
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Cognitive Aware Incremental Knowledge
Update of Large Language Models

Supervisors

Prof. Marco MELLIA

Prof. Johan BOYE

PhD Zied BEN HOUIDI

Candidate

Simone CLEMENTE

October 2024

Abstract

Despite remarkable capabilities, Large language models (LLMs) struggle with
incrementally updating knowledge without catastrophic forgetting or indiscriminate
learning. In contrast, humans effortlessly integrate new information, detect conflicts
with existing beliefs, and selectively update their knowledge. This work introduces a
novel paradigm inspired by human brain: Cognitive Aware Incremental Knowledge
Update. We implement and evaluate two key components within existing LLM
architectures: (1) Inner State Awareness, allowing LLMs to classify new information
as novel, familiar, or conflicting; and (2) targeted updates through Differentiated
Plasticity, distinguishing between neurons containing previous knowledge (busy)
and rarely used neurons (free). Through a series of controlled experiments, we
demonstrate the potential benefits of this approach, including improved preservation
of prior knowledge during updates, more effective handling of conflicting information,
and enhanced ability to target specific knowledge for updates. While challenges
remain, particularly in scaling to full-size LLMs and real-world scenarios, our
work provides a promising direction for developing more flexible and adaptable
language models. In this study, we present a detailed overview of the proposed
method, supported by a comprehensive review of the existing literature, a complete
description of the experiments, and an in-depth analysis of our findings.

Summary

Introduction
Large Language Models (LLMs) are a category of neural network models trained on
immense amounts of text data making them capable to understand, generate, and
analyze human-like language through deep learning techniques. Leveraging billions
or even trillions of parameters, LLMs can perform a wide range of language-based
tasks and provide human-like interactions. They serve as the backbone of various
commercial products, such as ChatGPT, Gemini, and Claude, enabling advanced
conversational capabilities and problem-solving skills.

While demonstrating remarkable capabilities across various tasks, LLMs face
significant challenges in real-world deployment and long-term utility due to the
static nature of current training paradigms. Specifically, they present several key
limitations in the ability to adapt and learn continuously:

• Catastrophic forgetting: incorporating new information in LLMs often leads
to erasure of previously learned knowledge. This means that when LLMs are
updated with new data, they tend to overwrite or disrupt existing information,
rather than seamlessly integrating it.

• Indiscriminate learning: LLMs passively accept all training data without the
ability to selectively focus on relevant new information while filtering out
redundant or conflicting data.

• Lack of sparsity: the current training paradigm distributes knowledge uni-
formly across the entire network, making it challenging to apply targeted
updates to specific information without disrupting unrelated knowledge.

On the other hand, humans have the capacity to continuously update their knowl-
edge as they interact with the world. They seamlessly integrate new information,
ignore familiar facts, and actively engage in resolving conflicts with existing be-
liefs before updating their mental models. This cognitive flexibility stems from
several key abilities. Humans exhibit (i) selective attention, focusing on novel

ii

or relevant information while filtering out redundant or irrelevant stimuli. They
readily (ii) identify inconsistencies between new information and existing knowledge
through conflict detection. Humans perform (iii) targeted updates, modifying
specific neural pathways related to new information without disrupting unrelated
knowledge. Lastly, (iv) human brains maintain adaptive plasticity, favouring stabil-
ity of well-established knowledge, and showing more flexibility in case of uncertainty.

In this work we introduce a novel human-inspired learning mechanism into existing
LLM frameworks, creating a platform for experimenting with targeted learning
approaches. Specifically, we test our method in incremental learning [1], where we
evaluate the ability of learning new information while preserving previously acquired
knowledge, and model editing [2] which assesses the effectiveness in modifying prior
model’s beliefs. Our findings pave the way for further research in continual learning,
knowledge representation, and cognitive neuroscience-inspired AI.

Proposed Approach
Our technique builds on the concept of cognitively aware updates, where instead of
universally updating the entire network, we selectively update neurons based on
their specific knowledge content. To implement our method, we require a heuristic
to quantify the knowledge stored within each neuron. For this purpose, we introduce
Historical Features Accumulation (HFA), which aggregates the gradient of the
outputs and the neuron activations from different layers over multiple training steps.
After each training step, we extract the aforementioned features from every neurons
in selected layers, then perform a layer standardization and sum the normalized
features across the training steps, as follows:

HÂn =
TØ

t=1

Al
n − µl

A

σl
A

, HĜn =
TØ

t=1

Gl
n − µl

G

σl
G

where µl
A and σl

A are the mean and standard deviation of activations in layer l, and
µl

G and σl
G are the mean and standard deviation of gradients in layer l. Using such

heuristic as foundation, we next present the two building blocks of our framework:
Inner State Awareness and Targeted Updates with Differentiated Plasticity.

Inner State Awareness
We propose Inner State Awareness as a mechanism for LLMs to classify new
information as novel, familiar, or conflicting with respect to existing knowledge.
Extracting the activations and gradients related to a specific fact, and exploiting
HFA, we generate aggregated features which can lead to a precise classification of
knowledge. Specifically, given a fact x, we aim at classifying it using a classifier C

iii

as following:

C : (x, Â, Ĝ, HÂ, HĜ) → {novel, familiar, conflicting}

Considering that this classifier should work in online environments, we employ
shallow machine learning classifiers such as Support Vector Machine (SVM) and
Random Forest (RF) to provide fast responses.

Targeted Updates with Differentiated Plasticity
Differentiated plasticity is a method for tracking the historical usage of neurons to
identify “free” and “busy” neurons, exploiting the gradient accumulation computed
in HFA. The rationale behind this method is that when a neuron accumulates
gradient, it indicates that its parameters are consistently moving in a specific
direction, progressively integrating new adjustments. Differentiated Plasticity
enables targeted updates to specific neuron groups, offering tailored advantages
based on the type of learning task:

• Free neurons: the group of neurons that accumulate the least gradient
during training. It should be leveraged for incrementally learn new knowledge,
allowing new information to be incorporated while minimizing the risk of
catastrophic forgetting.

• Busy neurons: the group of neurons that accumulate the most gradient
during training. It should be utilized for model editing, allowing for precise
targeting of knowledge that needs modification.

Experiments and results
For verifying the effectiveness of our method, we present three different sets of
controlled experiments. Each experiment covers a specific part of the proposed
framework:

• Familiarity and dissonance detection: this experiment aims at verifying
the capabilities of our method in detecting coherent, dissonant and unfamiliar
knowledge. After building a dataset composed of the three classes of facts,
we train the model on the coherent facts. We then train a classifier to detect
the different classes of facts using the proposed internal states analysis. Our
method reaches 99.8% accuracy in detection proving to be a valid method for
knowledge classification.

• Incremental update: in this experiment we compare targeted update to
traditional fine-tuning for incremental learning. Initially, the model is trained
on a baseline set of facts, representing the knowledge that must be retained.

iv

Next, new facts are incrementally introduced. Across test cases, targeted
updates consistently outperform full fine-tuning. Specifically, updating only
the free neurons yields the best results in preserving prior knowledge, achieving
an accuracy of 98% on the initial set of facts, which is significantly higher
than the 60% accuracy measured after full fine-tuning.

• Model editing: it measures the effectiveness in modifying prior knowledge
(reliability) without compromising unrelated information (locality), while en-
suring the generalization of newly learned concepts (generalization). After
training the model on a foundational set of knowledge to be preserved, we
introduce a new set of facts and proceed to edit them, comparing the perfor-
mance of targeted update with respect to both full fine-tuning and ROME
[3], the current state-of-the-art method. Our results show that modifying
the busy neurons achieves the highest performance, with a reliability of over
99%, comparable to full fine-tuning but with enhanced locality preservation.
Notably, our approach significantly outperforms ROME, particularly when
scaling to larger sets of facts. However, all the methods still struggle with
generalization.

Conclusion
In conclusion, our work proved that (i) Inner State Awareness is a valid method
for detecting the familiarity and dissonance of factual knowledge inside LLMs; (ii)
Differentiated Plasticity for Targeted Updates is effective in incremental learning and
editing for distinguishing between neurons that have learned previous knowledge
and those that are still able to incorporate new facts. The application of the
presented pipeline can significantly improve the incremental learning and editing
of LLMs compared to current implementations. Despite the promising results,
the proposed approach still faces some limitations. In particular, our method
was tested on small architectures with low computational demands, and future
work should focus on scaling it to larger models to evaluate its effectiveness in
more complex scenarios. Another key research direction involves understanding
the influence of the computational graph on model behavior, with the goal of
minimizing internal interference by accounting for signal propagation. Additionally,
current benchmarks are inadequate for assessing language models’ true knowledge
capabilities, further studies should explore novel generative evaluation methods
that prioritize coherence and alignment over memorization of fixed fact structures.

v

Acknowledgements

Alla mia famiglia che mi ha supportato e sopportato durante questo viaggio: a
mamma che c’è sempre per me e a papà che, anche se non lo ammetto mai, è un
po’ il mio supereroe. So che molto spesso non è facile avere a che fare con me, ma
voi non mancate mai nel dare il vostro fondamentale apporto.

A Chiara, che è ormai diventata una componente imprescindibile delle mie giornate.
In quest’anno abbiamo imparato che stare a distanza non è facile, ma come hai
detto tu “preferirei stare tre giorni con te che tutti i giorni con un’altra persona”.
Mi sento poi in dovere di sottolineare, visto che so che ci tieni, che buona parte di
questa tesi è stata scritta nell’isola più bella del mondo.

Ai miei amici che sono sempre stati presenti quando tornavo anche solo per un
weekend. Menzione speciale a Davi: sei stato il mio solito compagno di avven-
ture anche a distanza e sei una delle poche persone su cui so di poter contare sempre.

Un ringraziamento ai miei amici parigini Alfredo, Alberto e Matteo per avermi
fatto sentire a casa lontano da casa. In particolare devo molto ad Alfredo, che con
i suoi preziosi consigli e i suoi vabbuò mi ha guidato e accompagnato in questo
strano mondo della ricerca. Sei una persona innamorata di quello che fa e sono
sicuro che sarai un ottimo professore.

Vorrei infine ringraziare il Prof. Marco Mellia per aver reso possibile questo progetto
e per la sua continua disponibilità; il Prof. Johan Boye per avermi accolto a braccia
aperte, seguendomi con passione e dedizione; e per ultimo, ma sicuramente non per
importanza, Zied, per il suo essere visionario e per il suo costante e incondizionato
entusiasmo.

vii

Table of Contents

Introduction . ii
Proposed Approach . iii
Experiments and results . iv
Conclusion . v

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Human brain learning process . 1
1.2 LLMs learning abilities . 1
1.3 Contribution . 2

2 Background 4
2.1 Large Language Models . 4
2.2 Backpropagation . 5
2.3 Transformer . 6
2.4 GPT architecture . 9
2.5 Language modelling . 10
2.6 Lottery ticket hypothesis . 12
2.7 Incremental learning . 13
2.8 Model editing . 14

2.8.1 Memory-based methods . 16
2.8.2 Additional Parameters . 17
2.8.3 Constrained fine-tuning . 18
2.8.4 Locate-Then-Edit . 19
2.8.5 Meta-learning . 21

3 Proposed approach 23
3.1 Cognitive-aware learning . 23
3.2 Inner states data collection . 23

ix

3.3 Cognitive Awareness . 24
3.4 Targeted Updates with Differentiated Plasticity 26

4 Experimental setup 30
4.1 Models . 30
4.2 Dataset . 31

4.2.1 CounterFact . 31
4.2.2 Synthetic data generation 31
4.2.3 Evaluation metrics . 32

4.3 Implementation details . 33
4.3.1 Fine-tuning process . 33
4.3.2 Familiarity and dissonance detection details 34
4.3.3 Knowledge update details 35
4.3.4 Knowledge edit details . 35

4.4 Computational needs . 35

5 Experiments and results 36
5.1 Familiarity and dissonance detection 36

5.1.1 Detection on fine-tuned model 36
5.1.2 Detection on pre-trained model 40

5.2 Incremental update . 43
5.2.1 Incremental knowledge update 43
5.2.2 Local fine-tuning using lottery ticket configurations 47
5.2.3 Incremental update with sparsity by design 49

5.3 Incremental editing . 51
5.3.1 Incremental editing with sparsity by design 55

6 Conclusion 57
6.1 Discussion . 57
6.2 Limitations and future work . 58

Bibliography 59

x

List of Tables

5.1 Results of familiarity and dissonance detection experiment on facts
known by the fine-tuned model. 37

5.2 Results of familiarity and dissonance detection experiment on facts
known by the pre-trained model. 40

5.3 Results of the editing process considering different number of facts
to be edited. In this table, the targeted update is performed using
8000 neurons. 52

xi

List of Figures

2.1 Transformer architecture: encoder on the left, decoder on the right.
Source [20] . 7

2.2 Self-attention block. Source [20] . 8
2.3 GPT architecture. Source [21] . 9
2.4 GPT2 architecture. Source [22] . 10
2.5 Graphic representation of the different types of language modelling. 11
2.6 Visual representation of model editing on LLMs. Source [2] 14
2.7 Visualization of the different editing paradigms. Source [2] 16

3.1 Graphical representation of the different type of neurons inside the
model. 25

3.2 Distribution of the gradient accumulation of the neurons inside the
model with graphical representation of free and busy areas. 27

5.1 Confusion matrix related to the familiarity and dissonance detection
on the fine-tuned model. 38

5.2 Comparison between the features importance of the different types
of aggregation methods in the fine-tuned model. 39

5.3 Comparison between the features importance of the different blocks
in the fine-tuned model. 39

5.4 Confusion matrix related to the familiarity and dissonance detection
on the pre-trained model. 41

5.5 Comparison between the features importance of the different types
of aggregation methods in the pre-trained model. 42

5.6 Comparison between the features importance of the different blocks
in the pre-trained model. 42

5.7 Accuracy score on the set of previous knowledge comparing different
numbers and types of neurons. 44

5.8 Accuracy score on the set of new knowledge comparing different
numbers and types of neurons. 45

xii

5.9 Gradient accumulation measured during the full fine-tuning related
to the previous knowledge. 45

5.10 Percentage of neurons considered busy for each layer when selecting
a total of 6000 busy neurons. 46

5.11 Accuracy score on the set of new knowledge inserted using lottery
ticket configuration, comparing different numbers and types of neurons. 48

5.12 Accuracy score on the set of new knowledge inserted using lottery
ticket configuration across the different epochs, updating 20000
neurons and comparing different types of selections. 48

5.13 Accuracy score on the set of previous knowledge. Comparison be-
tween free neurons update and forced sparsity. 49

5.14 Accuracy score on the set of new knowledge. Comparison between
free neurons update and forced sparsity. 50

5.15 Comparison between the reliability score of different techniques when
editing 1000 facts. 53

5.16 Comparison between the locality score of different techniques when
editing 1000 facts. 53

5.17 Comparison between the generalization score of different techniques
when editing 1000 facts. 54

5.18 Comparison between the reliability score of busy neurons and forced
sparsity when editing 1000 facts. 56

5.19 Comparison between the locality score of busy neurons and forced
sparsity when editing 1000 facts. 56

xiii

Chapter 1

Introduction

1.1 Human brain learning process
Humans effortlessly update their knowledge as they experience the world. They
seamlessly integrate new information, ignore familiar facts, and actively engage in
resolving conflicts with existing beliefs before updating their mental models. This
cognitive flexibility stems from several key abilities. Humans exhibit (i) selective
attention, focusing on novel or relevant information while filtering out redundant
or irrelevant stimuli [4, 5, 6, 7, 8, 9, 10]. They readily (ii) identify inconsistencies
between new information and existing knowledge through conflict detection [11, 12,
13]. Humans perform (iii) targeted updates, modifying specific neural pathways
related to new information without disrupting unrelated knowledge [14, 15]. Lastly,
(iv) their brains maintain adaptive plasticity, favouring stability of well-established
knowledge, and showing more flexibility in case of uncertainty [14]. These capa-
bilities allow human beings to manage a large knowledge base which is updated
in a continuous manner through their entire life cycle. Important concepts learnt
during our childhood are frozen in neurons which lose their plasticity protecting
those fundamental concepts.

1.2 LLMs learning abilities
Despite demonstrating remarkable capabilities across various tasks, large language
models (LLMs) are still far from such seamless learning abilities. Current LLMs
face significant challenges in real-world deployment and long-term utility due to
their static nature and training paradigms. They suffer from catastrophic forget-
ting, where incorporating new information often leads to the erasure of previously
learned knowledge. Furthermore, LLMs engage in indiscriminate learning, passively

1

Introduction

accepting all training data, even when it contradicts existing information. Despite
emergent sparsity, knowledge in LLMs is diffusely distributed due to the nature of
backpropagation, where all weights are potential candidates for storing knowledge,
necessitating comprehensive retraining to incorporate new information. Unlike the
human brain’s varied adaptability, LLMs exhibit uniform plasticity, treating all
parameters with equal importance during updates. Spreading the knowledge across
all the network is not space efficient and it is not enforcing any kind of specificity
for the neurons.

Furthermore, state-of-the-art models exploits tens, hundreds or even thousands
billions of parameters. Every new model tends to be bigger than the previous:
while this characteristic is generally linked to better performances [16], it increases
drastically the computational need and the cost, making the development of such
models exclusive privilege of large tech companies. At the same time, recent works
proved that most of the parameters in big models are not strictly necessary for
keeping performance unchanged [17]. The fact that a subset of parameters seems
to be accountable alone for the output generation suggests that sparse update of
LLMs could have a relevant impact on the models’ behaviour.

1.3 Contribution
In this work, we embark on a systematic exploration of integrating the human
inspired learning traits above into LLMs. We term this approach Cognitive Aware
Incremental Knowledge Update. Our contribution lies in carefully implementing
and assessing these traits using current LLM technology, leveraging backpropagation
and introducing minimal disruptive changes to current architectures. Through a
series of principled experiments, we investigate the potential benefits and challenges
of emulating human learning mechanisms in artificial neural networks. In particular,
we augment LLMs with two main contributions: (1) Inner State Awareness: a
mechanism for LLMs to classify new information as novel, familiar, or conflicting
with existing knowledge; (2) targeted update using Differentiated Plasticity: we
develop a method for tracking the historical usage of neurons to identify “free”
(rarely used) and “busy” (containing previous knowledge) neurons.

Our approach naturally bridges two important areas of research: techniques for
editing knowledge within LLMs and methods for continual learning that preserve
prior knowledge. It offers a native alternative to recent language model editing
techniques such as ROME [3], MEND [18], and MEMIT [19]. While these methods
focus on targeted edits to LLMs, they don’t fully address the broader challenges

2

Introduction

of continual learning and cognitive flexibility. Furthermore, most of the literature
on this kind of methods focuses on editing single facts inside the models, making
them not usable in real world scenarios. At the same time, we note that much of
the existing work on continual learning has primarily focused on traditional neural
networks. For what concerns LLMs instead most of the current studies keep their
focus on the layers, without diving deeper into finer granularity such as the neurons
level. To evaluate the efficacy and limitations of our approach, we conduct a series
of carefully designed experiments. We assess the ability of LLMs to identify and
classify new information correctly through familiarity and dissonance detection.
We examine how effectively LLMs can update knowledge incrementally without
forgetting previous information. We investigate how well LLMs handle conflicting
information and update beliefs accordingly.

Through our experiments, we uncover several important findings. Sparsity in
updates can help pack new knowledge while preserving prior knowledge, sometimes
even when applied randomly. Targeting “free” neurons for incremental updates
shows potential in preserving prior knowledge, while indiscriminate updating of
“busy” neurons can be more destructive. On the other side, regions of the network
that were heavily trained during pre-training appear more effective at incorpo-
rating knowledge updates, echoing findings from the lottery ticket hypothesis.
Updating conflicting information (dissonant) poses greater risks to prior knowledge,
highlighting the importance of conflict-aware learning strategies. Our current im-
plementation of incremental editing shows improvements over existing methods like
ROME in specific scenarios. In addition to promising results and insights, we also
uncovered significant challenges. Updates to “free” neurons can sometimes interfere
with “busy” neurons, altering their behavior in unexpected ways. This suggests that
the separation between knowledge storage areas may not be as clear-cut as initially
hypothesized. The complexity of large neural networks makes it difficult to predict
the full impact of targeted updates, highlighting the need for more sophisticated
monitoring and control mechanisms. Finally, while our approach shows promise in
controlled settings, scaling it to full-scale LLMs and diverse real-world scenarios
remains a significant challenge.

This work represents a step towards bridging the gap between human-like
learning and current LLM capabilities. By implementing and evaluating human-
inspired learning mechanisms within existing LLM frameworks, we provide a
practical playground to experiment with new human-inspired incremental learning
approaches. Our findings open up new avenues for research in continual learning,
knowledge representation, and cognitive science-inspired AI.

3

Chapter 2

Background

In this chapter we delve into the details of the existing literature, providing a
comprehensive overview of the background knowledge related to our work. We
explore the fundamental concepts, key studies, and recent advancements that form
the basis of our research, including the general concepts related to LLMs and
detailed description of current incremental update and editing techniques.

2.1 Large Language Models
LLMs are models which have demonstrated exceptional capabilities in learning com-
plex language patterns thanks to their high number of parameters. To explain how
they operate more clearly, we can describe an LLM as a function F that transforms
an input sequence of tokens x = (x1, x2, ..., xn) into an output sequence of tokens
y = (y1, y2, ..., ym), using a specified vocabulary V : this vocabulary represents the
set of tokens which the model has at its disposal to generate the output. Tokens
are generally composed by entire words or part of them, plus some special tokens
such as the End-Of-Sentence (EOS).

Initially, each input token xi is converted into a vector in a high-dimensional
space via an embedding layer, creating a series of vector embeddings E. Generally
LLMs are based on the transformer architecture: they are built by stacking several
transformer blocks each one consisting of a multi-head self-attention module A and
a multilayer perceptron (MLP) M . In each layer l, the transformation begins with
the previous layer’s hidden state Hl−1 (with H0 = E) undergoing processing by
the self-attention mechanism to produce Al. This output is then further processed
by the MLP layer. The MLP consists of several fully connected layers that refine
this data, resulting in Ml. The entire computations made by a single layer can be
summarized as:

4

Background

Al = A(Hl−1)
Ml = M(Al, Hl−1)
Hl = Hl−1 + Al + Ml

(2.1)

After the transformations applied by the last layer L the output passes through
a final linear layer with output dimensionality equal to the vocabulary size V : the
resulting vector represents the probability distribution of the next token over the
entire vocabulary V.

2.2 Backpropagation
Neural network training process is based on the concept of backpropagation, a
gradient estimation method used by the optimization algorithms to compute the
network parameter updates. The final goal is to minimize the Loss L by modifying
the networks parameters: this can be done with an update in the opposite direction
of the gradient of L with respect to weights and biases. While the use of such
technique is common knowledge, it is worth analyzing in detail the process to
explain clearly each step.

As starting point we need to define the loss L which in this case will be indicated
by a general cost function C(y, aN) where y represent the labels and aN the
activations of the last layer (output of the network). The gradients under analysis
are then defined as ∇w and ∇b, which represent respectively

∇w = ∂L

∂w
∇b = ∂L

∂b
(2.2)

and they can be obtained through an iterative backward process from the last layer
to the first one. First of all, after defining the activation function as a general σ,
we can start by computing the output aL through the equation

aN = σ(wNaN−1 + bN) = σ(zN) (2.3)

Once obtained the activations of the last layer we can start computing the first
gradients with respect to weights and biases using the chain rule:

∇wL
= ∂L

∂wN

= ∂L

∂aN

· ∂aN

∂zN

· ∂zN

∂wN

(2.4)

∇bL
= ∂L

∂bN

= ∂L

∂aN

· ∂aN

∂zN

· ∂zN

∂bN

(2.5)

5

Background

Exploiting this mathematical property, we are able to extract the the target
gradient as function of other gradients. Both equations can be simplified by doing
the intermediate computations:

∇wN
= C(y, aN)′ · σ′(zN) · aN−1 (2.6)

∇bN
= C(y, aN)′ · σ′(zN) · (1) (2.7)

Now that we have the result for the last layer, we only need to iterate the passage to
the previous layers in the exact same way. Despite following the same rule, equations
will get more complicated while propagating since there is a chain dependence in
the computation of the activations. Here is an example of the penultimate layer:

∇wN−1 = C(y, σ(wN−1aN−2 + bN−1)′ · σ′(zN−1) · aN−2 (2.8)
∇bN−1 = C(y, σ(wN−1aN−2 + bN−1)′ · σ′(zN−1) (2.9)

After completing propagation it is possible to obtain the gradient with respect
to all the trainable parameters: this computation retrieves the direction for the
update which is then modulated by the choice of the learning rate.

2.3 Transformer
Since it was first introduced [20], transformer architecture has become one of the
most effective and common frameworks in the field of NLP. It was originally built
to avoid using recurrence and instead relying entirely on an attention mechanism
to draw global dependencies between input and output. The architecture is based
on an encoder-decoder structure shown in Figure 2.1. The encoder processes the
input sequence, transforming it into a series of continuous representations. These
representations are then provided to the decoder, which integrates them with its
own outputs from preceding steps to generate the final sequence.

The encoder consists of two sub-layers: the multi-head self-attention mechanism
and the FFN layer. The first sub-layer takes is fed with the input embedding
enriched by the positional encoding and it is responsible for the attention mechanism
that assigns weights to each word in a sentence based on its importance. It first
generates three vectors which are abstract representations used in the computation:
queries, keys and values. The output is calculated as a weighted sum of the values,
with each value’s weight determined by a compatibility function that measures the
query’s alignment with the corresponding key.

Z = softmax (Q KT

√
dk

) V (2.10)

6

Background

Figure 2.1: Transformer architecture: encoder on the left, decoder on the right.
Source [20]

This procedure is executed simultaneously by utilizing various heads to create
multiple representational subspaces. The results from each head are concatenated,
and through the application of a linear layer, a projection back to the original
dimension is achieved. Each attention head will produce its own result, which will
be concatenated with the others; an additional weight matrix is used to reduce the
dimensionality through a projection to obtain the final representation (Figure 2.2.

Z = concat (Z0, Z1..., Zn) Wproj (2.11)

The second sub-layer instead 2.1, is a fully connected feed-forward network
consisting of two linear transformations with ReLU activation in between:

FFN(Z) = ReLU (W2 Z + b2) (2.12)

Furthermore, each sub-layer has a residual connection summing up the input value
with the output and it is followed by a normalization layer which normalizes the
values of the sum matrix.

7

Background

Figure 2.2: Self-attention block. Source [20]

The decoder shares many similarities with the encoder: it is characterized by a
composition of several identical layers stacked upon one another, each utilizing an
attention mechanism. However, the internal structure of the blocks differs since
both the encoder outputs and the decoder previous outputs must be taken into
account at this stage: for this reason we will have three sub-blocks. The first sub-
layer receives the previous output of the decoder stack, augments it with positional
information, and implements multi-head self-attention over it. While the encoder is
structured to consider every word in the input sequence, regardless their positions
and allowing a comprehensive understanding of the entire sequence, the decoder is
modified to attend only to the preceding words. This means that the prediction
of a word at any given spot is influenced exclusively by the words that appear
before it, ensuring that the generation process is sequential and each new word
prediction builds on the known context. The masking operation is implemented by
suppressing the values that would correspond to connections that are not allowed.

mask(Q KT) =

a11 −∞ −∞ · · · −∞
a21 a22 −∞ · · · −∞
a31 a32 a33 · · · −∞
...

am1 am2 am3 · · · amn

 (2.13)

The second layer implements a multi-head self-attention mechanism similar to the
one implemented in the encoder. This time, the attention mechanism receives
queries from the previous decoder sub-layer, while keys and values are taken from
the output of the encoder. This allows the decoder to attend to all the words in the
input sequence. Finally, the third layer is a FFN layer with the same structure of
the one in the encoder. Residual connections and normalization layers are present
for each sub-layer following the same logic of the encoder.

8

Background

2.4 GPT architecture
The Generative Pre-trained Transformer (GPT) model represents one of the most
wide-spread architectures in LLMs. GPT is an autoregressive decoder-only architec-
ture based on a stack of transformer-decoder blocks which can vary in number and
dimensionality depending on the specific model. The choice behind the deletion of
the encoder model relies on the fact that this kind of architecture is mainly used
for text generation: the decoder blocks allow the model to sequentially predict
the next token in a sentence given all the preceding tokens, without the need of
additional elements which impact on the model efficiency.

The first GPT model [21] was built upon the intuition that language models
could be used to solve different kinds of tasks. The core innovation was the
development of a general pre-training on a diverse corpus of unlabeled text to
create a knowledge base, followed by discriminative fine-tuning for a specific task.
This approach allows the model to adapt to different kinds of tasks with minor
internal changes thanks to transfer learning. The original GPT block structure
follows the transformer-decoder block with the elimination of the self-attention
block which has no reason of being used given the absence of the encoder (Figure
2.3).

Figure 2.3: GPT architecture. Source [21]

The second iteration of this kind of architecture is represented by GPT2, a
family of models of different size which improves the original GPT architecture
(Figure 2.4). The main difference from a conceptual point of view is the change
of objective of the training: GPT2 aims at utilizing unsupervised pre-training for
supervised tasks. According to this new paradigm a language model could do
multi-task learning directly from the training process, enabling general capabilities

9

Background

without a fine-tuning. In this evolution the layer normalization has been moved
to the input section of each block, and an additional layer normalization is added
after each self-attention.

Figure 2.4: GPT2 architecture. Source [22]

The most recent updates, represented by GPT3 and GPT4, have not been made
public from an architectural point of view. However, thay can be tested in inference
and GPT4 represents the current state-of-the-art in different benchmarks. In this
work, we are going to analyze the architecture of GPTJ, a model released by the
open source community as an alternative to GPT3.

2.5 Language modelling
LLMs have different architectural choices which works using different working
principles. This diversity is not just a matter of scale or efficiency, but it reflects
the strategy these models employ to mimic human linguistic abilities. This aspect
is commonly defined as language modeling and in this chapter we present the main
approaches used in current models (Figure 2.5).

Causal Language Modelling. Causal Language Modeling (CLM) centers on

10

Background

Figure 2.5: Graphic representation of the different types of language modelling.

predicting the next word in a sequence based on the preceding words. This is a
one-directional method, where the model learns to generate text by focusing solely
on the words that come before the one it is trying to predict. This sequential nature
compels the model to understand not just the probability of word combinations
but also how ideas and narratives unfold over time. CLM is typically employed in
autoregressive models like GPT, where each token can only reference the tokens that
appear earlier in the sequence. This structure prevents the model from "cheating" by
looking at future tokens during training, as it relies entirely on past context. These
models excel at generating coherent, contextually appropriate text, making them
well-suited for tasks such as text generation, storytelling, and even code completion.

Masked Language Modelling. In Masked Language Modeling (MLM), certain
words in a sentence are randomly hidden during training, and the model’s task is
to predict these masked words using the context provided by the visible words in
the sentence. This technique allows the model to develop a strong understanding
of language context and structure by forcing it to deduce the missing information
from the surrounding words. These abilities are particularly useful for tasks like
text classification and sentiment analysis, since MLM models can leverage the full
sentence context, allowing them to capture information from both preceding and
following words.

Sequence-to-Sequence. Seq2Seq models consist of two main parts: an encoder
that processes the input sequence and a decoder that generates the output sequence.
This design enables the model to manage input and output sequences of varying
lengths, making it highly adaptable to many tasks beyond just language processing.
This approach excels in tasks that require transforming one sequence into another,
such as machine translation, text summarization, and speech recognition. With the
integration of attention mechanisms, these models have become even more effective

11

Background

at handling longer sequences. Seq2Seq models are well-suited for more complex
tasks involving input-output transformations, making them highly versatile across
a broad spectrum of natural language processing tasks.

2.6 Lottery ticket hypothesis

LLMs are getting bigger making the training less sustainable and more expensive:
for this reason, some techniques such as pruning, have been created to mitigate this
problem. Neural network pruning is a technique used to reduce the size of trained
neural networks by removing unnecessary parameters, which helps in decreasing
computational load and storage requirements while maintaining accuracy. However,
the pruned networks are often difficult to train from scratch and they still require
the training of a full model. This condition poses important limitations, since
the advantage in terms of computational capacity are just exploitable at infer-
ence time. The training, which is the part requiring most resources, is not improved.

The "Lottery Ticket Hypothesis" proposed by Frankle and Carbin [23], tries
to solve this issue by suggesting that dense, randomly-initialized neural networks
contain smaller subnetworks that are capable of training effectively from their
initial states. These subnetworks, termed "winning tickets," are identified through
a process of iterative pruning, where a portion of the network’s weights is pruned
based on their magnitude, and the remaining weights are reset to their original
values from initialization. These winning tickets, once trained in isolation, can
match or even exceed the accuracy of the original network within a comparable
number of training iterations. Experiments supporting the hypothesis demonstrated
that winning tickets in various architectures, including fully connected and convo-
lutional networks, can constitute as little as 10-20% of the original network’s size.
Furthermore, the study finds that the success of these winning tickets is heavily
dependent on their initial weights; when reinitialized randomly, the subnetworks
lose their advantageous properties, emphasizing the importance of the initial state.

The implications of the Lottery Ticket Hypothesis are significant for the design
and training of neural networks. It suggests that the training of smaller, more
efficient networks could be possible if these winning tickets can be reliably identified
early in the training process. This hypothesis not only offers a potential path to
more resource-efficient neural networks but also provides insights into the structure
and initialization that contribute to the effectiveness of the training.

12

Background

2.7 Incremental learning
Incremental learning refers to a system’s capacity to continuously acquire knowledge
over time, allowing it to adapt and generalize to new tasks [1]. This enables the
system to adapt and react to changing conditions and user behavior in real time,
without the need for periodic complete retraining sessions. In particular, in this
work we analyze the continual learning capabilities of LLMs, namely the capacity of
learning new, emerging tasks efficiently while reducing the catastrophic forgetting.
Key objectives of continual learning include:

• Minimizing Catastrophic Forgetting: This is a major challenge in neural
networks, where learning new tasks can lead to the loss of previously acquired
knowledge. Catastrophic forgetting occurs when updates for new tasks interfere
with weights important for old tasks, resulting in performance degradation.

• Efficient Knowledge Integration: Continual learning systems should integrate
new information without the need to retrain on the entire dataset, which can
be computationally expensive and time-consuming.

• Scalability and Memory Efficiency: As the number of tasks grows, CL methods
must maintain scalability and memory efficiency, avoiding excessive growth in
model size or memory usage.

Continual learning methods can be broadly classified into three categories:
regularization-based, dynamic-architecture-based, and memory-based methods.
Each of these approaches tackles the challenge of integrating new information while
preserving existing knowledge in different ways:

Regularization-based Methods: These methods protect critical parameters of
the neural network by adding a regularization term to the loss function. They
penalize changes in parameters crucial for maintaining the performance of old tasks.
Techniques such as Elastic Weight Consolidation (EWC) [24] and Knowledge Dis-
tillation [25] are widely used for this purpose. Regularization-based approaches are
effective in preventing catastrophic forgetting but may struggle when the number
of tasks grows significantly.

Dynamic-Architecture-based Methods: These methods expand the network
architecture to accommodate new tasks, adding task-specific modules or parame-
ters without altering existing ones. For instance, methods like Progressive Neural
Networks introduce new columns for each task, and Mixture-of-Experts (MOE)
[26] dynamically allocates expert modules based on task requirements. While these
methods can effectively mitigate forgetting, they lead to increased model complexity

13

Background

and computational costs.

Memory-based Methods: Memory-based methods retain a subset of data from
previous tasks to replay during training on new tasks. This can be achieved through
experience replay, where old examples are interleaved with new ones, or by using
generative models to create synthetic samples of previous data. Memory-based
methods are powerful but depend heavily on the quality and representativeness of
the stored data.

Finally, when discussing specifically about continual learning for LLMs it is
appropriate to consider unique challenges due to their scale and the computational
resources required for fine-tuning.

2.8 Model editing
Model editing [2] can be described as the task of modifying the behavior of an
initial base model in response to a particular edit descriptor (xe, ye), while ensuring
that the performance on other data points remains unaffected. The objective is to
transform the original model fθ (where θ represents the model’s parameters) into
an updated version fθe that aligns with the specified descriptor. In the context
of a large language model (LLM), this can be viewed as a function that maps a
given input to a probability distribution for the output. The base model generates
a prediction y using fθ(x), whereas the updated model produces a modified result
ye = fθe(x), guided by the descriptor xe. An illustration of this concept is shown
in Figure 2.6.

Figure 2.6: Visual representation of model editing on LLMs. Source [2]

The process of editing a model typically influences the predictions for a wide
range of inputs that are closely linked to the example used for the edit. This
group of inputs is referred to as the editing scope. An effective edit aims to

14

Background

modify the model’s responses for inputs within the editing scope (we do not
want just to modify a single fact but more in general, the knowledge related to
that fact), without affecting its performance on examples that fall outside this scope.

fθe(x) =

ye if x ∈ I(xe, ye)
fθ(x) if x ∈ O(xe, ye)

(2.14)

I(xe, ye)) represents the group of facts connected to the edited one and it is defined
as in-scope. Unrelated facts which should not be affected by the modifications
instead, are defined as out-scope and they are represented by O(xe, ye)).

Some metrics have been created in order to measure the efficacy of the editing
process: reliability, generalization, and specificity.

Reliability Earlier studies consider an edit reliable if the modified model fθe

produces the correct answer for the specified edit instance (xe, ye). This concept of
reliability is quantified by calculating the mean accuracy for the edited case.

E x′
e,y′

e∼{(xe,ye)} 1{argmaxy fθe(y | x′
e) = y′

e} (2.15)

Generalization The edited model fθe should not focus only on the given fact, but
also modify the equivalent pairs from the neighbour N(xe, ye). Its performance
is measured by the mean accuracy across samples uniformly selected from the
equivalence class.

E x′
e,y′

e∼N(xe,ye) 1{argmaxy fθe(y | x′
e) = y′

e} (2.16)

Specificity Editing needs to occur on a local level, implying the post-edit model
fθe should avoid altering the outcomes for examples outside the relevant scope,
O(xe, ye)). Therefore, the model’s specificity is assessed based on the frequency at
which the predictions by the post-edit model remain consistent with those of the
pre-edit model.

E x′
e,y′

e∼O(xe,ye) 1{ fθe(y | x′
e) = fθ(y | x′

e)} (2.17)

Currently there are already several methods for performing knowledge editing
on LLMs. Yao et al [2] present a deep analysis of the different techniques available
offering a strong baseline for our analysis. In the mentioned work methods are
divided into two main families (Figure 2.7): approaches which modify the model’s
parameters and techniques preserving the parameters.

15

Background

Figure 2.7: Visualization of the different editing paradigms. Source [2]

2.8.1 Memory-based methods
This approach retains every instance data to be edited in memory, using a retrieval
mechanism to retrieve the most pertinent edit information for each incoming input,
directing the model to produce the modified fact when required. In order to reach
this result it is possible to adopt different techniques.

In-context learning

The most straightforward method of implementing memory-based editing is by
leveraging the strong in-context learning capabilities of LLMs. Using a traditional
Retrieval Augmented Generation approach, the model can generate responses based
on the provided knowledge by incorporating a refined knowledge context directly
into the prompt. This approach does not involve any changes to the model’s
architecture or the addition of extra models, but instead alters the output by
prompting the model with the updated information. This technique has been
demonstrated in systems such as MemPrompt [27] and MQuAKE [28].

SERAC

Considering a more structured approach, Mitchell et al presented SERAC [29] which
exploits two different models and a cached memory containing edited facts: the
first model is identical to the original, while the other is trained specifically on the

16

Background

edited facts list. This approach uses then a scope classifier to assess the likelihood
that new input is covered by examples of edits it has stored. If the new input
does not align with any stored edits, the response is generated using the system’s
original prediction method. On the contrary, if the new input is similar to any of
the stored edits, the system’s response is generated based on the modified model:
in this way it is possible to maintain the exact original behaviour for the non-edited
facts, while being able to answer correctly to specific modified facts when asked.
The reason for adopting the SERAC approach is rooted in the observation that
neural networks have the ability to ‘over-specialize’ their parameters for specific
inputs, leading to the possibility of different, non-overlapping sections of the model
being in charge of predictions for a given input. Consequently, gradients might not
offer adequately comprehensive information to facilitate dependable edit scoping,
especially for examples that are related but not closely aligned.

2.8.2 Additional Parameters
This paradigm implies an internal change in the model architecture, with the
insertion of extra parameters inside the LLM which can be trained for learning
new knowledge: this is done without modifying the weights of the original model.
We can consider this approach as an hybrid solution, where parametric knowledge
is exploited without impacting on the previous configuration.

Transformer-Patcher

Huang et al [30] proposed the Transformer-Patcher methodology which implies
the insertion of a new neuron the last FFN layer for each wrongly generated token
related to a fact: this neuron called patch is trained in order to be active only in
presence a given mistake. Each patch is trained considering reliability, generality
and locality principles and has the role to modify the output to match the required
edited fact. All the process is done freezing the original weights, which maintain
their original values, and it can support the training of several patches at the
same time. This approach is based on the assumption that FFN layer works like a
memory system of key-value pairs at the neuron level. The computation it performs
during the forward pass involves retrieving values from the matrix V by finding
matches between the keys in matrix K and the input query q. The standard
behaviour follows this equation:

a = Act(q · K + bk) (2.18)
FFN(q) = a · V + bv (2.19)

17

Background

Once the patch is applied instead we have the insertion of the new terms kp, vp

and bp which represent respectively the key patch, the value patch and the bias
patch. The final effect an be reformulated as a simple correction term added to the
default FFN computation.è

a ap

é
= Act(q · K +

è
bk bp

é
) (2.20)

FFNp(q) =
è
a ap

é
·

C
V
vp

D
+ bv (2.21)

FFNp(q) = FFN(q) + ap · Vp (2.22)

CaliNET

CaliNET, by Dong et al [31], starts from the same assumption related to key-values
memory capabilities of FFN. This time there is the addition of a novel knowledge
verification technique called Contrastive Knowledge Assessment: this process aims
at finding errors in the facts storing of LLMs. Once wrongly learnt facts are
detected, they are corrected through a calibration process which implements a
new architecture which is similar to the one implemented by the original FFN but
smaller. The idea is to tune this additional smaller network to adjust the output
and correct the factual knowledge error.

2.8.3 Constrained fine-tuning
Fine-tuning has traditionally been a key method for adapting large language models
(LLMs) to specific domains or integrating particular knowledge. To learn new facts,
a basic approach involves fine-tuning the model on a targeted dataset DM , which
consists of the altered facts. This allows the model’s predictions to be adjusted
so that its output aligns with the desired behavior [32]. In this situation we can
describe the optimization formula as:

minθ∈Θ
1
m

Ø
x∈DM

L(x; θ) (2.23)

In this context, m = |DM | represents the number of supporting evidences related
to the facts that need to be updated, θ refers to the model parameters being
adjusted, and L(x; θ) signifies the per-instance loss used during fine-tuning. While
this method can effectively help the model memorize new facts, it does not address
the potential collateral damage to the unchanged set of facts, which can result in
catastrophic forgetting. To enhance this aspect, a possible solution is to develop a
fine-tuning set that includes both the modified DM set and the unmodified facts
DF \S, helping to ensure the model retains knowledge of unaltered information.
However, research has shown that this approach alone is insufficient to fully prevent

18

Background

forgetting, as the model often follows an imbalanced optimization path that favors
the modified facts.

For this reason, Zhu et al [32] introduced constrained fine-tuning, a method
designed to update specific factual knowledge within the model while preserving its
performance on unaltered facts. This is accomplished by using a novel optimization
function that incorporates both the modified and unmodified facts, enforced through
an additional constraint to ensure balanced learning

minθ∈Θ
1
m

Ø
x∈DM

L(x; θ) s.t.
1
n

Ø
x′∈DF \S

L(x′; θ) − L(x′; θ0) ≤ δ (2.24)

In this equation δ is a small positive constant, which determines the tolerance for
unmodified facts’ variations. The core idea is to modify the model in the same way
as a normal fine-tuning, taking care of not changing facts which should be kept
as they are. Considering the computational cost of the loss, the function can be
approximated to

minθ∈Θ
1
m

Ø
x∈DM

L(x; θ) s.t. || θ − θ0 || ≤ δ (2.25)

where the constraint is put directly to model’s parameters norm to improve perfor-
mances (both l2 and l∞ have been tested, with the latter resulting in a more stable
behaviour).

2.8.4 Locate-Then-Edit
In the classical fine-tuning, like in all global modification techniques all parameters
(or at least those coming from the selected group or layers) are modified in the
same manner: this means that the editing process involves the model at global
scale. The Locate-Then-Edit approach instead, aims at improving the locality of
the editing by finding which parts of the network are responsible for the knowledge
of given facts.

ROME

Rank-One Model Editing has been presented by Meng et al [3] as a method to
edit LLMs by altering the parameters that determine a layer’s behavior at the
decisive token. In order to locate the correct neurons to be edited the causal effects
of hidden state activations is exploited: the target is to find which parts of the
network recall a given fact when a specific subject is given as input. More precisely,
the expected output of this method is to identify which combination of token and

19

Background

layer so that the activations of the given token at the specified layer are the most
important when generating the completion.

The process is divided in several runs. The first step is a clean run, when a
prompt x is fed to the model, in order to obtain the expected completion o: this
passage is crucial to collect the original model’s activation. In the second run, which
is defined as corrupted, the embeddings of all the tokens related to the subject are
modified by the addition of a random noise. The original set [h(0)

1 , h
(0)
2 , h

(0)
3 ...] is

modified so that each component becomes h
(0)
i = h

(0)
i + ϵ, where ϵ = N(0, v). After

breaking the information related to the subject, the model’s completion is expected
to be modified. The last passage consist in a run with partial restoration: starting
from the broken embeddings, the activations h

(l)
i related to a specific token i at

a given layer l are restored. The goal is to evaluate how well a few intact states
can restore the correct fact, even when many other states are corrupted by an
obfuscated subject. The significance of each state is assessed using a metric known
as the indirect effect [3]. This metric quantifies the difference in the probability of
achieving the expected outcome in the partially restored state versus the corrupted
state. It can be described as follows:

IE = P∗, clean h
(l)
i

[o] − P∗[o] (2.26)

where ∗ represents the corrupted state and o the expected completion. This process
enabled the possibility to perform analysis on the importance of given parts of the
model and the prompts. FF layers seems to be those with the major influence on
factual associations. On the other side, the last token related to the subject has
been identified as the most influential to completion generation.

Once the location part has been completed, it is time to actually update the model’s
knowledge. The idea is to consider the the transformer MLP as an associative
memory represented by the parameters of the second MLP layer W

(l)
proj so that

given a key vector V we can obtain the value vector V as V = WK. The target
is to insert a new key-value pair (k∗, v∗) into such memory. This action can be
achieved by modifying W according to the equation

Ŵ = W + Λ(C−1k∗)T (2.27)
min||ŴK − V || s.t. Ŵ k∗ = v∗ (2.28)

The target is to minimize the impact on the overall values extraction while inserting
the new key-value pair. Before updating the actual weights, it is necessary to
compute two additional variables. The value k∗ represents the key, which encodes
the subject: it is a value obtained by extracting the average activations related to

20

Background

subject’s last token at the chosen layer in different short prompts (to get a general
result). v∗ instead, is the target value we should generate as output of the selected
MLP: it is built by maximizing the probability of obtaining o as final output, while
minimizing the general effect on the other predictions.

2.8.5 Meta-learning
In meta-learning the task of knowledge editing inside pre-trained models is dele-
gated to external networks: instead of perform the editing directly by handcrafted
methods or to modify the model internal structure, it is possible to delegate the
work to a network trained on the LLM weights to predict the best update.

Knowledge Editor

De Cao et al [33] introduce Knowledge Editor (KE), a technique that involves
training a hyper-network (a network that predicts the parameters of another
network) on the model’s weights. This is done with constrained optimization to
ensure that a specific fact can be updated without altering the remaining knowledge.
Once the hyper-network is trained, it can be utilized during testing to predict the
necessary weight adjustments. The constrained problem for editing a model θ to
ensure that a specific input x produces the output f(x, θ) = a can be formulated
as follows:

min
Ø

x̂∈P x

L(θ′; x̂, a) s.t. C(θ, θ′, f, Ox) ≤ m (2.29)

where θ′ corresponds to the edited model, P x is the set of paraphrases of x, Ox is the
set of facts which should not be modified and C a constraint for the update which
should be less or equal than a positive constant m that is chosen as hyperparameter
of the method. Even if in the equation all paraphrases are considered, at training
time the network is provided with the fact only since the same thing will happen
during the test phase.

The network is not built to output θ′ but if focuses on the prediction of the
weights shift ∆θ such that θ′ = θ + ∆θ. To reduce the number of parameters, the
network exploits the gradient ∇θ(θ; x, a) using the assumption that it contains
information related to the parameters to be updated for changing the likelihood
of f for a. The model woks though a bidirectional LSTM which takes as input
the encoded information related to input, current output and expected output
< x, y, a >. The output of the last LSTM hidden state is fed to a FFNN which
produces an output vector h; this vector conditions a second FFNN that is used to

21

Background

extract the parameters used for weights and bias update computation.

MEND

In contrast, Mitchell et al [18] introduced MEND, a technique that learns to adjust
the raw fine-tuning gradient, enabling a more precise parameter update that allows
the model to be effectively edited in a single step. The strategy behind MEND
exploits an external mechanism to refine the fine-tuning gradient for a specific
layer: the objective is to turn it into a parameter update that ensures reliability,
locality, generality, while keeping the process as efficient as possible. The input to
the network is a high-dimensional matrix representing the layer’s gradients, and the
output is the resulting parameter update. Given that each type of layer has its own
dimensionality, the method exploits a set of different networks, each one tailored
on a given type of layer and compatible with its dimensionality. Considering the
high-dimensionality required by the process it is necessary to improve the efficiency
in some way: for this reason, instead of using the actual gradients, the network
works with output gradients. This can be done since both the actual gradient
matrix gl and the gradient of the loss L with respect to the weight of a given layer
Wl for each element of a given batch B are rank-1 matrices. The gradient can be
then computed as

∇Wl
L =

BØ
i=1

δi
l+1 ui⊤

l (2.30)

where δi
l+1 is the gradient of the loss with respect to the output of the level l (which

is equal to the set of pre-activations of layer l + 1) referred to a specific batch
element i while ui

l represents the input of the layer itself.
Each network is then trained using a constrained loss which aims at both maximizing
the edit success and minimizing the effects on unrelated facts. The final aim is to
learn how to modify the classical fine-tuning gradients in order to reduce the given
loss: this approach requires a relevant amount of training time but allows to have
refined gradients with few resources at inference time.

22

Chapter 3

Proposed approach

In this chapter, we provide a detailed explanation of the proposed approach. We
begin by defining the general concept of cognitive-aware learning, which involves
selectively updating the neural network based on the knowledge content of its
neurons. Next, we delve into the specifics of inner state collection, outlining
how we gather and process the relevant internal states of the network. After
establishing these basics, we describe the working principle of our familiarity and
dissonant detection method for Cognitive Awareness, which enables us to assess
how a given fact relates to the model’s existing knowledge. Finally, we present the
implementation of the targeted network update through Differentiated Plasticity,
which is built to effectively insert new knowledge into the model or edit prior
beliefs.

3.1 Cognitive-aware learning
Our technique builds upon the concept of cognitively aware updates, where instead
of universally applying backpropagation to update the entire network, we selectively
update neurons based on the specific knowledge content they hold. By differentiating
the neurons according to the relevance and importance of the information they
hold, this method aims at making the learning process more efficient and targeted.

3.2 Inner states data collection
To implement our approach, we need a heuristic capable of estimating the knowl-
edge content of each neuron. In this work we present the Historical Features
Accumulation (HFA), built by accumulating the gradient outputs (grad_outs) and
activations of each neuron inside the transformer blocks’ layers, over the training
steps. In this work, we focus on the historical tracking of gradients of the outputs

23

Proposed approach

(grad_outs) and activations for four key matrices within each block of the trans-
former model: Attnc_attn, Attnc_proj, MLPc_fc, and MLPc_proj. It is important to
note that, given the structure of factual knowledge, we only consider the last token
for data extraction: the core idea is to test the reaction of the model to the concept.

During training, we collect and accumulate the gradients of the outputs and
activations for the matrices Attnc_attn, Attnc_proj, MLPc_fc, and MLPc_proj. Let t
denote the training step.

• Activation Collection:
Attnc_attn(t), Attnc_proj(t), MLPc_fc(t), MLPc_proj(t)

• Gradient of the Outputs Collection:
∇LAttnc_attn(t), ∇LAttnc_proj(t), ∇LMLPc_fc(t), ∇LMLPc_proj(t)

We then perform a layer normalization for each layer l as follows:

Âl
n = Al

n − µl
A

σl
A

, Ĝl
n = Gl

n − µl
G

σl
G

where µl
A and σl

A are the mean and standard deviation of activations in layer l,
and µl

G and σl
G are the mean and standard deviation of gradients in layer l. The

standardized metrics are then summed across the training steps to obtain historical
activations and historical gradients:

HÂn =
TØ

t=1
Âl

n, HĜn =
TØ

t=1
Ĝl

n

This historical data should allow us to determine whether neurons are“busy”
(already containing and processing knowledge) or “free” (capable of encoding
additional information).

3.3 Cognitive Awareness
Building upon the historical usage and change of neurons and weights, we imple-
ment a simple classifier that leverages both historical and current data to assess
the nature of new information. Previous works [34, 35] studied ways for detecting
when a model is hallucinating through the identification of patterns which prove
the model is lying. While the task we aim to address is slightly different, it is
closely related to hallucination detection. Instead of identifying patterns that reveal
hallucinations, we seek to examine the model’s internal response to external facts
in order to gain insight into its internal beliefs. This step is fundamental to apply

24

Proposed approach

Free
Busy
General

Figure 3.1: Graphical representation of the different type of neurons inside the
model.

the proper update technique in the following step of the pipeline.

For a given input x (representing a new episode), we first perform a forward
pass to obtain its current activations and a backward pass to obtain its current
gradients (without updating the model weights). In particular, it takes as input
the means and standard deviations of these current activations and gradients, as
well as the historical activations HÂ and historical gradients HĜ, accumulated as
described in the previous section. Specifically, the classifier C is defined as:

C : (x, Â, Ĝ, HÂ, HĜ) → {novel, familiar, conflicting}

Intuitively, the classifier should use the current state together with the historical
patterns, to determine whether the new information is novel (and should be
integrated), familiar (and can be ignored), or conflicting (and requires proper
resolution). Considering all parameters from the model results in high-dimensional
feature spaces, which can be challenging to manage it is necessary to take proper
care of extracted features. A recently developed solution involves using sparse
autoencoders [36] to address this issue. However, since the classifier needs to
operate in an online environment, we opt for a shallow machine learning approach
that leverages aggregated features. Specifically, in this work we focus on Support
Vector Machine (SVM) and Random Forest (RF) classifiers. We extract statistical
aggregates from each layer under analysis, allowing us to reduce dimensionality
while retaining essential information for effective classification. For each layer we
compute:

25

Proposed approach

• Average

• Standard deviation

• Minimum

• First quartile

• Second quartile

• Third quartile

• Maximum
This aggregation method yields 7 features each for activations and gradients of
a given layer, resulting in a total of 14 features per layer. This approach ensures
scalability to larger models, as the feature dimensionality grows linearly with the
number of layers rather than with the hidden dimensions. By focusing on layer-wise
aggregation, this method maintains manageable feature complexity, making it
suitable for increasingly complex models without succumbing to the exponential
growth of high-dimensional spaces associated with deeper architectures.

3.4 Targeted Updates with Differentiated Plas-
ticity

Building upon the historical tracking of neuron usage and the prior-belief awareness
classifier, we implement targeted network updates to incorporate new knowledge
or edit existing potentially conflicting information. This approach is based on
the concept of Differentiated Plasticity, where neurons get updated differently
depending on their knowledge content. We design three main types of targeted
updates focusing on different types of neurons. Figure 3.1 illustrates the conceptual
relationship between the different types of neurons within the model’s parameter
space. We define different types of neurons.

• Free neurons: neurons which do not contain previous knowledge.

• Busy neurons: neurons which contain previous knowledge.

• General neurons: neurons which are related to general factual knowledge
capabilities.

The selection is based on the gradient accumulation observed during the learning
of the previous knowledge, identifying those neurons which already incorporate
information and those which are still free. Figure 3.2 represent the gradient
accumulation distribution measured during a training run and it shows the busy
and free areas.

26

Proposed approach

Figure 3.2: Distribution of the gradient accumulation of the neurons inside the
model with graphical representation of free and busy areas.

Free Neurons Updates

In this strategy, we target neurons with low historical gradient value. To identify
them, we rank neurons by increasing historical gradient values and select the top
N neurons with the lowest cumulative gradients:

Nfree = {n | rank(HĜn) ≤ N},

where HĜn is the historical gradient for neuron n, accumulated over all prior
training.

Rationale: By targeting underutilized neurons, we aim to incorporate new knowledge
while minimizing interference with existing information. This strategy is partic-
ularly expected to be effective for incremental updates of novel, non-conflicting
information.

Busy Neurons Updates

When targeting busy neurons, we search neurons that accumulated high historical
gradients, indicating significant involvement in previous learning. Ranking neurons
by increasing historical gradient values and select the top N neurons with the

27

Proposed approach

highest values:
Nstubborn = {n | rank(HĜn) > |N | − N},

where |N | is the total number of neurons, and HĜn is the historical gradient
for neuron n. Updating stubborn neurons allows us to test the model’s capacity
for knowledge integration and assess the potential risks of overwriting existing
information.

Rationale: Updating busy neurons allows us to investigate the model’s capacity for
knowledge integration and the potential risks of overwriting existing information.
This approach is particularly relevant for editing existing knowledge, especially
when dealing with conflicting information.

Specific Neurons Updates

Finally, we consider a hybrid solution. In this update, we target general neurons
that are not part of the busy set; in other words, these neurons have general
knowledge capabilities without impacting the specific facts that we want to protect.
For reference, this set is represented by the green part, which does not intersect the
red in Figure 3.1. The extraction process for these neurons is defined as follows:

1. We simulate a training step on a general set of facts.

2. We collect the gradient information from this simulated step.

3. We train the model on the first set of knowledge, the one we want to preserve.

4. During the targeted update phase, we identify the neurons with the highest
accumulated gradients from the simulated training. From that set we exclude
neurons that are among the top N busiest in relation to the knowledge to
preserve. After applying this masking, we select the top N neurons with the
highest gradient accumulation from the remaining set for the targeted update.

Rationale: This approach aims to test more precise updates by targeting general
knowledge neurons which do not relate with previous knowledge, minimizing
unintended changes. It is expected to be useful for both incremental updates and
careful editing of existing knowledge.

Controlling Update Scope

Finally, for each update type, we vary the number of neurons involved (N) as an
experimental parameter. This allows us to investigate the impact of update scope,
from highly localized or sparse (small N) to more widespread (large N) updates.

28

Proposed approach

Difference between Incremental and Counterfactual Updates

While we apply these targeted update strategies to both incremental updates
(adding novel, non-conflicting information) and counterfactual updates (editing
existing, potentially conflicting information), we have specific expectations. For
incremental updates, we expect that targeting free neurons will be most effective,
as it should minimize disruption to existing knowledge. For editing conflicting
information, we expect that targeting busy or specific neurons will be necessary to
modify the existing, incorrect knowledge effectively.

29

Chapter 4

Experimental setup

In this chapter, we detail the experimental setup used in our study, including the
models, datasets, experiment details, and computational resources. Additionally,
we provide a comprehensive account of all the specific parameters and configu-
rations applied across our experiments to ensure transparency and facilitate the
reproducibility of our results in future studies.

4.1 Models
The proposed approach is adaptable to models which have different internal struc-
tures. Considering the nature of our project and the available resources, we use as
main model for our research GPT2-SMALL. The version we use can be found on
HuggingFace [37] and it has the following characteristics:

• 117M parameters

• 12 layers

• 768 hidden dimension

• 12 attention heads

GPT2 has been released by OpenAI in 2019 in different versions as a natural
improvement over the original GPT architecture. We use GPT2-SMALL, which
represents a really light and portable solution with just 117 millions parameters.
GPT2-SMALL is a good model for experimenting with new methods, since it has
a very similar structure compared to bigger models but it requires lower computa-
tional resources. GPT2-XL keeps the same structure of the smaller version but it
enlarges the hidden dimension and the number of blocks: future works can exploit
this model, or even larger architectures such as GPT-J and Llama-7B, to conduct

30

Experimental setup

research in more complex scenario. The proposed framework makes it possible by
offering a complete modularity in terms of architecture.

4.2 Dataset

4.2.1 CounterFact
The CounterFact dataset [3] is an evaluation dataset designed to test counterfactual
edits in language models, specifically aimed at distinguishing between superficial
changes in model outputs and deeper, generalized modifications to factual knowledge.
The dataset comprises 21,919 records, each constructed from knowledge tuples
derived from PARAREL [38], which include subjects, relations, and objects, all
existing as entities in WikiData [39]. Each item in the dataset is composed of
different elements:

• Facts: These are the original true facts, which should be originally known by
the model.

• Counterfacts: These are difficult false facts that start with low initial scores
compared to their correct counterparts, used to challenge the model’s ability
to significantly alter its predictions.

• Neighborhood prompts: To test the locality, the dataset includes prompts
involving subjects that are semantically related to the original ones but should
remain unaffected by the edits.

• Paraphrase prompts: To assess generalization, a set of paraphrased prompts
equivalent to the original counterfactual statements are provided.

• Generation prompts: These are used to evaluate the depth of the model’s
generalization by testing its ability to generate accurate outputs for broader,
implicit queries related to the counterfactual facts. These prompts are hand-
curated to draw out the underlying factual modifications from the model
rather than direct queries.

4.2.2 Synthetic data generation
Part of our pipeline aims at classifying facts depending on the knowledge of the
model. The CounterFact dataset offers in this sense an optimal base since it
provides for each fact the original target (the real fact) and a new target which
represent the new data to be learnt by the model (the counteract). Fine-tuning a
model on the original facts can guarantee us that the model has knowledge about

31

Experimental setup

them and we can perform analysis on the different model’s response at coherent
facts and counter-facts.

However, we are still missing the facts representing the third class that we want
to analyze: the unfamiliar facts. Considering that small models are not accountable
for general knowledge, we could simply extract a partition of the Counterfactual
Dataset which is not included in the fine-tuning set and consider those facts as
unknown. Nevertheless, we can not be scientifically sure that these data were not
present in the original dataset used for the model pre-training. For this reasons, we
opted for the generation of synthetic facts starting from the original data. For this
purpose, we use a GPT-4 with a specific prompt to extract a fact with a similar
structure with respect to the initial one, but fantasy names for keys and values.
Manual checking of the facts is performed to verify the validity of the synthetic
data: we want to avoid data which are too similar to the originals, since we want a
measurable effect on the model but, at the same time, we want to keep meaningful
facts with similar structure. Below an example of our synthetic generation pipeline:

Original: Danielle Darrieux’s mother tongue is French
Transformed: Zorgon Flux’s native language is Xylophian

For reproducibility purposes we insert the prompt used to generate the unknown
facts. We generate each group of facts using batches of 25 elements each.

Starting from this list of facts, can you create one data entry for each that
concerns imaginary names and characters if necessary, while following
the same logic.
For example, Danielle Darrieux’s mother tongue is French becomes Machin
De Machine’s mother tongue is Kurdi (or Kinduli). Edwin of Northum-
bria’s religious values strongly emphasize Christianity becomes Hamed
Habib’s religious values strongly emphasize Atheism (or Peace or other
values).
Try to make the old and new as far as possible from each other (e.g.,
Kurdi is far from French, Kinduli is an imaginary language, etc.), while
keeping some logic. Write in JSON format please (easy to parse).

4.2.3 Evaluation metrics

Taking inspiration from the literature [2], in this work we implement different
metrics to evaluate the update and editing performances using the CounterFact
dataset.

32

Experimental setup

Update

• Accuracy: It is the ability to provide the correct completion given the original
fact.

Edit

• Reliability: It is the ability to provide the correct completion given the edited
fact.

• Locality: It measures the ability of applying specific edits to the model,
leaving unaffected unrelated facts. Given the incremental nature of our work,
we do not make use of neighborhood prompts, but we measure the locality as
the accuracy on the previous knowledge which should not be affected by the
edit.

• Generalization: To verify the actual ability of the model to learn general
concepts rather then specific facts, we exploit the generation prompts. These
prompts are built to offer more difficult relations compared to the classical
paraphrase prompts: in this way we can truly stress the capacity of our model.

4.3 Implementation details

4.3.1 Fine-tuning process
For running our experiments we need to be sure about the model’s knowledge
related to the facts we consider coherent: this aspect is crucial for performing
consistent and meaningful analysis of the internal parameters of the model. To
build this class we select as our ground truth the true facts from the Counterfact
dataset: they represent true statement in the form of key-value relations. However,
considering we do not work with models big enough and we have no direct access
to the original training data we cannot be sure that some specific facts are already
included in the model knowledge. As standard way for ensuring the model’s factual
knowledge related to our data we perform a fine-tuning procedure using the true
facts.

As additional constraint we would like to verify that all the facts have been
correctly learnt by the model, since it is not guaranteed that all the fine-tuning set
is successfully inserted into the model’s knowledge. In order to reach this goal we
fine-tune the model for a number of epochs big enough to guarantee 100% accuracy
over the training set: in this manner we are sure that the model learnt all the facts.

33

Experimental setup

Instead, for what concerns the fine-tuning process itself, given the autoregressive
nature of GPT models, we apply a masked CLM computing the loss only on the
answer tokens. This implementation guarantees that the model is trained solely
on providing the correct answer given the context, rather than learning the entire
sentence structure.

In terms of implementation we use as baseline implementation the one proposed
by EasyEdit [40] in order to be consistent with results obtained in previous works.
The process is based on an auto-regressive training of the model where the entire
sentence, composed by both prompt and completion, is given as input to the model.
The expected output is the sentence itself: in this way the model is able to learn
how to answer token by token. To do so it is crucial to apply a shift in the labels:
starting from the input sequence, we shift the tokens to the right not considering
the first one. As a matter of fact, it will be a [START] token used to start a new
generation; the logits instead will start from the second token (which is the first
actually shown in the output).

4.3.2 Familiarity and dissonance detection details
For the familiarity and dissonance detection task we make use of two different
classifiers, a SVM and a Random Forest. In order to provide robust results the
results from each experiment are obtained by a 5-folds nested cross validation
process: we apply this technique in order to provide statistically meaningful results.
We perform an hyper-parameter tuning for each classifier using grid search on the
following parameters:

SVM

• C : 0.1, 1, 10, 100

• gamma: scale, 1, 0.1, 0.01, 0.001

• kernel: linear, poly, rbf, sigmoid

• degree: 2, 3, 4

• coef0 : 0, 0.1, 0.5, 1

Random Forest

• n_estimators: 50, 100, 200, 300

• max_depth: None, 10, 20, 30

• min_samples_split: 2, 5, 10

34

Experimental setup

• min_sample_leaf : 1, 2, 4

• bootstrap: True, False

4.3.3 Knowledge update details
In order to provide meaningful results each experiment has been tested on 5
different folds of the dataset. We used the same hyper-parameter configurations
for the fine-tuning across the different update experiments since we wanted to
keep consistency across the different settings. For the general knowledge neurons
extraction we used 5 epochs with learning rate equal to 5 × 10−4. For the previous
knowledge and the new knowledge instead, we used learning rate equal to 10−3 and
10 epochs. The batch size was fixed at 32 for all the training procedures.

4.3.4 Knowledge edit details
As for the editing experiments we kept similar configurations compared to the
knowledge update: 5 epochs and learning rate 5 × 10−4 for general knowledge
neurons identification and 10 epochs with learning rate 10−3 for previous knowledge
and new knowledge. The only difference is the addition of the editing step, which
keep the 10−3 learning rate, but it uses 20 epochs: this change was done since the
edit requires more iterations to reach a good reliability. The batch size, as before,
was fixed at 32 for all the training procedures.

4.4 Computational needs
In terms of computational requirements, our proposed approach demands similar
resources to those needed for full fine-tuning of language models. When working
with a smaller model like GPT-2 SMALL, all experiments can be conducted on a
single Nvidia V100 equivalent GPU, which provides sufficient computational power
for this scale of model. To further enhance training speed and efficiency, parallel
GPU configurations can be implemented using DeepSpeed [41], which optimizes
distributed training processes and can significantly reduce the time required for
experiments. For scaling this approach to larger models, such as GPT-J or LLaMA-
7B, more robust computational resources would be necessary due to the increased
number of parameters and higher memory demands. A widely adopted choice in
the literature is to use Nvidia A100 GPUs with 80GB of memory.

35

Chapter 5

Experiments and results

In this chapter, we present the experiments conducted to evaluate the effectiveness
of our method. The experiments are organized into three distinct categories: famil-
iarity and dissonance detection, incremental knowledge update, and incremental
knowledge editing. Each of these categories aims to verify different areas of our new
learning paradigm in controlled settings, to have a complete view of the capabilities
of the proposed method. For each category, we provide a comprehensive description
of the experimental procedures, followed by a presentation of the results, along
with detailed analysis and explanations. Each main experiment is complemented
by ablation studies to provide a more comprehensive evaluation and to validate
the robustness of our approach. The implementation details for each experiment
are thoroughly outlined in Chapter 4.

5.1 Familiarity and dissonance detection

5.1.1 Detection on fine-tuned model

Description

The goal of this experiment is to demonstrate that a cognitive dissonance metric
can be established using the gradient and activation response of a model. We begin
by selecting a pre-trained model and fine-tuning it on a set of 1000 facts to ensure
that it has fully internalized this knowledge. These facts will serve as a baseline
for the experiment. Then, we need to create a labeled dataset which includes three
classes of facts:

• Familiar Facts: These are the facts the model was fine-tuned on. To ensure
generalization, we will present these facts using various rephrased prompts.

36

Experiments and results

• Dissonant Facts: These are statements that directly contradict the known
facts, designed to assess the model’s response to conflicting information.

• Unknown Facts: These are facts generated using a prompted GPT-4 model
(Chapter 4, ensuring that the data points are novel and not inherently known
or counter to the facts the model was trained on.

In total we now have a balanced dataset composed of 3000 facts. With this
data, we train two machine learning classifiers: a Support Vector Machine (SVM)
and a Random Forest. The objective is to enable these classifiers to distinguish
between coherent, dissonant, and unfamiliar facts based on their familiarity and
dissonance in relation to the model’s internalized knowledge. By evaluating the
classifiers’ ability to correctly categorize these classes we aim to quantify the
cognitive dissonance of the model, effectively measuring how the model’s gradient
and activation responses vary in relation to the familiarity and consistency of the
input with its trained knowledge.

Results

Normalization Classifier Accuracy F1 Score

Null SVM 0.994 (0.004) 0.994 (0.004)
RF 0.988 (0.001) 0.988 (0.001)

Layer SVM 0.995 (0.001) 0.995 (0.001)
RF 0.982 (0.005) 0.982 (0.004)

Historical SVM 0.995 (0.001) 0.995 (0.001)
RF 0.978 (0.003) 0.978 (0.003)

Table 5.1: Results of familiarity and dissonance detection experiment on facts
known by the fine-tuned model.

The classification task achieved an accuracy exceeding 99%, with results consis-
tently stable across various normalization methods. Both classifiers, the SVM and
Random Forest, performed similarly, although the SVM showed a slight advantage.
Examining the confusion matrix (Figure 5.1) reveals that the classifiers successfully
learned to distinguish between familiar and dissonant facts. However, a minor error
persists when classifying unknown facts. Feature importance analysis indicates
that the gradient serves as the primary discriminative factor (Figure 5.2), with
transformer block 4 emerging as the most significant contributor to the classification

37

Experiments and results

Figure 5.1: Confusion matrix related to the familiarity and dissonance detection
on the fine-tuned model.

task (Figure 5.3). The importance of the gradient was expected, since the model is
fine-tuned on the specific facts we are using for the evaluation: for this reason the
expected loss and the related gradient generated by the backpropagation should be
almost null.

While these results are promising, it is important to note that these metrics were
obtained from a model fine-tuned specifically on the facts in question. This scenario
raises concerns about the integrity of our experiment, as there is a potential risk
of overfitting. These concerns rises in particular observing the major importance
shown by the gradients, which could suggest that the model learnt by heart the
facts without learning the actual concepts. To validate the robustness and efficacy
of this method, it is crucial to conduct an ablation study using a pre-trained model
with a less peaked response. This approach will help determine whether the high
accuracy is genuinely due to the model’s ability to differentiate between familiar,
dissonant, and unknown facts in a real-world scenario.

38

Experiments and results

Figure 5.2: Comparison between the features importance of the different types of
aggregation methods in the fine-tuned model.

Figure 5.3: Comparison between the features importance of the different blocks
in the fine-tuned model.

39

Experiments and results

5.1.2 Detection on pre-trained model
Description

To validate the efficacy of our method in a real-world scenario, we decided to test its
detection capabilities on a pre-trained model, without additional fine-tuning on the
specific set of facts. To construct a set of known facts, we conducted an inference
round using the entire dataset, identifying the facts for which the pre-trained model
could provide correct responses. This approach allowed us to create a classification
dataset consisting of facts that the model already recognized from its pre-training
phase.

Results

Normalization Classifier Accuracy F1 Score

Null SVM 0.944 (0.006) 0.944 (0.006)
RF 0.928 (0.012) 0.929 (0.011)

Layer SVM 0.949 (0.006) 0.949 (0.006)
RF 0.909 (0.014) 0.910 (0.013)

Historical SVM 0.947 (0.004) 0.948 (0.003)
RF 0.925 (0.006) 0.925 (0.006)

Table 5.2: Results of familiarity and dissonance detection experiment on facts
known by the pre-trained model.

The experiment overall produced positive results (Table 5.2), since we were
able to reach a peak performance close to 0.95 in accuracy, which is slightly less
compared to the classification on the fine-tuned model. In this experiment too, the
normalization does not seem to have a visible impact on the results. Analyzing
the confusion matrix (Figure 5.4), we notice that the error is mostly due to the
confusion between familiar and dissonant labels. It is worth noticing that, the
features importance distribution is different compared to the classification on the
fine-tune model. Looking at Figure 5.5, it is clear that the activations play a
more important role: this behavior was expected, since in a fine-tuned there is an
almost null gradient for all the facts which the model has been trained on. Also
looking at the results of the single modality, it is noticeable how activations-only
experiments provide results in line with those with the gradients. Instead of having
a predominant block in terms of importance, in this situation the importance across

40

Experiments and results

blocks (Figure 5.6) seems equally distributed.

Figure 5.4: Confusion matrix related to the familiarity and dissonance detection
on the pre-trained model.

41

Experiments and results

Figure 5.5: Comparison between the features importance of the different types of
aggregation methods in the pre-trained model.

Figure 5.6: Comparison between the features importance of the different blocks
in the pre-trained model.

42

Experiments and results

5.2 Incremental update

5.2.1 Incremental knowledge update
Description

To evaluate the model’s ability to retain previously learned knowledge while
integrating new information, we designed an experiment that measures accuracy
on existing facts after incorporating additional knowledge. The process is divided
into different steps. As first thing, we simulate a fine-tuning on 10000 facts on
the pre-trained model keeping track of the gradient accumulation. This step is
fundamental for detecting the general knowledge neurons. Then, starting from the
pre-trained model we perform a fine-tuning on a set of 2000 facts, which represent
the core knowledge that needs to be preserved. During this phase, we track the
accumulation of gradients, which allows us to construct the HAF necessary for
the subsequent targeted neuron updates. Finally, we introduce an additional
1000 facts to the model, building upon the initial knowledge base testing different
types of targeted updates, comparing them to the full tine-tuning. We measure the
accuracy on both previous and new knowledge, to assess the knowledge preservation
capabilities. The different approaches we compare are:

• Full fine-tuning

• Targeted FT on Busy neurons

• Targeted FT on Free neurons

• Targeted FT on Specific neurons

• Targeted FT on Random neurons

Results

Figure 5.7 shows good results in terms of knowledge preservation: all our sparse
training approaches outperform full fine-tuning, providing a significant advantage.
The first observation we can make is that modifying fewer neurons generally re-
sults in less disruption to the existing knowledge. Among the methods evaluated,
utilizing free neurons proves to be the most effective for integrating new knowledge,
underscoring the efficacy of our proposed method. In contrast, altering busy areas
results in greater disruption, as these regions are more influenced by previous train-
ing. Specific neurons present an intermediate performance between busy and free
neurons, which aligns with expectations, given that these neurons were intended to
modify general neurons not explicitly tied to prior knowledge. Randomly selected
neurons also exhibit highly promising results, nearly preserving previous knowledge

43

Experiments and results

entirely, with performance comparable to the free selection method. This approach
benefits from the inherent advantages of sparsity: modifying fewer neurons, re-
gardless of their type, generally reduces the impact on the output. Moreover, in a
network that lacks dense knowledge packing, altering random parameters is less
likely to cause significant disruption.

Figure 5.7: Accuracy score on the set of previous knowledge comparing different
numbers and types of neurons.

When analyzing the accuracy on the new knowledge (Figure 5.8), it is evident
that busy neurons have a superior capacity for learning new information compared
to free neurons. Busy neurons exhibit a higher knowledge density, as they can store
more information within the same update area size compared to other neuron types.
By concentrating the updates on busy neurons, the same accuracy level as full
fine-tuning can be achieved by modifying only 4000 neurons. In comparison, free
neurons require adjustments of approximately 20000 to reach similar results. Spe-
cific neurons perform similarly to busy neurons but with a slightly lower knowledge
density. Although random selection proved effective in preserving old knowledge,
it does not offer sufficient knowledge density when compared to busy and specific
neurons.

After the first fine-tuning, we obtain a model that incorporates the desired
knowledge. Figure 5.9 presents the accumulation distribution of the neurons in the
network, showing that most neurons exhibit negligible changes in their parameters
throughout the training process. However, some neurons are noticeably impacted,

44

Experiments and results

Figure 5.8: Accuracy score on the set of new knowledge comparing different
numbers and types of neurons.

highlighting a sparse situation with only a few busy neurons in the network com-
pared to the large number of neurons that are not significantly affected by the
training.

Figure 5.9: Gradient accumulation measured during the full fine-tuning related
to the previous knowledge.

45

Experiments and results

When showing the percentage of busy neurons for each layer, it is clear that
there is strong concentration of them in the projection layer of the attention of
the first transformer block (Figure 5.10). The general trend for all the blocks
instead, is to have an higher percentage of busy neurons in the cross attention
layer compared to the others. The MLP layers are the less impacted: this situation
opposes previous work, which tends to focus the update on the fully connected layers.

Figure 5.10: Percentage of neurons considered busy for each layer when selecting
a total of 6000 busy neurons.

Despite the good performances compared to a full fine-tuning, we are not able
to protect entirely the previous knowledge. This phenomenon could be due mainly
to two elements: inefficacy of the location method and impact of the modifications
on the computational graph. The location inefficacy could be a possible cause of
knowledge degradation since we select the neurons to be updated using a heuristic:
however the original knowledge was injected inside the model with a full fine-tuning,
so the neurons free according to our definition could still be responsible for the
previous knowledge to some extent. The latter instead derives from the fact that,
even though we are trying to separate the areas we are working on, the neurons will
be always connected to each other: this means that modifications done in different
areas could still impact the propagation of the signal inside the network modifying
the output.

For what concerns the higher knowledge density showed by busy neurons, they

46

Experiments and results

can represent a lottery ticket configuration, and so they could be defined as a set
of neurons accountable for learning general knowledge. However, this phenomenon
could be just related to the fact that those neurons have been already trained on
factual data and in some way they adapted at learning factual knowledge.

5.2.2 Local fine-tuning using lottery ticket configurations
Description

The results from our previous experiment support the lottery ticket hypothesis.
To further demonstrate this analogy, we designed a new experiment to show that
our selection of busy neurons can be seen as a lottery ticket configuration. In
this new setup, we first fine-tune on 10000 facts and identify the busy neurons
from this process. We then use this specific set of neurons to learn 2000 new facts,
starting from a pre-trained model. For comparison, we conduct this procedure
using different configurations of neurons:

• Full fine-tuning

• Targeted FT on Busy neurons

• Targeted FT on Free neurons

• Targeted FT on Random neurons

Results

It is noticeable that busy neurons are those providing the highest knowledge density
also in this condition, as depicted in Figure 5.11. These results suggest a perfect
analogy with the lottery ticket theory, excluding the potential effect of previous
training.

Moreover, busy configurations are not just more dense but they are also faster
at learning: Figure 5.12 shows the accuracy of the different selections across the
epochs. Considering the same amount of neurons to update, the free set needs
more iterations to reach the same accuracy as the busy set. The full fine-tuning is
still faster at learning reaching a plateau before than the sparse selections.

47

Experiments and results

Figure 5.11: Accuracy score on the set of new knowledge inserted using lottery
ticket configuration, comparing different numbers and types of neurons.

Figure 5.12: Accuracy score on the set of new knowledge inserted using lottery
ticket configuration across the different epochs, updating 20000 neurons and com-
paring different types of selections.

48

Experiments and results

5.2.3 Incremental update with sparsity by design
Description

To assess the impact of partial overlap in knowledge due to imperfect localization,
we conduct an experiment where the knowledge is intentionally divided to enforce
sparsity by design. In this setup, we ensure that there is no overlap between the
two update regions: the model is updated in two steps, carefully avoiding any
contamination between the areas. The update areas are selected using a lottery
ticket configuration derived from a prior training session. Specifically, we simulate a
training procedure with 10000 facts extracting the gradient accumulation. Then, the
first set of knowledge composed by 2000 facts is inserted into the network freezing
the top 20000 neurons: this technique allow us to keep a complete disjoint area
for future updates. Finally, we incorporate 1000 new facts in the free area, always
using different number of neurons. This approach allows us to directly compare
the accuracy of our localization method against a genuinely sparse condition.

Results

Figure 5.13: Accuracy score on the set of previous knowledge. Comparison
between free neurons update and forced sparsity.

The results of the experiment show that even with forced sparsity it is not
possible to preserve completely the previous knowledge when performing an update
(Figure 5.13. Moreover, it is possible to notice that the results from the original
experiment are even better when we consider the ability to preserve knowledge.
The gap between the two experiments increases when we increase the number

49

Experiments and results

of updated neurons: this behavior can be justified by the fact that, in order to
guarantee the absence of overlapping, when we increase the number of neurons
targeted for the update we reduce the number of neurons allocated for previous
knowledge. This experiment proves that when performing knowledge update there
is an impact related to the influence of the computational graph. On the contrary,
the disjoint neurons perform better when learning new knowledge (Figure ??).

The results of the experiment indicate that, even with enforced sparsity, it
is not possible to completely preserve the previous knowledge during an update
(Figure 5.13). Interestingly, the findings from the original experiment demonstrate a
superior ability to preserve knowledge compared to this forced sparsity scenario. The
gap between the two experiments widens as the number of updated neurons increases,
which can be explained by the trade-off between the absence of overlap and the
reduced allocation of neurons for previous knowledge. This experiment highlights
that updating knowledge impacts the preservation of previous information due to
the underlying influence of the computational graph. In contrast, disjoint neurons
show better performance in learning new knowledge (Figure 5.14), suggesting that
separate neural allocations are advantageous when introducing new information.

Figure 5.14: Accuracy score on the set of new knowledge. Comparison between
free neurons update and forced sparsity.

50

Experiments and results

5.3 Incremental editing
Description

After demonstrating the potential of sparse fine-tuning for knowledge insertion,
we shift our focus to knowledge editing, which represents the final stage in our
comprehensive pipeline. Unlike training to acquire new knowledge, knowledge
editing aims to modify the model’s existing beliefs. The procedure for this experi-
ment involves several key steps: we begin by fine-tuning the model on a dataset
containing 2000 facts, establishing the baseline knowledge set. A second round of
fine-tuning is then performed, introducing a new set of facts (composed of 10, 100
or 1,000 elements) which serve as the targets for our subsequent editing process. To
accurately measure the impact of the second fine-tuning on the original knowledge,
we identify which facts from the initial dataset the model still recognizes, using this
subset as a metric for evaluating the locality of changes made during the editing
process. The final step is to edit the model’s beliefs specifically regarding the facts
introduced during the second fine-tuning. The objective is to update these beliefs
while preserving the integrity of the previously established knowledge. We also
evaluate the generalization capabilities of the editing by measuring accuracy on
paraphrased versions of the edited facts. The different targeted strategies are tested
against the full fine-tuning as baseline and ROME, which represents the current
state-of-the-art.

Results

From the results presented in Table 5.3, it is evident that editing an existing concept
is generally more challenging than incorporating new knowledge. Starting from the
baseline established by full fine-tuning, we observe that while this approach allows
for the effective learning of new information, it significantly disrupts the retention
of prior knowledge, particularly when compared to the results of knowledge update
experiments. Nonetheless, full fine-tuning proves to be the most versatile method
in terms of generality. Regarding the sparse update method, a key finding is
the limited effectiveness of using free neurons for editing facts, especially when
compared to the busy neuron selection approach. This result confirm the initial
hypothesis. Additionally, the ROME method exhibits notably low performance,
which aligns with previous literature [2] demonstrating its inability to maintain
performance at scale.

Upon detailed analysis of the relationship between different metrics and the
number of neurons, we observe that the reliability (Figure 5.15) shows patterns
similar to those seen during the update phase in Experiment 5.2. This indicates that
the capability to modify existing knowledge remains intact. However, a significant

51

Experiments and results

Method Edited facts Reliability Locality Generality

Full FT
10 1.000 (0.000) 0.107 (0.082) 0.576 (0.117)
100 0.998 (0.003) 0.238 (0.019) 0.434 (0.089)
1000 0.991 (0.009) 0.182 (0.007) 0.442 (0.053)

Free neurons
10 0.000 (0.000) 0.936 (0.029) 0.000 (0.00)
100 0.033 (0.011) 0.553 (0.056) 0.016 (0.010)
1000 0.247 (0.028) 0.266 (0.034) 0.060 (0.011)

Busy neurons
10 0.988 (0.024) 0.596 (0.106) 0.644 (0.128)
100 0.969 (0.033) 0.542 (0.035) 0.462 (0.081)
1000 0.996 (0.002) 0.199 (0.014) 0.380 (0.041)

Random neurons
10 0.380 (0.132) 0.827 (0.083) 0.092 (0.094)
100 0.969 (0.033) 0.508 (0.019) 0.462 (0.081)
1000 0.784 (0.091) 0.159 (0.032) 0.102 (0.014)

Specific neurons
10 0.964 (0.039) 0.638 (0.138) 0.512 (0.238)
100 0.760 (0.063) 0.531 (0.019) 0.263 (0.027)
1000 0.993 (0.003) 0.240 (0.017) 0.287 (0.039)

ROME
10 0.240 (0.162) 0.891 (0.075) 0.180 (0.160)
100 0.300 (0.048) 0.430 (0.096) 0.150 (0.032)
1000 0.160 (0.082) 0.152 (0.063) 0.067 (0.030)

Table 5.3: Results of the editing process considering different number of facts to
be edited. In this table, the targeted update is performed using 8000 neurons.

limitation of this method is evident in terms of locality (Figure 5.16): performance
on previously acquired knowledge deteriorates as early as when using 2000 neurons,
particularly with busy and specific neurons. For a comprehensive view, we also
include the generalization metrics in Figure 5.17. Notably, the generalization results
remain stable regardless of the number of neurons modified, suggesting that the
limitation is not inherently tied to the number of neurons used, especially for busy
and specific neurons.

52

Experiments and results

Figure 5.15: Comparison between the reliability score of different techniques
when editing 1000 facts.

Figure 5.16: Comparison between the locality score of different techniques when
editing 1000 facts.

53

Experiments and results

Figure 5.17: Comparison between the generalization score of different techniques
when editing 1000 facts.

54

Experiments and results

Description

5.3.1 Incremental editing with sparsity by design
To evaluate the impact of true knowledge disjointness in model editing, we build
upon the configuration used in Experiment 5.3. In this approach, after integrating
the second set of knowledge into its respective disjoint set, we execute an evaluation
pipeline to assess which facts from the initial knowledge remain unaffected. These
intact facts serve as a measure of locality, guiding us to perform edits on the
same neurons targeted in the previous update. Our goal is to determine whether
a specific, sparsity-driven edit that enforces disjointness can enhance specificity.
For comparison, we use the targeted edit on the busy neurons set measured in
Experiment 5.3.

Results

As expected, since the set of facts to be edited is situated in a free configuration,
the knowledge density is lower compared to the targeted update using busy neurons.
Consequently, more neurons are required to achieve near-perfect reliability (Figure
5.18). In Figure 5.19, we observe the results related to locality: in this case as
well, enforcing sparsity does not significantly impact training performance. The
accuracy is comparable to that observed in Experiment 5.3 with free neurons: using
a small number of neurons yields good results, but as the size of the targeted set
increases, the locality drops to levels similar to those seen with busy neurons. In
general, to achieve a reliability comparable to that of busy neurons, forced sparsity
delivers similar results in terms of locality with no clear advantages.

55

Experiments and results

Figure 5.18: Comparison between the reliability score of busy neurons and forced
sparsity when editing 1000 facts.

Figure 5.19: Comparison between the locality score of busy neurons and forced
sparsity when editing 1000 facts.

56

Chapter 6

Conclusion

In this chapter, we discuss the final results obtained during the project, highlighting
the key findings and their implications. We also present the current limitations and
suggest future developments to enhance the outcomes and address any remaining
challenges.

6.1 Discussion
In general, the proposed pipeline has been validated through the systematic ex-
periments, providing encouraging results. The familiarity and dissonant detection
method proved to have high accuracy across all the classes, in different training
scenarios. This method opens different possibilities for future applications not only
in the context of cognitive aware learning, but also for detecting possible wrong
facts during the training process. The update experiments showed good results
in keeping old knowledge while learning new facts when targeting free neurons.
With the related ablation studies we proved the analogy between our method and
the lottery ticket theory, identifying a set of general knowledge neurons. As for
the edit instead, we were not able to reach the same performances shown in the
insertion of new knowledge. This is in line with our original theory regarding
stubbornness: similarly to what happens in our brain, modifying prior belief is
harder than learning new things. Despite the lower results compared to the update,
our method outperforms the current state-of-the-art represented by ROME when
scaling to large amount of facts. Furthermore, localizing the specific knowledge
to be modified is fundamental for the editing process since, inserting dissonant
knowledge into the free space creates inconsistencies causing low performance.
This core difference between the update and the edit underlines once more the
importance of the classification pipeline we built.

57

Conclusion

Finally, we demonstrated that (1) Inner State Awareness is a valid method for
detecting the familiarity and dissonance of factual knowledge inside LLMs; (2)
Differentiated Plasticity for targeted updates is a valid method for incremental
learning, which effectively distinguish between neurons that have learned previous
knowledge and those that are still able to incorporate new facts.

6.2 Limitations and future work
Given the nature of the project, it was only feasible to test the proposed approach
on small models with low computational demands. Therefore, a key direction for
future work is to scale this method to larger models to assess its validity in more
complex scenarios. We are currently setting up experiments with GPT-2 XL and
GPT-J for a future article, which will provide valuable insights into the potential
real-world applications of this approach. Once we confirm the effectiveness of
targeted updates, future research should focus on the impact of the computational
graph. As demonstrated, even if knowledge can be localized within specific groups
of neurons, the overall neural connections still exert a significant influence on
model behavior. The ultimate goal is to develop a method that, considering the
computational graph, accounts for signal propagation throughout the network,
minimizing internal interference. Moreover, current benchmarks are inadequate
for evaluating the true knowledge capabilities of language models, as they often
emphasize hard-coded sentences over general concepts. This leads LLMs to excel
primarily in scenarios where they can memorize fixed fact structures, which does
not align with the principles of generative evaluation. To address this, some have
suggested using an external LLM to evaluate responses based on coherence and
alignment with the ground truth, rather than simply matching exact phrases
[42]. Further studies should delve deeper into novel techniques, such as generative
evaluation methods, and exploit them to achieve a more precise evaluation of the
knowledge embedded within LLMs.

58

Bibliography

[1] Mladjan Jovanovic and Peter Voss. Towards Incremental Learning in Large
Language Models: A Critical Review. 2024. arXiv: 2404.18311 [cs.LG]. url:
https://arxiv.org/abs/2404.18311 (cit. on pp. iii, 13).

[2] Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin
Deng, Huajun Chen, and Ningyu Zhang. Editing Large Language Models:
Problems, Methods, and Opportunities. 2023. arXiv: 2305.13172 [cs.CL]
(cit. on pp. iii, 14–16, 32, 51).

[3] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating
and Editing Factual Associations in GPT. 2023. arXiv: 2202.05262 [cs.CL]
(cit. on pp. v, 2, 19, 20, 31).

[4] Elif Isbel et al. «Neuroplasticity of selective attention: Research foundations
and preliminary evidence for a gene by intervention interaction». In: PNAS
114.35 (2017), pp. 9247–9254 (cit. on p. 1).

[5] N. Lavi. «Perceptual load as a necessary condition for selective attention».
In: Journal of Experimental Psychology: Human Perception and Performance
21.3 (2017), pp. 451–468 (cit. on p. 1).

[6] D. E. Broadbent. Perception and Communication. London: Pergamon Press,
1958 (cit. on p. 1).

[7] J. A. Deutsch and D. Deutsch. «Attention: Some Theoretical Considerations».
In: Psychological Review 70.1 (1963), pp. 80–90. doi: 10.1037/h0042712
(cit. on p. 1).

[8] A. M. Treisman. «The Effect of Irrelevant Material on the Efficiency of
Selective Listening». In: The American Journal of Psychology 77.4 (1964),
pp. 533–546 (cit. on p. 1).

[9] M. Corbetta and G. L. Shulman. «Control of Goal-Directed and Stimulus-
Driven Attention in the Brain». In: Nature Reviews Neuroscience 3.3 (2002),
pp. 201–215. doi: 10.1038/nrn755 (cit. on p. 1).

[10] M. I. Posner and C. R. R. Snyder. «Attention and Cognitive Control». In:
Cognitive psychology: Key readings (2004), pp. 205–223 (cit. on p. 1).

59

https://arxiv.org/abs/2404.18311
https://arxiv.org/abs/2404.18311
https://arxiv.org/abs/2305.13172
https://arxiv.org/abs/2202.05262
https://doi.org/10.1037/h0042712
https://doi.org/10.1038/nrn755

BIBLIOGRAPHY

[11] N. Yeung. «Conflict Monitoring and Cognitive Control». In: Oxford Handbook
of Cognitive Neuroscience. Oxford: Oxford University Press, 2013, pp. 275–299
(cit. on p. 1).

[12] D. Frey, E. D. Johnson, and W. De Neys. «Individual differences in conflict
detection during reasoning». In: Quarterly journal of experimental psychology
71.5 (2018), pp. 1188–1208 (cit. on p. 1).

[13] Janie Brisson, Walter Schaeken, Henry Markovits, and Wim De Neys. «Con-
flict detection and logical complexity». In: Psychologica Belgica 58.1 (2018),
pp. 318–332 (cit. on p. 1).

[14] M. Ostrow et al. «How the human brain creates cognitive maps of related
concepts». In: Nature 632.8026 (2024), pp. 744–745 (cit. on p. 1).

[15] Christine J. Charvet. «Mapping Human Brain Pathways: Challenges and
Opportunities in the Integration of Scales». In: Brain Behavior and Evolution
98.4 (2023), pp. 194–209 (cit. on p. 1).

[16] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard
Socher, Xavier Amatriain, and Jianfeng Gao. Large Language Models: A
Survey. 2024. arXiv: 2402.06196 [cs.CL]. url: https://arxiv.org/abs/
2402.06196 (cit. on p. 2).

[17] Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and
Daniel A. Roberts. The Unreasonable Ineffectiveness of the Deeper Layers.
2024. arXiv: 2403.17887 [cs.CL]. url: https://arxiv.org/abs/2403.
17887 (cit. on p. 2).

[18] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher
D. Manning. Fast Model Editing at Scale. 2022. arXiv: 2110.11309 [cs.LG]
(cit. on pp. 2, 22).

[19] Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and
David Bau. Mass-Editing Memory in a Transformer. 2023. arXiv: 2210.07229
[cs.CL] (cit. on p. 2).

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL] (cit. on pp. 6–8).

[21] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.
«Improving language understanding by generative pre-training». In: (2018)
(cit. on p. 9).

60

https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/1706.03762

BIBLIOGRAPHY

[22] Steve D Yang, Zulfikhar A Ali, and Bryan M Wong. «Fluid-gpt (fast learn-
ing to understand and investigate dynamics with a generative pre-trained
transformer): Efficient predictions of particle trajectories and erosion». In:
Industrial & Engineering Chemistry Research 62.37 (2023), pp. 15278–15289
(cit. on p. 10).

[23] Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks. 2019. arXiv: 1803.03635 [cs.LG]. url:
https://arxiv.org/abs/1803.03635 (cit. on p. 12).

[24] Abhishek Aich. Elastic Weight Consolidation (EWC): Nuts and Bolts. 2021.
arXiv: 2105.04093 [cs.CV]. url: https://arxiv.org/abs/2105.04093
(cit. on p. 13).

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge
in a Neural Network. 2015. arXiv: 1503.02531 [stat.ML]. url: https:
//arxiv.org/abs/1503.02531 (cit. on p. 13).

[26] Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and Jiayi
Huang. A Survey on Mixture of Experts. 2024. arXiv: 2407.06204 [cs.LG].
url: https://arxiv.org/abs/2407.06204 (cit. on p. 13).

[27] Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memory-
assisted prompt editing to improve GPT-3 after deployment. 2023. arXiv:
2201.06009 [cs.CL] (cit. on p. 16).

[28] Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts,
and Danqi Chen. MQuAKE: Assessing Knowledge Editing in Language Models
via Multi-Hop Questions. 2023. arXiv: 2305.14795 [cs.CL] (cit. on p. 16).

[29] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and
Chelsea Finn. Memory-Based Model Editing at Scale. 2022. arXiv: 2206.06520
[cs.AI] (cit. on p. 16).

[30] Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and
Zhang Xiong. Transformer-Patcher: One Mistake worth One Neuron. 2023.
arXiv: 2301.09785 [cs.CL] (cit. on p. 17).

[31] Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei
Li. «Calibrating Factual Knowledge in Pretrained Language Models». In:
Findings of the Association for Computational Linguistics: EMNLP 2022.
Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi,
United Arab Emirates: Association for Computational Linguistics, Dec. 2022,
pp. 5937–5947. doi: 10.18653/v1/2022.findings-emnlp.438. url: https:
//aclanthology.org/2022.findings-emnlp.438 (cit. on p. 18).

61

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2105.04093
https://arxiv.org/abs/2105.04093
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2407.06204
https://arxiv.org/abs/2407.06204
https://arxiv.org/abs/2201.06009
https://arxiv.org/abs/2305.14795
https://arxiv.org/abs/2206.06520
https://arxiv.org/abs/2206.06520
https://arxiv.org/abs/2301.09785
https://doi.org/10.18653/v1/2022.findings-emnlp.438
https://aclanthology.org/2022.findings-emnlp.438
https://aclanthology.org/2022.findings-emnlp.438

BIBLIOGRAPHY

[32] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang
Li, Felix Yu, and Sanjiv Kumar. Modifying Memories in Transformer Models.
2020. arXiv: 2012.00363 [cs.CL] (cit. on pp. 18, 19).

[33] Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing Factual Knowledge in
Language Models. 2021. arXiv: 2104.08164 [cs.CL] (cit. on p. 21).

[34] Jinwen He, Yujia Gong, Kai Chen, Zijin Lin, Chengan Wei, and Yue Zhao.
LLM Factoscope: Uncovering LLMs’ Factual Discernment through Inner States
Analysis. 2023. arXiv: 2312.16374 [cs.CL] (cit. on p. 24).

[35] Weihang Su, Changyue Wang, Qingyao Ai, Yiran HU, Zhijing Wu, Yujia
Zhou, and Yiqun Liu. Unsupervised Real-Time Hallucination Detection based
on the Internal States of Large Language Models. 2024. arXiv: 2403.06448
[cs.CL] (cit. on p. 24).

[36] Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec
Radford, Ilya Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating
sparse autoencoders. 2024. arXiv: 2406.04093 [cs.LG]. url: https://arxiv.
org/abs/2406.04093 (cit. on p. 25).

[37] OpenAI. url: https://huggingface.co/openai-community/gpt2 (cit. on
p. 30).

[38] Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard
Hovy, Hinrich Schütze, and Yoav Goldberg. «Measuring and Improving Consis-
tency in Pretrained Language Models». In: Transactions of the Association for
Computational Linguistics 9 (Dec. 2021), pp. 1012–1031. issn: 2307-387X. doi:
10.1162/tacl_a_00410. eprint: https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00410/1975957/tacl_a_00410.pdf. url:
https://doi.org/10.1162/tacl%5C_a%5C_00410 (cit. on p. 31).

[39] Wikidata. url: https://www.wikidata.org (cit. on p. 31).
[40] Peng Wang et al. EasyEdit: An Easy-to-use Knowledge Editing Framework

for Large Language Models. 2024. arXiv: 2308.07269 [cs.CL]. url: https:
//arxiv.org/abs/2308.07269 (cit. on p. 34).

[41] DeepSpeed. url: https://www.deepspeed.ai/training/ (cit. on p. 35).
[42] Lianmin Zheng et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot

Arena. 2023. arXiv: 2306.05685 [cs.CL]. url: https://arxiv.org/abs/
2306.05685 (cit. on p. 58).

62

https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2312.16374
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://huggingface.co/openai-community/gpt2
https://doi.org/10.1162/tacl_a_00410
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00410/1975957/tacl_a_00410.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00410/1975957/tacl_a_00410.pdf
https://doi.org/10.1162/tacl%5C_a%5C_00410
https://www.wikidata.org
https://arxiv.org/abs/2308.07269
https://arxiv.org/abs/2308.07269
https://arxiv.org/abs/2308.07269
https://www.deepspeed.ai/training/
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

	Introduction
	Proposed Approach
	Experiments and results
	Conclusion
	List of Tables
	List of Figures
	Introduction (1)
	Human brain learning process
	LLMs learning abilities
	Contribution

	Background
	Large Language Models
	Backpropagation
	Transformer
	GPT architecture
	Language modelling
	Lottery ticket hypothesis
	Incremental learning
	Model editing
	Memory-based methods
	Additional Parameters
	Constrained fine-tuning
	Locate-Then-Edit
	Meta-learning

	Proposed approach
	Cognitive-aware learning
	Inner states data collection
	Cognitive Awareness
	Targeted Updates with Differentiated Plasticity

	Experimental setup
	Models
	Dataset
	CounterFact
	Synthetic data generation
	Evaluation metrics

	Implementation details
	Fine-tuning process
	Familiarity and dissonance detection details
	Knowledge update details
	Knowledge edit details

	Computational needs

	Experiments and results (1)
	Familiarity and dissonance detection
	Detection on fine-tuned model
	Detection on pre-trained model

	Incremental update
	Incremental knowledge update
	Local fine-tuning using lottery ticket configurations
	Incremental update with sparsity by design

	Incremental editing
	Incremental editing with sparsity by design

	Conclusion (1)
	Discussion
	Limitations and future work

	Bibliography

