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Abstract

This thesis deals with the detection of multi-step attack and strategies to mitigate

them within Digital Service Chains (DSCs), a framework increasingly adopted by Dig-

ital Service Providers (DSPs) to integrate various digital components like IoT, software

and cloud infrastructure. While DSCs offer significant advantages in terms of scala-

bility and flexibility, they also introduce security challenges, making difficult to isolate

and mitigate threats.

To address these challenges, this work proposed an innovative approach based on

TAMELESS (Threat & Attack ModEL Smart System) framework. TAMELESS is

designed to detect threats by determine if a system is secure through the study of its

components and their security properties.

An important element of this thesis is the inclusion of Common Vulnerabilities and

Exposure (CVEs) within the multi-step attack scenario. The work also proposes a

threat model for CVEs that can be used to automate the analysis of vulnerabilities in

the TAMELSS framework.

The modifications made to TAMELESS involve focus exclusively on the cyber aspect

of threats, integrating CVEs to reinforce vulnerability analysis and add functionalities

for managing patches. The patch management ensure that once vulnerabilities are

identified and patched, they are neutralized, reducing the risk of threats.

The obtained result demonstrates the efficiency of the modified TAMELESS framework

in identifying threats, analyzing attack patch and mitigating the risk associated with

multi-step attacks.

This work provides an advanced approach to make DSCs more secure in an intercon-

nected environment, offering a robust framework for future developments in threat

detection and response strategies.
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Chapter 1

Introduction

The evolution of digital technologies has radically changed the way digital service providers

(DSPs) work. As digital technology advances and connections between various components

grow, Digital Service Providers (DSPs) are increasingly using Digital Service Chains (DSCs)

to connect different digital services to provide solutions to new business needs. They

increasingly adopt external services provided by third-party providers, creating these Digital

Service Chains (DSCs) that offer significant opportunities in terms of scalability, flexibility,

and innovation.

DSCs are creating by combining various digital components like IoT devices, software,

cloud/edge infrastructures and services, which interact to provide integrated solutions.

The interconnection between services introduce new cybersecurity challenges. For example

they makes difficult to isolate and mitigate threats, as an attack on a single component can

propagate through the entire service chain.

Advanced attack techniques, like lateral movement, exploit these interconnections to

penetrate deeper into systems and access critical resources.

These attacks are focused on the more vulnerable targets and less protected components in

DSCs, which are easier to exploit. Once attackers have successfully reached these initial

targets, they move laterally through the network, moving from one compromised

components to another. Through this process attacker finally reach the primary target,

which is more protected.

Traditional security solutions are no longer sufficient to effectively defend against

increasingly sophisticated and multi-phase attacks. An integrated approach is necessary,

combining advanced detection techniques, automated response, and threat intelligence

9



10 1.1. DOCUMENT STRUCTURE

management, also taking into account the sequential nature of attacks.

Protecting digital service chains requires a new paradigm of protection that is adaptive,

integrated, and capable of addressing the complex challenges of a multi-tenant and

interconnected environment. [3]

The aim of this thesis work is to study and analyze an existing framework and modify it to

make more functional in this new interconnected environment, focusing only on cyber aspect

and involving CVEs (Common Vulnerabilities and Exposures).

The analyzed framework is TAMELESS, which is already optimized in threat analysis but

not in this new environment.

1.1 Document Structure

This thesis has been divided into following chapters:

• Chapter 2: covers the theory behind the thesis, in particular Digital Service Chain

(DSC), Multi-Step Attack, Common Vulnerability Exposure (CVE) and Attack

Graph. We have also introduced some theory about REST that can be usefull for

some future works described in the last chapter.

• Chapter 3: focuses on threat modelling, including the elaboration of three multi-step

attack examples, analysis of involved CVEs and the development of a threat

description useful in future works .

• Chapter 4: studies TAMELESS, software that has been analysed and modified

during thesis development. There is the description of the most important files that

we have analyzed during our work.

• Chapter 5: outlines the goals of the thesis and development methodology, so the

phase of work.

• Chapter 6: describes the changes made on TAMELESS to implement to achieve

thesis objective. This chapter is divided into three sections, each of them represent

one goals achieved in the thesis.

• Chapter 7: presents the validation of all the implementations described in the

previous chapter. Also this chapter is divided into three section, each focused on one

goals of the thesis.
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• Chapter 8: is the final chapter that concludes the thesis showing the entire work and

discussing possible future works.





Chapter 2

Backgroud

2.1 Digital Service Chains (DSC)

Digital Service Chains (DSCs) is composed by a series of interconnected digital services and

components that work together to provide complete solutions to complex business

requirements. These services are provided by different Digital Service Providers (DSPs) and

communicate to each other using standardized protocols for web services.

One common use of DSCs is in Smart Building or Smart Cities. Here, various devices,

infrastructures and applications, managed by different provider, work together to offer

different services.[3]

In figure 2.1 we can see an example of DSC, in particular of a smart cities.

Figure 2.1: An example of DSC [1]

13



14 2.1. DIGITAL SERVICE CHAINS (DSC)

The complexity of modelling DSC comes from their structure, in particular the various

interactions between applications and infrastructures that are managed by different owners.

The factors contributing to this complexity include:

• Heterogeneity: DSCs comprehends many services and technologies each with each own

protocols and standards.

• Flexible Composition: the ability to dynamically compose and recompose services

adding layers.

• Multi-Ownership: different components are often owned and managed by different

entities.

• Dynamic Topologies: the structure of DSCs can change frequently due to replication,

scaling, or migration.[3]

Challenges to Protect Digital Service Chains

The run-time detection of threats and attacks in Digital Service Chains presents several

challenges.

One of the main issues is fragmented operations. The multi-ownership nature of DSCs limits

visibility into each subsystem, making difficult to correlate multi-stage attacks across

different domains and identify the entire attack chain, resulting in a focus on single attacks

and not on the chain.

Additionally, the dynamic service topologies make threat detection more difficult.

Operations such as scaling, replication, migration and service replacement frequently change

the composition and topology of services. This reduces the effectiveness of detection

algorithms that rely on static configurations, causing gaps in monitoring and security

coverage.

Multi-ownership and externalization reduce privacy and confidentiality. As data and

resources are shared among various entities, implementing dynamic trust mechanisms and

strict access controls is necessary to protect data while facilitating collaboration among

different Digital Service Providers.

The adoption of lightweight environments, such as containers and serverless computing

makes more difficult the deployment of traditional security devices. Without an abstraction

layer it becomes challenging to implement uniform monitoring and response policies.
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Finally, evolving attack patterns are a significant threat. The dynamic configurations of

DSCs make them especially vulnerable to adaptive attack strategies, highlighting the need

for more advanced detection and response mechanisms.[3]

In summary, while Digital Service Chains offer numerous benefits in terms of flexibility and

functionality, they also introduce substantial challenges in terms of security and

management. All the challenges described before create a complex security landscapes and

this new scenario requires new advanced security mechanism to ensure protection to DSCs.

2.2 Multi-step attack

Multi-step attack represents an advanced and sophisticated type of cyber threat, which is

characterized by a series of organized steps focused on compromising a target system. They

exploit multiple vulnerabilities across various systems and are designed to bypass traditional

security measures by unfolding gradually and across different segments of the network.

Multi-step attacks are particularly prevalent in digital service chains due to their complex

and layered nature, as we have introduce in section 2.1. In DSCs the interconnections

between services and systems create a larger and more heterogeneous attack surface, offering

attackers numerous entry points and pathways for propagation.

A typical multi-step attack include the following steps:

• Initial Compromise: gain initial access to the target system, normally starting by

accessing the most vulnerable link and then move to more important target. An

attacker can use different techniques such as phishing, exploiting software

vulnerabilities or using social engineering techniques.

• Establish Foothold: maintain persistent access to the compromised system through

installation of malware or backdoors.

• Privilege Escalation: gain higher-level access permission exploiting privilege escalation

vulnerabilities or misconfigurations.

• Internal Reconnaissance: study and understand the network layout and locate

high-value targets, perform this by mapping the network and identifying additional

targets.
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• Lateral Movement: move across the network in order to reach the final target, such as

database or critical infrastructure. Techniques used to do this depend on the previous

step and on the target, for example it is possible to use compromised credentials.

• Achieving the Object: this is the final step, so fulfill the attacker’s primary intent,

which can be stealing sensitive data, deploying ransomware, or disrupting services.

Each of these steps highlights the precision required to execute such attacks effivciently and

demonstrates the methodical approach attackers take to penetrate and exploit target

networks.[3]

These attacks are designed to avoid traditional security measures by exploiting

vulnerabilities at different stages and this make the detection and prevention challenging. It

will be necessary to implement various defensive strategies compared to traditional attacks.

These may include deploying defense-in-depth strategies to provide multiple layers of

protection or using machine learning systems and anomaly detection to identify unusual

activities that could indicate a multi-step attack. We can see an example of multi-step

attack in Figure 2.2.

Figure 2.2: An example of multi-step attack [2]

The attack in figure is composed by seven different steps:

1. The attacker first sends a phishing email to the secretary of an employee. He can find

the secretary’s email address on internet.
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2. When the secretary opens the phishing email, a malware is executed on their

computer. This allow the attacker to establish a remote shell on the secretary’s

computer and he gains access to the device and the company’s network.

3. After, the attacker uses a spear-phishing technique to convince a network

administrator to log into the compromised secretary’s computer.

4. The attacker now manages to obtain the domain credentials of the network

administrator.

5. The attacker can use gained credential to get access to company’s central server. This

enables the attacker to issue a "golden ticket", a type of authentication token.

6. The golden ticker permits the attacker to gain access to the workstation of an

engineer within the company.

7. Finally, through the compromised engineer’s workstation, the attacker obtain access

to confidential document of the company. [2]

In conclusion, multi-step attacks represent an enormous challenge in cybersecurity due to

their advanced and sophisticated nature. Characterized by a series of organized steps, these

attacks exploit multiple vulnerabilities across different systems, progressing gradually and

stealthily to elude traditional security measures. Their complexity is further amplified

within digital service chains. Understanding the complex nature of multi-step attacks is

crucial for recognizing the significant threat they represent.

2.3 Common Vulnerability Exposure (CVE)

The Common Vulnerabilities and Exposure (CVE) is a database of public disclosed

vulnerabilities and exposures developed to find a unique catalogue of information. The

difference between vulnerabilities and exposures is that the former affects computer

software, firmware, and hardware, while the latter are errors not related to software or other

components, but rather a misconfiguration, such as open ports or weak credentials.

The CVE database is managed by National Cybersecurity FFRDC (Federally Funded

Research and Development Center) and operated MITRE Corporation, a US no-profit

organization.[4]
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In Figure 2.3 we can see the steps through how CVEs are discovered, recorded, submitted

and finally published. In particular it follows the following steps:

1. Vulnerabilities and exposures are first discovered by someone, such as a user or a

researcher.

2. After a vulnerability is discovered, it is reported to a CVE Program participant.

3. The CVE Program participant requests a CVE identifier (CVE ID).

4. A CVE ID is reserved by a CNA (CVE Numbering Authority), which assigns the ID

and creates a Recrod.

5. At this point, the vulnerability is not yet made public; first an investigation is

conduced, and the CVE Program participant submits details about the CVE.

6. Finally, the CVE is published and made available for download.[4]

Figure 2.3: The CVE Lifecycle

The CVE system plays a fundamental role in the cybersecurity landscape, providing a

consistent and reliable naming convention for vulnerabilities that is widely used by

organizations.

Here are the main reason of the importance of CVE:

• Standardization: provides a standardized method for identifying vulnerabilities,

permitting organizations to share and compare information across different platforms

and tools. Cybersecurity experts can better coordinate their responses and

communicate about threats when they have a standard vocabulary for vulnerabilities.

• Coordination: by using CVE identifiers it possible for diverse security tools and

services to integrate more effectively, enhancing coordination in vulnerability

management and facilitating system interoperability.
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• Awareness: CVE entries raise awareness of vulnerabilities, helping organizations to

prioritize their security efforts according to recognized problems. By organizing and

publicizing these issues, CVE system assists organizations in staying informed about

emerging dangers by organizing and disseminating information about these topics.

• Mitigation: by identifying and understanding CVEs, organizations can apply

appropriate patches and mitigation strategies to protect their systems from attacks.

Contents of CVE Record

The CVE system provides a standard naming scheme for vulnerabilities, which facilitates

communication among cybersecurity services. It is also helpful as a starting point for

evaluating the effectiveness of security tools, helping users determine which ones are more

appropriate for the organization’s requirements.

Element Description

CVE Identifier CVE-2021-44228

Description Apache Log4j2 JNDI features do not protect

against attacker controlled LDAP and other JNDI

related endpoints

CWE CWE-400 Uncontrolled Resource Consumption

CWE-502 Deserialization of Untrusted Data

CWE-20 Improper Input Validation

CVSS Critical

Affected Versions Apache Log4j 2.x versions from 2.0-beta9 to 2.14.1

Table 2.1: CVE basic structure

Each entry in CVE system has a unique identifier number, such as CVE-2024-44228, which

is used as a numeric marker for a particular vulnerability. With this identifier, each entry

provides a brief description of the vulnerability, detailing its characteristic and potential

impact. Additionally, important references are included to provide a comprehensive

understanding of the issue, such as vulnerability reports, advisories, and other relevant

documentation, such as CWE (Common Weakness Enumeration) which represents

weaknesses.[5]
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A description is also provided, including the vulnerability’s type, root cause and the impact

it could have. Another important element is the severity, which is measured using the

Common Vulnerability Scoring System (CVSS).

The CVE record also includes exploitability metrics, which represent the ways through

which the vulnerability can be exploited. There is also the scope, which refers to the

possibility that one vulnerability could affect another piece of software or component. The

record can also include impact metrics, which measure the potential effects of a successful

exploitation of the vulnerability.

Finally there are references related to the vulnerability and affected versions of software or

components, helping users verify if they are using vulnerable version. [4] We can see an

example of CVE structure in Table 2.1 .

2.4 Attack graph

An attack graph is a model-based method for analyzing network security. It maps out

potential attack paths and their interdependencies within a network, helping to identify

vulnerabilities and understand how they might be exploited.

Each node in an attack graph represents a system state or condition, such as a vulnerability

or an attack step, while edges represent the transitions between these states caused by

exploits. This graphical representation is crucial for understanding the sequences of exploits

an attacker could use to compromise a system, enabling more effective defense strategies.[6]

A basic example of an attack graph can be see in Figure 2.4.

The process of generating attack graphs involves several key steps. Initially, it requires the

input of information about the network, including its topology, configurations, and any

known vulnerabilities. This information forms the basis for the subsequent steps.

Once input data are collected, algorithms are used to simulate potential attack scenarios.

This simulation involves iteratively applying known exploits to the network configuration to

explore all possible ways an attacker could reach through the system. The result of this

process is a graph that visually and analytically represents the various paths an attacker

might take. This graph helps in identifying critical points where security measures can be

most effective. This graph is then analysed to gain several information such as number of

attack paths, minimum length of attack paths and essential exploit for the attacker.[6]

The generation of attack graphs can be approached through various methodologies, each
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Figure 2.4: Attack Graph

with its own set of techniques and advantages.One of this methodology is the model-driven

approach, which begins with system descriptions and applies transformation rules to convert

these descriptions into attack models. This approach rely on predefined transformation rules

to create attack graphs from system models.

Another methodology is the analysis-driven approach, which starts with a system description

and focuses on performing security analyses such as model checking or vulnerability

scanning. The outcomes of these analyses are then used to generate the attack graphs.

The third approach is vulnerability-driven, which begins with collecting data on

vulnerabilities, often sourced from vulnerability databases and use data to create attack

graphs by matching known vulnerability patterns to the system.[7]

Each of these methodologies offers a distinct way of approaching the creation of attack

graphs but they are not disjoint as we can see in Figure 2.5.

Attack graphs are used for various purposes, including:

• Risk Analysis: identify and prioritize vulnerabilities based on their roles in potential

attack path.

• Network Hardening: develop strategies to mitigate risks by reinforcing critical points

in the network.

• Incident Response: analyze the steps taken by an attacker to improve defenses.

In conclusion, attack graphs are a valid method for cybersecurity experts to understand and
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Figure 2.5: Generation Methodologies

mitigate the risks posed by potential attackers, by analyzing network and exploitable attack

paths.

2.5 REST API

REST APIs (Representational State Transfer Application Programming Interfaces)

represent a standard way to connect components and applications, providing an high level of

scalability, flexibility and efficiency for developers.

They uses HTTP request to perform standard operations like creating, reading, updating or

deleting resources. An API enables one application or service (the client) to access a

resource within another application or service (the server).[8]

REST APIs follow six fundamental principles:

• Uniform interface: APIs requires a standardized interface for communications between

client and server, ensuring that the same data belong to the same URI (Uniform

Resource Identifier).

• Client-Server Separation: client and server should be independent of each other. The

client only need to know the URI of the requested resources because otherwise it can

not properly interact with the server.

• Stateless condition: to process a request it must include all the information needed.
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Server-side sessions are not required and server is not allow to store information about

client request.

• Caching capability: client or server should caches information about resources. This is

done to improve performance on client and increase scalability on server.

• Layered system architecture: REST APIs architectures can be composed by many

layers so there can be many intermediaries in the communication between client and

server. The design of REST APIs need to ensure that client and server can’t know if

they are communicating with the end application or not.

• On-demand code: optionally, REST supports the extension of client functionality to

contain executable code [8].

REST APIs use HTTP methods to communicate and to define possible operations on

resources [8]. The most important methods are in Table 2.2.

Method Description Example

GET Retrieves a record without modi-

fying it

’GET /entities’ reports all the en-

tities

POST Creates a new record on the

server

’POST / entities’ add a new en-

tity

PUT Updates an existing record 2 ’PUT / entities/1’ updates the

entity with ID 1

DELETE Deletes a resource from the server ’DELETE /entities/1’ deletes the

entity with ID 1

Table 2.2: REST APIs’ methods

An API is a set of rules and protocols that allows software applications to interact with

each other. It acts as an intermediary between the consumer (the application requesting the

information) and the provider (the application offering the information), defining how

requests and responses should be formatted.

REST is an architectural style that defines a set of constraints for designing applications. It

is not a protocol or a standard, it represents a way of designing software based on HTTP

protocol. [9]





Chapter 3

Threat Modelling

In this chapter, we present a threat analysis to understand the complexity and impacts of

multi-step attacks on Digital Service Chains (DSCs). Our analysis begins with the

development of concrete examples of multi-step attacks in Section 3.1. These examples

illustrate the sequential nature of such attacks, highlighting the exploitation of multiple

vulnerabilities across interconnected systems.

Following the examples, Section 3.2 analyzes the Common Vulnerabilities and Exposures

(CVEs) involved in these multi-step attacks. We analyze each CVE to understand how these

vulnerabilities can be exploited by attackers at different stages of an attack, providing a

clear view of the potential entry points and escalation paths within the DSCs.

Finally, in Section 3.3, we propose a threat model for the structured description of CVEs.

This model aims to represent the conditions, strategies, and targets of various threats,

enabling a machine-oriented understanding of vulnerabilities and attack sequences.

3.1 Example of multi-step attack

Before developing a threat description, it was essential to model examples of multi-step

attacks to understand the relationships between the various steps and the different CVEs

involved.

To achieve this, we have developed three detailed examples by thinking about potential

attack scenarios in DSCs. These examples are helpfull to illustrate how attackers could

exploit vulnerabilities in interconnected services to achieve their malicious objectives.

25



26 3.1. EXAMPLE OF MULTI-STEP ATTACK

Example 1

The first example illustrates a multi-step attack consisting of six steps, showing how an

attacker can exploit a series of vulnerabilities to gain unauthorized access, escalate

privileges, and maintain persistent control over a system:

1. The attacker examine exposed services to identify technologies used and known

vulnerabilities. Using Nmap an attacker can perform a scan to identify exposed

services and their versions. Suppose the scan finds a vulnerable MySQL server

(CVE-2012-2122 MySQL Authentication Bypass).

2. Once some vulnerabilities have been found, the attacker exploits them to gain

unauthorized access to the server. For example, if he finds a SQL injection

vulnerability, he can insert malicious code to access the database and thus obtain

users or critical services credentials. The code depends on the context and on a

specific vulnerability, the most common example that can be used is the string “’ OR

1 = 1” and it is used to manipulate the string in order that it is always true. It is

possible to use the tool sqlmap to identify the structure of the database to write a

more specific injection code (CVE-2019-18609 OpenStack Horizon SQL Injection).

3. Using the stolen credentials, the attacker accesses the CMS (Content Management

System) and can load and install plugins containing malware or backdoors to gain

remote and persistent access. For example, an attacker can log to the CMS

OpenStack Horizon using the stolen credentials and put a plugin containing a

backdoor to execute arbitrary commands (CVE-2019-14433 OpenStack Horizon Code

Injection Vulnerability).

4. Using a malicious plugin, the attacker executes commands to identify any kernel

vulnerabilities or insecure configurations and attempt to obtain higher services on the

server. The attacker can use a Python script or a bash shell into the malicious plugin

to execute commands on the server and identify system information and potential

vulnerabilities (CVE-2021-3156 Sudo Buffer Overflow).

5. Once the attacker has obtained elevated privileges, he installs a RAT (Remote Access

Trojan), like Cobal Strike Beacon, on the compromised server and configures it to

maintain unauthorized access and control in the long term. Through the RAT the

attacker can perform further reconnaissance, collect sensitive information, or perform
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malicious actions. First, the attacker loads the RAT payload using the shell and then

configures the RAT for persistence connection (CVE-2020-0796 SMBGhost

Vulnerability).

6. After the attacker has obtained access to sensitive systems, he executes a targeted

ransomware attack against the organization’s servers. It can distribute ransomware,

like Ryuk, on systems via RAT.

Example 2

The second example involves a similar multi-step approach of the first one, but this time

using social engineering techniques and internal exploits to compromise the target system.

This attack evolves through the following steps:

1. The attacker sends a targeted phishing email to employees of an organization. This

email contains fraudulent links or malicious attachments designed to trick recipients

into providing their login credentials.

2. Using the stolen credentials, the attacker logs into a system, such as a server or web

application like Tomcat.

3. Once inside the system, the attacker exploits known vulnerabilities to gain

administrator privileges. An example is exploiting a vulnerability in sudo services to

execute commands as root (CVE-2019-14287 Sudo Security Bypass Vulnerability).

4. With administrator privileges, the attacker installs a backdoor to maintain

unauthorized access even after the session is closed. The backdoor communicates with

a remote server controlled by the attacker and can execute commands, collect data, or

provide remote access (CVE-2018-10933 libssh Authentication Bypass).

5. The malware allows the attacker to move laterally across the internal network,

exploiting previously stolen credentials or other security weaknesses. An example is

taking control of the Domain Controller via the Netlogon protocol (CVE-2020-1472

Zerologon Vulnerability).
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Example 3

The third example provides an attack chain that combines elements of phishing, remote

shell access, container escape, privilege escalation, and internal reconnaissance. This

scenario highlights the complexity and interconnected nature of attacks in Digital Service

Chains (DSC). The attack develops through the following steps:

1. The attacker sends a targeted phishing email to obtain user credentials or exploit a

malicious URL.

2. Using the stolen credentials or a malicious URL, the attacker opens a remote shell by

exploiting a vulnerability in Apache mod_cgi (CVE-2014-6271 Shellshock).

3. The attacker escapes the Docker container using vulnerabilities such as runC

overwrite or Docker daemon privilege escalation (CVE-2019-5736) or Docker cgroups

container escape (CVE-2022-0492).

4. The attacker can perform, if necessary, further privilege escalation to obtain root

access.

5. The attacker locates critical servers like MySQL or SSH within the network, using

tools like nmap for scanning.

6. The attacker uses brute force to access the MySQL server (as described in Example 1)

or bypasses authentication on the SSH server (as described in Example 2).

7. Using the compromised MySQL/SSH server, the attacker targets additional resources

within the network.

3.2 Analisys of involved CVEs

In this section, we will analyze the Common Vulnerabilities and Exposures (CVEs) involved

in the multi-step attack examples. Each CVE represents a specific vulnerability that

attackers can exploit at various stages of an attack. The descriptions of the vulnerabilites

are taken from CVE Website [10].

We can start with the CVEs in the first example:

https://www.cve.org/
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• CVE-2012-2122: MySQL Authentication Bypass: this vulnerability allows

remote attackers to bypass authentication by repeatedly try to authenticate with the

same incorrect password. Eventually due to an improper token check, the system

accepts the incorrect password as if it is correct and permits the access.

• CVE-2019-18609: OpenStack Horizon SQL Injection: this vulnerability causes

an integer overflow that leads to heap memory corruption. A malicious server could

send a bad frame header that makes the target_size value smaller than it should be.

This affects memcpy function which will copy too much data into a heap buffer,

causing memory corruption.

• CVE-2019-14433: OpenStack Horizon Code Injection Vulnerability: if an

API request made by an authenticated user causes an error due to an external

exception, the response might leak details about envioremnts and expose sensitve

configuration or other data.

• CVE-2021-3156: Sudo Buffer Overflow: the vulnerability found in some Sudo

versions allows privilege escalation to root.

• CVE-2020-0796: SMBGhost Vulnerability: this vulnerability occurs when

SBMv3 (Microsoft Server Message Block) handles certain requests improperly,

allowing an attacker to execute code remotely on affected system.

Let’s now analise the CVEs in the second example:

• CVE-2014-6271: Shellshock (Bash Remote Code Execution): this

vulnerability in the Bash shell allows attackers to execute arbitrary using a crafted

environment.

• CVE-2019-5736: Docker runC Overwrite or Docker Daemon Privilege

Escalation: this vulnerability allows attackers to overwrite the host runC binary by

exploiting the ability to execute a command as root within a new container with an

attacker-controlled image. It is also possible to use and existing container, to which

they previously had write access, and attach it with docker exec.

• CVE-2022-0492: Docker cgroups Container Escape: this vulnerability in the

Linux kernel can, under certain conditions, allow privilege escalation and bypass

namespace isolation using a particular feature.
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Finally, we can consider the CVEs of the third example:

• CVE-2019-14287: Sudo Security Bypass Vulnerability: in Sudo versions before

1.8.28, an attacker with a Runas ALL sudoer account can bypass policy blacklists and

session PAM modules, and cause incorrect logging by using a crafted user ID.

• CVE-2018-10933: libssh Authentication Bypass: this vulnerability in libssh

allows attackers to create a channels without first performing authentication, so it is

an unauthorized access.

• CVE-2020-1472: Netlogon Vulnerability: this vulnerability allows attackers to

gain domain administrator access by exploiting a weak connection to a domain

controller.

This analysis highlights the critical role of CVEs in multi-step attacks, illustrating how

attackers exploit these vulnerabilities to achieve their purpose.

3.3 Threat description

After developing the examples and analyzing the CVEs involved, we have developed a threat

description framework. This framework is designed to enable automated systems to evaluate

if a node is vulnerable to a multi-step attack or not. By incorporating detailed conditions,

strategies and targets, our threat description provides a structured and systematic approach

to identify and mitigate potential security risks.

3.3.1 Structure

The Threat description is divided into 3 parts, Conditions, Strategy and Target. Each

component provides a specific purpose in outlining the vulnerabilities and the potential

impact of an attack. This detailed representation is helpfull for a machine-oriented

understanding of vulnerabilities and attack sequences, facilitating detection, prevention, and

response mechanisms.

Conditions describe the environment configurations that make the attack feasible and

includes:
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"cve": CVE identifier of the vulnerability

"type": Type of vulnerability

"cwe": CWE identifier of the weakness type

"system": Affected systems

"software": Software affected by the vulnerability

"component": Specific part of the software affected by the vulnerability

"version": Range of component versions vulnerable to the threat

"os": Operating system affected by the vulnerability

"privileges": Level of privilege required to exploit the vulnerability

"methodology": Methodology used in the attack (enumeration / exploitation / post-

exploitation / pivoting)

"vector": Attack vector (network / physical / social / local / remote)

"payload": Payload used in the attack exploiting the RCE vulnerability

"resource": Resource needed to start the attack (shell/backdoor/network/. . . )

Strategy describes operations that the attacker must perform to made the attack.

Specifically, the fields included in Strategy are:

"steps": steps to perform during the attack

"number": step number

"description": description of the step

"tool": tool or technique used for that step

The last section, Target, describes the final impact of the attack and includes the following

fileds:
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"impact": ": impact of the attack (confidentiality / integrity / availability / privilege

escalation / remote code execution / denial of service)

"description": description of the result of the attack

"privileges": ”: level of privileges gained (none/user/root)

"access": type of access obtained (local/remote/physical)

"resources": resources that can be accessed (shell/backdoor/..)

3.3.2 Implementation

After generating the threat description framework, we proceeded by modellomg the CVE

information based on this schema. This modeling process allows for a precise and

machine-oriented representation of CVEs, which is crucial for automated systems to

effectively understand and analyze vulnerabilities.

Below there are an example of a CVE (already descripted in 3.2) modeled using this schema:

1 {

2 "condition": {

3 "cve": "CVE -2014-6271",

4 "type": "Remote Code Execution",

5 "cwe": "CWE -78",

6 "system": {

7 "software": "GNU Bash",

8 "component": "Bash Shell",

9 "version": "1.14 - 4.3",

10 "os": [

11 "Linux",

12 "Unix",

13 "Mac OS X"

14 ]

15 },

16 "privileges": "none",

17 "methodology": "exploitation",
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18 "vector": "remote",

19 "payload": "arbitrary shell commands"

20 },

21 "strategy": {

22 "steps": [

23 {

24 "number": 1,

25 "description": "Craft malicious environment

variable",

26 "tool": "script"

27 },

28 {

29 "number": 2,

30 "description": "Inject environment variable

via CGI request",

31 "tool": "curl"

32 },

33 {

34 "number": 3,

35 "description": "Exploit Bash vulnerability

to execute commands",

36 "tool": "Bash shell"

37 }

38 ]

39 },

40 "target": {

41 "impact": [

42 "remote code execution",

43 "confidentiality",

44 "integrity"

45 ],

46 "description": "Execution of arbitrary commands,

potential full system compromise",

47 "privileges": "root",
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48 "access": "remote",

49 "resources": "shell"

50 }

51 }
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TAMELESS

TAMELESS (Threat & Attack ModEL Smart System) is a threat analysis model that allows

deriving the current security state of a system and its components, using input information

regarding the system components and their security properties.

As illustrated in figure 4.1, TAMELESS takes as input the description of the system to be

analyzed, which includes system components, threats, relationships between components

and threats, and user queries.

Figure 4.1: TAMELESS workflow

Users conducting a threat analysis can then obtain the output, which includes the default

security properties of the system components and a graphical representation of the attack

35
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propagation.[11]

TAMELESS can be used to generate attack graphs by posing specific queries and analyzing

the responses. By asking questions about the relationships and vulnerabilities within the

system, users can visualize potential attack paths and understand how different threats can

propagate through the network.

4.1 Hybrid Threat Model

TAMELESS is based on a hybrid threat model, which combines cyber, physical, and human

aspects to represent the relationships and security properties of the system components.

The hybrid threat model consists of two key components: entities (E) and threats (T).

Entities can be categorized as cyber, physical, or human, and threats are actions that can

alter the security status of these entities.

The properties of an entity are divided into Basic Properties and Auxiliary Properties.

The set of all Basic Properties are

PB = {Comp,Malfun,Vul}

where

Comp(A,T) means that entity A has been compromised by threat T.

Malfun(A) means that entity is malfunctioning, so some of its functionalities are

not working properly.

Vul(A,T) means that A is vulnerable to threat T.

The set of all Auxiliary Properties are

PA = {Det,Rest,Fix}

where

Det(A,T) means that it has been detected that entity A has been compromised

by threat T.

Restored(A) means that control over A is restored.

Fix(A) means that the functionality of A is repaired.
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The model includes several relationships between entities and between entities and threats.

Relations Between Entities are

{Contain,Control,Connect,Depend,Check,Replicate} ∈ R

where

Contain(A,B) means that A contains B.

Control(A,B) means that A controls B.

Connect(A,B,C) means that B and C are connect trough A.

Depend(A,B) means that the functionality of A depends on that of B.

Check(A,B) means that A checks if B is functioning.

Replicate(A,B) means that A is a replica of B.

Relations Between Entities and Threats are

{Protect,Monitor, Spread,PotentiallyVul} ∈ R

where

Protect(A,B,T) means that A protect B from threat T.

Monitor(A,B, T) means that A monitor B from threat T.

Spread(A,T) if A can propagate threat T.

PotentiallyVul(A,T) if A can be vulnebarble to T.

Finally Hybrid Threat Model has some High-Level Properties that help users to

understand the level of system security. They are

PH = {Val,Def, Safe,Mon,Che,Rep}

where

Val(A) means A is valid.

Def(A,T) means that A is defended from threat T by an entity B.

Safe(A,T) means that A is safe from T.

Mon(A,T) means that A is monitored from threat T.

Che(A) means A is checked.

Rep(A) means that A is replicated. [11]
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4.2 Code

The code for TAMELESS is available in the GitHub repository FulvioValenza/TAMELESS.

This repository contains the essential components and definitions that drive the

TAMELESS framework. The two files of interest for this analysis are system.p and rule.p,

which are critical for defining the system components and the rules for threat propagation

within TAMELESS.

4.2.1 Rule.p

The rule.p file defines the logical rules and conditions under which threats can propagate

and impact the system components. These rules specify how vulnerabilities can be

exploited, how attacks can spread, and the countermeasures that can be applied. They

govern the interaction between components and threats.In this subsection we will focused on

the rules that we have modified during our analysis.

• The function canbeComp(A, T) determines if an entity A can be compromised by

threat T. It uses relations between entities to establish the compromise. In particular,

checks if ’assComp(A, T)’ is defined in our system, which indicates that entity A can

be compromised by threat T.

1 canbeComp(A,T):-

2 assComp(A,T),

3 write(’\n-> (’),

4 write(A),

5 write(’) is Assumed Compromised by (’),

6 write(T),

7 write(’) ’).

• The function canbeVul(A, T) checks if an entity A is vulnerable to a threat T. This

function is focused on relations, specifically ’assVul(A, T)’, and checks if it is defined

in the system, indicating that entity A can be vulnerable to threat T.

1 canbeVul(A,T):-

2 assVul(A,T),

https://github.com/FulvioValenza/TAMELESS
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3 write(’\n-> (’),

4 write(A),

5 write(’) is Assumed Vulnerable to (’),

6 write(T),

7 write(’) ’).

• The potentiallyVul(A, T) function was originally used to identify entities that are

potentially vulnerable.

1 potentiallyVul(a7,b7).

• The canbeFix(A) function determines if an entity A can be repaired.

1 canbeFix(A):- canbeMalfun(A), checked(A).

During the development of the thesis we have modified these functions and some others

related to them in order to achieve different goals, such as including CVEs analysis.

4.2.2 System.p

The system.p file is used to design the structure of the system being analyzed. It contains

definitions of all system components, including properties and relationships between them.

Each component is detailed with properties such as vulnerability and relationships with

other components, represented by spread or connect functions, described in Section 4.1.

These definitions are very important for system’s security model. Here are some examples of

basic component definitions and their relationships:

1 e(network). %entity

2 t(scanning). %threat

3 assVul(network, scanning) %network is vulnerable to scanning
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According to the rules defined in the file rule.p , ’canbeVul(network, scanning)’ will return a

positive result, indicating that the network is vulnerable to the scanning threat.

Starting from these files, TAMELESS can be used to generate attack graphs. By querying

the system, users can receive responses indicating whether an entity is vulnerable or not.

This allows the creation of attack graphs, providing a visual and analytical representation of

potential attack paths and improving the understanding of how different threats can

propagate through the network. This capability supports dynamic and interactive threat

modeling, offering deeper insights into the system’s security posture.

4.3 RESTful Web Service in TAMELESS

TAMELESS includes a RESTful web service that provides a standardized interface to

interact with components of the system. The APIs are designed to manage entities, threats,

relations and properties in a cyber-physical system.

Resources supported by APIs are:

• Entities: components of the system, which can be human, cyber or physical.

• Threats: potential action that may compromise the security of the system.

• Relations: interaction between entities and threats. There can be many type of

relation, like relations between two or three entities.

• Properties: assumed and derived properties associated with entities and threats.

The RESTful web service in TAMELESS was developed using Jersey framework (version

2.25) on a Tomcat v8.5 server. The development environment was set up in Eclipse Neon 2,

using Swagger API.

The API uses standard HTTP methods to define operations to perform operations on

resources, like GET, POST, PUT and DELETE, and follows REST principle. The Table 2.2

summarizes these methods.

By using these standard HTTP methods, the TAMELESS API permits consistency and

interoperability, in fact, design is flexible and so suitable for many applications. [12]
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4.3.1 SystemService.java

In the already mentioned GitHub repository FulvioValenza/TAMELESS, the file

’SystemService.java’ implements some RESTfull APIs for managing components in the

system.

The file contains methods that handle only the back-end logic for operations, but does not

contain the JAX-RS annotations needed to directly expose these methods as RESTful API

endpoints accessible via HTTP.

We can divided the operations in 4 sections based on componets they managed.

Entity

The ’SystemService.java’ file includes methods to manage entities that can represent human,

cyber or physical components. The methods are:

• createEntity(Entity e): creates a new entity in the system.

• getEntities(String name, BigInteger page): retrieves a list of entities.

• updateEntity(BigInteger id, Entity toUpdate): updates an existing entities

identified by its ID.

• deleteEntity(BigInteger id): deletes an entity by its ID.

Threat

The file also provides methods to manage threats. These methods are:

• createThreat(Threat t): creates a new threat in the system.

• getThreats(String name, BigInteger page): gets a list of threats.

• update Threat(BigInteger id, Threat toUpdate): updates an existing threat

identified by its ID.

• deleteThreat(BigInteger id): deletes a threat based on it ID.

https://github.com/FulvioValenza/TAMELESS
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Relation

The file supports relations between entities and threats, in particular aids creating,

retrieving and managing different types of relationships.

Supported methods are:

• createRelation2Entities(Relation2Entities r2e): cretaes relationship between

two enitites.

• getRelations2Entities(BigInteger page): retrieves all relations between two

entities.

• createRelation3Entities(Relation3Entities r3e): creates relations that involved

three entities.

• getRelations3Entities(BigInteger page): lists all relationships between three

entities.

• createRelation2Entities1Threat(Relation2Entities1Threat r2e1t): creates

relationships between two entities and one threat.

• getRelations2Entities1Threat(BigInteger page): retireves all relations between

two entities and one threat.

• createRelation1Entity1Threat(Relation1Entity1Threat r1e1t): creates a

relationship between one entity and one threat.

• getRelations1Entity1Threat(BigInteger page): retrieves all relations between

one entity and one threat.

Property

Properties can be both assumed and derived and they are associated with entity and also

threat. The file includes the following methods:

• createProperty1Entity(Property1Entity p1e): creates a property associated

with an entity.

• getProperties1Entity(BigInteger page): lists properties associated with one

entities.
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• createProperty1Entity1Threat(Property1Entity1Threat p1e1t): creates a

property associated with one entity and one threat.

• getProperties1Entity1Threat(BigInteger page): retrieves properties associated

with one entity and one threat.





Chapter 5

Thesis overwiev

5.1 Thesis objectives

The aim of this thesis is to enhanche the TAMELESS framework in order to make it more

precise in the cyber domain and more efficient in handling Common Vulnerabilities and

Exposures (CVEs) and related threats. The enhancements are targeted to improve the

framework’s capabilities to detect and analyze threats in more complex digital environments.

The main goals are:

• Modification to focus on Cyber Domain: The first objective is to modify

TAMELESSS framework, by modifying, adding or removing functions, to focus only

on cyber aspect. This need a previous analysis of the code of the framework to

determine necessary changes.

• Inclusion of CVEs: The second objective is to include CVEs into TAMELESS’s

analysis of entities and threats. This can include a future work, based on already

developed threat model, which deals with automate the analysis of CVEs to enable

framework to automatically identify and manage vulnerabilities.

• Implementation of Patch Management: The third objective is to incorporate

patch management strategies in the TAMELESS framework. This is done by adding

new functions and modifying some others to ensure that ,one a vulnerability is

patched, it is no longer considered dangerous for the system.

These objective aim to create a more precise and efficient tool for threat analysis to address

45
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the new challenges in increasingly complex digital scenario, like in Digital Service Chain.

This work sets the foundation for future research and development in automating and

optimizing threat detection.

5.2 Phases of Work

Several phases of work were carried out to achieve the set objectives. Each phase represent a

critical step in enhancement of the TAMELESS framework, starting from the analysis of the

framework and ending with testing software on examples.

The phases are the following:

1. Analysis of CVEs and development of threat model: this initial phase is

focused on analyzing Common Vulnerabilities and Exposures that are relevant in

Digital Service Chains (DSCs). The goal was to understand how these vulnerabilities

can be exploited in interconnected environments. Then a threat model was created to

automate the analysis of CVEs in the TAMELESS framework.

2. Creation of multi-step attack scenarios: in this phase, three multi-step attack

scenarios were created to simulate realist attacks in interconnected systems. These

scenarios were usefull as examples to test the effectiveness of the TAMELESS

framework after modification.

3. Analysis of the TAMELESS framework: this phase involved analysis of existing

TAMELESS framework to identify which functions required modification or needed to

be deleted. This analysis highlight the aspects that needed to be modified to our

purpose.

4. Implementation of code modifications: based on the findings from the previous

phases, this phase consists in modifying the code to improve the TAMELESS

framework’s functionalities. The code was updated to incorporate CVE analysis,

patch management and to focus only on cyber aspects.

5. Validation and testing: the finale phase focuses on validating and testing the

modified TAMELESS framework. The multi-step attack scenarios developed in the

previous phase were used to evaluate the framework, in particular its ability to detect,

analyze and mitigate threats. Test were made to ensure the functionality of new
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components and modified ones. The obtained result were analyzed to confirm that

framework work as expected.





Chapter 6

Optimization of TAMELESS

This chapter delves into optimization of the TAMELESS framework after the analysis of

original rules discussed in Section 5.2.

The primary goal of these optimizations was to refine the framework to focuse exclusively on

cyber threats, as detailed in Section 6.1, in order to have create a more precise and targeted

tool.

The second goal deals into integrate Common Vulnerability Exposure (CVE) in

TAMELESS’s analysis, as described in Section 6.2. We have considered CVEs as a link

between entities and threats.

Finally, the chapter discusses the implementation of effective patch management strategies,

detailed in Section 6.3, by adding new functions that enabled TAMELESS to consider the

application of patches to threats.

All these modifications aim to create a more precise and efficient tool for threat modelling

and analysis.

6.1 Modification to Focus on Cyber Domain

After studying all rules in file rule.p, to simplify TAMELESS framework and ensure its

relevance exclusively to cyber threats, several functions that were not strictly related to the

cyber sphere need to be removed. These modifications are necessary to focus the framework

on digital security issues.

In particular we have removed three functions and, as consequence, we have modified some

other:

49
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• canbeMalfun(A): This function checks if an entity can be malfunctioning, involving

potential mechanical or hardware issues, which is in the physical domain. Removing

this function requires updating all operations that involve it, such as ’usable(A)’.

The removed function is:

1 canbeMalfun(A):-

2 assMalfun(A),

3 write(’\n-> (’),

4 write(A),

5 write(’) is Assumed Malfunction ’).

The function ’usable(A)’ before:

1 usable(A):-

2 e(A),(\+ canbeComp(A,_T), \+ canbeMalfun(A)).

and after removing the function:

1 usable(A):-

2 e(A),(\+ canbeComp(A,_T)).

• canbeMalfun4Comp(A): This function determines if an entity can be

malfunctioning because it is compromised. This function has been removed because

canindirectly involves non-cyber elements.

The function sintax is:

1 canbeMalfun4Comp(A):-

2 canbeComp(A,_T),

3 write(’\n-> (’),

4 write(A),

5 write(’) can be Malfunction because it can be

Compromised ’).
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• canbeMalfun4Dep(A): This function checks if an entity can malfunction due to

dependency on another malfunctioning entity. Removing this function requires

updating all related operations, such as ’canbeVul(A, T)’. The removed function is:

1 canbeMalfun4Dep(A):-

2 depend(A,B),

3 (canbeComp(B,_T); assMalfun(B); canbeMalfun4Dep(B)),

4 write(’\n-> (’),

5 write(A),

6 write(’) can be Malfunction because depend on (’),

7 write(B),

8 write(’) ’).

The function ’canbeVul(A, T)’ before:

1 canbeVul(A,T):-

2 assVul(A,T),

3 canbeMalfun4Dep(A),

4 write(’\n-> (’),

5 write(A),

6 write(’) is Assumed Vulnerable to (’),

7 write(T),

8 write(’) ’).

and after removing the function:

1 canbeVul(A,T):-

2 assVul(A,T),

3 write(’\n-> (’),

4 write(A),

5 write(’) is Assumed Vulnerable to (’),

6 write(T),

7 write(’) ’).



52 6.2. INCLUSION OF CVES

By removing these functions, the focus of TAMELESS shifts exclusively towards cyber

threats, ensuring that all components and interactions are relevant to the digital security

context. This modification not only simplify the model but also improves its applicability

and precision in cyber threat analysis.

In conclusion, the removal of non-cyber functions represent an important step in creating a

specialized and efficient tool for cyber threat analysis.

6.2 Inclusion of CVEs

The next step of this thesis consists in creating new functions and modifying existing ones in

order to incorporate Common Vulnerability and Exposures (CVEs) into the analysis of the

vulnerability of an entity A to a threat T. This integration improves TAMELESS

framework’s ability to analyze vulnerabilities by exploiting standardize informations.

To permit the inclusion of CVEs, we have added two new functions:

• cve(a1, _): This function checks if an entity ’a1’ is linked with a cve_id. This

connection is important for associating an entity with a specific CVE.

1 cve(a1, _)

• ’cve_thread(_, b1)’: This function checks if the cve_id is connected to a threat

’b1’. By identifying this connection, we can link the threat and the entity through the

CVE.

1 cve_threat(_, b1)

Using these two functions together, we can determine if an entity is vulnerable to a threat

by connecting them through the same CVE_ID.

Then we have modified the following functions, the original version of which is described in

Section 4.2:

• canbeVul(A,T): this updated version of the rule check if an entity A is vulnerable to

a threat T, as before the modifications, but additionally verifies if there is a CVE_ID

that connects the entity to the threat. The new version of the function is:
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1 canbeVul(A,T):-

2 (assVul(A, T) ;

3 cve(A, CVE_ID),

4 cve_threat(CVE_ID, T)

5 ),

6 write(’\n-> (’),

7 write(A),

8 write(’) is Assumed Vulnerable to (’),

9 write(T),

10 write(’) ’).

• potentiallyVul(A,T): This updated version of the rule, like the one previously

described, determines if an entity A is vulnerable to a threat T and additionally

checks if there is a CVE_ID that links the entity to the threat. The new function is:

1 potentiallyVul(A,T):-

2 (assVul(A, T) ;

3 cve(A, CVE_ID),

4 cve_threat(CVE_ID, T)

5 ),

6 write(’\n-> (’),

7 write(A),

8 write(’) is Potentially Vulnerable to (’),

9 write(T),

10 write(’) ’).

The modifications and additions made to TAMELESS framework significantly improve its

capability to analyze vulnerabilities more accurately by considering CVEs. This represent a

significant step in the analysis and optimization of vulnerability assessment in multi-step

attacks, contributing to more secure and resilient systems.
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6.3 Patch Managment

The final step of the thesis is based on improving the TAMELESS framework by adding

patch managment strategies, adding and modifying functions of rule.p file.

This step is important for ensuring that once a threat has been patched, the system

recognizes the enity is no longer vulnerable.

To implement patch management, we have introduced two new functions that identify if an

entity’s threat has been patched. These functions are designed to verify the application of

patches, guaranteeing that vulnerabilities are mitigated.

The two functions are:

• patched(T): The function is designed to check if a specific threat, ’T’, has been

patched. It is helpfull to determine if a vulnerability associated with a threat has been

addressed.

1 patched(T) :-

2 applied_patch(T),

3 write(’\n-> (’),

4 write(T),

5 write(’) can be fixed ’).

• applied_patch(b1): It declares that a patch has been applied for threat ’b1’. This

declaration is important for the previous function to determine the status of the

threat.

1 applied_patch(b1).

After adding new functions, we have also modified existing ones to integrate the patch

management. The updated function is ’canbeFix(A)’, described in Section 4.2. This

modification ensure that the function check if the threat has been patched.

The new version of the function is:

1 canbeFix(A) :-

2 canbeVul(A, T),
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3 patched(T),

4 checked(A).

By adding and modifying these functions, TAMELESS framework can now manage patches

for vulnerabilities, being a more accurate tool. The ability to recognize patches and

determine that an entity is no longer vulnerable to a threat, not only improves accuracy of

framework but also increase its utility in real world scenario, contributing to more secure

systems.





Chapter 7

Validation

In this chapter, we will verify the TAMELESS framework changes that were made in the

previous chapter. The goal is to guarantee that the improved set of rules and their

implementations mitigate cyber threats within Digital Service Chains (DSCs). In order to

achieve this, we will offer several examples that show how the upgraded framework may be

used in real-world scenarios.

These use cases will be derived from the attack chain examples presented in Section 3.1,

where we detailed multi-step cyber attack scenarios. By applying these realistic usecases, we

can better evaluate the effectiveness of the TAMELESS framework in detecting and

mitigating vulnerabilities within interconnected digital services.

The validation process aims to ensure that the updated functions accurately detect possible

risks and want to illustrate the practical applicability of the framework by simulating

realistic cyber attack scenarios and their mitigation. The effectiveness of the modified rules

in identifying vulnerabilities, preventing attacks, and maintaining the integrity and security

of the DSCs will be analyzed through these use cases.

Validation approach

For each of three changes made to the TAMELESS framework we followed the same

validation steps. We started for attack examples developed in Section 3.1. For each

example, we modified the file system.p to create a specific environment, including entities,

threats and connections.

We made a series of tests to simulate cyber attack scenarios on TAMELESS framework to

57
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evaluate functions we have created or changed. The validation consisted in checking the

output ensuring that new outputs correctly represent what expected with the addition or

modification of rules.

In addition, to test the robustness of the framework, we implemented some protective

system like firewall and intrusion detection system to verify that the framework identified

these protection and prevented the spread of threats.

7.1 Validation of Cyber-focused Rule Modifications

In this section, we will verify the effectiveness of the modifications made to the TAMELESS

framework, shown in section 6.2, to focus exclusively on cyber threats.

For each example in Section 3.1, we have modified the file system.p to create a specific

system for each use case, including entities, threats, connections, and spread rules to test the

attack chains on TAMELESS.

Example 1

• Step 1: Examine exposed services

1 e(network).

2 t(scanning).

3 assComp(network, scanning).

4 spread(network, scanning).

• Step 2: Exploit vulnerabilities to gain unauthorized access to the server (example SQL

injection)

1 e(sql).

2 t(injection).

3 connect(injection, netowrk, mysql).

4 assComp(mysql, injection).

5 spread(network, injection).
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• Step 3: Using the stolen credentials, the attacker can access the CMS (Content

Management System)

1 e(resource).

2 t(compromised_credential).

3 connect(compromised_credential, netowrk, resource).

4 assVul(resource, compromised_credential).

5 spread(resource, compromised_credentials).

• Step 4: Use malicious plugin to identify kernel vulnerabilities

1 e(kernel).

2 t(malicioud_plugin).

3 connect(malicious_plugin, resource, kernel).

4 assComp(kernel, malicious_plugin).

• Step 5: Using a RAT to collect information

1 e(server).

2 t(rat).

3 assComp(server, rat).

• Step 6: Execute a targeted ransomware against the organization’s servers

1 e(server).

2 t(ransomware).

3 assVul(server, ransomware).

After updating the system.p file with the additions listed above, the terminal output results

are:
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| ?- canbeComp(network, scanning).

-> (network) is Assumed Compromised by (scanning)

yes

| ?- canbeComp(mysql, injection).

-> (mysql) is Assumed Compromised by (injection)

yes

| ?- canbeVul(resource, compromised_credentials).

-> (resource) is Assumed Vulnerable to (compromised_credentials)

yes

| ?- canbeComp(kernel, malicious_plugin).

-> (kernel) is Assumed Compromised by (malicious_plugin)

yes

| ?- canbeComp(server, rat).

-> (server) is Assumed Compromised by (rat)

yes

| ?- canbeVul(server, ransomware).

-> (server) is Assumed Vulnerable to (ransomware)

yes

These outputs validate that the modified rules are working correctly, focusing exclusively on

cyber threats and effectively detecting and managing vulnerabilities and compromised states

in the system.

To further validate the framework, we have added protection mechanisms to verify if they

work. These mechanisms were designed to protect the system at various points in the attack

chain, ensuring that the framework could accurately detect and handle these protections.

Below are the specific modifications made to the files rule.p and system.p, the resulting

terminal output, and the generated attack graph.

The rule in file rule.p that we have modified to check if an entity is protected from a threat

is ’canbeComp(A, T)’:
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1 canbeComp(A,T):-

2 (assComp(A,T),\+ protected(A, T)),

3 write(’\n-> (’),

4 write(A),

5 write(’) is Assumed Compromised by (’),

6 write(T),

7 write(’) ’).

In this function we have added the check if the entity A is not protected from threat T. The

same addition can be done also in the rule ’canbeVul(A, T)’:

1 canbeVul(A,T):-

2 (assVul(A,T),\+ protected(A, T)),

3 write(’\n-> (’),

4 write(A),

5 write(’) is Assumed Vulnerable to (’),

6 write(T),

7 write(’) ’).

New element in file system.p are:

• Firewall in Step 1:

1 e(firewall).

2 usable(firewall).

3 protect(firewall, network, scanning).

• Web Application Firewall in Step 2:

1 e(waf).

2 usable(waf).

3 protect(waf, mysql, injection).
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• Security Module in Step 4

1 e(security_module).

2 usable(security_module).

3 protect(security_module, kernel, malicious_plugin).

• Intrusion Detection System in Step 5

1 e(intrusion_detection_system).

2 usable(intrusion_detection_system).

3 protect(intrusion_detection_system, server, rat).

The possible terminal output results that we can obtain if all protections are implemented

are:

| ?- canbeComp(network, scanning).

-> firewall protects network from scanning

no

| ?- protected(network, scanning).

-> firewall protects network from scanning

yes

| ?- canbeComp(mysql, injection).

-> waf protects mysql from injection

-> firewall protects network from scanning

no

| ?- canbeVul(resource, compromised_credentials).

-> (resource) is Assumed Vulnerable to (compromised_credentials)
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yes

| ?- canbeComp(kernel, malicious_plugin).

-> security_module protects kernel from malicious_plugin

-> firewall protects network from scanning

-> intrusion_detection_system protects server from rat

no

| ?- canbeComp(server, rat).

-> intrusion_detection_system protects server from rat

no

| ?- canbeVul(server, ransomware).

-> (server) is Assumed Vulnerable to (ransomware)

yes

By running the TAMELESS framework with the updated system.p and rule.p files, we can

generate an attack graph that visualizes the attack chain and the impact of the protection

mechanisms.

As seen in Figure 7.1, the attack graph will show the initial vulnerabilities and compromise

steps but will highlight the protections’ role in breaking the attack chain, hence preventing

the spread of the attack.

7.2 Validation of CVEs-focused Rules

In this section, we will analyze the impact of the new rules implemented in TAMELESS

framework in Section 6.2, which are designed to incorporate CVEs into vulnerability

analysis.

Starting from example 2 in Section 3.1 we have defined, in file system.p, entities, threats and

other rules for each step of the attack.

Example 2

• Step 1: Email to user
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Figure 7.1: Attack Graph Example 1

1 e(user).

2 t(phishing).

3 connect(phising, user, system).

4 assVul(user, phising).

5 spread(user, phishing).

• Step 2: Using the stolen credentials to logs into the system

1 e(system).

2 t(stolen_credential).

3 connect(stolen_credential, user, system).

4 assComp(system, stolen_credential).

• Step 3: Privilege escalation by executing know exploit

1 e(system).

2 t(privilege_escalation).

3 cve(system, 201914287).
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4 cve_threat(201914287, privilege_escalation).

5 spread(system, privilege_escalation).

• Step 4: Maintain unauthorized access using malware

1 e(system).

2 t(authentication_bypass).

3 cve(system, 201810933).

4 cve_threat(201810933, authentication_bypass).

5 spread(system, authentication_bypass).

• Step 5: Exploit vulnerabilities to move laterally across internal network

1 e(network).

2 t(lateral_movement).

3 cve(network, 20201472).

4 cve_threat(20201472,lateral_movement).

5 spread(network, lateral_movement).

The terminal output results after changes in rule.p and system.p files are:

| ?- canbeVul(user, phishing).

-> (user) is Assumed Vulnerable to (phishing)

yes

| ?- canbeComp(system, stolen_credential).

-> (system) is Assumed Compromised by (stolen_credential)

yes

| ?- canbeVul(system, privilege_escalation).

-> (system) is Assumed Vulnerable to (privilege_escalation)
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yes

| ?- potentiallyVul(system, authentication_bypass).

-> (system) is Potentially Vulnerableto to (authentication_bypass)

yes

| ?- canbeVul(network, lateral_movement).

-> (network) is Assumed Vulnerable to (lateral_movement)

yes

Then we have added some protection mechanisms to further validate the model, similar to

what we did in Section 7.1. We have changed rules ’canbeVul(A, T)’ and ’potentiallyVul(A,

T)’ to ensure they also check if the entity is not protected from threat.

Here is the modified potentiallyVul(A,T) function:

1 potentiallyVul(A,T):-

2 (assVul(A, T) ;

3 cve(A, CVE_ID),

4 cve_threat(CVE_ID, T),

5 \+ protected(A, T)

6 ),

7 write(’\n-> (’),

8 write(A),

9 write(’) is Potentially Vulnerable to (’),

10 write(T),

11 write(’) ’).

Then we added the following entities and rules in the file system.p to create protection

mechanism against threat:

• Intrusion Detection System in Step 3:

1 e(ids).

2 usable(ids).

3 protect(ids, system, privilege_escalation).
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• Software Anti-Malware in Step 4:

1 e(anti_malware).

2 usable(anti_malware).

3 protect(anti_malware, system,

authentication_bypass).

• Firewall in Step 5

1 e(firewall).

2 usable(firewall).

3 protect(firewall, network, lateral_movement).

The output result that we will obtain if we implement all of these protection are:

| ?- canbeVul(user, phishing).

-> (user) is Assumed Vulnerable to (phishing)

yes

| ?- canbeComp(system, stolen_credential).

-> (system) is Assumed Compromised by (stolen_credential)

yes

| ?- canbeVul(system, privilege_escalation).

-> ids protects system from privilege_escalation

no

| ?- potentiallyVul(system, authentication_bypass).

-> anti_malware protects system from authentication_bypass

no
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| ?- canbeVul(network, lateral_movement).

-> firewall protects network from lateral_movement

no

We can also create an attack graph that help with the graphical visualization of the attack

chain and protection mechanisms, we can see it in Figure 7.2.

Figure 7.2: Attack Graph Example 2

7.3 Validation of Rules focused on Patch

In this section we will validate the function added and modified, in Section 6.3, for the

patching of a threat.

We have started from example 3 in Section 3.1, defining in file system.p all the elements like

entities and threats.

Example 3

• Step 1: Email to user

1 e(user).

2 t(phishing).

3 assVul(user, phishing).

4 connect(phising, user, apache).

5 spread(user, phising).
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• Step 2: Log in with stolen credentials or exploit malicious url

1 e(apache).

2 t(shellshock).

3 cve(apache, 20146271).

4 cve_threat(20146271, shellshock).

5 connect(shellshock, user, docker).

• Step 3: Escape the Docker container

1 e(docker).

2 t(escape).

3 cve(docker, 20220492).

4 cve_threat(20220492, escape).

5 connect(escape,docker,system).

6 spread(docker, escape).

• Step 4: Privilege escalation

1 e(system).

2 t(privilege_escalation).

3 cve(system, 201914287).

4 cve_threat(201914287, privilege_escalation).

5 spread(system, privilege_escalation).

• Step 5: Locate MySQL or SSH

1 e(network).

2 t(scanning).

3 assComp(network, scanning).
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4 spread(network, scanning).

• Step 6: Access MySQL server or bypass SSH server authentication

1 e(mysql_server).

2 t(authentication_bypass).

3 cve(mysql, CVE -2012-2122).

4 cve_threat(CVE -2012-2122, authentication_bypass).

5 spread(mysql, authentication_bypass).

6 connect(mysql_server, authentication_bypass, resource).

• Step 7: Using stolen credentials to attack another resource

1 e(resource).

2 t(compromised_credentials).

3 assComp(resource, compromised_credentials).

4 spread(resource, compromised_credentials).

The terminal output result before adding the patches is:

| ?- canbeVul(user, phishing).

-> (user) is Assumed Vulnerable to (phishing)

yes

| ?- canbeVul(apache, shellshock).

-> (apache) is Assumed Vulnerable to (shellshock)

yes

| ?- potentiallyVul(docker, escape).

-> (docker) is Potentially Vulnerableto to (escape)

yes
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| ?- canbeVul(system, privilege_escalation).

-> (system) is Assumed Vulnerable to (privilege_escalation)

yes

| ?- canbeComp(network, scanning).

-> (network) is Assumed Compromised by (scanning)

yes

| ?- potentiallyVul(mysql, authentication_bypass).

-> (mysql) is Potentially Vulnerableto to (authentication_bypass)

yes

| ?- canbeComp(resource, compromised_credentials).

-> (resource) is Assumed Compromised by (compromised_credentials)

yes

We have also tried the function ’canbeFix(A)’ before adding a patch:

| ?- canbeFix(apache).

no

| ?- canbeFix(docker).

no

| ?- canbeFix(mysql_server).

no

We have added three patches in steps 2, 3 and 6 to validate the functions created and

modified:

1 checked(apache).

2 applied_patch(shellshock).
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1 checked(docker).

2 applied_patch(escape).

1 checked(mysql_server).

2 applied_patch(authentication_bypass).

We first have tested the function ’canbeFix(A)’ and the output results are:

| ?- canbeFix(apache).

yes

| ?- canbeFix(docker).

yes

| ?- canbeFix(mysql_server).

yes

Then, we have tested if, adding the patched in steps 2, 3 and 6, the output results of these

steps would change. The results are the following:

| ?- canbeVul(apache, shellshock).

-> (apache) is Assumed Vulnerable to (shellshock)

no

| ?- potentiallyVul(docker, escape).

-> (docker) is Potentially Vulnerableto to (escape)

no

| ?- potentiallyVul(mysql, authentication_bypass).

-> (mysql) is Potentially Vulnerableto to (authentication_bypass)

no
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Figure 7.3: Attack Graph Example 3

We have also created an attack graph that is helpful in graphical representation of patches

and attack chain, we can see it in Figure 7.3





Chapter 8

Conclusion

This thesis presents significant enhancements to the TAMELESS framework, focusing on

improving its capability to detect and mitigate cyber threats by integrating Common

Vulnerabilities and Exposures (CVEs).

The modification introduced, including focusing only on cyber aspects and the addition of

CVE-based rules, have optimized the framework for managing threats in complex scenarios,

like multi-step attacks. We have also introduced patch management to make the framework

able to update the security properties of entities. This capability ensures that TAMELESS

not only identifies and mitigates threats but also adapts to new vulnerabilities if patches are

applied.

A key component of this work is the development of a threat analysis, which allow for better

understanding of attack vectors and vulnerabilities in Digital Service Chains (DSCs). By

modelling examples of multi-step attacks and analyzing the associate CVEs, we have

demonstrated how attackers can exploit vulnerabilities in interconnected digital

environments. We have also created a threat model to automate threat analysis, which is

essential for improve cybersecurity management.

The examples and results obtained demonstrate the effectiveness of the framework in

multi-step attacks, also providing a graphical representation through providing attack

graphs. The enhanced framework facilitates more efficient threat detection and response,

which helps in managing cybersecurity of a system in interconnected environments like

Digital Service Chains (DSCs).
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8.1 Future works

An area for possible future work involves the development of TAMELESS framework to

improve its evolution in cyber threats. We have started a detailed study of the TAMELESS

code, focusing on its API management capabilities. Our idea is to design and implement

new APIs that can dynamically integrate threat models into the framework.

The hypothetical new API will accept threat models, already developed, as input and

automatically generate corresponding rules in the TAMELESS environment. This

automated rule generation aims to improve the framework’s ability to analyze and detect

threats, allowing it to adapt to new vulnerabilities when they are discovered. The

development of these API will enable TAMELESS to operate in a more interconnected

environment.

By expanding these capabilities, the FRAMEWORK will be an adaptive solution for

cybersecurity, able not only to detect and mitigate current threat but also in be prepared for

future ones.
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