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Abstract

Simone BONINO

Manipulation of topological spin textures for neuromorphic
computing

In magnetic materials, non-trivial magnetic spin textures may have topological
properties, which gave them extra stability as they cannot be annihilated continu-
ously without causing a singularity. These structures, including skyrmions, are par-
ticularly promising for applications in neuromorphic computing, where their stabil-
ity and small size enable efficient information processing and storage. Other mag-
netic textures, such as meander domain walls, characterized by their wavy, serpen-
tine paths due to local variations in magnetic anisotropy or material imperfections,
also play a significant role in this context.

The ability to precisely control the dynamics of these structures is crucial for ad-
vancing neuromorphic computing technologies. In fact, the manipulation of domain
walls can be exploited to mimic the complex, adaptive processes of the human brain.

In this context, the goal of this work is to demonstrate the potential of topolog-
ical spin textures and domain walls for neuromorphic computing. Specifically, this
project aims to explore the use of a magnetic system based on meander domain walls
to perform reservoir computing for solving recognition tasks.

The first part focuses on optimizing material properties to stabilize meander
domain walls and skyrmions in a heavy metal/ferromagnet/metal oxide system.
Through careful selection of materials and device parameters, it is possible to create
a system that supports these topological spin textures, which are essential for ad-
vanced neuromorphic computing applications.

The second part evaluates and measures the dynamic properties of the system.
The goal is to ensure it meets the necessary requirements for reservoir computing,
such as stability, non-linearity, and short-term memory, by observing the response
of skyrmions and meander domain walls under various stimuli.

The final part of the manuscript is devoted to test the capability of the system
to perform basic recognition tasks, with a particular focus on recognizing simple
waveforms such as sine and square waves. These tests demonstrate the potential
of the optimized material system for practical applications in reservoir computing,
paving the way for more complex neuromorphic computing tasks in the future.
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Introduction

Spintec, acronym for “SPINtronique and TEchnologie des Composants”, is a leading
research laboratory in spintronics. This laboratory combines fundamental research
with innovative device technology in the evolving field of spin electronics.

Spintronics represents an innovative frontier, it improves conventional semicon-
ductor technologies by addressing their limitations. Traditional semiconductor de-
vices are nowadays close to the limits outlined by Moore’s law, in particular most of
the challenges are related to power dissipation and energy consumption. Spintron-
ics offers many advantages, including enhanced speed, storage density, and energy
efficiency. Key discoveries in this field include the giant magneto-resistance (GMR)
effect, tunnel magneto-resistance (TMR), spin-transfer torque (STT) and spin-orbit
torque (SOT) mechanisms. Recently, the emergence of magnetic skyrmions (a type
of quasi-particle magnetic spin configuration), has changed this field even more.

Skyrmions are small, topologically stable magnetic textures, with sizes ranging
from nanometers to micrometers. They can be easily controlled via electric currents
through spin-orbit torque. This makes them highly suitable for non-volatile mag-
netic memory and logic devices. Spintec was the first to directly observe skyrmions
at room temperature and demonstrate their rapid manipulation (over 1 km/s) using
synthetic antiferromagnetic (SAF) structures. These properties open up possibilities
for high-speed, energy-efficient information storage and processing.

In addition to skyrmions, complex magnetic textures such as meander domain
walls offer multiple advantages for spintronic applications. Their intricate shapes
and dynamics, which can be manipulated by external fields or currents, make them
promising for information encoding and processing, and for unconventional com-
puting applications like reservoir computing.

Reservoir computing shifts computation into a nonlinear physical material, leav-
ing only the readout to be trained. This approach enables fast learning and low
training costs, yet it can still handle tasks like speech and image recognition, as well
as chaotic time-series prediction. Skyrmions and meander domain walls are ideal
candidates for such systems, merging the advantages of spintronics with ultra-low
power recognition of complex tasks.

This work explores how non-trivial magnetic spin textures can be exploited to
advance in neuromorphic computing technologies.

The first goal is to optimize an ultrathin multilayer that stabilizes complex mag-
netic domain wall structures at room temperature due to its unique properties. This
multilayer enables skyrmion nucleation and it is suitable for magneto-optical Kerr
effect (MOKE) microscopy. The research then aims to leverage its stability, non-
linearity, and memory properties for efficient reservoir computing. Several attempts
are made to test simple classification tasks and analyze their accuracy. The final part
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of the work addresses new solutions to improve reading speed and accuracy.

In this thesis, each section addresses an important part of the research:

• Chapter 1 explains the theory of magnetism and domain walls;

• Chapter 2 explores neural networks and reservoir computing, discussing their
relevance to this study;

• Chapter 3 describes the processes involved in device nano fabrication, detail-
ing how the final device is produced;

• Chapter 4 presents the results obtained, discusses their significance, and out-
lines future directions for the research.
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Chapter 1

Theory of magnetism

1.1 Magnetic materials

Magnetic materials are a particular class of materials, their interaction with a mag-
netic field leads to a change in their state that is called magnetization. There are
strongly and weakly magnetic material and their interplay with a magnetic field
depends on their internal structure and properties. Among them there are ferro-
magnetic, paramagnetic, antiferromagnetic and ferrimagnetic materials. Thus, this
section is focused on the origin of material magnetic properties describing interac-
tions and energies involved with special attention for ferromagnetic materials.

1.1.1 Magnetic moments

In order to understand the origin of magnetic properties of materials the physical
description of the electronic motion must be taken into account. Specifically, at the
atomic scale, a magnetic moment µ originates from the interplay of two elements
such as the spin of the electrons, that makes it behave as a small magnet, and their
orbital motion around the nucleus which also generates a magnetic field.

The magnitude of the magnetic moment determines the strength of a material
response to a magnetic field, while its direction indicates the orientation of the ma-
terial magnetic dipoles. The magnitude of the µ is related to the strength of the
response of the material to a magnetic field, its direction describes the dipole orien-
tation of the material. In general, these magnetic moments contribute to the overall
material magnetic properties. The magnetization of a sample in a unit of volume can
be written as:

M =
∑N

i=1 µi

V
(1.1)

1.1.2 Ferromagnetic materials

Ferromagnetic materials exhibit a spontaneous magnetization even in absence of an
applied field (spontaneous magnetization), due to particular interactions inside the
material, all the magnetic moments lie locally along a single direction. These regions
within the material where the atomic magnetic moments are oriented along the same
direction are called domains. Common ferromagnetic materials are Iron, Cobalt and
Nickel. An important aspect to take into account when dealing with ferromagnetic
material is the Curie temperature TC. In fact, above a specific temperature, differ-
ent for every material, the thermal energy can overcome the natural alignment of
magnetic moments causing a random orientation of the magnetic moments and the
material loses its ferromagnetic properties.
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FIGURE 1.1: Hysteresis loop [1]

Ferromagnetic material can reach strong magnetization, however the relation be-
tween the magnetization and the applied field in complex and non linear, as shown
in Fig1.1 (path OABC). It exists a field limit (point A) under which the magnetization
can be reversed coming back to zero when the field is switched off. Further increas-
ing the field, causes the magnetization to reach a plateau also called saturation MS.
Then by decreasing the magnetic field, starting from the previous saturation condi-
tion, the magnetization M follows another path (C to G) and at zero applied field
the magnetization will not be zero. This effect is called residual magnetization or re-
manence. To reach a zero magnetization, the applied field must be increased in the
negative direction. The intensity of the external applied magnetic field to reduce the
magnetization of a ferromagnetic material to zero after saturation is called coercivity
[1].

Further increase of the magnetic field in the negative sense induces the material
to reach negative saturation (point F) with all magnetic moments oriented in an op-
posite way with the respect to the positive saturation configuration. Reversing the
field another time, along the positive direction, the magnetization will follow a sim-
ilar path (FEDC) forming a closed loop. Such loop is called hysteresis loop and can
be exploited both for material studies but also for device applications.

1.2 Magnetic interactions

In this work thin films of ferromagnetic and non-magnetic materials are considered,
therefore in order to understand the complex behaviour of a ferromagnetic-based
system, we must introduce all the interactions to which the sample can be subjected,
all of them can be depicted by their associated energy.

1.2.1 Zeeman interaction

When an external magnetic field is applied, the internal magnetic moments of a
ferromagnetic material will be forced to follow the same direction of the external
field. This interaction is referred to as Zeeman interaction. To this interaction it can
be associated an energy of the type :

EZ = −µ · Hext (1.2)
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where µ is the magnetic moment vector and Hext the external magnetic field. In
this case it is trivial to see that the parallel configuration is the one that minimizes
the energy. Such formula describes the energy associated to a singular magnetic
moment µ. To compute the total energy of the system it is sufficient to consider the
sum of the individual Zeeman energies for all the magnetic moments in the material.

EZ = −
∫

V
Hext · m dV (1.3)

with m the reduced magnetization (normalized by the saturation magnetization
Ms, m = M/Ms) .

1.2.2 Magnetic dipolar interaction

The magnetic dipolar interaction describes the energy associated with the mutual
interaction of the magnetic fields generated by each dipole µi within a material, sep-
arated by a certain distance r. It takes the form of a Zeeman type interaction, and its
associated magnetostatic energy can be expressed as:

Ed =
µ0

2

∫
V

M · Hd dV (1.4)

Where M is the magnetization, Hd is the demagnetizing field (or stray field) gen-
erated by the magnetization itself and the factor 1

2 is introduced to avoid counting
the interactions between two magnetic moments twice.

Calculating this energy density analytically for each system is challenging due
to its complexity, as it depends on multiple factors, is non-local, and has a long-
range dependence. However in our case the main focus is oriented toward thin film
magnetic samples.
Therefore considering a uniformly magnetized thin film, the relation between the
demagnetizing field and the magnetization can be expressed by the demagnetizing
tensor Ni :

Hd,i = −Ni Mi (1.5)

where i = x, y, z, and Nx + Ny + Nz = 1. In such films, typically Nx < Ny ≪ Nz
and Nz ≈ 1 [2]. In the absence of any other anisotropic effects, the magnetization
tends to align along the length of the film, which minimizes the dipolar energy. Any
deviation from this alignment increases the dipolar energy, introducing a shape-
induced anisotropy.

Consequently, the magnetostatic energy is minimized when the magnetization
lies within the plane of the sample. If the magnetization is uniform and forms an
angle θ with the normal to the thin film, the demagnetizing field simplifies to Hd =
−Mz, and the dipolar energy density can be rewritten as:

εd = −1
2

µ0M2
s cos2 θ = Kd cos2 θ (1.6)

Here, Kd is the dipolar energy constant or shape anisotropy constant, defined as
Kd = 1

2 µ0M2
s . This constant represents the maximum energy density associated with

demagnetizing fields [3].
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1.2.3 Exchange interaction

Heisenberg introduced the concept of the exchange interaction in 1928 to explain
the strong molecular fields present in ferromagnetic materials. In order to explain
this phenomenon, a quantum mechanical approach is required; however, a simple
description can still be given.

According to the Pauli exclusion principle, when two atoms with unpaired elec-
trons are close to each other, their behaviour depends on the orientation of their
spins, resulting in two possible scenarios: if the spins are antiparallel, the electrons
can share the same orbit, thus increasing the electrostatic Coulomb energy. In con-
trast, when the spins are parallel, the Pauli exclusion principle forces the electrons
to occupy separate orbits, which reduces the Coulomb interaction [1].

Using an atomistic description, the Hamiltonian assumes the following structure:

Hex = −∑
i<j

Jijµi · µj (1.7)

where Jij is the exchange integral between two neighbouring atoms on sites i and j.
The sign of J then determines the magnetic ordering, if J > 0, the ferromagnetic
(FM) state is energetically preferred, with all spins aligned parallel. Conversely,
when J < 0, the antiferromagnetic (AF) state becomes energetically favored, which
is characterized by neighboring spins aligning anti-parallel, resulting in zero net
magnetization [3].

Considering the continuous approximation used in micromagnetism, the energy
related to the exchange energy can be written as

Eex = A
∫

V
(∇m)2dV (1.8)

with m(r) = M
Ms

the reduced magnetization vector, A ≈ JS2 n
a the exchange constant,

in which a is the lattice parameter, S the spin quantum number and n the number of
atoms per unit cell [4].

1.2.4 Magnetic anisotropy

The energy of ferromagnetic materials depends also on the relative orientation of
the magnetization and the crystal axes. Such dependence arises from the spin-orbit
coupling (SOC) inside the material. The SOC describes the relativistic interaction be-
tween the electron spin and orbital angular momenta. This energy can be described
considering two main types: magneto-crystalline anisotropy energy, that is directly
related to the crystal lattice of the material, and induced magnetic anisotropy energy,
which result from deviations in symmetry of the system.

The MCA energy density expression may change depending on the crystal struc-
ture considered, in our case we consider the case of uniaxial anisotropy. The MCA
energy density can be expressed as [5]:

εMC = Ku1 sin2 θ + Ku2 sin4 θ (1.9)

where Ku1,u2 are the uniaxial anisotropy volume constants (Jm-3) and θ is the an-
gle between anisotropy axis and magnetization direction. The axis, along which the
spins preferentially align, is referred to as "easy axis", while any crystallographic
axis perpendicular to it is called "hard axis". Considering a ferromagnet, the energy
associated with magnetization along the easy axis is minimized, reflecting a stable
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state of the system. In contrast, the hard axis is the direction in which magnetization
is more difficult to achieve, requiring a significantly stronger magnetic field to reach
saturation.

An additional form of anisotropic energy was introduced by Néel [6], known
as magnetic surface anisotropy. This type of anisotropy is introduced to describe
surface magnetization phenomena that are more enhanced in presence of thin film
materials. In a structurally isotropic material, it can be expressed to first order as:

Es =
∫

S
Ks[1 − (m · n̂)2]dS (1.10)

where n̂ represents the unit vector normal to the surface and Ks the surface
anisotropy constant (Jm-2) [5]. For positive values of Ks, the surface energy Es is
minimized when the magnetization is perpendicular to the surface.

In bulk materials, the influence of surface anisotropy is usually negligible be-
cause the surface magnetization is strongly coupled to the bulk magnetization through
exchange interactions. These effects become pronounced in very thin films and mul-
tilayer structures, where surface interactions are stronger. This balance between dif-
ferent contribution can be seen by considering the effective anisotropy constant Ke f f
which can be written as the summation of bulk contribution, surface contribution
and shape anisotropy which has the form of a dipolar field.

Ke f f = Ku +
Ks

t
− µ0M2

s
2

(1.11)

In thin films the term Ku can be neglected and if the interface anisotropy out-
weighs the shape anisotropy (Ke f f > 0), the energy landscape promotes an out-of-
plane easy axis, giving rise to perpendicular magnetic anisotropy (PMA). It is possi-
ble to define a critical thickness tc above which the magnetization preferencially lines
in the film plane (Fig.1.2), therefore it defines the transition between perpendicular-
magnetic anisotropy (PMA) and in-plane anisotropy (IP) [3].

FIGURE 1.2: Perpendicular Magnetic Anisotropy: a. Variation of
the effective anisotropy constant as a function of ferromagnetic (FM)
film thickness t. In the case of Pt/Co/MgO, the critical thickness is
approximately tc ≈ 1 nm. b. A typical PMA stack consists of a heavy
metal (HM), a ferromagnetic (FM) layer, and a non-magnetic (NM)

layer, such as an oxide or another heavy metal. [3]

In addition to PMA, in magnetic materials, especially in multi-layered films, the
SOC gives rise to many other different phenomena such as the spin-Hall effect, the
Rashba-Edelstein effect and the Dzyaloshinskii-Moriya interaction [7].
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1.2.5 Dzyaloshinskii-Moriya interaction (DMI)

The Dzyaloshinskii-Moriya interaction (DMI) is an anti-symmetric exchange interac-
tion term that appears when materials with spin-orbit coupling and inversion asym-
metry are taken into account. It is crucial to stabilize chiral magnetic textures as
chiral domain walls, skyrmions etc.
Firstly was proposed by Dzyaloshinskii in 1958 [8], who discovered that there was
a direct link between crystal symmetry and magnetic configuration. Later in 1960,
Moriya demonstrated how to compute this additional exchange term [9, 10]. The
DMI Hamiltonian can be written as follows:

HDMI = −∑
i<j

dij · (µi × µj) (1.12)

With dij the DMI vector (Fig. 1.3), its amplitude it is proportional to the SOC and its
direction depends on the crystal symmetry [3].

FIGURE 1.3: Dzyaloshinskii-Moriya Interaction at the HM/FM In-
terface: Schematic illustration of the DMI occurring at the interface

between a HM and a FM.

1.3 Magnetic domains and domain walls

1.3.1 Origin of magnetic domains

Considering a ferromagnetic material, a magnetic domain indicates a region inside
the sample where the magnetization in uniformly aligned. This division in substruc-
tures helps explain the ferromagnetic response under external magnetic fields. The
reason why domain are forming is to minimize the overall system energy which
is subject to many different contributions including the exchange energy, magneto-
static energy (or stray field energy), and anisotropy energy.

The concept of magnetic domains emerged from the fact that a uniformly mag-
netized state would produce a significant stray field energy as a large portion of the
closed magnetic field would extend outside the sample [11]. By dividing into do-
mains, the material reduces its magnetostatic energy. Furthermore, in presence of
an external magnetic field, the boundaries between these domains, called domain
walls, move adjusting the magnetization of the material without requiring the si-
multaneous rotation of all the spins.

1.3.2 Domain walls in thin films

As said before, a domain wall is the transition layer between two domains with dif-
ferent magnetization directions. Along the wall, the magnetization is subjected to a
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rotation from the direction of one domain to the direction of the other.

Specifically the magnetization along a domain wall undergoes a rotation (Fig.
1.4) which, depending on the rotation plane, can be categorized as Bloch domain
wall (in the DW plane) or Néel domain wall (perpendicular to the DW plane).

FIGURE 1.4: Bloch and Néel Domain Walls: Schematic depiction of
a Bloch domain wall and a Néel domain wall in an ultra-thin film
with thickness t and width w, displaying perpendicular magnetic

anisotropy (PMA) [3].

In this section, magnetic domains and domain walls are described, with a focus
on ultra-thin films exhibiting perpendicular magnetic anisotropy (PMA).

Films with strong perpendicular anisotropy are characterized by a preferred mag-
netic easy axis that is perpendicular to the surface of the film. To achieve this con-
dition the material parameter Q, expressed as Q = Ku

Kd
must be greater than 1.

Since K = Ks/t is inversely proportional to the thickness of the sample, the surface
anisotropic term promotes PMA in thin films [5].

The formation of a domain wall requires a cost in terms of energy, it is the result
of the competition between two terms: the exchange energy that tends to unwind
the wall and make it bigger and anisotropy energy that tends to shrink the domain
wall.

By finding the equilibrium configuration in a two-spin system separated by a
Block domain wall, the width of the Block wall can be expressed as [4]:

δ = πS

√
2J
Ka

(1.13)

with J the exchange constant that quantifies the strength of the interaction be-
tween two neighboring spins, K the surface anisotropy constant and a the lattice
parameter. Larger values of J promote thicker domain walls, while larger values of
K result in thinner walls. In term of the parameter A that can be defined for different
crystal lattices, the domain wall thickness can be rewritten as:

δ = πS

√
A
K

(1.14)

Finally the energy per unit area can be expressed as:

σBW = π
√

AK (1.15)

In the multilayer system examined in this study, the Dzyaloshinskii-Moriya in-
teraction (DMI) is also present. Including the DMI energy contribution to the prob-
lem is equivalent to add an effective magnetic field inside the DW and perpendicular
to it. Therefore a system with large DMI outweights the gain in dipolar energy of
the Bloch configuration promoting Néel configuration. The domain wall energy can
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then be written as [12]:

σDW = 4
√
(AK)± πD (1.16)

The sign ± distinguishes between the two possible chiralities of the Néel DW. There-
fore the DMI contribution controls which configuration is favoured between Bloch
and Néel and it controls also the direction of rotation of the spins inside the DW (chi-
rality). Different thresholds can be distinguished DN and DC, when DN < D < DC,
a pure Néel DW is stabilised while when D > DC, the DW energy becomes negative
and a spin spiral is stabilised, that is the magnetisation rotates continuously [12, 3].

1.3.3 Skyrmions

Other complex magnetic textures examined in this work include magnetic skyrmions.
Magnetic skyrmions are unique whirling spin structures that form in certain mag-
netic materials due to a combination of exchange interactions and spin-orbit cou-
pling. Their magnetic moments are topologically protected, meaning that the spin
configuration is stable and difficult to annihilate or unwind. They were defined by
Tony Skyrme who proposed in the 1960’s a quantum field theory in order to describe
interacting elementary particle as topological solitons, representing stable particle-
like solutions in field theories [13].

The skyrmion whirling structure is depicted by the topological charge Qsk [14,
15]

Qsk =
1

4π

∫ ∫
dxdy m · (∂m

∂x
× ∂m

∂y
) (1.17)

with m the reduced magnetization vector.
In a polar coordinate system, the topological charge can be rewritten as:

Qsk = p · W (1.18)

with
p =

1
2
[mz(0)− mz(+∞)] = ±1 (1.19)

where p is the polarity number and it corresponds to the orientation of the mag-
netization mz, and W is the winding number that counts how many times the mag-
netization wraps the unit sphere.
Moving outwards from the skyrmion core along the radial direction, the spins com-
plete a 2π rotation and the specific spin rotation direction is indicated by the sign
of W , differentiating skyrmions (W = +1) and anti-skyrmions (W = −1). Thus,
the topological charge of a skyrmion is quantized and solely determined by its core
polarity.

Another quantity describing the skyrmion configuration is the helicity number
Ψ and it represents the angle between the magnetization and the radial axis (rij).
Ψ = 1

2 π, 3
2 π refers to Bloch skyrmions, Ψ = 0, π refers to Néel skyrmions (Fig

1.5), while intermediate values represent mixed configurations. Each skyrmion type
(Bloch/Néel) can have two different polarities (p = ±1) and two different chiralities
(left/right-handed).

DMI interaction is required for the generation of Bloch and Néel type skyrmions.
In particular, when the DMI vector dij is parallel to the radial axis rij, Bloch type
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FIGURE 1.5: Spin texture of a magnetic skyrmion: a. A Bloch
skyrmion with core polarity p = −1, winding number W = 1, and
helicity Ψ = π/2 (right-handed). b. A Néel skyrmion with p = −1,

W = 1, and Ψ = π (right-handed). [3]

skyrmions are energetically favored, while when dij is perpendicular to rij, Néel
type skyrmions are preferred [3].

1.4 Domain wall dynamics

1.4.1 Landau-Lifshitz-Gilbert equation

In order to describe and understand domain wall dynamics, it is essential to intro-
duce the Landau-Lifshitz-Gilbert (LLG) equation which describes the spatial and
temporal evolution of the magnetization [11, 16].

dM
dt

= −γ0M × Heff +
α

Ms
M × dM

dt
(1.20)

where γ0 = g|e|2me is the gyromagnetic ratio, with g the Landé factor (g ≈ 2), e the
electron charge, me the electron mass and α > 0 the magnetic damping parameter.
He f f is the effective magnetic field that includes all the interactions such as exchange,
anisotropy, Zeeman, external field and DMI and M is the magnetization vector. In
the right-hand side of the the LLG a sum of two torques contributions (Fig. 1.6) is
present, dM

dt = Tp + Td.

FIGURE 1.6: Magnetization dynamics described by the LLG equa-
tion: the term in blue is Tp and represents the precessional motion
of the magnetization M around the effective magnetic field Heff. The
second term Td (in red) corresponds to the damping torque, which

acts to align M with Heff.
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In particular, the first term Tp is a conservative torque that is related to the pre-
cession of the magnetization around He f f . The second term Td is a damping term
perpendicular to the first one and it promotes the alignment of the magnetization
with He f f by describing a spiral around it while preserving the magnetization norm
constant.

1.4.2 Current-induced domain wall motion

The manipulation of domain walls through current can be achieved thanks to two
interesting phenomena: Spin Transfer Torque (STT) and Spin Orbit Torque (SOT).
Both these effects are characterized by a transfer of spin angular momentum from a
current to the magnetization of the sample.

Spin transfer torque

The spin transfer torque is a process in which a spin-polarized current flows through
a ferromagnetic material. The oriented spins of the current acts on the magnetiza-
tion and their angular momentum is transferred to the magnetic moments forcing a
reorientation. STT requires a spin polarized current which is usually generated by
a current that flows perpendicularly to a FM/NM/FM system in which the first FM
layer is pinned and acts as a polarized.

In order to take account of this effect is the LLG modelisation for a uniform mag-
netization, an additional term TSTT must be included in the formulation [17].

dM
dt

= −γ0M × Heff +
α

Ms
M × dM

dt
+ TSTT (1.21)

Since only the perpendicular projections of the magnetization of the pinned layer
onto the magnetization of the second layer give rise to a torque, the term TSTT can
be written as the summation of two orthogonal components : a damping-like torque
(TDL) and a field-like torque (TFL), adapted from the formulation in [18]

dM
dt

= −γ0M × Heff + α
M
Ms

× dM
dt

+
τDL

Ms
M × (M × ŝ) + τFL(M × ŝ) (1.22)

Where ŝ is the unit vector that represents the direction of the spin polarization
of the current and τDL and τFL are two scaling factors associated to the depicted
torques, they depend on the spin current, polarization efficiency, and the magnetic
properties of the material considered.

In order to describe STT in a more complex system where the magnetization is
non-uniform and domain walls are present, the term TSTT is expressed differently
taking account of two contributions: adiabatic and non-adiabatic [17].

TSTTDW = Tad + Tnon−ad = −(u · ∇)M +
β

Ms
M × ((u · ∇)M) (1.23)

where the spin current density u = gµBS
2eMs

J, with S =
n↑−n↓
n↑+n↓

as the spin polariza-
tion of the current and J as the electrical current density (opposite to electron flow)
and β is a dimensionless coefficient representing the strength of Tnon−ad.
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The adiabatic torque occurs when conduction electron spins perfectly follow the
local magnetic moments within the domain wall, aligning the moments with the
electron spins. The non-adiabatic term, similar to a dissipative torque, is attributed
to spin-relaxation effects within the DW and is introduced to explain the observed
DW velocities, which were much lower than predicted by the adiabatic term alone.
Additionally it exists a critical depinning current density uc that must be reached to
initiate DW movement [19, 20, 21, 22, 23] (as cited in [3]).

Spin orbit torque

Spin orbit torque (SOT) phenomenon describes the torque generated on the magne-
tization of a sample by a current flowing across the sample. Such behaviour arises
from the interplay of the interaction between the lattice and the electron orbital, the
orbital and the spin, and the spin and the magnetization. Two main effects have
been proposed to explain the generation of SOT: the spin Hall effect (SHE) and the
Rashba-Edelstein effect (REE).

SHE is originated in the bulk of an heavy metal. When a charge current J flows
through the heavy metal layer, the spin-orbit coupling causes a deflection of conduc-
tion electrons based on their spin, with electrons of opposite spins being deflected
in opposite directions. The result is a pure spin current JS that flows perpendicular
to the charge current. This spin current is propagating moving from the bulk of the
HM towards the HM/FM interface. The transfer of spin angular momentum to the
local magnetic moments near the interface exerts a torque on the magnetization.

On the contrary, REE occurs mostly in systems with structural inversion asym-
metry such interfaces and thin films. Under this effect, conduction electrons expe-
rience a Rashba field, BR, perpendicular to their motion, aligning their spins with it
and generating a non-equilibrium spin density. This spin density exerts a torque on
the magnetization through the s-d exchange interaction.

SOT model For both cases (SHE and REE), the generated SOT can be decomposed
into two main contributions: the damping-like SOT and the field-like SOT, respec-
tively TDL and TFL. More precisely, these torque perpendicular to the magnetization
can be expressed in terms of their effective magnetic fields HDL and HFL such that :

TSOT = −γ0(M × HDL)− γ0(M × HFL) (1.24)

In general, both SHE and REE can provide damping-like and field-like contribu-
tion to the total applied torque. However, depending on the considered magnetic
system, there will be a major contribution between them. In the case treated in this
work, a multilayer composed by a heavy metal, a ferromagnet and a non-magnetic
material is considered. Considering the specific materials involved, the SHE is ex-
pected to provide a stronger contribution to the DL-SOT while the Rashba effect is
expected to provide a stronger contribution to the FL-SOT.

Therefore the main contribution for the SHE can be expressed in term of the
effective damping-like field HDL as ([24] mentioned in [3]) :

HDL = H0
DL((ẑ × ĵ)× M) (1.25)
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where ẑ in perpendicular to the HM/FM interface and ĵ is the unit vector in the di-
rection of the current density J, such that J = J ĵ, and H0

DL ∝ θSH J where θSH is the
spin Hall angle (SHA) [25]. The SHA, defined as the ratio of spin current to charge
current, indicates charge-to-spin conversion efficiency in heavy metals (θSH > 0 for
Pt, θSH < 0 for Ta and W). The direction of the DL-SOT is influenced by the sign of
θSH and the magnetization orientation, which affects domain wall motion in relation
to the current direction [3].

For the REE the main contribution to the torque acts like a magnetic field and
can be expressed as:

HFL = H0
FL(ẑ × ĵ) (1.26)

with H0
FL ∝ αR J and αR being the Rashba coefficient. Such field acts perpendicular

to the current direction and with an amplitude proportional to the current density
[3].

SOT and skyrmions : Skyrmion Hall effect

Considering a skyrmion system where SOT is applied through current, this leads to a
specific phenomenon known as the Skyrmion Hall effect, which causes the skyrmion
to deviate laterally from the current flow direction. The system can still be mod-
eled by the LLG equation, incorporating the additional TSOT term in the context of a
skyrmionic magnetic texture. However, by treating the skyrmion as a rigid config-
uration (no deformation), the LLG equation can be simplified. The trajectory of the
skyrmion center of mass and its velocity v can be described by the Thiele equation
[26], which is derived from the LLG equation. The Thiele equation is expressed as:

G × v − αD · v + F = 0 (1.27)

The term G× v represents the gyrotropic force (Magnus force), which arises from
the topology of the skyrmion. The second term defines the dissipative force, with
D the dissipation matrix, and α the Gilbert damping parameter. The last term F is
related to the driving force.

The Skyrmion Hall effect can be characterized by the skyrmion Hall angle θskHA =
̸ (F, v). Since the skyrmion is treated as rigid, the steady-state velocity v results from
the equilibrium of various forces acting on it. It is also possible to derive the expres-
sions for the longitudinal vx and transverse vy skyrmion velocity (adapted from [3]):

vx =
αDFx − GFy

G2 + α2D2

vy =
GFx + αDFy

G2 + α2D2

The direction of motion is determined by the sign of Fx and Fy and it depends on
the skyrmion chirality.

Recently, HM/FM-based systems have been studied for current driven skyrmion
motion. In particular, it was observed that the skyrmion velocity increases monoton-
ically with the injected current density. It was also observed that it exists a critical
depinning current density below which no motion was observed which depends on
the skyrmion size with 1010 A/m2 for micrometer-sized skyrmions and 1011 A/m2

for skyrmions with diameter around 100 nm [3].
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Chapter 2

Neuromorphic Computing

In this chapter, the principles of neuromorphic computing are presented. Artificial
neural networks are discussed, with a focus on recurrent neural networks. Reser-
voir computing is introduced as a potential alternative, and its key properties are
outlined. Training methods and strategies are also addressed 1.

2.1 Principles

Neuromorphic computing working principle is based on the human brain perfor-
mance. The human brain is excellent at solving pattern recognition problems, such
as identifying the same person in different images despite variations in context. The
ability of the brain to create consistent representations of these varied inputs is re-
markable and occurs without explicit instruction. Beyond visual patterns, the brain
can also recognize temporal patterns, crucial for speech recognition tasks, where
the sequence of sounds is essential for understanding words. Supervised learning is
key in this context; once a word is learnt, the brain can recognize it in new situations.
Overall, the human brain is highly efficient in terms of speed and energy consump-
tion at learning and recognizing patterns, outperforming algorithms, particularly in
complex and variable scenarios.

2.2 Artificial Neural Networks

The initial attemps of neuromorphic computing were purely algorithmic. These al-
gorithms are part of the larger "machine learning" field and they allow to learn, from
an input data structure, an implicit rule in order to solve a specific problem. These
methods can be distinguished into two main classes: unsupervised learning and su-
pervised learning. The first one is used to solve clustering problems in which the ob-
jective is to find similarities in the input structure. The second one is instead divided
into two phases: learning and inference, during the learning phases some examples
are presented to the algorithm with the correct labels, then the tunable parameters
of the algorithm are fixed and during the inference, new examples without the label
are presented. Supervised learning includes notably support vector machine, kernel
methods, and artificial neural networks [27].

The method consists of reproducing the response of a network of non-linear units
(neurons) interconnected together (Fig. 2.1) with tunable connections (synapses).
The neuron receives the summation of the inputs and applies to it a non-linear func-
tion called activation function such as arctan, sigmoid or rectified linear units (ReLu)
(Fig. 2.2). These nodes process signals and pass them along to other nodes, forming

1This section is based on the work of [27]
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FIGURE 2.1: Schematic of a formal neuron: each input xi is weighted
by a connection strength wi at the synapse. The neuron then sums
these weighted inputs and applies a non-linear activation function to

the resulting sum.

FIGURE 2.2: Common activation functions : a. Arctangent b. Sig-
moid c. Rectified Linear Unit (ReLU).

a complex network that learns from feedback loops. The nodes are organized into
layers, in fact a network with more layers is considered deeper. In artificial neural
networks, the algorithm learns to solve a problem by adjusting connection weights
during the training phase. Once training is complete, the weights are fixed, and the
input undergoes a series of learnt non-linear transformations during the inference
phase. Artificial neural networks can be categorized into two types: Feed-Forward
Networks and Recurrent Networks. In this work only Recurrent Neural Networks
will be considered.

2.2.1 Recurrent Neural Networks

The most suitable architectures for processing sequential data, such as sentences
with multiple words or trajectories of objects in time, are recurrent neural networks
(RNNs).

A recurrent neural network structure is characterized by connections between
different neurons that form inner loops (Fig. 2.3) where information is circulating
and thus stored. These loops give RNNs a form of memory, making them well-suited
for handling information where the order of elements is crucial such as in speech
recognition. However, training RNNs is generally challenging, and the training al-
gorithm may fail to converge [28, 29]. The training process is typically performed
through back-propagation algorithms and it is highly demanding in terms of com-
putational power and time.
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FIGURE 2.3: Diagram of a general recurrent neural network (RNN)

Reservoir computing offers an alternative and simpler approach with a partic-
ular type of recurrent network that does not require training the recurrent connec-
tions.

2.2.2 Reservoir Computing

Reservoir computing was introduced by Maass [30], Jaeger [31, 32] and Steil [33].
The idea behind this concept is to exploit the non-linear dynamics of recurrent neural
networks for machine learning tasks. Reservoir computing can be implemented on
different hardware platforms, as it requires a system that is showing a non-linear
dynamical response, which can be obtained from different materials and devices.
In particular, a reservoir computing system can be divided into three different parts:
input layer, recurrent network (reservoir), output layer (Fig. 2.4).

FIGURE 2.4: Reservoir computing schematic: the network consists
of three components. The input (a) is linked to a fixed, recurrent
network known as the reservoir (b), where all internal connections
Wres are also fixed. The reservoir is then connected to the output (c)
through trainable connections Wout. The output enables the classifi-

cation of the input (d).

The first set of connections between the input layer and the reservoir and all
the connection inside the reservoir are completely fixed, while only the connections
between the reservoir and the output layer can be tuned according to the the specific
task to be solved. Thanks to this particular characteristics, the training does not affect
the properties and the dynamics of the reservoir itself. The dimension of the input
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and of the output data depends on the particular classification task that has to be
solved. By calling x(k) the vector of the neuron responses of the reservoir xi(k) at
time k :

x(k) =


x1(k)
x2(k)

...
xn(k)

 (2.1)

then the evolution of the reservoir network can be described as :

x(k) = fnl (Winu(k) + Wresx(k − 1)) (2.2)

where Win is the matrix containing the connection weights between the input u(k)
and the reservoir, and Wres is the matrix containing the connection weights within
the reservoir. The function fnl represents the non-linear transformation performed
by the neurons in the reservoir. It is important to note that the parameters Win, Wres,
and fnl are fixed, furthermore, since the response x(k) depends on the particular
sequence in input, it depends also on the previous input values denoted by x(k − 1)
[27]. The output y(k) is obtained by combining the neuron outputs xi(k) through a
linear combination:

y(k) = Woutx(k) + Wbias (2.3)

Here, Wout is the matrix of the connection weights between the reservoir and the
output, and Wbias is a bias vector with constant values.

By defining s and W as:

s(k) =
(

1
x(k)

)
W =

(
Wbias Wout

)
The equation for the output can be simplified :

y(k) = Ws(k) (2.4)

The computation is effective if a linear regression on the reservoir responses can
accurately approximate the desired output. The role of the reservoir is not to solve
the problem directly, but rather to transform the initial problem into one that can be
solved linearly.

Properties

The general goal of a reservoir is to map the initial problem into an higher dimen-
sional space (Fig. 2.5) in which the problem is expected to become linearly separable
[34]. In this way, the problem can be solved by a linear combination of the last con-
nection layer between the reservoir and the output, which is the only layer that can
be tuned. In order to achieve this result, the reservoir system must satisfy three dif-
ferent properties : separability, approximation and fading memory [36, 37].

The separation property is the ability of a reservoir to produce different responses
for different inputs, which is essential to obtain a linearly separable problem and it
can be achieved through a high number of interconnected neurons in the reservoir.
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FIGURE 2.5: Schematic of the reservoir computing operational prin-
ciple: a. Unstructured data from the input space are non-linearly
transformed by the transient dynamics of the reservoir into a higher-
dimensional state space. Inputs with similar correlations (represented
by similar colors) lead to similar reservoir dynamics. b. A single lin-
ear regression step is then applied to define hyper-planes in the state
space of the reservoir, allowing different input categories to be sepa-
rated. The role of the reservoir is to project complex spatio-temporal
patterns into a sparsely populated high-dimensional space, making

them easier to recognize and classify (c). [35]

The higher-dimensional state of the reservoir corresponds to the responses of all neu-
rons, where each neuron response is acting as a coordinate in this state. To achieve
a higher dimensional mapping, two key requirements are necessary: having more
neurons than the input dimensions and ensuring non-linear neuron behaviour to
produce independent responses. This approach is similar to other machine learning
techniques, but what distinguishes reservoir computing is the interconnected non-
linear nodes that enables successive transformations of the input.

The approximation property ensures that similar inputs produce similar responses.
Thus, the reservoir must be resilient to noise, otherwise even a slight input variation
could lead to significantly different responses and incorrect classification. However
the approximation property set a limitation to the separation property since too sim-
ilar inputs will not be separated, therefore a trade-off between these two properties
is necessary.

Fading memory refers to a short term memory of recent events. This memory
is generated by internal loops within the reservoir that can store information [38].
Such property is essential for processing sequence of data that requires memory and
it also depends on how far back the reservoir needs to remember in order to classify
inputs accurately.

Training

Reservoir computing is a supervised learning algorithm with two main phases: train-
ing (or learning), where the neural network learns to solve a task, and testing (or
inference), where it applies what it learnt to new problems. The system includes
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internal parameters that are adjusted during the training phase, in the case of reser-
voir computing specifically the output connection weights Wout

res and the bias weights
Wbias are tuned.

The learning process relies on finding a set of parameters that minimize the error
between the actual output of the neural network and the correct output. Commonly
the error considered is the L2 norm of the difference between the predicted and
desired outputs. This error is then normalized by the number of examples : root
mean square error (RMS).

By considering the correct output Ỹ and the actual output Y:

RMS =
1

Ntrain
∥Y − Ỹ∥2 =

1
Ntrain

√
∑

k∈training
(y(k)− ỹ(k))2 (2.5)

Considering S = (s(k)) as the reservoir state, the optimized W can be retrieved by:

W = ỸS† (2.6)

where † denotes the Moore-Penrose pseudo inverse [39].
Once the optimal weights are determined, the learnt parameters are evaluated

on a test set. If the error is low on the training examples but high on the test set, it
indicates that the neural network is overfitting to the training data.

Overfitting is a common issue in machine learning where a model performs well
on training data but poorly on test data due to poor generalization and it will be
translated to very large values of weights.

To mitigate overfitting, Tikhonov regularization (or ridge regression) is employed
[40]. By adding a penalty term λ∥W∥2 to the error function (with λ a small positive
factor)

∥Y − Ỹ∥2 + λ∥W∥2

large weight values are discouraged, promoting simpler models and better general-
ization. Tikhonov regularization ensures a unique optimal set of weights and helps
in achieving convergence during training [27].
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Chapter 3

Experimental techniques

In this chapter, all the experimental techniques used are described. In particular the
first section refers to all techniques employed to fabricate the material stack and the
device layout. The second section is dedicated to the techniques employed in the
measurement setup.

3.1 Sample fabrication and characterization

Different combinations of heavy metals (HM), ferromagnets (FM) and metal oxides
have been optimized in order to stabilize skyrmions at room temperature (RT) as
in the work of Boulle et al.[41] using Pt/Co/MgO nanostructures. This stack ac-
complishes the required characteristics needed to stabilize skyrmions and complex
domain walls: perpendicular magnetic anisotropy (PMA), Dzyaloshinskii-Moriya
interaction (DMI) and a strong spin-orbit torque (SOT).

Among other material stacks, the Ta/FeCoB/TaOx/AlOx configuration has been
extensively studied at Spintec [42]. One key advantage of this stack is the presence
of meander domain walls and the ability to nucleate skyrmions at room temper-
ature using a small out-of-plane (OOP) magnetic field. Due to their micrometer
size, these magnetic skyrmions and domain walls can be directly observed using
magneto-optical Kerr effect (MOKE) microscopy. This stack offers several benefits
for non-conventional computing applications (such as reservoir computing): it pro-
vides large PMA and DMI for skyrmion and domain wall stabilization as well as a
significant SOT. This frame enables low energy current induced non-linear dynam-
ics, pointing this system as an ideal player for reservoir computing.

In this study, we investigate a Ta/FeCoB/TaOx/AlOx film, which was deposited
using magnetron sputtering and then, patterned into devices with track configura-
tion through lithography (Fig. 3.1).

3.1.1 Magnetron sputtering deposition

Magnetron sputtering deposition is a physical vapor deposition method used to coat
substrates with thin films of material. The process involves a target material and a
substrate placed in a chamber at room temperature under vacuum (from 10-6 to 10-9

mbar) to achieve a good quality of the deposition. A plasma is generated from an
inert gas (Ar), and a DC electric field is applied between the target material and
the substrate to sustain the plasma. The argon ions are then accelerated toward the
target, causing atoms from the target to be ejected and deposited on the substrate,
forming a thin film.
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FIGURE 3.1: Layout and composition of the device studied: a. Par-
allel tracks for domain wall motion through SOT. b. Material stack

with wedge deposition of the FeCoB layer.

In magnetron sputtering, a magnetic field is placed close to the target surface in or-
der to enhance the number of ionizing collisions, in this way the efficiency and the
uniformity of the sputtering process are increased.
There are two main configurations for the deposition: on-axis deposition and off-axis
deposition. In the first configuration the substrate is placed under the target and set
in rotation, achieving a spatially homogeneous deposition all over the sample. In the
second configuration, the substrate is laterally displaced with respect to the target
(Fig. 3.2) and the rotation is stopped, in this way the deposition will depend on the
angle of incidence and the deposition rate will depend on the relative position to the
target. In particular, when the substrate is closer to the center of the plasma, where
the density of sputtered atoms is highest, the deposition rate is greater, resulting in
a thicker film. On the other hand, as the substrate moves toward the edges of the
plasma or farther from the target, the deposition rate decreases, leading to a thinner
film.
In this work we are interested in the off-axis deposition because the magnetic proper-
ties analyzed strongly depends on the material thickness (in this case on the FeCoB
thickness). This technique allows materials to be deposited as wedges, creating a
thickness gradient along one direction of the substrate. As a result, a wide range of
thicknesses in a given stack can be characterized on a single wafer.

FIGURE 3.2: Magnetron sputtering: two possible configurations are
available. In the off-axis configuration material can be deposited as
a wedge with a thickness variation of up to a factor of 2 across a 100

mm wafer.
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3.1.2 Stack analysis (NanoMOKE)

The Nano Magneto-Optical Kerr Effect (NanoMOKE) system measures magnetic
properties by detecting changes in the polarization of light upon reflection from a
magnetized surface. A polarized laser beam is reflected from the sample, and the
resulting polarization rotation is analyzed to determine the local magnetization. By
applying an external magnetic field and measuring the Kerr rotation at different
field strengths, magnetic hysteresis loops are generated, revealing key properties
like coercivity, magnetic anisotropy, and saturation magnetization. NanoMOKE is
especially suited for high resolution studies of thin films due to its nanoscale mea-
surement precision.

Before patterning the sample, prior characterization is required to ensure the de-
sired magnetic properties. In particular, to reduce the energy required to nucleate
skyrmions in structures with weak DMI, we need to operate near the spin reorien-
tation region. In this region, the magnetic anisotropy changes, rotating the magne-
tization of the sample from in-plane to out-of-plane. Therefore, since the wafer is
characterized by a thickness gradient in the FeCoB layer along one direction, it is
possible to perform Magneto-Optical Kerr measurements in the NanoMOKE to re-
trieve magnetic hysteresis loops at different positions along the wedge, as shown in
Fig. 3.3.

FIGURE 3.3: Magnetic hysteresis loops based on FeCoB layer thick-
ness: For lower thicknesses, the hysteresis loop exhibits a square
shape due to a sudden change in magnetization, as surface magnetic
anisotropy drives the magnetization completely out-of-plane. As the
FeCoB layer thickness increases, the magnetization is gradually con-
fined to the in-plane direction, causing the hysteresis loop to change

from an intermediate "butterfly" shape to a more linear shape.

3.1.3 Device fabrication

The sample considered in this study was fabricated through a precise series of nanofab-
rication processes (Fig. 3.4). After the sputtering deposition of the Ta/FeCoB/TaOx/AlOx
stack on the Si/SiO2 wafer, there is an annealing step to change the oxidation rate
at the interface of the ferromagnetic layer. Then a spin coating with positive resist
is performed in order to achieve the right photoresist thickness followed by a soft
baking step to let the solvent evaporate.

Subsequently the wafer is exposed to laser lithography, a precision patterning
technique where a laser is used to selectively expose a photosensitive material. The
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laser beam projects the detailed pattern in the area that has to be exposed [1]. After
the development of the resist, the pattern is imprinted and the non-desired areas are
removed.

Once the effective layout that has to be obtained is completely covered by the
thick resist, an etching step is performed. In this specific case, the physical etching
considered is an Ar-ion-beam etching in which a focused beam of accelerated ions
is exploited to sputter material from the substrate surface. Ions are generated, ac-
celerated, and directed towards the material, causing atoms to be ejected away from
the surface in a controlled manner. The control of the different etched materials is
performed by an atomic mass spectrometer inside the chamber. A final conductivity
test at different wafer locations is performed to verify that the etch step has reached
the silicon layer in the unprotected area.

FIGURE 3.4: Nanofabrication process: a. Multilayer magnetron sput-
tering deposition with FeCoB wedge. b. Resist spin coating for uni-
form deposition. c. Resist bake for solvent evaporation. d. Laser
lithography to create the protective mask with a thick resist layer. e.
Undeveloped resist removal. f. Ion beam etching exploiting the thick

resist layer as an hard mask. g. Final pattern.

3.2 Measurement setup

This section is devoted to all the measurement techniques employed for the analysis
and characterization of the magnetic properties of the device under consideration.

3.2.1 Magneto-optic Kerr effect

The Magneto-optical Kerr effect (MOKE) is an optical phenomenon observed when
polarized light reflects off a magnetized material. In particular, the polarization state
of the light will change due to the interaction between the electric field of the incident
light and the magnetization of the material. In the absence of magnetization, the

1The design of the layout and the fabrication of the device were performed by Rodrigo Guedas
Garcia.
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dielectric tensor of a material is typically diagonal and isotropic, meaning that it
has the same value in all directions. However, when a material is magnetized, the
dielectric tensor becomes anisotropic, and the dielectric tensor can be represented as
a 3x3 matrix with off-diagonal elements:

ϵ =

ϵxx ϵxy ϵxz
ϵyx ϵyy ϵyz
ϵzx ϵzy ϵzz


Since the off-diagonal elements are non-zero, a coupling between different compo-
nents of the electric field of the incident light is introduced. Upon reflection, these
anisotropic changes in the dielectric properties cause a rotation of the plane of polar-
ization (Kerr rotation) that can be described by the Kerr angle θK, and can also induce
ellipticity in the reflected light (Kerr ellipticity). These changes depend on the rela-
tive orientation between the magnetization direction and the plane of incidence of
the light. The combined effect of rotation and ellipticity alters the polarization state
of the reflected light in a way that can be detected and quantified in order to retrieve
the magnetization state of the studied sample.

There are three main configurations based on the orientation of the magnetiza-
tion relative to the surface and the incident light (Fig. 3.5). The polar configuration
occurs when the magnetization is perpendicular to the surface, making it sensitive
to out-of-plane magnetization, and is often used for studying thin films or surface
magnetism. The longitudinal configuration involves magnetization within the sur-
face plane and parallel to the plane of incidence, and is used for analyzing in-plane
magnetization dynamics and domain structures. Finally, the transverse configura-
tion has magnetization within the surface plane but perpendicular to the plane of
incidence, leading to changes in the intensity of the reflected light without altering
the polarization plane (no Kerr rotation).

FIGURE 3.5: Magneto-optical Kerr effect configurations: In polar
configuration, the magnetization is perpendicular to the sample sur-
face and parallel to the plane of incidence. In longitudinal configura-
tion, the magnetization is parallel to both the sample surface and the
plane of incidence. In transverse configuration the magnetization is
parallel to the sample surface but perpendicular to the plane of inci-

dence.

For the study of the sample analyzed in this work, only the polar configuration
will be considered since the device shows an out-of-plane magnetization.
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3.2.2 Experimental setup

The experimental setup exploited in this work consists mainly of a MOKE micro-
scope, a printed circuit board to hold the sample and all the electrical instrumen-
tation to generate, apply and register arbitrary electrical current signals across the
device.

The main components of the microscope are a laser source, a polarizer to linearly
polarize the incident light, a set of objective lenses to focus the light on the sample,
an analyzer which is crossed with the polarizer to detect Kerr rotation and a CCD
camera. An electromagnet is positioned below to apply a controlled out-of-plane
magnetic field. The CCD camera is automatically controlled by a program to sub-
tract the saturated magnetic image, enhancing the contrast.

The full wafer is cut into a small piece to isolate some devices and connect them
on a dedicated PCB (Fig. 3.6). In particular the wafer die is attached to the surface
of the PCB with silver glue and, through an ultrasonic microwire bonding machine,
a selected track is connected to the electronic setup thanks to two PCB plugs.
Current is then supplied with an arbitrary waveform generator which contains basic
wave forms or eventually custom signals that can be uploaded with an USB key.
The output plug is connected to an oscilloscope in order to measure the voltage
drop on the device and retrieve the current density and the width of the injected
signal. When the current is flowing through the device, the CCD camera of the
MOKE microscope records the response and the motion of the magnetization along
the track. The recorded videos will be analyzed through a Matlab routine that was
improved and made more precise in detection as part of my internship work.

FIGURE 3.6: Experimental Setup: a. Input cable connected to an
arbitrary waveform generator. b. Output cable for oscilloscope signal
detection. c. PCB holder for the device. d. Magnetic coil for out-of-
plane applied magnetic field control. e. MOKE lens system connected

to a CDD camera.
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3.2.3 Video processing analysis

To observe the current-driven motion of the magnetic texture, a sinusoidal current
signal is delivered through the track and videos of the response are recorded. Then
the videos are analyzed by an algorithm previously implemented in Matlab and
improved as part of my work at Spintec (Fig. 3.7).

The code exploits the MATLAB Image Processing Toolbox to read and analyze
recorded videos from MOKE experiments conducted under various current regimes.
The aim of this analysis is to extract key information about the magnetic system for
applications in our neuromorphic based approach.

Since the video is recorded from a real experiment, there are noise issues, par-
ticularly within the domain wall structures, where contrast fluctuations occur that
should not be interpreted as motion but rather as noise. To address this, a Gaussian
filter is applied to remove background noise caused by the CCD camera. This stabi-
lizes the image, ensuring that white pixels no longer appear within the black domain
walls in each frame.

To simplify motion detection, the approach is to work with a binary image. A
threshold value is set to binarize the image, and then the code stores the frame at
time t and compares it with the frame at t + τ .

FIGURE 3.7: Detection algorithm: The figure illustrates all steps in-
volved in image processing. Blue and green colors enhance clarity,
representing values ranging from 0 to 1, while the yellow color re-
sults from the application of a Gaussian filter, which smooths the col-
ors together. a. Original image is read. b. Gaussian filter is applied
for noise reduction. c. Binarization of the image. d. Edge smoothing
with a kernel. e. Difference of successive frames. f. Matrix storing

and mean value computing.
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The comparison between frames can yield various data and information. One
method to quantify the movement of the magnetic texture is by calculating the direct
difference between the two frames. This difference is stored in a matrix, and by
averaging the values across the rows and columns, a single representative value for
each time frame is obtained. The output associated to this method can be linked to
the average velocity of the domains and will be referred to as the "average domain
displacement", denoted as |dXDW |, such that:

|dXDW | = ⟨⟨ f rame(t + τ)− f rame(t)⟩⟩ (3.1)

This value describes the average domain wall displacement in time.

Another possibility for the detection is to register the contrast in time, in this case
each frame is stored in a matrix and a mean value is computed for each time frame
t.

|Ccontrast| = ⟨⟨ f rame(t)⟩⟩ (3.2)

This second output can instead be associated with the change in contrast over
time, which is linked to the change in magnetization of the selected area.

The results presented in the next chapter are based on measurements of the av-
erage domain displacement |dXDW |, as these measurements provide better results
with less noise issues.
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Chapter 4

Results

In this chapter are presented some of the results obtained during my work at Spintec.
Firstly the nucleation of meander domain walls and skyrmions at room temperature
with an applied magnetic field is shown. Afterwards, domain wall dynamics is pre-
sented for different current regimes. The following section is dedicated to the study
of the properties of the system required for reservoir computing : non-linearity and
short-term memory. Finally some simple classification tasks (such as sine/square)
are tested exploiting the magnetic system as a physical reservoir.

4.1 Domain wall nucleation

An ultrathin film of Ta/FeCoB/TaOx/AlOx is considered, deposited via magnetron
sputtering onto a Si/SiO2 substrate. After the deposition of 3 nm of Ta on the sub-
strate to achieve high spin-orbit torque, the FeCoB wedge is deposited, whose thick-
ness varies from 0.9 nm to 1.3 nm. On top, 0.73 nm of TaOx are deposited and
finally, as a capping layer to protect the surface, 1 nm of AlOx is added. This multi-
layer stack was engineered to include the critical components required for stabilizing
magnetic skyrmions/domain walls, specifically perpendicular magnetic anisotropy
(PMA) and interfacial Dzyaloshinskii-Moriya interaction (DMI).

MOKE analysis

Since the sample considered shows different properties depending on the thickness
of the ferromagnetic layer, the first part of my study is focused on the observation
of different hysteresis loops along the direction where the gradient of thickness is
present (Fig. 4.1). In fact, in ferromagnetic materials, the hysteresis loop character-
izes the relationship between the applied magnetic field H and the resulting magne-
tization M, and the shape of the loop reflects distinct magnetic behaviours.

In particular, for low ferromagnetic thickness, the surface anisotropy term prevales,
resulting in a square hysteresis loop. A square hysteresis loop indicates materi-
als with sharp transitions between magnetization states, where the magnetization
quickly flips direction as the applied field reaches a critical value. From the view-
point of the image seen by the MOKE, an abrupt change in contrast can be seen when
the magnetic field exceeds one of two specific thresholds. Square loops are common
in memory devices like MRAM, where the magnetic states must be very stable.

On the other hand, for higher ferromagnetic layer thickness, the hysteresis loop
is more linear, this means that the change in the magnetization lies on the surface
plane (in-plane magnetization) and the orientation changes gradually.
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FIGURE 4.1: NanoMOKE analysis of magnetic hysteresis loops as
a function of the FeCoB film thickness: The graph displays hys-
teresis loops at various spatial positions along the wedged sample,
presented with an offset for clarity. The thickness of the ferromag-
netic layer affects the anisotropic magnetization properties. As the
layer thickness increases, the hysteresis behaviour transitions from a
square loop at lower thicknesses to a more linear loop at higher thick-

nesses.

This can be easily checked on the MOKE image, since there is a gradual change
in contrast while sweeping the magnetic field, resulting in no clearly identifiable
magnetic texture.

The target in order to stabilize meander domain walls is a region where the
hysteresis loop presents intermediate features, this loop is also known as "butter-
fly loop". This loop displays a more complex shape resembling a butterfly, with
distinct regions indicating different behaviours. Butterfly hysteresis loops often in-
volve complex magnetic domain interactions, creating an environment where mag-
netic structures like meander domain walls or skyrmions can emerge.

In particular, at zero applied out-of-plane magnetic field, it is possible to obtain
meander domain walls (also known as stripe domains), as this configuration min-
imizes the demagnetizing energy. The density of stripe domains can be controlled
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by varying the thickness of the FeCoB layer (by moving along the wedge); the closer
to the in-plane transition, the denser the texture becomes. To regulate the stripe, the
application of a small magnetic field perpendicular to the sample surface is required
(around 1 mT). This favors stripes with magnetization parallel to the external field,
increasing their size.

Furthermore, by applying a small out-of-plane magnetic field (2.27 mT) larger
than the one for stripe domains, thanks to the Zeeman interaction we can favor the
alignment of domain walls toward +z or -z, thus the stripe domains will shrink even-
tually forming isolated skyrmions (Fig. 4.2). In this case, it is important to select a
region with a high density of meander domain walls. This ensures that, as the tex-
ture shrinks due to the external field, some features in the middle of the device may
remain isolated from the track edges and, during the shrinking process, can form
isolated bubbles or skyrmions.

FIGURE 4.2: MOKE image of different magnetic textures: At ferro-
magnetic thicknesses around 1.1–1.2 nm, complex textures are visible.
a. Meander domain walls appear without an applied magnetic field.
b. Skyrmion nucleation is achieved with an applied OOP magnetic

field of 2.27 mT

Once the proper region for skyrmion/stripe domains has been identified, by
modifying the magnetic field it is possible to navigate different spin texture config-
urations in order to find the best trade-off to achieve a good quality in the detection
process. From the perspective of the magnetic texture, fundamental parameters in-
clude the out-of-plane magnetic field and the thickness of the ferromagnetic layer,
with the goal of achieving complex domain walls with sharp edges. From the point
of view of the MOKE camera system, the key parameters are focus, frames per sec-
ond (fps), and exposure time, with the trade-off aimed at maximizing resolution
without significantly reducing the fps.

When the current is applied along the track, current induced dynamics will be
generated due to SOTs. The behaviour of the magnetic system under this current
stimulus is recorded in a video by the CCD camera of the MOKE microscope. To
detect and measure the motion, a Matlab algorithm is used.
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4.2 Current induced dynamics

4.2.1 Current regime optimization

Along with the optimisation of the detection code, during my work I also focused
on optimising the current (pulse amplitude, pulse width) and magnetic field param-
eters (saturation field, working point). In particular the correct value of magnetic
field is important to obtain a meander domain wall structure with sharp edges, in
this way the detection is more precise when the structure is in motion. Also the pa-
rameters for the current density have to be optimized, too low current density will
lead to a small displacement and a poor detection, while a too high current density
leads the entire magnetic structure to severe deformation (Fig. 4.3).

Deformation presents a considerable challenge because, under these current regimes,
the magnetic structure undergoes significant elongation in the direction of motion
(the current direction), complicating detection. Since displacement primarily oc-
curs along this direction, an elongated structure (Fig. 4.3) results in a reduced aver-
age displacement being detected due to the presence of parallel magnetic textures,
whose motion cannot be fully captured by the algorithm.

FIGURE 4.3: Strong deformation issue:
a. Relaxed meander magnetic texture.

b. Strong elongation after the application of a voltage of 1V for 40s.

Therefore, a compromise must be made to ensure that there is sufficient motion
for detection while avoiding excessive elongation of the meander structure. The
current regime examined in this work is approximately 1011 A/m2.

4.2.2 Simple response test

A preliminary set of tests is conducted to understand how the system behaves and
deforms under various waveforms. Initially, a DC current is applied to the sam-
ple at different voltage levels to check the detection and the evolution over time of
the magnetic texture (Fig. 4.4). Key parameters observed include the existence of a
threshold voltage (around 500 mV) required to generate sufficient spin-orbit torque
to trigger DW depinning, as well as a general reduction in output detection at higher
voltages and longer duration, likely due to the elongation of the meander texture
along the track direction, as discussed in the previous paragraph.
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FIGURE 4.4: Domain wall velocity as a function of the applied DC
voltage: Velocities registered at different voltage values show non

linear behaviour.

Successive tests involve applying simple waveforms to determine whether the
system responds differently depending on the input pattern, examining the shape
of the response, and estimating whether differences can be visually distinguished
(Fig. 4.5). This initial step is important to understand how diverse patterns may
influence the system and to evaluate its potential suitability for reservoir computing.
For this purpose, square and sinusoidal waves with a period of T = 10s and at various
voltages are applied through the tracks. Once clear and distinct responses to simple
patterns are achieved, the system must undergo a more detailed analysis to identify
the necessary properties for neuromorphic applications.

FIGURE 4.5: System response to sine/square wave: The graph illus-
trates the average domain displacement |dX| as a function of frame
number in response to a signal composed of a single sine wave with
a period of T=10s followed by a square wave of the same period. The
signal voltage amplitude is ± 800mV. Distinct responses to the two
waveforms are observed: frames 40 to 140 represent the output in re-
sponse to the sine wave excitation, while frames 141 to 240 depict the

response to the square wave input.
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4.2.3 Non Linearity of the system

As previous discussed, one of the key aspect for a physical system to be exploited
for reservoir computing is the non linearity. In order to prove this concept for the
meander domain wall system, a systematic study as a function of the current density
is performed.

A sinusoidal current signal is applied along the device track, and the motion is
recorded and analyzed by computing the average domain wall displacement |dX|
with the technique presented in 3.1. Then the same process is repeated for differ-
ent amplitudes in order to map the behaviour of the system dynamic for different
current regimes. At the end all output signals are analyzed together and their am-
plitude is compared in different time positions (Fig. 4.6).

What we can observe is that the response amplitude as a function of the voltage
is non-linear, which is exactly the goal of this test. More in detail, there is a threshold
voltage below which no motion occurs, providing clear evidence of non-linearity.
At higher voltages, the behaviour becomes less abrupt. Therefore, for reservoir com-
puting applications, we will focus on the 600 mV to 800 mV range, where non-
linearity is observed. Furthermore, Fig.4.6 shows how for different time, the re-
sponse is different. This can be explained by the fact that after some time the current
flowing through the track is deforming the stripe domain structure, making them
more elongated toward the flow direction. In this way, the average domain wall dis-
placement in time is different since the texture is slightly different.

4.2.4 Memory properties

Another key property for a physical reservoir is short term memory. Once a system
is stimulated by the same input it should in principle respond in the same way. How-
ever, if the system has internal memory, the previous input signal history will affect
the output signal, in this way for the same input signal at a specific time position
t it is possible to obtain slightly different dynamic response. This characteristic is
fundamental to mimic the neuron behaviour in order to perform classification tasks.

The idea to test it is to apply a voltage input signal which is composed by a
sequence of sine waves. In the first measurement just sine waves are applied, in the
second one, a single square wave is applied before the train of sine waves [43]. The
two outputs are then analyzed and compared, as shown in Fig. 4.7(a).

First, it can be observed that the system responds differently to various wave-
forms: for a square wave, the system exhibits two sharp peaks, each followed by a re-
laxation response, whereas the response to a sine wave excitation displays smoother
behaviour.

After one cycle (at time t = 10 s) the system is stimulated by a sinusoidal current,
however it shows two different responses depending on the previous excitation, this
is what is called memory. The duration of the memory of the system can be quanti-
fied and its value is around 1.8 s for an excitation with a period of 10s.
The same process can be repeated by applying a train of square waves to the system
and changing the first wave with a sinusoidal one (see Fig. 4.7). In this case, we
observe that the amplitude of the response remains the same, but the two signals are
offset by 0.4.
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FIGURE 4.6: Sine wave response at different voltage and Response
Amplitude as a function of the applied voltage: a. Response sig-
nal to a sine wave excitation (shown in b) as a function of time, with
different colors representing responses to various input signal ampli-
tudes. b. Input signals applied with amplitudes ranging from ±600
mV to ±2 V, all having the same period (T=5s). c. Amplitude of the
response as a function of the input sine wave voltage amplitude, with

different colors of the dots indicating responses at various times.
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FIGURE 4.7: Short term memory properties of a meander domain
wall system: a. A sine wave of amplitude ±800 mV and period of
T=10s is applied to the system (in blue), and the average domain wall
displacement |dX| is measured (reported in blue). The same signal
is applied again, substituting the first part of one cycle with a square
wave of the same period (in red), and |dX| is computed. In the dashed
region (highlighted in green), despite the same applied signal, the
system produces two different outputs depending on its prior exci-
tation history. b. The same process is repeated using square wave

inputs.
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4.3 Towards Reservoir Computing

Since the system satisfies all the required properties, then it can be tested as a reser-
voir for simple recognition tasks.

The objective in this study is to differentiate sine or square. A random sequence
of 80 sine/square waves is applied to the system and the response is registered and
averaged over 20 different measurements. Then recorded videos are divided into
multiple regions, each of them representing a single neuron with its own response.
This subdivision has been done in different ways (Fig. 4.8), modifying the area con-
sidered and the number of neurons. A good trade-off between area size and the
number of neurons must be found, as regions that are too small result in a magnetic
texture that lacks sufficient complexity for reservoir computing, while regions that
are too large reduce the number of neurons in the reservoir.

FIGURE 4.8: Track subdivision into multiple neurons: a. Rectangu-
lar slices subdivision for spatial reservoir computing. b. Square area
subdivision within the track, showing different square lateral sizes

(from top to bottom: 17 µm, 8.5 µm, 4.25 µm, and 2.12 µm).

4.3.1 Classification tasks

In order to classify the different patterns, it is necessary to train the last layer of the
reservoir which is the only one that can be tailored. In particular, the input signal
u(tk) = (v(t1), v(t2), ..., v(tk)) is transformed in a non-linear way by the reservoir
and can be represented by the matrix M:

M =


M1(t1) M2(t1) · · · MN(t1)
M1(t2) M2(t2) · · · MN(t2)

...
...

. . .
...

M1(tK) M2(tK) · · · MN(tK)


Where the index i = 1:N represents the different neurons, that means different con-
sidered areas of the track, and j = 1:k represents the different time points. Then a first
part of the matrix is used to train the last layer of the neural network. In the example
shown, the 80% of the matrix is used to train and the remaining 20% is used for the



38 Chapter 4. Results

test. The training step is quite simple since just one layer is involved and it is a linear
regression:

y(tk) =
N

∑
i=1

Wi Mi(tk)

where y(tk) is the real classification vector containing 1 for square and 0 for sine. We
denote Mlearning as the 80% of M and D the 80% of the class vector y. Then to retrieve
the trained value Wi we perform the following steps:

S = (Mlearning)
†

which is the Moore-Penrose inverse, and

W = (S · D)′

Finally the last part of the custom input signal is used to test the accuracy of this
physical system in the recognition :

ytest = W · Mtest

Then, since ytest will be a vector containing values between 0 and 1, a binarization is
forced in order to obtain a 0/1 vector that can be compared with the real classifica-
tion to evaluate the accuracy.

For accuracy evaluation, different configurations are considered, varying the
number of neurons from 2 to 128, doubling at each step (Fig. 4.9). Additionally,
different area subdivisions are explored, such as uniform square regions across the
track or parallel rectangular segments. The graph below shows accuracy as a func-
tion of the number of neurons for the rectangular subdivision. Results for the square
subdivision are not included in this work due to the need for further improvements,
as it is more affected by noise. We observe that the accuracy oscillates between 60%
and 70%. This irregular trend arises because increasing the number of regions re-
duces the signal and information from each individual area, making each signal
more susceptible to noise.

FIGURE 4.9: Classification accuracy: Classification accuracy is re-
ported as a function of the number of neurons considered for a rect-

angular area subdivision.
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The accuracy achieved in this task is relatively low. In contrast, similar magnetic
texture systems, such as the skyrmionic one described in [43], have demonstrated
accuracies of up to 90% for the same classification task. Several factors may con-
tribute to this disparity. For instance, measurement noise degrades tracking preci-
sion, which lowers recognition accuracy. Moreover, the correlation plots from differ-
ent regions of the physical system exhibit an almost linear behaviour (see Fig. 4.10),
meaning that each neuron is too similar to all the others. This lack of differentiation
in their responses limits accurate classification and suggests that the system may not
possess the necessary complexity for reliable performance.

FIGURE 4.10: Correlation plots of different neurons : a.b.c. The
graph illustrates the average domain wall displacement |dX| for neu-
ron 1 as a function of |dX| for other neurons: N2 (a), N16 (b), and N32

(c), which are positioned at different locations along the track.
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4.4 Improvements and Outlooks

As previously discussed, this particular complex spin texture system can be ex-
ploited as a physical reservoir to perform simple classification task. However the
recognition accuracy must be enhanced to be reliable. To this task, I started to work
on some new solutions to obtain a much more complex system that shows different
responses depending on the spatial position of the neuron considered.

Several tests were conducted to investigate whether a different current density
across various regions of the track induce a non-linear correlation among the neu-
rons. Specifically, a non-patterned sample with the same material stack was used
to inject current. In the absence of tracks, a higher current density is observed near
the contact region, while a lower density is found farther away. The average do-
main wall displacements for each region are measured and compared. The general
observation is that the correlation becomes less linear compared to previous config-
urations.

Then to exploit this phenomenon, the first idea is to change the layout of the de-
vice in order to achieve a different current density distribution along the track (Fig.
4.11). In this way, different positions will be subjected to different current densities
for the same applied signal. Since each region can be associated with a neuron, this
configuration results in a more differentiated set of neurons, enhancing the capabil-
ity and accuracy of the system in classification tasks by providing access to more
information.

Two main layouts have been designed and fabricated : a notched structure and
a trapezoidal track device.

FIGURE 4.11: New layout solutions: a. Notches are inserted along
the track to create local regions of higher current density. b. Trape-
zoidal track ensures a gradual increase of current density along the

direction of motion.

Both of them have been fabricated during the last part of my internship and
they still have to be properly tested for reservoir computing. Some preliminary tests
have been performed showing a strong non-linear correlation between outputs in
different positions.

Finally another solution, that can be exploited, is to aim for skyrmions instead of
meander domain walls. In this optic, each skyrmion can be seen and a single neu-
ron with a specific response. Therefore by combining all these data from a skyrmion
lattice it will be possible to build up a spatial reservoir. This solution still needs to
be tested and its reliability assessed.
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As a future perspective, once high accuracy is achieved through improvements
to the device and surrounding instrumentation, the goal will shift towards address-
ing more complex pattern recognition tasks, starting with handwritten digit recogni-
tion. In this case, images will be converted into a one-dimensional signal for process-
ing, with the ultimate goal of extending the approach to spoken digit recognition.
Another promising improvement involves replacing the current image-based detec-
tion system with a fully integrated device (Fig. 4.12).

FIGURE 4.12: Three terminal device for integrated read-out: A new
device solution is presented, featuring a magneto-tunnel junction
(MTJ) nanofabricated on top of the track for fast and precise read-
out. The input terminal is located at the track level, while the output
is read through the MTJ contact, with the read-out signal displayed

as a change in resistance.

Here, the motion of magnetic textures would be tracked electrically using mag-
netic tunnel junctions fabricated over the tracks. This would significantly increase
read-out speed and precision, enabling faster signals with shorter periods and more
information, paving the way for further advancements.
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Conclusions

This study has successfully explored the potential of complex magnetic spin textures
for reservoir computing by leveraging their current-induced dynamics. The prop-
erties of meander domain walls and skyrmions, specifically their micro-nano scale,
nonlinearity, memory, and dynamic complexity, position them as highly promising
candidates for this field.

In this research, the DC current response of an ultrathin single-wedged
Ta/FeCoB/TaOx/AlOx film was analyzed using MOKE microscopy. Measurements
of domain wall velocities enabled the identification of a voltage threshold value and
highlighted the non-linear regime of motion, which is critical for the implementation
of reservoir computing.

The study determined the optimal current density regime necessary to avoid
strong deformation and excessively rapid motion. Following this, the memory prop-
erties of the system were analyzed through multiple excitations, revealing that prior
excitation history significantly influences output. Notably, after applying a sinu-
soidal input, distinct dynamics were observed based on whether the system had
previously been excited by sine or square waves. The duration of this memory effect
was quantified at approximately 1.8 seconds for a 10s excitation period, showing the
capacity of the system to remember past inputs and adjust its response accordingly.

With the key properties for reservoir computing verified, the study further inves-
tigated the potential of the system for simple recognition tasks, including sine/square
classification. A random input sequence was applied to the system, and responses
were recorded over multiple measurements. These recordings were segmented into
regions representing individual neurons for optimal performance analysis. The in-
put signals were organized into a matrix for processing, and only the final layer
of the neural network was trained using linear regression. Various configurations
of neurons and area subdivisions resulted in classification accuracies ranging from
60% to 70%. The observed low accuracy can be attributed to measurement noise and
to the potential lack of complexity in the system, limiting reliable classification.

In conclusion, while the complex spin texture system has demonstrated its abil-
ity to function as a physical reservoir for classification tasks, enhancing recognition
accuracy remains essential for reliability. New strategies are being actively explored,
including variable current density along the device to induce nonlinear correlations
between neurons. To this end, device layouts are being redesigned into notched and
trapezoidal structures to create diverse current density distributions. Another solu-
tion involves focusing on skyrmions that may enable each skyrmion to function as
a neuron, forming a spatial reservoir. Future work will involve the development of
an integrated device with magnetic tunnel junctions to achieve faster and more pre-
cise readout of magnetic textures, with the goal of addressing more complex pattern
recognition tasks, such as handwritten and spoken digit recognition.
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