Master of Science in Computer Engineering

Master Degree Thesis

Validation and Verification of
Infrastructure as Code

Supervisors
prof. Fulvio Valenza
prof. Guido Marchetto
prof. David Palma, NTNU
Candidate
Francesco SANTORO

Academic Year 2023-2024

Abstract

In recent years, the development of technologies such as Infrastructure
as Code (IaC) and Policy as Code (PaC) has transformed modern In-
formation and Communication Technology infrastructures into more
software-based systems. This evolution has enabled faster deployment,
scalability, and simplified network management. Moreover, the growing
number of Infrastructure as Code (IaC)-based solutions has created a
diverse landscape, necessitating that each organization determine the
most suitable solution for its needs while ensuring policy compliance
before provisioning and deploying the infrastructure.

PaC involves codifying security and compliance policies into executable
code. By integrating policies directly into the infrastructure code, or-
ganizations can ensure that security and compliance requirements are
automatically enforced, thereby reducing the risk of human error and
enhancing overall governance. However, various PaC solutions tailor pol-
icy compliance checking to each specific IaC and Infrastructure Provider,
leading to significant redundancy and complicating code comprehension
for Security and Compliance teams.

In this thesis, we define and validate an Agnostic Policy as Code (APaC)
tool, where policy rules are checked regardless of the infrastructure code
platforms. We demonstrate the possible use cases through a Proof of
Concept (PoC) using existing IaC tools and compare the results with
widespread PaC tools, highlighting the benefits of an agnostic approach.
Our analysis confirms the potential of abstracting policy rules across any
TaC tool or infrastructure provider, thereby aiding various stakeholders
in creating simpler and less redundant policies.

iii

Preface

This thesis concludes my 2-year master’s program in Computer Engi-
neering, Computer Networks and Cloud Computing at Politecnico di
Torino. In particular, the research presented herein has been conducted
at Norwegian University of Science and Technology (NTNU) during my
10-month Erasmus+ program. The thesis has been supervised by Asso-
ciate Professor David Palma from NTNU and Professors Fulvio Valenza
and Guido Marchetto from Politecnico di Torino.

This project presented a significant challenge due to my initial lack of
experience with the primary tools involved. This difficulty provided an
opportunity to become familiar with unexplored tools and to acquire
knowledge on new and highly relevant topics within the current landscape
of Cloud Computing.

Acknowledgements

This thesis is a result of one of my biggest academic challenge so far, and
it would not have been possible without the support I received over the
past five years, including the initial three years of my bachelor’s degree.
To all those who have supported me, I extend my deepest gratitude.

Firstly, I would like to thank my supervisor, David Palma, for his patience,
guidance and precious feedback. He encouraged me to fully utilize my
skills and strive for excellence.

I wish to extend my gratitude to my home university, Politecnico di
Torino, for granting me the opportunity to undertake a 10-month exchange
program in Trondheim at NTNU. This experience has been invaluable to
me.

I would also like to acknowledge my friends in Torino, Alliste, and
Trondheim, who have stood by me through both difficult and joyful times.
Special thanks also go to Edisu Piemonte for providing the financial
support that enabled me to pursue my studies over the past five years.

Lastly, my heartfelt gratitude goes to my family -to my father Alessandro,
my mother Loredana, my sister Emanuela, and my brother Simone- for
their unwavering support and love.

Contents

List of Figures

List of Tables

List of Algorithms

List of Acronyms

1 Introduction

1.1
1.2
1.3
1.4

Motivation
Research questions Lo
Thesis structure L L L
Ethics and Sustainability Aspects of the Thesis

2 Background

2.1
2.2

2.3

2.4

2.5

2.6

DevOps o
Infrastructure as Code
2.2.1 Different kinds of Infrastructure as Code tools
Infrastructure as Code’s current landscape
2.3.1 Terraform
2.3.2 Ansible
2.3.3 Othertools
Infrastructure Providers
24.1 OpenStack o
242 Docker.
Policy as Code
25.1 Whatisapolicy?
2.5.2 Challenges with traditional policy enforcement
2.5.3 Why use Policy as Code?
254 Policyengine o
2.5.5 Why is policy decoupling important?
Discussion

ix

xiii

. a%

xvii

xXix

B~ s W o= -

O IEN N

3 State of the Art
3.1 The Cloud Native Landscape
3.2 Policy as Code Solutions
321 Checkov
3.2.2 Open Policy Agent and Rego
3.2.3 Kics . ..o
3.3 Summary and Open Issues.

4 Methodology
4.1 Research Design
4.2 Domain-agnostic Policy as Code Development

5 Domain-agnostic Policy as Code
5.1 APaC’s architecture
5.2 The choice of the tools
5.3 Implementation
5.3.1 Definition of a taxonomy
5.3.2 Architecture implementation
5.4 Validation and Evaluation
5.4.1 Infrastructure provisioning and deployment
5.4.2 Parser definition Lo oL
5.4.3 Definition of policy rules and compliance checking
5.5 SUMINATY . . .« v v v et e e e e e e e e
5.5.1 Results
5.5.2 APaC compared to Kics
5.5.3 Finalremarkso oo

6 Discussion and Conclusion
6.1 Discussion
6.1.1 Thescopeof thethesis.
6.1.2 Limitations and future research
6.2 Summary of Findings,

Bibliography
Appendix

A In-depth Domain-agnostic Policy as Code
A.1 Project structure
A.2 Infrastructure code details
A.2.1 Terraform’s infrastructure code
A.2.2 Ansible’s infrastructure code
A3 APaC, Parser

23
23
24
24
26
29
34

37
37
38

41
41
42
43
43
44
45
46
47
47
50
50
51
52

53
53
53
55
55

57

65
65
66
66
71
74

A.4 How to detect whether a server is accessible from outside

A.5 Open Policy Agent’s running commands

List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2

4.1
4.2

5.1
5.2
5.3

Policy as Code (PaC) workflow, adapted from [15] 3
Development and Operations (DevOps) Stakeholders: different actors,
dealing with different aspects of the DevOps paradigm, work together to

shorten the system developments lifecycle. Adapted from [19] 5
Terraform workflow, adapted from [35] 13
Ansible architecture [36] oL 15
Policy as Code (PaC) policy decoupling, adapted from [15] 21
Open Policy Agent (OPA) architecture [62] 27
Kics architecture [81] 31
The research design cycle, adapted from [98] 39
Domain-agnostic PaC development 40
Architecture Agnostic Policy as Code (APaC) 42
Taxonomy 44
Infrastructure proposed for the PoC of APaC 46

xiii

List of Tables

3.1 Policy as Code tools comparison

XV

List of Algorithms

0 O U i W N

10
11
12
13

14
15
16
17
18

Playbook example for Ansibleo 15
Inventory example for Ansible oo 15
Checkov policy compliance example. HTTP port must not be open. 26
Rego file. Adapted from [77].o 26
JSON file representing a simple network infrastructure 28
Rego file checking the policies defined above. Adapted from [62] . . . 29
Results of policy checking from the Rego file. 30
This Terraform code defines two Amazon Web Services (AWS) security

GTOUP TESOULCES . . .« « v o v v v e et e e e e e e 32

Rego file checking the configuration of AWS security groups to ensure
HTTP port isnot exposed 33
JSON object example representing metadata of a Kics’s security policy 34

This JSON file represents the outcome from the Parser execution . . 48
Rego file describing the policy rules previously defined 49
JSON file representing the policy decision from Open Policy Agent

(OPA) . . 50
Terraform file. It deploys the infrastructure on OpenStack 69
Terraform file. It deploys the infrastructure on Docker 71
Ansible file. It deploys the infrastructure on OpenStack 74
Ansible file. It deploys the infrastructure on Docker 75
Parser from a IaC file into a generic JSON 85

xXvii

List of Acronyms

APaC Agnostic Policy as Code.
API Application Programming Interface.

AWS Amazon Web Services.
BGP Border Gateway Protocol.

CD Continuous Delivery.

CI Continuous Integration.

CI/CD Continuous Integration/Continuous Delivery.
CLI Command Line Interface.

CNCF Cloud Native Computing Foundation.

DevOps Development and Operations.

DSL Domain-Specific Language.
EC2 Elastic Compute Cloud.
GCP Google Cloud Platform.

HCL HashiCorp Configuration Language.
HTML HyperText Markup Language.
HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

TIaaS Infrastructure as a Service.
IaC Infrastructure as Code.

IDE Integrated Development Environment.

Xix

IDS/IPS Intrusion Detection/Prevention Systems.
INT Initialization.
IP Internet Protocol.

IT Information Technology.
JSON JavaScript Object Notation.
K8s Kubernetes.

NAT Network Address Translation.

NTNU Norwegian University of Science and Technology.

OPA Open Policy Agent.

OS Operating System.

PaC Policy as Code.
PE Policy Engine.

PoC Proof of Concept.

SDG Sustainable Development Goal.
SoA State of the Art.

SSH Secure Shell.
TDD Test-driven development.
UI User interface.

VCS Version Control System.
VM Virtual Machine.
VPC Virtual Private Cloud.

VPN Virtual Private Network.

YAML YAML Ain’t Markup Language.

Chapter 1

Introduction

This introductory chapter outlines the motivation behind the research presented
in this thesis. It introduces the current landscape of Development and Operations
(DevOps), Infrastructure as Code (IaC), and Policy as Code (PaC), and evaluates
the primary issues that form the foundation for the subsequent work. The main
research questions guiding this thesis are presented, emphasizing the key topics to
be analyzed. Each chapter is briefly summarized, providing an overview of their
content. Lastly, the chapter addresses the ethical and sustainability considerations
of this thesis, discussing the main concerns related to our work and the DevOps field
in general.

1.1 Motivation

IaC is the DevOps tactic of managing and provisioning infrastructure through machine
readable definition files, rather than physical hardware configuration or interactive
configuration tools [1]. The idea behind the TaC approach is that both writing
and executing code in order to define, deploy and update the infrastructure [2].
Furthermore, IaC has become a crucial part of cloud computing. It frees professionals
from performing manual, error-prone tasks; plus, it reduces costs and improves
efficiency at all stages of the DevOps lifecycle [3].

Currently, several tools (such as Terraform [4], Ansible [5], Chef [6], Puppet [7],
Packer [8], Cloudify [9]) and providers (such as Amazon Web Services (AWS) [10],
Google Cloud Platform (GCP) [11], Azure [12], OpenStack [13], Docker [14]) support
the principles of IaC. Some of these tools and providers address different aspects of
TaC technology, while others focus on similar areas, as detailed in chapter 2. This
diversity offers significant benefits to the IaC community by providing a wide range
of tailored choices for organizations. However, it also complicates understanding and
adoption, as the increasing number of available solutions makes selecting the most
suitable one for each organization a complex task.

Automation with TaC and similar methods can enhance cost efficiency, productivity,
and security, especially for organizations implementing hybrid cloud models. By

2 1. INTRODUCTION

automating tasks previously performed manually, operations become faster as these
tasks are now managed by code. However, automation alone does not inherently
address crucial areas such as compliance, governance, and standards. Therefore, while
automation increases repeatability and speed, it does not guarantee correctness. [15].
Furthermore, according to a Unit 42 Cloud Threat Report from 2020 [16], while TaC
offers Security Teams a programmatic way to enforce security standards, much of its
power remains largely unharnessed and, in many cases, it is simply not secure. The
authors of the report analysed 200000 different IaC files, and these were the main
results [16]:

— Services running with the highest privileges (root).
— Exposure of unneeded resources like port 22 (SSH).

— Hardcoded secrets.

Use of HTTP and HTTPS on an external load balancer where HT'TP does not
redirect to HTTPS.

In addressing these issues with an automated solution, Policy as Code defines, updates,
shares, and enforces policies using code. The emphasis on code is crucial, as this
approach encodes policies through a programming language. These codified policies
can facilitate the enforcement or testing of automation scripts to ensure adherence
to the defined policies. PaC is not a novel concept, and some companies utilize
systems to implement it. However, the challenge lies in the execution, as many PaC
implementations are tailored to specific use cases and designed to function only with
certain environments or technologies. Specifically, policies are often embedded within
business logic code or enforced manually, resulting in the same policies being written
in different languages, stored in multiple code repositories, and managed by various
teams. This fragmentation can lead to inconsistent interpretations of the same policy,
and any changes or new policy versions may take weeks or months to implement and
test, complicating enforcement. [15].

Figure 1.1 shows the typical workflow between a Compliance Team using a Policy
as Code approach combined with the development and deployment part of the
infrastructure. The compliance checking is performed before the infrastructure
is ultimately deployed. Furthermore, it is worth noticing how Compliance and
Developers Teams should work independently from each other, empowering the
principles of DevOps. This also highlights the need for these two actors to try to
keep their workflow separated and independent from each other. This concept is one
of the primary principles used as a basis throughout this entire thesis.

Within each PaC tool, every policy is verified against the infrastructure provisioned
by the IaC tool. Although both organization-specific and open-source PaC tools
appear robust and reliable, particularly concerning the variety of IaC tools and
infrastructure providers they support, they lack any form of abstraction for either.

1.2. RESEARCH QUESTIONS 3

<[>

Compliance Policy Version
Team Control System

@ —«hHh—L—p

Developers Version Control Policy Validation Deployment Cloud
System Engine Engine Environment

Figure 1.1: Policy as Code (PaC) workflow, adapted from [15]

The issue with this approach is that to implement the same policy, these PaC tools
generate as many policy-checking files as there are IaC tools and infrastructure
providers supported. For example, if a PaC tool supports 10 different IaC tools and
10 different infrastructure providers, it would result in 100 distinct files for checking
the same policy. This redundancy becomes evident upon observing the similarity of
these files, as they only differ in the specific functions or methods tailored to each
particular use case.

In this thesis, we propose a policy checking architecture agnostic to both the Infras-
tructure as Code tool and the infrastructure provider. This abstraction level allows
to significantly reduce the number of lines of code as well as to better understand
how TaC tools, PaC tools and infrastructure providers work together. A Proof of
Concept (PoC) is implemented and the results validated against other PaC tools.
This PoC may be used as a base to define an actual PaC tool. For the rest of this
thesis, this PoC will be referred to as Agnostic Policy as Code (APaC); the name
emphasizes the main feature provided by our tool.

1.2 Research questions

Considering the importance of IaC, the needs for correctness and policy compliance,
the variety of both IaC and PaC tools, within this thesis, we expect to find answers
to the following research questions:

— RQ1: What is the current status of Infrastructure as Code, which tools are
most popular, and how are they used in practice?

— RQ2: What is the current status of Policy as Code, which tools are most
popular, and how are they used in practice?

— RQ3: Which tools do we need to define a domain-agnostic architecture and
how would this be used in practice?

4 1. INTRODUCTION

1.3 Thesis structure
The remaining chapters of this thesis are organized as follows:

— chapter 2 presents the background needed to understand what the main
technologies and the respective primary tools are. In particular, the practices
analysed are DevOps, two popular TaC tools which will be later part of APaC,
two infrastructure providers which will be used to deploy the network infras-
tructure, and the paradigm of PaC, where its main features and principles will
be assessed.

— chapter 3 presents the current State of the Art of PaC. In particular three
PaC solutions are explained and their main benefits and drawbacks discussed,
making clear what the primary open issues are nowadays.

— chapter 4 summarises the methodology applied for the research and the
implementation parts of this project.

— chapter 5 explains the implementation of APaC and its domain-agnostic
architecture, as well as its importance in the current Policy as Code landscape.
This chapter also includes a validation and evaluation of the solution’s potential,
providing a comparative analysis with existing alternatives.

— chapter 6 discusses the possible implications and avenues of the research
presented and summarizes main contributions. It also discusses the limitations
and the possible future research we may have using APaC as a starting point for
an actual PaC tool, where the tool-independence appears as the main feature
and contribution.

Furthermore, Appendix A includes the code details from APaC.

1.4 Ethics and Sustainability Aspects of the Thesis

The domain-agnostic Policy as Code approach can enhance collaboration between
TaC stakeholders and the PaC team, aligning with DevOps principles. This method
promotes better interoperability and collaboration, addressing social sustainability
issues [17]. Moreover, this thesis contributes to the following Sustainable Development
Goals (SDGs) [18]:

— Goal 8: Decent work and economic growth. Our approach abstracts
infrastructure and policy definition keywords, helping stakeholders in the De-
vOps field to increase their understanding by separating IaC and PaC concepts.

1.4. ETHICS AND SUSTAINABILITY ASPECTS OF THE THESIS 5

Experience Assurance
Expert (XA)

Experience Assurance
Expert (XA)
Software

developer/Tester

O

)
O
) Code Release Manager
O

o Do Do

Security and
Compliance Engineer

/O Automation Architect

Figure 1.2: DevOps Stakeholders: different actors, dealing with different aspects of
the DevOps paradigm, work together to shorten the system developments lifecycle.
Adapted from [19]

Figure 1.2 illustrates the main stakeholders in a DevOps scenario, who typically
do not speak the same technical language. By leveraging DevOps principles
and the abstraction provided by APaC, we intend to improve collaboration
and minimize interoperability issues between different actors. This contributes
to a more efficient working environment.

— Goal 9: Industry, innovation and infrastructure. By implementing
policies independently from the infrastructure code, we aim to foster trust
among various human actors. Our approach helps detecting issues before
deploying network infrastructure, facilitating understanding and resolution
of such violations. Although automation speeds up network infrastructure
creation and deployment, it is important to balance automation with human
involvement. The principles of this thesis do not aim to eliminate human
roles but to facilitate better understanding and integration between IaC and
PaC teams within DevOps. Another challenge that APaC, and PaC tools in
general, may face is the risk of malicious users exploiting common policies
checked against IaC environments. If the Security and Compliance Team has
not yet addressed certain security issues, these users could potentially gain
access to a list of all the vulnerabilities within an organization. However, the
way APaC is intended to work is not entirely new in the DevOps landscape; it
is an improvement to existing solutions and, therefore, already a well-known
potential security issue.

In conclusion, APaC is intended to provide an efficient way for Security and Com-
pliance team to validate and verify policy compliance of infrastructure defined as
code configuration files, enhancing overall collaboration and efficiency in DevOps
practices. Regarding the ethical concerns, instead, it is important to keep in mind
that removing humans from the DevOps lifecycle does not represent the goal of our
tool; it represents an ethical concern which shall not be underestimated.

Chapter 2

Background

This chapter provides an overview of different terms and specifications used in this
thesis. In particular, the main technologies such as Development and Operations
(DevOps), Infrastructure as Code (IaC), Policy as Code (PaC) are explained in
general. The main tools used throughout this project are also presented, and their
main features assessed.

2.1 DevOps

A new movement denominated as Development and Operations is promoting the
continuous collaboration between developers and operations staff. In this scenario,
automating the provisioning of the infrastructure accelerates the deployment process
in the software delivery cycle [2].

DevOps refers to a collection of terminology, procedures, techniques, and ideas aimed
at improving the efficiency, reliability, security and speed of software development.
The idea of automation is central to the DevOps philosophy. DevOps integrates
automation throughout the entire software delivery pipeline, encompassing build,
test, deployment, and monitoring processes.

One critical practice within DevOps is Continuous Integration (CI), which involves
the frequent integration of code changes into a shared repository. This practice
ensures that developers merge their code changes into a central repository multiple
times during the development process. Each integration is followed by automated
tests to ensure code quality and identify issues early. Continuous Delivery (CD)
extends the principles of CI by automating the deployment of code changes to
production environments once they have passed automated testing. This practice
enables organizations to deploy changes to production rapidly and frequently.

Infrastructure as Code (IaC) is a pivotal component of DevOps. It involves the defi-
nition, management, and provisioning of computing infrastructure through machine-
readable script files, as opposed to manual hardware configuration. IaC is a fun-
damental enabler within the DevOps methodology, allowing for automated and

7

8 2. BACKGROUND

repeatable infrastructure deployment [20].

According to Hashicorp’s 2021 State of the Cloud Survey Report [21], 76% of IT
enterprises have embraced a multi-cloud strategy. The report also suggests that the
shift to a multi-cloud environment is a dominant strategy that most enterprises are
adopting. Within this framework, TaC has become a crucial part of cloud computing,
since it frees professionals from performing manual, error-prone tasks; plus, it reduces
costs and improves efficiency at all stages of the DevOps lifecycle [3]. On the other
hand, implementing IaC requires understanding new tools and languages, which can
be challenging for teams not already familiar with these technologies; moreover, if not
managed properly, [aC scripts can inadvertently expose sensitive information. Bugs
and security vulnerabilities in IaC scripts can lead to misconfigured infrastructure,
creating potential security gaps.

2.2 Infrastructure as Code

Information Technology (IT) systems are not just business vital, but they are the
business for organizations such as Amazon [22], Netflix [23], and Google [24], among
others. Every day, such organizations’ systems process hundreds of millions of data
points [20]. The primary objectives for employing Infrastructure as Code within
these organizations reflect a strategic vision to transform IT infrastructure into a
facilitator and enabler of change, rather than an impediment. By leveraging IaC,
these organizations dynamically adjust their infrastructure to meet evolving business
needs, encouraging innovation and agility.

Moreover, TaC allows users to define, set up, and manage their infrastructure on
their own, greatly reducing the need for IT staff. This self-service approach speeds
up the deployment of resources and improves operational efficiency, enabling faster
responses to business demands.

The main feature of IaC relies in the support of the management of the entire lifecyle
of a computing environment consisting of infrastructure, software/platforms, and
applications. Infrastructure includes the fundamental computing resources such as
server, networks, and storage. Instead, software/platforms are used to deploy, run,
and manage applications, such as programming languages, frameworks, libraries,
services, and tools. Finally, application-specific capabilities are defining the desired
state of the application deployment, by deploying, (re)configuring, un-deploying the
application using its deployment definition [25].

According to Bali et al. [26] TaC can also be explained as a technique of defining
and deploying infrastructure, such as networks, virtual machines, load balancers,
and connecting topologies, using the DevOps methodology and versioning with a
descriptive model.

2.2. INFRASTRUCTURE AS CODE 9

Furthermore, IaC replaces the conventional processes used to manage a computing
environment with a process that enables applying software engineering practices.
Instead of a low-level shell scripting languages, the IaC process uses high-level
domain-specific languages that can be used to design, build, and test the computing
environment as if it is a software application/project. The conventional management
tools such as interactive shells and UI consoles are replaced by the tools that can
generate an entire environment based on a descriptive model of the environment [2].

It also allows people to apply software development tools such as Version Control
System (VCS). It also opens the door to exploit development practises such as
Test-driven development (TDD) and Continuous Integration/Continuous Delivery
(CI/CD). In particular, the practice of CI/CD enables ongoing improvements, thus
avoiding the risks and costs associated with large-scale, infrequent updates [27], as
well as enabling safe collaboration on infrastructure; this capability allows teams to
work together on infrastructure development, with each member having individualized
copies of the code.

As outlined by Guerriero et al. [1] Infrastructure as Code is, therefore, the DevOps
practice of describing complex and (usually) cloud-based deployments by means of
machine-readable code. The main enabler for IaC has been the advent of cloud
computing, which, thanks to virtualization technologies, allowed the provisioning,
configuration and management of computational resources to be performed program-
matically.

As stated before, one of the main takeaways of IaC is that it allows users to define, set
up, and manage their infrastructure independently, significantly reducing the need for
IT staff. However, this reduction in human presence can also be seen as a drawback.
IT staff often bring a wealth of experience and expertise in infrastructure management;
thus, reducing their involvement can lead to a loss of critical oversight and guidance,
potentially resulting in suboptimal configurations and missed opportunities for
optimization. Additionally, automation through TaC can efficiently handle predefined
tasks but may lack the contextual understanding that human judgment provides. IT
staff can make nuanced decisions based on a broad understanding of the organization’s
needs and priorities. Moreover, heavy reliance on IaC tools and scripts can create a
single point of failure. If these tools encounter bugs or compatibility issues, it can
disrupt the entire infrastructure management process.

In conclusion, IaC is a powerful approach within the DevOps landscape, offering
significant benefits in terms of automation, efficiency, and consistency. However, it is
crucial to consider the potential challenges it presents, such as increased complexity,
the need for specialized skills, and the risk of misconfigurations. By acknowledging
and addressing these issues, organizations can fully leverage IaC’s advantages while
mitigating its drawbacks.

10 2. BACKGROUND

2.2.1 Different kinds of Infrastructure as Code tools

Subsequently to the advent of cloud computing, many different languages and
corresponding platforms have been developed, each of which deals with a specific
aspect of infrastructure management [1]:

— Tools able to provision and orchestrate virtual machines (e.g., Cloudify [9],
Terraform [4]).

— Tools doing a similar job with respect to container technologies (e.g., Docker
Swarm [28], Kubernetes [29]).

— Machine image management tools (e.g., Packer [8]).

Configuration management tools (e.g., Ansible [5], Chef [6], Puppet [7]).

Instead, according to Sandobalin et al. [2], the ITaC approach supports two different
kinds of tools:

— Code-centric tools use scripts to specify the creation, updating and execution
of cloud infrastructure resources. Since each cloud provider offers a different
type of infrastructure, the definition of an infrastructure resource (e.g., Virtual
Machine (VM)) implies writing several lines of code that greatly depend on
the target cloud provider. A well-known code-centric tool is Ansible.

— Model-driven tools, which, abstract the complexity of using scripts through
the high-level modelling of the cloud infrastructure (e.g., Argon [30]).

The same article asserts that there are two main stages defined in the IaC process:
definition and provisioning. The former writes/models the infrastructure resources
that will be provisioned on a cloud platform, whereas the latter employs IaC tools to
execute the infrastructure and hence orchestrate cloud infrastructure provisioning.

The author also states that the DevOps community has developed several tools whose
purpose is to manage the infrastructure provisioning of different cloud providers,
such as Ansible and Terraform, and tools with which to install and manage software
in existing servers, such as Chef and Puppet.

Alternatively, according to Kumara et al. [25], there are two main programming
models for TaC languages: declarative and imperative (procedural). In the declarative
model, the developers define the desired end state of the environment and let TaC tools
determine how to achieve the defined state. In the imperative model, the developers
need to specify the process that transforms the current state of the environment to
the desired end state as an ordered set of steps. For instance, tools like Puppet uses
a declarative style, whereas tools like Chef and Ansible use an imperative style.

As a result, it is clear that there is not a unified way or metric to define and distinguish
among each IaC tool.

2.3. INFRASTRUCTURE AS CODE’S CURRENT LANDSCAPE 11

Moreover, this also explains why the landscape of IaC languages and tools is currently
jeopardized by the technology heterogeneity and by the huge number of available
solutions. On the one hand this is the result of the great interest that IaC has raised;
also, all these nuances provide several alternatives to the users, according to their
needs. On the other hand, it complicates the understanding and adoption of this new
technology. Shedding light on the IaC current adoption, issues and challenges, is thus
fundamental towards bringing IaC to maturity and ease its further development [1].

2.3 Infrastructure as Code’s current landscape

Infrastructure as Code is a transformative approach in the field of IT infrastructure
management that leverages the principles of software development to manage and
provision computing resources. IaC enables the automation of various aspects of
infrastructure management, including the provisioning of resources and configuration
of systems and many more, as it clearly emerges when looking at the current and
always evolving landscape provided by the Cloud Native Computing Foundation
(CNCF) [31]. Among the multitude of tools highlighted, this thesis is focused on
Terraform and Ansible. These have been selected due to their widespread adoption,
ease of use, and the large amount of available dependencies they offer.

2.3.1 Terraform

Terraform, an IaC solution developed by HashiCorp [32], enables users to specify
cloud and on-premises resources in configuration files that are simple to understand
and can be used, shared, and modified. This approach allows for continuous provi-
sioning and maintenance of infrastructure using a consistent strategy throughout its
lifecycle. With Terraform, tasks such as constructing, upgrading, and maintaining
infrastructure are significantly simplified. The configuration files are written in
HashiCorp Configuration Language (HCL), which is a declarative language that
specifies the desired end-state for the infrastructure [20].

Terraform allows to manage the whole infrastructure, from end to end. However,
it does not replace the tools that can be used for managing the configuration of
VMs. Moreover, Terraform is particularly advantageous when utilizing multiple
cloud providers and managing cross-cloud dependencies. By reducing the complexity
of administration and orchestration, operators can design and manage large-scale
multicloud systems more efficiently.

Terraform’s usefulness is highlighted by several key features. It goes beyond simple
configuration management to include orchestration, offering complete infrastructure
solutions. It supports unchangeable infrastructure, allowing for easy and consistent
configuration changes. The HCL is made to be easy to understand, and switching

12 2. BACKGROUND

between different providers is straightforward. Additionally, Terraform supports
a wide range of cloud service providers, including AWS [10], Microsoft Azure [12],
GCP [11], DigitalOcean [33], Kubernetes, Helm [34] and others.

Utilizing Application Programming Interfaces (APIs), Terraform is able to build
and manage resources on cloud platforms and other services. In its current state,
Terraform is compatible with the vast majority of API-supported platforms and
services.

Using Terraform has several advantages over manually managing the infrastructure.
In particular, Terraform can manage infrastructure across multiple cloud platform,
providing a unified solution for diverse environments. Secondly, its human-readable
configuration language facilitates the quick and efficient writing of infrastructure
code. Additionally, Terraform’s state management feature allows tracking of resource
changes throughout deployments, ensuring consistency and reliability [20].

The Terraform workflow is divided into more stages:

— Write: It is possible to establish resources that are shared across several cloud
providers and services. Here, users define their infrastructure in Terraform
configuration files using HCL. These files specify the resources and components
required in the infrastructure, such as servers, databases, and networking
components.

— Init: the command terraform init is executed in this stage. This command
initialize the working directory containing the Terraform configuration files, as
well as downloading the necessary provider plugins (e.g., AWS, Azure, GCP)
and preparing the environment.

— Plan: the command terraform plan is executed in this stage. Terraform gives
an execution plan that outlines the infrastructure that it will construct, update,
or delete depending on the current infrastructure and the current configuration
settings. This plan is generated based on the existing infrastructure.

— Apply: the command terraform apply is executed in this stage; after receiv-
ing permission, Terraform will next carry out the predetermined operations in
the appropriate sequence, taking into account the interdependences between
the resources. This command applies the changes required to reach the desired
state of the configuration, by creating, updating or deleting infrastructure
resources.

— State management: Terraform keeps track of the infrastructure state using
a state file terraform.tfstate. This file maps the real-world resources to the
configuration and keeps track of metadata and dependencies. Moreover, the
state file is critical for tracking changes and should be stored securely.

2.3. INFRASTRUCTURE AS CODE’S CURRENT LANDSCAPE 13

Cloud Provider

aws =)

Configuration files -
[— \I/__I 3 n o
—To1-QO—-E—V— %

Practionioner Infrastructure Init Plan Apply Q
as Code

Infrastructure

1l

Destroy

Figure 2.1: Terraform workflow, adapted from [35]

— Destroy: the command terraform destroy is executed in this stage; this will
destroy Terraform-managed infrastructure or the existing environment created
by Terraform.

Figure 2.1 depicts the typical workflow in Terraform. Firstly, the infrastructure is
defined in Terraform configuration files using HCL; next, stages init, plan and apply
are executed. Finally, the infrastructure is created or, in case the infrastructure
already exists, the changes applied against the specified cloud provider. At any given
time the infrastructure may be modified, by modifying the configuration files, or
destroyed.

2.3.2 Ansible

Ansible is categorized as an infrastructure automation tool that enables the rapid
automation of system administration tasks. It allows for the deployment of Infras-
tructure as Code both on-premises and on major public cloud providers. Managing
containers within an organization can be a challenging task, particularly when per-
formed manually with repetitive tasks. Often, there is a need to run a container
on workstations or across server fleets. Ansible streamlines this workflow and auto-
mates tedious and complex tasks, offering new methods to distribute applications in
platform-independent formats [36].

Among the primary benefits of using Ansible there are its simplicity, power, cross-
platform compatibility, and compatibility with existing tools. Firstly, Ansible’s code
is written in YAML, a human-readable data serialization language that is widely

14 2. BACKGROUND

recognized and easy to learn. This language is commonly used for configuration files
and in applications where data needs to be stored or transmitted, making it accessible
for users. Additionally, Ansible is a robust and well-proven solution that excels in
configuration management, workflow orchestration, and application deployment.
Its powerful capabilities allow it to handle complex tasks efficiently and reliably.
Furthermore, Ansible’s agent-less nature ensures support for all major operating
systems, as well as physical, virtual, cloud, and network providers. This cross-platform
compatibility means that Ansible can be used in diverse environments without the
need for additional agents. Finally, Ansible’s ability to integrate seamlessly with
existing tools makes it easy to standardize and streamline the current environment.
This compatibility ensures that users can adopt Ansible without disrupting their
existing workflows and infrastructure [36].

Ansible’s three prominent use cases are:

— Provisioning involves the setup of IT infrastructure, a critical task for system
administrators aiming to manage a uniform fleet of machines. Some practi-
tioners continue to utilize software for creating workstation images. However,
a limitation of imaging technology is that it captures only a snapshot of the
machine at a specific moment. Consequently, software must be reinstalled each
time to accommodate modern critical activation systems or to apply the latest
security patches. Ansible is highly effective in automating this process.

— Configuration management is the process of maintaining systems and
software in a desired and consistent state. It ensures the up-to-date and
consistent operation of a fleet, including the coordination of rolling updates and
the scheduling of downtime. Ansible allows for the verification of the status of
managed hosts and the implementation of actions on a subset of them. A wide
variety of modules is available for the most common use cases.

— Application Deployment is the process of publishing software between
testing, staging, and production environment. For example, application’s Con-
tinuous Integration/Continuous Delivery workflow pipeline can be automated
with Ansible.

Ansible requires only OpenSSH [37] and Python [38] to be installed. OpenSSH is
used for connection and one login user, whereas the local Python interpreter in the
target node will execute the Ansible commands.

Regarding its architecture, as illustrated in Figure 2.2, Ansible typically requires two
or more hosts: one that executes the automation, known as the Ansible Control
Node, and one or more hosts that receive the actions, known as Target Node. In
this particular example, there is one Control Node which applies some rules against
three distinct Target Nodes.

The Ansible Control Node applies the rules defined in the YAML playbook file

© 0 N O GR W N

2.3. INFRASTRUCTURE AS CODE’S CURRENT LANDSCAPE 15

web1.example.com
Ansible Control Node web2.example.com

web3.example.com

Figure 2.2: Ansible architecture [36]

Listing 1 This playbook, written in YAML, defines one task which is called “hello”
and prints the message “Hello” every time it is executed. It is applied against each
host defined in the Inventory. Adapted from [36]

- name: example
hosts: all
tasks:
- name: hello
ansible.builtin.debug:
msg: Hello

o s W N =

Listing 2 This Inventory file, written in JSON, defines three distinct Target Nodes
to which the playbook is applied. Beside JSON, the Inventory file can also be written
in INT [39] or YAML format. Adapted from [36]

{
"all": {

"hosts": [
"webl.example.com",
"web2.example.com",
"web3.example.com"

]

}
}

(example at Listing 1) against each Target Node, defined in the Inventory file
(example at Listing 2). The Ansible Playbook is the automation blueprint and has a
step-by-step list of tasks to execute against the target hosts. Moreover, the Ansible
Control Node directs the automation and effectively requires Ansible to be fully
installed inside. The Ansible Target Node requires only a valid login to connect.

2.3.3 Other tools

Hereby is provided a short description of other widely used IaC tools.

— CloudFormation [40] is developed by Amazon Web Services (AWS) and it is a
service that allows users to define and provision AWS infrastructure using JSON
or YAML templates. It is tightly integrated with AWS, making it a powerful

16 2. BACKGROUND

tool for users heavily invested in the AWS ecosystem. The configuration files
are written in YAML and JSON.

— Puppet is developed by Puppet, Inc. It is a configuration management tool that
automates the provisioning, configuration, and management of infrastructure.
It uses a declarative language to describe system state. The configuration files
are written in Puppet Domain-Specific Language (DSL), which is based on
Ruby [41].

— Chef is developed by Progress [42]. It is a powerful configuration management
and automation tool that is widely used to manage and automate the infras-
tructure of complex IT environments. It manages infrastructure by writing
“recipes” and “cookbooks”. The latter are defined using Ruby-based DSL.

— Pulumi [43] is developed by Pulumi Corporation. It is an open-source tool that
allows users to define and manage cloud infrastructure using real programming
languages like TypeScript [44], JavaScript [45], Python, Go [46], and .NET [47].

— Kubernetes (K8s) was originally developed by Google, now maintained by
the Cloud Native Computing Foundation (CNCF). It facilitates the deployment,
scaling, and management of containerized applications in a regulated and auto-
mated manner. Essentially, Kubernetes functions as a container orchestrator.
Utilizing container runtimes such as Docker, code, dependent libraries, and
runtime environments can be packaged into an image, which is then executed
to create containers. Additionally, Kubernetes enables resource management,
the grouping of containers to form clusters, and other related functionalities.
The configuration files are written in YAML and JSON.

— SaltStack [48] is a versatile tool with a wide range of use cases, primarily
in the fields of configuration management, automation, and remote execution.
SaltStack’s declarative configuration management allows administrators to
define and enforce the desired state of systems, ensuring uniformity and reducing
configuration drift. It can also automate the deployment of applications,
libraries, and updates, making it efficient to manage software across a large
infrastructure. The configuration files are written in YAML.

2.4 Infrastructure Providers

In this section the main infrastructure providers used throughout this thesis are
introduced, and their main features highlighted. In particular, these tools are used
during the implementation of APaC, presented later on.

2.4. INFRASTRUCTURE PROVIDERS 17

2.4.1 OpenStack

OpenStack [13] is an open-source cloud computing platform providing a suite of
software tools building and managing both public and private cloud. It plays a
significant role as a cloud provider by offering an Infrastructure as a Service (IaaS)
solution, enabling users to deploy and manage large networks of VMs and other
resources.

As a cloud provider, OpenStack offers several benefits and features that makes it a
popular choice for organizations looking to build and manage cloud environments.
Specifically, one of the main feature of OpenStack is its flexibility and customization
which allows users to deploy only the components they need. Instead its horizontally-
scalable design, allows organizations to add more compute, storage, and networking
resources as needed to handle increased workloads.

Even though OpenStack is a powerful cloud computing platform, it requires robust
security measures to protect data and applications.

2.4.2 Docker

Docker [14] is an open-source platform designed to automate the deployment, scaling,
and management of applications using containerization. Containers are lightweight,
standalone, and executable software packages that include everything needed to run
an application, such as code, runtime, libraries, and system tools. Docker containers
are designed to run consistently across various computing environments, from local
development machines to production servers in data centers or cloud environments.

Specifically, Docker encapsulates an application and its dependencies into a single
container, ensuring consistent runtime environments. Containers can run on any
system supporting Docker, making applications easily portable across different en-
vironments; moreover, each container runs in its own isolated environment, which
enhances security and stability.

Docker itself is not a cloud provider but a platform that can be integrated with cloud
services to provide containerized solutions. When combined with cloud infrastructure,
Docker enhances the deployment and management of applications. In particular, in
the context of cloud computing Docker facilitates hybrid and multi-cloud strategies
by allowing applications to run consistently across different cloud environments.
Organizations can deploy containers on various cloud platform (e.g., AWS, GCP,
Azure) without modification.

Furthermore, Docker is a crucial component of the DevOps toolkit. Automation tools
like Ansible, Chef and Puppet can use Docker to provision and manage containerized
environments.

18 2. BACKGROUND

2.5 Policy as Code

Policy as Code (PaC) is an approach to policy management where policies are
defined, updated, shared, and enforced using code. This method automates the
compliance process by translating business logic from spoken language into code [15].
Additionally, it helps decoupling policy from an application’s business logic. This
approach offers several advantages.

Firstly, it enables the adoption of software development best practices, ensuring
that policies are created and maintained with the same rigor as software code. By
automating the testing of policies, PaC facilitates scalability, allowing policies to be
applied consistently across large environments. PaC is also useful to enforce style
guides and security rules automatically, enhancing the overall quality and security of
the policies. It also provides traceability for compliance, ensuring that all changes
to policies are documented and auditable [15]. Furthermore, PaC centralizes the
rules, control, and management of policies, simplifying governance and oversight. By
codifying policies, it allows them to be stored in Version Control Systems, which
supports collaboration and historical tracking of policy changes. Finally, the PaC
approach is consistent, recursive, and cost-effective. It ensures that policies are
applied uniformly, can be repeatedly enforced as necessary, and reduces the costs
associated with manual policy management.

PaC also requires defining (or codifying) policies using programming languages like
Python, YAML, or Rego [49]. Tt also requires a Policy Engine (PE) to enforce the
policies. This engine can be a built-in solution or use a different platform or agent
for policy enforcement that is decoupled from the application or platform.

2.5.1 What is a policy?

A policy is a rule, condition, or instruction governing operations or processes. Another
definition of policy is a set of rules or guidelines for an organization, people, or process
to achieve compliance, standards, or consistency.

According to Matharu [15] policies can be either static or dynamic. Static policies are
evaluated before execution; for example, it might test whether a device or resource
name adheres to a naming convention before provisioning the device or resource.
Whereas, dynamic policies are evaluated and enforced during runtime. For example,
it can check whether user data is created, moved, or saved from a defined geographic
zone at runtime.

2.5. POLICY AS CODE 19

2.5.2 Challenges with traditional policy enforcement

As stated by Matharu [15], conventional policy enforcement is manual or semi-
automated and does not scale well. Each development or application team embeds
some policy-enforcement code within its applications. This code is not easily trackable
or auditable because every team implements it as it sees fit due to a lack of framework
definition. Each organization follows certain practices and processes while developing
and delivering software. Some must comply with industry-recognized frameworks
such as SOC 2 [50], CIS [51], PCI DSS [52], or ISO 27001 [53].

Moreover, traditional policy definition and enforcement are manual processes. A
compliance team drafts business requirements with specific rules that everyone is
expected to follow, but this approach faces several challenges. Policy documents
are continuously updated while Development Teams work against them, and they
lack a framework for implementation, leading to after-the-fact, manual testing. This
process is not scalable and relies heavily on human interpretation for enforcement.
Significant changes may be needed to update policies, which can be both painful and
wasteful, and manual changes can have unintended consequences.

The absence of a framework also complicates auditing changes, further hindering
effective policy management.

2.5.3 Why use Policy as Code?

In this scenario, PaC addresses the weaknesses of the traditional enforcement method
by automating the definition and enforcement of policies through a specific technology
platform.

PaC simplifies the creation of test cases for policies and automates their checking and
enforcement, in this way policies can be validated before deployment, ensuring they
are correct and functional. Furthermore, environments created through automation
become more secure, scalable, consistent, and preventative. PaC also facilitates easy
updating, maintenance, and versioning of policies.

Common use cases for PaC include provisioning and managing cloud resources
consistently and efficiently through IaC policies, applicable to both on-premises
and public cloud environments. It is also used for authorization and access-control
policies, as well as security policies that encompass network and endpoint protection.
Operational best practices, such as configuration-management policies, are another
area where PaC is beneficial [15].

20 2. BACKGROUND

2.5.4 Policy engine

Enforcing policies is as important as defining and documenting them. PEs provide the
capability to systematically check if a rule is broken. A PE includes the mechanisms to
automatically check logical inconsistencies, syntax errors, and missing dependencies.
The PE takes decisions by evaluating inputs against policies and data. PEs should be
generic enough to be applied to different scenarios, combining context-specific data
with the higher-level policies, to enforce them according to each specific context [54].
PaC and PE can be used in IaC platforms to enforce infrastructure provisioning
and deployment policies. IaC software might query the PE to take decisions before
provisioning (e.g. depending on the type of node, storage, network dependencies, and
application being targeted); thus, they also help restricting access to infrastructure
and enforcing rationalization policies.

2.5.5 Why is policy decoupling important?

Software services should allow policies to be specified declaratively, updated at
any time without recompiling or redeploying, and enforced automatically (which is
especially valuable when decisions need to be made faster than humanly possible).

Decoupling policy helps building such software services at scale, makes them adaptable
to changing business requirements, improves the ability to discover violations and
conflicts, increases the consistency of policy compliance, and mitigates the risk of
human error. Policies can adapt more easily to the external environment, factors
that the developer could never have imagined at the time the software service was
designed [55].

Figure 2.3 shows an example of decoupled PE, where the decoupling refers to the
separation of policy definitions from the application’s business logic. It is important
to notice that when a query is submitted to the PE, it is evaluated against the
pre-defined policies, previously established by the Compliance Team. The PE
then provides a decision, indicating whether the query meets the requirements
specified by the policies. This approach ensures that policies governing application
behavior, regulatory compliance, and resource management are defined and managed
independently from the code that executes the core functions of the application.

2.6 Discussion

At a first glance, the correlation among these technologies may appear subtle.
However, with the proliferation of IaC solutions within the CNCF, it becomes
evident that a mechanism for ensuring compliance with organizational policies and

2.6. DISCUSSION 21

POLICY ENGINE

] SR

| I —
Q QUER
RESPONSE
@
—
COMPLIANCE TEAM POLICY DATABASE

Figure 2.3: Policy as Code (PaC) policy decoupling, adapted from [15]

requirements throughout the software delivery lifecycle is imperative. PaC provides
an efficient and automated way of verifying and applying such policies.

As stated before, the primary objective of this thesis is to develop a PaC tool capable
of conducting compliance checks required by IaC tools in a more abstract manner by
dissecting the fundamental network components underlying each infrastructure.

Consequently, a thorough comprehension of tools such as Terraform and Ansible,
alongside the PaC tools introduced in chapter 3, including their main limitations, is
the first step towards the creation of a robust PaC solution, that works regardless of
the TaC it evaluates.

Chapter 3

State of the Art

This chapter provides a brief overview of the latest developments relevant to our
research questions, required for the definition of APaC provided in chapter 5. The
primary PaC solutions are presented, discussing their functionality in terms of
supported IaC tools, ease of implementing new ones, and the level of abstraction
they provide both for the IaC tools and the infrastructure providers. Since our main
point of interest is the abstraction of principles and best practices of policies, each
tool is evaluated and the best-fitting solution assessed accordingly.

3.1 The Cloud Native Landscape

Cloud native technologies empower organizations to build and run scalable applica-
tions in modern, dynamic environments such as public, private, and hybrid clouds.
Containers, service meshes, microservices, immutable infrastructure, and declarative
APIs exemplify this approach. These techniques allow systems to be independent,
strong, easy to manage, and monitor. Along with strong automation, they let
engineers make important changes often and reliably with little effort.

The Cloud Native Computing Foundation aims to promote this approach by sup-
porting an ecosystem of open-source, vendor-neutral projects [31].

Infrastructure management involves several key areas, each supported by specific
tools. For instance, Provisioning serves as the first layer in the cloud-native landscape,
featuring tools designed to automatically configure, create, and manage a cloud-based
network infrastructure!. The layer also extends to security with tools enabling
policy setting and enforcement, embedded authentication and authorization, and the

handling of secrets distribution.

Tools in the Automation and Configuration area are part of the Provisioning layer.
They accelerate the creation and configuration of compute resources such as VMs,
networks, firewall rules, and load balancers. Tools in this category either manage

1The term Infrastructure includes the elements belonging to the lower layers of the application
stack as well as the upper ones, such as computer networks, firewall, load balancers, certification
authorities, databases, web server.

23

24 3. STATE OF THE ART

different aspects of provisioning or control everything end-to-end. They enable
engineers to build computing environments without human intervention; by codifying
the environment setup, it becomes reproducible with a single click. Although these
tools may take different approaches, their common goal is to reduce the workload
required to provision resources through automation [31]. Examples of these tools are
Ansible [5], Chef Infra [56], Cloudify [9], OpenStack [13], SaltStack [48], Terraform [4].

Another important layer of Provisioning is Security and Compliance. Such tools help
harden, monitor, and enforce platform and application security. From containers to
Kubernetes environments, these tools allow to set policy (for compliance), get insights
into existing vulnerabilities, catch misconfigurations, and harden the containers and
clusters. In particular, to run containers securely, they must be scanned for known
vulnerabilities and signed to ensure they haven’t been tampered with [57]. Some
of these tools are rarely used directly. Trivy [58], Clair [59], and Notary [60], for
example, are leveraged by registries or other scanning tools. Others represent key
hardening components of a modern application platform. Examples include Falco [61]
or Open Policy Agent (OPA) [62]. Other important tools in this area are Kics [63]
and Checkov [64].

The CNCF also classify tools belonging to other layers, such as Runtime, Orchestration
and Management, App Definition and Development, Observability and Analysis [57].

3.2 Policy as Code Solutions

Currently, multiple Policy as Code solutions are available, with some tailored specifi-
cally for certain infrastructure providers or IaC tools, such as HashiCorp Sentinel [65],
Chef InSpec [66], Pulumi Crossguard PaC [67]. Conversely, other solutions provide a
higher level of abstraction, like Kics, Checkov and especially OPA, which aim at sup-
porting different IaC tools and infrastructure providers. The continuous development
in this field allows more IaC tools to assess and verify their policies.

Among these tools and not, there are some available for implementing PEs. The
importance of this feature is due to the fact that PaC and PE can be utilized in
IaC platforms to enforce policies for infrastructure provisioning and deployment [54].
Some of these are Kyverno [68], Pulumi Crossguard, Azure PaC Microsoft [69]and
Sentinel.

3.2.1 Checkov

Checkov is a static code analysis tool that scans for security vulnerabilities. It was
originally developed by Bridgecrew [70], but it is currently owned by Prisma Cloud [71].
Checkov enables the identification of vulnerabilities prior to the deployment of

3.2. POLICY AS CODE SOLUTIONS 25

infrastructure code. For each tool supported by Checkov, there exists a set of built-in
policies against which the code is evaluated, these policies are defined as or considered
best practices. Moreover, custom policies can be created using Python or YAML.
The utilization of Checkov empowers the main features of PaC, since it enhances
the security, reliability, and compliance of infrastructure deployments by identifying
misconfigurations and vulnerabilities early in the development lifecycle, such as
overly permissive security group rules, weak encryption settings, or public exposure
of sensitive information. It serves as a valuable tool for organizations adopting IaC
to manage their infrastructure resources. Integration with CI/CD pipelines allows,
instead, for continuous and automated security checks.

One of Checkov’s key features is its multi-framework support. It covers popular
IaC frameworks including Terraform, CloudFormation, Kubernetes, and Serverless
Frameworks [72], supporting their syntax and structure to offer specific checks tailored
to their requirements [73].

Checkov 2.0 [74] introduces a new YAML format for checks, utilizing an embedded
graph database. This graph database enables the creation of checks that query the
connections and adjacencies between objects, rather than focusing solely on individual
objects. For instance, determining whether an AWS EC2 instance is exposed to the
Internet, cannot be achieved with a standard Checkov check, as it depends on various
interconnected objects, for instance [74]:

— The instance might reside in a VPC with a NAT gateway forwarding a port
from that gateway.

— It could be linked to an elastic load balancer.

— It might have public Internet connectivity via BGP and a routing table that
exposes an IP address directly to the Internet.

— Security groups and network policies also play a role in defining the instance’s
public accessibility.

A graph-based analysis also offers several notable advantages such as enabling more
efficient rendering of variables for Terraform and facilitating module inheritance,
allowing for more complex queries about IaC templates by considering the environ-
mental context rather than just individual resource attributes [74].

Listing 3 shows how the security policy “HTTP port (80) must not be exposed” is
implemented in Checkov for a Terraform and AWS implementation. Similar to Kics,
this file is tailored to a specific IaC tool and infrastructure provider (Terraform and
AWS in this case). Consequently, despite the valuable features offered by Checkov,
particularly the graph-based policy, the main issue is that these checks are not generic
but instead specific to each platform-provider scenario supported by the PaC tool.
This leads to redundancy, as well as to difficulty in understanding and adopting of
such tools in a standardised way.

N o e WN

26 3. STATE OF THE ART

Listing 3 This Python code examines AWS Security Group configurations to ensure
that HTTP port (80) is not open to the internet without restriction. Adapted
from [75]

from checkov.terraform.checks.resource.aws.AbsSecurityGroupUnrestrictedIngress import

— AbsSecurityGroupUnrestrictedIngress
class SecurityGroupUnrestrictedIngress80(AbsSecurityGroupUnrestrictedIngress):
def __init__(self):

super () .__init__(check_id="CKV_AWS_260", port=80)

check = SecurityGroupUnrestrictedIngress80()

Listing 4 Rego file. Adapted from [77]

not startsWith (image, "myregistry.lan/")

msg := sprintf("image '/v' comes from untrusted registry", [image])

3.2.2 Open Policy Agent and Rego

Open Policy Agent (OPA) is a general-purpose open source Policy Engine (PE)
developed by Styra [76], designed to enforce policies across microservices, Kubernetes,
CI/CD pipelines, API gateways, and more. It offers extensive tooling and over 100
integrations to support policy implementation and enforcement within the cloud-
native ecosystem [15]. Policy decision-making in OPA is articulated using Rego [49],
a high-level declarative language to specify PaC. The latter is tailored for defining
queries over intricate hierarchical data structures. Rego enables the codification of
policies as assertions on data stored in OPA, facilitating the identification of data
instances that deviate from the expected system state [62].

Rego is a language specifically designed for policy writing. A major difference between
Rego and more general programming languages is that the former is generally written
to authorize everything unless a specific set of conditions happens. We can see
an example of this in Listing 6. Another difference is that there is no explicit “if-
then-else” control statements. When a code line of Rego generates a decision, the
code is interpreted as “if this line is false, then stop execution”. For instance, the
code depicted in Listing 4 says “if the image starts with myregistry.lan/, then stop
execution of the policy and pass this check, otherwise generate an error message” [77].

As shown in Figure 3.1, when a software service requires policy decisions, it provides
structured data (e.g., JSON) as input to the OPA engine. The engine evaluates the
supplied data against defined policies and data, subsequently generating a policy

3.2. POLICY AS CODE SOLUTIONS 27

l Request, Event, etc.

Service

A
Query Decision

(any JSON value) v (any JSON Value)

@ OPA

Policy Data
(Rego) (JSON)

Policy Decoupling
Figure 3.1: Open Policy Agent (OPA) architecture [62]

decision based on the query results. These decision are not confined to simple “yes/no”
or “allow/deny” responses due to the query-based nature of Rego.

OPA serves as a foundational tool for implementing a Policy as Code approach within
IT systems. Its existence obviates the need for organizations to develop custom
policy management solutions from scratch. The flexibility of OPA stems from its
domain-agnostic? Policy Engine (PE) and language, making it applicable across
various contexts. Hence, it is possible to describe almost any kind of invariant in the
policies. For example [62]:

— Which users can access which resources.

— Which subnets egress traffic is allowed to.

— Which clusters a workload must be deployed to.

— Which registries binaries can be downloaded from.
— Which OS capabilities a container can execute with.

— Which times of day the system can be accessed at.

Furthermore, by decoupling policy decision-making from policy enforcement, OPA
allows software to query the engine with structured data inputs to obtain policy deci-
sions. This capability underscores OPA’s versatility and utility in policy management
and enforcement.

2“Domain-agnostic” describes a system, language, or framework that is not limited to any
specific domain or application area. In the context of OPA this means they are versatile and can be
effectively applied across various use cases without being tied to a particular domain or industry. In
other words, OPA and Rego can define policies and make decisions universally, regardless of the
context or sector.

© 0 N O GA W N

I = e T e s e
S © ® N O W A W N P O

28 3. STATE OF THE ART

Listing 5 JSON file representing a simple network infrastructure, where 5 servers are
connected to some of the 4 networks, through one or more ports. Adapted from [62]

{

"servers": [
{"id": "app", "protocols": ["https", "ssh"], "ports": ["pi", "p2", "p3"1},
{"id": "db", "protocols": ["mysql"], "ports": ["p3"]},
{"id": "cache", "protocols": ["memcache"], "ports": ["p3"]},
{"i@": "ci", "protocols": ["http"], "ports": ["pl", "p2"1},
{"id": "busybox", "protocols": ["telnet"], "ports": ["pi"l}

1,

"networks": [
{"id": "netl", "public": false},
{"id": "net2", "public": false},
{"id": "net3", "public": true},
{"id": "net4", "public": truel}

1,

"ports": [
{"id": "p1", "network": '"mnetl"},
{"id": "p2", "network": "net3"},
{"iq": "p3", "metwork": "net2"}

]

}

For example, Listing 5 shows the JSON file representing a simple network infras-
tructure, whereas Listing 6 displays the Rego file which checks the following two
policies:

1. Servers reachable from the Internet must not expose the insecure HTTP
protocol.

2. Servers are not allowed to expose the “telnet” protocol.

As a result of OPA, we correctly get that there are two servers violating the above
mentioned policy, as shown in the output provided in Listing 7.

OPA also has certain drawbacks such as requiring users to learn Rego: the main point
to mention is that Rego is a policy evaluation language, not a generic programming
language. This can be difficult for developers who are used to languages such
as Golang [46], Java [79] or JavaScript [45], which support complex logic such as
iterators and loops. Instead, Rego is designed to evaluate policy and is streamlined as
such [77]. Moreover, the lack of libraries supporting rules for common compliance and
policy standards is a consideration, which is currently the most significant limitation.
Moreover, OPA requires the code being evaluated to be in JSON, which can be
restrictive in some cases [62].

Despite some limitations, OPA demonstrates the most promising features as a domain-

© 0 N O gk W N

W NN NN N NN N NN = e e e e e e e
O © 0 9 3 O R W N O © 00N U W N = O

3.2. POLICY AS CODE SOLUTIONS 29

Listing 6 Rego file checking the policies defined above. Adapted from [62]

package example

import rego.vl

allow if {

count (violation) ==

violation contains server.id if {
some server in public_servers

"http" in server.protocols

violation contains server.id if {
some server in input.servers
"telnet" in server.protocols

public_servers contains server if {

some server in input.servers

some port in server.ports
some input_port in input.ports

port == input_port.id

some input_network in input.networks
input_port.network == input_network.id

input_network.public

agnostic PaC tool. As illustrated in Listing 6, a Rego policy rule may refer to the
infrastructure using generic terms such as “server”, “port” and “network”, without
the need to tailor the code to specific use cases, unlike Kics and Checkov. This
high-level coding approach potentially allows for the reuse of the same code to check
the same policy across almost every kind of scenario.

3.2.3 Kics
Kics, developed and maintained by Checkmarx [80], is a fully open-source PaC tool

written in Golang using Open Policy Agent. It scans and finds misconfigurations
and potential vulnerabilities in IaC configuration files, such as for CloudFormation,

30 3. STATE OF THE ART

Listing 7 Results of policy checking from the Rego file depicted in Listing 6 against
the infrastructure illustrated in Listing 5. Adapted from [78]

© 0 N O oA W N

WO N NN N NN NN HE E R e e e
S © ® N o oKk W RO © LN O kA W N R O

{

"public_servers": [
{

"id": "app",

"ports": [
"pl",
"p2",
"p3"

1,

"protocols":
"https",

"ssh"

"id": "ci",

"ports": [
"p1",
np2"

1,

"protocols":
"http"

]

1,
"violation": [
"busybox",

cl

[

[

3.2. POLICY AS CODE SOLUTIONS 31

Core R . N R
laC Providers QUETI_ES Execution E_nglne
Fa \
Service - i Terraform
Parser Terraform Service—» P
——Docker Service—» Docker +—REGO—
Shared Resources T
—
Inspector Ansible
GCP —
—> —YAML Service—» —JSON—>
Storage
K8s
CLI
Results
SourceProvider Github
L 5 i
CloudFormation
Tracker
—JSON Service k8s_pod
OpenAPl
Resolver

Figure 3.2: Kics architecture [81]

Ansible, Kubernetes, Terraform, Docker, Helm. To date, around 1000 ready-to-use
queries have been created, covering a wide range of vulnerability checks for AWS,
GCP, Azure cloud providers. Among the others, Kics comes with different queries
categories such as access control, best practices, encryption, insecure configurations,
networking and firewall, resource management and secret management. Moreover,
Kics features a pluggable architecture with an extensible pipeline for parsing IaC
languages and queries, facilitating easy integration [81].

As shown in Figure 3.2 , Kics’s architecture consists of several components. In
particular, the typical workflow in Kics involves several steps. First, Kics parses IaC
files written in various formats such as Terraform, Dockerfile [82], or Ansible. The
parser extracts relevant information, including resource definitions, configurations,
and dependencies. Next, Kics uses a query engine to execute predefined queries
written in Rego against the parsed IaC files. The query engine evaluates each
query and generates results based on matches or violations. Moreover, Kics also
includes metadata about vulnerabilities or compliance checks, such as severity levels,
descriptions, and remediation steps.

Following the analysis, Kics generates reports summarizing the findings. These
reports typically include details about security vulnerabilities, compliance violations,
and best practice recommendations. They can be presented in various formats such
as JSON, HTML, or plaintext, making them accessible and easy to integrate with
other tools and workflows. Additionally, Kics can be integrated into CI/CD pipelines

© 0 N O U W N

W W W W NN NN NN NN NN e e e e e e e e
W N H O © 00Uk W N R O © N0 R W N = O

32 3. STATE OF THE ART

Listing 8 This Terraform code defines two AWS security group resources.

HTTP (80) is exposed on both security groups. Adapted from [83]

Port

resource "aws_security_group" "positivel" {

name

description =

ingress {
description
from_port
to_port
protocol
cidr_blocks

"http_positive_tcp_1"
"Gets the HTTP port open with the tcp protocol"

= "HTTP port open"
=78

=91

= "tcp"

= ["0.0.0.0/0"]

resource "aws_security_group" "positive2" {

name =

description =

ingress {
description
from_port
to_port
protocol
cidr_blocks

ingress {
description
from_port
to_port
protocol
cidr_blocks

"http_positive_tcp_2"
"Gets the HTTP port open with the tcp protocol"

= "HTTP port open"
= 60

= 85

= "tcp"

= ["0.0.0.2/0"]

= "HTTP port open"
= 65

= 81

= "tcp"

= ["0.0.0.0/0"]

to automate security and compliance checks. This integration allows Kics to analyze
TaC files as part of the software development lifecycle, providing early feedback to

developers and ensuring that infrastructure changes meet security and compliance
requirements. Lastly, Kics is designed to be extensible, allowing users to define
custom queries and rules to address specific security and compliance needs [63].

As previously mentioned, Kics executes predefined Rego queries (from OPA), following
a straightforward anatomy. Each query is composed of a policy and a result skeleton.
The policy builds the security patterns that are used to test the infrastructure code

0 N O o os W N =

T e e
D R W N = O ©

17
18
19
20

3.2. POLICY AS CODE SOLUTIONS 33

Listing 9 The policy, written in Rego, is designed to check the configuration of AWS
security groups to ensure they do not have the HTTP port (80) open to the internet.
Adapted from [84]

package Cx

import data.generic.terraform as tf_lib

CxPolicy[result] {

resource := input.document[i].resource.aws_security_group[name]

tf_lib.portOpenToInternet (resource.ingress, 80)

result := {
"documentId": input.document[i].id,

"resourceType": "aws_security_group",

"resourceName": tf_lib.get_resource_name(resource, name),

"searchKey": sprintf("aws_security_groupl[%s]", [namel),

"issueType": "IncorrectValue",

"keyExpectedValue": "aws_security_group.ingress shouldn't open the HTTP port
— (80)",

"keyActualValue": "aws_security_group.ingress opens the HTTP port (80)",

and which the query is looking for. The result defines the specific vulnerability data
to be presented to the user for the given infrastructure code.

To illustrate the principle followed by Kics when using Rego, Listing 8 shows an
example of Terraform code where an infrastructure is created through AWS and the
HTTP port (80) is exposed on purpose. To verify this policy rule, Kics applies the
same approach shown in Listing 9, which defines a rule for checking whether the
HTTP port 80 is open or not. In this example, the compliance check would fail.

Each query has also a metadata.json companion file with all the relevant information
about the vulnerability, including the severity, category and its description. For
example, the JSON code showed in Listing 10 depicts the metadata corresponding
to the query showed in Listing 9.

Kics queries are organised per IaC technology or tool (e.g., Terraform, K8s or
Dockerfile) and grouped under cloud provider (e.g., AWS, GCP or Azure) when
applicable. Per each query created, it is mandatory the creation of a metadata file
and test cases with, at least, one negative and positive case and a JSON file with
data about the expected results [86].

N O R W N =

10
11
12
13

34 3. STATE OF THE ART

Listing 10 This JSON object represents metadata about the security policy shown
in Listing 9. Adapted from [85]

{
"id": "ffac8al2-322e-42c1-b9b9-81f£f85c39ef7",
"queryName": "HTTP Port Open To Internet",
"severity": "MEDIUM",
"category": "Networking and Firewall",
"descriptionText": "The HTTP port is open to the internet in a Security Group",
"descriptionUrl": "https://registry.terraform.io/providers/hashicorp/aws/latest/do

< cs/resources/security_group",

"platform": "Terraform",
"descriptionID": "a829609b",
"cloudProvider": "aws",

n " nn

cwe":
"oldSeverity": "HIGH"

Kics is, therefore, a valuable PaC tool for compliance checking. The main prob-
lem with the above examples is Kics’s strict dependency on the IaC tool and the
infrastructure provider. While Listing 9 performs its check using a domain-agnostic
language (i.e. Rego), it ultimately relies on specific functions from the Terraform
library and specific elements from AWS. Listing 10 further demonstrates this strict
dependency.

The primary issue with an approach dependent on a specific IaC tool and infras-
tructure provider, is that in order to check a specific policy (e.g., port HTTP (80)
must not be exposed), we would need as many query.rego files as there are IaC
tools and providers. These files, though similar in checking the same policy, differ
only in their use of specific libraries tailored to their dependencies. This results in
significant redundancy, and if a new tool or provider were to be introduced, the same
policies would need to be rewritten from scratch. The limitation introduced by this
architecture serves as the foundational motivation for the domain-agnostic PaC tool,
APaC, proposed in chapter 5.

3.3 Summary and Open Issues

From an analysis of the State of the Art (SoA), it is evident that these tools do not
utilize policy engines to fully empower the potential of PaC. Moreover, they often
lack a proper abstraction level to be applicable across diverse scenarios.

In addition to Kics and Checkov, we also include a comparison of two other minor
tools, Regula [87] and Trivy [58]. These are not described in greater detail due to

3.3. SUMMARY AND OPEN ISSUES

35

Parameters Kics [63] [91] Checkov (73] [92] Trivy [93] [94] Regula [95] [96]

Supported IaC solu- Terraform, AWS Terraform, AWS Terraform, Docker, Terraform, Docker,

tions CloudFormation, CloudFormation, AWS CloudForma- AWS CloudForma-
Ansible, Docker. Docker. tion. tion.

Pre-built policies

Over 2400 queries
are available.

More than 1000 pre-
defined policies.

Around 1400 built-
in policies.

Almost 300 rules.

Customizability There are fully Custom policies can Custom policies can Custom policies can
customizable and be defined. be defined. be defined.
adjustable heuristic
rules, called queries.

Policy languages OPA (Rego). Python and YAML. Go and OPA OPA (Rego).

(Rego).
Tool languages OPA, HCL, Go. Python, HCL. Go. OPA, Go, HCL.

Integration with
CI/CD pipelines

GitLab CI, Jenkins.

Jenkins, GitLab CI.

GitHub Actions.

GitHub Actions.

Supported Cloud

AWS, Azure, GCP,

AWS, Azure, GCP,

AWS, Azure, GCP.

AWS, Azure, GCP.

Providers Kubernetes. OpenStack.
Community and Over 7800 commits Over 16000 com- Over 2600 commits Over 300 commits
Support by 119 contributors; mits by 358 contrib- by 383 contributors; by 30 contributors;

15130 lines of code.

utors; 8084 lines of
code.

2898 lines of code.

1371 lines of code.

Table 3.1: Policy as Code tools comparison

their limited adoption and the lack of comprehensive documentation.

Each of these tools is an open source, static analysis tool. To compare them the
following parameters are taken into account:

— Supported IaC languages: it representes the most used amongst the IaC

languages the tool supports.

Pre-built policies: evaluate the availability of pre-built policies or rule sets
covering common security best practices and compliance standards.

Customizability: assess the ease and flexibility of creating custom policies
tailored to the organization’s specific requirements and compliance needs.

Policy languages: define the language used to define policies.
Tool languages: define the most used languages by the tool source code.

Integration with CI/CD pipelines: Check which amongst the most used CI/CD
tools (e.g., Jenkins [88], GitLab CI [89], GitHub Actions [90]), the tool seamlessly
integrates with.

Supported Cloud Providers: the main cloud providers the tool is compatible
with.

Community and Support: Consider the size and activity of the tool’s com-
munity, and responsiveness of support channels. Consider also the number of
collaborators and lines of code.

36 3. STATE OF THE ART

Table 3.1 shows that each of these PaC tools supports the main IaC solutions as well
as the most commonly used infrastructure providers. It is also worth noting that
all of them allow the creation of custom policies, in addition to offering a significant
number of pre-built policies, to better meet the organizations’ needs. Moreover,
Kics, Checkov and Trivy demonstrate considerable community contributions. These
features underscore the importance and benefits of having an open-source solution,
as it allows for constant improvements in the reliability and accuracy of such tools.

While Kics, Trivy and Regula use OPA to define their policies, none of them fully
leverage this powerful tool to abstract the platform on which the infrastructure
is implemented. Instead they heavily utilize specific functions and languages. For
instance, Kics, Checkov and Regula extensively use HCL in their source code, showing
a tailored approach towards a specific IaC language (i.e., Terraform). Consequently,
the primary objective of chapter 5 will be to provide a domain-agnostic solution to
evaluate policy compliance without relying on specific platforms or tools.

Chapter 4

Methodology

This chapter provides an overview of the research methodology implemented through-
out this thesis. It contains an adaptation of the design science methodology with a
description of the iterative steps of the design cycle. Additionally, the outline of the
methodology that guided the development of APaC is presented.

4.1 Research Design

We begin our research by thoroughly reviewing the relevant literature in Infrastructure
as Code and Policy as Code. This phase defines our scope by identifying Terraform
and Ansible as popular IaC tools, and Kics and Checkov as commonly used PaC
tools. It also highlights the limitations of current PaC tools and shows how OPA
may create a more versatile PaC solution. At this stage, we consider the context
and issues of our thesis, leading to the research questions presented in chapter 1. To
establish our research design and answer these questions, we set the following tasks:

1. Experiment with basic configurations using Terraform and Ansible to gain
familiarity with these tools and the IaC coding approach.

2. Investigate the creation of PaC tools to ensure the compliance of network
infrastructure within an IaC environment, and identify potential improvements.

3. Develop a domain-agnostic-based PaC architecture, referred to as APaC, which
abstracts the IaC used and the cloud provider where the IaC configuration is
applied.

4. Validate the correct behavior of the newly created prototype against a simple
network infrastructure, ensuring the verification of several policies.

These tasks outline the steps to be taken in our adapted version of Wieringa’s design
cycle [97]. The problem-solving process usually involves multiple iterations of the
design cycle steps, as shown in Figure 4.1, which includes:

37

38 4. METHODOLOGY

— Problem investigation: The starting phase where we evaluate the problem
within the IaC and PaC context! and its potential effects. We conduct a
literature review to identify challenges and assess existing tools for a domain-
agnostic PaC solution.

— Treatment? design. In this stage, we study the domain, requirements, and
available treatments and design the artefacts thoroughly. However, in our
design cycle, the main action in this step is designing the artefact3. In the first
iteration of the design cycle, we provision and deploy a simple infrastructure
from the IaC tools, such as Terraform and Ansible, to make ourselves familiar
with the specific keywords of such tools. Towards the end of the design process,
we add more artefacts, in particular we design an architecture and develop
a Parser to convert the infrastructure-code-specific configuration files into
generic ones representing the infrastructure on a higher level. Finally, we define
infrastructure-independent policy files, written in Rego, to check the previously
created infrastructure for policy compliance.

— Treatment Validation is a phase in which the investigation of the interaction
between the artefact and the problem context takes place. During our design
cycle, we assess how the artefact behaves in different use cases, meaning that
we validate the parsing of TaC files into infrastructure-independent files, and
ensuring OPA detects policy violations through Rego files.

Treatment implementation and evaluation are not included in our design cycle as we
do not study how the artefacts interact in a real-world environment. As suggested
by Wieringa [97], a potential way of executing these two tasks might include artefacts’
interaction with the stakeholders (human evaluators) through surveys.

In conclusion, as illustrated in Figure 4.1, we repeatedly go through the three steps
of the design cycle to answer our research questions. We use an agile development
process, beginning with a small-scale prototype and gradually testing and adding
more features. Additional details on addressing the design tasks are provided in the
next section.

4.2 Domain-agnostic Policy as Code Development

The first design task, as detailed in the previous section, involves provisioning and
deploying a network infrastructure using both Terraform and Ansible, along with

1The context can be, for instance, people, norms, methods. In general, any element interacting
with the artefact [97].

2According to Wieringa [97], the treatment refers to the solution that can potentially solve the
research problem.

3An artefact can be anything designed and created by humans, both as a real, physical object
or an abstract concept. For instance, software, hardware, methods, techniques [98].

4.2. DOMAIN-AGNOSTIC POLICY AS CODE DEVELOPMENT 39

Problem Investigation

Reviewing
literature

] Treatment Design Treatment Validation

Use-case
— assessment of
the artefact

Designing the

artefact

Identifying
challenges

Figure 4.1: The research design cycle, adapted from [98]

defining the Parser and the policy rules. As illustrated in Figure 4.2, the coding
process for the development of APaC is performed using an IDE on a remote host.
However, the design implementation differs slightly for each artefact:

— Infrastructure deployment and provisioning: The code is first submitted
to a GitHub repository for safe version control. The updated code is then
retrieved from a Linux host, where all necessary dependencies are pre-installed.
Here, the infrastructure is provisioned and deployed by executing the Terraform
or Ansible code. The actual infrastructure can be observed and validated
through the providers used in this thesis, Docker or OpenStack. If any issue
arises, the code is updated again from the IDE interface. While this step may
not be fully recognised as a typical research artefact, it was a necessary step
for understanding the relevance of each infrastructure-code-specific keyword,
which is crucial for defining the Parser in the next step, and for serving as a
testbed during its validation.

— Architecture: the architecture, illustrated in the next chapter in Figure 5.1,
is designed, discussed and tested “by hand” from the Linux host.

— APaC, Parser definition: the Parser is developed and validated from the
IDE taking the main.tf file from Terraform or the playbook.yml from Ansible
and converting it into a generic JSON file. The code is submitted to GitHub
only upon reaching significant milestones.

— Policy rules in Rego and OPA validation: The policy rules are written
in Rego and then submitted to GitHub. The newly created policy is retrieved
from a Linux host, and the execution of OPA is evaluated against the predefined
generic JSON file representing the infrastructure. This step is necessary because
the Linux host provides the required dependencies to run the OPA engine. If
any issues occur, the code is updated again from the IDE interface.

In conclusion, this approach provides the necessary tools to understand and apply
the primary principles of IaC and PaC. Continuous Integration is facilitated through

40 4. METHODOLOGY

Windows Host

Developing APaC on Push to
IDE

GitHub Repository

Pull from —— GitHub Action

PR— Logical Action

™. Validating from Linux
In case of any issue .
Terminal

Linux Host

Figure 4.2: Domain-agnostic PaC development

the GitHub repository, ensuring safe and continuous code versioning and validation
for the APaC development. This is needed to demonstrate the feasibility of a
domain-agnostic PaC tool.

Chapter 5

Domain-agnostic Policy as Code

Each Policy as Code tool we have examined functions properly and possesses all the
necessary features to ensure the automation of policy compliance and management.
However, the primary issue we have encountered is that tools like Kics or Checkov
tailor the policy-checking code to specific use cases. For example, Kics may have a
policy-checking file specifically designed for a Terraform infrastructure implementation
deployed on a particular infrastructure provider, such as OpenStack. This approach
leads to significant redundancy in the code and complicates the understanding of
the PaC field, since the Compliance Team needs to know every required keyword or
function of the specific use case. This redundancy leads to numerous files tailored to
each supported use case, differing only in the specific keywords used, while the core
logic remains similar since they check the same policy.

Primary goal of this chapter is to propose an abstract method for checking policies
using generic keywords regardless of the IaC tool or infrastructure provider being
analysed. The infrastructure will be examined using generic terms such as “server”,
“port” or “network” instead of specific ones like “aws_ security group” or functions
from the IaC tool library. This approach potentially allows the same file to check the
same policy across various scenarios. The benefits of this method include reduced
lines of code, increased clarity and awareness of the policies the tool can check,
decreased redundancy, and improved ease of writing and understanding policy files
from the Compliance Team.

5.1 APaC’s architecture

Figure 5.1 depicts the proposed architecture for the development of APaC. Firstly,
a taxonomy needs to be established, defining infrastructure objects (e.g., servers,
networks, ports) with generic keywords. This ensures the taxonomy’s applicability
across various provisioning and deployment platforms.

Secondly, a common infrastructure is defined and implemented on both Terraform
and Ansible, and deployed on Docker and OpenStack. This results in four distinct
implementations of the same infrastructure. It should be noted that while APaC

41

42 5. DOMAIN-AGNOSTIC POLICY AS CODE

Network

Terraform Infrastructure Ansible
(HCL) ';i ; (YAML)
. o 6
T Deployed ///
— _—
\ T~ on.. _— /
& =
_— —
Docker N OpenStack
NN P
NN s
. . Parser to JSON
S SIY Sy SIY (Python)
=) =) N N
Taxonomy i I Module Module Module Module
< Terraform- Terraform- Ansible- Ansible-

Docker Openstack Docker Openstack

Query
' (soN)

Compare the

uery against... —_
query ag " OPAengine

—
_

D Generate a \ x

Policy policy decision
(Rego)

Figure 5.1: Architecture Agnostic Policy as Code (APaC)

focuses on specific IaC tools for the sake of a Proof of Concept, the proposed approach
can easily be extended to support other tools.

The infrastructure code is taken as input by a Parser, which converts the TaC-tool-
and-infrastructure-provider-specific code, written in YAML or HCL, into a generic
format, written in JSON, based on the previously defined taxonomy. This parsing
is applied to each of the four implementations. The Parser’s output will be mostly
the same JSON file for each of the four implementations, thereby proving the tool’s
agnosticism, as the output remains consistent regardless of the input infrastructure
code.

Finally, the OPA engine receives the JSON file as input and compares it against the
Rego file to verify policy compliance of the infrastructure code. Consequently, the
OPA engine generates a policy decision indicating whether the infrastructure adheres
to the defined policy rules.

It is also important to note that the Rego file is defined according to the proposed
taxonomy (c.f., subsection 5.3.1), using the same generic keywords to refer to the
infrastructure.

5.2 The choice of the tools

The presented architecture serves as a Proof of Concept to demonstrate the feasibility
of an abstract PaC tool, referred to as APaC, incorporating all previously discussed
features. Consequently, two widely-used IaC tools, Terraform and Ansible, and two

5.3. IMPLEMENTATION 43

infrastructure providers, Docker and OpenStack, have been selected for infrastructure
provisioning and deployment. These tools were chosen for their widespread usage,
well-maintained documentation®, and ease of implementation within this architecture.

Python is employed for implementing the Parser, the core component of APaC, as it
enables the conversion of infrastructure-specific code written in HCL or YAML into
a generic JSON file representing the infrastructure. The choice of Python is due to
its clean and readable syntax, facilitating easier code writing and comprehension,
along with its extensive ecosystem of libraries and frameworks that streamline Parser
development.

Lastly, the final element of the architecture is provided by OPA, chosen for its
unique ability to natively perform high-level evaluations of policy compliance for
infrastructure code.

Familiarity with these tools was nonexistent, therefore, significant effort was put
into testing and documenting them. This was not always straightforward, which
highlights the importance of having accessible documentation. It further attests the
value of consistency in important matters such as PaC. A more detailed explanation
of the project structure is provided in section A.1.

5.3 Implementation

This section is focused on the implementation of the architecture illustrated in
Figure 5.1. The working flow is explained and a generic understanding is provided.

5.3.1 Definition of a taxonomy

Figure 5.2 illustrates the taxonomy proposed for this project. Generic keywords
representing the infrastructure, regardless of where this is provisioned or deployed,
are introduced and used as a base for referring to the infrastructure in an agnostic
way when checking for policy compliance.

For the sake of simplicity and for an easier understanding, the taxonomy does not
aim to provide a full coverage of every possible network infrastructure scenario; the
aim is, instead, to prove that the creation of common keywords is possible and that
this approach helps in providing a better understanding of the policy compliance
field.

1This documentation has played a significant role in providing the necessary functions and
methods for the implementation of APaC. Specifically, it has guided the deployment on OpenStack
via Ansible [99], on Openstack via Terraform [100], on Docker via Ansible [101] and on Docker via
Terraform [102].

44 5. DOMAIN-AGNOSTIC POLICY AS CODE

Servers Network
interfaces
Aftributes Attributes

- name (string) - name (siring)

- is public

- exposed ports (boolean)

(list)
- server network
interfaces (list)

Virtual Machine % Container %

Figure 5.2: Taxonomy

Two main concepts are defined in our taxonomy: servers and network interfaces. In
the specific context of APaC, a server? is a generic term used to represent a VM (for
OpenStack) or a container (for Docker). In particular, the field name represents the
name of the server itself. The exposed ports field, instead, represents the list of each
port exposed from the server defined above. This is crucial for detecting vulnerable
ports which can cause security issues. Finally, the server network interfaces field
illustrates the list of each network interfaces belonging to the server.

The network interfaces keyword represents, for each network interface of the infras-
tructure, whether such interface is public or not (accessible from outside the network
where the server belongs). A single network interface of the infrastructure represents
an IP address from which the server can communicate to other servers.

5.3.2 Architecture implementation

Based on the taxonomy, a common infrastructure is provisioned and deployed using
both IaC solutions, Terraform and Ansible, and infrastructure providers, OpenStack
and Docker. Hence, we create the same infrastructure in four different ways. This is
achieved by coding the Ansible infrastructure in YAML and the Terraform one in
HCL.

20n a higher level, this may also refer to a software that provides services to another software
or client, such as web servers or database servers.

5.4. VALIDATION AND EVALUATION 45

The next step is to create the Parser coded in Python. This Parser defines the
functions and methods needed to convert the keywords specific to the IaC solution
into the generic ones defined by the Taxonomy in Figure 5.2. The common functions
are only defined once; instead, there is a parsing function for each IaC-infrastructure-
provider-combination. The Parser is executed via the CLI by specifying with which
TaC and provider the Python code itself defines the infrastructure. The input file
where the infrastructure code is located must also be specified, as well as the output
file where the resulting JSON file will be saved. For instance, to convert the Ansible
file playbook.yml, one must specify the path of this file, the IaC solution used (Ansible
in this case), the infrastructure provider (either OpenStack or Docker, in case of
APaC), and the output file path where the JSON file will be generated. The result
of the Parser execution is, therefore, a JSON file representing the infrastructure
regardless of the IaC and provider used. This adaptability allows the code to avoid
hard coding, thereby easily allowing any infrastructure code file to be checked by
specifying its path.

Next, the policy rules are defined in Rego to be evaluated by the OPA. This file,
along with the JSON file generated by the Parser, refers to the infrastructure using
the generic keywords defined by the taxonomy in Figure 5.2. Consequently, the
JSON file generated by the Parser is compared against the Rego file by the OPA
engine. This is done by specifying the paths of both the JSON and Rego files.

Finally, the output of OPA defines the policy decision, indicating whether the
infrastructure complies with the policy rules defined by the Rego file. The output
shows the policy decision and, if the infrastructure is not compliant, it also identifies
which servers caused the violation.

5.4 Validation and Evaluation

This section provides the evaluation details for the implementation of APaC. The
Appendix A, instead, presents the code details.

The infrastructure proposed for this project is illustrated in Figure 5.3 and represents
a simple configuration where three servers belonging to the same network are created.
Among these three instances, server! exposes port 80 and it is accessible from outside
its own network; server2 exposes port 22 and it is not accessible from outside; lastly,
serverd exposes port 443 and it is accessible from outside. As illustrated in Figure 5.1,
such infrastructure is deployed in four different ways: on Docker from Terraform, on
Docker from Ansible, on OpenStack from Terraform and on OpenStack from Ansible.

46 5. DOMAIN-AGNOSTIC POLICY AS CODE

= = =

Servert Server2 Serverd

. exposes port 80 exposes port 22 . exposes port 443
« connected to the Internet « not connected to the Internet « connected to the Internet
« |P address: 192.168.111.10 « |P address: 192.168.111.11 « |Padress: 192.168.111.12

Network1

/A
Routert
\

f

Internet

Figure 5.3: Infrastructure proposed for the PoC of APaC

5.4.1 Infrastructure provisioning and deployment

The four implementations using Terraform, Ansible, Docker, and OpenStack essen-
tially generate the same infrastructure. However, each implementation differs due to
the specific TaC tool and deployment platform employed. Notably, comparing the
infrastructure code in Ansible with that in Terraform reveals distinct approaches and
keywords utilized by each tool, compounded by the fact that they employ different
programming languages. Additionally, differences are evident when comparing the
infrastructure code deployed on Docker versus OpenStack, arising from the distinct
methodologies required by each platform to deploy the same infrastructure.

All these implementations occur policy misconfigurations (exposure of port 22 and 80),
therefore a unified policy checking tool is needed to highlight such misconfigurations
and allow the Compliance Team to identify and correct them.

5.4. VALIDATION AND EVALUATION 47

5.4.2 Parser definition

The Parser serves as the core element of the APaC architecture, enabling the
conversion of specific infrastructure implementation files into a standardized JSON
file. This JSON file can subsequently be compared and evaluated by the Policy
Engine of OPA. The JSON file represents the whole infrastructure using generic
keywords, therefore regardless of the infrastructure code or the deployment platforms
used, this file will always look mostly the same. Moreover, the next elements of this
architecture (OPA and Rego) will perform policy evaluations independently from the
infrastructure’s provisioning and deployment sources.

It is important to note that this Parser does not need to execute Ansible or Terraform
code to generate the standardized JSON file. Instead, it directly transforms the
infrastructure code file by converting each specific keyword into the generic ones
defined in the taxonomy illustrated in Figure 5.2.

Listing 11 represents one of the standardized JSON files generated by the Parser,
representing the infrastructure illustrated in Figure 5.3.

One out of the main powerful features of APaC relies on the Parser, since it easily
allows developers to extend this tool to support other IaC solutions and providers.
This is more clear when looking at the modular implementation of the Parser itself
in the architecture shown in Figure 5.1; a new module, allowing the translation from
a new [aC solution or provider, can easily be placed without any other modification
needed. The already implemented policy rules would seamlessly work on these new
solutions.

5.4.3 Definition of policy rules and compliance checking

The final step before executing the OPA engine is to define the policy with which
the infrastructure must comply. In the context of this thesis, we define a security
policy comprising two rules written in Rego:

1. Servers reachable from the Internet must not expose the insecure HTTP protocol
(port 80).

2. Servers are not allowed to expose the SSH port (port 22).

It is important to notice that this policy rules are just an example. Any kind of
policy rules may be defined in Rego and applied to any infrastructure, due to the
domain-agnostic nature of Rego itself.

This Rego file, illustrated in Listing 12, along with the JSON file generated by the
Parser, refers to the infrastructure using the generic keywords defined in Taxonomy
illustrated in Figure 5.2. Thus, this same file can be applied to each of the four

© 0 N OO s W N

AR R R R W W W W W W W W W W NN NN NN NN NN R e e e e e e e e
BW N H O O 0N OO REWN OO0 ORWN RO OO WwN = O

n

IS
o

48 5. DOMAIN-AGNOSTIC POLICY AS CODE

Listing 11 This JSON file represents the outcome from the Parser execution. The
infrastructure is depicted using the generic keywords defined in the Taxonomy in
Figure 5.2.

{
"servers": [
{
"name": "serverl",
"exposed_ports": [
80
1,

"server_network_interfaces": [
"port_server_1"

]
},
{
"name": "server2",
"exposed_ports": [
22
1,
"server_network_interfaces": [
"port_server_2"
]
},
{
"name": "server3",
"exposed_ports": [
443
1,
"server_network_interfaces": [
"port_server_3"
]
}
1,
"network_interfaces": [
{
"name": "port_server_1",
"is_public": true
},
{
"name": "port_server_2",
"is_public": false
},
{
"name": "port_server_3",
"is_public": true
}
1

© 0w N o s W N =

W OW NN NN NN NN NN =R R s e e e e
= O © 0 9 0 A WK RO © W N R W N = O

32
33
34
35
36
37
38
39
40
41

5.4. VALIDATION AND EVALUATION 49

Listing 12 Rego file describing the policy rules previously defined. This file verifies
any violations by initially checking for servers exposing port 22, followed by checking
for any servers exposing port 80 while permitting communication from external
networks. Each time a violation is detected, a counter is incremented. If the counter
registers at least one violation, it outputs a negative response, highlighting the specific
rules being violated.

package example

import rego.vl

default allow := false
allow if {

count (violation) ==

violation contains server.name if {
some server
public_servers[server]
server.exposed_ports[_] == 80

violation contains server.name if {
server := input.servers[_]

server.exposed_ports[_] == 22

public_servers contains server if {

some i, j
server := input.serversl[_]
input.servers[i] .network_interfaces[_] == input.network_interfaces[j].name
input.network_interfaces[j].is_public
}
METADATA

title: Exposure of vulnerable ports 22 and 80

description: Port 22 must not be exposed. Port 80 must not be exposed if the server
— 1is accessible from outside its own network

output := decision if {

count (violation) > 0

annotation := rego.metadata.rule()
decision := {
"title": annotation.title,
"message": annotation.description,

"violations": violation

N O Ut W N =

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23

50 5. DOMAIN-AGNOSTIC POLICY AS CODE

Listing 13 JSON file representing the policy decision from OPA
{

"result": [
{
"expressions": [
{
"value": {
"message": "Port 22 must not be exposed. Port 80 must not be exposed if
«— the server is accessible from outside its own network",
"title": "Exposure of vulnerable ports 22 and 80",
"violations": [
"serverl",
"server2"
]
1},
"text": "data.example.output",
"location": {
"row": 1,
"col": 1

previously provided implementations. It enforces the policy defined above using Rego
syntax rules.

The OPA engine processes the JSON file representing the infrastructure and evaluates
it against the Rego file. Finally, a policy decision is generated, indicating whether the
infrastructure complies with the defined policy rules. This decision is encapsulated in
a JSON file, which specifies, among other details, whether the infrastructure complies
with the policy and, if it does not, identifies the servers responsible for the violation.
These servers are accurately identified as server! and server2.

5.5 Summary

This section analyses the results obtained from APaC and compares it against the
approach adopted by the modern PaC solutions, such as Kics or Checkov, to prove
the importance and the potential of such architecture (Figure 5.1).

5.5.1 Results

In the infrastructure depicted in Figure 5.3, it is evident that serverl and server2 do
not adhere to one or both security policy rules previously defined, whereas server3

5.5. SUMMARY 51

fulfills both rules. As a matter of fact Listing 13, representing from the execution of
APaC, shows that the infrastructure violates the policy rules outlined in Listing 12.
Moreover, it correctly identifies the servers that caused such violation, namely serveri
and server2.

We have demonstrated the feasibility of creating a Policy as Code tool that operates
independently of the platform used for network infrastructure creation and manage-
ment. Specifically, APaC addresses both infrastructure and policy management in a
platform-agnostic manner. This abstraction of network elements is achieved through
the Parser, which removes the specificity of the infrastructure code, and through
OPA’s effective utilization of Rego and its high-level principles.

We have reached a valuable level of abstraction, which potentially reduce the lines of
code and complexity in a more advanced PaC tool. The Parser itself may be written
in any language, as long as the output is a JSON file. Speaking of which, the JSON
file remains the only non-abstract component of APaC, as OPA requires it as input.

This domain independence is further exemplified in the project structure used for
APaC (c.f., as detailed in section A.1) where the OPA and Parser logic is independent
from the infrastructure code. As a matter of fact, any infrastructure code that may
be provided, among the solutions defined in the Parser (i.e., Terraform, Ansible,
OpenStack and Docker), would be checked for policy rule compliance without needing
to modify the Parser or the policy compliance code. Thus, only a single Rego file
would be used to enforce the same policy across various scenarios.

5.5.2 APaC compared to Kics

In chapter 3 we analysed the features and the main issues of some of the most used
PaC tools, such as Kics and Checkov. By having another look at one of the Rego
file implemented by Kics and illustrated in Listing 9, we may notice that this file
performs a policy checking rule, i.e. HT'TP port 80 must not be exposed, specifically
designed for an AWS deployment on a Terraform file. Kics implements the same rule
for each IaC solution (Terraform, Ansible, CloudFormation, Pulumi and the other
solutions supported) and for each infrastructure provider. Consequently, using Kics’s
approach results in four different Rego files for checking the same policy rule: one
for each combination of Terraform, Ansible and Docker, OpenStack.

On the other hand, the Rego file implemented in APaC works for any infrastructure
code among the ones implemented in the architecture depicted in Figure 5.1.

Comparing the two approaches shows that to implement the same policy, Kics requires
as many Rego files as the number of combinations between the IaC solutions and
infrastructure providers supported. For instance, if Kics wants to verify compliance
across two different IaC tools and two different infrastructure providers, it must

52 5. DOMAIN-AGNOSTIC POLICY AS CODE

provide four different Rego files to check the same policy. Generally, the number of
Rego files needed to implement the same policy rule across each supported platform
is given by the product of the number of IaC solutions supported and the number
of infrastructure providers supported. In contrast, the number of Rego files needed
to implement the same policy rule across the infrastructure provided in APaC will
always be one. In case a new solution needs to be supported by APaC, only a module
in the Parser that supports such an IaC solution or provider is required. Neither the
Rego file nor the structure of the JSON file generated by the Parser would need to
be changed, as they are independent of the platforms where the infrastructure code
is defined.

APaC offers a more efficient and less redundant way of checking the same policy
across different platforms, due to the domain-agnostic features of the architecture
proposed in Figure 5.1.

5.5.3 Final remarks

As previously mentioned, the policy rules implemented in APaC serve as an example
to demonstrate the potential of this architecture and to validate its functionality.
Any type of policy can be implemented by leveraging the domain-agnostic feature
natively supported by Rego. These new policies would integrate seamlessly with
the rest of the architecture, due to the independence of OPA and Rego from the
infrastructure code solutions.

Additionally, we have demonstrated the necessity of a Parser for each IaC tool
and cloud provider to generate a JSON file that represents the infrastructure in an
abstract manner. Consequently, new tools can be seamlessly and easily supported by
defining a new module in the Parser definition.

To achieve this, we combined several tools and implemented the proposed architecture.
The evaluation has proven the effectiveness and power of APaC. The comparison
with existing PaC tools has provided us with a deeper understanding of the potential
improvements for these tools. APaC effectively addresses the main issues of tools
such as Kics or Checkov and provides a solid foundation for developing a new PaC
tool, incorporating all the features discussed in this chapter. This may be achieved
by expanding the number of supported infrastructure solutions (not only limited
to Ansible, Terraform, Docker and OpenStack), enhancing the modularity of the
Parser, and implementing more policy rules to ensure comprehensive compliance and
security reliability.

Chapter 6

Discussion and Conclusion

Throughout this thesis, we captured the definitions of IaC as well as of PaC and
how they can be integrated in the DevOps methodology to enhance efficiency,
consistency, and governance. In particular, we assessed and discussed that they
allow a significant degree of automation both in the provisioning and deployment of
network infrastructures, and in the enforcement of policy compliance. Starting from
this knowledge we have analysed benefits and drawbacks of the current PaC solutions
and how they could be improved. Finally, in chapter 5, we have proposed a PoC
showing the potential of an abstract Policy as Code solution, referred to as APaC,
which is fundamental for reducing code redundancy and enhancing the efficiency of
such a tool.

6.1 Discussion

In this section, we reflect on the possible implications and constraints of the research
presented in this thesis. Furthermore, we examine potential avenues for improving
our findings.

6.1.1 The scope of the thesis

The primary objective of this thesis is to demonstrate the potential of a domain-
agnostic approach to represent policy enforcement through a PaC solution, and
apply policy compliance and checking to heterogeneous IaC-based environments. To
achieve this goal, our scope converged towards modern PaC solutions, such as Kics
and Checkov. Nevertheless, we soon realised how ‘rigid’ these solutions are, since
they require specific policy implementations for each combination of IaC tool and
infrastructure provider, in spite of their modular architectures. This leads to high
redundancy in the code, since the same policy may have to be implemented several
times with few differences in the lines of code. The same difficulty occurs when a
policy needs to be updated and re-evaluated, which is an important practice.

93

54 6. DISCUSSION AND CONCLUSION

By narrowing the scope of the current State of the Art of PaC, we found out that
the tool with the most promising features in the terms of abstraction of policies
definition and enforcement is Open Policy Agent, which should only require a Parser
for converting tailored-IaC configuration files into a generic JSON representation
of the same infrastructure. With this in mind, we implemented APaC where we
defined a prototype taxonomy to represent an example infrastructure. The latter was
provisioned and deployed following a DevOps mindset, using two IaC tools (Terraform
and Ansible) and two infrastructure providers (Docker and OpenStack), resulting
in four different setups. We defined and implemented a Parser to convert these
distinct infrastructure code files into a high-level JSON file, representing the very
same infrastructure. The Parser converts the infrastructure code directly, without
requiring execution. This is beneficial because it allows for policy compliance checks
during the planning or design phase, eliminating the need to deploy the infrastructure
beforehand. Finally, the resulting JSON file has been evaluated against a policy file,
written in Rego, and embedding the same abstraction level.

We demonstrated that it is possible to define a PaC solution which is not tailored to
any specific infrastructure code. The main benefit out of this, is that this same policy
file may be reused countless times against any infrastructure code solution, as long
as the proper Parser module is defined, according to the infrastructure defined in
Figure 5.1. Hence, this allows defining and updating a policy one time only, reusing
it multiple times, enhancing the understanding and effective application of policy
rules by the Compliance Team.

With current PaC tools, if a new IaC solution appears in the market, or if a new
solution is adopted by a company, the Compliance Team and policy enforcement
mechanisms will likely have to re-define, or at least re-implement, every single policy
from scratch. This situation becomes even problematic if multiple IaC solutions are
used simultaneously (e.g., between different Development Teams). Using a domain-
agnostic solution, such as APaC, the Compliance Team would just require the
Parser module from converting the infrastructure code of each specific solution into
the standardised file, representing the infrastructure with abstract well-understood
keywords. Existing policy rules and their implementations would be independent of
the IaC platforms and remain valid. It is worth noticing that the implementation
of APaC, proposed in chapter 5, only represents a Proof of Concept implementing
a working solution for four tools (i.e., Terraform, Ansible, OpenStack and Docker).
Nevertheless, the tool may easily be extended, requiring only the implementation
of an adequate Parser module. Similarly, the used taxonomy and defined policies
serve as a PoC only, but can easily be extended using the domain-agnostic features
provided by Rego.

6.2. SUMMARY OF FINDINGS 55

6.1.2 Limitations and future research

A dependency of our APaC is the JSON file required by OPA to evaluate the
infrastructure against policy rules. This file must be in JSON format due to OPA’s
inherent architecture. However, JSON is a well-known and flexible format, allowing
users to define their own structure, taxonomy, and policy rules implementation. Our
primary dependencies are OPA and the Rego policy language. Nonetheless, the APaC
implementation separates the Parser from OPA, making it possible to implement
other PEs easily.

The evaluation of a server’s accessibility outside its network (e.g., directly in the code,
or even through forwarding or routing) is based on certain assumptions that suffice
for this PoC (c.f., section A.4). A thorough assessment in a realistic environment
would require a more detailed definition, and the selection of infrastructure providers
may significantly impact this effort due the different approaches to infrastructure
deployment and available APIs. The challenge in representing these differences into
abstract principles would require a comprehensive taxonomy for systematically clas-
sifying Infrastructure as Code concepts and their equivalent from different providers,
which is out of the scope of this thesis. In addition, this effort would potentially
require a full ontology design to represent not only the concepts and categories, but
also the relation between them.

From an implementation perspective, future steps may involve expanding the tax-
onomy to include all the main concepts and elements relevant to an infrastructure
provider, such as network devices (routers, switches, firewalls, access points) or
network security components (VPN, IDS/IPS, authentication servers). With these
concepts, it would be possible to consider connections and dependencies among
different infrastructure elements. An intriguing and promising approach to address
this is seen Checkov’s graph-based policy definition (c.f., section 3.2), which would
have to be extended to Rego. Additionally, supporting the parsing of more IaC
tools and infrastructure provider solutions would be essential to consider this tool
in an enterprise environment. Similarly, the implementation of the most common
and important policy rules in Rego, would be a desirable feature to promote a quick
adoption by interested parties. Such policies would be shared and scrutinised by all
users, exploiting the domain-agnostic nature of our solution.

6.2 Summary of Findings

In this section, we highlight the key contributions achieved while creating APaC.
Moreover, we provide an overview of the main findings obtained by answering the
research questions.

56 6. DISCUSSION AND CONCLUSION

RQ1: What is the current status of Infrastructure as Code, which tools
are most popular, and how are they used in practice?

To address this research question, we conducted a literature review to identify the key
principles of software development where IaC is utilized. We then performed an in-
depth analysis of two primary IaC tools, Ansible and Terraform, to understand their
main features and functionalities. Specifically, tools like Terraform and Ansible focus
on the automation and configuration aspects of the provisioning layer. Teams use these
tools to write configuration files that describe the desired state of the infrastructure,
which are then version-controlled, reviewed, and tested before deployment.

RQ2: What is the current status of Policy as Code, which tools are most
popular, and how are they used in practice?

Upon reviewing the relevant literature, we found that PaC is an evolving practice that
integrates policy enforcement and compliance into the development and operations
workflow. This approach aligns with the principles of IaC and DevOps, promoting
automation, consistency, and transparency. We analyzed in detail two key open-
source tools, namely Kics and Checkov, to identify the main features and limitations
of current implementations. However, the most notable tool was OPA, which is
also used by Kics and allows users to define policies using Rego, a domain-agnostic
language for policy definition.

RQ3: What tools do we need to define a domain-agnostic architecture
and how would this be used in practice?

Based on an analysis of relevant research and the primary limitations of current PaC
solutions, we proposed the implementation of APaC, i.e., a domain-agnostic PaC
solution, demonstrating an efficient and modular approach to policy compliance. The
tools chosen for assessing APaC were Terraform, Ansible, Docker, and OpenStack. A
parser was developed to translate IaC-specific configuration files into generic JSON
files, using Python as the programming language. For policy checking, we utilized
OPA and its language Rego, due to its high level of abstraction.

The proposed architecture is modular and involves defining the policy rules against
which the infrastructure code will be checked. The execution of APaC begins by
parsing an IaC-specific file, translating it into a platform-independent format, based
on a given taxonomy. This is then checked against the predefined policy rules for
compliance. The final output indicates whether the provided infrastructure code
adheres to the specified policies or not.

Bibliography

M. Guerriero, M. Garriga, et al., “Adoption, support, and challenges of infrastructure-
as-code: Insights from industry”, in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), ISSN: 2576-3148, Sep. 2019, pp. 580-589.
[Online]. Available: https://ieeexplore.ieee.org/abstract /document /8919181 (last
visited: Mar. 8, 2024).

J. Sandobalin, E. Insfran, and S. Abrah&o, “On the effectiveness of tools to support
infrastructure as code: Model-driven versus code-centric”, IEEE Access, vol. 8,
pp. 17734-17761, 2020, Conference Name: IEEE Access. [Online]. Available: https:
//ieeexplore.ieee.org/document /8959180 (last visited: Mar. 8, 2024).

A. Dalvi, “Cloud infrastructure self service delivery system using infrastructure
as code”, in 2022 International Conference on Computing, Communication, and
Intelligent Systems (ICCCIS), Nov. 2022, pp. 1-6. [Online]. Available: https://ieeex
plore.ieee.org/document /10037603 (last visited: Mar. 8, 2024).

“Terraform by HashiCorp”, Terraform by HashiCorp. (2024), [Online]. Available:
https://www.terraform.io/ (last visited: May 6, 2024).

“Homepage | ansible collaborative”. (2024), [Online]. Available: https://www.ansible
.com/ (last visited: May 6, 2024).

“Chef software DevOps automation solutions | chef”, Chef Software. (2024), [Online].
Available: https://www.chef.io/ (last visited: May 21, 2024).

“Puppet infrastructure & IT automation at scale | puppet by perforce”. (2024),
[Online]. Available: https://www.puppet.com/ (last visited: May 21, 2024).

“Packer by HashiCorp”, Packer by HashiCorp. (2024), [Online|. Available: https://w
ww.packer.io/ (last visited: May 21, 2024).

“Cloudify documentation center | cloudify documentation center”. (2024), [Online].
Available: https://docs.cloudify.co/ (last visited: May 21, 2024).

“Cloud computing services - amazon web services (AWS)”, Amazon Web Services,
Inc. (2024), [Online]. Available: https://aws.amazon.com/ (last visited: May 22,
2024).

“Cloud computing services”, Google Cloud. (2024), [Online]. Available: https://clou
d.google.com/ (last visited: May 22, 2024).

“Cloud computing services | microsoft azure”. (2024), [Online]. Available: https://az
ure.microsoft.com/en-us (last visited: May 22, 2024).

“Open source cloud computing infrastructure”, OpenStack. (2024), [Online]. Available:
https://www.openstack.org/ (last visited: May 28, 2024).

o7

https://ieeexplore.ieee.org/abstract/document/8919181
https://ieeexplore.ieee.org/document/8959180
https://ieeexplore.ieee.org/document/8959180
https://ieeexplore.ieee.org/document/10037603
https://ieeexplore.ieee.org/document/10037603
https://www.terraform.io/
https://www.ansible.com/
https://www.ansible.com/
https://www.chef.io/
https://www.puppet.com/
https://www.packer.io/
https://www.packer.io/
https://docs.cloudify.co/
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us
https://www.openstack.org/

58 BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[19]

[20]

“Docker: Accelerated container application development”. (May 10, 2022), [Online].
Available: https://www.docker.com/ (last visited: May 28, 2024).

Y. Matharu. “Introduction to policy as code with automation”. Publisher: Red Hat,
Inc. Section: Enable Sysadmin. (Dec. 16, 2022), [Online|. Available: https://www.re
dhat.com/sysadmin/policy-as-code-automation (last visited: Mar. 16, 2024).

“Unit 42 cloud threat report”. (2024), [Online]. Available: https://start.paloaltonet
works.com/unit-42-cloud-threat-report (last visited: Apr. 24, 2024).

“Social sustainability | UN global compact”. (2024), [Online]. Available: https://ung
lobalcompact.org/what-is-gc/our-work/social (last visited: Jun. 27, 2024).

“THE 17 GOALS | sustainable development”. (2024), [Online]. Available: https://sd
gs.un.org/goals (last visited: Jun. 27, 2024).

“Social sustainability | UN global compact”. (2024), [Online]. Available: https://ung
lobalcompact.org/what-is-gc/our-work/social (last visited: Jun. 27, 2024).

S. Pandya and R. Guha Thakurta, Introduction to Infrastructure as Code: A Brief
Guide to the Future of DevOps. Berkeley, CA: Apress, 2022. [Online]. Available:
https://link.springer.com/10.1007/978-1-4842-8689-0 (last visited: Mar. 8, 2024).

@HashiCorp. “HashiCorp state of cloud”, HashiCorp. (2024), [Online]. Available:
https://www.hashicorp.com/state-of-the-cloud (last visited: Jun. 5, 2024).

“Amazon.com. spend less. smile more.” (2024), [Online]. Available: https://www.am
azon.com/ (last visited: May 21, 2024).

“Netflix Norway — watch shows online, watch movies online”. (2024), [Online].
Available: https://www.netflix.com/no/ (last visited: May 21, 2024).

“Google”. (2024), [Online]. Available: https://www.google.no/ (last visited: May 21,
2024).

I. Kumara, M. Garriga, et al., “The do’s and don’ts of infrastructure code: A
systematic gray literature review”, Information and Software Technology, vol. 137,
p. 106 593, Sep. 1, 2021. [Online]. Available: https://www.sciencedirect.com/science
/article/pii/S0950584921000720 (last visited: Mar. 8, 2024).

M. K. Bali and R. Walia, “Enhancing efficiency through infrastructure automation:
An in-depth analysis of infrastructure as code (IaC) tools”, in 2023 International
Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Nov.
2023, pp. 857-863. [Online]. Available: https://ieeexplore.ieee.org/document /104251
62 (last visited: Mar. 8, 2024).

K. Morris, Infrastructure as Code: Managing Servers in the Cloud, 1st. O’Reilly
Media, Inc., May 2016, 362 pp.

“Swarm mode overview”, Docker Documentation. (2024), [Online]. Available: https:
//docs.docker.com/engine/swarm/ (last visited: May 21, 2024).

“Production-grade container orchestration”. (2024), [Online|. Available: https://kub
ernetes.io/ (last visited: May 21, 2024).

“Design for azure cloud”, Argon Systems. (2024), [Online]. Available: https://argons
ys.com/ (last visited: May 21, 2024).

https://www.docker.com/
https://www.redhat.com/sysadmin/policy-as-code-automation
https://www.redhat.com/sysadmin/policy-as-code-automation
https://start.paloaltonetworks.com/unit-42-cloud-threat-report
https://start.paloaltonetworks.com/unit-42-cloud-threat-report
https://unglobalcompact.org/what-is-gc/our-work/social
https://unglobalcompact.org/what-is-gc/our-work/social
https://sdgs.un.org/goals
https://sdgs.un.org/goals
https://unglobalcompact.org/what-is-gc/our-work/social
https://unglobalcompact.org/what-is-gc/our-work/social
https://link.springer.com/10.1007/978-1-4842-8689-0
https://www.hashicorp.com/state-of-the-cloud
https://www.amazon.com/
https://www.amazon.com/
https://www.netflix.com/no/
https://www.google.no/
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://www.sciencedirect.com/science/article/pii/S0950584921000720
https://ieeexplore.ieee.org/document/10425162
https://ieeexplore.ieee.org/document/10425162
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://kubernetes.io/
https://argonsys.com/
https://argonsys.com/

[41]

42]

(43]

[44]

(45]

BIBLIOGRAPHY 59

“CNCF landscape”. (2024), [Online]. Available: https://landscape.cncf.io/ (last
visited: May 22, 2024).

HashiCorp. “HashiCorp | the infrastructure cloud company”, HashiCorp | The
Infrastructure Cloud Company. (2024), [Online]. Available: https://www.hashicorp
.com/ (last visited: May 22, 2024).

“DigitalOcean | cloud infrastructure for developers”. (2024), [Online]. Available:
https://www.digitalocean.com/ (last visited: May 22, 2024).

“Helm”. (2024), [Online]. Available: https://helm.sh/ (last visited: May 22, 2024).

“Tutorials | terraform | HashiCorp developer”, Tutorials | Terraform | HashiCorp
Developer. (2024), [Online]. Available: https://developer.hashicorp.com/terraform/t
utorials/aws-get-started/infrastructure-as-code (last visited: May 22, 2024).

L. Berton, Ansible for Kubernetes by Example: Automate Your Kubernetes Cluster
with Ansible. Berkeley, CA: Apress, 2023. [Online]. Available: https://link.springer.c
om/10.1007/978-1-4842-9285-3 (last visited: Mar. 14, 2024).

“OpenSSH”. (2024), [Online]. Available: https://www.openssh.com/ (last visited:
May 22, 2024).

“Welcome to python.org”, Python.org. (May 8, 2024), [Online]. Available: https://w
ww.python.org/ (last visited: May 21, 2024).

“INI cheat sheet & quick reference”, QuickRef.ME. (2024), [Online]. Available:
https://quickref.me/ini.html (last visited: May 29, 2024).

“Infrastructure as code provisioning tool - AWS CloudFormation - AWS”, Amazon
Web Services, Inc. (2024), [Online]. Available: https://aws.amazon.com/cloudforma
tion/ (last visited: May 23, 2024).

“Ruby programming language”. (2024), [Online]. Available: https://www.ruby-lang
.org/en/ (last visited: May 23, 2024).

“Develop, deploy & manage high-impact business apps | progress software”, Progress.com.

(2024), [Online]. Available: https://www.progress.com/ (last visited: May 23, 2024).

“Pulumi - infrastructure as code in any programming language”, pulumi. (2024),
[Online]. Available: https://www.pulumi.com/ (last visited: May 23, 2024).

“JavaScript with syntax for types.” (2024), [Online]. Available: https://www.typescr
iptlang.org/ (last visited: May 23, 2024).

“Learn JavaScript online - courses for beginners - javascript.com”. (2024), [Online].
Available: https://www.javascript.com/ (last visited: May 23, 2024).

“The go programming language”. (2024), [Online]. Available: https://go.dev/ (last
visited: May 23, 2024).

“.NET | Costruire. Test. Distribuisci.”, Microsoft. (2024), [Online]. Available: https:
//dotnet.microsoft.com/it-it/ (last visited: May 23, 2024).

“Saltproject.io”. (2024), [Online]. Available: https://saltproject.io/ (last visited:
May 23, 2024).

https://landscape.cncf.io/
https://www.hashicorp.com/
https://www.hashicorp.com/
https://www.digitalocean.com/
https://helm.sh/
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/infrastructure-as-code
https://link.springer.com/10.1007/978-1-4842-9285-3
https://link.springer.com/10.1007/978-1-4842-9285-3
https://www.openssh.com/
https://www.python.org/
https://www.python.org/
https://quickref.me/ini.html
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/
https://www.progress.com/
https://www.pulumi.com/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.javascript.com/
https://go.dev/
https://dotnet.microsoft.com/it-it/
https://dotnet.microsoft.com/it-it/
https://saltproject.io/

60 BIBLIOGRAPHY

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

“Policy language”, Open Policy Agent. (2024), [Online]. Available: https://www.ope
npolicyagent.org/docs/latest /policy-language,/ (last visited: May 21, 2024).

“Home page | SOC2”. (2024), [Online]. Available: https://soc2.co.uk/?language=en
(last visited: May 21, 2024).

“CIS”, CIS. (2024), [Online]. Available: https://www.cisecurity.org (last visited:
May 21, 2024).

“PCI data security standard (PCI DSS)”, PCI Security Standards Council. (2024),
[Online]. Available: https://www.pcisecuritystandards.org/standards/pci-dss/ (last
visited: May 21, 2024).

14:00-17:00. “ISO/IEC 27001:2022”, ISO. (2024), [Online]. Available: https://www.i
so.org/standard /27001 (last visited: May 21, 2024).

J. Henriques, F. Caldeira, et al., “An automated closed-loop framework to enforce
security policies from anomaly detection”, Computers € Security, vol. 123, p. 102949,
Dec. 1, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii
/S0167404822003418 (last visited: Jun. 13, 2024).

“Philosophy”, Open Policy Agent. (2024), [Online]. Available: https://www.openpoli
cyagent.org/docs/latest/philosophy/ (last visited: May 21, 2024).
“Configuration management system software - chef infra | chef”, Chef Software.

(2024), [Online]. Available: https://www.chef.io/products/chef-infra (last visited:
Jun. 6, 2024).

“CNCF landscape”. (2024), [Online]. Available: https://landscape.cncf.io/guide#int
roduction (last visited: Jun. 13, 2024).

“Trivy home”, Trivy. (2024), [Online]. Available: https://trivy.dev/ (last visited:
May 22, 2024).

Quay/clair, original-date: 2015-11-13T18:46:16Z, Jun. 13, 2024. [Online]. Available:
https://github.com/quay/clair (last visited: Jun. 13, 2024).
Notaryproject/notation, original-date: 2020-04-20T16:56:00Z, Jun. 12, 2024. [Online].
Available: https://github.com/notaryproject/notation (last visited: Jun. 13, 2024).
Falcosecurity/falco, original-date: 2016-01-19T21:58:12Z, Jun. 13, 2024. [Online].
Available: https://github.com/falcosecurity /falco (last visited: Jun. 13, 2024).
“Introduction”, Open Policy Agent. (2024), [Online]. Available: https://www.openp
olicyagent.org/docs/latest/ (last visited: Mar. 18, 2024).

“KICS”. (2024), [Online]. Available: https://docs.kics.io/latest/ (last visited: May 6,
2024).

Checkov contributors, Checkov, Accessed 2024-05-22, 2024. [Online]. Available: https

://www.checkov.io/.

“Policy as code | sentinel | HashiCorp developer”, Policy as Code | Sentinel |
HashiCorp Developer. (2024), [Online]. Available: https://developer.hashicorp.com
/sentinel /docs/concepts/policy-as-code (last visited: Mar. 18, 2024).

https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://soc2.co.uk/?language=en
https://www.cisecurity.org
https://www.pcisecuritystandards.org/standards/pci-dss/
https://www.iso.org/standard/27001
https://www.iso.org/standard/27001
https://www.sciencedirect.com/science/article/pii/S0167404822003418
https://www.sciencedirect.com/science/article/pii/S0167404822003418
https://www.openpolicyagent.org/docs/latest/philosophy/
https://www.openpolicyagent.org/docs/latest/philosophy/
https://www.chef.io/products/chef-infra
https://landscape.cncf.io/guide#introduction
https://landscape.cncf.io/guide#introduction
https://trivy.dev/
https://github.com/quay/clair
https://github.com/notaryproject/notation
https://github.com/falcosecurity/falco
https://www.openpolicyagent.org/docs/latest/
https://www.openpolicyagent.org/docs/latest/
https://docs.kics.io/latest/
https://www.checkov.io/
https://www.checkov.io/
https://developer.hashicorp.com/sentinel/docs/concepts/policy-as-code
https://developer.hashicorp.com/sentinel/docs/concepts/policy-as-code

(78]

[79]

BIBLIOGRAPHY 61

“An overview of chef InSpec”. (2024), [Online]. Available: https://docs.chef.io/inspec/
(last visited: May 23, 2024).

“Policy as code”, pulumi. (2024), [Online]. Available: https://www.pulumi.com/docs
/using-pulumi/crossguard/ (last visited: May 23, 2024).

“Kyverno”. (2024), [Online]. Available: https://kyverno.io/ (last visited: Jun. 13,
2024).

“Enterprise policy as code (EPAC)”. (2024), [Online]. Available: https://azure.githu
b.io/enterprise-azure-policy-as-code/ (last visited: Jun. 13, 2024).

“Bridgecrew”, GitHub. (2024), [Online]. Available: https://github.com/bridgecrewio
(last visited: May 24, 2024).

“Prisma cloud | comprehensive cloud security”, Palo Alto Networks. (2024), [Online].
Available: https://www.paloaltonetworks.com/prisma/cloud (last visited: May 24,
2024).

“Serverless framework: Build apps on AWS lambda”. (2024), [Online]. Available:
https://serverless.com/framework (last visited: May 24, 2024).

“What is checkov? - checkov”. (2024), [Online]. Available: https://www.checkov.io
/1.Welcome/What%20is%20Checkov.html (last visited: May 24, 2024).
“Announcing checkov 2.0: Deepening open source IaC security”, Palo Alto Networks
Blog. (Apr. 8, 2021), [Online]. Available: https://www.paloaltonetworks.com/blog/p

risma-cloud/checkov-2-deepening-open-source-iac-security,/ (last visited: May 24,
2024).

“Checkov/checkov /terraform/checks/resource/aws/Security GroupUnrestrictedIngress80.py

at main - bridgecrewio/checkov”. (2024), [Online]. Available: https://github.com/b
ridgecrewio/checkov/blob/main/checkov/terraform/checks/resource/aws/Securit
yGroupUnrestrictedIngress80.py (last visited: Jun. 6, 2024).

“Styra”, Styra. (2024), [Online]. Available: https://www.styra.com/ (last visited:
May 27, 2024).

Scott Surovich and Marc Boorshtein, Kubernetes and Docker - An Enterprise Guide
: Effectively Containerize Applications, Integrate Enterprise Systems, and Scale
Applications in Your Enterprise. Birmingham, UK: Packt Publishing, 2020. [Online].
Available: https://search.ebscohost.com/login.aspx?direct=true&db=nlebk& AN=26
50829&site=ehost-live&scope=site (last visited: Jun. 13, 2024).

“The rego playground”. (2024), [Online]. Available: https://play.openpolicyagent.or
g/p/00oVIO0zJx7q (last visited: Jun. 6, 2024).

“What is java and why do i need it?” (2024), [Online]. Available: https://www.java
.com/en/download/help/whatis_ java.html (last visited: Jun. 13, 2024).

“Application security testing tool | software security testing solutions | checkmarx”,
Checkmarx.com. (2024), [Online]. Available: https://checkmarx.com/ (last visited:
May 23, 2024).

“Architecture - Kics”. (2024), [Online]. Available: https://docs.kics.io/latest /archite
cture/ (last visited: May 23, 2024).

https://docs.chef.io/inspec/
https://www.pulumi.com/docs/using-pulumi/crossguard/
https://www.pulumi.com/docs/using-pulumi/crossguard/
https://kyverno.io/
https://azure.github.io/enterprise-azure-policy-as-code/
https://azure.github.io/enterprise-azure-policy-as-code/
https://github.com/bridgecrewio
https://www.paloaltonetworks.com/prisma/cloud
https://serverless.com/framework
https://www.checkov.io/1.Welcome/What%20is%20Checkov.html
https://www.checkov.io/1.Welcome/What%20is%20Checkov.html
https://www.paloaltonetworks.com/blog/prisma-cloud/checkov-2-deepening-open-source-iac-security/
https://www.paloaltonetworks.com/blog/prisma-cloud/checkov-2-deepening-open-source-iac-security/
https://github.com/bridgecrewio/checkov/blob/main/checkov/terraform/checks/resource/aws/SecurityGroupUnrestrictedIngress80.py
https://github.com/bridgecrewio/checkov/blob/main/checkov/terraform/checks/resource/aws/SecurityGroupUnrestrictedIngress80.py
https://github.com/bridgecrewio/checkov/blob/main/checkov/terraform/checks/resource/aws/SecurityGroupUnrestrictedIngress80.py
https://www.styra.com/
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2650829&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=2650829&site=ehost-live&scope=site
https://play.openpolicyagent.org/p/OoVJOzJx7q
https://play.openpolicyagent.org/p/OoVJOzJx7q
https://www.java.com/en/download/help/whatis_java.html
https://www.java.com/en/download/help/whatis_java.html
https://checkmarx.com/
https://docs.kics.io/latest/architecture/
https://docs.kics.io/latest/architecture/

62 BIBLIOGRAPHY

[87]

[38]

[89]

[90]

[91]

[92]

[96]

“Dockerfile reference”, Docker Documentation. (2024), [Online]. Available: https://d
ocs.docker.com/reference/dockerfile/ (last visited: May 23, 2024).

“Kics/assets/queries/terraform/aws/http_ port_ open/test/positive.tf at master -
checkmarx/kics”. (2024), [Online|. Available: https://github.com/Checkmarx/kics
/blob/master /assets/queries/terraform/aws/http__port__open/test/positive.tf (last
visited: Jun. 6, 2024).

“Kics/assets/queries/terraform/aws/http__port_open/query.rego at master - check-
marx/kics”. (2024), [Online]. Available: https://github.com/Checkmarx/kics/blob
/master/assets/queries/terraform/aws/http_ port_ open/query.rego (last visited:
Jun. 6, 2024).

“Kics/assets/queries/terraform/aws/http_ port_ open/metadata.json at master -
checkmarx/kics”. (2024), [Online|. Available: https://github.com/Checkmarx/kics
/blob/master/assets/queries/terraform/aws/http_ port_open/metadata.json (last
visited: Jun. 6, 2024).

“Kics/docs/queries.md at master - checkmarx/kics”. (2024), [Online]. Available:
https://github.com/Checkmarx/kics/blob/master/docs/queries.md (last visited:
May 23, 2024).

“Identity verification solutions & forensic devices by regula”, Regula. (2024), [Online].
Available: https://regulaforensics.com/ (last visited: May 24, 2024).

“Jenkins”, Jenkins. (2024), [Online]. Available: https://www.jenkins.io/ (last visited:
May 24, 2024).

“Get started with GitLab CI/CD | GitLab”. (2024), [Online]. Available: https://doc
s.gitlab.com/ee/ci/ (last visited: Jun. 7, 2024).

“GitHub actions documentation”, GitHub Docs. (2024), [Online]. Available: https:
//docs.github.com/en/actions (last visited: Jun. 7, 2024).

Checkmarz/kics, original-date: 2020-07-08T21:46:15Z, May 24, 2024. [Online]. Avail-
able: https://github.com/Checkmarx/kics (last visited: May 25, 2024).

“Bridgecrewio/checkov: Prevent cloud misconfigurations and find vulnerabilities
during build-time in infrastructure as code, container images and open source
packages with checkov by bridgecrew.” (2024), [Online]. Available: https://github.co
m/bridgecrewio/checkov/tree/main (last visited: May 25, 2024).

“Overview - trivy”. (2024), [Online]. Available: https://aquasecurity.github.io/trivy
/v0.52/docs/ (last visited: Jun. 7, 2024).

“Trivy/rpc at main - aquasecurity/trivy”. (2024), [Online]. Available: https://githu
b.com/aquasecurity/trivy /tree/main (last visited: May 25, 2024).

“Fugue/regula: Regula checks infrastructure as code templates (terraform, Cloud-
Formation, k8s manifests) for AWS, azure, google cloud, and kubernetes security
and compliance using open policy agent/rego”. (2024), [Online]. Available: https://g
ithub.com/fugue/regula/tree/master (last visited: May 25, 2024).

“Regula”. (2024), [Online]. Available: https://regula.dev/ (last visited: Jun. 7, 2024).

https://docs.docker.com/reference/dockerfile/
https://docs.docker.com/reference/dockerfile/
https://github.com/Checkmarx/kics/blob/master/assets/queries/terraform/aws/http_port_open/test/positive.tf
https://github.com/Checkmarx/kics/blob/master/assets/queries/terraform/aws/http_port_open/test/positive.tf
https://github.com/Checkmarx/kics/blob/master/assets/queries/terraform/aws/http_port_open/query.rego
https://github.com/Checkmarx/kics/blob/master/assets/queries/terraform/aws/http_port_open/query.rego
https://github.com/Checkmarx/kics/blob/master/assets/queries/terraform/aws/http_port_open/metadata.json
https://github.com/Checkmarx/kics/blob/master/assets/queries/terraform/aws/http_port_open/metadata.json
https://github.com/Checkmarx/kics/blob/master/docs/queries.md
https://regulaforensics.com/
https://www.jenkins.io/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://github.com/Checkmarx/kics
https://github.com/bridgecrewio/checkov/tree/main
https://github.com/bridgecrewio/checkov/tree/main
https://aquasecurity.github.io/trivy/v0.52/docs/
https://aquasecurity.github.io/trivy/v0.52/docs/
https://github.com/aquasecurity/trivy/tree/main
https://github.com/aquasecurity/trivy/tree/main
https://github.com/fugue/regula/tree/master
https://github.com/fugue/regula/tree/master
https://regula.dev/

[100]

[101]

[102]

[103]

[104]

[105]

BIBLIOGRAPHY 63

R. J. Wieringa, Design Science Methodology for Information Systems and Software
Engineering. Berlin, Heidelberg: Springer, 2014. [Online]. Available: https://link.spri
nger.com/10.1007/978-3-662-43839-8 (last visited: Jun. 28, 2024).

“Design science seminar”. (2024), [Online]. Available: https://falkr.github.io/design
science/preparation.html (last visited: May 27, 2024).

“Openstack.cloud — ansible community documentation”. (2024), [Online]. Available:
https://docs.ansible.com/ansible/latest/collections /openstack /cloud /index.html
(last visited: Jun. 9, 2024).

“Docs overview | terraform-provider-openstack/openstack | terraform | terraform
registry”. (2024), [Online]. Available: https://registry.terraform.io/providers/terrafo
rm-provider-openstack/openstack /latest /docs (last visited: Jun. 9, 2024).

“Ansible galaxy - community.docker”. (2024), [Online]. Available: https://galaxy.an
sible.com/ui/repo/published /community/docker/docs/ (last visited: Jun. 9, 2024).

“Docs overview | kreuzwerker/docker | terraform | terraform registry”. (2024), [On-
line]. Available: https://registry.terraform.io/providers/kreuzwerker/docker /latest
/docs (last visited: Jun. 9, 2024).

A. Education, Python-hcl2: A parser for HCL2, version 4.3.4. [Online]. Available:
https://github.com/amplify-education/python-hcl2 (last visited: Jun. 17, 2024).

“Convert YAML file to dictionary in python [practical examples] | GoLinuxCloud”.
Section: Python. (Mar. 5, 2022), [Online]. Available: https://www.golinuxcloud.com
/python-convert-yaml-file-to-dictionary/ (last visited: Jun. 17, 2024).

“Services top-level elements”, Docker Documentation. (2024), [Online]. Available:
https://docs.docker.com /compose/compose-file/05-services/ (last visited: Jun. 17,
2024).

https://link.springer.com/10.1007/978-3-662-43839-8
https://link.springer.com/10.1007/978-3-662-43839-8
https://falkr.github.io/designscience/preparation.html
https://falkr.github.io/designscience/preparation.html
https://docs.ansible.com/ansible/latest/collections/openstack/cloud/index.html
https://registry.terraform.io/providers/terraform-provider-openstack/openstack/latest/docs
https://registry.terraform.io/providers/terraform-provider-openstack/openstack/latest/docs
https://galaxy.ansible.com/ui/repo/published/community/docker/docs/
https://galaxy.ansible.com/ui/repo/published/community/docker/docs/
https://registry.terraform.io/providers/kreuzwerker/docker/latest/docs
https://registry.terraform.io/providers/kreuzwerker/docker/latest/docs
https://github.com/amplify-education/python-hcl2
https://www.golinuxcloud.com/python-convert-yaml-file-to-dictionary/
https://www.golinuxcloud.com/python-convert-yaml-file-to-dictionary/
https://docs.docker.com/compose/compose-file/05-services/

Appendix A

In-depth Domain-agnostic Policy as

Code

This Appendix provides a more comprehensive view and implementation details of
the domain-agnostic PaC, also known as APaC, presented in chapter 5.

A.1 Project structure

The structure of this project! consists of two main folders:

— infrastructure-provisioning-and-deployment-examples: this folder contains the
four implementations of the infrastructure proposed in Figure 5.3.

o ansible-docker: this folder contains the file playbook.yml, representing the
infrastructure code for Ansible deployed on Docker, written in YAML.

o ansible-openstack: this folder contains the file playbook.yml, representing
the infrastructure code for Ansible deployed on OpenStack., written in
YAML.

o terraform-docker: This folder contains the file main.tf, representing the
infrastructure code for Terraform deployed on Docker, written in HCL.

o terraform-openstack: This folder contains the file main.tf, representing
the infrastructure code for Terraform deployed on OpenStack, written in
HCL.

— proof-of-concept: this folder contains three different files, which are fundamental
in the execution of the APaC architecture defined in Figure 5.1.

o wvulnerable-ports-exposure.rego: this policy file, written in Rego, implement-
ing the security rules defined in subsection 5.4.3. Such file is shown in
Listing 12.

IThe GitHub repository for this project is available at https://github.com/frasan15/Agnostic-
Policy-as-Code-APaC

65

https://github.com/frasan15/Agnostic-Policy-as-Code-APaC
https://github.com/frasan15/Agnostic-Policy-as-Code-APaC

© 0 N U W N =

NONON NN NN R R R R s e e e s e
S A W N RO OO DA W RO

66 A.IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

o parser.py: the Parser, written in Python, implements the conversion
from the infrastructure specific code to a generic JSON file. Such file is
illustrated in details in section A.3.

o network__infrastructure.json: after the execution of the Parser, this file
will be created, containing the JSON file representing the infrastructure
itself.

A.2 Infrastructure code details

This section provides the code details for the four infrastructure implementations
provided in this project.

A.2.1 Terraform’s infrastructure code

Listing 14 illustrates the HCL code for deploying the infrastructure on OpenStack
from Terraform.

Listing 15 illustrates the HCL code for deploying the infrastructure on Docker from
Terraform.

terraform {
required_version = ">= 0.14.0"
required_providers {
{
source = "terraform-provider-openstack/openstack"
version = "~> 1.53.0"

openstack

resource "openstack_networking network_v2" "network_1" {
name = "networkl"
admin_state_up = "true"

}

resource "openstack_networking_subnet_v2" "subnet_1" {
name = "subnetl"
network_id = openstack_networking_network_v2.network_1.id
cidr = "192.168.111.0/24"
ip_version = 4

}

resource "openstack_networking_secgroup_v2" "secgroup_1" {
name

"secgroup_1"
description = "Expose port 80" # remember to change this if you modify the rules

}

27

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

69
70
71
72
73
74
75
76
7
78

A.2. INFRASTRUCTURE CODE DETAILS

resource "openstack_networking_secgroup_rule_v2" "secgroup_rule_1" {
direction = "ingress"

ethertype = "IPv4"
protocol = "tcp"
port_range_min = 80
port_range_max = 80
remote_ip_prefix = "0.0.0.0/0"

security_group_id = openstack_networking_secgroup_v2.secgroup_1.id

resource "openstack_networking_secgroup_v2" "secgroup_2" {
name = "secgroup_2"
description = "Expose port 22"

}
resource "openstack_networking_secgroup_rule_v2" "secgroup_rule_2" {
direction = "ingress"
ethertype = "IPv4"
protocol = "tcp"
port_range_min = 22
port_range_max = 22
remote_ip_prefix = "0.0.0.0/0"

security_group_id = openstack_networking_secgroup_v2.secgroup_2.id

resource "openstack_networking_ secgroup_v2" "secgroup_3" {
name = "secgroup_3"
description = "Expose port 443"

}
resource "openstack_networking secgroup_rule_v2" "secgroup_rule_3" {
direction = "ingress"
ethertype = "IPv4"
protocol = "tcp"
port_range_min = 443
port_range_max = 443
remote_ip_prefix = "0.0.0.0/0"

security_group_id = openstack_networking_secgroup_v2.secgroup_3.id

resource "openstack_networking_port_v2" "port_server_1" {
name = "port_server_1"
network_id = openstack_networking_network_v2.network_1.id
admin_state_up = "true"
security_group_ids = [openstack_networking_secgroup_v2.secgroup_1.id]

fixed_ip {
subnet_id = openstack_networking_subnet_v2.subnet_1.id
ip_address = "192.168.111.10"
}
}

67

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

68 A.IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

resource "openstack_networking port_v2" "port_server_2" {
name = "port_server_2"
network_id = openstack_networking_network_v2.network_1.id
admin_state_up = "true"
security_group_ids = [openstack_networking_ secgroup_v2.secgroup_2.id]

fixed_ip {
subnet_id = openstack_networking_subnet_v2.subnet_1.id
ip_address = "192.168.111.11"
}
}

resource "openstack_networking port_v2" "port_server_3" {
name = "port_server_3"
network_id = openstack_networking_network_v2.network_1.id
admin_state_up = "true"
security_group_ids = [openstack_networking_secgroup_v2.secgroup_3.id]

fixed_ip {
subnet_id = openstack_networking_subnet_v2.subnet_1.id
ip_address = "192.168.111.12"

}

resource "openstack_compute_instance_v2" "server_1" {
depends_on = [openstack_networking_secgroup_rule_v2.secgroup_rule_1]
name = "serverl"

"gx1.2c4r"

"dblbc18e-81e3-477e-9067-eecaad59ec33"

flavor_name

image_id

network {
port = openstack_networking port_v2.port_server_1.id

}

security_groups = [openstack_networking_secgroup_v2.secgroup_1.name]

key_pair = "MySecondKey"

resource "openstack_compute_instance_v2" "server_2" {
depends_on = [openstack_networking_ secgroup_rule_v2.secgroup_rule_2]
name = "server2"

flavor_name
image_id

"gx1.2c4r"
"dblbc18e-81e3-477e-9067-eecaa459ec33"

network {
port = openstack_networking port_v2.port_server_2.id
}
security_groups = [openstack_networking_secgroup_v2.secgroup_2.name]
key_pair = "MySecondKey"

resource "openstack_compute_instance_v2" "server_3" {

131
132
133
134
135
136
137
138

140
141
142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158
159
160
161
162

164

© 0 N U W N =

A.2. INFRASTRUCTURE CODE DETAILS

depends_on = [openstack_networking_secgroup_rule_v2.secgroup_rule_3]

name = "server3"
"gxl.2c4r"

flavor_name

image_id
network {

"dblbc18e-81e3-477e-9067-eecaadb59ec33"

port = openstack_networking_ port_v2.port_server_3.id

}

security_groups = [openstack_networking_secgroup_v2.secgroup_3.name]

key_pair = "MySecondKey"

}

resource "openstack_networking_router_v2" "router_1" {
name = "routerl"
admin_state_up = "true"

external _network_id = "730cbl16e-a460-4a87-8c73-50a2cb2293f9" # ntnu-internal

}

resource "openstack_networking_router_interface_v2" "router_interface_1" {

router_id = openstack_networking_router_v2.router_1.id
subnet_id = openstack_networking_subnet_v2.subnet_1.id

}

resource "openstack_networking_floatingip_v2" "myip"{

depends_on = [openstack_compute_instance_v2.server_1, openstack_networking_router_interface_v2.rou

pool = "ntnu-internal"

port_id = openstack_networking port_v2.port_server_1.id

}

resource "openstack_networking floatingip_v2" "myip1"{

depends_on = [openstack_compute_instance_v2.server_3, openstack_networking_router_interface_v2.rou

pool = "ntnu-internal"

port_id = openstack_networking_port_v2.port_server_3.id

}

69

Listing 14: This HCL file represents the Terraform configuration for deploying the

infrastructure on OpenStack

terraform {
required_providers {

docker = {
source = "kreuzwerker/docker"
version = "~> 3.0.1"

}

resource "docker_image" "nginx" {
name = "nginx"
keep_locally = false

}

57
58
59
60
61
62
63
64
65

70 A.IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

resource "docker_network" "networkl" {
name = "networkl"
driver = "bridge"
ipam_config {
subnet = "192.168.111.0/24"
}

resource "docker_container" "serverl" {
image = docker_image.nginx.image_id
name = "serverl"

networks_advanced {
name = docker_network.networkl.name
ipv4_address = "192.168.111.10"
}
ports {
internal 80
external = 8000
ip = "0.0.0.0/0"
protocol = "tcp"

}

resource "docker_container" "server2" {
image = docker_image.nginx.image_id
name = "server2"

networks_advanced {
name = docker_network.networkl.name
ipv4_address = "192.168.111.11"
}
ports {
internal = 22
external = 8001
ip = "255.255.255.255/0"
protocol = "tcp"

resource "docker_container" "server3" {
image = docker_image.nginx.image_id
name = "server3"

networks_advanced {
name = docker_network.networkl.name
ipv4_address = "192.168.111.12"

}

ports {
internal

443
external = 8002

66
67
68
69

© 0 N O s W N

e e e el e
D U W N = O

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

A.2. INFRASTRUCTURE CODE DETAILS 71

ip = "0.0.0.0/0"
protocol = "tcp"
}

Listing 15: This HCL file represents the Terraform configuration for deploying the
infrastructure on Docker

A.2.2 Ansible’s infrastructure code

Listing 16 illustrates the YAML code for deploying the infrastructure on OpenStack
from Ansible.

Listing 17 illustrates the YAML code for deploying the infrastructure on Docker from
Ansible.

- name: Provision an infrastructure on OpenStack
hosts: localhost
tags: ['deploy']
tasks:
- name: Create a network
openstack.cloud.network:
state: present
name: networkl
external: false

- name: Create a subnet
openstack.cloud.subnet:
state: present
network_name: networkl
name: subnetl
cidr: 192.168.111.0/24
register: subnet_info

- name: Create (or update) a security group with security group rules
openstack.cloud.security_group:

state: present

name: secgroup_1

security_group_rules:

- ether_type: IPv4

direction: ingress
description: Expose port 80
protocol: tcp
port_range_min: 80
port_range_max: 80
remote_ip_prefix: 0.0.0.0/0

- name: Create (or update) a security group with security group rules
openstack.cloud.security_group:

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

72 A. IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

state: present

name: secgroup_2

security_group_rules:

- ether_type: IPv4
direction: ingress
description: Expose port 22
protocol: tcp
port_range_min: 22
port_range_max: 22
remote_ip_prefix: 0.0.0.0/0
register: opa

- name: Create (or update) a security group with security group rules

openstack.cloud.security_group:
state: present
name: secgroup_3
security_group_rules:
- ether_type: IPv4
direction: ingress

description: Expose port 443 (HTTPS)

protocol: tcp
port_range_min: 443
port_range_max: 443
remote_ip_prefix: 0.0.0.0/0

- name: Create a network inteface for
openstack.cloud.port:
state: present
name: port_server_1
network: networkl
fixed_ips:
- ip_address: 192.168.111.10
subnet_id: "{{ subnet_info.id

- name: Create a network inteface for
openstack.cloud.port:
state: present
name: port_server_2
network: networkl
fixed_ips:
- ip_address: 192.168.111.11
subnet_id: "{{ subnet_info.id

- name: Create a network inteface for
openstack.cloud.port:
state: present
name: port_server_3
network: networkl
fixed_ips:
- ip_address: 192.168.111.12
subnet_id: "{{ subnet_info.id

serverl

}}n

server?2

I

server3

}}n

A.2. INFRASTRUCTURE CODE DETAILS

86 - name: Deploy serverl

87 openstack.cloud.server:

88 state: present

89 name: serverl

90 auto_ip: false

91 image: dblbc18e-81e3-477e-9067-eecaad59ec33
92 key_name: MySecondKey

93 timeout: 200

94 flavor: gx1.2c4r

95 nics:

96 - port-name: port_server_1
97 security_groups:

98 - secgroup_1

99 register: instance

100

101 - name: Deploy server2

102 openstack.cloud.server:

103 state: present

104 name: server2

105 auto_ip: false

106 image: dblbc18e-81e3-477e-9067-eecaa4b59ec33
107 key_name: MySecondKey

108 timeout: 200

109 flavor: gxl1.2c4r

110 nics:

111 - port-name: port_server_2
112 security_groups:

113 - secgroup_2

114

115 - name: Deploy server3

116 openstack.cloud.server:

117 state: present

118 name: server3

119 auto_ip: false

120 image: dblbc18e-81e3-477e-9067-eecaad59ec33
121 key_name: MySecondKey

122 timeout: 200

123 flavor: gx1.2c4r

124 nics:

125 - port-name: port_server_3
126 security_groups:

127 - secgroup_3

128

129 - name: Create a router

130 openstack.cloud.router:

131 state: present

132 name: routerl

133 network: 730cbl6e-a460-4a87-8c73-50a2cb2293f9
134 interfaces:

135 - net: networkl

136 subnet: subnetl

137 portip: 192.168.111.15

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

74 A. IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

- name: Assign a floating ip to serverl
openstack.cloud.floating_ip:
state: present
reuse: true
server: serverl
network: 730cbl6e-a460-4a87-8c73-50a2cb2293f9
fixed_address: 192.168.111.10
wait: true
timeout: 180

- name: Assign a floating ip to server3
openstack.cloud.floating_ip:
state: present
reuse: true
server: server3
network: 730cbl6e-a460-4a87-8c73-50a2cb2293f9
fixed_address: 192.168.111.12
wait: true
timeout: 180

Listing 16: This YAML file represents the Ansible configuration for deploying the
infrastructure on OpenStack

A.3 APaC, Parser

This section depicts the code for the Parser implementation. The Parser includes four
functions, representing the conversions needed for the four different infrastructure
implementations provided above, for converting the specific infrastructure code into
a higher-level JSON file.

When the parser is invoked, we need to specify which infrastructure code we want
to run the Parser against; we do this by specifying the IaC tool, the infrastructure
provider, the input file path where the infrastructure code is located and the ouput
file path where we want the resulting JSON file to be generated; using, respectively
the CLI arguments tool, provider, i and o. For instance, if we want to run the
Parser to convert the Ansible implementation deployed on OpenStack, we need to
run the command python parser.py -tool ansible -provider openstack -i
input file path -o output file path.

Next, the Parser converts the HCL, or YAML, code into a Python dictionary, using
specific libraries [103] [104]. Finally, a new file called network infrastructure.json is
generated where the infrastructure is represented using the generic keywords provided
by the Taxonomy in Figure 5.2. An example of this file is provided in Listing 11.

Listing 18 shows the Python code for implementing such Parser.

=
= O © 00 N O Uk W N =

Bl R R R R W W W W W W W W W WNNN N NN NN NN e e e e e
G b W N O © 09O 0k WN O © 0w 0 WK K O © WO G W N

A.3. APAC, PARSER

(0]

Listing 17 This YAML file represents the Ansible configuration for deploying the

infrastructure on Docker

- name: "Provision an infrastructure on Docker"

hosts: localhost
tags: ['deploy']
become: true
tasks:
- name: Pull nginx Docker image
community.docker.docker_image:
name: nginx
source: pull

- name: Create network
community.docker.docker_network:
name: networkl
ipam_config:
- subnet: 192.168.111.0/24

- name: Run serverl container
community.docker.docker_container:

name: serverl
image: nginx
networks:

- name: networkl

ipv4_address: "192.168.111.10"

ports:

- "0.0.0.0:8000:80"

- name: Run server2 container
community.docker.docker_container:

name: server2
image: nginx
networks:

- name: networkl

ipv4_address: "192.168.111.11"

ports:

- "255.255.255.255:8001:22"

- name: Run server3 container
community.docker.docker_container:

name: server3
image: nginx
networks:

- name: networkl

ipv4_address: "192.168.111.12"

ports:

- "0.0.0.0:8002:443"

[B A VA

10
11
12
13
14
15
16
17
18

19
20
21
22
23

24

25

26

27
28

29
30
31
32
33

34
35
36
37
38
39
40
41
42
43

76 A. IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

Parser to convert yaml or hcl infrastructure code into an abstract json file
import hcl2

import yaml

import json

import re

import argparse

The following lines are needed to handle the CLI parameters, which will be used (at
< the end of this file)
to detect which version of the parser needs to be executed

Initialize the parser
parser = argparse.ArgumentParser(description="Proof of Concept's Parser")

Add arguments
parser.add_argument('--tool', type=str, help='Infrastructure as Code tool')
parser.add_argument ('--provider', type=str, help='Infrastructure Provider')

The following lines of code are needed to specify the right path where each
— infrastructure code file is located

current_dir = os.path.dirname(os.path.abspath(__file__))

parent_dir = os.path.dirname(current_dir)

Paths for the infrastructure code for each of the four configurations
ansible_openstack_example = os.path.join(parent_dir, "infrastructure-provisioning-an |
— d-deployment-examples/ansible-openstack/playbook.yml")

ansible_docker_example = os.path.join(parent_dir, "infrastructure-provisioning-and-d
— eployment-examples/ansible-docker/playbook.yml")

terraform_openstack_example = os.path.join(parent_dir, "infrastructure-provisioning-
< and-deployment-examples/terraform-openstack/main.tf")

terraform_docker_example = os.path.join(parent_dir,

— "infrastructure-provisioning-and-deployment-examples/terraform-docker/main.tf")

The following will be the json object representing the infrastructure using
— high-level keywords

final_results = {}

final_results["servers"] = []

final_results["network_interfaces"] = []

The following function is needed to remove the regular expression ${} from each
— value in the dictionary,
when dealing with Ansible playbooks
def process_value_ansible(value):
if isinstance(value, list):
return [process_value_ansible(v) for v in value]
elif isinstance(value, dict):
return {k: process_value_ansible(v) for k, v in value.items()}
elif isinstance(value, str):
return re.sub(r'\{{ | }}', '', value)
else:
return value

44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93

The following function is needed to remove the regular expression ${} from each

A.3. APAC, PARSER

— value in the dictionary,

when dealing with Terraform files
def process_value_terraform(value):

try:

if isinstance(value, list):
return [process_value_terraform(v) for v in value]
elif isinstance(value, dict):
return {k: process_value_terraform(v) for k, v in value.items()}
elif isinstance(value, str):
return re.sub(r'\${|}', '', value)
else:
return value

def ansible_openstack():

opening a file

with open(ansible_openstack_example, 'r') as stream:
Converts yaml document to python object
first = yaml.safe_load(stream)

first = first[0]['tasks']

second = []

for item in first:
second.append (process_value_ansible(item))

Convert array of objects into an object of objects
ansible_dictionary = {}

ansible_dictionary['network'] = []
ansible_dictionary['subnet'] = []
ansible_dictionary['security_group'] = []

ansible_dictionary['port'] = []
ansible_dictionary['server'] []
ansible_dictionary['router'] = []
ansible_dictionary['floating_ip'] = []

for obj in second:

Get the second key of the object dynamically
pre_key = list(obj.keys()) [1]
key = pre_key.split('.', 2)[2]

ansible_dictionary[key] .append(obj [pre_keyl)

for server in ansible_dictionary['server']:
server_name = server|['name']
server_security_groups = server['security_groups']

Initialize a list to store the exposed ports and the
< network interfaces of the current server
exposed_ports = []

network_interfaces = []

Iterate over each security group of the server

7

94

95
96

97
98
99

100

101
102

103
104

105

106
107

108

109

110
111
112
113
114

115

116

117

118
119
120
121
122
123
124
125

78 A. IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

for security_group_name in server_security_groups: # each
< item already represents the security group name

Find the corresponding security group in the list
— of security groups
for sg in ansible_dictionary['security_group']:
if sgl'name'] == security_group_name:
get the security group rules of the
— current security group
security_group_rules =
— sgl'security_group_rules']

Iterate over each security group
— rule and port range min and max
for rule in security_group_rules:
port_range_min =
— rule['port_range_min']
port_range_max =
— rule['port_range_max']

Add each port in the range

<~ to the exposed ports

— list; only if the port

— range is not None

if port_range_max is not None

— and port_range_min is not

< None:
exposed_ports.extend |
— (range(port_rang
— e_min,
— port_range_max +
N

1))

Remove duplicates and sort the exposed ports list
exposed_ports = sorted(list(set(exposed_ports)))

Iterate through each network interface of the current
— server, and for each of them fetches the name
and the info whether it has a floating ip attached to it ->
<~ you do this by scanning the floating ip
array, looking for a match between the server_name
< associated to the current floating ip and the current
server being analysed -> if there is a match, then the nic
— attached to such a server has also a floating ip
for nic in server['nics']:
nic_name = nic['port-name']
network_interfaces.append(nic_name)

is_nic_public = False

for floating_ip in ansible_dictionary['floating ip']:
if floating_ip['server'] == server_name:

126
127
128
129
130
131
132
133

134
135

167
168

170
171
172
173

A3. APAC, PARSER 79

is_nic_public = True

nic_object = {
'name': nic_name,
'is_public': is_nic_public,

final_results['network_interfaces'].append(nic_objeCJ
< t)

Create the result object for the current server, storing
<— name, exposed ports and list of subnets ids
server_object = {

'name': server_name,

'exposed_ports': exposed_ports,

'server_network_interfaces': network_interfaces

final_results["servers"].append(server_object)

def ansible_docker():

with open(ansible_docker_example, 'r') as stream:
first = yaml.safe_load(stream)
first = first[0]['tasks']

Convert array of objects into an object of objects
ansible_dictionary = {}
ansible_dictionary['docker_image'] = []
ansible_dictionary['docker_network'] = []
ansible_dictionary['docker_container'] = []

for obj in first:

Get the second key of the object dynamically
pre_key = list(obj.keys())[1]
key = pre_key.split('.', 2)[2]
ansible_dictionary[key] .append(obj[pre_keyl)

for server in ansible_dictionary['docker_container']:
server_name = server|['name']
ports_mapping = server['ports']

Initialize a list to store the exposed ports and the
< network interfaces of the current server
exposed_ports = []

network_interfaces = []

Iterate over each security group of the server
Each item already represents the security group name
for port in ports_mapping:
We use host_port:container_port as key for the
— network interface

174
175
176
177
178
179
180
181
182
183
184
185
186

187
188
189
190
191
192

193
194
195
196
197
198
199
200
201
202
203
204

206

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

80 A.IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

network_interfaces.append(port.split(':', 1)[1])

port_host_interface = port.split(':', 2)[0]
if port_host_interface == "0.0.0.0":
is_nic_public = True
else:
is_nic_public= False

nic_object = {
'name': port.split(':', 1)[1],
'is_public': is_nic_public

}
final_results['network_interfaces'].append(nic_objeCJ
< t)

port = port.split(':', 2)[2]
Here we only need the container exposed port
exposed_ports.append(int (port))

Create the result object for the current server, storing
<~ name, exposed ports and list of subnets ids
server_object = {

'name': server_name,

'exposed_ports': exposed_ports,

'server_network_interfaces': network_interfaces

final_results["servers"].append(server_object)

def terraform_openstack():
It reads the terraform file and it parses it into a json file
with open(terraform_openstack_example, 'r') as file:
first = hcl2.load(file)
first = {key: process_value_terraform(value) for key, value
— in first.items()}

first = first['resource']

network = "openstack_networking_network_v2"

subnet = "openstack_networking_ subnet_v2"

security_group = "openstack_networking_secgroup_v2"

network interfaces

port = "openstack_networking port_v2"

server = "openstack_compute_instance_v2"

router = "openstack_networking_router_v2"

router_interface = "openstack_networking_router_interface_v2"
floating_ip = "openstack_networking floatingip_v2"

terraform_dictionary = {}
terraform_dictionary[network] = []
terraform_dictionary[subnet] = []

222

223
224
225
226
227
228
229
230

231
232
233
234
235
236
237

239
240
241

242
243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258

259

261
262

263

A.3. APAC, PARSER 81

here there is both resources from openstack_networking_secgroup_v2

— and openstack_networking_secgroup_rule_v2
terraform_dictionary[security_group] = []
terraform_dictionary[port] = []
terraform_dictionary[server] = []
terraform_dictionary[router] = []
terraform_dictionary[router_interface] = []
terraform_dictionary[floating_ip] = []

Temporary storage for secgroup rules -> this step is needed to

—

—

store the resources from openstack_networking_secgroup_rule_v2
into openstack_networking_secgroup_v2

secgroup_rules = {}

for item in first:

key = list(item.keys()) [0]
if key == "openstack_networking_ secgroup_rule_v2":
nested_key = list(item[key].keys())[0]
secgroup_id = (item[key] [nested _key] ["security_group
— _id"]).split('.',
— 2)[1]

if secgroup_id not in secgroup_rules:
secgroup_rules[secgroup_id] = []

secgroup_rules[secgroup_id] .append(item[key] [nested_
— keyl)

else:
nested_dict = item[key]
terraform_dictionary[keyl.append(list(nested_dict.va
— lues())[01)

Append secgroup rules to corresponding secgroup objects
for secgroup_name, rules in secgroup_rules.items():

for secgroup in terraform_dictionary[security_group]:

if secgroup['name'] == secgroup_name:
if 'rules' not in secgroup:
secgroup['rules'] = []

secgroup['rules'].extend(rules)

for server in terraform_dictionary[server]:

server_name = server|['name']
server_security_groups = server['security_groups']

Every server_security_groups is stored as
— '"openstack_networking_secgroup_v2.secgroup_2.name" so we
<~ mneed to extract the name
for item in server_security_groups:
item = (item).split('.', 2)[1]

Initialize a list to store the exposed ports and the
— network interfaces of the current server
exposed_ports = []

264
265
266
267
268
269

270
271

272

273
274

275
276

277

278

280

281

282

284
285
286

287

288

289

291
292
293
294
295
296

82 A. IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

network_interfaces = []

Iterate over each security group of the server
Each item already represents the security group name
for security_group_name in server_security_groups:
Find the corresponding security group in the list
— of security groups
for sg in terraform_dictionary[security_group]:
if sgl'name'] ==
s (security_group_name).split('.', 2)[1]:
Get the security group rules of the
— current security group
security_group_rules = sg['rules']
Iterate over each security group
— rule and port range min and max
for rule in security_group_rules:
port_range_min =
— rule['port_range_min']
port_range_max =
— rule['port_range_max']

Add each port in the range

<~ to the exposed ports

— list; only if the port

— range is not None

if port_range_max is not None

— and port_range_min is not

— None:
exposed_ports.extend |

— (range(port_rang
— e_min,

< port_range_max +
— 1))

Remove duplicates and sort the exposed ports list
exposed_ports = sorted(list(set(exposed_ports)))

Iterate through each network interface of the current
<« server, and for each of them fetches the name
and the info whether it has a floating ip attached to it ->
< you do this by scanning the floating ip
array, looking for a match between the server_name
— associated to the current floating ip and the current
server being analysed -> if there is a match, then the nic
— attached to such a server has also a floating ip
for nic in server['network']:
nic_name = nic['port']
nic_name = (nic_name).split('.', 2)[1]
network_interfaces.append(nic_name)

is_nic_public = False
for item in terraform_dictionary[floating_ip]:

297

298
299
300
301
302
303
304
305

306
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

323
324
325
326
327
328
329
330
331
332
333

334
335
336
337
338

339
340
341
342

A.3. APAC, PARSER 83

if (item['port_id']).split('.', 2)[1] ==
< mnic_name:
is_nic_public = True

nic_object = {
'name': nic_name,
'is_public': is_nic_public

final_results['network_interfaces'].append(nic_objeCJ
- t)

Create the result object for the current server, storing
< name, exposed ports and list of subnets ids
server_object = {

'name': server_name,

'exposed_ports': exposed_ports,

'server_network_interfaces': network_interfaces

final_results["servers"].append(server_object)

def terraform_docker():

It reads the terraform file and it parses it onto a json file
with open(terraform_docker_example, 'r') as file:
first = hcl2.load(file)

first = {key: process_value_terraform(value) for key, value in
— first.items(O}
first = first['resource'l]

terraform_dictionary = {}
terraform_dictionary['docker_image'] = []
terraform_dictionary['docker_network'] = []
terraform_dictionary['docker_container'] = []

for item in first:
key = list(item.keys()) [0]
nested_dict = item[key]
terraform_dictionary[key].append(list(nested_dict.values())[J
— 0])

for server in terraform_dictionary['docker_container']:
server_name = server['name']

Initialize a list to store the exposed ports and the
< network interfaces of the current server
exposed_ports = []

network_interfaces = []

for port in server['ports']:

343
344
345
346
347
348

349
350
351
352
353
354
355
356
357
358
359
360
361

362
363

364
365
366
367
368
369
370
371
372

373
374

375
376
377
378
379
380
381
382
383
384

385
386
387

84 A. IN-DEPTH DOMAIN-AGNOSTIC POLICY AS CODE

exposed_ports.append(port['internal'])
exposed_ports = sorted(list(set(exposed_ports)))

for port in server['ports']:
network_interface_id = str(port['internal']) +
— str(port['external'])
network_interfaces.append(network_interface_id)

if port['ip'] == "0.0.0.0/0":
is_nic_public = True
else:
is_nic_public = False

nic_object = {
'name': network_interface_id,
'is_public': is_nic_public

}

final_results['network_interfaces'].append(nic_objec

— t)

Create the result object for the current server, storing

— name, exposed ports and list of subnets ids
server_object = {
'name': server_name,
'exposed_ports': exposed_ports,
'server_network_interfaces': network_interfaces

final_results["servers"].append(server_object)

Parse the arguments. The arguments can be retrieve by args.tool or

— args.provider

args = parser.parse_args()

run the proper parser according to the IaC tool and the infrastructure
— provider

if args.tool == "ansible" and args.provider == "openstack":
ansible_openstack()

elif args.tool == "ansible" and args.provider == "docker":
ansible_docker ()

elif args.tool == "terraform" and args.provider == "openstack":
terraform_openstack()

elif args.tool == "terraform" and args.provider == "docker":

terraform_docker ()

else:
raise Exception("Infrastructure as Code tool or Infrastructure
— Provider not supported")

print ("FINAL JSON: ", json.dumps(final_results, indent=4))
The following are the operations needed to write the json file on the
— current folder

+

388
389
390
391
392
393
394
395
396

A.4. HOW TO DETECT WHETHER A SERVER IS ACCESSIBLE FROM OUTSIDE
85

Define the path for the JSON file
json_file_path = os.path.join(current_dir, "network_infrastructure.json")
Write data to the JSON file
with open(json_file_path, 'w') as json_file:
json.dump(final_results, json_file, indent=4)
print ("JSON file has been generated and saved at:", json_file_path)

except Exception as e:
print(e)

Listing 18: This Python file is the Parser for translating any infrastructure code
file, among the ones mentioned in this thesis, into a generic JSON file

A.4 How to detect whether a server is accessible from outside

For OpenStack deployments, the server’s internet connectivity is determined by the
presence of a floating IP. If a floating IP is assigned, it is assumed that the server is
accessible from outside the internal network.

For Docker deployments, specifying a floating IP is not possible. Instead, internet
accessibility is assessed by examining the IP range to which the container exposes its
ports. If the range is 0.0.0.0/0, the server is assumed to be accessible from outside;
otherwise, it is not. The initial plan was to verify port exposure using the “ports”
field in Docker Compose [105], which only specifies the container port to be exposed
without associating it with a specific host port. However, due to API limitations,
the current APaC implementation uses the “expose” field in Docker Compose, which
maps the exposed container port to a host port. Consequently, it would be more
accurate to state that every port is exposed in the present configuration, as exposing
container port 80 to any host port implies that this port is accessible from the outside.

A.5 Open Policy Agent’s running commands

The Rego file used to check the policy rules defined in subsection 5.4.3, is illustrated
in Listing 12. This file is checked against the network infrastructure.json file by
the command /usr/local/bin/opa eval -i network_infrastructure.json -d
vulnerable-ports-exposure.rego "data.example.output". An example of the
policy decision result from the OPA engine is shown in Listing 13.

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	Research questions
	Thesis structure
	Ethics and Sustainability Aspects of the Thesis

	Background
	DevOps
	Infrastructure as Code
	Different kinds of Infrastructure as Code tools

	Infrastructure as Code's current landscape
	Terraform
	Ansible
	Other tools

	Infrastructure Providers
	OpenStack
	Docker

	Policy as Code
	What is a policy?
	Challenges with traditional policy enforcement
	Why use Policy as Code?
	Policy engine
	Why is policy decoupling important?

	Discussion

	State of the Art
	The Cloud Native Landscape
	Policy as Code Solutions
	Checkov
	Open Policy Agent and Rego
	Kics

	Summary and Open Issues

	Methodology
	Research Design
	Domain-agnostic Policy as Code Development

	Domain-agnostic Policy as Code
	APaC's architecture
	The choice of the tools
	Implementation
	Definition of a taxonomy
	Architecture implementation

	Validation and Evaluation
	Infrastructure provisioning and deployment
	Parser definition
	Definition of policy rules and compliance checking

	Summary
	Results
	APaC compared to Kics
	Final remarks

	Discussion and Conclusion
	Discussion
	The scope of the thesis
	Limitations and future research

	Summary of Findings

	Bibliography
	In-depth Domain-agnostic Policy as Code
	Project structure
	Infrastructure code details
	Terraform's infrastructure code
	Ansible's infrastructure code

	APaC, Parser
	How to detect whether a server is accessible from outside
	Open Policy Agent's running commands

