
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Developing an Enterprise Chatbot using
Machine Learning Models: A RAG and

NLP based approach

Supervisors

Prof. PAOLO GARZA

Candidate

Fabio RIZZI

October 2024

Summary

The use of chatbots in companies is an effective solution for responding instantly
to questions or problems, improving business productivity. Chatbots can be partic-
ularly useful within a company, where they can provide personalised assistance and
speed up the process of retrieving information from documents and databases. How-
ever, accessing this data can be complex due to the fragmentation of information
between disorganised business documents and structured databases that require
technical skills to query, such as the use of SQL. This technical obstacle slows down
access to information and makes work processes less efficient.Furthermore, it is not
enough to be able to retrieve data: it is equally important to be able to visualise it
in a clear and comprehensible way. Graphical visualisation, for example, makes it
easier to grasp trends, anomalies and correlations, accelerating data understanding
and decision-making. This project focuses on the creation of a chatbot to facilitate
access to business information in Betacom s.r.l. , overcoming limitations related to
the size of the company and the technical knowledge of the staff. The chatbot was
developed to answer questions related to documents and databases in a simple and
intuitive way, helping, for example, managers who are not familiar with SQL or
other people who are looking for specific information without having to navigate
between different departments.

The solution consists of a simple but functional interface, which allows queries
to be made on both documents and databases. The main page allows the user
to ask questions or access two sections: one for database searches with graphic
visualisation and the other for tabular visualisation. The graphic search can return
graphs (bar, line or pie charts) for immediate visual comparison. Interaction with
documents, on the other hand, has been implemented as a chat, making the results
more readable. Since this is a prototype, the two types of requests (documents
and database) are separate, but their unification is planned in later stages. The
back-end was developed in parallel with the front-end, which uses JavaScript and
the Angular framework, with the application hosted on a private server. For the
document part, the LLama 3 8B quantised 4-bit model was used for response
generation, together with the FAISS database for semantic search with the addition

ii

of a BM25 retriever for syntactic research. The pre-processing phase included
transforming the documents into PDFs and dividing the texts into blocks to improve
information retrieval. For SQL queries, the PipableAI model from hugging face was
used to generate queries, with the help of an external framework, Vanna.ai, which
helps in the search for tables to extract data from. The answers can be returned in
the form of tables or graphs, depending on the user’s needs.

In the evaluation of the retrieval phase, several metrics were analysed, includ-
ing ROUGE for syntactic similarity and the BERT-score for semantic evaluation.
However, a modified version of the Mean Reciprocal Rank (MRR), a metric that
evaluates the position of the correct document in the result, was used. For the
generation phase, a qualitative evaluation based on 3 possible grades was used:
positive, negative or intermediate. To test the RAG system, a dataset consisting of
internal documents provided by the company was used, while in the text-to-SQL
phase, various models were explored. On the hardware side, the project was devel-
oped locally to reduce the costs associated with the cloud, this lead to choose open
source language models such as Llama3 and Phi-3, for text generation, to reduce
costs and ensure flexibility. Various techniques were tested to improve document
searching and preprocessing. For example, techniques such as Hyde and Multiquery
to generate variations of the query in order to expand the search range, or dividing
the text by conditions on characters or text semantics.

In conclusion, this thesis demonstrated the importance and effectiveness of us-
ing advanced chatbots for information retrieval and management within complex
business contexts. A key aspect of the project was the integration of advanced
Retrieval-Augmented Generation (RAG) techniques, an approach not used in basic
chatbot solutions. RAG techniques significantly improved the system’s ability to
retrieve accurate information from complex documents and corporate databases,
enabling it to generate precise responses to even complex queries. Although the
results obtained are promising, it is important to emphasise that the project is
still a prototype. There are several margins for improvement, such as the smooth
integration of document search and database query functionalities into a single
interface and the further optimisation of responses to handle more complex re-
quests. Furthermore, technological evolution will pave the way for new, more
advanced artificial intelligence models and more user-friendly graphical interfaces.
Ultimately, the enterprise chatbot developed in this project represents a significant
step forward in the management and automation of business processes. The use of
RAG techniques and the integration of LLM enable efficient and customised data
retrieval, improving the quality and speed of daily operations. The potential of
this technology is vast, and could be applied in many other contexts, helping to
make organisations more agile, innovative and competitive.

iii

Table of Contents

1 Introduction 1

2 Related Work 4
2.1 Chatbot . 4
2.2 Embeddings . 5

2.2.1 Sparse Vector . 5
2.2.2 Dense Vector . 7
2.2.3 Usage . 9
2.2.4 Application . 9
2.2.5 Similarity Metrics . 9

2.3 LLM . 10
2.4 RAG . 11
2.5 Prompting . 12
2.6 Text-to-SQL . 13

3 Problem Statement and Proposed solution 15
3.1 Problem Statement . 15
3.2 Proposed solution . 16

4 Experimental validation 25
4.1 Metrics . 25

4.1.1 Metrics for retriever test . 25
4.1.2 Metrics for generation test 27
4.1.3 Metrics for text-to-sql test 27

4.2 Dataset . 27
4.2.1 RAG Dataset . 27
4.2.2 Embedding Dataset . 28
4.2.3 Summarization Dataset . 28
4.2.4 Dataset text-to-sql . 28

4.3 HW Architecture . 28
4.4 RAG . 29

v

4.4.1 CHoosing the LLM . 29
4.4.2 Choosing the embedding model 36
4.4.3 Choosing the vector db . 39
4.4.4 Choosing the similarity distance 40
4.4.5 Choosing the preprocessing phase 42
4.4.6 Choosing the reranker . 47
4.4.7 Keyword and Hybrid Search 48
4.4.8 Searching with MMR . 50
4.4.9 Searching with Hyde . 51
4.4.10 Searching with MultiQuery 52
4.4.11 ParentRetriever . 53
4.4.12 Prompt selection . 53
4.4.13 Choice of Generation . 54

4.5 Text-to-sql . 56
4.5.1 Sql-coder . 56
4.5.2 PipableAI/pip-library-etl-1.3b 57
4.5.3 Vanna ai . 59

5 Conclusion 61

Bibliography 64

vi

Chapter 1

Introduction

Imagine getting answers and solutions instantly for any doubt, without the hassle of
searching or waiting. With their speed and availability, digital assistants (chatbots)
use the user’s laziness as their intent to comply. Software of this kind is not
only useful for finding quick and effortless solutions; it is also an effective way
of enhancing work productivity and optimising operations. In particular, having
a specific chatbot within the company can provide personalised assistance and
enhance the work experience of employees.
In today’s business environment, the ability to retrieve information from documents
and/or databases is essential to efficiently perform a wide range of daily tasks,
regardless of the type of work. However, this process can be complex and cumber-
some. This complexity can slow down the completion of daily tasks, increasing
time. Consequently, it is very useful for companies to adopt solutions that simplify
access to data, allowing information to be retrieved quickly and intuitively.
In order to automatize this process, a first issue is that finding the data needed to
perform daily tasks in a company can be a complex process, as information is often
scattered in different places, such as business documents or structured databases.
Documents may be disorganised or stored in formats that make difficult the access
and the search. On the other hand, business databases, although more structured,
require specific skills to be queried effectively. For example, the use of SQL (Struc-
tured Query Language) is often necessary to extract data from these databases,
but not all users have advanced technical skills, and navigating through this maze
of data can be a daunting challenge. This technical barrier can significantly slow
down information retrieval and make work more inefficient.
In addition, it is not enough to know where to look or how to extract data, it is
equally important to be able to visualise it in an understandable format. In this
context, the visual representation of information through graphs and dashboards
proves crucial. Data visualised graphically can make it more immediate to un-
derstand trends, anomalies and correlations, which may not be evident through a

1

Introduction

simple reading of tables or reports. This approach not only facilitates the interpre-
tation of information, but also accelerates decision-making and task completion,
improving productivity and quality of work. Companies that adopt advanced data
retrieval and visualisation tools can therefore provide more intuitive and faster ac-
cess to information, contributing to more effective and informed work in all its forms.

Considering the issues seen, a well-designed chatbot can revolutionise the data
retrieval process within a company, simplifying access to both the information
contained in documents and that stored in databases. Thanks to its intuitive
interface, a chatbot can understand user queries in natural language and translate
them into precise searches, without the need to know SQL or other advanced query
techniques. It can extract relevant data from different sources, combine them if
necessary, and present them in an immediately useful format: a simple text message
for quick information or a graph to visualise trends and correlations more clearly.
In this way, the chatbot becomes a powerful and accessible tool for all employees,
facilitating work and improving business efficiency.
In particular, integrating machine learning into the chatbot could not only increase
its efficiency and adaptability, but also enable it to better understand which action
is the most appropriate to take based on the user’s request. By analysing past
interactions and identifying patterns in the data, the chatbot could anticipate user
needs, simplifying the information retrieval process, and presenting the data in the
most useful format, be it a text message or a graph.
In this context, large language models (LLMs) play a crucial role. LLMs, with their
ability to understand and generate natural language text, enable the chatbot to
interact more naturally and intuitively with users. These models, powered by huge
amounts of data and advanced algorithms, can interpret even complex requests and
translate them into concrete actions. Furthermore, LLMs, hardware limitations
permitting, can quickly process large volumes of data, providing accurate and
customised answers, further simplifying the entire process for the user.

This work is divided into the following chapters:
• Chapter 2: Related Work describes the state of the art and the fundamental

concepts needed to understand and develop the chatbot, including embeddings,
Retrieval-Augmented Generation (RAG) and Large Language Models (LLM).

• Chapter 3: Problem Statement and Proposed Solution presents the problem
definition and proposed solution, illustrating the specific challenges faced by
the company that the chatbot aims to solve.

• Chapter 4: Experimental Validation focuses on experimental validation, show-
ing the tests performed to determine the optimal parameters, models and
configurations in order to obtain the best results.

2

Introduction

• Chapter 5: Conclusion contains the conclusions, summarising the results
obtained and suggesting possible future developments.

3

Chapter 2

Related Work

2.1 Chatbot
A chatbot is a program that simulates a human conversation with a user. Over
the years they have evolved, and we can now identify them into three main groups:
Rule-based, AI-driven and Hybrid.

• Rule-based chatbots: These are the first types of chatbots to be created. When
a user interacts with such a chatbot, the answers, that the program gives, are
predefined and they are decided through a flowchart or a decision tree based
on keywords or triggers.
These types of chatbots are quick to develop and simple as they do not
depend on machine learning algorithms but on ‘if-else’ statements. The main
drawbacks are that the answers are predictable and limited only to specific
scenarios.

• AI-driven chatbots: With the advent of new techniques in the field of machine
learning, these types of chatbots have been developed. They are based on
artificial intelligence and in particular on NLP -Natural Language Processing-
algorithms that among them there is the generation of human-like text. Unlike
the previous type, these are not rule-based and therefore the interaction are
improved as they are more interactive. Machine learning algorithms are used
to understand user input so that the most accurate text is generated.
This kind of chatbot are more difficult to implement but offers more long-term
benefits such as less maintenance.

• Hybrid Chatbots: Combining rule-based chatbot handling scenarios and
machine learning algorithms from ai-driven chatbots has advantages regarding
flexibility and adaptability but also disadvantages regarding complexity and

4

Related Work

maintainability and the need to have competencies in both technologies.
An example of a famous hybrid chatbot is RASA.

Each type of chatbot has its advantages and disadvantages, but AI-driven chat-
bots stand out for their ability to offer more dynamic and responsive conversations.
Thanks to machine learning algorithms and NLP, these chatbots can adapt to a
wide range of interactions, responding more naturally to any user query or message
without being confined to predefined rules. Even though this approach requires
trusting in the capabilities of the machine learning model, choosing AI-driven
chatbots would be the best option for those seeking a more fluid and spontaneous
interaction.

2.2 Embeddings
An embedding is a numerical representation of a piece of information, such as texts,
documents, images, audios, and so on. The representation captures the meaning
of what is being embedded, making it manageable for many applications. Thus,
an embedding of a sentence or other type can be represented in a vector space
so that the embedding can be confronted with each other, in particular when the
embedding represents the semantic meaning of a text, the closer the embeddings,
the more similar the texts. This is at the root of the most of NLP algorithms, from
recommendation systems to chatbots. The vectors in an embedding representation
can be divided in two groups : Dense and Sparse Vectors.

2.2.1 Sparse Vector
Type of representation where most of the elements are zero. They often have a
very high dimension because it depends on the size of the vocabulary of the text.
It is the simpler method and also the memory usage is less than other method
because only the non-zero elements are stored. There are different methods to
build a sparse vector from a text. The most common ones are:

Bag-of-Words (BoW)

It is a model used to represent a text as a disordered set of words of which the
number of occurrences is saved. The numbers of occurrences create the vector.

Term frequency–inverse document frequency (TFIDF)

It is an improvement on the simple bag-of-words model in which weights are defined
for each word based on the entire text. It is the product of two statistics: term

5

Related Work

frequency and inverse document frequency, the product defines the importance of
a word within the text with respect to a set of texts.

TF(t,d) represents how often a word appears in a single document

TF (t, d) = Number of occurrences of termt in document d

Total number of terms in document d
= ft,dq

t′∈d ft′,d

IDF(t,D) reduces the weight of common words in many documents, increasing the
importance of more specific words.

IDF(t) = log
A

|D|
|{d ∈ D : t ∈ d}|

B

Thus, the product is:

TF-IDF(t, d, D) = TF(t, d) × IDF(t, D)

Where

• t=term

• d=document

• D=set of documents

BM25

This is a ranking algorithm because it estimates the relevance of documents based
on a query, but in the process, it uses a vectorization.
Given a query Q containing keywords q1, q2, . . . , qn, the BM25 score of a document
D is:

score(D, Q) =
nØ

i=1
IDF(qi) · f(qi, D) · (k1 + 1)

f(qi, D) + k1 ·
1
1 − b + b · |D|

avgdl

2
IDF(qi) = ln

A
N − n(qi) + 0.5

n(qi) + 0.5 + 1
B

where:

• D = Document

• Q = Query (set of terms q1, q2, . . . , qn)

• IDF(qi) = IDF weight of the term qi

• f(qi, D) = Number of occurrences of term qi in document D

6

Related Work

• |D| = Length of document D in words

• avgdl = Average document length in the collection

• k1 and b = Free parameters (typically k1 ∈ [1.2, 2.0] and b = 0.75)

• N = Total number of documents in the collection

• n(qi) = Number of documents containing the term qi

Explanation of most important part:

• Term Frequency f(qi, D): Counts how many times a term qi appears in a
document D. The more frequently a term appears in a document, the more
relevant it is for that document.

• Document Length |D|: Length of the document in terms of the number of
words. Used to normalize the term score.

• Average Document Length avgdl: The average length of documents in the
collection. Used to adjust the score to account for the average document
length.

• IDF: Measures the importance of a term based on its frequency in the docu-
ments. Terms that appear rarely have a higher IDF, indicating they are more
significant.

• Parameters k1 and b:

– k1: Adjusts the effect of term frequency. Higher values increase the impact
of term frequency.

– b: Adjusts the effect of document length. Higher values make the score
more sensitive to document length.

Sparse vector method were the first to be developed and can transform a text into
a vector based on words, but not on the semantic value of the text.

2.2.2 Dense Vector
Unlike sparse representation, dense vectors can have multiple dimensions and collect
the semantic relationships between words and richer contexts. We can divide these
methods into 2 different groups: Static and contextual models.

7

Related Work

Static embedding

Static embedding models represent words by means of vectors that do not change
according to context. These models use different approaches to generate such
vectors but the representations remain fixed and do not take into account variations
in the meaning of words depending on the sentence in which they appear.
Some important examples of methods are:

• Word2Vec, developed by Google, is one of the pioneering models for creating
dense vectors. It uses approaches such as Continuous Bag of Words (CBOW)
and Skip-Gram to transform words into vectors. Semantically similar words
have neighboring vectors in space, but the representation of a word is invariable,
regardless of its usage. Variants of word2vec have been generated.

• FastText: A variant of Word2Vec developed by Facebook, FastText represents
words as compositions of n-grams of characters. This approach improves the
handling of rare and derived words compared to Word2Vec.

• GloVe (Global Vectors for Word Representation): This model, developed by
Stanford, relies on the analysis of co-occurrences of words in a text corpus to
generate vectors that reflect global semantic relationships.

Contextual models

Contextual models represent a significant advancement over static models. These
models dynamically update word representations according to the context of the
sentence, enabling a finer and more precise understanding of meaning. The most
prominent example is certainly BERT (Bidirectional Encoder Representations from
Transformers): developed by Google, it represents an innovative Transformer-based
approach. It provides bidirectional contextual vectors of words, considering them in
both the previous and the next context. This allows BERT to capture more precise
meanings adapted to the specific context of the sentence, significantly improving
language understanding compared to static models. Variants were also generated
from it.

• RoBERTa: Optimises BERT’s training to improve performance. It uses
training on a larger corpus and advanced optimisation techniques for superior
results.

• DistilBERT: A lighter version of BERT, designed to retain much of BERT’s
representation capabilities but with reduced size and computational complexity,
making it more efficient.

8

Related Work

2.2.3 Usage
New models, especially contextual models as the others are becoming obsolete, are
coming out all the time. Examples are those classified in the Hugging Face MTEB
(Massive Text Embedding Benchmark) Leadboard, which continue to push the
boundaries of text representation. These models offer increasingly sophisticated
solutions for a wide range of NLP applications.
For the use of these methods, which continue to evolve rapidly, there are industry-
leading libraries that make the integration of these technologies as simple as possible.
Of these, Hugging Face’s Transformers library is particularly renowned, offering
a wide range of Transformer-based models. In addition, Sentence Transformers,
another Hugging Face library, is specifically designed to facilitate the creation of
vector representations of sentences, making it easy to apply advanced text analysis
techniques in real-world applications. These libraries allow developers to exploit
the most advanced models in the field of NLP without having to deal with the
complexity of implementation from scratch.

2.2.4 Application
In the field of text representation, it is essential to consider both the semantic
dimension, which focuses on the meaning of words, and the syntactic dimension,
which focuses on structure and keywords. For a complete and accurate understand-
ing of language, the integration of both sparse and dense representations enables
the capture of deeper nuances, thus improving the quality and effectiveness of NLP
applications.

2.2.5 Similarity Metrics
In research on dense and sparse vectors, evaluating vector similarity is crucial for
NLP tasks such as information retrieval and document similarity. Three key metrics
used for this purpose are cosine similarity, Euclidean distance, and maximum inner
product.

• Cosine similarity measures the angle between two vectors and is calculated
using the formula:

Cosine Similarity = A · B
∥A∥∥B∥

where A and B are the vectors being compared, A · B is the dot product, and
∥A∥ and ∥B∥ are their norms. This metric is useful for assessing how aligned
two vectors are in the same direction, regardless of their magnitude, and is
often used to measure semantic similarity between words or documents.

9

Related Work

• Euclidean distance measures the linear distance between two vectors in
multidimensional space and is calculated using the formula:

Euclidean Distance =
öõõô nØ

i=1
(ai − bi)2

where ai and bi are the component values of vectors A and B, and n is
the number of dimensions in the vector. This metric provides an absolute
measure of the distance between the two vectors, useful for identifying overall
differences in their representations.

• maximum inner product is calculated as:

Inner Product = A · B =
nØ

i=1
ai · bi

where ai and bi are the components of vectors A and B. This metric directly
considers the dot product, measuring similarity in terms of alignment and
intensity, and is particularly useful in contexts like recommendation systems,
where both the direction and magnitude of the vectors are important.

2.3 LLM
Large Language Models (LLMs) represent one of the most significant innovations
in the field of artificial intelligence and natural language processing (NLP), with
the ability to understand, generate and even interact in human language with a
good level of satisfaction. These models are the result of years of research and
development, culminating in the creation of advanced architectures that exploit
billions of parameters and vast text datasets to learn the complexity and richness
of natural language. In training LLMs, models are exposed to huge amounts of
unlabelled text and learn to predict the next token in a sequence, thus gaining a
deep understanding of linguistic structures and semantic relationships.

A key element of the power of these models is their adaptability: through
techniques such as fine-tuning, in which the model is further trained on a specific
dataset to optimise its performance on a particular task, or prompting, which
guides the model to produce more relevant and contextually relevant responses,
LLMs can be customised to address a wide range of application needs.

The architectures on which LLMs are based are varied and sophisticated. Au-
toregressive models, such as those in the Generative Pre-trained Transformer (GPT)
family, are designed to predict the next token in a sequence based on previous tokens,
thus creating a chain of text that can range from simple sentence completion to the

10

Related Work

generation of entire paragraphs of content. On the other hand, encoder-decoder
models, such as BERT (Bidirectional Encoder Representations from Transformers)
and T5 (Text-To-Text Transfer Transformer), use an encoding-decoding structure
that allows them to handle complex tasks such as answering questions, summarising
text and translating, modelling language bidirectionally and understanding the full
context of a sentence or document.

In addiction, it is crucial to consider the context window of the models. The
context window refers to the maximum number of tokens (i.e. units of text such as
words or portions of words) that the model can take into account simultaneously
when processing an input. Monitoring and managing the context window correctly
is therefore essential to ensure that the model receives all the information it needs
to generate the correct output.

Despite their extraordinary capabilities, LLMs are not without limitations. One
of the main challenges is the tendency to produce ‘hallucinations’, i.e. responses
that, while seeming coherent and sensible, are in fact incorrect or invented. This
phenomenon is particularly problematic in critical applications, where accuracy
of information is crucial. Furthermore, LLMs can amplify biases in training data,
reflecting and sometimes exacerbating social or cultural biases. The training and
execution of these models also require huge amounts of computational resources,
which raises questions regarding environmental impact, as the energy consumption
associated with their execution is significant. The research and development
of LLMs is constantly evolving. Every year, new models and techniques are
introduced that further push the boundaries of what is possible with natural
language. Platforms such as Hugging Face offer an up-to-date overview of the
best open-source models available, allowing researchers and developers to explore
and utilise the latest innovations in the field. This continuous innovation not only
expands possible applications, but also seeks to address current limitations and
challenges, making LLMs increasingly efficient, reliable and applicable in real-world
contexts. Ultimately, Large Language Models represent a crucial frontier in artificial
intelligence, with the potential to radically transform the way we interact with
technology and the world around us.

2.4 RAG

To adapt a Large Language Model (LLM) to its specific task, there are several
strategies such as fine-tuning, prompting and Retrieval-Augmented Generation
(RAG). In this section, we will focus on the latter technique, which combines infor-
mation retrieval with content generation to provide more precise and contextualised
responses. RAG works through a multi-stage process. Initially, the user’s query

11

Related Work

is transformed into a vector via an embedding model, which semantically repre-
sents the query. This vector is then compared with a vector database containing
semantic representations of various blocks of text called chunks. The most relevant
contexts are retrieved, measured by the distance between the query vector and
the embeddings in the database. Subsequently, both the original query and the
retrieved contexts are passed to the LLM, which uses this information to generate
a customised response. This response can be provided together with links to the
sources of the information used, thus guaranteeing transparency and reliability.
Thus, RAG represents a powerful method of harnessing the capabilities of LLMs,
integrating external data with content generation to answer complex questions in a
precise and informed manner.

The Retrieval-Augmented Generation (RAG) technique has several significant
advantages, making it a powerful choice for improving the effectiveness of LLMs
in various contexts. One of the main benefits is access to up-to-date and reliable
information. Unlike models that rely solely on training data, which can quickly
become outdated, RAG allows the integration of recent and relevant knowledge, en-
suring more accurate and contextualised responses. Furthermore, RAG significantly
reduces the risk of sensitive data leakage, as sensitive information does not have
to be included in the model’s training data, but can be securely and contextually
retrieved at the time of the request. This approach also helps reduce the computa-
tional and financial costs associated with LLM-based applications. Since the model
does not need to be continually re-trained to include new information, RAG lowers
the need for computationally intensive resources, making the implementation of
LLM in enterprise environments more sustainable. Finally, this technique also
succeeds in decreasing an issue present in LLMs that is ‘hallucinations’, especially if
it is implemented in such a way that it only takes information from vector databases
and not from prior knowledge of the model. However, like any technology, RAG
also presents challenges. The quality of answers depends on the quality of external
sources and the system’s ability to retrieve the most relevant information, which
can be a limitation in environments with poorly structured or low quality data.

2.5 Prompting

Another fundamental technique for the effective use of large language models (LLM)
is prompting. There are several prompting techniques that can be used to guide
the model to respond in the desired manner. Of these, three of the most common
are zero-shot prompting, few-shot prompting (and its one-shot variant), and chain
of thought prompting.

12

Related Work

Zero-shot prompting

Zero-shot prompting means that the prompt used to interact with the model
contains no examples or demonstrations. The model receives a direct instruction
to perform a task, with no additional examples provided to direct it. This type
of prompting relies solely on the model’s ability to understand and generalise
from the given instruction. However, when zero-shot prompting does not produce
satisfactory results, it may be useful to switch to more elaborate techniques.

Few-shot prompting

Few-shot prompting comes into play when it is necessary to provide examples
or demonstrations to improve the model’s performance. This technique allows
contextual learning, where examples are inserted into the prompt to condition the
model to generate more accurate and relevant responses. Demonstrations serve as
a guide, helping the model to better understand the task at hand. For example,
for a text completion task, we might include in the prompt some sentences that
have already been completed to make the model understand how it should proceed.
There is also a variant called one-shot prompting, where only one example is given.
Although these techniques are very effective, they may still be insufficient for tasks
requiring more complex reasoning.

Chain of thought prompting

To tackle such tasks, chain of thought (CoT) prompting can be used. This technique
allows the model to develop complex reasoning skills through intermediate steps
of thought. In practice, instead of simply providing a direct answer, the model
is guided to perform a series of logical or argumentative steps before arriving at
the final answer. Chain of thought prompting can be combined with few-shot
prompting to achieve better results in tasks requiring more complex reasoning
before providing an answer.

2.6 Text-to-SQL
The Text-to-SQL task is an area of research in Natural Language Processing (NLP)
that aims to automatically generate SQL queries from natural language text. This
task requires the conversion of textual input into a structured representation, which
is then used to generate a semantically correct SQL query, ready to be executed on
a database.

One of the main obstacles in the text-to-SQL task is the different dialects of
SQL used in the various database management systems (DBMSs). Each DBMS,
such as MySQL, PostgreSQL, SQL Server, and others, implements SQL with

13

Related Work

slight variations and peculiarities, making it complex to generate queries that are
compatible with different systems. The ability to adapt to these differences is
crucial for generalising the model and ensuring the accuracy of queries generated
on different platforms.

Another significant challenge is the complexity of the queries that the system
must be able to generate. Simple queries, involving direct data selections and
basic filters, can be handled with relative ease. However, more complex queries,
which require joins between multiple tables, sub-queries, advanced aggregations
and custom functions, pose a greater problem. Such queries require not only a
thorough understanding of the database structure, but also a sophisticated ability
to correctly represent the logic required by natural language in an executable SQL
form.

These factors make the text-to-SQL task a fascinating and complex challenge,
with a significant impact in the area of human-computer interaction and in improv-
ing data accessibility through natural language.

In practice, besides the academic approaches and commercial products of large
companies, including the popular CHATGPT, there are also online platforms that
offer Text-to-SQL services, allowing users to automatically generate SQL queries
from natural language input. For instance, AI2SQL and Draxlr are platforms
that offer an intuitive interface to automatically create and visualise SQL queries,
simplifying access to data for analysts and business intelligence professionals

14

Chapter 3

Problem Statement and
Proposed solution

3.1 Problem Statement
Betacom is an innovative IT company specialising in consulting, design, prototyp-
ing and development of IT solutions. During my time in the company, I had the
opportunity to work on a project that met a specific need: to simplify and improve
the process of access to internal company information for non-technical employees.
The main problem encountered within Betacom and its partner companies is related
to the difficulty of obtaining technical or management information, especially for
employees without IT skills. For example, many operations that require the use of
query languages such as SQL or knowledge of technical procedures are difficult for
people working in areas such as purchasing, human resources or administration.
This leads to a loss of time and resources, as employees have to go to technical
departments to obtain information or solve problems.
Furthermore, the organisational complexity of the company, with the presence of
partner and acquired companies, makes it difficult for many employees to know
where to turn for specific information, further increasing the time spent on research
and communication activities.

The aim of the project is to develop a chatbot that facilitates access to com-
pany information through a simple and intuitive interface. This tool must:

• Allow non-technical employees to easily obtain technical or business informa-
tion without having to know programming languages or complex procedures.

• Reduce the time spent searching for information by automating processes that
would normally require the intervention of an IT expert.

15

Problem Statement and Proposed solution

• Facilitate communication between partner and acquired companies, ensur-
ing that information can be obtained quickly and accurately, regardless of
department or sector.

A concrete example could be a purchasing department manager who needs infor-
mation on a transaction stored in the database, but does not have the skills to
execute SQL queries. The chatbot will be able to understand the query in natural
language and return the necessary information, greatly simplifying the operation.

3.2 Proposed solution

For the aesthetics of the interface, which is not my strong point, much less the
main point of this thesis, , we opted for a basic but nevertheless pleasant version,
focusing more on the practicality of the interface. The chatbot comprises a main
page on which one can already write questions about documents, or one can go
via links to the other two important pages. The first page allows the query to the
database via a graph, following the first link. The second page, on the other hand,
allows data to be displayed on a tabular basis, following the second link. Queries
based on information from the database are presented in two different options
depending on the type of search to be performed. The first option concerns a static
search for information in which only the desired list is to be obtained; in this case,
the output is by means of a table, also because the visualisation in written format
was not as visually appealing. In the second option, the output is graphical, using
bar, line or pie charts, so that the returned data can be compared immediately.
This is particularly useful when you want to get a general idea rather than focusing
on specific data. The document query part was constructed as a chat, to return
data in a more readable and clearer format than a simple text extracted from a file.

Since this is a prototype of the project, it was decided to separate the two types of
requests, the one on documents and the one on the database, since the unification,
which will take place at a later stage, will in any case be feasible and relatively
simple compared to the creation of these two separate parts. Requests based on
information from the database are designed to be displayed in two different ways,
depending on the user’s needs. Therefore, in parallel with the development and
testing of the backend in order to achieve maximum results, the minimal front-end
code necessary to create the graphical user interface was also developed. The code
was written in javascript using the angular framework, hosted in a private server.

Here are the images of the main parts.

16

Problem Statement and Proposed solution

Figure 3.1: main page of the chatbot

Figure 3.1 shows the main interface of the chatbot at start-up. This image
illustrates the start-up page of the system. From here one can start using the
three main components: the immediately accessible user interaction section for
searching for data in documents, the part dedicated to returning data in table
format accessible via the second link, and the part for generating graphs accessible
via the first link.

17

Problem Statement and Proposed solution

Figure 3.2: Main page of the chatbot after a request is sent

Figure 3.2 highlights the section of the chatbot used to extract information from
documents after a query has been submitted. This part is designed to allow the
user to query various previously processed and saved documents.

Figure 3.3: Page about tabular query result

Figure 3.3 shows the section of the chatbot that returns data in tabular format,
which is accessed using the link. In this figure it is shown at the stage where it is

18

Problem Statement and Proposed solution

ready to listen to the request.

Figure 3.4: Page about tabular query result after a request is sent

Figure 3.4 shows the page of the chatbot returning the tabular data at the data
return stage. In the event of an error, a message is displayed instead of the table.
Below the table is the text input again, as the page is always ready to accept
requests. This table returned the data concerning the query: ‘For each song of
genre ‘Alternative’ show me the name, genre, duration and album name’.

19

Problem Statement and Proposed solution

Figure 3.5: Page about chart query result

Figure 3.5 shows the section of the chatbot that returns the data in graphical
format, which is accessed using the other link on the home page. In the request
waiting phase, which is shown, there are input buttons to send the request and
select which type of graph you want it in.

20

Problem Statement and Proposed solution

Figure 3.6: Page about chart query result after a request is sent and ’line’ is
selected

Finally, Figure 3.6 and 3.7 show the chart format section after receiving the
response. At this stage it is possible to change the chart type in the same way as
before and use the input buttons to download the chart. In this graph, data is
shown from the request: ‘For each genre show me the number of songs’.

21

Problem Statement and Proposed solution

Figure 3.7: Page about chart query result after a request is sent and ’bar’ is
selected

Getting more technical, various tests were carried out to arrive at the combination
of models, parameters and techniques used in the final solution. The tests and the
choices made will be addressed more extensively in the next chapter. At the end of
the test, the following final decisions were reached.
The final version for the document part consists of the use of LLama 3 8B
quantized to 4 bits as the main LLM that deals with the generation of the response
from data taken from the database. A model available on github Alibaba-NLP/gte-
large-en-v1.5 was chosen as the embedding model. For document retrieval, FAISS
was used as a vector database and both FAISS semantic search with a metric
based on Euclidean distance and keyword search implemented using the BM25
metric were used. MMR was used as the search technique and at the end of it all,
a reranking based on a model also taken from huggingface called bge-large was
implemented. As pre-processing, these steps were taken:

• Transformation in PDFs

• Semantic division of the chunks using a per-character division if the 5000
characters are exceeded

22

Problem Statement and Proposed solution

• Replacement of abbreviations

• Expansion of dates

• Addition of the document name for each chunk

• English translation of each block of text to embed

No particular technique was used for generation, such as compression, but only a
specific prompt, this one:

“’You are a helpful assistant that extracts informations from a given text. I
will give you 200 $ if you respond in a detailed manner and verify that the answer
contains all the information requested by the question without adding anything
unnecessary.
Follow these steps:
Carefully read the question.
Carefully read the answer.
CHECK THAT THE ANSWER CONTAINS ALL THE INFORMATION RE-
QUESTED BY THE QUESTION AND NOTHING MORE.
Ensure that the answer does not contain any additional, unnecessary information
and that the information in the answer is not contradictory.
Only answer to the given question with the information you can find here:"’

For the SQL part, a model taken from huggingface called PipableAI/pip-library-
etl-1.3b is used. To help with the generation of SQL queries, RAG is also used
here. It was not implemented from scratch but using the Vanna.ai framework. The
preprocessing for this is based only on retrieving the ddl of the datatbase.

For the model there is a specific prompt with which the model was trained.
This is the prompt used for returning the table result:
"""Generate a simple SQL query from the schema mentioned for the following
question.
If you don’t find the a possible query, return SELECT ’cinoooo’ AS response;
<schema>schema</schema>
<question>question</question>
<sql>"""

This the pronpt used for returning the chart :
"""Generate a simple SQL query from the schema mentioned for the following
question.
If you don’t find the a possible query, return SELECT ’cinoooo’ AS response;

23

Problem Statement and Proposed solution

If there are only 2 column, then you must put the more important one as second
one.
<schema>schema</schema>
<question>question</question>
<sql>"""

This piepeline is used for both the tabular and the graphical part as the same
resources are used and differ only in the type of output.

24

Chapter 4

Experimental validation

4.1 Metrics

In this section, I will examine in detail the metrics used for the experiments
described in the following paragraphs. Considering that Retrieval-Augmented
Generation (RAG) and the text-to-SQL task are difficult to evaluate objectively,
most of the metrics adopted tend to be qualitative rather than quantitative in
nature.

4.1.1 Metrics for retriever test

With regard to Retrieval-Augmented Generation (RAG) experiments, particularly
in the retrieval phase, the result of these tests is to return a number n of document
fragments, called chunks, most similar to the requested query. The evaluation
then focuses on the similarity between the returned chunks and the expected
chunk to return. Although one can measure this similarity with objective values,
such as the Rouge score, these methods however only evaluate syntactic similarity
by comparing similar words without considering the meaning of the documents.
One could also rely to metrics based on machine learning models, such as the
BERT-score. However, this would imply evaluating one model using another,
which, despite the irony, we decided not to do. Therefore, we started with a metric
called Mean Reciprocal Rank (MRR), which evaluates the position in which the
expected chunk was returned, and modified it slightly, making it less objective but
more suitable for measuring the result qualitatively. Below, I present the metrics
mentioned and the version chosen.

25

Experimental validation

Rouge

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a metric commonly
used to assess the quality of summaries and other automatically generated texts
by comparing them with reference texts. It is based on counting the coincidences
of n-grams (word sequences), sentences, and units of variable length between the
generated text and the reference text. ROUGE-1, ROUGE-2 and ROUGE-L are
the most common variants, measuring the overlap of single words, consecutive word
pairs and the longest common sub-sequence, respectively. However, this metric
focuses on syntactic similarity, thus assessing how much the texts share similar
words, without taking into account the overall meaning.

Bert

BERT-score is a more advanced metric than Rouge because it uses language models
such as BERT (Bidirectional Encoder Representations from Transformers) to assess
similarity between texts at a semantic level rather than just a syntactic level.
Rather than simply comparing exact words, BERT-score considers the word vector
representations (embeddings) generated by BERT, thus capturing the similarity
of meaning between texts. This metric is particularly useful for evaluating texts
in which synonyms or paraphrases could be used, better reflecting the semantic
understanding of the content.

MRR

Mean Reciprocal Rank (MRR) is a metric used primarily in the context of infor-
mation retrieval and recommendation systems to assess the quality of an ordered
list of results. MRR is calculated as the average of the reciprocals of the ranks
of the first correct answers returned by a system in a series of queries. In other
words, it considers in which position the first relevant result is found for each query
and averages these values over all queries tested. MRR is useful for understanding
how quickly a system can provide a useful answer, but in some contexts it may be
considered too focused on specific positions, neglecting a more overall assessment
of the quality of results.

CHOSEN METRIC

To measure the retrieving process, a metric similar to MRR was chosen. In this
case, if a chunk is not completely correct but is close to the correct answer, such as
a chunk that still contains the answer but not the default answer, or a chunk that
only partially includes the answer, the question receives a slightly lower score than
it would with the MRR for a query. Instead, if the chunk is totally correct, the

26

Experimental validation

value of the query is the reciprocal of the rank.
Furthermore, to simplify the presentation of the results, I will show two values:
one for the percentage of correct chunks returned as the first block and the other
for the percentage of correct chunks returned within the first 4. Thus, these values
will correspond to an MRR of 1 and an MRR other than 0, respectively.

4.1.2 Metrics for generation test
As far as the generation phase of RAG is concerned, objectively evaluating the
responses of a large language model (LLM) is even more complex. There are
methods such as RAGAS, which uses GPT to compare the responses generated
by my pipeline with those produced by GPT, both for generation and retrieval.
However, even in this case, one would rely to evaluating a machine learning pipeline
using another machine learning model, with all the limitations and ironies of the
case.
To overcome these difficulties, we chose to use questions with known answers
as tests, evaluating the answers generated with three possible values: "Correct",
"Uncorrect" and "quasi-correct" . ‘Correct’ indicates a correct and well-formulated
answer, “Uncorrect” a completely incorrect answer, while “Quasi-correct” represents
an intermediate evaluation, such as an answer that contains correct information
but is inaccurately presented, or an answer that is well formulated but omits part
of the relevant information.

4.1.3 Metrics for text-to-sql test
For the text-to-SQL task, several queries will be made on a test database. As
metrics, both the percentage of queries exactly matching the correct ones and
metrics based on the number of rows returned from the table compared with those
returned by the correct query will be used.

4.2 Dataset

4.2.1 RAG Dataset
To test the RAG part, I needed a large number of documents and questions relevant
to these topics. After initially using basic documents found online, the company
provided me with access to internal documents, which I used to generate the dataset
needed to test my code. The use of internal documents was crucial to the project,
as it is precisely these types of documents that will be used in the final version. In
particular, I worked with:

27

Experimental validation

• Documents: 50 documents concerning customer agreements for the creation
of software and project presentation documents.

• Questions: From these documents, I initially generated 20 questions for a first
round of testing, but realising that these were not enough, I created further
questions, reaching a total of 35.

4.2.2 Embedding Dataset
For the choice of the embedding model to be used, the RAG dataset on which
all pipeline tests were conducted was not used. Two documents were used to test
these types of models: one in Italian and one in English.

For these documents, 30 questions were formulated for use during the tests.

4.2.3 Summarization Dataset
To evaluate the performance of the large language models (LLM) used in the
study, a dataset widely known in the field of automatic summarisation was used:
BBC News, available on Kaggle. This corpus, specifically designed for extractive
summarisation, comprises 417 BBC political news articles published between 2004
and 2005. For each article, five reference summaries are available.[1]
In order to focus the analysis on a specific domain, a subset of the dataset consisting
exclusively of technology articles was selected, with a total of 30 documents. Of
these, 20 were retained in the original language (English) to assess the models’
ability to process and summarise English-language texts. The remaining 10 articles
were translated into Italian, allowing us to test the multilingual abilities of the
models and their ability to generate accurate summaries in both languages.

4.2.4 Dataset text-to-sql
For the text-to-SQL task, two test databases are used: one in PostgreSQL and the
other in SQLite, commonly used as a test database, known as Chinook.

4.3 HW Architecture
The project was chosen to be developed locally, thus avoiding the costs associated
with creating a cloud version, such as hosting subscriptions and the use of cloud
resources on platforms such as AWS or Microsoft Azure. This decision required
the hardware limitations of the machine on which this software was developed to
be taken into account several times in the design choices.

28

Experimental validation

Hardware specifications: The machine specifications include a Linux operating
system with the Rocky Linux distribution, 64 GB of RAM, two AMD Radeon RX
6800 GPUs of 16 GB and a 1 TB hard disk drive.

4.4 RAG

4.4.1 CHoosing the LLM

In order to maintain the approach of a local version and reduce costs, it was decided
to use only open source or open weight models. This choice was facilitated by the
increasing availability of large language models (LLM) released under open source
licences or with accessible weights, many of which are available on Hugging Face,
a leading platform for sharing machine learning models. Due to the variety and
accessibility of these models, several were tested from Hugging Face to identify
the most suitable ones for the project’s needs, while ensuring high quality without
incurring additional costs for licences or subscriptions.

LLAMA3

Meta has released Llama 3, one of the latest iterations of its family of open-access
language models, available on Hugging Face. This family comprises two main
variants: the 8 billion (8B) model and the 70 billion (70B) parameter model. Both
models are offered in pre-trained and instruction-optimised versions designed to
enhance dialogue applications. Llama 3 uses an advanced auto-regressive trans-
former architecture, and the trained versions have been refined through supervised
fine-tuning (SFT) and reinforcement with human feedback (RLHF) to better align
with human preferences in terms of utility and safety. The model is trained on over
15 trillion tokens of publicly available data, with a context length of 8,000 tokens
and a new tokenizer that expands the vocabulary to 128,256 tokens. The educated
variants are particularly suitable for conversational scenarios and show superior
performance compared to many current open source models on common industry
benchmarks. The 8 billion parameter version, that we choose to test, is just over
16 GB in size. Llama 3 was released on 18 April 2024 and can be used via Hugging
Face’s Transformers library, with support for inference and fine-tuning.
To interact with Llama 3 models, the following prompt type is used:
"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>.
System phrase to make the model understand its task and situation. <|eot_id|>
<|start_header_id|>user<|end_header_id|>
User text <|eot_id|><|start_header_id|>assistant<|end_header_id|>"""

29

Experimental validation

PHI3

Phi-3 is a family of innovative language models, among which the Phi-3-Mini, a 3.8
billion parameter model, stands out. Despite its relatively small size, Phi-3-Mini
demonstrates a high level of performance, comparable to larger models such as
Mixtral 8x7B and GPT-3.5. This model was trained on a vast dataset of 3.3
trillion tokens, consisting of filtered web data and synthetic data, which enhances
its robustness, security and suitability for the chat format. The main novelty of
Phi-3 lies in its innovative approach to the training dataset, which is an evolution
from that used for Phi-2. In addition, Phi-3-Mini is designed to be light enough to
be implemented on mobile devices, with a size of just under 8 GB. It is available in
two context length variants: 4K and 128K tokens, with the Phi-3-Mini-4K-Instruct
demonstrating outstanding performance in areas such as reasoning, language un-
derstanding and logic. The Phi-3-Mini-4K-Instruct, in particular, has undergone
post-training refinement that includes both supervised fine-tuning and direct pref-
erence optimisation, further improving its instruction-following capabilities and
providing advanced safety measures. When evaluated on benchmarks testing
common sense, language understanding, mathematics, code and logical reasoning,
Phi-3-Mini proved to be among the best in its class of models with less than 13
billion parameters. For the technical implementation, Phi-3-Mini uses a tokenizer
similar to that of Llama, with some additional token extensions. In addition, the
model employs advanced techniques such as Phi3SuScaledRotaryEmbedding and
Phi3YarnScaledRotaryEmbedding to extend the context of rotating embeddings,
thus improving its performance in long context scenarios. Phi-3 uses a different
prompt format than Llama. Specifically, the prompt for Phi-3 is structured as
follows:
"""<|user|>
text
question
<|end|>
<|assistant|>."""
Unlike Llama, Phi-3 does not include a system section in the prompt. This choice
may be due to the fact that Phi-3 was not trained using a prompt that included a
system section. The absence of this section reflects a difference in the design and
configuration of the training between the two models.

Minerva

Minerva is the first family of language models pre-trained from scratch for Italian,
developed by Sapienza NLP in collaboration with FAIR and CINECA. Minerva
models are open-access and bilingual (Italian and English), with about 50% of the
pre-training data in Italian. The series includes three main variants

30

Experimental validation

• Minerva-350M-base-v1.0: A compact, fast model suitable for tasks requiring
quick responses and limited resources.

• Minerva-1B-base-v1.0: A balanced model with 1 billion parameters, ideal for
more complex applications that require good performance without a large
consumption of resources.

• Minerva-3B-base-v1.0: A powerful model with 3 billion parameters, optimised
for advanced language solutions and high-quality text generation. Minerva
represents a significant advancement for language models in Italian, offering
smooth and accurate responses in bilingual contexts.

For Minerva I used the following prompt :
“’ <s>
phrase
text
question
Answer:
‘"’

astronomer/Llama-3-8B-Instruct-GPTQ-4-Bit

This HuggingFace repository contains a 4-bit quantised version of the Meta-Llama-
3-8B-Instruct model. By reducing the memory footprint of the model to less than
6GB of VRAM (from the original 16.07GB). The 4-bit quantisation, achieved with
the AutoGPTQ library, introduces minimal quality degradation compared to the
original bfloat16 model, while significantly improving latency and throughput. The
quantisation is calibrated with random samples from the wikitext dataset to ensure
minimal loss of accuracy.

Results

These models were tested on the BBC News dataset. The use of this dataset is
motivated by the fact that the text generation model is not used for its ability
to create new text based on one’s own knowledge, but rather for its ability to
generate coherent and synthetic content from the documents provided. For this
reason, a dataset suitable for summarisation is ideal. Furthermore, there is always
a qualitative evaluation component in the responses produced by LLM models,
such as the perception that the text was written by a human rather than a machine,
which is difficult to measure in quantitative terms.
The Minerva model was considered for its particularity of having been developed
in Italy, partly using Italian data. However, already from the first qualitative

31

Experimental validation

evaluations, the results were not satisfactory: the model kept producing anomalous
responses and inappropriate content. This could be due to an inadequately processed
dataset or a lack of alignment. In fact, the model displayed discriminatory or
prejudiced language and stereotypes. As a result of these issues, Minerva was
discarded after the first evaluation.
In contrast, the LLama and Phi 3 models showed adequate responses under an
initial qualitative evaluation, albeit with a clear perception of their artificial nature.
Subsequently, both were tested on a summarisation dataset using metrics such
as BERT-score and ROUGE. As shown in Table 4.2 for Italian and Table 4.1 for
English, the results obtained were similar both semantically (BERT-score) and
syntactically (ROUGE). However, the processing times were different: LLama,
being a more complex model, was run on CPU due to hardware limitations, with
higher response times than Phi 3, which was instead run on GPU, but also with
considerable response times.

Considering the fact that the response times of both models were not acceptable
for a chatbot and LLama’s responses were qualitatively more satisfactory, these
lead to the search for a quantized version. In fact, as we can see in Table 4.3,
where the entire final pipeline was run with an MMR recovery for all three models,
the quantized version of LLama maintained similar results to the non-quantized
one, with the advantage of having very low response times, less than 5 seconds,
compared to the other two models which had response times of over 20 seconds. For
this reason, quantized LLama was chosen as the LLM model for text generation.

32

Experimental validation

P
H

I
L

L
A

M
A

R
o

u
g

e-
1

R
o

u
g

e-
2

R
o

u
g

e-
L

B
E

R
T

S
co

re
R

o
u

g
e-

1
R

o
u

g
e-

2
R

o
u

g
e-

L
B

E
R

T
S

co
re

M
ea

n
P

re
ci

si
o

n
:

0.
50

81
2

0.
25

05
3

0.
48

17
4

0.
89

41
53

2
0.

52
42

7
0.

24
70

8
0.

49
31

1
0.

89
10

70
2

M
ea

n
R

ec
al

l:
0.

34
56

6
0.

14
91

7
0.

32
89

6
0.

87
03

52
9

0.
31

86
1

0.
13

33
9

0.
30

01
5

0.
86

51
11

M
ac

ro
A

V
G

F
1

-S
co

re
0.

41
14

3
0.

18
7

0.
39

09
5

0.
88

20
92

5
0.

39
63

5
0.

17
32

5
0.

37
31

6
0.

87
78

98
7

T
ab

le
4.

1:
R

es
ul

ts
of

th
e

su
m

m
ar

isa
tio

n
te

st
w

ith
th

e
En

gl
ish

do
cu

m
en

ts

33

Experimental validation

P
H

I
L

L
A

M
A

R
o

u
g

e-
1

R
o

u
g

e-
2

R
o

u
g

e-
L

B
E

R
T

S
co

re
R

o
u

g
e-

1
R

o
u

g
e-

2
R

o
u

g
e-

L
B

E
R

T
S

co
re

M
ea

n
P

re
ci

si
o

n
:

0.
49

93
5

0.
24

79
0.

47
23

3
0.

76
12

49
6

0.
54

82
8

0.
27

56
9

0.
50

84
1

0.
77

43
98

M
ea

n
R

ec
al

l:
0.

36
17

8
0.

17
74

2
0.

34
23

0.
73

59
54

7
0.

29
97

4
0.

13
22

3
0.

27
79

7
0.

71
96

47
7

M
ac

ro
A

V
G

F
1

-S
co

re
0.

41
95

8
0.

20
68

2
0.

39
69

4
0.

74
83

88
5

0.
38

75
9

0.
17

87
3

0.
35

94
3

0.
74

60
19

6

T
ab

le
4.

2:
R

es
ul

ts
of

th
e

su
m

m
ar

isa
tio

n
te

st
w

ith
th

e
It

al
ia

n
do

cu
m

en
ts

34

Experimental validation

PHI LLAMA QUANTIZED LLAMA
Percentage of correct Answer 0.53 0.62 0.47

Percentage of correct or nearly correct answers 0.70 0.77 0.79
Mean time 24 s 79 s 4.67 s

Table 4.3: Results of the generation test with the final pipeline

35

Experimental validation

4.4.2 Choosing the embedding model
Another key model in the RAG pipeline is the embedding model, used to store
chunks in the vector database. Following the approach taken for LLMs, I selected
only open source or open-weighted models available on Hugging Face. In particular,
I examined the models that rank at the top of the MTEB leaderboard.
Before being tested on business documents, these models were evaluated on an
Italian and an English document to obtain a general overview of their performance.
I tested both models that showed excellent performance in English and one that
stood out for excellent performance in languages other than English.

Alibaba-NLP/gte-large-en-v1.5

A first model tested was Alibaba-NLP/gte-large-en-v1.5, hereafter referred to as
gte-large, which supports a context length of up to 8192 tokens and it is based on
the BERT encoder architecture. It was trained exclusively on English data and has
434 million parameters. The model generates vectors with a dimension of 1024.

sentence-transformers/all-MiniLM-L6-v2

The sentence-transformers/all-MiniLM-L6-v2, hereafter referred to as Mini , model
maps sentences and paragraphs in a vector space of size 384. It supports a maximum
of 256 tokens and has been trained on over a billion data points. The model has
22.7 million parameters.

BAAI/bge-large-en-v1.5

The BAAI/bge-large-en-v1.5 model, hereafter referred to as Bge, generates 1024-
dimensional dense vectors. It can process sequences with a maximum length of 512
tokens and uses 335 million parameters.

intfloat/multilingual-e5-large

The intfloat/multilingual-e5-large model, hereafter referred to as Multi, has 24 layers
and produces embeddings with a size of 1024. It has 560 million parameters and
was initialised from xlm-roberta-large, with subsequent training on a multilingual
dataset of approximately 100 languages.

llama3/phi3

I evaluated Phi 3 and LLaMA 3 to generate embeddings to match their respective
LLMs, but ultimately decided not to use them. These models are primarily designed
for text generation, which means that their architecture and training are optimised

36

Experimental validation

to produce smooth and consistent text, rather than to create efficient numerical
representations. As a result, they require more computational resources, making
the process slower and more expensive than models developed specifically for
embedding.

Alibaba-NLP/gte-Qwen2-7B-instruct

The Alibaba-NLP/gte-Qwen2-7B-instruct, hereafter referred to as Qwen, is the
largest of the embedding models tested, with a size of 7.6 billion parameters and
an embedding size of 3584. It supports a maximum of 32,000 input tokens, thus
offering considerable processing capacity. Moreover, it belongs to the same family
as gte-large.

Results

Phi and LLaMA were initially tested, but it was quickly decided to switch to other
models due to their nature. At the beginning of the tests, it became apparent that
Qwen required a lot of processing time and could not be used with the GPU due
to hardware limitations, also considering the use of other models in the pipeline.
The other models were tested on one document in Italian and another in English,
and their results are shown in Tables 4.5 and 4.4 respectively. In this case, we asked
many questions for each document and I considered the times when the model
retrieved the best chunk as the first document. The data show that the gte-large
model performed very well in English compared to the other models. Although it
provides acceptable results in Italian, the best in this language turns out to be the
Multi model, justified by the fact that it was trained on a large set of languages.
Therefore, for the subsequent experiments, these two models were chosen according
to the language of the input data. With regard to the time taken by the models to
return the chunk, all models achieved an acceptable result. So the time did not
influence the evaluation much.

gte-large bge mini multi
Within 1st 0.65 0.6 0.35 0.55

Time 1.87 1.38 1.098 2.04

Table 4.4: Results of the test of the embedding models with the English document

37

Experimental validation

gte-large bge mini multi
Within 1st 0.4 0.6 0.5 0.7

Time 1.71 1.4 1.12 1.99

Table 4.5: Results of the test of the embedding models with the Italian document

38

Experimental validation

4.4.3 Choosing the vector db

A vector database stores, manages and indexes high-dimensional vector data. Data
are stored as arrays of numbers called ‘vectors’.
Vector databases are useful for three main reasons:

• Vector storage
Vector databases store the outputs of an embedding model, the vector em-
beddings. They also store each vector’s metadata—such as description and
data type—which can be queried by using metadata filters. By storing these
embeddings, the database enables quick retrieval during a similarity search,
aligning the user’s prompt with a corresponding similar vector embedding.

• Vector indexing
Vectors need to be indexed to accelerate searches within high-dimensional
data spaces. Vector databases create indexes on vector embeddings for search
functions. The vector database indexes vectors by using an ML algorithm.
Indexing maps the vectors to new data structures that enable faster similarity
or distance searches between vectors.

• Similarity search based on querying or prompting
Query vectors are vector representations of search queries. When a user queries
the chatbot, the model computes an embedding of the query or prompt. The
database then calculates distances between query vectors and vectors stored
in the index to return similar results. Databases can measure the distance
between vectors with various algorithms, such as nearest neighbor search.
Measurements can also be based on various similarity metrics, such as cosine
similarity.[2]

Two different vector databases were tested to see which one performed better.

Faiss

FAISS (Facebook AI Similarity Search) is an open-source library developed by
Facebook AI Research for efficient similarity searching and clustering of dense vector
embeddings. It offers a collection of algorithms and data structures optimised for
different types of similarity search, enabling fast and accurate retrieval of nearest
neighbours in high-dimensional spaces. Written in C++, FAISS provides complete
wrappers for Python and implements some of the most useful algorithms on GPUs
as well.[3, 4]

39

Experimental validation

Qdrant

Qdrant is an open-source vector similarity search engine and database designed to
efficiently handle high-dimensional data. It enables fast and accurate searching in
large collections of vector embeddings, making it ideal for tasks based on semantic
retrieval. It was chosen, in addition to Faiss, because, unlike the latter, it natively
supports hybrid searching, combining semantic and keyword searching. [5]

Result

Although Qdrant offers some interesting features compared to Faiss, such as hybrid
search (keyword-based search combined with semantic search), these could also be
implemented later in a more understandable and manageable way. In addition,
in practical use, no significant difference emerged between the two databases, so
it was decided to continue with Faiss, already used in the initial tests, due to its
familiarity and ease of use. This is therefore a purely personal choice.

4.4.4 Choosing the similarity distance
After testing and making a decision regarding the vector database, it remains to
choose a metric to calculate the distance between two vectors, which will be used
during the search phase. The available options include the similarity functions
already mentioned in the section.

Euclidean distance

It is the most intuitive metric for measuring the minimum straight-line distance
between two vectors in a multidimensional space. However, its disadvantage lies
in the ‘curse of dimensionality’, as the computational complexity increases with
increasing dimensions. The lower the value of the Euclidean distance, the greater
the similarity between the vectors.[6]

d(a, b) =
öõõô nØ

i=1
(ai − bi)2

Where:

• a = (a1, a2, . . . , an) is the first vector.

• b = (b1, b2, . . . , bn) is the second vector.

• n is the dimension of the vectors.

• d(a, b) represents the Euclidean distance between the vectors a and b.

40

Experimental validation

Inner product

This method is typically used to search for the maximum inner product in recom-
mendation systems. The norm of the query vectors does not affect the ranking of
the results. Similar to cosine similarity, given that the vectors are normalized.[7]

MIP(a, b) = max
b∈D

a⊤b

Where:

• a is the query vector.

• b ∈ D represents the vectors in the database.

• a⊤b is the dot product (or inner product) between the vectors a and b.

Results

These two metrics were tested on company documents and the results can be
summarised in Table 4.6. The Euclidean distance is the default metric for the Faiss
database that was chosen to be used, while the maximum inner product is another
metric that Faiss allows to be used. Cosine distance is also a possibility, but was
not tested as it would have returned similar values to the inner product, given that
vectors are normalized. As can be seen from the table, the results between the
two methods show little difference, especially considering the first four documents
returned. However, Faiss’ default distance obtains better results, so this was chosen.

MAXINNER Euclidean(Faiss default)
within 1st 0.55 0.65
within 4th 0.7 0.75

Table 4.6: Results of the similarity test

41

Experimental validation

4.4.5 Choosing the preprocessing phase
Document preprocessing is a fundamental step in Retrieval-Augmented Generation
(RAG). There are several techniques that can be applied, depending on the type
of documents and their characteristics. Not only does this process improve model
performance, but it also ensures greater consistency and relevance in generative
interactions.

Tokenization

One of the main preprocessing techniques in NLP is the tokenization and removal
of stop words, i.e. the division of the text into units and the elimination of words
that are not essential to identify the main topic. Although this technique is
essential for simpler approaches, such as keyword search, it is useless and sometimes
counterproductive for more complex methods, such as semantic search. For this
reason, it was decided to avoid this type of processing.

Conversion into pdf

The documents used with this chatbot have different formats, mainly .doc, .docx
and pdf, which requires different pre-processing with different libraries and leads to
different text extraction methods. In order to resolve the differences in text format-
ting, especially for tables between Word and PDF documents, it was decided to
convert all non-PDF documents into this format. Subsequently, several packages/-
modules for extracting text from PDFs were tested, including PyPDF, PyMuPDF
and PDFPlumber. All loaders showed good performance, but PDFPlumber proved
to be the best at textual formatting of tables, thus reducing the need for further
processing.

Recursive Character Text Splitting

Syntactic division is a technique in which documents, from which text is extracted,
are divided on the basis of special characters defined in advance. The choice of
separating characters depends on the language and grammatical structure to be
analysed. It is also possible to set a minimum or maximum number of characters
for each chunk, as well as the maximum number of overlapping characters between
consecutive chunks.
In my case, the chosen separation characters were:

• ’\n’

• ’\n\n’

• ‘.’

42

Experimental validation

• ‘\uff0e’ (Fullwidth full stop)

• ‘\u3002’ (Ideographic full stop)

I then tested two different sets of parameters:

• chunk size=2000, chunk overlap=200

• chunk size=400, chunk overlap=200

This technique is very simple and may be sufficient for documents of simple
structure.

Semantic chunking

Semantic chunking is a technique that divides a text into blocks based on semantic
meaning, rather than fixed rules such as the number of characters. It uses semantic
embeddings, vector representations of text that capture meaning, to compare
different parts of the text and group similar ones together. This approach allows
blocks of text dealing with related concepts to be kept together, improving content
coherence.
In the procedure, the text is divided into basic units (such as single sentences or
windows of 3 consecutive sentences). For each unit, an embedding is generated.
The embeddings are then compared to measure the semantic distance between
consecutive sentences: the greater the distance, the more different the concepts are.
When the difference between two embeddings exceeds a predefined threshold, a
breakpoint is considered and the text is split into separate chunks. This makes it
possible to separate portions of text dealing with different topics.
There are several methods for defining the breakpoint, the most common of which
include :

• Percentile: The breakpoint is set to a predefined percentile, 85 in my case. If
the difference between two embeddings exceeds this value, the text is split.

• Standard deviation: The threshold is based on the number of standard devia-
tions from the mean of the differences. If a difference is greater than the set
threshold, the division is carried out.

Translation and splitting

Since the LLM and embedding models used in this project were mainly trained
on English data, it was decided to translate the texts of the documents to make
them more similar to the training set. However, this led to a problem: in order to
maintain an open source or otherwise free approach, the freely available translators

43

Experimental validation

all have limitations on the number of characters that can be translated at once. Of
the models tested, Google’s translator was chosen because it offered the best ratio
between quality and the maximum number of characters that could be translated,
i.e. 5000.
Consequently, it was logical to apply the translation after splitting the texts into
chunks, rather than before. Although the division by number of characters presents
no problems, the semantic division created difficulties, as in the basic version there
is no parameter for the maximum number of characters in the chunks. Changing
the semantic division parameters affects the size of the chunks, but not enough to
ensure that all of them remain under the 5000 character limit.
To solve this, it was decided to modify the syntactic splitting algorithm by intro-
ducing a parameter for the maximum length. In this way, when a chunk exceeds
the set threshold, it is further subdivided, using either a new semantic division or a
character division, thus respecting the 5000-character limit. This approach allowed
the documents to be translated correctly, significantly improving performance.

Addition of file name and abbreviations and date processing

In an attempt to improve the performance of the chatbot, considering that it is
intended for business use only, we tried to identify and exploit useful relationships
between documents.

• Processing of dates: An improvement was found when responses contained
dates expressed in the form ‘dd name of the month yyyy’ instead of the format
‘dd/mm/yyyy’. Consequently, it was decided to expand all dates in this format
within the chunks.

• Abbreviations: Given the frequent use of abbreviations in documents, a set
of abbreviations was created with the relevant explicit words, which were
replaced during preprocessing.

• File names: Since document names are very descriptive, clearly indicating
the content, a preprocessing was applied that pastes the file name at the end
of each chunk. This approach helps to retrieve the correct chunk even when
there are similar paragraphs in different documents.

Footer removal and text merging

Following the same principle as previously applied, most documents had a footer at
the end of each page containing company information and the like. It was therefore
decided to remove these footers using regular expressions. This made it possible
both to reduce the size of the chunk dataset and to improve semantic division, as

44

Experimental validation

footers often caused premature division of text blocks, interrupting segments that
dealt with the same topic.
The preprocessing process involved removing footers and joining consecutive chunks,
based on punctuation parameters. If a block preceding a footer ended without
punctuation or with a comma, it was merged with the next one. Conversely, if
a block ended with a full stop or a large space, it was not merged with the next
chunk.

Results

The preprocessing phase is a crucial part of the pipeline, as good data preparation
can significantly improve results. For this reason, much attention was paid to this
phase, testing different strategies for dividing documents into chunks and various
text processing techniques.

Starting with the simplest method, i.e. the division of documents by number of
characters, two sets of parameters were tested on business documents in Italian,
using the modified MRR (Mean Reciprocal Rank) metric. The results of these
tests, together with those of the semantic division technique, are summarised in the
table 4.7, where a simple search based on the MMR was employed. With regard to
character division, it was observed that a larger number of characters improved
the results, probably due to the increased context. Semantic division without size
constraints proved to be slightly better, following the same logic. Therefore, I
focused further on this methodology and tried to refine it.

Considering that LLM models perform better in English, it was decided to
translate the chunks into English, imposing a limit of 5000 characters. To respect
this constraint, the semantic division was modified in two ways: either with an
iterative semantic division reducing the percentile by 15 points until the limit was
respected, or with a character-based division with a chunk size of 2000. Both
options were tested, and the results, visible in the table 4.8, were obtained using a
search with MultiQuery and a subsequent reranking. Again, the differences between
the methods are small, but character division showed better results. Furthermore,
this approach is more deterministic and less time-consuming, as semantic division
requires an uncertain number of iterations to reach the 5000-character limit.

After optimising the division technique, I focused on text processing. In addition
to the initial conversion of all documents into PDF format, the first pre-processing
phase involved the transformation of abbreviations and dates, and the addition
of the document name at the end of each chunk. This phase led to a clear
improvement, with satisfactory results for the creation of a chatbot based on open
source templates, as shown in the 4.9 table, where several preprocessing processes
were applied with a hybrid MultiQuery and BM25 search followed by reranking.

45

Experimental validation

Subsequently, to address the problem of footers on most pages, a further prepro-
cessing step was introduced to remove footers and merge consecutive pages that
dealt with similar topics. Contrary to expectations, as can be seen in the table, this
preprocessing worsened the results compared to the first phase, with even lower
performance than the simple semantic division.

Consequently, it was decided to adopt semantic division as the preprocessing
pipeline, with the possibility of resorting to character division if the 5000-character
limit was exceeded. The text processing of these chunks includes the transformation
of abbreviations and dates, as well as the addition of the document name, previously
converted to PDF.

Character with size of 400 Character with size of 2000 Semantic
Within 1st 0.3 0.4 0.45
Within 4th 0.35 0.45 0.5

Table 4.7: Results of semantic and character level chunking comparison using
MMR.

Sem(rec) Sem(sem)
Within 1st 0.6 0.55
Within 4th 0.75 0.7

Table 4.8: Results of comparison between semantic division with 5000 character
limit using a subsequent semantic division and at character level, using a search
with Multiquery and reranking.

Sem(rec) Sem(rec)+preprocessing Sem(rec)+preprocessing+foooter
Within 1st 0.6 0.71 0.31
Within 4th 0.75 0.94 0.51

Table 4.9: Results of the comparison of different text processing, using a search
with MultiQuery and reranking.

46

Experimental validation

4.4.6 Choosing the reranker

Reranking is a process of re-evaluating and reordering retrieved documents according
to their relevance to a query, with the aim of improving the accuracy and quality
of the results. This technique is particularly important in advanced language
processing, where it allows optimising information retrieval and aligning answers
to user or domain-specific needs.
Reranking is usually implemented in two-phase retrieval systems:

• First phase (retriever): An embedding model, or bi-encoder, quickly retrieves
a set of relevant documents from a large dataset. This model is very fast
because it pre-calculates the document vectors before the query, compressing
all possible interpretations of the document into a single vector. When a
query arrives, only the query vector is computed, which is compared with the
document vectors via metrics such as cosine similarity. However, this process
can lead to information loss, as the model cannot adapt the meaning of the
document to the specific context of the query.

• Second step (reranker): A reranker model, or cross-encoder, reorganises these
documents based on a deeper and more precise analysis. It examines each
query-document pair in real time, calculating a similarity score to establish
actual relevance. This model, performs new processing during the query,
analysing query and document together. This avoids information compression,
making the result more accurate, but at the expense of speed, as each query-
document pair requires full computation.

Thus, bi-encoders are fast but less accurate, because the compression of data into
vectors results in a loss of important details. In contrast, cross-encoders provide
much more accurate results, as they evaluate documents according to the specific
query, but this process is slower.[8]

Without reranking

In the initial phase of the pipeline, a methodology without reranking was adopted,
using a baseline without this component so that the performance of the pipeline
could then be evaluated once the reranking model was added.

BAAI/bge-reranker-base

This reranking model, with 278 million parameters, supports both Chinese and
English.

47

Experimental validation

BAAI/bge-reranker-large

With 560 million parameters, this reranking model is a larger and more powerful
version of its predecessor, also capable of handling Chinese and English.

With langchain and wothout langchain

LangChain is a library widely used with LLM and NLP, as it simplifies the
implementation of various tasks.
The testing of the reranking task with the two previously described models was
performed in two modes: one using the LangChain library and the other applying
the model directly. Although both modes produced correct results, the application
without the use of LangChain proved to be more effective, probably due to the
library’s internal mechanisms. However, in terms of execution time, the two
solutions were similar. [9]

Results

Table 4.10 summarises the results of the three options tested: without reranking,
with the bge base model and with the bge large model, indicating the percentage
of times the correct chunk is returned as first or within the first 4 results.

As one would expect, reranking improves performance compared to no reranking.
The results of the two models, bge base and bge large, are very similar, but bge large
was chosen because of its slight advantage over bge base. Furthermore, although
bge large is larger in size, both models remain small enough to be easily run on
GPUs.

No Rerank Bge Base Bge Large
Within 1st 0.5 0.6 0.65
Within 4th 0.65 0.75 0.75

Table 4.10: Results of the rerank model comparison.

4.4.7 Keyword and Hybrid Search
Keyword-based search, also known as sparse vector search, relies on generating
sparse embeddings where most values in the vector are zero except for a few
non-zero values. These sparse embeddings are created using algorithms such as
explained in 2.2.1 In a keyword-based search the main phases are:

• Preprocessing: The search query and documents are preprocessed to extract
relevant keywords and remove noise.

48

Experimental validation

• Next, the other steps are identical to the semantic search, but with a different
embedding algorithm.

Sparse vectors are particularly effective in domains and scenarios where there are
many rare keywords or specialised terms. Therefore, in contexts such as this chatbot
with technical words, both in the technology and business fields, they are very useful.
Furthermore, this methodology is designed to be applied especially to temporal
searches, as an algorithm based on keywords is more likely to correctly identify a
paragraph containing a specific date than a model based on text meaning.[10, 11]

The idea is to combine these two methodologies, as they address the search problem
in different ways, thus allowing each to compensate for the weaknesses of the other.

Initially, sparse vector search alone is tested and, once good results are obtained,
both techniques are integrated, thus creating a hybrid search approach.

Results

The idea of also using a keyword search was considered from the outset. As can
be seen in the 4.11 table, a test was conducted with character division using the
MRR metric. However, the results were disappointing, as the keyword search did
not add any significant information compared to the semantic search. The same
result was obtained with semantic division without preprocessing.

With the integration of semantic division and preprocessing, as shown in the
table, the combination of the two search modes produced a significant increase
compared to the exclusive use of the MMR. Consequently, it was decided to adopt
a hybrid search.

Parameters metric MMR BM25 MMR+BM25

Character chunking with size of 2000 within 1st 0.4 0.15 0.40
within 4th 0.45 0.25 0.45

Sem(rec) without preprocessing within 1st 0.55 0.2 0.55
within 4th 0.65 0.4 0.65

Sem(rec) with preprocessing within 1st 0.55 - 0.65
within 4th 0.76 - 0.88

Table 4.11: Results of the comparison between semantic, kewword-based and
hybrid search.

49

Experimental validation

4.4.8 Searching with MMR
The similarity search returns the answers closest to your question. However, to
provide the model with more complete information, it may be useful not to focus
exclusively on the most similar texts.

The idea behind using MMR (Maximum Marginal Relevance), as employed in
text summarization, is to reduce redundancy and increase diversity in the results.[12,
13]
The operation is quite simple:

• First, we use similarity search to obtain the most similar documents to the
query, denoted by fetch_k.

• Next, we select from these the k most diverse documents.

This can be summarised with the following formula:

MMR = arg max
Di∈R\S

C
λ · sim(Di, Q) − (1 − λ) · max

Dj∈S
sim(Di, Dj)

D
(4.1)

where:

• Di is a candidate document.

• R is the set of documents retrieved.

• S is the set of selected documents.

• sim(Di, Q) is the similarity between the document Di and the query Q.

• sim(Di, Dj) is the similarity between documents Di and Dj.

• λ is a balancing parameter between relevance and diversity.

Results

Although this technique is among the simplest, as shown in Table 4.12, it performed
more than satisfactorily both at the beginning of the tests, using only the semantic
chunker, and in the final phase, combined with the hybrid search. Compared with
more complex techniques such as MultiQuery and Hyde, although it performed
less well, it still maintained good results, distinguished above all by a significantly
shorter average execution time than the other two methods.

Considering therefore the good performance and short response times, which
are ideal for the creation of a chatbot, the exclusive use of MMR was chosen as the
final solution for the chatbot.

50

Experimental validation

Pre-processing Metric MMR HyDE MultiQuery

Semantic Chunker Within 1st 0.45 0.4 0.3
Within 4th 0.5 0.45 0.4

Sem(Rec) BM25
Within 1st 0.65 0.71 0.71
Within 4th 0.88 0.91 0.94
Mean time 0.67 s 20.7 s 50.23 s

Table 4.12: Results of the comparison between MMR, MultiQuery and HyDE

4.4.9 Searching with Hyde
Hypothetical Document Embeddings(HyDE), instead of focusing on the similarity
between query embeddings, focuses on answer embeddings. In practice, it generates
a ‘hypothetical’ answer with the help of an LLM model (such as GPT-3) and then
looks for a match in the document embeddings.
However, this approach has a limitation: it does not always guarantee optimal
results. For instance, if the subject matter is completely unknown to the language
model, the effectiveness of the method decreases, increasing the risk of producing
incorrect information.
A pre-trained LLM on specific documents would be an ideal component for the
application of this method. In my case, however, as I had neither a large test
dataset nor the hardware resources to fine-tune a model, the task was tested using
the same LLM used to generate the answers. This may seem counterintuitive, but
the ideas behind the test are that:

• in some cases, the questions asked by the users to the chatbot might be rather
general or not too specific. An LLM trained on a wide variety of data could
then provide an answer similar to the correct one, incorporating details that
the research phase could refine.

• that drove the test is related to the generation of words that differ from the
initial question, even if not completely accurate, but still remain relevant to
the topic of the question. This could lead to a broader and more diverse search,
a principle on which the MultiQuery method, described in section 4.4.10, is
based.

Results

Since this method was not fully implemented, as no finetuning was performed, the
results were nevertheless more than decent, as shown in Table 4.12, where it is
compared with MMR and MultiQuery.

51

Experimental validation

Hyde performed very well, even matching MultiQuery in terms of performance.
However, with an average execution time of 20 seconds in the final pipeline, it is
not an optimal choice for the needs of this project.

4.4.10 Searching with MultiQuery
In the application of a simple search, the pipeline may only return documents
that contain exactly the words in the query. This can become problematic when
the documents and query use synonyms for the same concept or similar terms for
different concepts. In these cases, the use of a query transformation, similar to
the one implemented by HyDE, can be useful. The Multiquery method generates
several variations of the original query, allowing more facets of the user’s intent to
be captured. This broadens the search and makes it possible to retrieve documents
that may not contain exactly the keywords, but still offer relevant information.[14]
To implement this approach, an LLM model is used to generate new query variants
from the initial query provided by the user.[15]
In this project, the same model was used to generate the query text, but with a
different prompt:

"""<|user|>You are an AI assistant. Your task is to generate 5 different ver-
sions of the user’s provided question to retrieve relevant documents from a vector
database. By generating multiple perspectives on the user’s question, your goal
is to help the user overcome some of the limitations of similarity-based search.
Provide these 5 alternative questions separated by new lines. Original question:
question<|end|><|assistant|>"""

To get the most out of this method, we performed the tests by also varying
the main parameter, i.e. the number of new questions generated. Furthermore, it
was possible not to include the original question, using only the derived questions.
However, this option was quickly discarded as, despite the quality of the LLM
models used, the derived questions might not accurately reflect the user’s intent.

Results

This is one of the most complex techniques within RAG, and as expected, it
performed best in terms of performance, as shown in the table 4.12, where it is
compared to Hyde and MMR.

Although it provided the best performance in information retrieval, reaching
almost the maximum for retrieval of the correct chunk within the first 4 results
with the final preprocessing pipeline, the complexity of this method makes it slow,
with an average execution time of 50 seconds. This slowdown is partly due to a

52

Experimental validation

poor hardware configuration. With better hardware, however, this technique could
become the ideal choice for a chatbot, combining excellent performance with more
adequate response times.

4.4.11 ParentRetriever
The choice of chunk size when splitting documents at character level involves
balancing a trade-off: shorter chunks make embeddings more accurate, while longer
chunks allow the full context of the document to be maintained, preventing meaning
from being lost between chunks.
The Parent Document Retriever addresses this problem by dividing documents into
smaller chunks and storing them in the leaves of a tree structure. The top nodes
contain larger portions of text that group the smaller chunks together. During
retrieval, information is searched in the smaller chunks, but the system returns the
larger documents to preserve context and improve search efficiency.[16, 17]

Results

This technique, although among the most complex and successfully used in high-
performance RAG pipelines, did not yield the same results in this project, especially
when compared to the preprocessing described above applied to documents. Since
it did not produce the expected results, it was decided to maintain the already
established pipeline.

4.4.12 Prompt selection
With the introduction of the new LLMs (Large Language Models), a new area has
emerged within machine learning called ‘Prompt Engineering’, the aim of which is
to optimise the prompts used with these models to improve responses and maximise
performance. This highlights one of the main challenges of LLMs: even a single
modified word in the prompt can lead to very different results.
In this project, we therefore experimented with various prompts, also applying
advanced techniques. We started with a generic prompt:
"You are a helpful assistant that extracts informations from a given text.
Only answer to the given question with the information you can find here:"

few-shot, one-shot and zero-shot

As described in section 2.5, some Prompt Engineering techniques involve the
addition of zero, one or more examples within the prompt to direct the model
towards a predefined response. Typically, no examples are added in this type of

53

Experimental validation

prompt, but we conducted a test by including one. This is because the models are
already trained to answer questions from users.

200 dollars version prompt

One technique that highlights the indeterminacy of neural network-based models is
the addition of a reward or penalty. In this case, the insertion of a $200 ‘tip’ to
incentivise a more accurate response was tested.[18]
This solution was explored because, with the use of a simpler prompt, not entirely
correct or incomplete answers were obtained, even though the right chunk was
selected.
The prompt used was as follows:

"You are a helpful assistant that extracts informations from a given text.
I will give you 200 $ if you respond in a detailed manner and verify that the answer
contains all the information requested by the question without adding anything
unnecessary.
Follow these steps:
Carefully read the question.
Carefully read the answer.
CHECK THAT THE ANSWER CONTAINS ALL THE INFORMATION RE-
QUESTES BY THE QUESTION AND NOTHING MORE.
Ensure that the answer does not contain any additional, unnecessary information
and that the information in the answer is not contradictory.
Only answer to the given question with the information you can find here:"

Results

Since the choice of prompt is not entirely deterministic, it is difficult to determine
which is the best option.

However, using the ‘$200 tip’ prompt and specifying to the model, in capital
letters, to double-check, gave more accurate results and more complete answers.
Therefore, it was decided to adopt this prompt, without resorting to one-shot or
few-shot methods.

4.4.13 Choice of Generation
The RAG pipeline can be divided into two main components: the retrieval part and
the generation part. While the retrieval phase is crucial and requires more attention
to optimise the process, the generation phase offers less room for variation, as it
has fewer models than retrieval and fewer techniques that can be applied.

54

Experimental validation

Compression

The most common technique used in this task is Compression, which is particularly
useful when the chosen model has a limited token window or when the available
hardware resources are not particularly powerful.
In this process, once the documents relevant to the query have been retrieved,
they are processed by a compressor that selects only the parts most relevant to
the query, thus reducing the overall size. This approach can lead to a significant
reduction in data, especially in the case of very large documents, where only a few
lines contain the necessary information.

Results

The compression technique and its application also depend on the choice of model
and the number of tokens that can be handled. As shown in Table 4.13, a
comparison is presented between the phi 3 and llama 3 quantized models, using 2 or
4 documents. For llama, it was not necessary to test the option with 2 documents,
since with 4 documents compression was not necessary, and a larger number was
not tested to avoid confusing the LLM model.

In the case of phi 3, having a smaller input window, compression was necessary
when using 4 documents. This configuration performed better than quantized
llama, confirming the effectiveness of compression and the benefits it can bring to
RAG.

However, as quantized llama was chosen for its significantly faster response times
than phi 3 (almost five times faster, as can be seen in the table), it was decided
not to use compression, as it is not necessary for quantized llama .

Model metric 2 Doc 4 Doc

Phi

compression no yes
correct 0.41 0.53

correct or nearly correct 0.70 0.70
mean time 17 s 24 s

Quantized Llama

compression - no
correct - 0.47

correct or nearly correct - 0.79
mean time - 4.67 s

Table 4.13: Results on compression

55

Experimental validation

4.5 Text-to-sql
Unlike language models for generic text generation, for which there are many good
open source alternatives and new ones are constantly emerging, in the text-to-SQL
task there are not many performing models. In fact, there is no main model that
stands out from the others. With this in mind, the research focused mainly on
Hugging Face. Two models were selected that show good performance in commonly
used tests for this task, with the former being much better known and recommended
than the latter.

4.5.1 Sql-coder

The defog/sqlcoder-7b-2 model is a text-to-SQL model developed by Defog, Inc,
with 6.74 billion parameters. It was refined from CodeLlama-7B, a model based on
llama 2. This model was evaluated using SQL-Eval, a PostgreSQL-based evaluation
framework created by Defog to test and align the model’s capabilities. However,
a significant limitation is that the model was only trained on PostgreSQL, which
could affect its performance with other SQL databases.[19]

Application

According to the model’s Hugging Face page, there is a specific prompt on which
the model has been trained. The prompt requires the relational schema to be
provided and the question to be expressed twice: once at the beginning and once
at the end of the prompt.
Below is the prompt used:

Task
Generate a SQL query to answer [QUESTION]{user_question}[/QUESTION]

Database Schema
The query will run on a database with the following schema:
{table_metadata_string_DDL_statements}

Answer
Given the database schema, here is the SQL query that [QUESTION]
{user_question}[/QUESTION]
[SQL]

56

Experimental validation

Results

In order to test the performance of this model, a test database was used on which
a number of queries were carried out with two different prompts, which differed in
some final sentences.

The variation of prompts produced different results, as shown in Table 4.14,
thus confirming the importance and risks associated with the choice of prompt for
these models. However, since the model was trained exclusively on PostgreSQL
queries and the decision was made to use a SQLite database, it was not possible to
change the query type except by fine-tuning, which cannot be done due to the lack
of hardware and data.

- Prompt 1 Prompt 2
percentage of correct queries 0.65 0.5

Table 4.14: Test results with the Sql-coder model

4.5.2 PipableAI/pip-library-etl-1.3b
The PipableAI/pip-library-etl-1.3b model has 1.35 billion parameters and was
developed using advanced techniques such as softmax cross entropy, a modified
version of policy gradient and Q loss, optimised in an Expectation-Maximisation
(EM) context. Thanks to these methodologies, the performance for the mentioned
tasks is comparable to that of much larger language models, such as GPT-3.5,
thus demonstrating considerable efficiency and capacity despite the model’s smaller
size.[20]

Implementation

The implementation of this model to our task was rather simple, as no complex
preprocessing had to be implemented. The retrieval of the data to be supplied to
the model consists of the required query and the relational database schema of
the tables containing the information. This can be done a priori or by retrieving
metadata and/or tables depending on the database used.
Since the model is trained on a large amount of data, consisting of schema and
query pairs, the prompt used to query the model is specific and provided by the
Hugging Face page. The basic prompt is as follows:

“””<schema>schema with cols described</schema>
<question>Write a sql query to</question>
<sql>"""

57

Experimental validation

From this prompt, phrases can be added at the beginning to address the model
according to one’s needs. However, as with other LLMs, this option should be
treated with caution, as it could lead to unexpected results.
With this in mind, two slightly different prompts were created for the two chatbot
tasks: one for creating the table and one for generating the graph.
For generating the tables:
"""Generate a simple SQL query from the schema mentioned for the following
question.
If you don’t find the a possible query, return SELECT ’cinoooo’ AS response;
<schema>schema</schema>
<question>question</question>
<sql>"""

For generating the charts:

"""Generate a simple SQL query from the schema mentioned for the following
question.
If you don’t find the a possible query, return SELECT ’cinoooo’ AS response;
If there are only 2 column, then you must put the more important one as second
one. <schema>schema</schema>
<question>question</question>
<sql>"""

The version of the graph prompt is quite limiting, as the aim was to demonstrate
the possibility of creating graphs, focusing on simple types such as lines and bars,
using only two sets of data.

Results

To evaluate this model, it was tested on a test SQLite database and a few queries
were made.

As shown in table 4.15, the length of the returned tables was correct in all
cases, but the number of columns was greater than expected in the correct query.
However, this did not result in a significant error. Furthermore, although the
average response time is high, it is still reasonable for use in this type of software.
Therefore, it was decided to adopt this model as the final solution for producing
search queries.

58

Experimental validation

Equal output to less than one distinction Equal output length Query generation time
50% 100% 8.032 s

Table 4.15: Test results with the PipableAI/pip-library-etl-1.3b model

4.5.3 Vanna ai
Vanna ai is a Python package designed to use retrieval augmentation to generate
accurate SQL queries for your database by exploiting large language models (LLM).
The operation of Vanna ai is simple and consists of two basic steps: first you train
a RAG model on the specific data, and then you can pose queries to get the SQL
queries ready to execute.
The vn.train(...) method allows you to train the system, enriching the reference
corpus with various types of information, such as DDL statements to understand
table structure, documentation strings concerning the database or industry, and
SQL queries frequently used in your organisation. In addition, pairs of SQL
questions and queries can be provided, which helps the system better interpret the
context of questions, especially in ambiguous situations.
After training, the function vn.ask(...) allows you to ask questions to the system,
which uses the reference corpus to generate the required SQL queries. Before you
can start making queries, it is essential that the system has adequate training
data available. With Vanna ai, the process of interacting with databases can be
optimised and simplified, making the generation of SQL queries more accessible
and intuitive.[21]

Implementation

Vanna ai provides already written code for some vector databases, LLM and SQL
databases. However, most of these models and databases are chargeable and do
not align with the goal of this project. Therefore, all methods were implemented
by overwriting them in order to ensure correct operation with the models already
in the pipeline. Training was carried out using the relational schema, enriching it
with metadata to improve the retrieval process.

Results

To test this framework, the same database was used to evaluate the pipable model
chosen for query creation, and several queries were made. In all cases, the framework
managed to return the part of the relational schema required for the queries.

This represents a considerable step forward, since the chosen model has a limited
input window and, for large databases, it is not possible to provide the entire
relational schema.

59

Experimental validation

Therefore, especially in connection with the application on the company database,
it was decided to implement this pipeline.

60

Chapter 5

Conclusion

The aim of this project was to develop a chatbot based on machine learning
models capable of answering users’ questions naturally and accurately, using data
from company documents or databases, in order to improve productivity. The
entire pipeline involves a document preparation phase, which is divided into blocks
and transformed into vectors using an embedding model, then stored in a vector
database. When the user makes a request, the system searches for the most relevant
documents using a similarity search between vectors. The retrieved documents are
reordered using a reranking model, based on similarity to the query. The first four
selected documents are then passed on to the text generation model, which uses
the contained information to appropriately answer the user’s query.
In terms of interaction with SQL databases, each table is stored separately in
a vector database, along with any previous queries and their metadata. When
the user poses a query, a process similar to that for documents is applied to the
database tables, retrieving the relational schemas needed to generate the SQL
query via a machine learning model. The generated query is executed and returned
in table or graph form, depending on the user’s needs.

Being designed to assist users in various tasks, the two key parameters to consider
are accuracy and speed of response. An optimal response time should be 2-3
seconds, but values of up to 5 seconds are still acceptable. The main objective
was to achieve the highest possible accuracy. In order to achieve a good balance
between accuracy and speed, the MMR (Maximal Marginal Relevance) algorithm
was used, resulting in an average of 4.67 seconds per response and an accuracy
of 88% in the correct documents selected within the first four. The responses
generated by the language model were considered correct or nearly correct in 79%
of the cases. These results show that the time and accuracy targets were met,
taking into account the limitations imposed by the company’s hardware and the
open source choices made.

61

Conclusion

There are companies and frameworks that allow the creation of similar chat-
bots, but they often use proprietary models with high performance, such as those of
the GPT family, and make extensive use of cloud services for managing documents
and hardware resources, achieving better results thanks to scalable resources. The
solution proposed in this project differs mainly in its cost-effective approach, as
it relies on open source or open-weighted machine learning models using local
enterprise hardware. This approach reduces costs but imposes some limitations in
terms of performance, while still achieving good value for money.

The main challenge faced during the development of the project was the limited
hardware, in particular the inability to run the models entirely on the corporate
GPUs due to the size of the weights, which exceeded the capacity of the two
available 16 GB GPUs. It was therefore crucial to find models that offered the right
balance between size and performance. Consequently, special attention was paid
to document preprocessing, as this stage was less dependent on the GPU. Here
again, the search for optimal preprocessing techniques was complex but essential
to extract the maximum from the data.

Despite the results achieved, some limitations remain unresolved. For instance,
the system struggles to answer queries that require information distributed over
numerous documents or to handle the ever-increasing volume of data, as this would
result in longer search times. However, these limitations do not jeopardise the use
of the chatbot for the specific business target group, consisting mainly of small and
medium-sized enterprises, which could still benefit from the system, even with the
present limitations.

Despite the technical challenges, the chatbot is well suited to the business use
for which it was conceived, especially in contexts of collaboration with business
partners or other companies in the sector. The solution proves ideal for small and
medium-sized companies, which benefit from a cost-effective and high-performance
system. Technical limitations are not a significant obstacle in these cases, given
the scale of use.

As the project is still in the development phase, there are several future per-
spectives that could improve the user experience, such as the implementation of
context retention between answers provided by the chatbot. This would improve the
model’s ability to respond to subsequent requests for clarification, but has not been
implemented as the focus has been on the accuracy of a single answer per question.
Another important step will be to improve the security and privacy of corporate
data by controlling access to documents based on user roles and authorisations.

62

Conclusion

The integration of a RAG (Retrieval-Augmented Generation) model is essential
to reduce the ‘hallucinations’ generated by LLM (Large Language Models) and
ensure answers based on real document sources. Security and privacy management,
especially in document access, will be central to the final phase of the project.
These aspects are crucial not only to ensure the integrity of responses, but also to
address the ethical issues related to the use of artificial intelligence-based chatbots.

The project has demonstrated its potential in improving business productivity and
could be successfully applied in other enterprises. Machine learning technologies,
and in particular neural networks, are becoming key tools for companies that
want to remain competitive. This chatbot represents a concrete example of how
artificial intelligence can be used to optimise processes and increase staff efficiency,
confirming the importance of such technologies in the modern workplace.

63

Bibliography

[1] BBC News Summary. www.kaggle.com. url: https://www.kaggle.com/
datasets/pariza/bbc-news-summary (cit. on p. 28).

[2] What is an vector database? | IBM. www.ibm.com. url: https://www.ibm.
com/topics/vector-database (cit. on p. 39).

[3] Lalithkumar Prakashchand. Similarity Search with FAISS: A Practical Guide
to Efficient Indexing and Retrieval. Medium, June 2024. url: https://
medium.com/@devbytes/similarity-search-with-faiss-a-practical-
guide-to-efficient-indexing-and-retrieval-e99dd0e55e8c (cit. on
p. 39).

[4] Ajithkumar M. Working with FAISS for Similarity Search - Ajithkumar M -
Medium. Medium, Nov. 2023. url: https://iamajithkumar.medium.com/
working-with-faiss-for-similarity-search-59b197690f6c (visited on
10/06/2024) (cit. on p. 39).

[5] Vyom Modi. Building a High-Performance RAG-Based AI with Qdrant, Groq,
LangChain, and DAGWorks Hamilton. Medium, May 2024. url: https://
vyom-modi.medium.com/building-a-high-performance-rag-based-ai-
with-qdrant-groq-langchain-and-dagworks-hamilton-fb1baa7415bc
(visited on 10/06/2024) (cit. on p. 40).

[6] Stepkurniawan. Comparing RAG Part 3: Distance Metrics; (Similarity Index)
in Vector Stores. Medium, Jan. 2024. url: https://medium.com/@stepkurn
iawan/comparing-similarity-searches-distance-metrics-in-vector-
stores-rag-model-f0b3f7532d6f (visited on 10/06/2024) (cit. on p. 40).

[7] facebookresearch. MetricType and distances. GitHub, Jan. 2023. url: https:
//github.com/facebookresearch/faiss/wiki/MetricType-and-distanc
es (visited on 10/06/2024) (cit. on p. 41).

[8] Rerankers and Two-Stage Retrieval | Pinecone. www.pinecone.io. url: https:
//www.pinecone.io/learn/series/rag/rerankers/ (cit. on p. 47).

64

https://www.kaggle.com/datasets/pariza/bbc-news-summary
https://www.kaggle.com/datasets/pariza/bbc-news-summary
https://www.ibm.com/topics/vector-database
https://www.ibm.com/topics/vector-database
https://medium.com/@devbytes/similarity-search-with-faiss-a-practical-guide-to-efficient-indexing-and-retrieval-e99dd0e55e8c
https://medium.com/@devbytes/similarity-search-with-faiss-a-practical-guide-to-efficient-indexing-and-retrieval-e99dd0e55e8c
https://medium.com/@devbytes/similarity-search-with-faiss-a-practical-guide-to-efficient-indexing-and-retrieval-e99dd0e55e8c
https://iamajithkumar.medium.com/working-with-faiss-for-similarity-search-59b197690f6c
https://iamajithkumar.medium.com/working-with-faiss-for-similarity-search-59b197690f6c
https://vyom-modi.medium.com/building-a-high-performance-rag-based-ai-with-qdrant-groq-langchain-and-dagworks-hamilton-fb1baa7415bc
https://vyom-modi.medium.com/building-a-high-performance-rag-based-ai-with-qdrant-groq-langchain-and-dagworks-hamilton-fb1baa7415bc
https://vyom-modi.medium.com/building-a-high-performance-rag-based-ai-with-qdrant-groq-langchain-and-dagworks-hamilton-fb1baa7415bc
https://medium.com/@stepkurniawan/comparing-similarity-searches-distance-metrics-in-vector-stores-rag-model-f0b3f7532d6f
https://medium.com/@stepkurniawan/comparing-similarity-searches-distance-metrics-in-vector-stores-rag-model-f0b3f7532d6f
https://medium.com/@stepkurniawan/comparing-similarity-searches-distance-metrics-in-vector-stores-rag-model-f0b3f7532d6f
https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances
https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances
https://github.com/facebookresearch/faiss/wiki/MetricType-and-distances
https://www.pinecone.io/learn/series/rag/rerankers/
https://www.pinecone.io/learn/series/rag/rerankers/

BIBLIOGRAPHY

[9] MyScale. Enhancing Advanced RAG Systems Using Reranking with LangChain.
Medium, June 2024. url: https://medium.com/@myscale/enhancing-ad
vanced-rag-systems-using-reranking-with-langchain-523a0b840311
(visited on 10/06/2024) (cit. on p. 48).

[10] Csakash. Hybrid Search a method to Optimize RAG implementation. Medium,
Feb. 2024. url: https://medium.com/@csakash03/hybrid-search-is-
a-method-to-optimize-rag-implementation-98d9d0911341 (visited on
10/06/2024) (cit. on p. 49).

[11] Nirant Kasliwal. What is a Sparse Vector? How to Achieve Vector-based
Hybrid Search - Qdrant. Qdrant.tech, 2023. url: https://qdrant.tech/
articles/sparse-vectors/ (visited on 10/06/2024) (cit. on p. 49).

[12] Aditya Kumar. Maximal Marginal Relevance to Re-rank results in Unsuper-
vised KeyPhrase Extraction. Medium, Oct. 2019. url: https://medium.
com / tech - that - works / maximal - marginal - relevance - to - rerank -
results-in-unsupervised-keyphrase-extraction-22d95015c7c5 (vis-
ited on 10/06/2024) (cit. on p. 50).

[13] Mariya Mansurova. RAG: How to Talk to Your Data - Towards Data Science.
Medium, Nov. 2023. url: https://towardsdatascience.com/rag-how-to-
talk-to-your-data-eaf5469b83b0 (visited on 10/06/2024) (cit. on p. 50).

[14] Plaban Nayak. Advanced RAG — Improving retrieval using Hypothetical
Document Embeddings(HyDE). Medium, Nov. 2023. url: https://medium.
aiplanet.com/advanced-rag-improving-retrieval-using-hypotheti
cal-document-embeddings-hyde-1421a8ec075a (visited on 10/06/2024)
(cit. on p. 52).

[15] Multi-Query - Advanced RAG Techniques: Choosing the Right Approach.
Educative, 2015. url: https://www.educative.io/courses/advanced-
rag-techniques-choosing-the-right-approach/multi-query (visited
on 10/06/2024) (cit. on p. 52).

[16] Parent Document Retrieval (PDR) - Advanced RAG Techniques: Choosing
the Right Approach. Educative, 2015. url: https://www.educative.io/
courses/advanced-rag-techniques-choosing-the-right-approach/
parent-document-retrieval-pdr (visited on 10/06/2024) (cit. on p. 53).

[17] How to use the Parent Document Retriever | LangChain. Langchain.com, 2024.
url: https://python.langchain.com/docs/how_to/parent_document_
retriever/ (visited on 10/06/2024) (cit. on p. 53).

[18] Does Offering ChatGPT a Tip Cause it to Generate Better Text? An Analysis.
minimaxir.com, Feb. 2024. url: https://minimaxir.com/2024/02/chatgp
t-tips-analysis/ (cit. on p. 54).

65

https://medium.com/@myscale/enhancing-advanced-rag-systems-using-reranking-with-langchain-523a0b840311
https://medium.com/@myscale/enhancing-advanced-rag-systems-using-reranking-with-langchain-523a0b840311
https://medium.com/@csakash03/hybrid-search-is-a-method-to-optimize-rag-implementation-98d9d0911341
https://medium.com/@csakash03/hybrid-search-is-a-method-to-optimize-rag-implementation-98d9d0911341
https://qdrant.tech/articles/sparse-vectors/
https://qdrant.tech/articles/sparse-vectors/
https://medium.com/tech-that-works/maximal-marginal-relevance-to-rerank-results-in-unsupervised-keyphrase-extraction-22d95015c7c5
https://medium.com/tech-that-works/maximal-marginal-relevance-to-rerank-results-in-unsupervised-keyphrase-extraction-22d95015c7c5
https://medium.com/tech-that-works/maximal-marginal-relevance-to-rerank-results-in-unsupervised-keyphrase-extraction-22d95015c7c5
https://towardsdatascience.com/rag-how-to-talk-to-your-data-eaf5469b83b0
https://towardsdatascience.com/rag-how-to-talk-to-your-data-eaf5469b83b0
https://medium.aiplanet.com/advanced-rag-improving-retrieval-using-hypothetical-document-embeddings-hyde-1421a8ec075a
https://medium.aiplanet.com/advanced-rag-improving-retrieval-using-hypothetical-document-embeddings-hyde-1421a8ec075a
https://medium.aiplanet.com/advanced-rag-improving-retrieval-using-hypothetical-document-embeddings-hyde-1421a8ec075a
https://www.educative.io/courses/advanced-rag-techniques-choosing-the-right-approach/multi-query
https://www.educative.io/courses/advanced-rag-techniques-choosing-the-right-approach/multi-query
https://www.educative.io/courses/advanced-rag-techniques-choosing-the-right-approach/parent-document-retrieval-pdr
https://www.educative.io/courses/advanced-rag-techniques-choosing-the-right-approach/parent-document-retrieval-pdr
https://www.educative.io/courses/advanced-rag-techniques-choosing-the-right-approach/parent-document-retrieval-pdr
https://python.langchain.com/docs/how_to/parent_document_retriever/
https://python.langchain.com/docs/how_to/parent_document_retriever/
https://minimaxir.com/2024/02/chatgpt-tips-analysis/
https://minimaxir.com/2024/02/chatgpt-tips-analysis/

BIBLIOGRAPHY

[19] defog/sqlcoder-7b-2 · Hugging Face. Huggingface.co, 2024. url: https://
huggingface.co/defog/sqlcoder-7b-2 (visited on 10/06/2024) (cit. on
p. 56).

[20] PipableAI/pip-library-etl-1.3b · Hugging Face. Huggingface.co, 2024. url:
https://huggingface.co/PipableAI/pip-library-etl-1.3b (visited on
10/06/2024) (cit. on p. 57).

[21] Vanna.AI Documentation. vanna.ai. url: https://vanna.ai/docs/ (cit. on
p. 59).

66

https://huggingface.co/defog/sqlcoder-7b-2
https://huggingface.co/defog/sqlcoder-7b-2
https://huggingface.co/PipableAI/pip-library-etl-1.3b
https://vanna.ai/docs/

	Introduction
	Related Work
	Chatbot
	Embeddings
	Sparse Vector
	Dense Vector
	Usage
	Application
	Similarity Metrics

	LLM
	RAG
	Prompting
	Text-to-SQL

	Problem Statement and Proposed solution
	Problem Statement
	Proposed solution

	Experimental validation
	Metrics
	Metrics for retriever test
	Metrics for generation test
	Metrics for text-to-sql test

	Dataset
	RAG Dataset
	Embedding Dataset
	Summarization Dataset
	Dataset text-to-sql

	HW Architecture
	RAG
	CHoosing the LLM
	Choosing the embedding model
	Choosing the vector db
	Choosing the similarity distance
	Choosing the preprocessing phase
	Choosing the reranker
	Keyword and Hybrid Search
	Searching with MMR
	Searching with Hyde
	Searching with MultiQuery
	ParentRetriever
	Prompt selection
	Choice of Generation

	Text-to-sql
	Sql-coder
	PipableAI/pip-library-etl-1.3b
	Vanna ai

	Conclusion
	Bibliography

