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Abstract | i

Abstract
This thesis demonstrates the successful development of a software sensor for
Siemens Energy’s SGT-700 gas turbines using machine learning algorithms.
Our goal was to enhance the robustness of measurements and redundancies,
enabling early detection of sensor or turbine malfunctions and contributing
to predictive maintenance methodologies. The research is based on a
real-world case study, implementing the Cross Industry Standard Process
for Data Mining (CRISP DM) methodology in an industrial setting. The
thesis details the process from dataset preparation and data exploration to
algorithm development and evaluation, providing a comprehensive view of
the development process. This work is a step towards integrating machine
learning into gas turbine systems.

The data preparation process highlights the challenges that arise in the
industrial application of data-driven methodologies due to inevitable data
quality issues. It provides insight into potential future improvements, such
as the constraint programming approach used for dataset construction in this
thesis, which remains a valuable tool for future research.

The range of algorithms proposed for the software sensor’s development
spans from basic to more complex methods, including shallow networks,
ensemble methods and recurrent neural networks.

Our findings explore the limitations and potential of the proposed
algorithms, providing valuable insights into the practical application of
machine learning in gas turbines. This includes assessing the reliability
of these solutions, their role in monitoring machine health over time, and
the importance of clean, usable data in driving accurate and satisfactory
estimates of different variables in gas turbines. The research underscores that,
while replacing a physical sensor with a software sensor is not yet feasible,
integrating these solutions into gas turbine systems for health monitoring is
indeed possible. This work lays the groundwork for future advancements and
discoveries in the field.

Keywords
Gas turbines, machine learning, deep learning, predictive maintenance,
software sensor, data quality, Cross Industry Standard Process for Data Mining
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Chapter 1

Introduction

Machine Learning techniques are rapidly increasing their relevance in a wide
range of practical settings and present a unique opportunity to uncover hidden
relationships in complex contexts [1]. This thesis seeks to delve into the
capabilities and robustness of these algorithms in the context of gas turbines
- complex devices that generate energy and find use in a broad spectrum of
practical applications. This thesis aims to lay the foundation for understanding
the potential applications of Machine Learning Algorithm in gas turbines by
addressing the initial challenge of developing a software sensor within them.
The emphasis will be on the comprehensive process of algorithm development,
from data collection and cleaning, to the design and validation of such a
software sensor. It will further highlight potential areas of future work with
the ultimate goal of fully integrating Machine Learning Algorithm (ML) into
gas turbine systems. The entirety of this research is done using data from gas
turbines at Siemens Energy.

At their core, gas turbines are devices that convert chemical energy into
mechanical or electrical energy through the combustion of fuel[2]. They are
increasingly relevant in nowadays context for their key role in the pursuit
of achieving a sustainable future. They are particularly well suited for
complementing renewable energy sources due to their inherent ability to
quickly adjust output levels, thus compensating for the typical fluctuations in
renewable power generation [3]. Furthermore, they are used in a wide range of
applications and through the usage of particular cycles it is possible to achieve
remarkable efficiencies [4]. An emerging area of interest is the study of
making viable the fuel substitution with hydrogen, at least partially,[5][6][7],
which has the advantage of significantly lower emissions. In essence, gas
turbines play a key role in our modern society and their relevance is expected
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to increase with further advancements.

1.1 Background
Gas turbines are complex devices whose main purpose is to convert chemical
energy into mechanical or electrical energy [2]. Nowadays, gas turbines are
the most versatile turbo-machinery item available in the market [8] due to the
variety of applications it can be employed for. As discussed in the book by
Soaires Claire [8] its applications encompass propelling vessels, supplying
energy to the grid, generating electricity and heating for a district , etc ….

A rudimentary explanation of gas turbines functioning principle is the
following [9]:

• Gas Compression: A gas is compressed in the first stage. This is in
most cases air.

• Combustion: The compressed gas is mixed with other type of gas for
igniting a combustion process, which releases chemical energy. In most
cases the mixture contains natural gas, but it has been also used in
combination with hydrogen or ammonia.

• Expansion: The compressed high-pressurized gas passes through the
blades of the turbine generating work.

A gas turbine has hundreds of sensors that monitor it during its operation.
Such sensors are essential for safety and performance reasons. It is also
important for predictive maintenance and prevent potential machine damage
with long-term usage. Sensors monitor several different quantities such
as pressure and temperatures in the different stages of the turbine, flame
presence/absence, blade distance to turbine walls (blade tip), amount of gas
supplied, generated power, ambient parameters [10]. Finding relationships
among all those quantities is non-trivial due to the complex dynamics
that govern the system and the thousands of tolerances of all the different
components in a gas turbine.

Although gas turbines are renowned for their reliability and infrequent
failures, continuous monitoring is essential to identify any deviations from
expected performance and operating points, and further minimize potential
downtime.

The inception of this master’s thesis lies in the potential benefits that could
be obtained from systematically discerning these relationships in an automated
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manner from the large amount of data amassed from numerous gas turbines.
This is further motivated by the advent of machine learning, which has seen a
surge in applications across various industries [1].

1.2 Problem
Monitoring of the functioning of a gas turbine is a complex challenge primarily
for the vast amount of processes and sensors that need to be monitored.

As stated before a gas turbine is an inherently complex system which
is governed by specific physical rules and mechanisms. Such a system
of equations often has not analytical closed solution and researchers and
engineers resort to Computational Fluid Dynamics (CFD) simulations to
observe the behaviour during design phases.

Furthermore, numerous efforts have been done, also at Siemens Energy, to
develop gas turbine digital twins to characterize a specific-turbine behaviour.
This method is purely based on the physical model of the turbine and requires
significant expertise and time to develop.[11]

In this context, considering the vast amount of data collected by a company
like Siemens Energy from their gas turbines, a data-driven approach poses
itself as a solution for obtaining a digital-twin like method for creating
redundancies for the gas turbine. The problem we will examine in depth during
this master thesis is whether Machine Learning Algorithms are viable and
robust to be used in gas turbines.

1.2.1 Original problem and definition
The research question that this master thesis project aims to solve is whether
Machine Learning Algorithm can be used for building a data-driven software
sensor, and what the resulting robustness of such a solution would entail.

A software sensor refers to the concept of a system that computes the
expected value of a physical variable purely based on others, non trivially
redundant, physical variables. In the context of a gas turbine, one can imagine
the computation of the exhaust temperature based on the combustion chamber
temperature and the air mass-flow.

1.2.2 Scientific and engineering issues
The inherent complexity of gas turbines, from a scientific perspective, adds
a layer of difficulty to the problem. Gas turbines are exceptionally non-
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linear systems, with thousands of movable or replaceable parts, making the
development of a universal solution an immense, if not impossible, challenge.
The situation is further complicated by the various fuel mixtures used in gas
turbines, which significantly alter their behavior. The complexity is further
increased by the fact the flexibility of turbines [8] makes them to be used in
a large set of operation modes, which differ from use case to use case; even
when considering exclusively terrestrial gas turbines.

From an engineering standpoint, monitoring every possible change in a
structured manner is challenging, making it extremely difficult to pinpoint the
exact differences between two gas turbines of the same type.

Adding to these complexities is the demand to assemble a comprehensive
and clean dataset. As will be further discussed in the thesis, numerous factors
contribute to this challenge and it is not always possible to obtain such a dataset
due to quality constraints or scarcity of data. Meticulous consideration is
necessary when assembling the dataset and selecting appropriate techniques
for designing and validating our algorithms.

1.3 Purpose
The purpose of this project is to leverage the power of Machine Learning
Algorithm for creating redundancies in a gas turbine, which will help Siemens
Energy to obtain more robust systems and be able to detect potential sensor
or component failure at an early stage. This will help to further reduce
the downtime of gas turbines which is an extremely important feature for
customers [12].

A further improvement on the reliance of gas turbines is beneficial for
easier adoption of gas turbines and better incorporation with renewable
sources. As well as the development of a precise redundancy system might
allow in the future to reduce the number of physical sensors in the gas turbine
thus reducing costs for both client and Siemens Energy and increasing the
performance of the gas turbine.

Furthermore, this project will examine the limitations of such system. This
is of great importance since overconfidence in the algorithm might lead the
operator of the gas turbine to neglect changes not detected by the algorithm
and lead to possible catastrophic failures.
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1.4 Research Methodology
The selected methodology for this research is based on the Cross Industry
Standard Process for Data Mining[13]. This model’s philosophy is to
approach the business problem iteratively, enabling continuous refinement of
the proposed solution and its alignment with the requirements as both the
data and model improve. From a theoretical perspective the methodology
is governed by the principles distilled from the statistical framework for ML
presented in [14]. This framework will be further expanded on the Section 2.1.

This choice was based on the fact that this master thesis project was
addresses a novel usage of Machine Learning Algorithms in gas turbines.
Its iterative structure allows for repeated cycles of development, evaluation,
and refinement, which are critical in the pursuit of a production-level product;
which can be continued after the master thesis is concluded.

This thesis, from a philosophical perspective, emphasizes the need for safe
AI utilization, as overconfidence in the developed algorithms could potentially
lead to catastrophic outcomes and unclear accountability [15]. It focuses
particularly on evaluating the robustness of these solutions and identifying
their observed limitations. This approach aims to encourage safe usage and
create awareness about the limits of this technology.

1.5 Goals
The goal of this master thesis is to perform a data-driven analysis on Siemens
Energy gas turbines data to assess the viability and robustness of a software
sensor that tracks the expected value of a turbine physical sensor. Furthermore,
we will explore how such a solution can be practically used to detect
malfunctions or deviations from normal behaviour and its limitations.

The completion of this major goal has been divided into several minor
sub-goals in alignment with the CRISP-DM phases:

1. Business Understanding: Understanding of potential applications of a
software sensor in gas turbines give characteristics of data.

2. Dataset Preparation and Data Understanding : This is a crucial step
of the algorithm development as a model is just as good as its data[16].
The dataset construction and feature selection cover a significant part of
this project work. This will cover as well examination of potential data
quality issues and potential fixes.
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3. Model Design: The modeling of the problem and the choice of the
algorithms based on the characteristics of the data. This is the choice of
the methods used for solving the business requirements.

4. Model Validation: Model validation is particularly relevant in
the context of this thesis for correct interpretation of the designed
algorithms and comprehensive understanding of their limitations.

5. Deployment: This phase will not be covered in this master thesis. It is
left for potential future work to observe how this solution performs in a
production environment.

The project aims to deliver a solid foundation on top of which further
research can be conducted at Siemens Energy for developing and deploying
Machine Learning Algorithm for gas turbines.

A significant deliverable of this project is the development of a tool
designed to efficiently utilize the data collected by Siemens Energy. This tool
will enable the creation of comprehensive and clean datasets that can be used
for training ML models. This will significantly increase the velocity at which
further iterations carried out after the conclusion of this master thesis can be
done. By streamlining the process of dataset preparation and construction, the
tool will allow for rapid and flexible data handling, consequently accelerating
the pace of further research. On the same line an analysis of data quality issues
will be obtained, thus enabling to identify problems and , potentially, improve
data governance policy.

1.6 Delimitations
There are several kinds of gas turbines in the market offered by Siemens
Energy. While most of them operate by the same principles they all have
subtle but important differences that need to be assessed individually. This
master thesis will focus on the research on turbines of the kind SGT-700.

Additionally, this thesis does not require that the software sensor solutions
operate in real-time in the strictest sense. Hence, we permit the use of
algorithms that function with a certain delay. For example, the application
of non-causal filters on signals, such as Gaussian Filters, is permissible.

While it is also desirable to have a software sensor that works in all possible
scenarios equally good this thesis will focus in the operation points in which
a gas turbine is typically used.
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1.7 Structure of the thesis
Chapter 2 presents the background necessary to understand the thesis in

terms of gas turbines and Machine Learning Algorithms that are employed
in this master thesis. It also provides an important overview of previous work
conducted both at Siemens Energy and in academia, with which a comparison
is possible.

Subsequently the Chapter 3 will present the developed data collection
system, particularly relevant for using the data available in Siemens Energy.
A discussion about data quality issues is shown in this section.

Following, the results from the data exploration are shown along with the
proposed methods for developing this software sensor in Chapter 4.

The Chapter 5 shows the obtained results in different settings. This is
arguably one of the most important chapters of the thesis as it discusses the
findings and the potential usages of this software sensor as well as the found
limitations and considerations to be taken for its usage.

Finally Chapter 6 presents a discussion of the obtained results and potential
avenues for future work based on this project.
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Chapter 2

Background

This chapter aims to give the reader a broad perspective of the theoretical
foundation of Machine Learning Algorithms and the various assumptions
and considerations fundamental for developing and evaluating them. An
introduction to traditional methods such as linear regressors will be presented,
along with a link to a statistical framework for ML.

Subsequently, the concepts underlying deep learning methods and the
typical architectures used for different tasks will be presented. Together with
the concept of AutoEncoders, which will be fundamental for discussing related
work in the development of Machine Learning Algorithms for gas turbines as
well as for the development of this master thesis.

To ensure a holistic understanding of the subject matter, a brief but
complete overview of gas turbines, their diverse components, and applications
will be presented. This will also include an exploration of the some
measurement systems present in such devices, which form the primary subject
of investigation in this master thesis. Moreover, gas turbines will be discussed
in the context of their potential role in a sustainable future.

In the end of the chapter, similar works to this master thesis will be
explored with a summary of each work’s specific contribution and a critical
examination of their limitations. Works include previous studies conducted
at Siemens Energy, which entail particular relevance as those are exactly the
same gas turbines that will occupy this work. Then, works coming from
different industries will be presented.
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2.1 Statistical framework of ML
The entirety of this work can be encompassed in a statistical formal model for
ML shown in the book Understanding Machine Learning by Shalev [14]; fruit
of extensive works on the matter. This statistical model shows the implicit
assumptions done when developing a Machine Learning Algorithm. In this
section we will provide an overview of that framework and how it can be
elegantly connected with the turbine regression task that occupies this work.

Although the principles are more general, for the sake of simplicity, we
will limit our discussion to regression. In regression, we aim to predict the
value of a certain variable y (or a vector y) from a set of predictors x. The
following basic notions are necessary for describing the model in detail:

• Domain Set X : This is the set of possible values that the features can
assume. In the context of gas turbines one can think of the physical
range in which the sensor variables can exist.

• Target Set Y: This is the set of possible values that the target can
assume. Similarly to X , this can be associated to the range of values
in which the target sensor variable can exist.

• Prediction Rule h : X → Y : This is the output of the Machine
Learning Algorithm. It is a prediction rule that solves the task we are
aiming for (i.e. given a sample x it predicts the target variable y)

We then assume that it exists a probability distribution that describes the
entire population (i.e. ∃D : (X ×Y)→ [0, 1] ) and the role of the algorithmA
that we develop is to learn over samples drawn from that distribution to output
a good prediction rule. Formally the algorithm is a mapping A that given a
collection of samples drawn fromD (i.e. the training set S = (xi, yi) ∼ Dm

i=1)
outputs h.

A good algorithm is one that generates a rule h so that ,in most cases, the
prediction of h(x) is close to the true value y. Formally, this is expressed as
the generalization error E(x,y)∼D[(h(x)–y)2], read as the expected value of
the squared difference between the predicted and actual value of the target.
The generalization error is used to quantify how good an algorithm is.
However, in practical scenarios, it is infeasible to obtain the true value of the
generalization error as this would necessitate infinite sampling fromD, which
is never the case. Therefore, the best estimate of the generalization error that
we can achieve is the test error; this is the error made by the predicting rule h
on a dataset St, where samples are also drawn from D.
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The test error provides the best estimate that we have of how well a model
will perform in general. This underlies the widely accepted practice in the
Machine Learning Community to evaluate the performance of a prediction
rule h given by a certain algorithm A a test dataset.

The key point here is the assumption that, irrespective of the learning
algorithm used, the predicted rule that we learn is meant to be applied on
data that comes from the same distribution D. This will be particularly
relevant when discussing the results and understanding the success and failure
of Machine Learning Algorithms in different turbines. This is a crucial
observation in understanding why and when a method will work or will stop
working and when we are doing correct assumptions.

2.1.1 Overfitting and Learnability
In this section we will discuss the intrinsic limitations of machine learning
models and the theoretical origin of them as well as practical considerations
on how those are solved or handled both in practice and in theory. Our aim
is to answer the question: How good can a prediction rule h given by an
algorithmA be? Notice that when asking this question we are not mentioning
any information about the distribution D, besides the fact that it must exist to
be able to generate a training sample, so the results are general.

The first issue arises when considering the algorithmA and how to create
the prediction rule. A good algorithm candidate is the algorithm that selects
the prediction rule h that minimizes the error in the training dataset; often
defined as empirical risk minimization. However, this algorithm without
further consideration suffers from a major problem: overfitting. Overfitting
is a common challenge in machine learning applications that stems from the
constraints presented by data sets of limited size and various other factors [17].
In layman’s terms, overfitting occurs when a Machine Learning Algorithm
learns patterns that are unique to the training dataset and not generally
applicable. Consequently, the algorithm performs exceptionally well on the
training dataset but poorly on the test dataset. It means that simply minimizing
the error done in the training dataset is not a guarantee for a minimization of
the generalization error.

To illustrate the problem, consider the regressor described in Equa-
tion (2.1). This is a regressor that predicts yi if the sample is present
in the dataset and 0 otherwise. It is clear that this regressor will have
an exceptional performance in the training dataset, with an empirical error
L(S, h) =

∑n
i=1(h(xi)−yi)

2

n
= 0, but will have poor generalization performance
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as it will fail for every point that was not present in the training dataset.

y = h(x) =

{
yi if (x, yi) ∈ S

0 otherwise
(2.1)

The theoretical and practical solution to the overfitting problem lies in
learning from a hypothesis class H. This means that the algorithm A must
produce a prediction rule h that belongs to the hypothesis class H. This
approach introduces an inductive bias into the learning process, thereby
incorporating a priori belief into the model.

In practical terms, this explains why introducing structure into machine
learning models has proven successful in various fields. A well-known
and established example of this are Convolutional Neural Networks. CNNs
leverage the expected spatial invariances in images to develop networks that
process images efficiently [18]. To date, such networks remain strong in the
field of computer vision and have been refined having the same basic principle
in mind [19].

Similarly, an inductive bias can be introduced to handle sequential data,
where time invariances are expected. Sequential types of networks like
Long Short-Term Memory networks, and more recently, transformers [20],
have proven successful in this regard. These architectures have proven to
be effective in NLP tasks and are particularly relevant in the context of any
sequential data modeling such as time series, which is the main topic of this
master thesis.

However, the introduction of that inductive bias comes at a cost. It is that
the best possible outcome of our learning algorithmA is a prediction rule that
has generalization error LD = min

h′∈H
LD(h

′). The more strong our inductive
bias is (i.e the more hypothesis we introduce about the underlying distribution
of data) this error ϵa, called approximation error, greater will be. This is, we
are accepting that in our hypothesis class H there does not necesarily exist a
predictor that is able to achieve perfect generalization error.

Furthermore, there is a hard limit on the performance of any prediction
rule coming from any hypothesis class given by any algorithm due to the
intrinsic probabilistic nature of the relationship between features and targets,
introduced byD. Often, this error is present in real world scenarios due to our
intrinsic ignorance about full description of the system and the subsequent
non deterministic nature of our problems. This is, that two instances with the
same feature values x could result in different targets. In gas turbine terms, it
means that even if we know the value of all sensors in the gas turbine except
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one it might not be enough to deterministically compute the missing one due to
missing information that we do not have access to. This error is called the error
of the Bayes predictor and it is always a part of the approximation error. In
formal terms, the best possible prediction, given a set of featuresx, is the y that
satisfies y = arg maxy fD(y

′|X) (i.e. the y that maximizes the conditional
probability density of the target given the features). The predictor with this
behaviour is called the Bayes Predictor and it sets a limit over which we cannot
hope to obtain better results; even with the best algorithm and hypothesis class.

2.1.2 No free lunch theorem
In this section we will analyze a theoretical result that explains there is no
universal hypothesis class. It implies that the inductive bias introduction is
necessary and a subsequent trade-off arises to not underfit or overfit the data.
In practical terms, the hypothesis class must be complex enough to represent
the problem but not to severely overfit the training dataset.

We first must introduce the concept of APAC learnability; which is central
in this discussion. APAC learnability is a property of a hypothesis class H
and in layman’s terms it means that there exists an algorithmA so that for any
distributionD the generalization error is within an ϵ range of min

h′∈H
LD(h

′) with
probability 1−δ. Basically, it means that a hypothesis class is learnable if it is
guaranteed that increasing the number of training examples we minimize the
generalization error , with a certain probability and that if we want to further
minimize it it is enough to obtain more training samples.

It can be proven the non existence of a universal learner. This means that
if we consider the hypothesis class H to be the set of all prediction rules that
have a mapping from X to Y it is not APAC learnable. In practical terms,
it means that there is no learner that performs well in every task and that
introducing inductive bias is a necessity. Unfortunately, as discussed in the
previous section, introducing a too restrictive hypothesis class H leads to a
large approximation error ϵa, so it is necessary to strike a balance in the model
between flexibility to not underfit data and restrictiveness to not incur into
overfitting. This trade-off is frequently done when deciding on the model to
use for solving a particular task and it is extremely relevant in the Machine
Learning field.



14 | Background

2.2 Linear Models
In this section we will discuss linear models, as they are a cornerstone of
Machine Learning Algorithms and exemplify the concepts that were discussed
in Section 2.1. Besides that they also offer profound insights on how a
problem is modeled when selecting a model. Furthermore, they offer a unique
perspective into concepts of Bayesian probability [21] when viewed as a
Maximum Likelihood Estimator for some latent variables in a system.

In a regression problem modeled with a linear model, the assumption is
that the target y ∈ R can be expressed as a linear combination of the features
x ∈ Rn through some weights w ∈ Rn, to be determined as shown in
equation Equation (2.2) (we can assume that a constant feature is introduced
to account for the bias term). Here, one can find how this statement is simply
the imposition of a hypothesis class Hl of linear models. We introduce an
inductive bias by saying that the relationship between the targets and the
variables is assumed to be linear. Sometimes, this assumption might be too
restrictive, which might lead to underfitting; thus meaning that approximation
error for linear models in that particular task is high.

ŷ = wTx+ ϵ (2.2)

Notice we are assuming that the weights w exist and they are considered
a latent property of the system as we do not observe them directly. Our aim
is to infer them from the data that we collect from the underlying probability
distribution D. This training dataset is assumed to have some disturbance
on the target y , modeled as a random variable ϵ, which is the reason why
all samples with identical features do not necessarily have the same target
response. Once again, we can find here that this accounts for the error of the
Bayes Predictor when viewed through the lenses of the statistical framework
in Section 2.1. It means that our lack of complete knowledge of this system is
modelled through this variable ϵwhich encompasses that missing information.
In a practical setting, considering measurement systems, that is the value of
the disturbances on the measurement.

Typically one has more instances that variables, therefore it is necessary to
solve an over-determined linear system. The standard solution for this problem
is to use the method of Ordinary Least Squares, although other methods are
also possible. This method attempts to find the weights w such that the sum
of the residuals e =

∑N
i=1(y − ŷ)2 is minimized (i.e. the empirical error

is minimized). A visual representation of this process in a one dimensional
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Figure 2.1: Iris Linear Regression: Very simple example of OLS in a classic
ML dataset.

problem is shown in Figure 2.1. Visually, it appears we are selecting the line
that better fits the data points. In this case, we are modeling the petal length
and width in the classical iris dataset[22]. One can see that , altough the linear
regression is good, it is not perfect for modeling the full relationship between
them

2.2.1 Linear Regression as MLE
In this section we will discuss how a linear regression model can be viewed
as a Maximum Likelihood Estimator of the weights w. One can think of the
weights as an unobserved characteristic under examination of which we aim
to have an estimate after observing the dataset.

We must assume that the disturbing noise ϵ is a normal random variable
(i.e. ϵ ∼ N (0, σ2); independent and identically distributed across samplings.
Under such assumption also the target variable y is distributed as a normal
random variable y ∼ N (wTx, σ2). It is straightforward to prove under such
conditions that the Maximum Likelihood Estimator for w is equivalent to the
least squares estimator.

The proof comes from observing the likelihood of the training dataset as
in Equation (2.3)

L(w, σ2) =
n∏

i=1

P(yi|w, x) =
n∏

i=1

1√
2πσ2

e−
(yi−wT x)

2σ2 (2.3)

The proof is completed by taking the log-likelihood of Equation (2.3) and
maximizing it.
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2.2.2 Regularization
As discussed in Section 2.1 the trade-off between flexibility and adequate
generalization of Machine Learning Algorithms is a recurrent topic. In the
context of linear models different techniques have been proposed to improve
the generalization ability of models. The intuition behind the techniques
shown in the following its that , following Occam razor, the simplest model
is the better. The techniques used with linear models are Ridge and Lasso
regularization[23]; which penalize the unnecessary usage of features thus
penalizing large weights

Ridge regularization, formally L2 regularization, penalizes coefficients in
the regression that are different than 0, thus forcing the model to allocate
adequate weights and remove them from variables that provide no information
gain. The optimization problem that is then solved is shown in Equation (2.4),
instead of the minimization of the single squared residuals we also minimize
the norm of the weights of the linear model.

LossRidge =
n∑

i=1

||yi − ŷi||22 + α||w||22 (2.4)

A more aggressive kind of regularization is Lasso regularization. Lasso
regularization, also known as L1 regularization can also reduce some
coefficients to zero. This effectively eliminates the least important features,
performing feature selection. The optimization problem for Lasso is shown in
the equation Equation (2.5)

LossLasso =
n∑

i=1

||yi − ŷi||22 + α||w||1 (2.5)

Notice that both in Equation (2.5) and Equation (2.4) the optimization
problem is controlled by a hyper-parameter α. This is yet another key concept
that often emerges in developing Machine Learning Algorithm. The model’s
performance is often significantly influenced by the value of such hyper-
parameters. Consequently, considering them is very important for ensuring
optimal model selection.

2.3 Probabilistic Graphical Models
In this section we will discuss Probabilistic Graphical Models, which are
particularly relevant for modeling the relationships in a system. Relationships
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Figure 2.2: Probabilistic Graphical Models: This diagram shows two
representative kinds of PGMs. To the right a Markov Random Field is
represented , to the left a Bayes Network.

for several variables xi are modeled through the use of a graph structure G[24].
PGMs are instrumental in expressing the structure of a probability

distributionD, and subsequently making inferences from it. One type of PGM
are Bayesian Networks, which are represented thorough DAGs that model
the conditional relationships between variables. The implied structure of the
probability distribution in a Bayesian Network is the product of the conditional
probabilities of each node given its parents in the graph; defined as Pa(xi) for
node xi. When a node does not have any parents, it simply represented by its
marginal distribution, as shown in equation 2.6.

P(x1, . . . , xn) =
n∏

i=1

P(xi|Pa(xi)) (2.6)

Another type of PGM are Markov Random Fields (MRF), which uses an
undirected graph to represent relationships. This structure implies that the
probability distribution can be expressed as the product of factors ϕi, each of
which is associated with a unique clique in the graph. A clique is a subset of
nodes in the graph such that all of them have connections between each other.
The number of factors equals the number of cliques in the graph, as indicated
in equation 2.7.

P(x1, . . . , xn) =
1

Z

M∏
i=1

ϕ({xj|xj ∈ cliquei}) (2.7)

An example for each type of network is shown in Figure 2.2. The
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factorization of the Bayes Network can be written as shown in Equation (2.8)
where we made use of the graph for a factorization. On the other hand a
factorization for the Markov random field is shown in Equation (2.9).

P(x1, x2, x3, x4, x5, x6) = P(x1)P(x2)P(x3|x1)P(x6|x3)

P(x4|x1, x2)P(x5|x2)P(x7|x5)P(x8|x5) (2.8)

P(x1, x2, x3, x4, x5, x6) =
1

Z
ϕ(x1, x3)ϕ(x3, x4, x6)ϕ(x2, x4, x5)

ϕ(x5, x7) (2.9)

2.4 Deep Learning and AutoEncoders
This section is devoted to give the reader context on the principles behind deep
learning, which is the technology behind most of recent years advanced in the
field of Machine Learning. Subsequently, it provides an explanation of the
AutoEncoders

Neural Networks

Neural networks are the building block of any deep learning technology. The
reason of their great success is the fact that they have been proven to be
universal function learners [25]. This, in practice, means that deep networks
can be used for representing arbitrary functions of which the explicit form is
not known but for which data is available.

As their name indicates, neural networks are an inter-connection of some
neurons. The computation performed in each of those neurons is rather simple
can be expressed as o = f(wx + b). As it is possible to see it simply is
performing a linear combination of the inputs x ∈ RD through the weights
w ∈ RD and the bias term b ∈ R with a subsequent application of a non-
linear functionf : R → R. Several alternatives for a linear function have
been proposed [26], each with its own advantages and disadvantages. A non-
exhaustive list is presented in Table 2.1, being the most common in recent
works the Rectified Linear activation function.

The structure described above represents a single neuron. However,
several units can be stacked together producing a multi-dimensional output
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Name Expression
Sigmoid f(x) = ρ(x) = ex

1+ex

Hyperbolic Tangent f(x) = tanh(x) = e2x−1
e2x+1

Rectified Linear f(x) = ReLu(x) = x1[0,∞]

Leaky ReLu f(x) = x1[0,∞] + ax1[ −∞, 0]

Table 2.1: Activation Functions: This table presents a list of the different
activation function that can be used in neural networks. This list is non-
exhaustive.

Figure 2.3: Neural networks: This figures show two simple examples of
neural networks. To the right a neural network with 1 layer and 5 neurons,
to the left a neural network with 2 layers of 5 and 2 neurons respectively.

O ∈ RO. This can be elegantly expressed with matrix notation as O =

f(Wx+b), where the single weights of each neuron were stacked together in
the weight matrix W ∈ RO×D, as well as the bias terms in b ∈ RO. Here the
function f is a shortcut for stating the element-wise application of the original
operation. This structure is a single layer neural network. In the same way
multiple layers can be stacked for producing the final output by processing on
the output of the previous layer, thus creating the so called deep networks. A
diagram representing two simple neural networks is shown in Figure 2.3.

An interesting observation is that the internal representation of the input in
between layers can be thought as a representation of some latent representation
of the input that the network learns.
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In essence a neural network is fully determined by its architecture and the
value of the weights W present in different layers. Those weigths can be
tuned to produce the expected output from the existing data through a process
called backpropagation[27]. This is to iteratively process data, compute a
loss function L that represents the distance from the desired output and the
actual output given by the network and then adjust the weights in such a way
to produce results closer to the desired output by using derivatives. Although
it is a rather complex process the automatic differentiation process has been
effectively defined in libraries like PyTorch or TensorFlow [28][29]. Those
libraries allow for efficient neural network definition and training.

Lastly, neural networks, as an extremely general hypothesis class,
might suffer from the problems explained in Section 2.1, therefore various
architectures have been devised for introducing the inductive bias required
to effectively learn on different kinds of tasks. This includes, but is not
limited to, architectures for processing images or sequential data [18][30][20].
Thus, leading to the constant expansion of application of deep learning across
different domains.

AutoEncoders

In the following we will discuss of a particular type of architecture that is
relevant for learning patterns from extensive data collections. The architecture
in question is the AutoEncoder. This is a type of network whose only goal is ,
in essence, to learn to encode and reconstruct the input from that encoding.

In broad terms the goal of an AutoEncoder is to be able to learn a latent
representation of the data that is useful for conducting other tasks, or useful by
itself for other unsupervised tasks. Having this goal in mind the AutoEncoders
solve a related task as explained in the following. The architecture consists
of an encoder part, which processes the input, thus generating a latent
representation of the original data and an encoder that makes use if this latent
representation for reconstructing the input. The intuition behind it is that if
the model’s latent representation for the input is enough to reconstruct the
input itself, then it must contain valuable information about it to solve other
downstream tasks. A diagram showing this basic architecture is shown in
Figure 2.4.

Several variants of the AutoEncoder have been proposed [31] both in
terms of the components used for encoder and decoder, training strategy as
well as latent representation. Some of the different tasks typically solved by
AutoEncoders are listed below:
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Figure 2.4: Base AutoEncoder Architecture: This diagram shows the basic
AutoEncoder architecture. The AutoEncoder processes the input I making
use of the Encoder and producing the latent representation of the input h.
Subsequently, the decoder attempts to reconstruct the input, given the latent
representation h. The goal is to obtain an encoder that extracts a meaningful
representation h from the input.

• Identity AutoEncoder: This is the base task in which the goal of the
AutoEncoder is to reconstruct the input from a latent representation of
it. Notice that in this case, if the dimension of the latent representation
is larger than the original input dimension the AutoEncoder might not
be learning any useful pattern but just an identity mapping between
latent representation and the expected output. Whenever the dimension
of the hidden representation is lower than the dimension of the input
the process can be interpreted as a compression and subsequent
decompression of the data.

• Denoising AutoEncoder: In this task the original input is corrupted
with some noise (which can be of various kinds) and the task of
the AutoEncoder is to recover the original data. This prevents the
AutoEncoder from learning a trivial representation of the data.

• Sparse AutoEncoder: Another variant to overcome the trivial case of
an identity learning is to force the latent representations of data to be
sparse. This is that it must contain zeros. This is effectively achieved by
penalizing non-zero values in the latent representation during training.
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Regarding the components used to implement the Encoder and the
Decoder it is heavily influenced by the type of data under examination.
When dealing with computer vision typically the implementation is done with
CNNs while for Natural Language Processing and time series data usually
implementations make use of RNNs of different kinds.

2.5 Ensemble Methods
In this section we will briefly explore the theory behind ensemble methods
and the justification to make use of them along with their advantages. The
ensemble models provide a strategy to play with the trade off between a very
accurate model and a model whose predictions are robust (i.e. have low
variance).

An ensemble method is simply a set of predictors , that are in some sense
different, whose predictions are combined to obtain the final prediction of the
entire model. Calling hj : RD → R the prediction rule established by the
predictor j from the features to the target, in a set of M predictors, we have
that the final prediction h : RD → R is simply the average of every single
prediction: h(x) =

∑M
j=1 hj(x).

The expected error of h can be expressed as a bias covariance
decomposition [32] as in Equation (2.10). Here it is shown the expected error
of the ensemble model is the composition of several characteristics of the base
models.

E[h(x)− y]2 = bias2 +
1

M
var2 + (1− 1

M
)covar

bias =
1

M

M∑
j=1

(E[hj]− y)

var =
1

M

M∑
j=1

E[hj − E[hj]]
2

covar =
1

M(M − 1)

M∑
i=1

M∑
j=1∧j ̸=i

E[hi − E[hi]](hj − E[hj])

(2.10)

The two key points that can be drawn from this decomposition are that as
the number of models increases the variance of the single model’s influence
decreases but the covariance (i.e. correlation between model predictions)
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starts to have a vital role. This observation sets a theoretical motivation to
the intuition that adding several models whose predictions are the same is not
useful. The key point is that if we design the system such that individual model
are not much correlated then the performance of the overall model is expected
to increase [32].

Different approaches have been proposed to achieve the goal of having
independent predictors. Some particularly relevant methods, shown in [32]
are listed in the following:

• Data Diversity: Train a different model in a different dataset. This can
be obtained by effectively segmenting the original dataset into several
ones, often referred as bagging.

• Model Architecture: Use models that have different architectures to
generate the predictions.

• Divide and Conquer: It divides the original task into several sub-tasks.

Each of those methods finds diverse implementations both in regression
and classification tasks, following the very natural intuition of the wisdom of
the crowd.

2.6 Gas Turbines
In this section, we will present an overview of the operating principles of gas
turbines, their various components, and the measurements that will be crucial
for this work. Additionally, we will explore the applications of gas turbines
and delve into considerations regarding their role in a sustainable future.

A gas turbine is sophisticated industrial apparatus used for converting
chemical energy into mechanical or electrical power [2]. A diagram
representing a gas turbine is displayed in Figure 2.7, highlighted within the
box with a discontinuous contour. The three fundamental components of a gas
turbine are: the compressor, the combustion chamber, and the turbine itself.

As a highly complex device gas turbines contain a wide variety of
measurement systems that aim to monitor different physical quantities. Over
the years, these measurements have proven invaluable for monitoring the
health of the machine at different stages [33]. From both an operational
and predictive maintenance perspective, these measurements are essential.
Critical types of sensors used in gas turbines are pressure, vibration, flow and
temperature sensors as well as control signals used such as the IGV [10].
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Compressor
It is the first stage of the gas turbine whose purpose is to supply the necessary
gas with the required pressure and temperature for the subsequent stages of the
turbine. This supply is crucial to sustain the reaction within the combustion
chamber and to drive the turbine to generate the expected power [34].

Due to the inherently extreme conditions under which the compressor
operates, constant monitoring is required. As shown in [34], failures at this
stage can be both physically and economically devastating. As concluded in
that investigation , it is essential to implement diagnostic systems that enable
the operator to observe such anomalies and prevent such events. Available
sensors at this stage of the turbine include , but are not limited to, pressure and
temperature monitoring at different stages of the compressor itself.

Combustion Chamber
In the combustion chamber, highly pressurized air is combined with fuel
to sustain a reaction that effectively releases the fuel’s chemical energy.
Modern gas turbines are carefully designed to make this process as stable
as possible; thereby reducing the need for stabilizing fuel and reducing NOx

emissions[35]. However, due to the dynamic nature of this process and the
highly volatile reaction under course, monitoring is crucial to prevent the
emergence of thermo-acoustic instabilities[35]. These instabilities can excite
certain resonance frequencies of the gas turbine, leading to faster deterioration
of mechanical parts, higher NOx emissions and in the worse case scenario a
catastrophic failure.

Pulsations

In this master thesis, a significant portion of the study will be devoted to
pulsations measurement system. This measurement was chosen due to its
critical role in monitoring the health of a gas turbine and its connection with
the monitoring of the above mentioned resonance frequencies. The so-called
pulsations in the context of a gas turbine are a derived measurement from
the direct measure of the pressure in the combustion chamber. A pulsation is
defined as the power allocated within a specific frequency band of such signal
x, as shown in Equation (2.11).

P (fl, fh) =

∫ fh

fl

|F(x(t))|2dt (2.11)
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Figure 2.5: Pulsation Sensor: This figure shows the computation of low
frequency pulsation and high frequency pulsation sensors from a signal
sampled at a high frequency fs. The FFT of the signal is computed in a time
window T and the power allocated in interested frequency bands is computed.

In practical applications, one can imagine to calculate the FFT over a
window of T seconds. Then, the power allocated within the desired frequency
bands of interest is then summed. In Figure 2.5, an example of such a process
implementing a sensor is depicted. From the provided signal sampled at a
high-frequency, the FFT is computed and the RMS value of two separate
frequency bands are monitored over time. The resulting derived measurements
are of much lower frequency (in the order of magnitude of Hz). It is widely
recognized that maintaining control over these frequencies is crucial, as they
have the potential to trigger resonances within the gas turbine that could
damage mechanical parts. The Figure 2.6 shows how a different behaviour
of the original signal is encoded into the pulsation sensors; in that instance
the power allocated in low frequencies increases while the power allocated in
high frequencies decreases.

The practical application of the measurement chain for pulsation
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Figure 2.6: Pulsation Sensor: This figure shows how the properties of the
underlying signal are encoded into the pulsation sensors.

measurement is different from the description provided here, but it is
conceptually identical. These pulsation measurements, therefore, form an
integral part of the overall monitoring system of the combustion chamber,
ensuring the optimal functioning and longevity of the gas turbine.

Turbine
The final stage of the gas turbine is the turbine itself, a critical component
comprised of blades that rotate at high speeds, often exceeding 6000 rpm.
This rapid rotation is responsible for the generation of mechanical or electrical
power, a fundamental output of the turbine’s operation.

Designed to withstand extreme conditions, the turbine blades are exposed
to high temperatures and pressures from the combustion chamber. This
harsh environment necessitates the use of specialized materials and precise
engineering designs to ensure the blades’ durability and efficiency.
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Operation of gas turbine
The operation mode of a gas turbine largely depends on the application for
which it is used and on this it also changes how a normal operation looks like
from the sensors point of view. As discussed in [8] gas turbine find extensive
applications in very different scenarions. A turbine that is used as power
generator will have a very different behaviour from a gas turbine that is used
as a mechanical driver.

Another critical factor to consider when analyzing different behaviours is
the type of fuel used for the combustion reaction [35].

Sustainability Considerations
The present times necessitate thoughtful considerations regarding the
sustainability of the technologies we develop. Gas turbines are posed as
a cornerstone for aiding in the transition towards more sustainable energy
sources. A key consideration is the high efficiencies that can be achieved when
generating energy with them, compared with traditional sources such as coal
. Additionally, they are desirable both for the low emissions achieved when
combusting natural gas (CH4) as well as for the current studies on how the
combustion can be done with ammonia NH3 or hydrogen H2 thereby leading
to minimal emission of greenhouse gases. Moreover, their synergy with clean
energy sources makes them suitable candidates to complement and enhance
these sources during periods of unavailability. Those aspects will be discussed
further in the following.

An extensive set of cycles have been proposed to incorporate gas turbines
and boost the efficiency with which energy is produced [4]. Simply
recovering the heat lost from the combustion through the exhaust is enough
to dramatically increase the efficiency of a gas turbine to nearly double the
efficiency a turbine would have by itself. This allows such systems to reach
efficiencies up to 58%.

A simple cycle in which the exhaust heat is used is shown in Figure 2.7.
The heat is used in a secondary steam turbine, to further produce energy.
The efficiency achieved through this relatively simple construction surpasses
that which could be attained by traditional oil and coal-fired power plants [4].
Incredibly, the construction of such systems is relatively easy and costly thus
can be easily implemented in practice. Notice that this is only one of many
possible constructions.

Looking ahead, the use of cleaner fuels like hydrogen or ammonia in
gas turbines has been anticipated for a long time[5]. Utilizing hydrogen as
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Figure 2.7: Simple Cycle: This image depicts a simple cycle of a gas turbine
combined with a steam turbine. The design cleverly makes use of the heat lost
through the exhaust, augmenting the efficiency of system.

a fuel could significantly reduce greenhouse gas emissions [6]. However,
the full-scale implementation of hydrogen as a fuel comes with its own set
of challenges.

Practically, hydrogen presents certain difficulties due to its propensity
to leak and its high reactivity, which makes it hard to transport and store
[36]. This necessitates meticulous handling and stringent safety measures
to prevent accidents. Furthermore the combustion stability, essential for a
healthy machine [35] is also affected. One of the current alternatives it to
use a mixture of hydrogen with other fuels [6] or alternative fuels such as
ammonia [36], although every choice comes with their respective challenges
and trade-off.

Furthermore, there remains an open question regarding the consistent
and economically viable production of hydrogen, which requires energy. A
potential solution, mentioned in [6], is to integrate gas turbines into a system
that also includes a solar energy plant. This combined system could generate
the necessary hydrogen for energy production during periods when solar power
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Figure 2.8: Hydrogen and Solar Energy with Gas Turbines: This diagram
shows a system in which a gas turbine is integrated with a solar energy system
to generate sustainable and reliable energy, as proposed in [6]. The solar
energy is used to power the electrolizer as well as to generate power during
daytime. Subsequently, the stored hydrogen is utilized by the gas turbine
to generate energy during periods when solar energy is unavailable, such as
during nighttime.

is not available [37].
This approach exemplifies the concept of a hybrid energy system,

where different types of energy sources and technologies are combined to
compensate for each other’s limitations. In this case, the gas turbine can
provide a reliable power source when solar energy is insufficient, while
the solar plant can produce hydrogen during peak sunlight hours, creating
a sustainable fuel source for the gas turbine. A simplified schema of this
operating system is shown in Figure 2.8.

2.7 Related work
In this section we will examine several works done in industry and academy
that tackle closely related tasks to create a software sensor in gas turbines.
First, we will provide a review of all previous work done at Siemens Energy
followed by examples coming across different industries.

2.7.1 Previous Work at Siemens Energy
This subsection focuses on the application of Machine Learning Algorithms
in gas turbine studies at Siemens Energy, a large enterprise with numerous
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efforts contributing to the body of work over several years. This includes
numerous master’s theses and research papers done in collaboration with
academic institutions.

The concept of a software sensor has been in existence for over a decade,
as discussed in [12]. In this paper the authors use of Siemens’ simulation
software to emulate the behaviour of a gas turbine under standard operating
conditions and they introduce artificial sensor reading errors for later detection
and correction. Despite being a study dated over a decade ago the ideas
presented in this paper continue to be innovative, offering an alternative to
the popular AutoEncoder solution, as discussed in various other works[38].

The authors propose the use of supervised learning to identify sensor
faults, a method possible due to the data generation method used. The
suggested classification network is a MLP with outputs designed to indicate
either an upper or lower error in sensor A or correct functioning of all sensors.
This arrangement results in 2n + 1 outputs, representing two possible errors
for each sensor and an additional output for the scenario where all sensors are
functioning correctly. It’s important to note that this approach is based on the
implicit assumption that sensor faults are infrequent, hence the likelihood of
simultaneous failures is relatively low, since the system does not model such
situation.

Once a sensor fault has been individuated, a regression task is employed
to estimate the correct reading for the failing sensor. For this task the authors
also employ an MLP. The results for this regression task are exceptionally
high, with all software measurements having predictions with less than 0.5%
mean error. Sensors used in the study encompass several different physical
quantities such as pressures, temperatures and certain control signals like Inlet
Guide Vane. However, it is important to bear in mind that these exceptional
results are based on data derived from a turbine simulation. Nonetheless it sets
an interesting benchmark for comparison in the current work.

This master’s thesis can be viewed as an extension of the above-mentioned
study, incorporating and building upon the ideas presented in the original
research. However, this work introduces an additional level of complexity by
utilizing data from actual turbines. As the authors of the paper suggest one key
aspect to consider in future research is the impact of component degradation
on this system. This aspect is explored in this master’s thesis and is also object
of study, in a slightly different way, in the study [2].

The work conducted at [2] can also be viewed as a continuation of
the previous work. It employs, opposite to [12], a simple AutoEncoder
architecture for aiding in the monitoring of the machine. The result of this
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study is that the AutoEncoder reconstruction error increases over time as the
machine ages, as expected due to the change in the components. The authors
of this study concentrate on the turbine’s compressor and propose to use
the reconstruction error as a measurement to quantify the level of machine
degradation. A significant challenge to effectively use this measurement is
to understand when the reconstruction error has become excessively large.
Seen through the lenses of the statistical framework for ML presented in 2.1
the observed drift in performance is attributed to an underlying change in
the distribution D that generates samples, likely due to the physical change
of turbine components. This paper verifies that MLP can be effectively be
leveraged in gas turbines to model a real nonlinear system.

Another study that utilizes a similar AutoEncoder architecture for gas
turbines was conducted during a master’s thesis [39]. This work employed
a more complex architecture, specifically an LSTM, with a larger number of
sensors, totaling 69. However, one limitation of this master’s thesis is that
the input was neither masked nor compressed, which could potentially lead
to data leakage and impact the validity of the results. therefore leaking data
and probably invalidating results. Despite it, this master’s thesis shows the
engineering of a data pipeline for model training, showcasing its vital role in
this studies.

Yet another significant work conducted at Siemens Energy is the master’s
thesis [40], which focused on detecting the presence or absence of a flame
within a gas turbine. The author of this study demonstrated the effectiveness
of relatively straightforward methods in accomplishing this task, such as a
Naive Bayes Classifiers, Support Vector Machine, etc. A detailed correlation
analysis of various signals was also carried out, mirroring the approach in
[2]. The analysis revealed that some relationships between signals exhibit a
high degree of linearity. As we will see throughout this work this is a very
important observation. However, despite the promising results achieved by
all the tested methods, the critical nature of flame detection in a combustor
makes the replacement of optical sensors unlikely. Indeed, the high accuracies
obtained in this study are attributed to the use of data from the gas turbine’s full
operation, not just the critical parts where a flame can effectively extinguish.
Instances where a flame disappears when a turbine is operating at full load are
so rare that training a model to accurately predict such events is an extremely
challenging task.

The final related work conducted within Siemens Energy showcases a
comprehensive analysis of the different kind of anomalies that emerge in
different measurement systems of a gas turbine [10], also conducted within
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the same department that this master thesis was done. This work shows a
comprehensive analysis on the usage of more traditional techniques such as
statistical charts to detect anomalies of several kinds: sequential, contextual ,
behavioural.

2.7.2 Digital Twin for Predictive Maintenance
As a completely different approach, yet closely related, there have been
successful attempts to build a model-based digital twin of a gas turbine. This
is a mathematical model that closely reflects the state of the gas turbine and
is tuned for a specific turbine. The principal goal of such a system is to be
able to predict values on the turbine, given the control signals [41]. This
avenue is another potential development in gas turbine predictive maintenance.
Opposed to the previous shown data-driven methods a digital twin relies on
the physical knowledge of the machine. The main advantage of them over data
driven models is that opposed to black box models they are fully explainable.

This approach is so widely established that several academic publications
have been done in this regard. In the works of [42][11] a digital twin solution
is explored to model a gas turbine and provide sensor faults readings. In
this work it is possible to see that, despite the challenging task of modeling
a gas turbine, their model is able to do it consistently and it is proven to be an
effective strategy for fault detection. However, as the authors acknowledge, it
requires a full knowledge of the components of the gas turbine, which is often
extremely hard to achieve.

Furthermore, the digital twin is the main strategy employed by General
Electric, one of the main Siemens Energy competitors, in their Predix system
[41].

This system can be further elaborated by making use of a time aware
model. For instance, the usage of Kalman Filters [41] is popular for modeling
the time evolution of the several signals. There exist several variants,
conceptually similar, using different kinds of filtering.

2.7.3 AutoEncoders in Predictive Maintenance
Previous work for detecting anomalies in industrial settings largely focus on
the use of AutoEncoders. Due to their nature, by which they try to model the
normal operation of a particular system they are particularly well suited for
detecting anomalies. The main principle that groups all of them is the idea of
using an autoencoder to learn the distribution D of a system and then apply
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it on new data. If the data is still coming from the same distribution (i.e. the
normal distribution) then the system is operating under normal conditions.
If the AutoEncoder suddenly makes errors then it means that , since the
AutoEncoder itself did not change, the system must have changed and therefore
an abnormal point is detected.

The wide variety of AutoEncoder architectures make the literature around
them extensive. An overview of several studies that employ them for fault
detection systems is given in [38][31]. In the context of time series anomaly
detection, which is closely related with the scope of this master thesis, it is
often encountered the usage of Recurrent Neural Networks as encoder and
decoder architecture [43][44], often being one among an LSTMs or GRUs to
improve memory of the network.

One interest strategy presented in [43] is the fact that an different
AutoEncoders are trained to learn the patterns present in different types
of fault. Thereby, allowing for fault identification by selecting the fault
corresponding to the model with the lowest error. Unfortunately, it is not
always possible to follow this strategy as data for failure cases is not available.
For instance, in the case of gas turbines instances of failures are of so many
kinds and infrequent that employing this strategy is not useful and virtually
impossible.

As shown by Davari et al. [44] the AutoEncoder paradigm can be used
to detect anomalies in complex systems with extremely large datasets. In this
work the authors make use of a LSTM based AutoEncoder to detect abnormal
points. The simple rule for doing this is to examine the reconstruction error
(RMSE) done in the training dataset through a simple boxplot use it is a
baseline to detect anomalies during inference. However, this research is also
aided by a dataset with recorded failures that, as mentioned earlier, is not
always possible to obtain.

Other strategies focus on the latent variables that are generated by the
encoder [45].

2.7.4 Performance based Predictive Maintenance
Another approach for adopting a prediction maintenance scheme in a gas
turbine is to monitor its performance and , based on it, isolate the source of
the fault [41]. The concept is to perform a so-called Gas Path Analysis. It is
expected that deterioration of parts of the gas turbine will lead to a reduced
value of several health parameters such as efficiency of the compressor or flow
capacity. Based on the specific case it might be possible to further isolate the
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fault. As noted by [41] this is not a bullet-proof approach and some faults, for
instance in the combustion chamber, might be undetected. Furthermore, the
real sensor data is not free from noise and deviation, thus leading to potential
wrong conlusions about the turbine state.

2.7.5 Optimization-based predictive maintenance
Extensive studies have been done for improved ability to detect and isolate
faults. On a completely different approach is the usage of genetic algorithms
in combination with a model of the gas turbine and optimization procedures
[41]. In this framework the goal is to minimize the residuals obtained between
sensor readings obtained from the real turbine and a model of the turbine for
which specific faults are inserted.

In a genetic algorithm the main idea is that a population of a certain number
of individuals is generated, in this case gas turbines with specific faults, and
only the most fitted survive and produce the next population generation. In our
case by fitted individual we mean the model of the gas turbine that more closely
reflects the condition of the gas turbine. Therefore, the spring of turbines with
faults that resemble the one in the current machine will aid in the fault isolation.
While this method might seem convoluted it has been proven to have success
in previous academic research. One important remark on it is that it is also a
model-based approach and it will rely on the accuracy of the given models of
the gas turbine.
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Chapter 3

Data Collection

This chapter provides an overview of the data collection process and the
different datasets used for experimentation in this master’s thesis. It also offers
a discussion on the source of the data and quality issues encountered. All of
the data collected during this master thesis focused on turbines of the kind
SGT-700.

First a discussion about the two origins of data is given in Section 3.2 and
Section 3.3. Following this, the chapter outlines the steps taken to ensure high-
quality data for training the models and to create a system that can quickly scale
and iterate. This is particularly crucial in an industrial environment, especially
during experimentation, as it enables the rapid collection and cleaning of new
datasets, potentially with a different set of features. Section 3.4 and Section 3.5
show, respectively, the data cleaning procedure and an insight into the software
architecture for getting samples for models for different tasks.

Throughout this chapter, we will frequently refer to a concept termed as
turbine run, which denotes the operation of a gas turbine from a state of no
electrical power production (i.e. 0MW electric output) to its operation and
eventual shutdown (i.e. return to 0MW electric output). The duration of this
run can vary from a few hours to several days in some instances.

3.1 Relevance of Automatizing
Significant efforts were invested in this master thesis to automate the
construction of the dataset as much as possible. It is widely understood that
the development of Machine Learning Algorithms is not a linear process, but
rather a cyclical one, particularly in an industrial context. As outlined in the
Cross Industry Standard Process for Data Mining, several iterations of data
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preparation and subsequent model evaluation are often necessary [13]. The
efficient execution of these steps is only possible by eliminating the bottleneck
that dataset construction often represents.

The outcomes from the methodologies outlined in this chapter are not
only instrumental to this master’s thesis, but they are also expected to be
beneficial for future projects within the department on the same subject. This
significance arises from their contribution to rapid prototype implementation
and fast dataset creation. Specifically, the software developed for data fetching
and cleaning holds significant value. This analysis also highlights potential
areas for improvement, especially in relation to data quality issues.

3.2 Turbine Test Data
The first data source is derived from the testing facility at Siemens Energy.
In this place, turbines undergo rigorous testing post-construction and prior
to customer delivery. This testing aims to provide guarantees concerning
the turbine’s performance and emission rate, particularly regarding NOx
emissions. The nature of this data is such that each turbine is tested briefly,
typically for a total duration of one day, under varying load conditions tailored
to customer needs. For a specific turbine, there are generally two runs:
an initial verification run before the customer’s arrival, and a subsequent
run conducted with the customer. More runs could be necessary if any
extra test is required. During this stage the gas turbine is tuned to meet
customer requirements and fix potential issues that arise, which often entails
changes between the two or more runs. These changes, which may range
from modifications in the turbine’s instrumentation to specific operational
adjustments for enhanced performance, can be challenging or even impossible
to quantify due to their diversity.

As it will be noted in Chapter 5, the data from this source presents
significant limitations due to its restricted size and frequent violation of the
assumption outlined in the statistical framework for ML (Section 2.1), which
stipulates that data must come from the same underlying distribution when
training models in one run and validating them in the next. Indeed, alterations
in turbine components or its operation effectively constitute changes in some
latent variable that remains unobserved and, as mentioned, challenging to
quantify. Moreover, the scarcity of extensive data for a single turbine often
leads to models overfitting and learning patterns exclusive to that particular
run.
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3.2.1 Data Issues
One of the significant challenges encountered when constructing a dataset
for training and testing a model, using this specific data source, was the
inconsistency in the set of valid sensors across different turbines; after the
cleaning procedure. Valid sensors refer to those that recorded high-quality data
during the turbine run (i.e. not constant values or NaN). This practically means
that datasets for different turbines will have a different set of valid sensors.

Consider that the datasets that we are dealing with contain several turbine
runs for a single turbine. One can think of each run as a matrix Xi ∈
RTi×Di , where Ti is the length of the run and Di the number of sensors
available. Subsequently, we define the set of sensors available in a given
run Si = {si|si ∈ runi}. The issue at hand is that , in general, the equality
Si = Sj, i ̸= j is not satisfied.

A visual representation of this challenge is shown in Figure 3.1. From
a large set of approximately 300 sensors and over 100 turbine runs, one can
see the distribution of sensor missingness across the different runs. It can be
seen that some sensors are missing in all runs while most of them are only
missing in certain runs. A practical solution to this issue will be discussed in
the following.

3.2.2 Parallel Fetching
The data collection system developed for this dataset is particularly efficient,
thanks to the availability of an API for data fetching. This existing API,
utilized by Siemens Energy’s visualization tool within the Testing department,
integrates seamlessly into the developed data pipeline, facilitating a fully
automated process for dataset construction.

The current API permits querying a specific sensor in a particular turbine
run, a design likely intended to ensure a smooth experience with a GUI.
However, this setup is not necessary for data collection and can become a
bottleneck if queried sequentially, resulting in hours of dataset querying times.
Figure 3.2 illustrates a histogram detailing the API response times. While the
responses are quick, sequential querying is impractical.

Fortunately, the modern C# concurrent programming paradigm can be
employed to fetch API data in the most efficient manner possible [46]. This
concurrent paradigm proves particularly effective when interacting with a
network API, as multiple requests can be launched and managed concurrently,
resulting in a dramatic improvement in application performance [47]. The
pseudo-code for the simple querying algorithm is presented in Algorithm 1.



38 | Data Collection

Figure 3.1: Dataset Overview: This figure shows the cleaned dataset
obtained; composed of several turbine runs for different turbines of the same
type. This dataset is heterogeneous due to differences in the testing equipment
used in each run as well as potential failures of the system, etc ... The figure
in the left shows (in black) missing sensors across different turbine runs and
the figure in the right shows the record count for each turbine row.

The results obtained by the developed software during this master’s thesis
when querying a single turbine run are shown in Figure 3.3.

3.3 Fleet Dataset Analysis
In this section data collected from the fleet of gas turbines of Siemens Energy is
described in depth. First, a discussion about the most prominent data quality
issues with data coming from those sources is given along with the chosen
strategy for imputation of missing data.

Then, a description of the datasets acquired from this data source is given.
The discussion involves the motive behind the choice of such datasets and their
characteristics.

3.3.1 Data Quality Issues
The amount of data collected from a gas turbine over time is simply massive.
If we make an assumption of having 1000 sensors in a gas turbine , measured
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Figure 3.2: Api Response: This figure shows the distribution of response
time by the API when querying for data for a single sensor. Notice that every
query might contain an intrinsically different number of recordings. The 95th
percentile is at 6.8 seconds, while the mean querying time is at 1.6 seconds.

with floating point numbers (i.e 4 bytes) and sampled at 1Hz one obtains a
quantity of around 345 MB per day; if all the data points were collected during
all the day . Although this is probably an overestimation, it underscores the
issue that the amount of data generated by a gas turbine adds up quickly and
forced engineers at Siemens Energy to use a more clever storage system that
does not store unnecessary information.

One of the compression solutions is to store values only if the variation
from the previously stored value surpasses a certain threshold. As a result the
obtained datasets suffer from missing values and this must be addressed before
developing Machine Learning Algorithms on top of them. Data coming from

Algorithm 1 Task Scheduling Procedure
1: procedure SCHEDULETASKS(turbine_list, api, outputFile)
2: tasks← list()
3: for turbine in turbine_list do
4: runs← await api.getRuns(turbine)
5: for run in runs do
6: tags← await api.getTags(run)
7: for tag in tags do
8: task← launchTaskFetching(turbine, run, tag, outputFile)
9: tasks.append(task)

10: wait all tasks to complete
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Figure 3.3: Concurrent Querying: This figure shows the result of
concurrently querying the API for a single turbine run. Every row represents
a different sensor which was queried and the length of the bar is the time it
took for the request to be completed.

the turbine fleet is characterized by asynchronous sampling across signals and
not unique sampling rate considering a single signal.

A visual representation of this phenomenon in a macro scale is shown in
Figure 3.4. In this image the missingness of a particular sensor is represented
as a black tile. The active load of the turbine (i.e., MW produced) is displayed
alongside for reference. Most sensors appear to be missing during periods
when the gas turbine is offline, but function during the operation of the
gas turbine. However, it’s worth noting that even during turbine operation,
some sensors may occasionally fail to record data. This could be attributed
to technical malfunctions in the electronic equipment or the data recording
system.

Upon closer inspection, it is noticeable that even during operation time, the
availability graph presents a grey tone. This is an optical effect resulting from
the underlying structure. A zoomed-in image is displayed in Figure 3.5, where
it can be observed that during a period of 500 seconds, sensors are sampled
asynchronously and exhibit a non-constant missing rate over time.

During operation, assuming that sensors only omit readings when the
underlying physical quantity (or rather, our sensor-based estimate of it) has
not varied beyond a system-defined tolerance, it is reasonable to use linear
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Figure 3.4: Missing Values in Macro Scale: In this figure it is possible to
observe the pattern for missing values in a fleet gas turbine over an approximate
span of one week. Interestingly, some sensors also become unresponsive, or
go blind, even when the turbine is operational.

interpolation to impute missing data. However, in situations when the turbine
is offline, or when there is a clear electrical malfunction during operation (as
evidenced in Figure 3.4 where the load sensor itself is missing), it’s advisable
to preserve data integrity for the underlying algorithm by eliminating those
time periods.

3.3.2 Datasets
Choice of the datasets was done on the base of the quality of the underlying
data and the amount of operation time. The main requirement when choosing
a dataset was to have enough data to simulate a practical scenario where an
algorithm is trained during some weeks/months and subsequently tested on
the following operation time of the gas turbine. Another important factor taken
into consideration was the operation usage of the gas turbine. As discussed in
Section 1.1 turbines find a wide range of usages which in turn have an impact
on the characteristics that they exhibit. A requirement for training a Machine
Learning Algorithms is to have a wide range of working points of the gas
turbine from which the model can learn, therefore the choice was to pick gas
turbines whose operation was not constantly steady.

Acquisition of this datasets was time consuming and not efficient as no
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Figure 3.5: Missing Values in Details: This figure illustrates missing values
in a fleet’s gas turbine at a granular level, where the sampling from sensors is
neither uniform nor synchronized. Black tiles represent the missing values of
a particular sensor.

access to API was obtained. Therefore, only 3 datasets were considered. In
Table 3.1 a concise summary of the obtained datasets is shown. The size of the
dataset is listed after a data cleaning procedure takes place, this means after
the issues presented in Section 3.3.1 are solved with the procedure that will be
shown in the next chapter.

Small - Very Dynamic Dataset

This dataset originates from a turbine utilized as a mechanical drive, resulting
in extremely diverse runs characterized by sharp increases and decreases over
time. However, as indicated in Table 3.1, this dataset is not extensive. It
encompasses training data from a three-week period and validation data from
the subsequent two weeks. In the final week (for testing), only one run is
available.

This diversity is evident when comparing the load distribution in the
datasets between this dataset, as seen in Figure 3.7, and Figure 3.9. The load
distribution in the former dataset is extensively distributed, while in the latter,
it is concentrated on a specific section of the possible operation points.

As will be discussed in Chapter 5, this dataset will play a crucial role in
demonstrating the substantial benefits of employing a deep learning model
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Dataset Name Characteristics Size after
cleaning Turbine Model Turbine Id

Small Turbine with a very dynamic load change
over time, used for mechanical drive. 70.8MB SGT-700 0

Medium Turbine with dynamic load change over
time, used for grid stabilization. 721MB SGT-700 1

Large Turbine with dynamic load change over
time, used for gird stabilization. 13.5GB SGT-700 1

Table 3.1: Turbine Fleet Datasets: This table summarizes the general
characteristics of the datasets obtained from the turbine fleet of Siemens
Energy for this master thesis. The medium and large datasets correspond to
the same gas turbine in disjoint periods of time.

over simpler methods for this kind of application.

Medium - Dynamic Dataset

The next-in size dataset comprises data coming from a turbine whose objective
is to stabilize an electrical grid. As such, it contains dynamic data but not
containing as sharp transitions as in the previous dataset. Due to its purpose
it is operated intensively with runs that are typically of days, as can be seen in
Figure 3.8.

Data in this dataset is collected for a month and a half and then tested in
the following weeks. As noted in Table 3.1 this dataset can be considered of
medium size. During this period, a total of approximately 1.5 million seconds
of data is gathered, following the cleaning of the dataset. The distribution of
data into training, validation, and testing can be observed in Figure 3.9.

Large - Dynamic Dataset

The final dataset gathered from Siemens Energy’s turbine fleet focuses on the
same turbine as the previous dataset. However, it covers a more extensive, non
overlapping time frame, collected between December 2016 and January 2021.
The primary objective of this dataset is to provide an estimate of a software
sensor’s reliability over time. This gas turbine was selected for this purpose
because it provided data on the usage of a unique gas turbine at a specific
location over several years.

To avoid excessive memory usage, data was collected densely (i.e., data
for every week) only during the first year and a half. For subsequent periods,
data was gathered for approximately one week per month on average; when
available.
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Figure 3.6: Dynamic Dataset Overview: This figure shows an overview of
the load (MW) of turbine runs in the dynamic dataset. It shows some turbine
runs used for training and validation and the unique run used for testing.
The operation of this gas turbine is very dynamic with very frequent load
variations.

Figure 3.7: Dynamic Dataset Load Distribution: This figure characterized
the load (MW) distribution of the dynamic dataset. To the right, it is shown
the number of data samples and the proportion used for training, validation
and testing.
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Figure 3.8: Medium Dataset Overview: The figure illustrates the load (MW)
of several runs derived from the medium dataset, representing data from a
turbine used for grid stabilization. The data reflects frequent changes inherent
to the operations of the turbine.

Figure 3.9: Medium Dataset Load Distribution: This figure presents a
detailed analysis of the load (MW) distribution within the medium dataset. On
the right, the total number of data samples is divided into segments showing
the proportion allocated for training, validation, and testing.
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Figure 3.10: Large Dataset Overview: The figure illustrates the load (MW)
produced in several runs derived from the medium dataset, representing data
from a turbine used for grid stabilization. The data reflects frequent changes
inherent to the operations of the turbine.

Due to those characteristics the proportion of testing and training data for
this dataset is inverted, as shown in Figure 3.9. The testing data is over 50%
of the total dataset.

3.4 Data Cleaning Procedure
The cleaning procedure is common for both datasets as the issue described in
Section 3.3.1 is shared by both data sources, but being much less prominent to
the test facility’s data, for which missing values during a turbine run are rather
rare.

The steps taken for cleaning a specific run X ∈ RT×D are shown
in Algorithm 2. Essentially, the procedure consists of removing those
dimensions that contain invalid values (Not a Number) over a certain threshold,
repeated values, active load under threshold and then segment it into segments
Si ∈ RTi×D′ for which all the values are valid. This means that we discard
those temporal intervals that, after the first parts of the procedure, still contain
invalid values. The significance of this procedure can be seen when analyzing
the result on a turbine run like the one shown in Figure 3.4. Here, this
procedure will discard only those sensors that are truly not usable and then
will remove those temporal spaces with failures (at around sample 70000 and
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Figure 3.11: Large Dataset Load Distribution: This figure presents a
detailed analysis of the load (MW) distribution within the medium dataset. On
the right, the total number of data samples is divided into segments showing
the proportion allocated for training, validation, and testing.

320000). Thus, it preserves the maximum possible amount of data from the
turbine run while also satisfying the minimum load constraint.

As a result of this algorithm, each turbine run produces a set of segments
of completely valid data that meet all given constraints, and therefore can be
utilized by the subsequent stages of the data pipeline.

Algorithm 2 Turbine Run Cleaning Procedure
1: procedure CLEANRUN(X , desiredSamplingRate, nanThreshold,

minLoad,minSegmentLength)
2: X ← resample(X, desiredSamplingRate)
3: X ← removeNaNOverThreshold(X, nanThreshold)
4: X ← invalidateRowsWithLoadBelow(X,minLoad)
5: X ← removeRepeated(X)
6: S ← segment(X,minSegmentLength)

A problem specific to turbine test data is the issue described in
Section 3.2.1. Here, the main problem is that, after cleaning the dataset, the
obtained segments might have (and usually do) a different set of sensors. This
issue does not arise on data coming from the fleet as the set of valid sensors is
rather stable. On the fleet’s dataset usually temporal intervals are discarded,
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rather than the full sensor data.
As shown in Figure 3.1, the prevalence of this issue is high in the testing

facilty’s dataset. Manually selecting a set of runs with the desired valid
columns is not feasible, especially during development when the set of features
used is frequently changing following discussions with domain experts. An
elegant solution can be achieved by making use of combinatorial optimization.
There are efficient tools available for solving such problems, which can be
expressed through constraint programming [48]. In this master’s thesis the
CP-SAT solver of Google Operations Research Tools was the software user to
address this issue [49].

The problem can be formally expressed by defining the boolean variables
{ri}Ni=1, withN being the number of runs, available and {di}Mj=1, withM being
the total number of sensors under examination. Those variables represent
whether a certain run ri and a certain sensor di is selected or not. The
optimization problem can be stated by the following objective and constraints:

• Objective: Maximize the number of data samples selected. Alterna-
tively, it is possible to maximize the number of turbine runs selected.
Constraint programming is versatile in allowing the user to choose what
exactly is to be maximized.

• Constraint 1: Selecting a file fi for which the sensor dj has no entries
(i.e. it is invalid) implies not selecting the sensor dj for any run. In other
words, if a sensor has no valid entries in a specific run the algorithm must
select either the sensor or the file (i.e. in this case di = True implies
fj = False and vice-versa.

• Constraint 2: The user can, optionally, specify a minimum number of
runs and sensors to select.

• Constraint 3: The user can, optionally, specify a set of sensors that
must be selected. This is equivalent to setting their respective boolean
variables di = True. It is also possible for the user to specify a set of
turbine runs that must be selected, equivalent to setting ri = True.

• Constraint 3: The user can, optionally, specify that if a specific run
is selected then at least another run from the same machine must be
selected (this is useful for testing algorithms in the same machine).

The advantage of constraint programming lies in its simplicity - we only
need to define the constraints that need to be met and the optimizer will deliver
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a solution. However, as with any combinatorial optimization problem, finding
a solution can be time-consuming. In our usage of this algorithm all solutions
were always found in a reasonable amount of time (under 5minutes). However,
the user can also specify a time limit within which the solver must return a
result. The possible outcomes of the solution procedure are [50]:

• Optimal Solution Found: This result is attained when the solver is able to
prove that, given the specified constraints, the found solution is optimal.

• Feasible Solution Found: This result is attained when the solver did
not explore all possibilities but found a solution that satisfied the
given constraints. If multiple solutions are found the solution that
minimizes/maximizes the objective is returned

• Infeasible: This result is given if the problem, given the constraints, is
proven to be impossible.

• Unknown: No feasible solution has been found neither it could be
proved no solution exists.

As a result, the creation of a dataset with data from the testing facility and
a specified set of sensors is fully automated.

3.5 Modular Sample Generation
In this section the solution for generating training, validation and testing
samples from the different datasets will be discussed. A modular solution
is required due to:

• Complexity of data sources: Due to the followed cleaning procedure
and the nature of the data sources are multiple are do not represent
an uninterrupted sequence of time. This requires careful consideration
when generating samples that use multiple timestamps

• Unique source of truth for different models: To decrease the probability
of a human-introduced error and augment the velocity at which it is
possible to iterate, as in the CRISP-DM.

Those necessities led to the implementation of a system able to combine
multiple data sources and extract from them samples that adapt to the
requirements of the model under training/validation.
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Figure 3.12: Data Loader Architecture: For ensuring consistent testing for
models

First, the different files containing time sequences are divided into Data
Splits. This is a basic unit, inspired by Hugging Face’s datasets architecture
[51], that contains a sequence of data points temporally adjacent with a specific
purpose (training, validation, testing).

By grouping all the Data Splits with a specific purpose one obtains the
training dataset. To ensure consistent sample generation for all different
methods and deliver a clean software product to Siemens Energy the Adapter
pattern was used [52]. This pattern was also chosen because it allows for
seamless integration with one of the most popular deep learning frameworks:
PyTorch [28]. The main idea behind it is to not generate all the samples
at once, as this can be impractical due to the large memory requirement
it would imply but compute them on the fly as the model requires them.
This architecture ensures that the system stays scalable even with very large
datasets,that would potentially need to handle, and divides the concerns in
the software to ensure relatively easy extensibility of the code. A sequential
UML diagram is displayed in Figure 3.12 showing a schema of the process for
retrieving a training sample. In this system the task samples will be exactly
the same for two different models, ensuring that they will receive exactly the
same information and the same target.
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Chapter 4

Software Sensor

This chapter explains the methodology followed to develop the software
sensor. It initiates with a presentation of the data exploration methodologies
and results conducted on the datasets. This information is critical in the
subsequent development of algorithms and selection of feature variables, and
is therefore included in this chapter. The final part of this section highlights
the algorithms for a pertinent feature extraction mechanism associated with
the turbine’s operation zone.

The primary target variable used in this study is the low frequency
pulsation, which is elaborated in detail in Chapter 2. This variable was selected
due to its significant role in the operation of the gas turbine and the complexity
involved in its prediction. As described in [35], thermoacoustic instabilities,
which are relevant for turbine’s health, are measurable in these sensors.

The latter part of this chapter offers an in-depth explanation of the various
methods employed to construct this artificial measurement system along with
the rationale behind their relative inception. Subsequently, the procedure
followed to tune the hyper-parameters of the different models and to configure
experiments is presented. Finally, this chapter concludes with a discussion
over the evaluation metrics used, highlighting how the best models are chosen
and how the results will be presented in the following Chapter 5.

4.1 Data Exploration
In this section we will summarize the results of the data exploration. The
rationale for including this in the present chapter, rather than in the subsequent
Chapter 5, lies in the fact that the insights obtained during this stage
significantly steered the subsequent research and selection of both features
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and algorithms. Hence, it seems more logical to present this section before
delving into the algorithms section.

The key takeaways coming from this exploration can be summarized in the
two following points:

• Turbines are unique, or at the very least very different from one another.

• Sensor data is surprisingly correlated, both between sensors and across
time.

4.1.1 Correlation Across Sensors
The correlation comes at less of a surprise as similar results were attained in
previous research [2][40] , showing that sensor data coming from gas turbines
exhibit very high values of linear correlation. This result can be visualized for
n sensors in the Figure 4.1 . One can notice that there are big blocks of highly
correlated features along the diagonal of this matrix, those are less interesting
correlations as they represent sensors that are measuring physical quantities
that must be the same (either they are measuring the same quantity or a
quantities that must be very close to another). More interesting are the clusters
that appear far from the diagonal and show correlations across different sets
of sensors (for instance, temperature in the compressor and temperature in the
outlet). Those are correlations that can be potentially exploited for building
anomaly detection systems, thus are very interesting.

The data exploration phase was essential, combined with consultations
with domain experts, to carry out the feature and model selection. This process
guided us in avoiding predictors that not only had a clear correlation with
the target variable, but also shared a high degree of collinearity, such as two
sensors that are both measuring the same physical quantity. The primary
insight from this analysis, which is consistent across all the datasets we
collected, is that the measurements taken in a gas turbine are more correlated
than one might initially think. In retrospect, it’s logical that an increase in
certain sensor measurements could lead to a corresponding increase in other
sensors. For instance, a rise in temperature in the early stages of the turbine
would likely cause higher temperatures in the later stages.

4.1.2 AutoCorrelation
Autocorrelation analysis was crucial , taking into account the temporal nature
of the system. This analysis revealed that a significant number of sensors
exhibit high autocorrelations, an intriguing, though not unexpected, finding.
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Figure 4.1: Pearson Correlation of Sensors: This illustration presents the
result of a Pearson correlation analysis conducted on data gathered from 217
distinct sensors in a gas turbine across multiple turbine operations. The
analysis reveals significant correlations among various sensors.

These autocorrelations manifest up to a time lag of 500 seconds, which
is nearly 8 minutes. This behaviour with high auto-correlation for high lag
values emerges from the nature of the data under examination. We attribute
this behavior to the tendency of a gas turbine, in conventional applications, to
remain in the same operational condition for a considerable length of time. The
sensor readings during these periods are nearly constant, with minor variations
due to factors such as turbulence, electrical noise, and minor flow changes.

In some sensors, we observed an extreme autocorrelation (over 0.99 with
the values up to 3 − 10 seconds). This can be attributed to the physical
principle that governs their functioning. For instance, temperature sensors
are governed by the Seebeck effect[53][10]. This principle explains how a
temperature gradient between two points of a metal or semiconductor can
generate a voltage difference. As the thermocouple, which operates on this
principle, undergoes a temperature transition, it might not capture the system’s
dynamics instantaneously. The physics of the system could potentially apply
a kind of low-pass filter to the actual or underlying system temperature and
lead to this high auto-correlation for the first time lags.

The varied behaviors of sensors become evident in Figure 4.2, which
depicts the autocorrelations of three different sensor types. Here it is possible
to observe that the previous discussion is not valid for all types of sensors. For
instance, vibration sensors exhibit a low degree of autocorrelation.
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Figure 4.2: Auto-Correlations: The three figures above show temporal auto-
correlation of three different kinds of sensors. One can observe a high degree
of autocorrelation for sensors probably due to the intrinsic slow nature of
the data (i.e. gas turbines operate in the same condition for relatively long
periods). This pattern is not present for all sensors as it can be seen in the
vibration autocorrelation.

4.1.3 Turbine Uniqueness
Another finding from the data exploration study is that gas turbines are very
different from one another; one might say unique. During this study, as
mentioned in Chapter 3 we only focused on turbines of the kind SGT-700.
Despite this, variations between them are substantial enough to distinguish
them by the characteristics they have.

This variation can be attributed to several factors. Unique tuning based
on customer requirements and physical differences among thousands of
components within the turbine, both large and small, play a significant role.
Furthermore, the unique operation type of each specific gas turbine contributes
to this diversity; as shown in Figure 3.10 and Figure 3.6. Operational
variations could include different levels of active load, specific applications
of the gas turbine, and unique tuning requirements such as NOx emission
levels. The type of components used, such as the technology utilized in the
combustion chamber, can also greatly influence the turbine’s behavior.

A straightforward analysis, shown in Figure 4.3, highlights the variations
among gas turbines. This image shows the results of Principal Component
Analysis applied to data points collected from various turbines operating at
full load. By maintaining a constant operation point across all turbines, we
can ensure a valid comparative analysis. These differences, which manifest as
distinct clusters of data points representing each gas turbine in the figure, will
become a focal point in our discussion in Chapter 5.

This key observation is also relevant in deciding what kind of experiment
was necessary to observe if the knowledge from a specific gas turbine is easily
transferable to another or if special considerations must be done in this regard.
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Figure 4.3: PCA on different turbines: This image shows the Principal
Component Analysis of data points from several testing facility’s turbines
operating constantly at full load. It is possible to clearly distinguish clusters
by turbine. The PCA was done from 19 dimensions.

4.2 Operation Points of Gas Turbines
A highly intuitive strategy for enhancing models prediction capabilities, is to
incorporate the operation point of the gas turbine. This approach is rooted in
the simple assumption that the behavior of a gas turbine will vary significantly
between periods of transition and periods of stability. Moreover, the concept
of determining whether a turbine is in a transitional or stable state appears
viable by merely examining the active power output of the turbine (i.e. the
megawatts produced at a specific moment) if one for instance observes the
active load represented in Figure 4.4.

However, it’s worth noting that gas turbines can, under certain circum-
stances, operate without generating any energy output, particularly during the
shutdown phase of the turbine. This is when the hot air must be ventilated
to prevent damage to the components. For the sake of simplicity, we have



56 | Software Sensor

Figure 4.4: Active Load Segmentation: This figures shows the result of
the active load segmentation procedure in a turbine run of the turbine testing
facility. Segment division is shown by the dashed green lines. The color of
the line represents the classification of the time segment.

not considered any of these situations. We have pruned out parts of the
dataset where the load is zero from our analysis, as elaborated in Section 3.4.
Therefore, our primary focus is to differentiate the various operational points
of a turbine when it is producing some output load.

The chosen strategy is straightforward: we define as different states when
the active load is increasing, decreasing or stable. Furthermore, we segment
the stable parts by the nominal value of the active load and whether it surpasses
a certain threshold B.

By employing this method we are effectively compressing a lot of
information into a single point and giving algorithms useful information for
making predictions. The steps followed to obtain the result shown in Figure 4.4
are described below.

First, for obtaining better and more stable results the active load signal was
smoothed using a Gaussian filter. The chosen window length for this filter
was of 10 seconds. As it can be seen in Figure 4.5 , this choice provided a
more clear distinction of the different states when looking at the result of the
derivative.

The derivative calculation was executed using the FinDiff package
in Python [54]. This package works on the principle of numerically
approximating the first derivative of the signal in a stable manner. Instead of
utilizing the instantaneous rate of change, which can be volatile, the method
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Figure 4.5: Active Load Derivative: This figure illustrates the result of
the active load derivative, demonstrating the outcomes both without the
application of a Gaussian filter (right) and with it (left).

employs a stencil for more stable and reliable calculation.
Then, segments are found by making use of a changing point algorithm in

the active load’s derivative. The chosen algorithm was Pruned Exact Linear
Time, and the implementation of the ruptures library was used [55][56]. As
explained by the authors of the library a changing point algorithm requires to
specify a search method, a cost function and some constraints.

The changing point algorithm aims to minimize the cost over a the time
series by finding an optimal division t = {t1, ...tN} of it. The cost function is
expressed as the sum of a cost for each of the segments defined by the given
division t.

In our case the search algorithm employed was PELT, which has a time
complexity of O(n)[56], consistent with our requirements having datasets with
large amount of timestamps. Other algorithms such as Binary Segmentation
can be used to replace PELT for a faster execution. For the cost function we
made use of the L2 cost function, which aims to divide two segments based
on its mean value; this means that we expect all points belonging to the same
segment to be close to the mean of the segment. The expression of this cost
function is shown in Equation (4.1), and its choice come logically observing
Figure 4.5.

CL2(yt1,...,tN ) =

tN∑
t=t1

||yt − ¯yt1,...yN ||22 (4.1)

Finally, each of the segments is classified depending on the mean value of
the derivative and the active load. This leads to 9 possible results, but not all
of them appear in real data. A summary is given in Table 4.1

Notice that the procedure just described, from the Gaussian filter, to the
changing point algorithm can be only applied offline after a turbine run has
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Active Load >B | d
dt

Active Load| >D Sign( d
dt

Active Load) Classification
No No Positive/Negative Off (4)
No Yes Positive Starting (7)
No Yes Negative Finishing (1)
Yes No Positive/Negative Stable (5)
Yes Yes Positive Increasing (8)
Yes Yes Negative Decreasing (2)

Table 4.1: Operative States Definition: In this table we have the definition
of the operative zones of the gas turbine based on the active load value and
derivative’s value and sign.

finished (actually the Gaussian filter only requires some seconds of delay,
being a non-causal kind of filter). This is consistent with the aim of this thesis
as we are not developing an online solution. However, as it was done for the
larger datasets where this procedure is prohibitively expensive, it can be easily
extended to online applications by simply applying a threshold over the value
of the active load. This leads to a less informative context but it is yet effective
in encapsulating some useful information that the model can leverage.

4.3 A simplified model of the problem
In this section we will introduce a simplified model of the turbine for modeling
the relationships between the different parts of the gas turbine and a model of
the scope of the desired software sensor. The necessity of this model arises
from the need to obtain some insight of the relationships that exist in the gas
turbine and how the measurements that we obtain are related to them.

The model, shown in Figure 4.6, uses the plate notation [24] to denote
the collection of the random variables up to a certain time T . The physical
variables, at a given instant in time, are modeled using a set of nodes in
the graph. However, the network’s structure remains unknown to us and is
concealed within the turbine dependency box. This is shown by the thick
connections; representing multiple possible relations of each variable with
other variables in the gas turbine. Then , we model the sensor with other set
of nodes Si and we assume that each sensor is solely linked to the physical
quantity they are designed to estimate. This is a reasonable assumption as we
expect the measuring device to provide some probabilistic guarantee about
the real value of the physical quantity, given the sensor reading. Moreover, we
model the turbine’s operational state with another random variable, which can
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Figure 4.6: Simplified PGM of gas turbine: This diagram depicts a
simplified model of the gas turbine and the sensors.

give rise to different physical variable behaviors in the gas turbine.
This is, as stated before, an oversimplified model and we must consider

that the real system contains temporal dependencies both between a variable
and its previous value as well as a variable and the previous value of other
physical values. In this sense, we would be modeling the system as a Hidden
Markov Model (assuming dependencies are not extending beyond the previous
timestamp). Despite being an intriguing approach, this path was not further
explored as we lack a probability distribution model for the physical random
variables’ time evolution. This exploration is earmarked for future work.

4.4 Algorithms
In this section, we will describe the various algorithms utilized in the
development of the software sensor for the gas turbine. Initially, we will
present the baseline, followed by an exploration of methods that leverage both
a single time instant and a time window to generate predictions.

The selection of these methods was not predetermined, but rather evolved
in a cyclical manner, adhering to the Cross Industry Standard Process for Data
Mining methodology. This approach involves a systematic evaluation of the
limitations of a developed method, followed by the selection and development
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of new methods based on insights gained from the training dataset. In this way,
our method selection process is both responsive and adaptive, allowing for
continual refinement and improvement. This process can be easily continued
at Siemens Energy after the conclusion of this master thesis by making
use of the developed data collection system presented in Chapter 3 and the
experiment software described described in Section 4.5 and Section 3.5.

4.4.1 Baseline
From a scientific perspective, and to satiate the curiosity of authors, it is
often appealing to utilize intricate models. However, it is crucial to establish
a baseline for comparison, providing a quick and dirty solution. In many
instances, the added complexity of advanced models is not beneficial; rather,
it becomes burdensome. For instance, sophisticated models like deep neural
networks often lack explainability for the obtained regressions. Interestingly,
it is sometimes observed in academic research that simpler models can achieve
comparable results, or even outperform their complex counterparts [57].
Therefore, while the allure of complexity is understandable, it is essential to
balance this with the model’s transparency and efficiency.

The baselines adopted in this study involve linear regression models,
as shown in Equation (4.2). Our primary objective is to pinpoint the
circumstances under which a more complex solution becomes necessary, as
well as to quantify the resulting performance improvement. Additionally, we
will employ a particularly simplistic model that solely relies on the power
output (i.e., MW produced at a given moment) of the gas turbine to generate
its predictions.

To allow for a fair comparison with other methods we will train specialized
linear models. This means training a different linear model for different
operation zones. This decision was made after observing the huge imbalance
in datasets when considering the number of data samples coming from
different operative zones. Training a unique model on all areas leads to linear
models that only take into account the parts with stable conditions , as they
represent the majority of the data.

y = β0 + β1x1 + ...+ βnxn + ϵ (4.2)
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4.4.2 Shallow Methods
Variations of linear regression that include regularization terms as shown in
Section 2.2 for preventing overfitting . Among them the one that showed better
results was Ridge regularization, doing a less aggressive weight shrinking.
For the experimentation with those algorithms we made use of the scikit-
learn library, which provides an clean and correct implementation of those
algorithms [58].

Furthermore, other shallow methods, like SVR and Bayesian Linear
Regression, were discarded because it was not scalable to use them in larger
dataset. Results for them are reported only on data coming from the testing
facility, where the amount of training data samples allows for convergence of
algorithms.

4.4.3 Deep Neural Networks
The most powerful methods used during this master thesis for the imple-
mentation of the software sensor are deep neural networks. As previously
discussed in Section 2.1, introducing some level of inductive bias through the
architecture is a crucial step towards ensuring the successful performance of
the network. The various architectural configurations will be detailed in the
following sections.

Deep neural networks are intrinsically highly flexible tools and, as outlined
in Chapter 2, they are essentially universal function approximators [25]. This
flexibility, however, also makes them susceptible to overfitting. Hence, to
mitigate overfitting, common regularization techniques, such as dropout and
early stopping, have been employed in this study.

Multi-Layer Perceptron

A simple approach, inspired by the work in [2][12], is to perform the prediction
by using a deep neural network with a very simple architecture, namely a
MLP. The idea is to use sensor data of a given instant of time t to perform
the predictions for the target sensor for the same instant t.

The expected success of this architecture is also sustained by the fact
that , as seen during the data exploration part, our main target sensor (the
low frequency pulsation), as well as many other input sensor have high
autocorrelations which indicates that including more timestamps might not
be necessary for obtaining, as the information might be redundant.
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While this network remains simple it is able to capture the expected non-
linearities that emerge from a complex system like a gas turbine.

Ensemble of Multi-Layer Perceptron

As discussed previously, the development of this master thesis was not linear
but it was done with a cyclical approach , as per CRISP-DM [13]. This
architecture emerged from the idea to make the best use of the available
temporal context to reduce the variance of the predictions done by a single
MLP [32]. As stated in [32], for an ensemble method to be successful and
effectively minimize errors made by a single model, it is mathematically
required that the models maintain independence, or achieve as close to
independence as possible.

In our application, we adopted a data diversity strategy. During the
creation of the model, each sub-network is randomly assigned specific
timestamps from each sensor within a pre-defined time window for prediction
generation, as shown in Figure 4.7. These timestamps remain constant for
each network during both training and inference. This method of random
assignment creates the necessary independence among the sensors. For
simplicity, the architecture of each single MLP is the same . The final result
of the model is the mean prediction of every single network.

Time aware networks

Temporal awareness can be a significant advantage for networks, which allows
them to process more data effectively. While this time awareness is somehow
present in the ensemble of MLP in this section we explore networks that
perform this task in a more structured way.

Firstly, let us explore architectures based on Recurrent Neural Networks,
which have been the industry standard for many years in handling time
sequences. These types of networks appear to be especially suitable candidates
for encoding the temporal information present in turbine data.

Standard Recurrent Neural Networks can often face issues with exploding
gradients and memory, which can be overcome by using more advanced
implementations of RNNs such as Long Short-Term Memory and Gated
Recurrent Unit networks. These networks utilize specific architectures that
enable the network to remember crucial aspects of the data at hand.

Furthermore, recent studies suggest that incorporating an attention
mechanism into these networks can lead to significant improvements. This
mechanism allows the network to focus on relevant features and periods.
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Figure 4.7: Ensemble of MLP: This diagram presents the proposed
architecture of an ensemble of MLP. During the model’s creation, each
network is randomly assigned specific timestamps from each sensor within
a predetermined time window to generate predictions. These assigned
timestamps remain constant during both the training and inference phases,
ensuring consistent sensor usage for each network. This random assignment
creates the necessary independence between sensors, which is critical for
the successful implementation of the ensemble method. Subsequently, these
individual network predictions are averaged, culminating in a well-rounded
and dependable final prediction.

Therefore, our architecture of choice is strongly inspired by the successful
network implemented by Yao Quin et al. [59]. Although this original network
was designed for time-series forecasting in economics, its architecture can be
easily adapted to our current domain.

We make use of the input attention layer proposed by the authors of
the paper to allow the network to focus the attention on the relevant time
series; according to the context, for each timestamp. The final encoding after
processing all timestamps is then used by our simplified decoder (a single
MLP) to make the prediction of the target. Since we are not interested in
prediction we allow the target to be within the time frame of the processed
data by the network. Notice that there are no data leaks since, differently to the
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approach of the original paper, the target variable is not present in the feature
variables; given that we are aiming to simulate an artificial measurement of
such sensor, thus we assume to have no knowledge about the sensor.

Recurrent Neural Networks have been well known to suffer from a variety
of problems from velocity of processing to forgetting past. In the recent
years, coming from NLP research, a new kind of network has been proposed
with exceptional results both in NLP and also computer vision [20]. The
emergence of the transformer architecture has been revolutionary in those
fields achieving incredible results. Being somehow an analogous problem to
time series processing some research has been done regarding the usage of this
architecture in time series modeling. In the research [60] it is shown how the
Encoder of the transformer architecture, with a pre-training strategy similar to
BERT [61] can be used for developing highly capable time-aware networks
employing this architecture for a downstream regression task. However,
our preliminary experiments for using it as software sensor showed that this
complex architecture did not achieve good performance, in terms of MAPE,
in our datasets, probably because of the large amounts of data required by it,
complex training mechanism and the characteristics of the data. Hence, we
did not include this architecture in the following analysis and did not proceed
further with it.

4.5 Hyper-parameter tuning & Experiment
Setting

The selection of hyper-parameters is central for the successful evaluation of
algorithms. Almost all of the algorithms proposed in this work for software
sensor implementation necessitate some degree of fine-tuning. This tuning
was executed utilizing the validation part of each dataset; which was extracted
as specified in Chapter 3.

In this work, we utilized the Optuna framework for efficient hyper-
parameter tuning [62] and Hydra for setting up experiments [63]. Also, this
project greatly benefited from the usage of PyTorch Lighting [64] for defining
the training, validation and inference strategies for deep learning methods.

Optuna is a robust, open-source hyper-parameter optimization framework
which allows for automatic selection of hyper-parameters, reducing the time
and complexity traditionally associated with this process and allowing to
effectively explore the hyper-parameter space.

From the user point of view, the complexity of searching the hyper-
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parameter space is reduced to defining the search space through an API. What
is remarkable is that Optuna automatizes the traditionally expensive task of
exploring promising values for hyper-parameter search (e.g. the researcher
discarding values of learning rate that are not successful and continuing to
explore the learning rates that lead to convergence of the loss).

The Optuna framework uses a combination of several optimization
methods, such as TPE (Tree-structured Parzen Estimator), to find the most
efficient parameters. However, a detailed discussion on the methods employed
by Optuna is beyond the scope of this thesis. It also provides features
for visualizing the optimization process, making it easier to understand and
analyze the results. Optuna is particularly powerful in combination with
PyTorch lighting [64] as it allows for early stop of non-promising trials, by
monitoring the validation loss during training.

The combination of Optuna with Hydra [63] is particularly powerful as it
is possible to dynamically define everything about the experiment. During this
master thesis we made use of hydra for defining the three main components of
each experiment.

• General Configurations: Configurations regarding the task that must be
solved by the model. This includes for example the length of the time
window of features given to the model (useful for RNN based models)

• Dataset Configuration: Regards which sensors to use as features and
target as well as where to retrieve the dataset.

• Model Configuration: This configuration specifies the model to be used,
with its hyper-parameters, training hyper-parameters and model adapter
(see Section 3.5)

For instance, consider the configuration of a feed forward neural network
shown in Listing 4.1. Hydra allows to specify every single parameter of
the network like in a YAML configuration file. While is is not the case
for the chosen examples, in models that make use of a time window it also
allows to explore different window lengths by modifying parts of the dataset
configuration. Practically, Hydra facilitates the development by defining
implicit factories, in OOP sense, [52] for our modules. The power comes
when combining such a configuration with Optuna, as shown in Listing 4.2.
The effort dedicated into the creation of this framework was well paid off
since the grid search of every model defined during this master thesis can be
generated by simply defining this YAML file. For more details on how this
was implemented the reader can see a commented code in the Appendix A.
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# Configuration of the feed forward model itself
model:

# We create the model from the dataset (to dynamically have the
# number of features)
_ t a r g e t _ : ”package.deep_architectures.FeedForwardModule.from_dataset”
o u t p u t _ s i z e : 1
d r opou t : 0 . 1
h i d d e n _ s i z e s :

- 100
- 50

# We can specify both optimizer and scheduler from the YAML
o p t i m i z e r _ c o n f i g :

_ t a r g e t _ : ”package.deep_architectures.DynamicOptimizerConfigurator”
o p t i m i z e r _ c l a s s : ”torch.optim.Adam”
op t i m i z e r _p a r ams :

l r : 0 . 001
s c h e d u l e r _ c l a s s : ”torch.optim.lr_scheduler.StepLR”
s c h e du l e r _p a r ams :

s t e p _ s i z e : 100
gamma: 0 . 5

mode l _adap t e r :
_ t a r g e t _ : ”package.data.model_adapters.PyTorchAdapter”
t a s k : ${ g e n e r a l . t a s k }
b a t c h _ s i z e : 1024

# Configuration of the training itself
t r a i n i n g :

t r a i n e r :
_ t a r g e t _ : ”package.deep_architectures.PyTorchModelTrainer.from_config”

max_epochs: 200
c a l l b a c k s :

- _ t a r g e t _ : ”lightning.pytorch.callbacks.early_stopping.EarlyStopping”
p a t i e n c e : 20
mon i t o r : ”val_loss”

Listing 4.1: Configuration Example of a Feed Forward Module

execu t i on_mode_a rg s :
n _ t r i a l s : 200
# This is just a placeholder for the title of the experiment.
model: ”feed_forward”
m e t r i c : ”mae”
params:

# Optuna does not support lists. This is possible due to
# a wrapper class created around Optuna.
- pa ram_pa th : ”model_framework.model.hidden_sizes”

param_type : ”list”
pa ram_args :

name: ”hidden_dimensions”
l e n g t h :

low: 1
h igh : 3

e l emen t s :
pa ram_type : ”integer”
pa ram_args :

low: 50
h igh : 200
s t e p : 50

- param_pa th : ”model_framework.model.optimizer_config.optimizer_params.lr”
param_type : ”float”
pa ram_args :

name: ”learning_rate”
low: 0 .00001
h igh : 0 .001
s t e p : 0 .00005

- param_pa th : ”model_framework.model.dropout”
param_type : ”float”
pa ram_args :

name: ”dropout”
low: 0 . 05
h igh : 0 . 3
s t e p : 0 . 05

Listing 4.2: Grid search Configuration Example of a Feed Forward Module
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4.6 Evaluation Metrics
The task of developing a software sensor is in the root a regression task. The
main metric used for evaluating the software sensor is the Mean Absolute
Error. This metric is the preferred one as it gives a clear measure of how
far the predicted measures are from the target value and allows for an easy
interpretation of the model’s performance.

Although this metric was used internally at Siemens Energy for evaluating
the models the results can not be disclosed in this master thesis for the
sensibility of this data for the company. Therefore, the main metrics used in
this master thesis are the MAPE and the MAE on the normalized sensor values.
Under this context, the MAE can be seen as the normalized absolute error with
the maximum value seen in a particular dataset ; so the mean absolute error
normalized with the maximum value of the dataset.

It is important to be aware of the limitations of the MAPE [65] as an
evaluation metric. First, it can give misleading high values for target values
close to 0. Fortunately, this is not a big issue when we handle sensors for
which the value is not 0 (or at least not very often, so we can ignore those
values). Secondly, the MAPE is asymmetric, this is that a method trained
by minimizing it will prefer to predict lower values [65]. In our case this is
mitigated by the fact that during the work we minimized the MAE, which is
an absolute metric.

While other options are proposed in literature like the symmetric MAPE it
is also true that each of them suffers from their respective problems [66] and
that is the rationale behind us sticking with this choice.
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Chapter 5

Results and Analysis

This chapter presents the results obtained by this research at Siemens Energy
in both collected datasets coming from the testing facility and from the fleet
of gas turbines. The initial portion of this chapter is dedicated to a discussion
on the hyper-parameter search for the different models employed.

Following this, the primary insights extracted from these results are
systematically presented in the subsequent sections; with each section
dedicated to a single insight. To ensure a seamless understanding, a discursive
approach is adopted, integrating the discussion with the results themselves.
For readers who wish to bypass the detailed discussion, a concise summary of
all results can be extracted from the tables within this chapter. Results show
the performances of the different algorithms in both the fleet dataset and the
testing facility dataset.

The critical experiments from which we draw all of our conclusions are
based on the evaluation of different models in the turbines at the testing facility
and in the fleet turbines. For the testing facility’s dataset, we compared two
different training strategies, the results of which are reported in Table 5.4 and
Table 5.3. On the other hand, the results from the fleet of gas turbines are
presented in Table 5.5. In all of our experiments, we aimed to estimate the
low-frequency pulsation in the gas turbine in the gas turbine, which is a sensor
with a central role as explained in Chapter 2. Furthermore, in the fleet dataset,
we attempted to estimate a control variable, providing insights into the use
of this technology for system monitoring. The results of this are provided in
Table 5.6.

As a last comment before delving into the results it must be noted that
only results with the final set of features are shown and this feature set was
developed from the correlation analysis and after careful consideration with
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Hyper-Parameter Range Step
Learning Rate 0.00001-0.001 0.00005
Window Length 10-60 5

Table 5.1: AT-RNN hyper-parameters’ space

a domain expert. Additionally, all results have been normalized in order to
maintain the data privacy of Siemens Energy.

5.1 Hyper-Parameters Search
A key observation when interpreting the following results is how the hyper-
parameter selection was done during this master thesis.

In the data coming from the testing facility, due to the scarcity of data
coming from one turbine, and due to the relevance of all segments of those
turbine runs it was decided to use the same turbine run for training and
validation. The testing data was always the subsequent turbine run in the
following days.

On the other hand, in data coming from the fleet of turbines, having more
available data, the validation dataset was always different from the training
dataset. Proportions are shown in Figure 3.7, Figure 3.9 and Figure 3.10.

For simplicity, in all of our experimentation we made use of Optuna
[62] with pre-defined hyper-parameter spaces that were set up according
to Section 4.5. The different hyper-parameter spaces for deep networks
are shown in Table 5.1 and Table 5.2. In all of our experimentation with
ensemble methods we made use of time windows of 1 minute of data. This
was decided since adding more parameters to tune to optuna translates into
exponential complexity [62]. For the SVR and the Ridge linear models only
the regularization parameter was tuned. The number of trials executed by
Optuna was dynamic and simply blocked after an experiment had been running
for more than 8 hours, or a maximum of 200 trials.

5.2 Turbines are very different
One of the major findings of this master’s thesis is that the differences between
two different gas turbines are substantial. Although this is expected—since
each gas turbine is practically tailor-made to meet the specific needs of the
customer—the differences are indeed significant.
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Hyper-Parameter Range Step
Learning Rate 0.00001-0.001 0.00005
Hidden Layers Length 1-3 1
Hidden Layer Size 50-150 50
Dropout 0.05-0.3 0.05
Number Models (for ensemble) 2-20 2

Table 5.2: MLP and Ensemble of MLP hyper-parameters’ space

As demonstrated in the preliminary analysis using PCA in Section 4.1,
shown in Figure Figure 4.3, the data from different gas turbines cluster together
by turbine. This suggests that models trained on a specific turbine, even being
of the same type SGT-700, cannot be directly transferred and used for inference
on another turbine without further consideration. Our results showed indeed
that training in one turbine specific turbine and then using that model for
inference on another turbine represents a dramatic failure.

Based on this preliminary result we devised an experiment using data from
gas turbines of the testing facility. For this experiment we selected gas turbines
for which at least 2 turbine runs were available. To ensure validity of the results
we excluded those turbines that, after the first (or former) runs, had changes in
their components. Then training of each model was conducted in two different
ways. First, the model was trained using data of exclusively the same gas
turbine for which inference was done and later training was executed on all
turbines’ training datasets and then inference done in their respective testing
datasets. In this way, we evaluated whether a model benefited from a more
extensive dataset comprised of data coming from different turbines or from a
unique dataset. A comparison of the results is shown in Figure 5.1; which are
drawn from Table 5.4 and Table 5.3.

At first glance one can observe that, in general, models benefited from
the more extensive dataset. However, when examining closely each of the
cases where major improvements were obtained (e.g. Ensemble MLP on T1
and T2) we realized this was due to the fact in the specific training dataset
of those gas turbines the model did not have access to the specific operation
configuration (i.e. mix of fuel) that was then used in the validation dataset.
Therefore, the initial high error was due to a lack of data diversity in their
respective datasets. The improvement, for turbine T1 and T2, can be seen in
Figure 5.2. Here, it is possible to observe how in one dataset the improvement
is due to a more precise estimate of the low frequency pulsation. Perhaps a
more interesting result is later where we see how the network, despite still
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Figure 5.1: Difference in performance between exclusive and combined
training: In this figure it is possible to see a comparison between training
models solely with training data coming from an exclusive gas turbine or
from multiple gas turbines. Positive values of the difference imply the model
achieved better performance in that dataset by using exclusively data from that
gas turbine while negative results imply it benefited from the more extensive
dataset.

doing a non-negligible error on the estimation process, learns to capture a
transition that was not observed at all before. Furthermore, for this dataset,
we experimented by attempting to fine-tune the pre-trained network on the
specific datasets, but the results were not optimal, likely due to the data issue
mentioned above (i.e., the fine-tuning effectively erased the useful information
the network had learned from other turbines).

On the other hand, for some turbines it is detrimental to use data from other
turbines in the dataset. Carefully examining the source data one observes the
opposite pattern of the turbines for which there is a huge improvement. The
training datasets of such turbines were complete in the sense that had all the
operating points for which the same gas turbine was then tested. This can be
examined from the point of view of the statistical distribution that originates
the data points of the different gas turbines. By adding more data from other
gas turbines we are essentially contaminating our original dataset and as a
consequence confusing our model.

From this discussion, we conclude that , as general guideline, it is only
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useful to add data from multiple gas turbines when the data for the turbine
under examination does not have all the operating points for which it will be
used. Therefore, the apparent improvement suggested by Figure 5.1 must be
seen through the lenses of the data that underlies that result. Thus, it was
decided for larger datasets coming from the fleet of gas turbines to use data
exclusively from each specific dataset, which corresponds to a unique gas
turbine.

The idea of transfer learning was no further studied during this master
thesis due to the data problems mentioned earlier. However, it remains an
open question whether it is possible to train a larger model from a big corpus
of gas turbines which is then fine-tuned in a complete dataset (i.e. containing
the operating points for which it will be used) and whether this signifies an
increased performance.

Another idea that remains unstudied is whether a domain adaptation
scheme would be viable to port measurements present only in a specific gas
turbine to another. This would mean whether it is possible to train in a gas
turbine that is used in the same operating points of another and , via domain
adaptation, train an algorithm that emulates the missing sensor in the later gas
turbine.

5.3 Ensemble model success
As shown in the results the performance of the ensemble of feed forward
networks is remarkable. This network is often the best performer both in the
data coming from the testing facility’s gas turbines and the fleet’s gas turbines.
This can be seen when analyzing the results obtained in Table 5.5 ,Table 5.3
and Table 5.4.

The most interesting result from a theoretical point of view is that, aligning
with the theoretical background of ensemble methods [32], the variance of the
predictions is substantially reduced yielding better predictions. This result
is clear when observing a comparison between the predictions done for the
low frequency pulsation both by a single MLP and an ensemble of them in
Figure 5.3.

We attribute this increased performance to the structure of ensemble that
we used. Indeed, the issue that a single MLP might be suffering is that the
output might rely too much on input sensors that might be altered to some
random noise not related with the actual state of the machine, for instance a
flow turbulence. By employing our ensemble method, which implies sampling
from the different sensors across a larger time window, thus having networks
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Figure 5.2: Exclusive Vs Combined Training: In this figure predictions done
by an ensemble of MLP on the turbines T1 and T2 of the testing facility
dataset is shown. Here, one can see how the network benefited from the more
extensive dataset because it had the chance to observe turbine operation points
not present in the T1 and T2 training dataset.
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that do not rely on the exact same instants we obtain that fluctuations in single
sensors are compensated and the accuracy of the prediction is increased.

Furthermore, in the datasets for which we were able to perform grid
searches (fleet’s gas turbines) , we obtained the theoretically expected result for
which this increase is not infinite but it reaches a plateau since a requirement
for performance increase is to have model independance. For those datasets
the optimal number of predictors found were between 2-5. On the other hand,
for gas turbines in the testing facility it was decided to use a total of 5 networks.

5.4 The baselines are very good
One of the most surprising results, evidenced throughout all the work, is that
simple linear regression models often provide reasonable estimates of the
variable under examination. As evidenced in the results coming from the
testing facility , shown in Table 5.3, and also results from the fleet of gas
turbines in Table 5.5.

The good results from linear regression models came as a surprise, as a
gas turbine system is expected to present high non-linearities. However, after
careful examination of results one can find a physical meaning behind such
results. Indeed, a gas turbine is a physical system , highly nonlinear, but
employed in a specific operation point. From a physical point of view one
can imagine that , close to that specific point, the system can be linearized.
Thus, explaining the success of those baselines.

However, this success relies on the assumption that the gas turbine is
operated close to a specific operation point. This assumption is not valid, for
instance, in the gas turbines in the fleet. The discussion that follows addresses
this observation.

5.4.1 Where deep learning takes huge advantage
By observing the results obtained in the data coming from the testing facility’s
gas turbines one might rapidly conclude that, despite complex architectures
obtaining better results, the difference is not big enough to justify the added
complexity of such methods.

To better understand this phenomenon we will examine the result obtained
in a dataset coming from gas turbines coming from more dynamic conditions
than the ones in the testing facility. As one can observe in Figure 4.4, in the
testing facility the active load is kept constant for long periods of time (i.e.
the turbine is operated in a very stable condition). In contrast, in the dataset
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Figure 5.3: Ensemble Stability: The provided figure illustrates a comparative
analysis between the application of a single MLP (left) and an ensemble of
5 MLP (right) used for making predictions in runs of testing facility’s gas
turbines. As can be observed from the images, the ensemble approach tends
to yield predictions with reduced variance, aligning with our expectations.
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Turbine Linear SVR Ridge MLP Ensemble
MLP AT-RNN

T1 0.2547 0.5441 0.2723 0.1764 0.1428 0.1680
T2 0.4883 0.3055 0.3877 0.3344 0.2994 0.4444
T3 0.1912 0.1730 0.1331 0.1686 0.1140 0.1031
T4 0.4448 0.2247 0.2918 0.1915 0.1383 0.0890
T5 0.1837 0.0635 0.1627 0.1130 0.1089 0.1707
T6 0.5449 0.2118 0.2119 0.3556 0.2108 0.1637
T7 0.5980 0.2149 0.2246 0.2786 0.2167 0.2731
T8 0.2250 0.1259 0.0901 0.1127 0.0859 0.0737
T9 0.8904 0.4558 0.3817 0.2282 0.1867 0.2884
T10 0.0828 0.1471 0.0635 0.1234 0.0881 0.0754
T11 0.1890 0.1236 0.1409 0.1900 0.1219 0.7289
T12 0.6351 0.2897 0.3531 0.2579 0.2064 0.3061
T13 0.4908 0.1661 0.1752 0.1557 0.1204 0.1819
T14 0.3301 0.4380 0.2900 0.2917 0.2444 0.3273
T15 0.1355 0.2421 0.1018 0.1255 0.1222 0.1078
T16 0.3951 0.2767 0.1778 0.1767 0.1013 0.0841
T17 5.6530 0.0953 0.1151 0.2525 0.2219 0.2592
T18 0.1032 0.1078 0.0624 0.1312 0.1028 0.1470
T19 0.1481 0.2160 0.1145 0.1376 0.1048 0.1475
T20 0.0602 0.1252 0.0684 0.1141 0.0752 0.0958
T21 1.4400 0.2876 0.1145 0.2439 0.1903 0.1478
Total Best 1 3 3 0 8 6

Table 5.3: Performances on testing facility data (LFP) sequential: This
table shows the Mean Absolute Percentage Error obtained by different models
in the datasets. The training is done from data coming exclusively from the
specified gas turbine Ti.
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Linear SVR Ridge MLP Ensemble
MLP AT-RNN

T1 0.2143 0.1127 0.1102 0.1352 0.0897 0.2751
T2 0.1397 0.1132 0.1128 0.0875 0.0892 0.0991
T3 0.3397 0.2760 0.2839 0.1642 0.1433 0.2693
T4 0.4253 0.1451 0.1399 0.0993 0.0908 0.0622
T5 0.2574 0.4391 0.4308 0.1996 0.1747 0.5359
T6 0.4057 0.2121 0.2149 0.1910 0.1329 0.1849
T7 0.2980 0.2336 0.2397 0.1041 0.1151 0.1364
T8 0.2106 0.2395 0.2376 0.1002 0.0915 0.2089
T9 0.1670 0.2649 0.2667 0.1723 0.1065 0.2346
T10 0.3437 0.1552 0.1561 0.1902 0.1942 0.1755
T11 0.2361 0.0979 0.1002 0.1068 0.0964 0.1785
T12 0.5794 0.1906 0.1742 0.2489 0.1985 0.3720
T13 0.4615 0.2188 0.2237 0.2016 0.1461 0.1047
T14 0.2781 0.2291 0.2242 0.1761 0.1437 0.1583
T15 0.2569 0.0873 0.0858 0.1398 0.1305 0.1170
T16 0.3908 0.2898 0.2959 0.2143 0.2301 0.2010
T17 0.1474 0.2236 0.2254 0.2146 0.1827 0.1180
T18 0.3027 0.1000 0.0943 0.2482 0.2280 0.1366
T19 0.1301 0.0944 0.0925 0.1088 0.1047 0.1117
T20 0.2276 0.1802 0.1755 0.0913 0.0784 0.1189
T21 0.2496 0.2542 0.2546 0.1038 0.0876 0.1741
Total Best 0 1 4 2 10 4

Table 5.4: Performances on testing facility data (LFP) combined: This
table shows the Mean Absolute Percentage Error obtained by different models
in the datasets. The training is done from data coming from all the training
datasets of gas turbines Ti.

Dataset/Sensor Baseline
Active Load Linear Ridge MLP Ensemble

MLP AT-RNN

Medium (LFP) 0.0895 0.0772 0.0766 0.0650 0.0525 0.0510
Large (LFP) 0.0857 0.0646 0.0645 0.0522 0.0482 0.0566
Dynamic (LFP) 0.4573 0.8885 0.4844 0.1580 0.0886 0.1723

Table 5.5: Performances on fleet data (LFP): This table shows the Mean
Absolute Percentage Error obtained by different models in the different
datasets, computing the low frequency pulsation from other 16 sensors spread
across the gas turbine.
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coming from fleet’s turbines we observe a much more dynamic active load
pattern , as seen in Figure 3.6, Figure 3.8 and Figure 3.10.

This dynamicity is probably turning on non-linearities of the system that
do not appear when the turbine is operated in a specific point. Perhaps, the
limit example of this behaviour comes from the small and dynamic dataset in
which the gas turbine is used as a mechanical drive. For this gas turbine results
show a dramatic failure of linear models (and all other baselines) to capture
the dynamics of the systems and evidence how , on the contrary, deep learning
methods are able to capture it and provide with reasonable estimates for the
low-frequency pulsation. The result is shown in Figure 5.4.

In situations where the behaviour of the gas turbine is highly dynamic
the expressive power of a linear model is not enough to generalize well or
to capture the dynamics of the system. In such cases deep networks perform
vastly superior to linear model.

Another key observation is the improvement of deep learning methods in
situations with larger amount of samples. Indeed, results in Table 5.3 are lower
than results in Table 5.5. However, this can also be attributed to the less-
pronounced changes in active load in fleet’s gas turbines.

5.5 Robustness of model over time
Another key analysis of the models developed in this master thesis is to observe
the performance behaviour of the software sensor over a long period of time.

By the usage of gas turbines it is expected that they wear and tear, besides
potential bigger changes that might occur in the gas turbine. Ultimately, such
small or big changes will end up by changing the latent probability distribution
from which the data samples of a specific gas turbine are generated. Therefore,
we expect a drift in the performance of the gas turbine over time. This result
was also obtained by [2], in Siemens Energy’s gas turbines.

We designed an experiment , by taking inspiration on [2], for assessing
this performance drift. Following the training of the software sensor over one
year of collected data (2017) we proceeded to perform testing in the following
years. An analysis shown in Figure 3.10 and in Figure 3.11 was conducted to
ensure that the operation mode of the gas turbine remained equivalent during
testing and training, so that changes in the software sensor performance could
not be attributed to a change in the operative behaviour of the gas turbine. For
performing grid search in this dataset we made use of a part of the data from
2017 as validation dataset.
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(a) Ensemble Feed Forward Model

(b) Ridge Linear Model

Figure 5.4: Feed forward ensemble vs Ridge Linear Model This figure offers
a comparative analysis between an ensemble MLP and a linear model equipped
with ridge regularization, both applied to the highly dynamic dataset derived
from a fleet of turbines. The focus of this comparison is the low-frequency
pulsation, which serves as the target variable. The results clearly illustrate
that the baseline model was not successful in capturing the dynamics of the
system.
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Figure 5.5: Large Fleet Dataset Results: These figures show the predictions
done for the low-frequency pulsation by an ensemble of MLP in the large
dataset from the fleet’s turbine. To the left a result from the validation dataset
in 2017 and to the right a result during the first 6 months of model validity

The first side result from this experiment is that the increase in training data
available for the models boosts their performance with respect to the medium
dataset, coming from the same gas turbine, but with less training data available.
Remarkable results obtained by this model can be seen in Figure 5.5 where
predictions for the low-frequency pulsation are shown for validation dataset
and the first months of model validity after training.

The evolution of the Mean Absolute Percentage Error over time is shown
in Figure 5.6. In this figure each point represents a turbine run, which
can be longer or shorter, which is encoded in the size of the corresponding
point. It can be observed that the performance of the software sensor remains
equivalent during the first 6 months post-training. However, in July 2018 a
substantial degradation of the performance of the software sensor is observed.
After this result was obtained further exploration was conducted to better
understand what changed and what might be the reason of this degradation.
We found that the decrease in performance appears after an intensive usage
of the gas turbine followed by a full stop of a couple of weeks. After this,
predictions degradate indicating some change on the gas turbine. However, we
were not able to pinpoint from available information what is the exact reason
for this deterioration.

It is worth noticing that the deterioration is not substantial and estimates
given by the software sensor are still within a reasonable range.
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Figure 5.6: Evolution of Software Sensor Performance: This figure depicts
the progression of a software sensor’s efficiency over several years. The sensor
maintains its performance for six months after being trained on a year’s worth
of data, but a significant decline in performance is noted thereafter.

5.6 Software Sensors to Replace Physical
Sensors?

One of the potential usages of a software sensor in gas turbines posed at the
beginning of this master thesis was to make use of them to potentially replace
a physical sensor present in the gas turbine. This usage is similar to the one
studied in [40] for replacing flame detectors and was also addressed by [12]
with a gas turbine simulation. This application would be of substantial value
for both company and customers as it would allow to , potentially, save costs
in sensors that are expensive due to the extreme conditions under which they
operate.

Results from this master thesis show that, with the current development,
this application would not be possible or safe. This conclusion is given after
analyzing the residuals obtained by the best performing algorithms. As it
can be seen from Figure 5.7 the residuals exhibit that the models perform
particularly bad for large pulsation values , which are the exact peaks that the
sensor is aiming to monitor. In other words, a pulsation’s sensor aim is to
capture dynamic pressure patterns that imply the existence of some undesired
pressure wave excited by the resonance frequencies of the gas turbine. Those
pressure waves are undesirable as they might damage mechanical parts of
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Figure 5.7: Residual Analysis on fleet’s medium dataset: This figure shows
the residuals as a function of the target value for the medium sized dataset
coming from the gas turbines fleet. The algorithm under examination is the
ensemble of MLP

the gas turbine and our models perform particularly bad on detecting such
peaks. This is probably due to the rarity of them in the data combined with
the instability of the underlying physical system during those transitions.

This limitation is profound and not simply attributable to the single models
and their inability to capture those peaks; it is not a model error. The
limitation, as can be seen also from Figure 5.7, comes from a data limitation
perspective. This is, in the available data, we have gas turbines operating
most of the time adequately. This , in practice, means that occurrences of
the thermoacoustic instabilities in data [35] are rare; as they should be since
gas turbines are constructed, by design, to avoid such pressure waves. But,
from a ML point of view this is a big problem since our models did not see, or
saw rarely, this behaviour during training, so it is impossible or hard for them
to learn this behaviour. From the data engineer perspective it might seem
possible to find data with such peaks but this requires both domain expertise
and extensive knowledge of the operation of gas turbines. Furthermore, peaks
present in the low frequency pulsation in our datasets are often attributable
to the operation itself of the gas turbine (i.e. change in the ratios of fuel
given, turn on/off of gas turbine, etc. ) and not of the kind that the sensor
is explicitly placed for (i.e. unintended high low-frequency pulsations coming
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from a thermoacoustic resonance).

5.7 Fault Isolation?
The results show that it is possible to create a software sensor that , under
certain circumstances, provides accurate estimates of variables in the gas
turbine. However, as discussed in the previous section, the potential of
software sensors for replacing a physical sensors remains limited at the
moment due to the safety issues this would create. Nonetheless, their
potential still remains high as they can very likely be employed for predictive
maintenance in the gas turbines. In this section, we present , based on our
results the potential usages of this technology in this field; supported by our
results.

5.7.1 Software Sensor for Overall Machine Status
The previous results were focused on the low frequency pulsation prediction in
the gas turbines. This prediction was done using 19 sensors from all sections
of the gas turbine: compressor, combustion chamber and exhaust. The usage
of those sensors was carefully done after discussion with domain experts and
the minimal set of requires sensor was aimed to be chosen.

However, this practically implies that , when using the model for inference,
in the case of a difference between the model prediction and the physical sensor
it is not possible to pinpoint a failure on a specific part of the gas turbine.
Indeed, given a software sensor failure, the physical failure can come from
anywhere. It is possible for it to be a real sensor failure, but it can also
be due to a change in the overall health of the machine which changes the
relationship between parameters, or a failure of one of the input sensors that
is used to generate the prediction. In this sense, the software sensor solution
is very similar to having an autoencoder as in [2]. Indeed, given a model
deterioration without further information it is only possible to conclude that
something changed in the machine, but not exactly isolate what. Therefore,
as in [2], it acts only as a health parameter of the gas turbine. This is indeed
shown in Section 5.5, where a deterioration in the model performance is linked
with a change in the machine. Therefore, a use-case is to use this algorithm to
detect unexpected changes.

As an important note for this application is that also changes in the
operation mode of the gas turbine will lead to varied performance of the model.
Therefore, before drawing conclusions, one must validate that the underlying
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data is drawn from the same distribution. This can be done in a simplified way
by observing that the active load pattern of the machine remains unchanged.

5.7.2 Software Sensor for Control Loop Monitoring
Perhaps one of the most exciting usages of a software sensor is to introduce it
into a control loop. Here, we will discuss this idea. The concept is to use the
software sensor to predict the value of a control variable from other variables
that depend on the control variable itself. This allows for detection of faults in
the control device itself or sensor used by it.

To exemplify this usage, we focused on the IGV measurement. We
attempted its prediction from a small set of variables within the same turbine
section (compressor) from other variables that are directly determined by this
control variable (i.e. pressure after compressor, inlet differential pressure , etc.
). The intrinsic relationship between those variables makes predictions done
by our software sensor to be extremely accurate , as shown in Table 5.6 and
Figure 5.9. This is expected as we are predicting a value that is expected to
have a direct effect on the variables that we are considering.

Reflecting on the original, simplified, PGM that we used to model the gas
turbines we are effectively learning the inter-dependency of those variables by
creating a link among them. The kind of fault that we are able to identify, due
to the specificity of the software sensor devised, and to its high accuracy is to
detect faults in the control system. The schematic of this implementation is
shown in Figure 5.8.

Notice that in case of discrepancy between the software measurement
and the physical measurement we still are not able to conclude definitely
whether it is the software sensor or the physical one that is failing. However,
in combination with other predictive maintenance strategy based on the
performance of the compressor one can adequately identify a failure in the
IGV control system. This is, if we observe that the performance obtained
when using the predicted IGV and the predictors’ values is consistent with
the expected value of performance one can be confident that the real value
of the IGV is the one predicted by our software sensor and not the measured
one. Effectively, this technique would allow to pinpoint the failure to the IGV
control system.

This example is highly specific, and it was the product of extensive
discussion with a domain expert. However, the concept can be generalized
to other systems with a similar loopy structure to , in a schematic way, apply
redundancies to the different control systems of the gas turbine and in that way
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Figure 5.8: Usage of Software Sensor in Control Loop: This diagrams shows
the usage of a software sensor for detecting failures in the IGV control system
of the gas turbine.

implement a mechanism of Failure Detection and Isolation.

5.8 Data Pipeline Analysis
As discussed in Chapter 3, the inefficiency and unfeasibility of manual
download of testing facility’s turbine data necessitated of the development of
an automatic procedure for data collection and subsequent processing to create
datasets for the conducted experiments.

Results for the developed data collection system are shown in Figure 5.10.
It shows that the developed system enables rapid construction of datasets. In
this benchmark 250 sensors are queried for a set of around 100 turbine runs.
The obtained median turbine run download time is around 10 seconds, with
some outliers present due to particularly large turbine tests.

This system proved to be valuable during this master thesis to rapidly
iterate and explore feature and dataset modifications. It remains a useful tool
for future work conducted in this department to effectively, in combination
with the procedures described in Section 3.4, make use of the data available.
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Figure 5.9: IGV Linear Model Regression: In this figure it is possible to
see predictions done by a simple linear regressor on the control variable IGV
from other 6 variables that react to it. We can observe the extreme level of
accuracy of the predictions. This is expected as we are using feature variables
that directly depend on the IGV value.

Dataset/Sensor Linear Ridge MLP Ensemble MLP AT-RNN
Medium (LFP) 0.0122 0.0128 0.02056 0.01753 0.01236
Large (LFP) 0.0224 0.0224 0.03039 0.02206 0.0183
Dynamic (LFP) 0.1244 0.1068 0.3800 0.0968 0.1505

Table 5.6: Performances on fleet data (IGV): This table shows the Mean
Absolute Percentage Error obtained by different models in the different
datasets, computing the IGV from 6 sensors in the compressor. Datasets
shown are very different in characteristics
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Figure 5.10: File Download System Benchmark: This figure shows the
distribution of download time of a complete file with over 250 sensors, by
using the proposed parallel approach.

On the other hand, the overall system developed for sample extraction from
datasets, as described in Section 3.5, proved invaluable. A unique sample
generation by task ensured that models were indeed being compared by making
use of the same available information. Furthermore, adopting a PyTorch-like
solution [28] proved to be beneficial when dealing with larger datasets, as in
Section 3.3, for which holding all samples in memory was not efficient.

5.9 Data Quality Issues That Emerge in
Model Testing

Throughout this master thesis, we have reiterated that the development of
Machine Learning Algorithms is not a linear process. This section exemplifies
how data quality issues can surface late in the development stage, prompting a
re-evaluation of the existing data pipeline and the introduction of new cleaning
procedures. For illustrative purposes, we shall discuss a data set that was
excluded from all other analyses due to quality reasons identified during this
thesis. As we have established in Chapter 2, data quality is a paramount factor
in the development of a Machine Learning Algorithm as the efficacy of the
models directly correlates to the quality of the data used for training them
[16]. We realized the data of a low-frequency pulsation from a specific gas
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Figure 5.11: Quantized Signal Effect on Model Outputs: The quantization
pattern emerging from the regression of the low-frequency pulsation based on
a ridge linear-model based software sensor. Only after observing this result it
was possible to understand the data quality issue in the raw data collected.

turbine was quantized only during the model testing phase.
This quantized data revelation came to light while analyzing the residuals

of a linear model attempting to predict the raw data, as depicted in Figure 5.11.
The pattern of these residuals mirrors what is typically found in electronics
when an analog signal is quantized to convert it into a digital signal. While no
electronic device caused the quantization in our dataset, it was apparent upon
reviewing the raw signal that ,for reasons unknown to us, the original signal
had indeed been quantized, as shown in Figure 5.11.However, this fact was
not uncovered during the initial data processing, as its occurrence was highly
unexpected.

Due to this unexpected discovery, we decided to discard the dataset, as the
results could not be utilized effectively. An open , very interesting, question
remains of whether the interpolation done by the linear model in this scenario
was accurate. However, lacking access to the pre-quantized signal, it was
impossible to evaluate this.
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Chapter 6

Conclusions and Future work

During this master thesis we conducted a successful study based on the Cross
Industry Standard Process for Data Minings on the application of Machine
Learning Algorithms for Siemens Energy’s gas turbines. The thesis aimed to
answer whether it is possible to build a data-driven software sensor for specific
gas turbines. It also aimed to answer how this technology can be employed in
the gas turbine for either reducing costs or predictive maintenance.

In this chapter, we will present the major results obtained from this
master thesis, a discussion of the limitations of the developed approach, future
avenues to pursue and a reflection on the ethical issues stemming from this AI
usage.

6.1 Conclusions
This master thesis successfully demonstrated the efficacy of implementing
a cyclical development model in an industrial context, as proposed by
the Cross Industry Standard Process for Data Mining [13]. As a result,
we have successfully integrated this model within the Siemens Energy
R&D department, establishing the necessary software infrastructure for data
collection, preparation, and algorithm development.

This project placed specific emphasis on the considerations necessary for
constructing a dataset suitable for algorithm development and experimenta-
tion. These considerations were essential for addressing the initial project
queries and for future project development. A robust, flexible, and efficient
data preparation system was proposed and built, which can be used for further
experimentation and data-driven solutions.

As a result, we developed a dynamic interface that enables data extraction
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from the existing Siemens Energy infrastructure in an efficient and rapid
way. The system includes a cleaning procedure for automated data extraction
from the raw data. Additionally, a solution based on constraint programming
was proposed for data selection. This solution allows for the handling of
specific constraints regarding desired features and potential missing sensors
in certain turbine runs by making use of constraint programming for solving
this combinatorial optimization problem.

Equally relevant, this master thesis highlighted the data challenges tied
to gas turbines from both the testing facility and the fleet. The essential
considerations for further result analyses and data limitations, particularly
regarding data missingness and scarcity, were thoroughly discussed. A
crucial consideration is the data limitations concerning the rarity of events
intrinsically designed to be captured by a sensor (i.e., unexpected events).
This constraint suggests that the algorithms developed may not be sufficiently
reliable to replace a physical sensor holding critical value in the machine. This
was evidenced through the residual analysis conducted on a software sensor
predicting low-frequency pulsation, where it was observed that the model
tends to underestimate results for higher target values.

Furthermore, we demonstrated the feasibility of constructing a software
sensor that yields accurate and robust results, provided it’s trained with diverse
data. We utilized a range of methods, from baseline to more complex deep
learning architectures, and observed their strengths and limitations. Our
observations led us to conclude that, despite the high autocorrelation of data,
the time-awareness of algorithms is critical. It helps filter out noise that might
be induced by turbulence in gas turbine operation. In particular, we found
that ensemble methods are especially pertinent when dealing with potentially
noisy data.

We successfully conducted a robustness analysis of such solutions and
highlighted their main limitations concluding that while usage for replacing
a physical sensor is still not viable it is indeed possible to think on integrating
them into a gas turbine system for different kinds of health monitoring. Our
analysis shows that a promising avenue is opened for monitoring control
systems or general check of unexpected machine changes which might be not
detected by operators. This application was further supported by an analysis
done of the performance of a model over time and characterizing how changes
in the gas turbine are reflected in the performance of a model of this kind.

We conducted a comprehensive robustness analysis of these solutions,
underscoring their primary limitations. We concluded that while replacing
a physical sensor is not yet feasible, the integration of these solutions into a
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gas turbine system for various health monitoring aspects is indeed possible.
Our analysis suggests a promising direction for monitoring control systems or
general checks for unexpected machine alterations, which may go undetected
by operators. This application was further reinforced by an analysis of a
model’s performance over time, characterizing how changes in the gas turbine
impact the performance of a model of this kind.

6.2 Limitations
We can observe from the results of this master thesis that a significant
limitation is data quality and , ironically, scarcity of data.

A surprising constraint discovered throughout this work is that despite
having vast amounts of data, data scarcity remains a real issue. It manifests in
various ways, requiring a separate discussion for each dataset used.

In the data derived from the testing facility, we have a considerable quantity
of different gas turbines. However, when conditions such as having a similar
set of valid sensors during the run are imposed, the dataset is greatly reduced.
Indeed, the final dataset contains only 21 turbines with the selected features,
for which at least 2 runs with the same set of valid sensors are available.
Despite this number of turbines being more than sufficient, our algorithms
had to learn from, in some cases, a unique turbine run to perform inference on
a subsequent run. As highlighted in Section 5.2, this is a significant limitation
in datasets that do not contain the required operative points for which inference
is performed. Nonetheless, this was crucial as it confirmed an expected fact:
the training dataset must contain the operating point for which the algorithm
will be used for inference.

Data scarcity is also an issue for the development of a reliable algorithm
in the sense that instances of data where an unexpected rise in low-frequency
pulsation is very rare (fortunately for Siemens Energy business, as it implies
that gas turbines are reliable). This limitation applies to both datasets.
However, it poses a significant issue for Machine Learning Algorithms as
it prevents them from learning under what circumstances those exceptional,
but necessary situations to capture by a software sensor, occur. This
fundamental problem of the underlying dataset indicates another limitation
of our developed solution: it is not entirely reliable to replace a physical
sensor and should not be used to substitute a critical measurement of the
machine (such as the low-frequency pulsation). Physical sensors remain key
in identifying those extremely rare but dangerous conditions.

The final limitation discovered relates to data quality issues in the dataset
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from the fleet of gas turbines. This stems from the engineering challenge
of storing this massive amount of data. However, the non-uniform strategy
by which data is compressed for storage requires careful consideration when
analyzing any dataset from this source. Unexpected issues, as shown in
Section 5.9, are not uncommon and pose a significant limitation. Furthermore,
the underlying data presents a non-uniform sampling rate, and although, as
described in Chapter 3, this issue is reasonably resolved by imputing values
using linear interpolation, this base assumption should be revisited given
access to the original data.

6.3 Future work
The intersection of this work with predictive maintenance concepts is
substantial. Future work based on this solution could delve into ideas like the
integration of this type of software sensor into a control loop for monitoring
control systems.

A critical shift in focus for producing meaningful results supported by
material evidence involves obtaining data of specific system failures, akin to
[10] method. Understanding how to utilize the discrepancy between software
and physical sensors to draw conclusions and identify particular system
failures is crucial. This shift is necessary as the implementation of methods
to detect failures, tested by injecting failures manually into a specific sensor
as done in [12], does not accurately represent how a real failure will appear
in data. Such a failure would likely affect multiple sensors simultaneously,
complicating the task of identifying the problem’s source.

By constructing blocks of sensors concentrated in specific areas of the gas
turbine, we can enhance our belief in the correct functioning of those sensors
or turbine areas and assist operators in performing fault isolation.

Another intriguing area of exploration involves the feasibility of a domain
adaptation scheme for gas turbine data. It is conceivable to train a model
on a gas turbine with a specific available sensor and then attempt to transfer
this knowledge to another gas turbine lacking that sensor, assuming similar
operating modes for both turbines. It would be insightful to determine whether
it is possible to align the latent representations to artificially implement a
virtual sensor in another gas turbine. A likely limitation of this scheme is
the inherent difference between two gas turbines, despite their similarities, as
discussed in Section 5.2.

A final unanswered question pertains to the analysis conducted when
training on multiple turbines simultaneously. Is it feasible to pre-train a model
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on several gas turbines to yield better inferences on a specific gas turbine?
A preliminary result was shown in this master’s thesis, where we observed
that when a specific operation point was not available in the training data,
the model benefited from encountering such situations in other gas turbines.
However, we did not investigate the extent of this idea. A limitation for this
exploration is that not all gas turbines share the same set of valid sensors, thus
restricting the size of potential pre-training or necessitating models that can
handle such missing values. In future work, it is a possible avenue to handle the
full dataset and make the necessary considerations to let the model interpret
missing values for certain sensors. Another key limitation, as discussed in the
results, is that the dataset for fine-tuning on some turbines is incomplete, thus
the process effectively destroys the previous learnt knowledge.

6.4 Ethical, Sustainability, and Final Reflec-
tions

A significant reflection on this work pertains to the safe usage of ML. Indeed,
the utilization of AI should not be indiscriminate; accountability is essential
[67] for the consequences resulting from its usage. The crucial point here is
the necessity for awareness of the limitations of this technology to prevent
disastrous outcomes stemming from overconfidence in AI use. While the
results of this master’s thesis demonstrate accurate and satisfactory estimates
of different variables in gas turbines, it is important to note the potential danger
of using these estimates to completely replace physical sensors, given the
observed data limitations.

In terms of sustainability, this project contributes to the refinement of
a technology, namely gas turbines, which is effectively aiding humanity’s
transition to a sustainable future, as highlighted in Chapter 2. The solution
presented in this master’s thesis, along with its potential future developments,
may play a crucial role in enabling the monitoring of gas turbines when used
with more unstable fuels such as Hydrogen or Ammonia.

Reflecting on the entirety of this work, it is evident that a significant portion
was dedicated to obtaining clean and usable data. This aspect consistently
resurfaced during results analysis and conclusion discussions, often taking
precedence over model discussions. While model design played a relevant
role, this work underscores the equal, if not greater, importance of the data
underlying these models.

In conclusion, this master’s thesis delved into the complexities and
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opportunities associated with Machine Learning Algorithm applications in
gas turbines. It illustrated the construction of a methodical solution,
with an emphasis on data refinement, and the outcomes derived from our
experimentation. The results of this research contribute to the ongoing
evolution in the field of gas turbine technology and also pave the way for future
advancements and discoveries.
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Appendix A

Optuna and Hydra integration

In this concise appendix chapter, we briefly demonstrate the exceptional
flexibility provided by Python and Hydra in conjunction with Optuna, which
facilitates an extremely efficient and clean grid search process.

We have included this code segment to allow readers to appreciate the
benefits of the modular solution we have proposed and to see how seamlessly
the various components of our architecture work together. This integration
results in a unique code that can handle every model and dataset, showcasing
the effectiveness and adaptability of our system design.

def g r i d _ s e a r c h (
c o n f i g : D ic tConf ig , c o n f i g u r a t i o n _ n a m e : s t r , c o n f i g u r a t i o n _ f o l d e r : s t r , a l l _ n o r m a l i z e d : bool = F a l s e

) −> None :
”””
Perform g r i d s ea r ch on t h e g i v en c o n f i g u r a t i o n f i l e .

Args :
c o n f i g ( D i c t C o n f i g ) : The c o n f i g u r a t i o n o f t h e g r i d s ea r ch j ob .
c o n f i g u r a t i o n _ n a m e ( s t r ) : The name o f t h e c o n f i g u r a t i o n used
c o n f i g u r a t i o n _ f o l d e r ( s t r ) : The r e l a t i v e pa th o f t h e c o n f i g u r a t i o n f o l d e r
a l l _ n o r m a l i z e d ( boo l ) : Whether t o compute t h e m e t r i c s on no rma l i z e d v a r i a b l e s

”””
o r i g i n a l _ w o r k i n g _ d i r e c t o r y = hydra . u t i l s . g e t _ o r i g i n a l _ c w d ( )
o u t t e r _ o v e r r i d e s = (

hydra . c o r e . h y d r a _ c o n f i g . HydraConf ig ( ) . g e t ( ) . j ob . o v e r r i d e _ d i r n a m e
) # noqa
Globa lHydra . i n s t a n c e ( ) . c l e a r ( )
p a r ams_g r i d = c o n f i g [ ” g e n e r a l ” ] [ ” execu t i on_mode_a rg s ” ] [ ” params ” ]

# De f i n e t h e d a t a s e t once ( and f o r e v e r )
# Changes t o pa rame t e r s o f t h e d a t a s e t are no t a l l owed f o r t h e same reason ( i t i s j u s t no t p e r f o rman t )
# However , changes t o t h e model adap t e r / t a s k adap t e r are a l lowed , which i s v e r y f l e x i b l e !
d a t a s e t = hydra . u t i l s . i n s t a n t i a t e ( c o n f i g . d a t a s e t )

# De f i n e t h e o b j e c t i v e as a c l o s u r e f u n c t i o n . I t i s no t t h r e a d s a f e
# I t s hou l d be i n t e r −p r o c e s s s a f e bu t has no t been t e s t e d
def o b j e c t i v e ( t r i a l : op tuna . T r i a l ) :

# I n s t a n t i a t e a l l t h e pa rame t e r s from t h e t r i a l
# S imp ly loop th rough a l l t h e pa rame t e r s s p e c i f i e d i n c o n f i g u r a t i o n
t r i a l _ p a r a m e t e r s = g e t _ t r i a l _ o v e r r i d e s ( t r i a l , p a r ams_g r i d )

# Eva l ua t e c o n f i g u r a t i o n
e v a l u a t e d _ c o n f i g = s e t _ t r i a l _ o v e r r i d e s (

o v e r r i d e s = o u t t e r _ o v e r r i d e s . s p l i t ( ” , ” )
+ [

t r i a l _ p a r a m _ p a t h
+ ”=”
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+ P a r a m e t e r S u g g e s t o r . t o _ o v e r r i d e _ f o r m a t ( t r i a l _ p a r a m _ v a l u e )
f o r t r i a l _ p a r a m _ p a t h , t r i a l _ p a r a m _ v a l u e in t r i a l _ p a r a m e t e r s . i t ems ( )

] ,
c o n f i g u r a t i o n _ n a m e = con f i gu r a t i o n_name ,
c o n f i g u r a t i o n _ f o l d e r = c o n f i g u r a t i o n _ f o l d e r ,
o r i g i n a l _ w o r k i n g _ d i r e c t o r y = o r i g i n a l _ w o r k i n g _ d i r e c t o r y ,

)

# I n s t a n t i a t e t h e l o a d e r s and p r e p r o c e s s as i n d i c a t e d
d a t a s e t s = d a t a s e t . g e t _ l o a d e r s (

mode l _adap t e r =hydra . u t i l s . i n s t a n t i a t e (
e v a l u a t e d _ c o n f i g . model_framework . mode l _ adap t e r

) ,
t a s k =Task [ e v a l u a t e d _ c o n f i g . g e n e r a l . t a s k . lower ( ) ] ,
t a s k _ a r g s = e v a l u a t e d _ c o n f i g . g e n e r a l . t a s k _ a r g s ,
g r oup ing =Grouping . BY_PURPOSE,

)

d a t a _ t r a i n , d a t a _ v a l i d a t i o n = (
d a t a s e t s . g e t ( S p l i t P u r p o s e . TRAINING ) ,
d a t a s e t s . g e t ( S p l i t P u r p o s e . VALIDATION) ,

)

t r a i n e r = hydra . u t i l s . i n s t a n t i a t e (
c o n f i g = e v a l u a t e d _ c o n f i g . model_framework . t r a i n i n g . t r a i n e r ,
c f g = e v a l u a t e d _ c o n f i g . model_framework ,
d a t a s e t = d a t a s e t ,
t r i a l = t r i a l ,

)

t r a i n e r . f i t ( d a t a _ t r a i n , d a t a _ v a l i d a t i o n )

m o d e l _ t e s t e r = Mode lVa l i d a t o r ( m o d e l _ t r a i n e r = t r a i n e r , d a t a s e t = d a t a s e t , a l l _ n o r m a l i z e d = a l l _ n o r m a l i z e d )
l o g g e r . i n f o ( ” V a l i d a t i n g ␣model ” )
_ , v a l i d a t i o n _ r e s u l t s = m o d e l _ t e s t e r . v a l i d a t e ( d a t a _ v a l i d a t i o n )

re turn v a l i d a t i o n _ r e s u l t s [ c o n f i g [ ” g e n e r a l ” ] [ ” execu t i on_mode_a rg s ” ] [ ” m e t r i c ” ] ]

# Crea t e t h e s t u d y and per form t h e o p t i m i z a t i o n
s t u dy = op tuna . c r e a t e _ s t u d y (

s t o r a g e =” s q l i t e : / / / g r i d _ s e a r c h _ r e s u l t . db ” , s tudy_name=” Gr id␣Sea rch ”
)
s t u dy . o p t i m i z e (

o b j e c t i v e , n _ t r i a l s = c o n f i g [ ” g e n e r a l ” ] [ ” execu t i on_mode_a rg s ” ] [ ” n _ t r i a l s ” ]
)

The opportunities with hydra [63] signified a really modular experimen-
tation method. As described in Section 4.5 the software implemented could
employ different task, model and dataset interexchangably giving place to shell
commands like the one in

Listing A.1: bash version

# T r a i n i n g an ensemble o f mlp f o r r e g r e s s i o n i n
pyh ton main . py g e n e r a l = t r a i n _ r e g r e s s o r \ \
model_framework=ensemble_mlp \ \
d a t a s e t = f l e e t _ d a t a s e t \ \
d a t a s e t . d a t a _ s o u r c e s . f i l e s _ p a t h =” / example / p a t h / t u r b i n e _ 1 ”
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