
historical data, enabling engineers to forecast trends, optimize processes and reduce
uncertainties in design and production.

Automation and Control: Algorithms in reinforcement learning are used for
automating control systems in fields such as robotics, where the goal is to optimize
performance with minimal human intervention.

48

Theory pills

Fault Detection and Maintenance: Predictive maintenance leverages machine
learning models to anticipate equipment failures before they occur, minimizing
downtime and reducing operational costs in industries such as manufacturing and
energy.

1.12.5 To Sum Up
Machine learning offers powerful tools for solving complex problems in engineering.
Its ability to analyze large datasets, detect patterns and make accurate predictions
makes it an invaluable asset in experimental and applied research. As more data
becomes available and computational power increases, the role of machine learning
in engineering is expected to grow, enabling the development of more efficient,
intelligent and autonomous systems.

49

Chapter 2

Methodology

2.1 Introduction to System Data Management
Methodologies

In this chapter the methodology for Data Acquisition, Data Storage and Data
Processing will be analyzed. In today’s data-driven world, effective management of
data is critical for ensuring operational efficiency, compliance with regulations, and
driving informed decision-making.

Through the various phases of Data Acquisition, Data Storage and Data Process-
ing, it will enhanced operational efficiency, data accessibility, advanced analytics,
enabling organizations to unlock valuable insights and maintain a competitive edge.

2.2 Data Acquisition
2.2.1 Introduction
This section details the data acquisition process in the designed system, which
includes both a frontend interface and a backend architecture. Data acquisition
refers to the collection, transmission and validation of data that flows between
the system’s frontend (where user interactions occur, in this case Streamlit) and
the backend (where the data is processed and stored, in this case PostgreSQL and
MongoDB). Now the mechanisms, protocols, and methodologies used to acquire
data efficiently and securely will be explored.

There are several possible ways to acquire data and load the system:

• Through user input;

• Through external API, in case of a system that is connected to external
entities;

50

Methodology

• Through already stored data, loaded from DBs or predetermined files.

Within this system, the first and the last method has been chosen, and will be
analyzed in the next paragraphs.

2.2.2 Acquisition through user input
The acquisition of data through user input is handled via a frontend framework
called Streamlit. On the frontend side the user is guided step by step to fill in tables
of inputs for the various provini (tests). This process ensures that the database is
populated with relevant and structured information about how the machine was
configured during each test. The intuitive interface simplifies the input process,
making it easier for users to provide accurate data and ensuring that all necessary
parameters are captured for future analysis or reference.

Figure 2.1: An example of data insertion through GUI

2.2.3 Acquisition through files
The acquisition of data through files is carried out using the output file generated
by the machine. This file has a highly complex and detailed structure, making it
necessary to apply a parsing process to extract relevant information. The raw data,
as presented in the output file, is not immediately usable in its original format due
to its intricate CSV structure. Therefore, specific parsing techniques are employed
to interpret the data, breaking it down into manageable and meaningful components.
These extracted details are then systematically organized and stored in the database,

51

Methodology

ensuring that all critical information about the machine’s performance and settings
is accurately recorded and easily accessible for future analysis.

Figure 2.2: An example of data file structure

52

Methodology

2.3 Data Storage
2.3.1 Introduction
This section details the data storage process in the designed system, which includes
both a frontend interface and a backend architecture. Data storage refers to the
collection of data that flows through the system’s frontend (where user interactions
occur, in this case Streamlit) and will be stored in the the backend (where the
data is processed and stored, in this case PostgreSQL and MongoDB). Now the
mechanisms, protocols, and methodologies used to store data efficiently and securely
will be explored.

Within this system, two storage DataBases are used:

• PostgreSQL for all data details of provini;

• MongoDB, to keep raw data files of various provini.

Now the two storage options will be analyzed in detail.

2.3.2 PostgreSQL
PostgreSQL is a Relational SQL database management system particularly adapt to
store linked data. Here data are organized into tables, linked together by the usage
of indexes. Data are inserted directly from front end or file and the information
are stored in relative tables. As shown in photo, they are useful to enhance query
performance.

In fact, indexes make data retrieval much faster by reducing the amount of
data that needs to be scanned. Instead of going through all the rows in a table,
PostgreSQL can use the index to directly locate the relevant rows. Also, it is
useful, when joining large tables, to have indexes on the join columns because
they can significantly improve the performance of the join operation. The usage of
incremental indexes is what mantains the correlations between provini and different
campaigns.

2.3.3 MongoDB
MongoDB is a Non Relational document-oriented database management system
particularly conveninent for storing large data. It’s main usage in this project is
the file storage capability. MongoDB can store and manage large files through a
specification called GridFS.

GridFS is MongoDB’s specification for storing and retrieving large files, such
as images, audio files, videos, or any type of binary data. MongoDB doesn’t store

53

Methodology

Figure 2.3: An Example of usage of indexes

these files directly in a single document but divides them into smaller parts (chunks)
and stores the metadata separately. The reason for this is that MongoDB has a
size limit of 16 MB per document, so GridFS splits the file into manageable parts.

When a file is uploaded using GridFS, MongoDB:

• Splits the file into chunks (default chunk size is 255 KB).

• Each chunk is stored in a separate document within a collection called
fs.chunks.

• Metadata about the file (like filename, upload date, and file length) is stored
in a collection called fs.files.

GridFS uses two main collections:

54

Methodology

• fs.files: Contains metadata about each file, such as Filename, File size, Upload
date, md5 hash and Content type (if provided);

• fs.chunks: Contains the actual chunks of the file, each chunk having a reference
to the file (files id), the binary data (data) and the chunk’s order in the file
(n).

Figure 2.4: MongoDB GridFS structure[34]

To retrieve a file using GridFS, MongoDB reads all the chunks, reassembles
them in the correct order based on the chunk number (n), and streams the file
back as a unique sequence of bytes.

It is possible to store files larger than 16 MB, and since the chunks are stored
as separate documents, GridFS enables efficient querying and management of files
that would otherwise exceed BSON’s size limit.

• Uploading a File: When a file is uploaded to MongoDB, when specified the
file, GridFS takes care of chunking it and saving the chunks into the database.

• Downloading a File: When downloading, GridFS reassembles the file and
streams it back as a whole.

55

Methodology

• Partial File Retrieval: GridFS allows retrieving only specific portions of a file.
For example, it is possible to stream a video file in chunks, which is useful for
applications like media streaming.

GridFS has several advantages in this context of use:

• No Size Limit: Handles files larger than MongoDB’s 16 MB document size
limit.

• Efficient File Streaming: Ideal for applications like media streaming where
files are read in chunks, or in which it is needed to retrieve data from files.

• Metadata Support: Can be associated metadata with your files (e.g., file type,
custom attributes).

Although his advantages already analyzed, GridFS has also some disadvantages:
for example, even though is is ideal for large files that streamed or work with in
pieces, for smaller files or simpler use cases, it is better to store the file data directly
in MongoDB in binary format, using BSON without GridFS.

56

Methodology

2.4 Data Processing

2.4.1 Introduction
This section details the data processing process in the designed system, which
includes both a frontend interface and a backend architecture. Data processing
refers to the manipulation of data that has been taken from system’s backend
(where the data is processed and stored, in this case PostgreSQL and MongoDB)
and will be shown in system’s frontend (where user interactions occur, in this case
Streamlit). Now the mechanisms, protocols, and methodologies used to process
data efficiently and securely will be explored.

Within this system, two types of data management has been done:

• Data management with data retrieved from PostgreSQL;

• Data management with files retrieved from MongoDB.

Now the two management procedures will be analyzed in detail.

2.4.2 PostgreSQL data management
PostgreSQL stores data in interlinked tables, as already shown before, so to be
able to process and manage data retrieved from the DB it is necessary to retrieve
data through query that can combine multiple tables. A simple and intuitive usage
of data retrieved from PostgreSQL tables is the filtering of possible selections in
the GUI

In this case, the index of campaign and provino is used to show the correct
values set in the database for the relative provino.

2.4.3 MongoDB files management
MongoDB is used to store raw data files outputted from the welding machine. To
analyze these files it is necessary to first download the file locally, then a process
for removing header lines from file is applied, and at last a parsing algorithm is
applied. Data are stored internally in CSV format, so it is necessary to load them
first in script and then serialize them in various collections. After that it is possible
to regroup them and filter out spike values.

Here above, an example of how raw data outputted from the welding machine
of this experiment have been converted and resumed in an xlsx file, to be more
human readable.

57

Methodology

Figure 2.5: GUI Filtering box

Figure 2.6: An Example of how data are organized in human readable files

2.4.4 Integration with Machine Learning
For testing purposes, a small Machine Learning algorithm has been integrated into
the front-end.

This algorithm simply takes all the strength data from the samples that achieved
a nugget and uses 80% of the samples for training, then uses the remaining 20% to
estimate a prediction, which is then compared with the real result, and the error is
estimated.

Since this is not the main topic of the thesis, it has not been fully explored,
but it serves as a demonstration to show how this framework can integrate with

58

Methodology

potentially advanced models.

Figure 2.7: A simple button that predict nugget diameter trained on Test
Campaign through a Linear Regression Model

59

Methodology

To be able to compare between different models, also another simple algorithm
based on Decision Tree regression has been inserted, with more accurate results.

Figure 2.8: A second test with a Decision Tree Regression algorithm that predict
nugget diameter trained on Test Campaign

60

Chapter 3

System Architecture

3.1 Introduction
Here presented the four main actors that compose the whole system.

This system represents an advanced technological solution that combines the
advantages of two complementary databases, PostgreSQL and MongoDB, to ef-
ficiently manage and store data. PostgreSQL, a relational database, is used for
operations requiring ACID1 transactions and the management of structured data,
while MongoDB, a NoSQL database, handles unstructured or semi-structured data,
like files in our specific case, offering flexibility in data modeling.

The frontend of the system is developed using Streamlit, an open-source frame-
work that allows for the creation of interactive web applications for data visualization
and analysis quickly and easily. Streamlit enables users to interact with the data
in real-time through an intuitive and responsive interface.

To ensure that web traffic is managed securely and efficiently, the system utilizes
NGINX as a reverse proxy. NGINX handles incoming requests, distributing them
across various system components, thereby enhancing scalability and the overall
security of the architecture.

This combination of technologies provides a robust and flexible platform, suitable
for a wide range of applications—from enterprise data management to advanced
analytics—while ensuring high performance and ease of development.

1Atomicity, Consistency, Isolation and Durability

61

System Architecture

3.2 Experimental Campaign

3.2.1 The goal

The goal of the experimental campaign conducted at the J-Tech laboratory of
Politecnico di Torino was to produce a series of welds using the available resistance
spot welding (RSW) machine. By adjusting welding current and electrode force,
3-4 spot welds were made per configuration to analyze both weld diameter and
load strength using tensile-shear tests. Various process signals, such as electrode
force and displacement, were monitored, and the data collected were essential for
subsequent analysis using data-driven models and finite element simulations. These
analyses aimed to identify the optimal range of parameters for model performance.

Figure 3.1: The Resistance Spot Welding Machine used for the experimental
campaign[35]

62

System Architecture

3.2.2 Technical details and experimental tests
The experimental setup utilized a medium-frequency direct current RSW machine
equipped with a TE700 control unit (TECNA®), with electrode displacement and
force monitored using high-precision sensors. The welding materials consisted of
DP590 steel strips (45 mm x 105 mm x 1 mm) following ISO 14273 standards, and
the electrodes were made from a copper-chrome-zirconium alloy (ISO 5182 A2-2
Cu-Cr-Zr electrodes with a contact diameter of 5 mm and a truncated cone shape).

Figure 3.2: Specimen geometry according to ISO 14273

The weld time is 250 ms (upslope=25 ms, current time=150 ms, downslope=25
ms). Multiple sets of welding current I = {8, 9, 10, 11, 12, 12.5, 13, 14} kA and
welding pressure P = {1, 1.2, 1.4, 1.6, 1.8, 2, 2.2} bar). Before testing, approximately
50 preliminary welds were conducted to condition the electrodes. The welding cycle
parameters were established in accordance with ISO 14373:2015 standards, and
each weld cycle included phases like squeeze time, weld time and hold time.

Figure 3.3: The Front Part of a weld

78 welds were conducted in total. On various tests, a shear tension test (STT)
has been applied with a crosshead speed of 10 mm min−1, with peak load values
recorded to evaluate weld performance. After the STT the weld has been cutted and
the diameter of the nugget has been measured through macrographic examination.
For a few specimens the weld nugget diameter has been measured without previously
perform the STT, in order to have a more precise measurement.

63

System Architecture

Figure 3.4: The Back Part of a weld

Figure 3.5: The Detail of a weld

In this figure we can observe a detail of a weld, specifically the detail of the weld
number 14. As we can see, this weld have some problems of porosity caused by the
expulsion2 phenomenon. Specimen 14 is affected by expulsion because of excessive
welding parameters3.

2the ejection of molten material
3combination of too high current and too low pressure

64

System Architecture

3.3 The Start
The first draw scheme of the system has been made upon a list of prerequisites drawn
up after a series of interviews to correctly identify the needs of the architecture.
The system has been firstly designed as a combination of three actors: a frontend
and two different databases, one specifically tailored to store data while the other
to store file outputted from the RSW machinery.

Figure 3.6: The first schema designed for the implementation

• Streamlit has been chosen to build the entire user interface of the framework.
It communicates with the backend with a direct connection, as the system
resides entirely on a docker cluster, to fetch data from PostgreSQL and retrieve
files from MongoDB, using Python libraries like psycopg2 and SQLAlchemy
for PostgreSQL connection, and pymongo for MongoDB connection. This has
been designed as the only point of interaction between the user and the whole
framework All HTTP requests sent by the Streamlit app are directly sent to
the caller.

• PostgreSQL has been chosen to serve as the primary database for structured
data, like campaigns and tests data and summarised results of the various
tests, to speed up the data retrieve for the future Machine Learning integration.
As already said before, it provides ACID-compliant transactions to ensure
data reliability.

• MongoDB has been chosen instead for his capability of storing binary files and
unstructured data. In this implementation, as the file is larger than 16MB
the maximum capability of BSON, his native GridFS feature has been widely
adopted.

65

System Architecture

3.4 The End
In the second (and for now last) version several changes has been made in the
internal and external structure of the system. The most important one, at this
level, is the adoption of an NGINX proxy server to filter and redirect requests
to/from the frontend.

Figure 3.7: The last schema designed for the implementation

The adoption of an NGINX Proxy Server has been decided because of his
capabilites, such as reverse proxy and load balancer, primarily ensuring security,
scalability, and performance. It also manages HTTPS traffic, forwarding requests
to the appropriate frontend container, and provides TLS/SSL termination: in fact,
all incoming HTTP/HTTPS traffic passes through NGINX. It can provide also
caching, compression, and other optimizations to improve performance.

It is also important to point out the fact that not only NGINX handles HTTP-
S/SSL encryption and forwards secure requests to the appropriate services, but
also authentication and authorization layers can be added (such as JWT tokens,
OAuth, etc.) to manage secure access.

This final architecture has been designed also with an eye for future improve-
ments, having a special consideration for scalability (NGINX can handle a large
number of incoming requests and distribute the load across multiple servers), secu-
rity (NGINX ensures secure connections and can manage firewalls, rate-limiting,
and SSL certificates) and separation of concerns (PostgreSQL handles structured,
transactional data while MongoDB efficiently manages unstructured file storage).

This system would be ideal for web applications that need secure data handling,
robust file storage and a user-friendly interface for rapid deployment.

66

Chapter 4

Implementation and Testing

4.1 Introduction
In this chapter, the implementation of the entire system architecture discussed in
the previous chapter will be explored in detail, as well as the code that processes
and manages data from the experimental campaign.

The various components will be examined in depth, including the backend, the
frontend, the reverse proxy, and the glue of the whole system, namely the Docker
microservices architecture.

In the final part of the chapter, the integration with a simple Machine Learning
algorithm will be introduced, which, while basic, is useful for testing the system
integration.

4.2 PostgreSQL
Here is presented the first scheme for the relational database of PostgreSQL.

The central table of the whole architecture is the campaign. It is composed by:

• an incremental identification integer;

• a name that can be specified by the user;

• the mode of operation that the machine is set;

• the start date of the campaign

• the details about the sheets and the two electrodes, the upper and lower one.

The electrode is differentiated among material and shape, while the sheet can
be recognized by the material and the coating. Various tables store also useful
information about sheets and electrodes, thickness, length, width, and shape.

67

Implementation and Testing

As various modes of control are present in the machine, but fixed to 6, separated
tables for each control mode has been detailed, because every control mode of the
machine requires some different settings.

The size of each column has been specifically tailored from prerequisites: some
columns are in common between all control modes, some others are in common
only with limited set of them, and other ones are unique. This choice has been
made because PostgreSQL isn’t able to handle flowlessy data with variable columns
in the same table, and the idea of creating a unique larger table for all modes with
the usage of nullable fields has been rejected to increase further scalabilities.

A test of a campaign is a single record of one of six tables designed in the
Uppermost part of the image. Every table have an incremental identification
integer, that it is used to identify various tests among the same control mode and
campaing. The uniqueness of the identification of the test is guaranteed by the
couple of campaign ID and test ID.

Figure 4.1: The first relational schema designed for PostgreSQL

In the final relational scheme implemented for PostgreSQL some things have
been varied, comparing to original ones.

For example, a table has been inserted: to enable the possibility to integrate
machine learning algorithms in the framework the table provino results has been

68

Implementation and Testing

added.
It contains not only provino id and campaign id but also it highlights some

results of the test, such as breaking force, nugget diameter, and various notes that
can be compiled by the operator at the machine, reporting user experience or some
other useful comments on the result of the test.

It has been added also view named all test, and it is used by the frontend
streamlit to regroup all tests in a single query, to enabling the possibility of quickly
filtering out non-relevant information for the user selection.

Figure 4.2: The final relational schema implemented for PostgreSQL

69

Implementation and Testing

4.3 MongoDB
Here is detailed the simple internal structure of MongoDB, the NoSQL database
inserted in the Architecture to store files outputted from RWS machine.

Figure 4.3: The simple GridFS schema implemented for MongoDB

This is the implementation of GridFS, the file storage system to store large files
and binary data.

Figure 4.4: An example of files loaded in MongoDB

70

Implementation and Testing

This is a detail of how files are stored in MongoDB’s GridFS storage.
The metadata file, such as file id, file name, size, length and date of upload, are

inserted in the collection fs.files.

Figure 4.5: Some chunks of a file

The chunks of each file, instead, are stored in the collection fs.chunks and are
ordered in ascending order.

71

Implementation and Testing

4.4 Streamlit
Streamlit has been chosen as the frontend of the framework and has been designed
to have a login screen, a page in which data can be inserted, a page in which
data can be retrieved and visualized based on user inputs, and finally a page call
Mark currently under the development yet, can be integrated a machine learning
algorithm and an interface with a digital twin.

4.4.1 Login Page

Figure 4.6: The Login Page

Using a login page on Streamlit provides several advantages, especially for
applications that need to control access to certain features, data, or personalized
content. Here are some key reasons why a login page is useful:

• Access control: as the framework should be accessible through internet, only
authorized users should have the possibility to view or interact with sensitive
data.

• Role-based access: There is also the possiblity to configure different roles
(e.g., admin, user, machine operator) and a login system can help manage the
permissions for each role, limiting the reachability of config pages or deep or
premium functionality.

• Customization: different users can have tailored experiences, such as cus-
tomized dashboards, settings, or data based on their preferences.

72

Implementation and Testing

• Data Security: For apps dealing with private or sensitive information (e.g.,
in our case, with experimental studies), a login system helps ensure that this
information is not exposed to unauthorized users.

• Profile management: Users can manage their own accounts, settings, and
preferences. This can be useful for apps that require users to input personal
or usage data.

• Session tracking: Login functionality can help manage user sessions, ensuring
that users don’t have to re-enter data multiple times during a session.

• Multi-user applications: If it is intended for the future to enable the possibility
of creating multiple users and different roles, a login page helps manage
multiple accounts and user data efficiently.

• Collaboration: You can create a collaborative environment where users can
share or contribute data based on their login credentials.

To sum up, it has been chosen to insert a login page to have an additional layer
of security, personalization and scalability to our Streamlit framework.

Here is the real Welcome Page of the frontend, if all has been successful:

Figure 4.7: The Login Window, if successful

4.4.2 Insertion Page
The frontend framework includes a data entry page that is accessible only after a
successful login.

73

Implementation and Testing

This page is divided into a sidebar on the left and a main content area on the
right. Streamlit allows tables to either stretch across the entire page or be centered;
in the image below, the table is fully stretched.

The main content is organized into several tabs, each enabling users to insert or
update specific data related to the experimental campaign. Users must first select
the test they want to modify or use as a base for data insertion from the sidebar.

The first tab allows users to input or update campaign-level data, while the
other tabs, except the last one, enable them to modify or add new information
related to the components of the campaign.

The final tab is dedicated to entering data for individual test samples (provini).
Based on the campaign selected in the sidebar, a table with all relevant fields for
that control mode is presented, allowing users to modify a single parameter and
submit a new test to the database without re-entering all the data. In the provino
tab, users can also upload the output file generated by the RSW machine, either
during or after the initial test data entry.

Figure 4.8: The first draft for data insertion page

74

Implementation and Testing

4.4.3 Visualization Page
The framework obviously also has the ability to display the data of individual test
samples, if the user requests it.

For the first version, we started with an Excel file that contained a summary of
the test results, which we then converted into a CSV structure to make it easier to
handle in the Python code. We then added the ability in the sidebar to select the
sample for which the user wanted to view the data.

At the top section, all the important data from the test results is summarized,
along with the relevant units of measurement (note that the system handles "not a
number" values generated by the machine and any fields that contain comments
from the user who analyzed the welding result instead of a numerical value).

In the middle section, there are two sample charts: one showing the relationship
between force and pressure, and another showing the relationship between load
and nugget diameter. In this case, the second chart is empty because the nugget
broke with just hand pressure.

At the bottom of the page, as a debug feature, the corresponding row from the
original Excel file is displayed to help better analyze the correlation between the
displayed data and the original data.

This was also useful in the initial phase for validating the conversion of tabular
data into visual data, but more importantly, for handling special cases already
mentioned above.

Figure 4.9: The first draft for data visualization page

A second version of the data visualization page was developed once the file
upload to MongoDB was validated, featuring corrected graphs displaying the five

75

Implementation and Testing

key parameters of our case study (Force, Voltage, Current, Displacement, and
Resistance) over time. Below is an example.

Figure 4.10: The final data visualization page

76

Implementation and Testing

4.5 NGINX
NGINX is a web server that functions as a reverse proxy within this framework.

Its role is to filter connections directed to the frontend, thereby adding an
additional layer of security for the only internet-accessible endpoint of the framework.
This setup also enables the use of an HTTPS SSL connection with the frontend.

By default, Streamlit is launched using the HTTP protocol. While it can
be configured to run directly over HTTPS, the developers advise against this in
production environments. They recommend using a reverse proxy instead, as the
direct HTTPS functionality has not yet been thoroughly tested or certified for
security.

Figure 4.11: NGINX config file

Here is the NGINX configuration: it listens externally on port 8501, while
internally, the frontend is exposed on port 5810. The configuration includes the
SSL certificates and sets up the reverse proxy functionality for the container hosting
the frontend, allowing the transmission of files up to 200 MB.

77

Implementation and Testing

4.6 Microservices
The entire framework was built as an aggregate of containers, utilizing the mi-
croservices paradigm to fully leverage the benefits outlined in previous chapters.

It currently consists of four containers:

• PostgreSQL;

• MongoDB;

• NGINX;

• Streamlit - frontend.

In the future, thanks to the container-based architecture, it will be easy to add,
for example, a container dedicated to advanced artificial intelligence predictions,
to integrate or expand Machine Learning technique already tested, or a back-end
system for a digital twin.

Additionally, an extra API layer between backend and frontend or Internet
could be introduced if there is a need to open database access to external systems
or integrate multiple front-end containers within the framework. At present, the
NGINX container is solely used as a reverse proxy for the front-end.

The microservices architecture is completed by a subnet, isolated from the host
machine’s network, through which the various containers interact with each other.

With a potential expansion of the container network, Kubernetes can be em-
ployed for the orchestration, management, and monitoring of the framework.

Figure 4.12: A screenshot of the running containers

78

Implementation and Testing

4.7 Data Acquisition
The data acquisition in RSW involves monitoring and recording various parameters
to ensure the quality and consistency of the welds. Here’s an overview of how data
acquisition works in RSW and what kind of data is typically outputted in a file:

Figure 4.13: A crop of an example file from TECNA TE700

Some Key Parameters monitored in RSW could be:

• Current: The electrical current passing through the electrodes. This is a
critical parameter as it directly affects the heat generation.

• Voltage: The voltage across the welding electrodes.

• Force/Pressure: The pressure applied by the welding electrodes to hold the
sheets together.

• Time/Duration: The duration for which the current is applied (also known as
weld time).

• Electrode Displacement: The movement of the electrodes during the welding
process.

• Temperature: The temperature at the weld spot.

Here is descripted the data acquisition process for a single weld:

• Sensors and Transducers: Various sensors are placed on the welding machine
to measure current, voltage, force, and temperature. These sensors convert
physical parameters into electrical signals.

• Data Logger/Acquisition System: The signals from the sensors are sent to a
data acquisition system or data logger. This system collects the data at high
frequencies to capture the details of the welding process.

79

Implementation and Testing

• Signal Conditioning: Before recording, the raw signals may be conditioned to
filter noise, amplify signals, and convert them into a usable format.

• Data Storage: The conditioned data is then stored in a file, which can be in
formats like CSV, TXT, or proprietary formats specific to the data acquisition
system used.

4.7.1 Typical Data Output Format
The output file from the data acquisition system typically contains time-stamped
records of all the monitored parameters. Here is an example of what the data
might look like in a CSV file:

Timestamp Current (A) Voltage (V) Force (N) Weld Time (ms) Electrode Displacement (mm) Temperature (°C)
2024-06-24 10:00:01.001 12000 2.5 3000 500 0.02 150
2024-06-24 10:00:01.002 11980 2.5 3000 500 0.02 152
2024-06-24 10:00:01.003 12010 2.5 3000 500 0.02 151

4.7.2 Analysis of Data
Once the data is collected, it can be analyzed to:

• Ensure Quality: Verify that the welds meet the required specifications.

• Detect Anomalies: Identify any deviations from the expected process parame-
ters that could indicate potential issues.

• Optimize Processes: Adjust welding parameters for better performance and
efficiency.

• Traceability: Maintain records for quality control and traceability purposes.

Various tools and software can be used for the data acquisition and analysis in
RSW, such as:

• National Instruments LabVIEW

• MATLAB

• Custom software provided by welding equipment manufacturers

• Statistical process control (SPC) software for monitoring and controlling the
welding process.

80

Implementation and Testing

But it will presented later on, in Data Processing section
In summary, the data acquisition process in Resistance Spot Welding involves

monitoring critical parameters, collecting and conditioning data, and storing it in
a structured format for further analysis to ensure the quality and efficiency of the
welding process.

81

Implementation and Testing

4.8 Data Storage
In the data storage section, I want to analyze how the code handles saving data
to the databases and how various queries for upserting and fetching data are
performed.

Starting with the insertion process, the page features a select box in the sidebar.

Listing 4.1: Sidebar select box
1 # Perform query f o r compaign .
2 campaign = sql_conn . query (
3 ’SELECT c . id , c . name , om. id as " mode_id " , LOWER(om. name) as "

mode_name" , c . sheet_number FROM campaign c INNER JOIN
operating_mode om on om. id = c . mode_id ORDER BY c . id DESC; ’ , t t l=
Timedelta (" 3 s "))

4

5 # Combine id and name o f campaigns
6 campaign_select ion = campaign [" id "] . astype (s t r) + " − " + campaign ["

name"]
7

8 # top−l e v e l f i l t e r s
9 campa ign_f i l t e r = s t . s i d eba r . s e l e c t b o x (

10 " S e l e c t Campaign " , opt ions=campaign_se lect ion)

With this query, the framework filters the data requested by the user and
retrieves information about the selected test sample (provino) and/or to be used
as a placeholder.

Listing 4.2: Query to retrieve data for tabs
1 # Perform query f o r mode
2 mode = sql_conn . query (
3 ’SELECT om. id , om. name FROM operating_mode om LEFT JOIN campaign

c on om. id = c . mode_id ORDER BY om. id DESC; ’)
4 # Perform query f o r shee t
5 shee t = sql_conn . query (
6 ’SELECT ∗ FROM sheet s ORDER BY s . id DESC; ’)
7 # Perform query f o r sheet_mater ia l
8 sheet_mater ia l = sql_conn . query (
9 ’SELECT ∗ FROM sheet_mater ia l sm ORDER BY sm . id DESC; ’)

10 # Perform query f o r coat ing
11 coat ing = sql_conn . query (
12 ’SELECT ∗ FROM coat ing c ORDER BY c . id DESC; ’)
13 # Perform query f o r shape
14 shape = sql_conn . query (
15 ’SELECT ∗ FROM shape s ORDER BY s . id DESC; ’)
16 # Perform query f o r e l e c t r o d e
17 e l e c t r o d e = sql_conn . query (
18 ’SELECT ∗ FROM e l e c t r o d e e ORDER BY e . id DESC; ’)

82

Implementation and Testing

19 # Perform query f o r e l e c t rode_mate r i a l
20 e l e c t rode_mate r i a l = sql_conn . query (
21 ’SELECT ∗ FROM elec t rode_mate r i a l em ORDER BY em. id DESC; ’)
22

23 # Perform query f o r p rov in i
24 a l l _ p r o v i n i = ’ ’ ’SELECT ∗ FROM a l l _ t e s t at WHERE at . campaign_id = :

c_id ORDER BY at . provino_id DESC; ’ ’ ’
25 with sql_conn . s e s s i o n as s e s s i o n :
26 prov in i = s e s s i o n . execute (
27 t ex t (a l l _ p r o v i n i) , { " c_id " : i n t (campa ign_f i l t e r . s p l i t (" − ")

[0]) }) . f e t c h a l l ()

Subsequently, using this data, the various tabs that make up the data entry
page are populated, and the retrieved data is inserted as a placeholder for potential
modification. Below, only the functionality of one tab is explained to avoid
redundant analysis of very similar code.

Listing 4.3: Handling data of a tab
1 with campaign_tab :
2 #wri t e header
3 s t . header (" Update/ I n s e r t data f o r Campaign ")
4 #prepare form data
5 campaign_form = st . form (" campaign_form ")
6 campaign_form . wr i t e (" F i l l in the d e t a i l s o f the Campaign . ")
7 id = campaign_form . text_input (" ID" , p l a c eho ld e r=campaign [" id "] .

va lue s [0])
8 name = campaign_form . text_input (
9 "Name" , p l a c eho lde r=campaign ["name"] . va lue s [0])

10 mode_name = campaign_form . s e l e c t b o x (
11 "Mode" , opt ions=mode ["name"] . va lue s . t o l i s t ())
12 sheet_name = campaign_form . s e l e c t b o x (
13 " Sheet " , opt ions=shee t ["name"] . va lue s . t o l i s t ())
14 sheet_number = campaign_form . text_input (
15 " Sheet Number" , p l a c eho ld e r=campaign [" sheet_number "] . va lue s

[0])
16 upper_electrode_name = campaign_form . s e l e c t b o x (
17 " Upper E lec t rode " , opt ions=e l e c t r o d e ["name"] . va lue s . t o l i s t ())
18 lower_electrode_name = campaign_form . s e l e c t b o x (
19 " Lower Elec t rode " , opt ions=e l e c t r o d e ["name"] . va lue s . t o l i s t ())
20

21 # Add a button to upload data
22 i f campaign_form . form_submit_button (" Submit ") :
23 t ry :
24 insert_query = ’ ’ ’ INSERT INTO campaign (id , name , mode_id

, sheet_id , sheet_number , upper_electrode_id , lower_electrode_id)
VALUES (: id , : name , : mode_id , : sheet_id , : sheet_number , :
upper_electrode_id , : lower_electrode_id)

83

Implementation and Testing

25 ON CONFLICT (id) DO UPDATE SET name = EXCLUDED. name ,
mode_id = EXCLUDED. mode_id , sheet_id = EXCLUDED. sheet_id ,
sheet_number = EXCLUDED. sheet_number , upper_electrode_id =
EXCLUDED. upper_electrode_id , lower_electrode_id = EXCLUDED.
lower_electrode_id ; ’ ’ ’

26 with sql_conn . s e s s i o n as s e s s i o n :
27 s e s s i o n . execute (t ex t (insert_query) , {
28 " id " : i n t (id) ,
29 "name" : name ,
30 " mode_id " : mode [mode [’name ’] ==

mode_name] . va lue s [0] [0] ,
31 " sheet_id " : shee t [shee t [’name ’] ==

sheet_name] . va lue s [0] [0] ,
32 " sheet_number " : sheet_number ,
33 " upper_electrode_id " : e l e c t r o d e [

e l e c t r o d e [’name ’] == upper_electrode_name] . va lue s [0] [0] ,
34 " lower_electrode_id " : e l e c t r o d e [

e l e c t r o d e [’name ’] == lower_electrode_name] . va lue s [0] [0] })
35 s e s s i o n . commit ()
36 s t . wr i t e (" Campaign i n s e r t e d s u c c e s s f u l l y . ")
37 except Exception as e :
38 s t . wr i t e ("An e r r o r occurred whi l e i n s e r t i n g the Campaign .

")
39 s t . wr i t e (e)

Here, I add a step to explain how the file upload is managed in the "provino"
tab, which differs from the other tabs.

Listing 4.4: Managing file upload
1 f i l e_ fo rm = st . form (" f i l e upload " , clear_on_submit=True)
2 t e s t f i l e = f i l e_ fo rm . f i l e_u p l o ade r (
3 " Upload your f i l e here " , type =[" csv " , " x l sx " , " dat "] , key=1)
4

5 i f f i l e_ fo rm . form_submit_button (" Upload ") and t e s t f i l e i s not
None :

6 t ry :
7 # I n s e r t on MongoDB
8 database = mongo_conn [" digep_db "]
9 f s = GridFS (database)

10 id = f s . put (t e s t f i l e , f i l ename=t e s t f i l e . name) . b inary . hex
()

11 t e s t f i l e _ b y t e s = t e s t f i l e . g e tva lue ()
12

13 f i l e _ v a l u e s = {
14 " id " : provino_id ,
15 " campaign_id " : campaign_id ,
16 " f i l e _ i d " : id ,
17 }
18

84

Implementation and Testing

19 columns = ’ , ’ . j o i n (f i l e _ v a l u e s . keys ())
20

21 # Generate p l a c eho ld e r s t r i n g f o r va lue s
22 k e y s _ l i s t = [f " : { key} " f o r key in f i l e _ v a l u e s . keys ()]
23 p l a c e h o l d e r s = ’ , ’ . j o i n (k e y s _ l i s t)
24

25 # Generate c o n f l i c t update s t r i n g
26 con f l i c t_update = ’ , ’ . j o i n (
27 [f " {key} = excluded . { key} " f o r key in f i l e _ v a l u e s .

keys () i f key != ’ id ’])
28

29 # I n s e r t on PostgreSQL at the g iven provino_id and
campaign_id

30 insert_query = (
31 f " " " INSERT INTO {table_name} ({ columns })
32 VALUES ({ p l a c e h o l d e r s })
33 ON CONFLICT (id , campaign_id) DO UPDATE SET {

con f l i c t_update } " " "
34)
35 with sql_conn . s e s s i o n as s e s s i o n :
36 s e s s i o n . execute (t ex t (insert_query) , f i l e _ v a l u e s)
37 s e s s i o n . commit ()
38 s t . wr i t e (f " F i l e uploaded with id : { id } ")
39 except Exception as e :
40 s t . wr i t e ("An e r r o r occurred whi l e uploading the f i l e . ")
41 s t . wr i t e (e)
42 f i n a l l y :
43 s t . rerun ()

In the data visualization section, we see how data is retrieved from MongoDB
once the corresponding sample is selected in the sidebar. The management of
charts will be discussed in the data processing section.

85

Implementation and Testing

4.9 Data Processing
In this section, I want to further analyze in details the process of data retrieving
from MongoDB and data processing in the dashboard.

Listing 4.5: Import Python libraries and page config
1 import s t r e a m l i t as s t
2 from pymongo import MongoClient
3 from bson import ObjectId
4 from sqla lchemy import t ex t
5 import pandas as pd
6 from pandas import Timedelta
7 from g r i d f s import GridFS
8 import p l o t l y . expre s s as px # i n t e r a c t i v e char t s
9 import p l o t l y . graph_objects as go

10 from s t r e am l i t_au to r e f r e sh import s t_auto r e f r e sh
11 import os
12 import s t a t i s t i c s
13 import matp lo t l i b . pyplot as p l t
14

15 s t . set_page_conf ig (
16 page_t i t l e=" Data V i s u a l i z a t i o n Nugget Dashboard " ,
17 page_icon=" " ,
18 l ayout=" wide " ,
19)

As every python file (as I have decided to include the data processing directly
in Streamlit Web Interface) I have imported the necessary libraries to retrieve data
and do the necessary calculations, then I have configured the page with Title and
Icon.

Listing 4.6: Permission Checking
1 i f ’ r o l e ’ not in s t . s e s s i o n _ s t a t e or s t . s e s s i o n _ s t a t e [" r o l e "] != "

DIGEP" :
2 s t . e r r o r ("You are not author i zed to view t h i s page . ")
3 s t . stop ()
4

5 # Set t ing s t r e a m l i t a u t o r e f r e s h
6 s t_auto r e f r e sh (i n t e r v a l =10000)
7

8 # dashboard t i t l e
9 s t . t i t l e (" Real−Time Nugget Dashboard Analyzer ")

Then, just to ensure the privacy of data, I have checked the permission of the
viewer to view correctly data, otherwise I will block him from further seeing values.
After that I have set an automatic refresh for the page, ensuring that the data
remains up-to-date, and configured the title for the page.

86

Implementation and Testing

Listing 4.7: DB Connections
1 # I n i t i a l i z e connect ion .
2 # Uses s t . cache_resource to only run once .
3 @st . cache_resource
4 de f in i t_connec t i on () :
5 re turn MongoClient (∗∗ s t . s e c r e t s ["mongo"])
6

7 c l i e n t = in i t_connec t i on ()
8

9 # Pul l data from the c o l l e c t i o n .
10 # Uses s t . cache_data to only rerun when the query changes or a f t e r 10

min (600 s e c s) .
11

12 @st . cache_data (t t l =600)
13 de f get_data () :
14 db = c l i e n t . mydb
15 i tems = db . myco l l e c t i on . f i n d ()
16 i tems = l i s t (i tems) # make hashable f o r s t . cache_data
17 re turn items
18

19 # I n i t i a l i z e po s tg r e s connect ion .
20 sql_conn = s t . connect ion (" p o s t g r e s q l " , type=" s q l ")

After this last Streamlit configuration, I have initialized connections for MongoDB
and PostgreSQL, to use the to further retrieve data from databases.

Notice that the MongoDB connection is cached. This choice has been done
to prevent the system from being overloaded by a continuous request of init a
connection from this page.

Listing 4.8: Data retrieve and sidebar config
1 # Sidebar t i t l e
2 s t . s i d eba r . header (" S e l e c t o r ")
3

4 # Perform query f o r compaign .
5 # , t t l ="10m")
6 campaign = sql_conn . query (
7 ’SELECT c . id , c . name FROM campaign c ORDER BY c . id ASC; ’)
8

9 # Combine id and name o f campaigns
10 campaign_select ion = campaign [" id "] . astype (s t r) + " − " + campaign ["

name"]
11

12 # top−l e v e l f i l t e r s
13 campa ign_f i l t e r = s t . s i d eba r . s e l e c t b o x (
14 " S e l e c t Campaign " , opt ions=campaign_se lect ion)
15

16 # Perform query f o r p rov in i

87

Implementation and Testing

17 a l l _ p r o v i n i = ’ ’ ’SELECT ∗ FROM a l l _ t e s t at WHERE at . campaign_id = :
c_id ORDER BY at . provino_id DESC; ’ ’ ’

18 with sql_conn . s e s s i o n as s e s s i o n :
19 prov in i = s e s s i o n . execute (
20 t ex t (a l l _ p r o v i n i) , { " c_id " : i n t (campa ign_f i l t e r . s p l i t (" − ")

[0]) }) . f e t c h a l l ()
21

22 # top−l e v e l f i l t e r s
23 p r o v i n o _ f i l t e r = s t . s i d eba r . s e l e c t b o x (
24 " S e l e c t Provino " , opt ions=l i s t (map(lambda x : f " {x [0] } " , p r ov in i))

)
25

26 provino_data = [provino f o r provino in p rov in i i f provino [0] == (None
i f p r o v i n o _ f i l t e r == ’None ’ e l s e i n t (

27 p r o v i n o _ f i l t e r)) and provino [1] == i n t (campa ign_f i l t e r . s p l i t (" −
") [0])] [0]

28 provino_id = provino_data [0]
29 campaign_id = provino_data [1]
30 table_name = provino_data [2]
31

32 # Perform query f o r provino s e l e c t e d
33 provino_query = f ’ ’ ’SELECT ∗ FROM {table_name}
34 WHERE id = { provino_id } and campaign_id = {campaign_id } ; ’ ’ ’
35 df = sql_conn . query (provino_query , t t l=Timedelta (" 3 s "))

Then it starts the page configuration, as the other pages, with a Sidebar on the
left and a general container for the principal window of the page.

I have chosen not to cache the query for the campaign, as it will be executed
only when the page is reloaded.

I have also reused the campaign number as a foreign key for a PostgreSQL view,
to match only the index of that campaign selected for the Streamlit Selectbox.
Then data for the selected Provino are retrieved.

Listing 4.9: Page config
1 # c r e a t i n g a s i n g l e −element conta ine r
2 p la c eho ld e r = s t . empty ()
3

4 # dataframe f i l t e r
5

6 # t e s t to check df
7 with p l a c eho ld e r . con ta ine r () :
8

9 # c r e a t e s i x columns f o r va lue s
10 kpi1 , kpi2 , kpi3 = s t . columns (3)
11

12 # f i l l in those s i x columns with r e s p e c t i v e metr i c s or KPIs
13 kpi1 . metr ic (
14 l a b e l=" Current (kA) " ,

88

Implementation and Testing

15 value=df [" cur r ent "] . va lue s [0] ,
16)
17

18 kpi2 . metr ic (
19 l a b e l=" Pressure (bar) " ,
20 value=df [" p r e s su r e "] . va lue s [0] ,
21)
22

23 kpi3 . metr ic (
24 l a b e l=" Force (kN) " ,
25 value=df [" p r e s su r e "] . va lue s [0] ∗ 2 . 0 7 ,
26)
27

28 kpi4 , kpi5 , kpi6 = s t . columns (3)
29

30 kpi4 . metr ic (
31 l a b e l="Time (compless ivo d i s l o p e s) (ms) " ,
32 value=df [" slope_up "] . va lue s [0] +
33 df [" slope_down "] . va lue s [0] + df [" weld "] . va lue s [0] ,
34)
35 ’ ’ ’
36 kpi5 . metr ic (
37 l a b e l ="Nugget Diameter (mm) " ,
38 value=df [" diametro nugget (mm) "] . va lue s [0] ,
39)
40

41 kpi6 . metr ic (
42 l a b e l ="Break f o r c e (kN) " ,
43 value=df [" c a r i c o (kN) "] . va lue s [0] ,
44)
45 ’ ’ ’

Here I created the container for the main page, and started to configure the
container with the requested rows and columns, with graphs and values according
to specification retrieved

Listing 4.10: Load Data from files
1 # parametr ized to have the p o s s i b i l i t y to use and a d d i t i o n a l

input to l e t the user choose
2 n = 400
3

4 i f d f [’ f i l e _ i d ’] . va lue s [0] i s not None :
5 f s = GridFS (mongo_conn [’ digep_db ’])
6 f i l e _ i d = df [’ f i l e _ i d ’] . va lue s [0]
7 with f s . get (f i l e _ i d=ObjectId (f i l e _ i d)) as d a t a s e t _ f i l e :
8 with open (f ’ . / tmp/{ s t r (provino_id) } .DAT’ , ’wb ’) as f :
9 f . wr i t e (d a t a s e t _ f i l e . read ())

10 datase t = pd . read_csv (

89

Implementation and Testing

11 f ’ . / tmp/{ s t r (provino_id) } .DAT’ , sep=’ ’ , eng ine=’ python
’ , sk iprows =22, encoding=’ cp1252 ’)

12 datase t = datase t . drop ([’X_Value ’ , ’ Air Pres sure (Extracted) ’
,

13 ’V Phase S (Extracted) ’ , ’V Phase T (
Extracted) ’ ,

14 ’ I Phase T (Extracted) ’ , ’V Phase R (
Extracted) ’ , ’ (Extracted) ’ , ’V Phase R (Extracted) ’ ,

15 ’V Phase S (Extracted) ’ , ’ Temperature
(Extracted) ’ , ’ Energy (Extracted) ’ ,

16 ’V Phase T (Extracted) ’ , ’ I Phase R (
Extracted) ’ , ’ I Phase S (Extracted) ’ , ’Comment ’] , a x i s =1)

17 f o r j in l i s t (datase t . columns) :
18 datase t [j] = datase t [j] . s t r . r e p l a c e (’ , ’ , ’ . ’)
19 f o r j in l i s t (datase t . columns) :
20 datase t [j] = datase t [j] . astype (’ f l o a t ’)

Here the calculation with the appropriate algorithm take place.
First, the parametrization valued is configured (ready to be trasformed in an

input value, chosen by user, in this first run fixed to 400 samples, but easily
changeable.

The file retrieved from MongoDB is now read, and the not necessary columns of
values are dropped, to ensure the maximum speed achievable.

Listing 4.11: Data Calculation
1 # take the v a r i a b l e i ’m i n t e r e s t e d in − f o r c e (i n d i c e 0) −

vo l tage (i n d i c e 1) − cur rent (2) − disp lacement (3) − r e s i s t a n c e
(4)

2

3 # c r e a t e 5 columns f o r char t s
4 graph i c s = d i c t ()
5

6 graph i c s [’ f o r c e ’] = pd . DataFrame ()
7 graph i c s [’ vo l t age ’] = pd . DataFrame ()
8 graph i c s [’ cu r rent ’] = pd . DataFrame ()
9 graph i c s [’ d i sp lacement ’] = pd . DataFrame ()

10 graph i c s [’ r e s i s t a n c e ’] = pd . DataFrame ()
11

12 f o r index in range (0 , 5) :
13 rows_signal = []
14 rows_signal = datase t . i l o c [: , index]
15

16 # even though the proce s s i s at t=cost , f i l e l ength w i l l
vary from t e s t to t e s t

17 # make a l i s t with the f i l e length , I ’ l l use to p l o t the
s i g n a l

18

19 l ength = len (rows_signal)

90

Implementation and Testing

20 # mean on N data to have a value every per avere un
va l o r e ogni 2 ,5∗10^−5 ∗ N s (in s t ead o f one every 2 ,5∗10^−5 s with
FC 40 kHz)

21 # to have a c l e a r e r s i g n a l
22 signal_mean = []
23 f o r k in range (1 , length , n) :
24 end = k+min (n , length−k)
25 s t a r t = k
26 mean = s t a t i s t i c s . mean(rows_signal [s t a r t : end])
27 signal_mean . append (mean)

Then the mean of the value are calculated (according to the value configured before)
and results are stored in Python lists.

Listing 4.12: Data Plot
1 # graphic
2 # f o r c e (0) − vo l tage (1) − cur rent (2) − disp lacement

(3) − r e s i s t a n c e (4)
3

4 s t r i n g = " "
5

6 i f index == 0 :
7 s t r i n g = " Force [daN] "
8 index_dict = ’ f o r c e ’
9 e l i f index == 1 :

10 s t r i n g = " Voltage [V] "
11 index_dict = ’ vo l tage ’
12 e l i f index == 2 :
13 s t r i n g = " Current [A] "
14 index_dict = ’ cur rent ’
15 e l i f index == 3 :
16 s t r i n g = " Displacement [um] "
17 index_dict = ’ d isp lacement ’
18 e l i f index == 4 :
19 s t r i n g = " Res i s tance [Ohm] "
20 index_dict = ’ r e s i s t a n c e ’
21 e l s e :
22 s t r i n g = " "
23

24 f i g = s t . columns (1)
25 s t . markdown(f "### { s t r i n g } ")
26 f i g = go . Figure ()
27 l e n g t h _ l i s t = [x f o r x in range (0 , l en (signal_media))]
28 meas_df = pd . DataFrame (
29 { s t r i n g : signal_media , ’ data ’ : l e n g t h _ l i s t })
30 f i g . add_trace (go . Sca t t e r (
31 x=meas_df [’ data ’] , y=meas_df [s t r i n g] , mode=’ l i n e s ’ ,

name=’ 1 weld − media ’))
32 f i g . update_layout (

91

Implementation and Testing

33 t i t l e=f ’ { s t r i n g } vs Time ’ ,
34 x a x i s _ t i t l e=’Time[∗10^(−2) s] ’ ,
35 y a x i s _ t i t l e=s t r i ng ,
36 f ont=d i c t (
37 f ami ly=" Cour ier New, monospace " ,
38 s i z e =18,
39 c o l o r=" RebeccaPurple "
40)
41)
42 s t . wr i t e (f i g)

Here the mean values are drawn into graphs and showed to the user, using figures
from a Python library called plotly

Listing 4.13: Data print test
1 #Just a te s t , to p r i n t out the columns to doble check va lue s
2 s t . markdown("### Deta i l ed Data View ")
3 s t . dataframe (df)

As a final confirmation in this first version of the Data Visualizer, raw values from
the python DataFrame are shown to the user.

92

Implementation and Testing

4.10 Integration with Machine Learning
Since the code used to pass files and prepare results for the application of a
Machine Learning algorithm is virtually identical to the code developed for data
visualization—except for the extraction of only the force, rather than the five
parameters monitored according to the RSW process—the code will not be included
at this stage to avoid redundancy and streamline the document. In the Machine
Learning section, the input file containing the necessary data for processing is
simply taken, and the data is split: 80% is used to train the model, while the
remaining 20% is used to test the training. At this point, a linear regression
algorithm is applied, and its performance is tested by comparing it with the actual
results. An example of the graphical output can be found in Chapter 2.

93

Chapter 5

Conclusion

5.1 Thesis Project
In this thesis, the development of a data management system framework for
interfacing a digital twin with an RSW welding machine was analyzed, with the
potential to integrate Machine Learning algorithms for predicting welding outcomes
by using the historical data from tests conducted and recorded in the system.

Starting from the study of the theoretical principles behind the Digital Twin in
industry, modern backend and frontend techniques, and microservices architecture
as opposed to monolithic architecture, an experimental testing campaign was
conducted to collect data for this study. Once sufficient data was gathered for
processing the results, the requirements for the framework development were
analyzed in agreement with the client.

Data storage is managed using two databases with different data handling
paradigms: for test-related data, the use of a traditional SQL database like Post-
greSQL ensures a certain level of relational correlation between various campaigns,
individual test samples (provini), and their results. On the other hand, for file
storage, MongoDB, a NoSQL database, allows the raw files output by the welding
machine to be stored and made available for further computation.

Data processing is performed in real-time, utilizing an algorithm that has been
refined to filter out impurities typically found in the raw sensor data output. The
use of averaging and the concurrent parameterization of the algorithm’s application
allow for rapid adjustments in the calculation based on specific needs.

The frontend has been kept simple to ensure resilience and to leave open the
possibility for future developments and integrations. Nevertheless, a series of
features, such as user login for a personalized experience, the retrieval of the
selected test sample data as a placeholder, and the graphical representation of the
algorithm’s computed results, allow even users less familiar with technology to

94

Conclusion

quickly record data and evaluate the machine’s computed test results from the raw
data.

5.2 Future Developments
My work in this thesis aimed at the groundwork for the development of a fully
functional Digital Twin to support an industrial RSW welding machine. This
framework will form the backbone of the future Digital Twin, and the development
has been specifically tailored to be easily integrable and expandable based on
evolving needs.

One simple enhancement, once it is fully implemented on a remotely accessible
server, could be the development of a user registration and login system through
a form, allowing users to interact autonomously with the machine. Of course,
this must be carefully orchestrated with role-based access management, providing
different levels of privileges based on the type of account created.

Once this is done the user experience can be further customized with personalized
style and graphical settings.

Future developments could focus on integrating advanced Deep Learning algo-
rithms, as well as fully-fledged AI predictive model techniques for predicting future
welding results, potentially using multiple methods simultaneously, weighted as
needed.

Another possible future development, outside the scope of this study, could
involve strengthening cybersecurity techniques for communication between the
internet and the frontend, once the system is deployed in production.

95

Bibliography

[1] Hongyan Zhang and Jacek Senkara. Resistance Welding - Fundamentals and
Applications. 2nd Edition. CRC Press, 2011. isbn: 978-0-429-09726-3. doi:
10.1201/b11752 (cit. on p. 1).

[2] TWI Global. What is Spot Welding? (A Complete Welding Process Guide).
2024. url: https://www.twi-global.com/technical-knowledge/faqs/
what-is-spot-welding (visited on 05/06/2024) (cit. on p. 1).

[3] Ichwan Fatmahardi, Mazli Mustapha, Azlan Ahmad, Mohd Nazree Derman,
Turnad Lenggo Ginta, and Iqbal Taufiqurrahman. «An Exploratory Study
on Resistance Spot Welding of Titanium Alloy Ti-6Al-4V». In: Materials
14.9 (2021). issn: 1996-1944. doi: 10.3390/ma14092336. url: https://www.
mdpi.com/1996-1944/14/9/2336 (cit. on p. 3).

[4] World Auto Steel. Hybrid Welding Procedures. 2024. url: https://ahssin
sights.org/joining/adhesive-joining/hybrid-welding-procedures/
(visited on 08/12/2024) (cit. on p. 4).

[5] Diego M. Botín-Sanabria, Adriana-Simona Mihaita, Rodrigo E. Peimbert-
García, Mauricio A. Ramírez-Moreno, Ricardo A. Ramírez-Mendoza, and
Jorge de J. Lozoya-Santos. «Digital Twin Technology Challenges and Appli-
cations: A Comprehensive Review». In: Remote Sensing 14.6 (2022). issn:
2072-4292. doi: 10.3390/rs14061335. url: https://www.mdpi.com/2072-
4292/14/6/1335 (cit. on p. 5).

[6] Tera Automation. Digital Twin e transizione verde: la questione dei dati.
2022. url: https://www.tera-automation.com/blog/333-digital-twin-
e-transizione-verde-la-questione-dei-dati (visited on 04/12/2024)
(cit. on p. 5).

[7] Leon Eversberg. What Is a Digital Twin? 2023. url: https://medium.
com/geekculture/what-is-a-digital-twin-46ad1f549cce (visited on
04/13/2024) (cit. on p. 7).

96

https://doi.org/10.1201/b11752
https://www.twi-global.com/technical-knowledge/faqs/what-is-spot-welding
https://www.twi-global.com/technical-knowledge/faqs/what-is-spot-welding
https://doi.org/10.3390/ma14092336
https://www.mdpi.com/1996-1944/14/9/2336
https://www.mdpi.com/1996-1944/14/9/2336
https://ahssinsights.org/joining/adhesive-joining/hybrid-welding-procedures/
https://ahssinsights.org/joining/adhesive-joining/hybrid-welding-procedures/
https://doi.org/10.3390/rs14061335
https://www.mdpi.com/2072-4292/14/6/1335
https://www.mdpi.com/2072-4292/14/6/1335
https://www.tera-automation.com/blog/333-digital-twin-e-transizione-verde-la-questione-dei-dati
https://www.tera-automation.com/blog/333-digital-twin-e-transizione-verde-la-questione-dei-dati
https://medium.com/geekculture/what-is-a-digital-twin-46ad1f549cce
https://medium.com/geekculture/what-is-a-digital-twin-46ad1f549cce

BIBLIOGRAPHY

[8] Zeeshan Ali, Raheleh Biglari, Joachim Denil, Joost Mertens, Milad Poursoltan,
and Mamadou Traoré. «From modeling and simulation to Digital Twin:
evolution or revolution?» In: SIMULATION 100 (Mar. 2024). doi: 10.1177/
00375497241234680 (cit. on p. 8).

[9] Chris Richardson. Microservice Architecture pattern. 2023. url: https://
microservices.io/patterns/microservices (visited on 06/24/2024) (cit.
on p. 11).

[10] Alex M. Docker vs Kubernetes: The Ultimate Guide to Containerization
and Orchestration. 2024. url: https://1gbits.com/blog/docker- vs-
kubernetes/ (visited on 10/02/2024) (cit. on p. 16).

[11] Docker Inc. What Is Docker? 2024. url: https://docs.docker.com/get-
started/docker-overview/ (visited on 05/29/2024) (cit. on pp. 16, 18).

[12] Daniel Adetunji. How Docker Containers Work – Explained for Beginners.
2023. url: https : / / www . freecodecamp . org / news / how - docker - con
tainers - work / # : ~ : text = A % 20container % 20is % 20a % 20lightweight
, %20standalone , %20and % 20executable , that % 20they % 20can % 20run %
20consistently % 20across % 20different % 20environments. (visited on
06/07/2024) (cit. on p. 17).

[13] Artkai. Comparing Docker, Containerd, CRI-O, and Runc. 2023. url: h
ttps: // artkai. io/blog /best - containerization- tools (visited on
07/16/2024) (cit. on p. 17).

[14] Mehmet Ozkaya. When to use Monolithic Architecture. 2023. url: https://m
edium.com/design-microservices-architecture-with-patterns/when-
to-use-monolithic-architecture-57c0653e245e (visited on 04/27/2024)
(cit. on p. 19).

[15] Altexoft. Comparing Database Management Systems: MySQL, PostgreSQL,
MSSQL Server, MongoDB, Elasticsearch, and others. 2023. url: https:
//www.altexsoft.com/blog/comparing-database-management-systems-
mysql-postgresql-mssql-server-mongodb-elasticsearch-and-others
/ (visited on 05/25/2024) (cit. on p. 23).

[16] Ryan Boyd & William Lyon Michael Hunger. RDBMS & Graphs: Why
Relational Databases Aren’t Always Enough. 2016. url: https://neo4j.com/
blog/rdbms-graphs-why-relational-databases-arent-enough/ (visited
on 04/07/2024) (cit. on p. 23).

[17] Sumeet Shukla. PostgreSQL Architecture. 2023. url: https://medium.com/
@sumeet.k.shukla/postgresql-architecture-6df259dc1145 (visited on
06/02/2024) (cit. on p. 26).

97

https://doi.org/10.1177/00375497241234680
https://doi.org/10.1177/00375497241234680
https://microservices.io/patterns/microservices
https://microservices.io/patterns/microservices
https://1gbits.com/blog/docker-vs-kubernetes/
https://1gbits.com/blog/docker-vs-kubernetes/
https://docs.docker.com/get-started/docker-overview/
https://docs.docker.com/get-started/docker-overview/
https://www.freecodecamp.org/news/how-docker-containers-work/#:~:text=A%20container%20is%20a%20lightweight,%20standalone,%20and%20executable,that%20they%20can%20run%20consistently%20across%20different%20environments.
https://www.freecodecamp.org/news/how-docker-containers-work/#:~:text=A%20container%20is%20a%20lightweight,%20standalone,%20and%20executable,that%20they%20can%20run%20consistently%20across%20different%20environments.
https://www.freecodecamp.org/news/how-docker-containers-work/#:~:text=A%20container%20is%20a%20lightweight,%20standalone,%20and%20executable,that%20they%20can%20run%20consistently%20across%20different%20environments.
https://www.freecodecamp.org/news/how-docker-containers-work/#:~:text=A%20container%20is%20a%20lightweight,%20standalone,%20and%20executable,that%20they%20can%20run%20consistently%20across%20different%20environments.
https://artkai.io/blog/best-containerization-tools
https://artkai.io/blog/best-containerization-tools
https://medium.com/design-microservices-architecture-with-patterns/when-to-use-monolithic-architecture-57c0653e245e
https://medium.com/design-microservices-architecture-with-patterns/when-to-use-monolithic-architecture-57c0653e245e
https://medium.com/design-microservices-architecture-with-patterns/when-to-use-monolithic-architecture-57c0653e245e
https://www.altexsoft.com/blog/comparing-database-management-systems-mysql-postgresql-mssql-server-mongodb-elasticsearch-and-others/
https://www.altexsoft.com/blog/comparing-database-management-systems-mysql-postgresql-mssql-server-mongodb-elasticsearch-and-others/
https://www.altexsoft.com/blog/comparing-database-management-systems-mysql-postgresql-mssql-server-mongodb-elasticsearch-and-others/
https://www.altexsoft.com/blog/comparing-database-management-systems-mysql-postgresql-mssql-server-mongodb-elasticsearch-and-others/
https://neo4j.com/blog/rdbms-graphs-why-relational-databases-arent-enough/
https://neo4j.com/blog/rdbms-graphs-why-relational-databases-arent-enough/
https://medium.com/@sumeet.k.shukla/postgresql-architecture-6df259dc1145
https://medium.com/@sumeet.k.shukla/postgresql-architecture-6df259dc1145

BIBLIOGRAPHY

[18] Danish Siddiq. Learning NoSQL — NoSQL Database Designing. 2019. url:
https://medium.com/tech-tajawal/nosql-modeling-database-struct
uring-part-ii-4c364c4bc17a (visited on 05/30/2024) (cit. on p. 29).

[19] Akshay Mungekar. Data Storage and Management Project. Feb. 2019. doi:
10.13140/RG.2.2.27354.18880 (cit. on p. 30).

[20] Noel. How To Optimize MongoDB Performance & Security. 2013. url: ht
tps://medium.com/@noel.B/how-to-optimize-mongodb-performance-
security-6fd3ba1304c1 (visited on 07/02/2024) (cit. on p. 31).

[21] Viacheslav Petrenko. Understanding Contemporary Web Application Archi-
tecture: Key Components, Best Practices, and Beyond. 2024. url: https:
/ / litslink . com / blog / web - application - architecture (visited on
07/05/2024) (cit. on p. 32).

[22] Arvindra Sehmi. Introduction to Streamlit and Streamlit Components. 2022.
url: https : / / auth0 . com / blog / introduction - to - streamlit - and -
streamlit-components/ (visited on 04/25/2024) (cit. on p. 35).

[23] Jan Wiśniewski. Comprehensive Guide to Reverse Proxy Servers: Benefits,
Use Cases, and Key Configurations. 2024. url: https://infatica.io/blog/
reverse-proxy-servers/ (visited on 08/22/2024) (cit. on p. 38).

[24] Amit Kumar Shinde. Understanding Nginx As A Reverse Proxy. 2021. url:
https://medium.com/globant/understanding-nginx-as-a-reverse-
proxy-564f76e856b2 (visited on 07/21/2024) (cit. on p. 40).

[25] Ankit Jain. Caddy vs Nginx vs Apache - Comparison of Web Servers (2024).
2024. url: https://json-server.dev/web-servers-compared-caddy-
nginx/ (visited on 08/30/2024) (cit. on p. 40).

[26] Fahri Yesil. Network Protocols: A Comprehensive Guide. 2023. url: https:
//medium.com/@fahriiyesill/demystifying- networking- protocols-
a-comprehensive-guide-171c81ac07ae (visited on 09/07/2024) (cit. on
p. 41).

[27] Rishikesh roy. Load Balancer vs Reverse Proxy vs API Gateway. 2023. url:
https://www.linkedin.com/pulse/load-balancer-vs-reverse-proxy-
api-gateway-rishikesh-roy/ (visited on 07/31/2024) (cit. on p. 41).

[28] Maicon Saturno, Vinícius Pertel, and Fernando Deschamps. «Proposal of an
automation solutions architecture for Industry 4.0». In: (July 2017) (cit. on
p. 43).

[29] Kathleen Siddell. Computer Vision Will be Essential to the Industry 5.0
Era. 2023. url: https://alwaysai.co/blog/industry5.0 (visited on
06/16/2024) (cit. on p. 45).

98

https://medium.com/tech-tajawal/nosql-modeling-database-structuring-part-ii-4c364c4bc17a
https://medium.com/tech-tajawal/nosql-modeling-database-structuring-part-ii-4c364c4bc17a
https://doi.org/10.13140/RG.2.2.27354.18880
https://medium.com/@noel.B/how-to-optimize-mongodb-performance-security-6fd3ba1304c1
https://medium.com/@noel.B/how-to-optimize-mongodb-performance-security-6fd3ba1304c1
https://medium.com/@noel.B/how-to-optimize-mongodb-performance-security-6fd3ba1304c1
https://litslink.com/blog/web-application-architecture
https://litslink.com/blog/web-application-architecture
https://auth0.com/blog/introduction-to-streamlit-and-streamlit-components/
https://auth0.com/blog/introduction-to-streamlit-and-streamlit-components/
https://infatica.io/blog/reverse-proxy-servers/
https://infatica.io/blog/reverse-proxy-servers/
https://medium.com/globant/understanding-nginx-as-a-reverse-proxy-564f76e856b2
https://medium.com/globant/understanding-nginx-as-a-reverse-proxy-564f76e856b2
https://json-server.dev/web-servers-compared-caddy-nginx/
https://json-server.dev/web-servers-compared-caddy-nginx/
https://medium.com/@fahriiyesill/demystifying-networking-protocols-a-comprehensive-guide-171c81ac07ae
https://medium.com/@fahriiyesill/demystifying-networking-protocols-a-comprehensive-guide-171c81ac07ae
https://medium.com/@fahriiyesill/demystifying-networking-protocols-a-comprehensive-guide-171c81ac07ae
https://www.linkedin.com/pulse/load-balancer-vs-reverse-proxy-api-gateway-rishikesh-roy/
https://www.linkedin.com/pulse/load-balancer-vs-reverse-proxy-api-gateway-rishikesh-roy/
https://alwaysai.co/blog/industry5.0

BIBLIOGRAPHY

[30] Mohsen Soori, Behrooz Arezoo, and Roza Dastres. «Artificial intelligence,
machine learning and deep learning in advanced robotics, a review». In:
Cognitive Robotics 3 (2023), pp. 54–70. issn: 2667-2413. doi: https://doi.
org/10.1016/j.cogr.2023.04.001. url: https://www.sciencedirect.
com/science/article/pii/S2667241323000113 (cit. on p. 47).

[31] Yulia Gavrilova. Reinforcement Learning: How It Works. 2024. url: htt
ps://serokell.io/blog/reinforcement- learning- guide (visited on
09/26/2024) (cit. on p. 47).

[32] Open Text. What is Machine Learning. 2024. url: https://www.opentext.
com/what-is/machine-learning (visited on 05/24/2024) (cit. on p. 48).

[33] Hasan Tercan and Tobias Meisen. «Machine learning and deep learning based
predictive quality in manufacturing: a systematic review». In: Journal of
Intelligent Manufacturing 33.7 (2022), pp. 1879–1905. issn: 1572-8145. doi:
10.1007/s10845-022-01963-8. url: https://doi.org/10.1007/s10845-
022-01963-8 (cit. on p. 48).

[34] mongoDB. GridFS. 2024. url: https://www.mongodb.com/docs/drivers/
node/current/fundamentals/gridfs/ (visited on 08/30/2024) (cit. on
p. 55).

[35] Luigi Panza, Giulia Bruno, Gabriel Antal, Manuela De Maddis, and Pasquale
Russo Spena. «Machine learning tool for the prediction of electrode wear
effect on the quality of resistance spot welds». In: International Journal
on Interactive Design and Manufacturing (IJIDeM) 18.7 (2024), pp. 4629–
4646. issn: 1955-2505. doi: 10.1007/s12008-023-01733-7. url: https:
//doi.org/10.1007/s12008-023-01733-7 (cit. on p. 62).

99

https://doi.org/https://doi.org/10.1016/j.cogr.2023.04.001
https://doi.org/https://doi.org/10.1016/j.cogr.2023.04.001
https://www.sciencedirect.com/science/article/pii/S2667241323000113
https://www.sciencedirect.com/science/article/pii/S2667241323000113
https://serokell.io/blog/reinforcement-learning-guide
https://serokell.io/blog/reinforcement-learning-guide
https://www.opentext.com/what-is/machine-learning
https://www.opentext.com/what-is/machine-learning
https://doi.org/10.1007/s10845-022-01963-8
https://doi.org/10.1007/s10845-022-01963-8
https://doi.org/10.1007/s10845-022-01963-8
https://www.mongodb.com/docs/drivers/node/current/fundamentals/gridfs/
https://www.mongodb.com/docs/drivers/node/current/fundamentals/gridfs/
https://doi.org/10.1007/s12008-023-01733-7
https://doi.org/10.1007/s12008-023-01733-7
https://doi.org/10.1007/s12008-023-01733-7

	List of Figures
	Theory pills
	Resistance Spot Welding
	Introduction
	RSW in detail
	The Physical Transformations
	Present and Future of RSW
	To Sum Up

	Digital Twin
	Introduction
	Theoretical Foundations of Digital Twin
	Digital Twin's components
	Digital Twin typologies
	Fields of application
	Way of representation in CE Solutions
	Simulation
	Challenges
	The future of Digital Twins

	Microservices
	Introduction
	Principal Characteristics
	Microservices Advantages
	Microservices Disadvantages
	To Sum Up

	Docker
	Docker Principal Characteristics
	Docker Advantages
	Docker Disadvantages
	To Sum Up

	Monolithic Architecture
	Introduction
	Monolithic Advantages
	Monolithic Disadvantages
	To Sum Up

	Relational Databases
	Introduction
	Relational Databases Advantages
	PostgreSQL
	Principal Characteristics of PostgreSQL
	PostgreSQL Architecture
	PostgreSQL Advantage Functionalities
	To Sum Up

	Non Relational Databases
	Introduction
	Non Relational Databases Advantages
	MongoDB
	Principal Characteristics of MongoDB
	MongoDB Architecture
	To Sum Up

	Web App Frameworks
	Introduction
	Web App Framework Advantages
	Streamlit
	Principal Characteristics of Streamlit
	Streamlit Advantages
	Streamlit Disadvantages
	To Sum Up

	Reverse Proxy
	Introduction
	Reverse Proxy Advantages
	Principal Usages
	Example of Reverse Proxy Servers
	NGINX
	NGINX Advantages
	NGINX Disadvantages
	To Sum Up

	From Industry 4.0 to Industry 5.0
	Introduction
	Main Principles
	Main Goals
	Main Strategies
	To Sum Up

	Industry 5.0
	The new concept behind Industry 5.0
	What's new in Industry 5.0
	To Sum Up

	Machine Learning
	Introduction
	Types of Machine Learning
	Key Concepts
	Engineering Applications
	To Sum Up

	Methodology
	Introduction to System Data Management Methodologies
	Data Acquisition
	Introduction
	Acquisition through user input
	Acquisition through files

	Data Storage
	Introduction
	PostgreSQL
	MongoDB

	Data Processing
	Introduction
	PostgreSQL data management
	MongoDB files management
	Integration with Machine Learning

	System Architecture
	Introduction
	Experimental Campaign
	The goal
	Technical details and experimental tests

	The Start
	The End

	Implementation and Testing
	Introduction
	PostgreSQL
	MongoDB
	Streamlit
	Login Page
	Insertion Page
	Visualization Page

	NGINX
	Microservices
	Data Acquisition
	Typical Data Output Format
	Analysis of Data

	Data Storage
	Data Processing
	Integration with Machine Learning

	Conclusion
	Thesis Project
	Future Developments

	Bibliography

