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Abstract

One of the main goals of computational biology is to develop realistic models
of cells, such that their behaviour can be studied in silico (i.e. in a computer
simulation) and conclusions can be drawn on the actual biological phenomena we
are considering. A perturbation, in this work, is defined as a change in the external
environment or in the inner mechanisms of the cell. In order to produce actionable
simulations it’s imperative that the response of a model to a perturbation is as
close as possible to what happens in reality.

The aim of this work is to establish a metric of evaluation of different models,
able to discern which among them behaves most similarly to experimental results.
As we will see there is no agreed upon method in the literature, and the commonly
employed strategies have some disadvantages that will be highlighted.

The contribution is twofold: firstly a spiking protocol, that allows us to detect
the best among competing metrics. Secondly, the development of a method taking
full advantage of the characteristics of single cell data, mainly the joint probability
distribution of the gene expression levels, that can now be estimated and could
not have been with traditional bulk transcriptomics.

With bulk transcriptomics in fact we can only determine the average expression
levels of a given gene in the sample. Instead with single cell data we can appreciate
the complex intertwining of the various genes’ activity, since we can see for any
given cell whether a certain gene tends to be co-expressed with others, and so on.

Current methods are lacking on this point since they perform evaluations by
aggregating data, in what’s called pseudo-bulk, i.e. averaging the expression levels
for any gene in a sample sequenced with scRNA-seq. This is almost equivalent to
using bulk data, therefore I argue that there’s room for improvement on this front
and I propose one such technique in this manuscript.
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Chapter 1

Introduction

In Part I I will explain how cells react to their environment and why gene expression
is important, then I will discuss how we can investigate it with scRNA-seq, then
briefly mention its limitations. Then describe in silico perturbation and some
methods to perform it (Chapter 2). Lastly I will present the various existing
evaluation methods in the literature (Chapter 3).

In Part II I will explain the shortcomings of the existing evaluation methods
(Chapter 5), introduce my approach (Chapter 6), explaining the rationale behind
it, and lastly I will describe the various mathematical and computational methods
employed (Chapters 7, 8, 9).

Finally, in Part III I will present the study design I’ve concocted (Chapter 10),
describe the datasets and computational tools used (Chapter 11), then show some
results obtained (Chapter 12), finally I will present a short discussion on the work
done and identify some potential future directions of inquiry (Chapter 13).

1.1 Cells Respond to their Environment

All living beings are made of cells, be they humans, plants or bacteria. As different
as these organisms may be, their cells share a lot of characteristics. All cells have
hereditable material in the form of DNA, some portions of DNA called genes are
then read by the cell and used as blueprints to produce RNA (which sometimes is
the end product). Often the RNA is then translated into proteins which are the
catalysts for most processes in the cell (and sometimes have a structural function)
[3].

Not all genes are active at the same time, and genes are switched on and off
in response to external stimuli, through regulatory mechanisms. These regulatory
mechanisms determine the response of the cell to the environment.

Let’s see for example how the bacterium E. coli reacts to a change in the
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environment (a change caused by itself, by the way). In this example we start
from a setting in which there’s an abundance of both glucose and lactose, then
glucose is depleted by the bacteria and only then lactose is consumed in its stead
[20]. This leads us to think that glucose is E. coli ’s preferred sugar. In case it’s
not available E. coli will digest lactose in its place. Evolutionarily it prefers it due
to the higher net energy produced by breaking down glucose rather than lactose.

How can I say that E. coli “prefers” glucose to lactose? Does a bacterium
have agency? Most likely not, a bacterium is a complex molecular machine but it
cannot think for itself. It’s the bacterium’s regulatory mechanisms that determine
its behavior: making it digest glucose if it’s present and ignore lactose, but in case
glucose runs out and lactose is present then it starts digesting lactose instead.

1.1.1 Lac Operon

The reason behind the phenomenon described above is the regulation of the lac
operon. An operon is a set of genes that are transcribed in the same RNA molecule,
which then gives rise to the different products coded by the genes in the operon.
An organism can therefore “decide” whether to transcribe the whole operon (all
the genes that comprise it) or not.

The lac operon contains proteins needed to digest lactose. Its transcription is
regulated by two regulators: a CAP activator (that enables the transcription of
the operon) and a Lac repressor (that impedes transcription).

The CAP activator responds to the presence of cyclic AMP, which is a small
molecule whose concentration rises inside the bacterium when glucose is absent.
The Lac repressor instead by default inhibits the transcription of the Lac operon,
when lactose is present however it changes shape and allows the translation to
occur [33].

Note that both conditions must occur otherwise the transcription will not take
place: both glucose must be absent and lactose must be present, in a logical AND.

1.2 Regulation of Gene Expression

Mechanisms like this one are present in all kinds of cells. As a matter of fact
in eukaryotic cells the complexity of regulation is considerably higher than in
prokaryotes as attested also by the percentage of DNA devoted to regulatory roles
[7].

The lac operon is a clear example of the importance of regulation and its
effects, and illustrative of the interplay between genes and environment. It’s not
enough to study only the DNA, but we need to understand how the genome and
the environment interact, through the various regulatory mechanisms.
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Another thing is worth mentioning: we need not concern ourselves with the
complex allosteric conformational change undergone by the Lac repressor and its
analog in the CAP activator, if the end result is a logical AND on conditions
concerning the presence or absence of some substances in the environment.

1.2.1 The Need for Computational Methods

This is good news for us as we can attempt to understand the regulatory landscape
without a full knowledge of the molecular machinery behind it. Another obstacle,
though, is presented by the sheer volume of possible combinations of interactions.
There are more than 20,000 genes in humans [40], for instance, and every gene
could potentially interact with any other (through its products), under certain
conditions. The interaction can also be many-to-one as we’ve seen before, further
complicating the problem.

This is where the need for advanced computational techniques comes in. The
complexity of the problem would be insurmountable without them, but there might
be hope by leveraging them.

1.3 Sequencing Revolution

In 2001 the Human Genome Project concluded a 10 year endeavor, with a cost of
3 billion dollars to obtain the sequence of a single human genome [30]. Less than
25 years later the cost reduced 3 million fold (to about 1,000 euros) and you can
sequence a genome in a few days [34].

But as I explained earlier the genome by itself is not enough to understand the
behavior of the cell. We need to see and model how the various genes and their
product interact among themselves and with the environment.

1.3.1 RNA-seq

Here comes to the rescue the RNA sequencing technique, also called RNA-seq [50].
It consists of using a reverse transcriptase enzyme to convert an RNA molecule to
its complementary DNA (or cDNA). The DNA can then be amplified with DNA
polymerase and sequenced using the regular DNA sequencing techniques.

The advantage of this method is that it allows us to see which genes are being
actively transcribed and which aren’t. It also enables us to see the level of tran-
scription of the various genes, further enhancing our ability to probe the mecha-
nisms of the cell.

There are complications though: it’s not immediate to infer the levels of a
protein coded by a gene only from its RNA levels, since there could be post-
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transcriptional regulation. Also the proteins can be modified by the cell’s internal
environment, changing radically their function, as in the example of the Lac operon
in Subsection 1.1.1.

Moreover, traditional RNA-seq, also called bulk RNA-seq is done on a sample
of cells and basically tells us the “average” RNA levels for that sample, across
the different cells. However cells are quite varied: for example a neuron and a
immune cell are clearly different beasts, and averaging their gene expression levels
is suboptimal if we want to understand either one or the other. The difference
in cell type need not be so stark, and the same cell at different stages of its life
cycle presents some variation in the genes it expresses. To address these problems
nowadays its becoming increasingly more common to perform single cell RNA
sequencing, or scRNA-seq.

1.3.2 scRNA-seq

Single cell RNA sequencing, or scRNA-seq is RNA-sequencing performed on a
single cell at a time, enabling us to see what genes (and at which level) are being
expressed by that cell [49]. This makes us able to better appreciate individual
differences, and characterize subtypes (or clusters) of cells.

Since the starting genetic material from any given cell is very little, a lot of
amplification is required. It is not possible to guarantee an even distribution of
reverse transcriptase or DNA polymerase on a sample so small. This causes a lot
of noise in the data.

Another big problem is that differences in how a batch of cells is treated,
sequencing technique employed and other factors make data collected by different
research groups, or even by the same group at different times, not commensurable
with other data pertaining to the same phenomenon. This problem is known as
batch effect, and it was already a problem with the earlier microarray techniques,
and even more so with single cell data [42].

1.4 Perturbation Studies and CRISPR

In order to understand how cells work we need to see how they respond to per-
turbations, defined as changes in the external environment, or the cell’s internal
mechanisms.

For what concerns changes in the external environment, these are relatively
easier to achieve. We can change the amount, or type, of nutrient a cell culture
is in with ease. Hypoxic chambers are present in most big cancer laboratories to
study how cells react to the absence of oxygen, and most importantly how they
behave once re-oxygenated.
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A more tricky predicament is the one in which we want to change the internal
mechanisms of the cell. If we want to understand whether a gene regulates another
it would be nice to be able to turn off the first and see if the second is still being
transcribed or not.

Luckily the novel gene editing technique CRISPR [39] allows us to do exactly
that, in a more streamlined and cheap way than ever before.

1.4.1 CRISPR-Cas9

CRISPR is a revolutionary gene editing mechanism based on the CRISPR-Cas9
bacterial immune system component [24].

CRISPR, or clustered regularly interspaced short palindromic repeats, are DNA
sequences that are used by bacteria as a kind of antibody for bacteriophages (a
type of virus that, as the name suggests, “eats” bacteria).

When a bacterium is infected a sequence from a bacteriophage DNA is captured
and conserved in the bacterial DNA. When a similar phage infects the bacterium
the Cas9 protein is loaded with the “antibody” sequence for that phage so it binds
and cuts its DNA, impeding its functioning [54].

The main advantage of this molecular machinery is that is kind of “pro-
grammable”. Meaning that by changing the so called guide RNA the Cas9 en-
zyme cuts (therefore damages) different DNA sequences. This allows us to change
the target genes by simply changing the guide RNA. Whereas before a whole new
protein would have to be designed in a costly and lengthy process in order to edit
a target gene, for example with ZFNs or TALENs [22].

Having a cheap and fast way to edit the genome of living cells allowed us
to have access to a deluge of incredibly invaluable data that could enable us to
understand how the various genes and their products interact with each other, and
what happens when a gene is turned off.

9



Chapter 2

In Silico Perturbation

In silico perturbation refers to any computational method used to simulate the
response of a cell to a perturbation. By simulating single cells individually, then
analyzing the results as a whole we can gain insights on the whole landscape of
cell types and subtypes, and better characterize their behavior.

Here I present 3 different methodologies employed to perform in silico pertur-
bation. For each of them I will pick a representative whose metric I will evaluate
in Part III.

2.1 Gene Regulatory Networks

Gene regulatory network (GRN) inference methods are, among the ones presented,
the technique that most closely tries to adhere to the underlying biological reality.
A review of the most up-to-date methods can be found at [5].

These kind of methods attempt to recover the regulatory relationships between
genes, starting from all the possible gene-gene interactions and consecutively nar-
rowing it down through various kind of data. The rationale behind this strategy
that by using any single data type on its own we would incur in a lot of false
positives but not too much false negatives, so these data sources lend themselves
particularly well to this treatment. The vast majority of these methods makes use
of three different data sources: transcription factor (TF) binding motifs databases,
chromatin accessibility data (ATAC-seq), and lastly transcriptomic data, typically
scRNA-seq, so that different GRNs can be inferred depending on the cell type (or
rather cluster, usually).
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2.1.1 Dictys

Dictys [48] is a GRN inference method that makes ample use of probabilistic pro-
gramming, through the Pyro framework [10]. It follows the strategy of successive
filtering of possible TF-gene regulation as I’ve described above. It recovers a dy-
namic gene regulatory network and models the transcriptional activity through
the use of stochastic differential equations.

2.2 VAE-based

Methods based on variational autoencoders (VAEs, introduced in [25]). The way
they work is to encode every cell in a lower dimensional space, then to apply latent
space vector arithmetic to perturb them, and then decode them to get back to the
original data, usually transcriptomic in nature. Some notable examples are scGen
[32] and its evolution, CPA [31].

2.2.1 CPA

In order to learn how to predict perturbations the authors follow a procedure
reminiscent of generative adversarial network (GAN) training [19]. They learn
an embedding of the perturbed cells (through the encoder network) such that a
discriminator network is not able to tell which perturbation was it from. Then
they add the perturbation vector in the latent space, and lastly, with a decoder
network, they recover the original cells’ gene expression levels. In order to obtain
a double or triple perturbation the respective vectors are summed in the latent
space.

2.3 Transformer-based

Driven by the astounding transfer learning [38] and contextual understanding [46]
[6] capabilities of transformer based models, the computational biology community
is trying to replicate the revolution undergone by the natural language processing
field. A review on the progress in this respect can be found at [45].

2.3.1 scGPT

scGPT [15] is a transformer-based multi-purpose single cell transcriptomics model.
Despite what the name seems to suggest it is an encoder-only model (more akin
to BERT [16]) and not decoder-only like GPT [38].
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Every gene is a token, in which there’s and embedding of its id and its expres-
sion levels. There are also special tokens to indicate the perturbation conditions
and pathways.

Some tokens are then masked and the pre-training objective is the classic
masked language modelling.
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Chapter 3

Existing Evaluation Methods

Let us now examine how performance evaluation has been done in the literature.
First I will recall some useful concepts (namely some “correlation” measures),
then I will present the various methods used in the papers I have selected as
representative, or state-of-the-art.

3.1 Correlation Measures

3.1.1 R-squared

The coefficient of determination (or R2) is not a correlation measure, but it’s
similar enough to one for our purposes.

Definition 1 (R2) Let the sum of squares of residuals be

SSres
.
=

∑
i

(yi − f(xi))
2 (3.1)

Let the total sum of squares be

SStot
.
=

∑
i

(yi − ȳ)2 (3.2)

Then the coefficient of determination R2 is defined as

R2 .
= 1 − SSres

SStot

(3.3)
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3.1.2 Pearson Correlation

Definition 2 (Pearson Correlation) The Pearson correlation coefficient between
two (paired) random variables X and Y is defined as

ρX,Y
.
=

cov(X, Y )

σXσY

(3.4)

Where cov is the covariance, and σX is the standard deviation of the random
variable X, likewise for Y .

3.1.3 Spearman Correlation

This particular correlation measure has not been used as an evaluation metric for
in silico perturbation in the literature, as far as I know, but it has been shown
to be more robust than other methods when applied to biological data [14]. It is
introduced here since it is a correlation measure, it will then be tested in Part III.

Definition 3 (Spearman Correlation) The Spearman correlation coefficient be-
tween two random variables X and Y is defined as the Pearson correlation between
the ranks of the observation in the sample for the variables. Let us first define a
rank function R that takes a sample and returns the rank of the instance in the
sample, so for example a sample of 2.4, 2.7, 1.5 would become 2, 3, 1

We can then define Spearman correlation rs as

rs
.
= ρR(X),R(Y ) =

cov(R(X), R(Y ))

σR(X)σR(Y )

(3.5)

Where cov is the covariance, and σX is the standard deviation of the random
variable X, likewise for Y .

3.2 Methods in the Literature

3.2.1 Wang et al.

The method employed by the authors of Dictys [48], presented in Subsection 2.1.1,
is the use of Pearson correlation on the logFC of the average gene expression levels
before and after the perturbation compared to before and after the simulation.

3.2.2 Lotfollahi et al.

The authors of the CPA [31] model, presented in Subsection 2.2.1, use an R2 score
on the average gene expression levels between the predicted perturbed cells and
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the ground truth. They also do the same for the top 50 differentially expressed
genes (described in Subsection 7.2, they are basically the genes which change
more, either increasing or decreasing, therefore more informative for that particular
state). Moreover they also compute the R2 score for the variance of the gene
expression levels across the two population compared (of course the variance is
intra-population).

3.2.3 Cui et al.

The procedure followed by the authors of the scGPT [15] model presented in
Section 2.3.1 consists in computing the Pearson correlation on the average gene
expression levels between the predicted perturbation response and the actual one.
They additionally perform the same computation but restricting the genes over
which the Pearson correlation is computed to the top 20 differentially expressed
genes.
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Personal Contribution
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Chapter 4

Benchmarks

I argue that the fact that no two models have the same evaluation procedure
is suboptimal for the advancement of the field. For example one of the seminal
moments in deep learning was the boost in performance obtained by AlexNet in
the ImageNet benchmark [26]. This was definitive proof that deep architectures
combined with GPU was the winning paradigm (and as a matter of fact it has been
so until today). However the community was convinced of its validity so quickly
because they all competed with the same benchmark under the same metric. This
work is a first step in trying to replicate this with perturbation prediction models
instead of vision ones.

4.1 Components of a Benchmark

The three components of a benchmark are:

� Dataset

� Metric

� Evaluation procedure

Concerning the dataset, I will make use of Adamson & Norman’s 2016 perturb-seq
experiment [1] that will be described in more detail in Section 11. Of course the
choice of dataset is very important in the downstream analysis of the performances
that is made. Having a multiplexed perturbation study (i.e. one where couples or
triplets of perturbations are applied) is an apt choice, in my opinion, because it
allows us to ascertain whether a model is actually learning the intricate interplay
between perturbations or if it is only applying the results it “memorized” of any
given perturbation. The authors of [2] concur with me on this reasoning, and in
fact they employed a similar dataset: Norman 2019 perturb-seq [35].
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The selection of the most suitable metric is, of course, the main focus of this
work. To select the best among a number of candidate metrics I’ve devised the
spiking protocol described in Section 10.

A word should be spent on the evaluation procedure, which includes choices
like the train/test split of the data, among others. It is worth noting that a model
can be made to look better than it is by choosing “easy” test data, for example by
having it predict unseen cells but from known perturbations, as evidenced in [2].
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Chapter 5

Drawbacks of Existing Methods

All the methods mentioned earlier only take into account statistics computed on
the marginal distributions, that is the distribution over the expression levels of
one gene at a time. As a matter of fact most approaches only look at the average
expression of a gene across the cells, which is akin to having bulk data, so much
so that in some papers they refer to this processing as pseudo-bulk data.

To better illustrate this point we can look at Figure 5.1 in which a sample of
cells is represented: they only have two genes, X and Y. The plot is a heatmap of
the expression levels for every cell, and for every gene. The typical approach is to
consider the distribution of the read counts across the different genes: we compute
the probability that a given piece of RNA we sequenced belongs to a certain class
(e.g. gene X), as seen in Figure 5.2. This is basically what’s done in bulk and
pseudo-bulk data.

A different perspective, that up to now hasn’t had much traction in the bioin-
formatics community is considering the distribution of cells in the gene expression
levels space. This is what’s being illustrated in Figure 5.4. To do so we start from
the scatter plot of cells in said space, as shown in Figure 5.3, then we perform
Kernel Density Estimation (which will be further explained in Section 8) to obtain
the empirical (or estimated) probability distribution.
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Figure 5.1: Population of Cells

Figure 5.2: Distribution of Read Counts Across Genes
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Figure 5.3: Scatter Plot of Cells in the Gene Expression Space

Figure 5.4: Distribution of Cells in the Gene Expression Space (obtained with
KDE)
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Figure 5.5: Ground Truth

The claim I make with this work is that the way of evaluating models based
only on marginals (usually only the average, so even worse) leaves a lot of meat on
the table. By which I mean that some models, or more generally some populations,
cannot be distinguished through the conventional approach.

Let’s take a look at an artificial dataset which illustrates an extreme case in
which the usual metrics fail. Take the three populations in Figures 5.5, 5.6, 5.7:
the first (Figure 5.5) is the actual result of the perturbation. Then we have two
competing models: A (Figure 5.6) and B (Figure 5.7).

It’s clear that model B more closely resembles the ground truth, however since
all these distributions have the same marginals any approach of the pseudo-bulk
kind would be unable to tell them apart and would say that model A is as good
as model B.
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Figure 5.6: Model A

Figure 5.7: Model B
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Chapter 6

Proposed Evaluation Method

I argued earlier that using only marginals is not enough to distinguish between
some populations when we want to ascertain which is closer to a reference popu-
lation. Or, in the case of competing models, which among them is most similar to
the actual perturbed population.

To take full advantage of the nature of single cell transcriptomic data my
proposal is as follows:

� Reduce the dimensionality of the data

� Estimate joint probability density function

� Measure the “distance” between distributions

Dimensionality reduction techniques will be discussed in Chapter 7. Then,
the estimation method employed will be described in Chapter 8. Lastly, various
“distances” between distributions will be presented in Chapter 9.

Let’s work backwards to clarify some points regarding this approach. Our
end goal is having a measure that quantifies how similar some populations are,
thus allowing to say which among various candidates is the closest to a reference
population. We do that on the joint probability distribution in order to maximize
the information we are using. Since we want to measure the distance between
distributions we first need to obtain an estimate of the population distribution.
However there is an impediment to utilizing distances in higher dimensions, it is
called the curse of dimensionality. This is the reason behind the first step of the
procedure.

6.1 Curse of Dimensionality

Let’s take a closer look into the phenomenon known as curse of dimensionality.
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It is a multi-faceted characteristic of higher dimensional data and affects the
effectiveness of various kind of manipulations we can perform on it.

The most noticeable problem is the sparsity of data. If we are given a fixed
number of data points and we increase the dimensions we use to describe them it’s
obvious that the concentration of data points over a “volume” will decrease quite
rapidly.

Another issue is the complexity of the algorithms we use on the data, which
depend on the dimensionality of it, usually in a linear fashion.

Lastly, and most crucially for our purposes, distances lose meaning in high
dimensional spaces. For example it has been shown that under certain assumptions
the distance between a point and all other points in a high dimensional dataset
tends to the same value as the dimensionality grows [9].
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Chapter 7

Dimensionality Reduction

To try to avoid the problems described earlier we will resort to various dimen-
sionality reduction techniques: linear feature extraction in Section 7.1, and three
different feature selection techniques quite established in transcriptomics in Sec-
tions 7.2, 7.3, 7.4.

7.1 Principal Components Analysis

Principal Components Analysis (PCA) is a linear dimensionality reduction tech-
nique. It was invented in 1901 by Karl Pearson [36], maybe the name rings a bell
(interestingly he did not invent the Pearson correlation though, it was Auguste
Bravais [12]).

It can be viewed in different ways, for example as the best fitting ellipsoid [28]
to our data points. Alternatively we can view PCA as the iterated procedure of
finding orthogonal directions that minimize the reconstruction error if we project
data onto the subspace they define. This ties in with Eckart-Young theorem [17]
and in fact we can also see PCA as equivalent to performing a singular value
decomposition (SVD) on the data matrix.

7.2 Differentially Expressed Genes

As stated in [23], differential gene expression analysis “attempts to infer genes
that are statistically significantly over- or under-expressed between any compared
groups (commonly between healthy and condition per cell type)”.

There are various approaches to perform it but they all come down to quanti-
fying the magnitude of the change (either positive or negative) in a given gene’s
expression. Also the significance of said variation is to be estimated. By jointly
considering these two quantities we can recover the most differentially expressed
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genes. We will use the routines in [52], using them in the way described in [31], in
order to make the results as close as possible to the reference method.

Selecting the 50 (as we will do) or 20 most differentially expressed genes (DEG)
is a very decisive way of performing feature selection considering the starting point
of circa 20,000 genes: it is a reduction of 2 or 3 orders of magnitude in the number
of features.

7.3 Highly Expressed Genes

Another feature selection technique quite often used in systems biology is the
choice of highly expressed genes (HEG). This is the methodology employed in [2]
for example.

To obtain the most highly expressed genes we first normalize the counts for
every cell, so as to make every cell contribute equally to our considerations. Then
we compute the average value of the normalized expression across the different
cells, for every gene. We then rank them according to their average normalized
expression levels and take the top k, where k is typically a thousand.

7.4 Highly Variable Genes

The selection of highly variable genes (HVG) is a technique first introduced in [41].
There are different flavours but we will stick with the original one in this work.

We start by calculating the average expression levels of the genes and their
dispersion (coefficient of variation). Then we put the genes in 20 bins according
to their average expression levels. Within each bin we compute the z-score for the
dispersion measure (which is the coefficient of variation). This allows us to identify,
within each bins, the genes that varied the most. Both computing the coefficient
of variation instead of the standard deviation, and also performing the selection
within bins of similarly expressed genes, help in addressing the heteroscedasticity
of the genes’ expression distribution.
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Chapter 8

Kernel Density Estimation

Kernel density estimation, or KDE for short, is a statistical technique used to
obtain an estimate of a continuous probability density from a finite amount of
samples [44].

Definition 4 (Kernel Density Estimate) Given a non-negative kernel func-
tion K, a bandwidth parameter h > 0, and a set of points xi a kernel density
estimator f̂ is defined as

f̂h(x)
.
=

1

n

∑
i

Kh(x− xi) =
1

hn

∑
i

K

(
x− xi

h

)
(8.1)

The bandwidth parameter determines how close the kernel density estimate is
to the actual data in quite a drastic manner, even more so than the choice of kernel
function (which will be gaussian in this work).

To choose the best value of the bandwidth we will resort the so called Scott’s
rule [43], and so we will set the bandwidth h to be

h = n− 1
d+4

where d is the number of dimensions of the data and n is the amount of data
points. This is by no means assured to be optimal, but there’s no agreed upon
“best” method in the literature.
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Chapter 9

Quantifying Similarity Between
Distributions

9.1 Kullback-Leibler Divergence

Kullback-Leibler divergence, or relative entropy, is an information theoretical quan-
tity that can be used to measure the distance between two distributions, first
described in [29].

Let us take a step back and introduce some related concepts first in order to
give a better intuitive understanding of what Kullback-Leibler (KL) divergence is.
First we will define some quantities only considering a single distribution, then
we will adapt these concepts to confront different ones. We will consider discrete
random variables at first, then extend the concepts to the continuous case.

9.1.1 Surprisal

We first try to define the information contained in an event E. We call this quantity
self-information, or surprisal, S(E).

We would like it to have the following properties:

� S(E) is monotonically decreasing with the probability of E. Meaning that
the more E is likely, the less information it can possess.

� S(E) = 0 if, and only if, the probability associated with E is one. That is to
say, if an event always occurs then it cannot communicate any information.

� S(AB) = S(A) +S(B) or, the information of two independent events A and
B occurring together is the sum of the information of the event A and event
B.
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These desiderata are arguably quite reasonable, and an allow us to define an
actionable information quantity. They also align quite closely to what we would
intuitively call the surprisal, or how much we would be surprised by an event
occurring, given that we know its chance of happening.

Definition 5 (Surprisal) Let E be an event and p(E) the probability of said
event, we define a surprisal quantity S(E) associated with that event occurring
as

S(E)
.
= log

(
1

p(E)

)
(9.1)

It’s easy to see that this satisfies our desiderata, as a matter of fact it can be shown
that the family of functions given by the logarithm of the inverse of the probability
of the event, with as parameter the base of the logarithm, is the only family of
functions that satisfies our desiderata.

9.1.2 Entropy

Now we use the concept of surprisal we defined above and apply it to a random
variable. Namely we take its expected value, which is roughly the average of the
surprisal across all the events in the sample space, weighted by their chance of
occurring.

Definition 6 (Shannon Entropy) Let X be a random variable, we define the
Shannon Entropy associated with it as the expected value of the surprisal of the
events from its sample space.

H(X)
.
= E[S(X)] (9.2)

9.1.3 Cross-Entropy

Now we finally introduce a second distribution, we basically compute the Shannon
entropy of distribution Q but using the expected value under distribution P’s
probabilities. More formally

Definition 7 (Cross Entropy) Let p(x) and q(x) be two probability density func-
tions associated with the random variables P and Q respectively, we define the
cross-entropy H(P, Q) as

H(P,Q)
.
= EP [S(Q)] =

∑
x

p(x) log

(
1

q(x)

)
(9.3)
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This quantity tells us how surprised we will be by employing distribution Q
as a model for distribution P. The drawback is that it does not take into account
how surprised we would be if we used P as a model for distribution P, this last
quantity being the upper limit for the goodness of a model (i.e. lower limit on
expected surprisal) of course, and corresponding to the concept of entropy. We
are now ready to introduce the Kullback-Leibler divergence.

9.1.4 KL Divergence

Definition 8 (Kullback-Leibler Divergence) Let p(x) and q(x) be two proba-
bility density functions associated with the random variables P and Q respectively,
we define the KL divergence between P and Q (order matters) DKL(P ||Q) to be

DKL(P ||Q)
.
=

∫
x∈Rd

p(x) log

(
p(x)

q(x)

)
dx (9.4)

It is easy to see that this quantity is equivalent to the cross-entropy between
P and Q minus the entropy of distribution P.

9.2 Jensen-Renyi Divergence

This divergence is closely related to the more established Jensen-Shannon diver-
gence, it is basically its equivalent but using Renyi entropy instead of Shannon
entropy. There exists a more general version for an arbitrary number of distribu-
tions but we will limit ourselves to the case where we confront only two.

Definition 9 (Jensen-Renyi Divergence) Let P and Q be two random vari-
ables, Hα be the Renyi entropy of order α and πP and πQ two postive numbers
summing up to one, then the Jensen-Renyi divergence JRπ,α(P,Q) is defined as

JRπ,α(P,Q)
.
= Hα(πPP + πQQ) − πPHα(P ) − πQHα(Q) (9.5)

9.2.1 Renyi Entropy

Renyi entropy can be seen as a generalization of Shannon entropy.

Definition 10 (Renyi Entropy) Given a random variable X and for 0 < α <
∞ and α ̸= 1 it is defined as follows

Hα(X)
.
=

1

1 − α
log

∫
x∈Rd

fα(x) dx (9.6)

It can be shown that the limit of for α → 1 of Renyi entropy is Shannon entropy
[13].
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9.2.2 Closed Form for Mixtures of Gaussians

We will restrict the derivations for the case where all the centroids’ associated
gaussian have equal variance-covariance matrix (of the form σ2I), and Jensen-
Renyi is such that πP = πQ = 1

2
. The same techniques shown here can be used

to obtain more general formulas but since they will not be employed in the rest
of this work the ones presented will suffice. The calculations closely follow the
procedure employed in [47].

Let V be a gaussian mixture such that

fV (x) =
∑
i

ωiG(x− vi, σ
2I) (9.7)

where G is the standard multivariate gaussian probability density function. Since
we want the gaussian mixture to be a probability density function it’s clear that
the ωi will be such that

∑
i ωi = 1.

We can see that the Renyi Entropy of order 2 has closed form for such a
distribution.

H2(V ) = − log

∫
Rd

fV (x)2 dx =

− log
∑
i

∑
j

∫
Rd

ωiωjG(x− vi, σ
2I)G(x− vj, σ

2I) dx =

− log
∑
i

∑
j

ωiωjG(vi − vj, 2σ
2I)

(9.8)

Where we swapped the summations with the integral operations between the
first and second line and performed square completion between the probability
density functions of the gaussian distributions to go from the second line to the
end result.

Now if we consider that a convex combination of probability density functions
which are mixture of gaussians is itself a probability density function (since it’s
a convex combination) of a mixture of gaussians (since it’s the sum of gaussians
pdfs) then we can easily obtain a closed form for the Jensen-Renyi divergence.

JRπ,2(P,Q) = − log
1

M2

M∑
i

M∑
j

G(ui − uj, 2σ
2I)

+
KP

M
log

1

K2
P

KP∑
i

KP∑
j

G(vi − vj, 2σ
2I)

+
KQ

M
log

1

K2
Q

KQ∑
i

KQ∑
j

G(wi − wj, 2σ
2I)

(9.9)
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Where KP and KQ are the number of gaussians in P and in Q respectively and
M = KP + KQ. The vi and wi are respectively the centroids of P or Q and ui are
the centroids of the distribution obtained by averaging P and Q.

9.3 Maximum Mean Discrepancy

9.3.1 Reproducing Kernel Hilbert Space

A reproducing kernel Hilbert space (RKHS) is an Hilbert space on which we can
define a kernel function that satisfies Mercer’s condition, and also possesses the
reproducing property [27].

We will now untangle this definition and clarify every component.
An Hilbert space is a vector space that may be infinite-dimensional and is

equipped with an inner product. It is also a complete metric space if the inner
product is considered as a distance.

A kernel function is a positive semidefinite function of two points that returns
a real value in our case.

The reproducing property says that the pointwise evaluation of a function, that
belongs to the Hilbert space we are referring to, can be done by taking the inner
product of the reproducing kernel where one of its arguments is fixed to the point
we want to evaluate the function in.

An RKHS therefore enables us to compute the value of a function at various
points without reconstructing the function itself. It comes in especially handy
since it allows us to avoid estimating the probability density of the data.

9.3.2 MMD

Maximum mean discrepancy (MMD), introduced in [21]) is an approach to com-
pute a distance between distributions by leveraging the qualities of a RKHS.

Definition 11 (MMD) Given two populations X and Y with samples drawn
from them respectively xi, of cardinality m, and yi, of cardinality n we can de-
fine the maximum mean discrepancy between them, according to kernel function k,
as

MMDk(X, Y )
.
=

1

m(m− 1)

m∑
i

m∑
j ̸=i

k(xi, xj) +
1

n(n− 1)

n∑
i

n∑
j ̸=i

k(yi, yj)

− 2

mn

m∑
i

n∑
j

k(xi, yj)

(9.10)
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A thing worth mentioning is the very similar functional form of the MMD
distance compared to Jensen-Renyi divergence.

9.4 Wasserstein Distance

Wasserstein distance, also known as Earth Mover’s distance, is a metric that lever-
ages concepts from optimal transport theory. Unlike other “distances” I’ve intro-
duced before, this one is an actual metric (in the mathematical sense), i.e. it
satisfies the triangle inequality, is symmetric, and is zero only if the objects con-
fronted are the same.

The distance is obtained by solving an optimization problem. The objective to
be minimized is the total cost of a transport plan, under the constraint that said
transport plan is such that it morphs the first distribution into the second.

A transport plan is basically a mapping that tells us how much probability has
to be moved from any given category (in the case of discrete distributions) to any
other in order to obtain the second distribution by starting from the first.

It is called Earth Mover’s distance because the first probability distribution
can be interpreted as a set of mounds of earth, and the second as a set of holes,
and thus the transport plan can be interpreted as the movements of earth from
the mounds to the holes necessary to obtain a level field.

A thorough discussion on this distance can be found at [37] along with the
discrete and continuous proper formulations.

9.4.1 Sinkhorn Distance

Sinkhorn distance is a version of Wasserstein distance where the objective func-
tion to be minimized is not only the cost of the transport plan, but it also has an
entropic regularization term, that is, a penalty for having too complex a plan. It
was introduced in [4] and its main advantage is that we can compute it in near-
linear time, as opposed to the quadratic time necessary for regular Wasserstein
distance. Moreover Wasserstein distance is the limit case of Sinkhorn as we di-
minish the regularization term in the objective function, so we can obtain quite
similar results.
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Part III

Experimental Results
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Chapter 10

Study Design

Now we are to answer quite a thorny question: how do we evaluate a method of
evaluation? It seems like a case of a dog eating his own tail.

If, under a useful metric, a simulation is very close to the actual perturbation,
then we can say that the model used to simulate it is good. When we compare
various models the one closer to the actual perturbation is considered to be the
best, of course. How can we say that a metric is useful? We need a way to evaluate
metrics.

To break this impasse we have to make some assumptions, that hopefully are
justified. We will assume that the more a metric is able to tell apart distributions
that are similar (but not the same), the more useful it is. This seems like a
reasonable assumption, and assuming the opposite would be clearly nonsense. We
have already mentioned a case where a metric is not able to tell apart distributions
in Section 5.

However the example could be construed as unnatural, or not representative of
what happens in actual biological data. We will then make another assumption:
that the spiking protocol that creates similar distributions (that I will present
shortly) is representative of different perturbations occurring in cell populations.

10.1 Spiking Protocol

The spiking protocol is as follows: we start from two populations A and B. These
populations are perturbed states of the same cell line. Then we draw a sample from
population A that we will call “sub A”, composed exclusively by cells belonging
to population A. We also create sample “ref A” in much the same manner. To
create the “spiked” sample instead we take a certain percentage from population
B and another percentage from population A, this last percentage will be called
spike percentage. A crucial point is any given cell belongs to either one of the
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Figure 10.1: Diagram of the spiking protocol

three samples, that is to say the samples have no cell in common. Also, all the
samples have the same exact number of cells.

At spike percentage 0% the various samples will be just subsamples of the
respective populations A (for sub A and ref A) and B (for the spiked sample). At
spike percentage 100% the three samples will all be subsamples (with no overlap
though!) drawn from population A.

A diagram can be seen in Figure 10.1. The vertical bars represent the cells
belonging to the various populations. In the case of the image we can see that the
spike percentage is 80% for example.

Once we have sub A and the spiked sample we confront them with the reference
sample raf A, let’s say that the metric is called τ , then we compute τ(subA, refA)
and τ(spiked, refA). We expect the distance between sub A and the reference
sample ref A to be less than the distance between the spiked sample and the
reference. This is by construction, so we have good reason to believe it to be true.

This allows us to assign an accuracy score to a metric by repeating this process
with different samples. Of course as the spike percentage increases we expect any
metric to become less able to tell the samples apart, and, in the extreme case of
spike percentage 100%, we expect the accuracy to be around 50%.

We can see a plot of the accuracy as the spike percentage increases (average
across all perturbation couples) with 95% confidence bands in Figure 10.2. We
see that, as expected, as the spike percentage goes to 100% the accuracy drops to
50%.

We will focus on the accuracy when the spike percentage is 80% in the following.
This allows us to perform more repeated tries and obtain higher statistical power
of the hypothesis tests we will employ. We will also have a single number on
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Figure 10.2: Plot of the accuracy of various metrics
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which to perform hypothesis testing, which is more manageable than multiple
data points per run. I believe that this choice is warranted by the shape of these
curves we see in this example and from the considerations that there must be a
fixed point at 100% spike and 50% accuracy for every metric (also it seems that at
0% spike percentage the metrics reach almost 100% accuracy), moreover it is not
unreasonable to assume these curves to be monotonically non-increasing (and in
fact they seem to be so), which renders more sensible to test their behaviour only
at one point close to the fixed point.
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Chapter 11

Dataset

The dataset I’ve elected to use is Adamson & Norman’s 2016 perturb-seq exper-
iment [1]. As I’ve already mentioned in Section 4.1 this dataset is particularly
suited for our purposes since it is a multiplexed perturbation study: it has single
perturbations, couples of those perturbations, and also triplets. This enables us to
see whether the models are learning how the perturbations interact, beyond the
additive effect we would obtain with a linear model.

The identifier Gene Expression Omnibus [18] [8] code for the dataset is GSE90546.
More specifically we will only use the samples coming from the epistasis experi-
ment, with identifier GSM2406677.

The perturbation in this subset of the Adamson & Norman’s dataset are the
following:

� Single Perturbations

– 3x neg ctrl pMJ144-1

– 3x neg ctrl pMJ144-2

– ATF6 only pMJ145

– IRE1 only pMJ148

– PERK only pMJ146

� Double Perturbations

– ATF6 IRE1 pMJ152

– ATF6 PERK pMJ150

– PERK IRE1 pMJ154

� Triple Perturbations

– ATF6 PERK IRE1 pMJ158
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Chapter 12

Results

Here we will confront different metrics’ accuracies at 80% spike. The accuracy
refers to the amount of times the metric respects the following inequality

τ(subA, refA) < τ(subA, spiked)

We’ve mentioned in Section 10.1 how it makes sense to assume subA and refA
to be “closer” than subA and the spiked sample. For this to be true the various
correlation metrics are made to resemble a distance by taking τ = 1 − ρ where ρ
is the correlation.

We will randomly draw a pair of perturbation and confront the various metrics
on the same samples, in order to have a ceteris paribus condition and therefore
obtain some paired statistics. The procedure is repeated one thousand times.

Moreover, for every pair of metrics, we will test the hypothesis that the first is
worst than the second using Wilcoxon’s signed-rank test on the difference of the
paired statistics [51].

We basically test whether the distribution given by the difference of the “cor-
rectness” (i.e. 1 if correct and 0 if not, for every random draw and for every
metric) is symmetric around the origin. The test will of course be one-sided, so
the null hypothesis is that the metrics are equal or the second is superior to the
first, and the alternative is that the first is worse than the second (i.e. the tested
distribution’s average is greater than zero).

12.1 Marginal Metrics

Let us start with the metrics that work only on marginals.
We obtain the average accuracy of the metrics, displayed in Table 12.1, from

the repeated paired statistics.
The uncorrected results of the Wilcoxon test are shown in Figure 12.1.
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Method ALL DEG 50 HEG 1000 HVG 1000 PCA 7
COS 86.49% 87.41% 86.02% 90.27% 64.32%
L2 74.36% 83.17% 75.98% 86.18% 72.43%

PEARS 86.72% 86.87% 85.17% 90.42% 62.70%
R2 74.29% 83.24% 76.06% 86.10% 72.36%

SPEAR 51.20% 75.60% 74.05% 55.29% 58.84%

Table 12.1: Accuracies of marginal metrics

Figure 12.1: Uncorrected Wilcoxon test results
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Method ALL DEG 50 HEG 1000 HVG 1000 PCA 7
JR - 49.71% - - 53.57%
KL - 49.81% - - 83.20%

MMD 51.93% 72.10% 51.83% 57.92% 52.12%
NRG 76.54% 86.87% 76.93% 88.99% 79.25%

PEARS 89.58% 88.61% 91.70% 91.99% 64.86%
R2 76.16% 85.33% 73.75% 88.22% 73.55%

Table 12.2: Accuracies of marginal metrics

However, since we are performing multiple comparisons, we know these p-values
will not reflect the actual probability of rejecting the null hypothesis when it is
true on all the comparisons simultaneously. We therefore resort to Bonferroni’s
correction [11]. The results of the test after applying it are reported in Figure
12.2, where I’ve masked the non-significant ones at a 5% overall significance.

We can see that (except for Spearman correlation) the most effective prepro-
cessing procedure was the selction of highly variable genes, followed by differen-
tially expressed genes, then highly expressed genes and lastly PCA. The exception
given by Spearman makes sense if we consider how exactly the highly variable
genes are extracted, since we are “forcing” some lowly expressed genes to be in the
top thousand chosen (by means of the bins) in those genes it’s likely that rank has
little to no significance, and therefore Spearman’s correlation is very noisy with
this preprocessing procedure.

Concerning the metrics instead we clearly see that Pearson and Cosine simi-
larity behave very similarly, as well as R2 and L2. This is by no means a surprise
given their very functionally similar form. The clear winners of this contest are
Pearson and Cosine similarity.

12.2 Joint Distribution Metrics

We now run the same procedure with two representatives of the marginal met-
rics: R2 and Pearson. We compare them with the metric that work in the space
of genes’ expression levels on the joint probability distribution: Kullback-Leibler
divergence (KL), Jensen-Renyi divergence (JR), maximum mean discrepancy with
gaussian kernel (MMD), energy distance (NRG) and Sinkhorn distance (SINK).
The accuracies are reported in Table 12.2. The uncorrected Wilcoxon tests are in
Figure 12.3 and the corrected ones are in Figure 12.4.

As we can see none of the metrics that work on the joint probability distribution
are better than Pearson correlation. This could be due to the difficulty in esti-
mating the probability density from so few data points in such a high-dimensional
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Figure 12.2: Bonferroni corrected and masked Wilcoxon test results, dark means
significant
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Figure 12.3: Uncorrected Wilcoxon test results for joint distribution metrics

spaces. The most effective seems to be the Energy distance, followed by maximum
mean discrepancy and the least effective is Jensen-Renyi divergence.

I argue that this could be due to the fact that the Energy distance is computed
on a simple norm, whereas MMD is a squared norm and JR on a squared norm un-
der a logarithm. My hypothesis is that this exacerbates the curse of dimensionality
problem I’ve mentioned in Section 6.1.

The Kullback-Leibler divergence instead is even more peculiar: it is the worst
performing one with the top 50 differentially expressed genes (tied with JR diver-
gence) but it is also the best performing one when we apply PCA as the prepro-
cessing step. This, again, could be due to the curse of dimensionality problem and
the scarce number of the data points.
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Figure 12.4: Bonferroni corrected and masked Wilcoxon test results, dark means
significant
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Chapter 13

Discussion

Let us summarize the contents of this manuscript. First I briefly gave a primer
on the scientific endeavour of understanding the intricate genetic machinery inside
the cell. I also gave a cursory view on the need and utility of in silico perturba-
tion methods. Then I argued for the necessity of an agreed upon benchmark on
which to have the models compete, which, as evidenced by a couple of very recent
publications [53] [2], is something that is being acknowledged by the community.

Then I set out to answer the question of how to pick the best metric, and
I proposed the spiking protocol which is, in my opinion, a satisfactory answer.
Through the extensive experimentations performed on the various metrics and
preprocessing methods the clear winners were: Cosine similarity, or Pearson cor-
relation, as the metric, and selection of the top 1,000 most highly variable genes
as the dimensionality reduction technique, among the ones tested of course.

Lastly, I highlighted some criticalities of pseudo-bulk evaluation and tried to
come up with a method that takes full advantage of the nature of single cell data.
All of the novel methods I proposed relied on estimating the probability density
of the single cells, either directly or through the kernel trick. Sadly, none of them
worked.

It seems like the problem is the sparsity of cells in the high dimensional spaces
thus making the probability distribution estimation hard. Therefore a possibility
worth mentioning could be to map the single cells (with optimal transport) to a
corresponding perturbed equivalent. This could circumvent the problem of the
lack of before and after of the same cell, by having a virtual “after” for every
“before” cell.

It is maybe a bit premature to go beyond pseudo-bulk evaluation right now,
also considering that the current models cannot manage to saturate the existing
metrics, as evidenced by the paper mentioned above. In any case, I maintain the
validity of this avenue of inquiry for the future and I hope to be able to continue
this work.

47



Bibliography

[1] Britt Adamson, Thomas M. Norman, Marco Jost, Min Y. Cho, James K.
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