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Abstract

In recent years, the rapid advancements in Artificial Intelligence (AI) technologies
and the increasing pervasiveness of Internet of Things (IoT) applications have
made embedded platforms more complex to design and implement. Such systems
are tightly coupled with the environment, that is continuously sensed to run the
algorithms on fresh data, communicate the generated results to any external actors,
and react accordingly through actuating features. This implies that, depending on
the application, constraints that go beyond pure performance, such as response time,
power consumption or safety, may be imposed, therefore requiring a greater amount
of development time and resources to build the complete system. As a consequence,
virtual prototyping solutions are steadily becoming more and more popular due to
their ability to let designers explore multiple design variations and test them against
the required specifications without (or before) building a hardware prototype. This
allows also a drastic reduction in product costs and development time. Several
simulators are already available on the market, targeting the simulation of specific
properties of embedded systems. These properties can be divided into functional
and extra-functional properties, where the former are related to the tasks that the
system is expected to perform, while the latter refer to constraints on the manner
in which the system implements and delivers its functionalities. This thesis focuses
on the development of virtual platforms that include the monitoring of the extra-
functional aspects. The cyber part (processor modeling and software simulation)
is managed by a functional RISC-V instruction set simulator, GVSoC. This is
integrated with the simulation of other peripherals and of power aspects (e.g., power
consumption, power distribution policies and storage), that are implemented in
SystemC-AMS. Both environments are C-based, and are part of a virtual platform
called MESSY, constructed to run functional and power simulations in a single
simulation run. To allow a more realistic simulation, it was necessary to open
the platform to the communication with external tools, that would cover complex
extra-functional aspects that would be too complex to model in a C-based approach.
This has been addressed by implementing the capability to connect to external
applications through a Unix socket component, named VirtualConnector. This
module can be used by any simulated component contained within the tested
system to exchange data during the simulation, allowing for more realistic scenarios
to be created and validated. To demonstrate the potential introduced with the
integration of the VirtualConnector, the virtual platform was connected to Webots,
a popular robotic simulation software, to simulate the management of a robotic
arm in a pick and place scenario. As an additional contribution, MESSY was
extended with a more accurate implementation of the communication channel. Due



to its original high-level implementation, data exchanges between the core of the
architecture and the other system components occurred instantaneously and were
very limited. For these reasons, the channel was reworked to establish a low-level
functional bus. The Advanced eXtensible Interface (AXI) protocol was chosen
for the newly developed interconnection. It was demonstrated that the integrated
channel introduces a negligible simulation overhead of around 2% compared to the
original implementation.
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Chapter 1

Introduction

In recent years, the increasing pervasiveness of Internet of Things (IoT) applications
and the rapid advancements in Artificial Intelligence (AI) technologies have made
embedded platforms more complex to design and implement. Such systems are
tightly coupled with the environment, which is continuously measured and altered
based on the decisions of the executed algorithms. This implies that, depending on
the application, constraints that go beyond pure performance, such as response
time, power consumption, reliability, quality of service, security or safety, may be
imposed, therefore requiring a greater amount of development time and resources
to build the whole system. As a consequence, virtual prototyping solutions are
steadily becoming more and more popular due to their ability to let designers
explore multiple design variations and test them against the required specifications
without (or before) building a hardware prototype. This allows also a drastic
reduction in product costs and development time. Several simulators are already
available on the market, while many others are being developed, targeting the
simulation of specific properties of embedded systems. These properties can be
divided into functional and extra-functional (or non-functional) properties, where
the former are related to the tasks that the system is expected to perform, while
the latter refer to constraints on how the system implements and delivers its
functionalities.

This thesis focuses on the development of a virtual platform to monitor the
non-functional aspects of an integrated system. A functional RISC-V Instruction
Set Simulator (ISS) called GVSoC is employed to model and simulate the core of the
embedded platform. It is integrated with the simulation of other peripherals and
power aspects, such as power consumption, distribution policies and energy storage
within the system, which are implemented in SystemC-AMS. Both environments
are C-based, and are part of a virtual platform called MESSY, constructed to
run functional and power simulations in a single simulation instance. Specifically,
the thesis work focused on improving the framework to enable more realistic and
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comprehensive simulations. The most significant contribution of this work is the
implementation of an internal component named VirtualConnector, which extends
the platform with the capability to connect to external applications through a Unix
socket. This allows other software systems to handle and manage more complex
aspects of the system that would be difficult to model using a C-based approach.
Such an addition also enables a more realistic approach to testing and validating
the target platform, allowing the data generated by peripherals to vary, thus
creating new inputs for the algorithms being executed and the decisions affecting
the nearby environment. To demonstrate the newly integrated connectivity, the
virtual platform was connected to Webots, a popular robotic simulation software,
and tasked with managing the movements of a Franka Emika Panda manipulator.
The arm, equipped with a camera sensor, produces images that are analyzed by an
object detection network running on a RISC-V processor to determine the location
of the target block. Once the coordinates have been determined and sent to Webots,
the manipulator moves to the indicated location, ready to pick up the object.

As an additional contribution, MESSY was extended with a more accurate
implementation of the communication channel. This enhancement was made
to allow data exchanges between the core of the architecture and other system
components to occur more realistically, taking the correct amount of time. The
interconnection was reworked to establish a real, protocol-based, low-level functional
bus. The Advanced eXtensible Interface (AXI) protocol was chosen for the newly
developed interconnection due to its simplicity and popularity in the embedded
domain. However, the protocol was not fully implemented; instead, it was integrated
in a form suitable for the architecture, avoiding the addition of structures and
procedures that are not used and would hinder its internal processes, such as
arbitration mechanism, protection level support or atomic accesses. The newly
implemented bus channel was tested using the same pick and place application that
was used to validate the VirtualConnector module. It was demonstrated that the
AXI-based interconnection introduces a negligible simulation overhead of around
2% compared to the original implementation of the functional bus.

This publication is organized into six chapters, with the first one introducing
the challenges addressed by the thesis work. Chapter 2 introduces and explores the
theoretical knowledge underlying the thesis, ranging from the notion of System-Level
Simulation (SLS) to the world of robotics, and finally completing the background
with descriptions of sockets and bus protocols. In Chapter 3, the tools employed
during the thesis work are presented, along with an analysis of the current state
of knowledge around the explored topics. The motivations behind the decisions
made and the descriptions of the implementation processes, instead, are presented
in Chapter 4. Within this chapter, the major contributions of the thesis are
highlighted:

• the development and integration within MESSY of a C-based library named
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VirtualConnector, which allows the simulation platform to connect to external
software systems in order to extend its capabilities;

• the creation of a simulation scenario involving the handling of a robotic
manipulator with specific movements’ contraints;

• the development and implementation within the simulation framework of a
low-level, AXI-based, communication channel.

Finally, Chapter 5 presents the insights obtained from analyzing and evaluating the
framework’s performance, while Chapter 6 contains reflections on the completed
project, along with ideas for further extending the work.

3



Chapter 2

Background

This chapter aims at introducing all topics that are necessary for the full compre-
hension of this thesis. It begins with an explanation of the underlying concept
of the simulators that have been used during this work (see Section 2.1). Next,
it delves into a comprehensive description of the RISC-V standard (see Section
2.2) and a thorough explanation of robotic systems (see Section 2.3). To conclude,
the chapter presents basic information regarding sockets (see Section 2.4) and bus
protocols (see Section 2.5), highlighting the tools and methodologies chosen during
the implementation work.

2.1 System simulation for virtual prototyping

A System-Level Simulation (SLS) is a set of tools and techniques that are used to
simulate the behaviour of cyber-physical systems, entities composed of hardware
components regulated by software programs. Due to the complex nature of these
systems, this kind of solutions are more frequently used during their development
cycle to explore multiple design variations, test them against the requested specifi-
cations and tune them accordingly, before actually building the hardware prototype,
making them more common as virtual prototyping methods.

Recently, the utilization rate of virtual prototyping solutions is steadily increas-
ing, thanks to the resulting drop of both development’s time and cost for integrated
systems. Many simulators are already available on the market or are being de-
veloped, each with its own set of characteristics. Some of the most important
features to keep in mind when researching such systems are the number and type
of properties of the target system that can be correctly simulated. Properties can
be separated into two main categories: functional properties and non-functional
(or extra-functional) properties. The former are related to the tasks that the system
is expected to perform, while the latter refer to constraints on the manner in which
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the system implements and delivers its functionalities. For cyber-physical systems,
important extra-functional properties are power consumption, thermal modeling,
fault-tolerance, reliability, efficiency and security. In the next chapter, different
simulators will be examined in detail: an extra-functional simulator for evaluat-
ing power performances of embedded platforms, named MESSY [1], a functional
Instruction Set Simulator (ISS) for a RISC-V based platform, named GVSoC [2],
and a functional simulator for robotic systems, called Webots [3].

2.2 RISC-V

Born in May 2010 as part of the Parallel Computing Laboratory at UC Berkeley,
RISC-V is an open-source Instruction Set Architecture (ISA). Due to being an
open standard, anyone can access and implement it free of charge, avoiding costly
licensing fees, while, at the same time, tailoring it to their target end applications
with respect to power, performance and area (PPA) metrics. Its royalty-free nature
and great customization options lead to a surge in interest and adoption across the
industry, which, in turn, collaborates with the foundation maintaining the project,
the RISC-V Foundation, to further evolve the architecture.

The RISC-V architecture is built upon a set of key design principles that
contribute to its performance, efficiency and adaptability. First, the instruction
set is based on a load-store, Reduced Instruction Set Computer (RISC)
architecture, designed to simplify the individual instructions through a small, fixed
and standardized length. This allows the hardware implementation of the processor
to be simpler, less consuming and more efficient. Furthermore, this facilitates the
implementation of Instruction Level Parallelism (ILP). Second, the ISA is designed
to be modular and easily extensible. A RISC-V based processor is built starting
from independent components that can be combined together in various ways to
attain the necessary capabilities to perform its tasks. Extensions, instead, allow to
add new features or instructions without disrupting existing functionalities. The
base of the instruction set specifies integer instructions, control flow, registers,
memory and addressing logic to implement the core of a general-purpose computer,
whereas extensions provide domain specific logic, such as floating-point arithmetic,
vector processing, and cryptographic operations. Denoted with a single, capital
letter, the most notable standard extensions are: M, F and D. M adds support for
integer multiplication and division instructions. The F and D extensions, instead,
add support for Single-Precision and Double-Precision floating point operations.

The RISC-V base instruction set is comprised of four instruction formats called
R-type, I-type, S-type and U-type. As can be seen in Figure 2.1, both the sources
(rs1 and rs2 ) and the destination (rd) are kept int the same position, therefore
permitting a simplification of the decoding hardware. For the same reason the
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immediates were placed towards the leftmost significant bits and the sign bit
position is always the most significant bit (MSB) of the instruction.

Figure 2.1: RISC-V instruction formats [4]

Since its creation, numerous cores and SoCs implementations have been pro-
posed from members of the industry and research institutions, like CV32E40P [5],
NEORV32 [6] and Rocket Core [7], while various articles have been published to
review and compare them across different jobs [8, 9]. One of the major platforms
used in the embedded and IoT domains is the Parallel Ultra Low Power (PULP)
Platform [10], created as a collaborative effort between ETH Zurich and the Univer-
sity of Bologna. This architecture targets advanced integrated systems that need
to process data streams generated by multiple sensors with the goal of increasing
their energy efficiency. This is achieved through clusters of RISC-V cores that
share a tightly-coupled data memory. To also aim at more simpler systems, two
additional platforms were designed based on PULP: PULPissimo [11] and PULPino
[12]. These two contain only a single RISC-V core and, for this reason, the memory
and cache sharing infrastructure is not present.

2.3 Robotic systems

The term robotic system is used to refer to an integrated system of computer-
controlled manipulators, designed to perform tasks semi-autonomously or au-
tonomously. More commonly called robots, their goal is to aid and assist humans
with repetitive, unpleasant, complex or hazardous jobs, like performing high-
precision surgical operations [13] or exploring unstable ruins to find survivors
after an environmental hazard occurred [14, 15]. These systems are based on a
mechanical frame and contain several electrical components that are controlled
by a software program, executed directly on the robot itself. Various parts play a
key role in this architecture: a microcontroller unit (MCU) or a system-on-a-chip
(SoC) is used to control the entire robot, while sensors and actuators are used
to perceive information from the nearby environment and react to ever changing
conditions. The number of joints, as well as their type, are essential to determine
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the movements and tasks that can be achieved with a certain robot structure,
whereas the power source defines the source of energy that will aid the system
fulfill its needs. Lastly, an important factor is the software that is going to be
executed by the robot. In fact, depending on its quality and refinement, efficiency
and performance can be greatly affected. Therefore, many manufacturers tend
to provide high-level interfaces to program the robot and virtual models of its
structure to easily prototype its trajectories inside a virtual environment. In the
following sections, some of these components will be described in more detail.

There exist many types of robots, each with its own target environment, use
case and properties. For this reason, it is difficult to classify them, due to the many
parameters to account for. The most popular categorization separates robots based
on their application. Following this organization, a robot can be labeled as:

• a modular robot, which is a machine built upon a modular architecture.
Their design allows for identical modules to be put together or removed from
the overall system, therefore creating a more complex and flexible structure,
capable of adapting to the circumstances and tasks at hand. Due to their
higher degree of freedom, though, they are quite challenging to develop, which
is why they are still mostly a research topic. Two of the most recent and
refined works are ReBiS [16], a robot that can switch between snake-like and
bipedal motions, and AuxBots [17], modular units with high expansion and
large force capabilities;

• an educational robot, created to assist teachers during classes. Renowned
examples of such robots are the Turtle robots from Valiant Technology1 and
the Lego Mindstorms robotic kits released in 2006 by Lego;

• a mobile robot, capable of moving, independently or through special control
devices, inside an uncontrolled environment. Very common in commercial and
industrial settings, they are typically used to move materials efficiently, even
though the most famous examples of such category are the vacuum cleaner
robots realized by iRobot2, referred to as Roombas;

• an industrial robot, which is employed to automate heavy production jobs in
industrial settings, reducing costs while, at the same time, enhancing accuracy,
reliability and quality of the process or product it contributes to. Due to their
tasks, their characteristics can vary a lot, therefore as a general definition, the
one provided by the ISO 8373:2021 standard is typically used;

1https://roamerrobot.tumblr.com/post/23079345849

2https://www.irobot.com/en_US/roomba.html
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• a cobot, or collaborative robot, built to work safely alongside human workers
in a shared, collaborative workspace. They represent a subset of the industrial
robots, since they are usually charged with simple, repetitive tasks to com-
plement the more complex and thought-intensive duties assigned to workers.
Such systems can be found during the welding, gluing, polishing and packaging
processes of a product’s production [18], but they can also be used to tend
to other machines or to help speed up secondary processes, like the pick and
place manipulators [19], which help moving workpieces around the location.

In recent years, this last category has been the subject of an explosive growth, mainly
due to the lower cost, smaller size and high return of investment of such machines in
small to medium-sized environments. Nowadays, the most widely employed systems
are produced by ABB Robotics, FANUC Corporation and Universal Robots. A
company that is recently experiencing a growth in this sector is Franka Robotics,
an organization based in Germany that provides robotic arms integrated with AI
technologies. At the end of this section, a brief description of the cobot that has
been employed during the thesis work, the Franka Emika Panda, is provided.

2.3.1 Microcontroller units

A Microcontroller Unit (shortened to MCU or µC) is a complete system built
upon a single board or chip. It typically contains a processor that can provide
low computational power, some programmable I/O peripherals, a small main
memory module and, in some cases, a Flash storage. A block diagram of a general
microcontroller is represented in Figure 2.2.

Due to their modest capabilities, they are used to perform small and repetitive
tasks for application-specific embedded systems, usually involving their sensing and
actuating peripherals. In the field of robotics, their small size and inexpensiveness
make them essential units for controlling the motions of the manipulators, as these
programs are not computationally intensive.

2.3.2 Sensors and actuators

These two represent the extremes of an embedded device’s chain of operations,
which is summarized in Figure 2.3. Sensors measure physical quantities from the
external world and converts them into data that can be interpreted by a digital
processor, while actuators are used to alter the nearby environment as a response
to certain conditions.

3https://www.playembedded.org/blog/microcontrollers-101/
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Figure 2.2: General scheme of a microcontroller3

Digital processing DAC
Actuators

ADC
Sensors

Filters

Environment

Figure 2.3: Dataflow of an embdedded device

As part of a robotic system, sensors are generally used to determine when specific
actions have to executed. Take for example a Roomba robot: some of its sensors
are of the infra-red type and are used to determine whether an obstacle is in the
vicinity and if it will impact its movements. Actuators, on the contrary, are used
to execute those actions. Robots have plenty of actuators, mostly used to move its
structure around. As an example, think of a robotic arm: these usually have two
or more axis, each related to a certain motor, which can move the manipulator in
a specific direction, within predefined limits.

2.3.3 Control and automation

Robotic systems can have different levels of autonomy, ranging from being directly
controlled by human workers to being totally independent for extended periods
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of time. Anytime some level of autonomy is expected from the machine, whether
to accomplish simple jobs or high-level tasks, the complexity of its processing
capabilities increases. These are essential due to their significance in evaluating
the data acquired from the sensors and determining the most adequate response,
while taking into consideration the environment, the mechanical form of the robot,
its movements’ constraints and how the interactions can be conducted. In recent
years, in order to improve these capabilities, cognitive models, mapping and motion
planning techniques are trained and implemented through AI models [20]. Together
with pattern recognition and computer vision models, these allow the robot to
analyze its circumstances, determine the relative positions of targets and obstacles
and move accordingly without any kind of human involvement [21].

To help customers set up and examine the system’s behaviour in working
circumstances, virtual prototypes and machine-learning models to train are provided
by manufacturers, allowing the usage of simulators before making use of the
physical hardware. In case specific movements have to be manually planned, to
properly handle critical situations, kinematics and dynamics libraries exist for
many languages and very often support many well-known robot models. During
the thesis work, one such library, called Robotics Toolbox for Python [22], has been
included to handle the Emika Panda’s trajectories in Webots, a process detailed in
Section 4.1.3. In particular, it has been used to determine the final joints’ positions,
starting from the target space coordinates. This is a common problem in robotics
known as inverse kinematics.

2.3.4 Franka Emika Panda

The Emika Panda, shown in Figure 2.4, is a 7-axis robotic arm, capable of up
to 850mm of reach. Currently superseded by the Production 3 and Research 3
manipulators of the same brand, this robotic arm was one of the first attempt at
designing collaborative robots for small businesses, with the goal of making the
technology much more accessible. Together with the smart "sense" of touch of its
end-effector, the Franka Hand, the easy-to-use software provided to program the
robot’s movements and the amount of freedom granted by the seven axis, it earned
a lot of recognition, including being appointed as the "Best Invention" by TIME
Magazine in 20184.

An additional factor that granted the arm significant fame in the industry is
the possibility to prototype its routines inside a virtual environment. Franka
Robotics provided models of this arm for every major robotic simulation software,
like Webots and the Robotic Operating System (ROS). Together with the Franka

4https://time.com/collection/best-inventions-2018/5454734/panda/
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(a) The Emika Panda cobot [23] (b) The movement of the joints highlighted [24]

Figure 2.4: The Franka Emika Panda robot manipulator

Control Interface (FCI), a library that allows to establish a direct communication
channel with the arm, developers could create a controlled and reproducible testing
environment that could be transferred to the manipulator at any given moment, thus
improving the development cycle’s efficiency while reducing the overall production
costs.

2.4 Network sockets

Sockets are software structures that allow different processes, which may run
on the same machine or reside across the network, to exchange data. They are
one of the many mechanisms provided by the operating system to grant Inter-
Process Communication (IPC) and, thanks to their easy-to-use nature and minimal
performance overhead, they are typically used for client-server applications. The
lifetime of a socket is limited to that of the process that created it, while its
properties are defined by the Application Program Interface (API) of the network
architecture it is part of. All of the information about a socket are stored by the
operating system within a file descriptor.

Sockets can be identified as IP sockets or Unix sockets. IP sockets, generally
known as TCP/IP sockets, are used whenever communication has to occur over the
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network. Unix sockets, conversely, are used for transmissions between processes
running on the same machine. The former can also serve this scenario, but Unix
sockets are more efficient in this regard, since they are designed to not rely on
networking structures and protocols for the exchange of messages. A further
subdivision of sockets is based on the type of service provided:

• datagram sockets provide a connection-less service. Packets are routed
independently and reliability is not guaranteed. This means that messages
can arrive out of order or, in the worst case, can be missed;

• stream sockets are based on a connection-oriented approach. The TCP
protocol is used for data transfer, making transmissions more secure and
reliable. In case a message doesn’t reach its destination, a request for the lost
packet is sent back.

2.4.1 Sockets in a client-server architecture

In a client-server architecture, sockets are used differently. The server node, which
exposes a service, creates a socket to handle all client requests. During its creation,
basic information such as its type (IP or Unix) and kind of service quality required
(datagram or stream) need to be specified. Once the socket is created, it needs to be
bound to an address or file descriptor in order to be seen by other processes. After
binding the socket, communications can finally occur. By using the appropriate
API function, the socket starts to wait for incoming connections and, after accepting
them, data can be read from or written to the client nodes until the connections are
closed. From the client’s point of view, instead, the socket can be used right after
its creation, without having to bind it to any address or file descriptor. To establish
a connection, the only information required is the address of the server’s endpoint.
After the creation of the connection, data transfers occur until the channel is closed.
The whole process for Unix sockets is documented in Figure 2.5.

2.5 Bus protocols

A bus is a system that connects different components inside a computer, allowing
them to exchange data, power, and control signals to communicate and cooperate.
To manage the various transmissions that can occur on the channel, a set of
rules and conventions, known as a bus protocol, have to be followed by the
interacting entities. The protocol is essential, since it defines the guidelines and
norms for addressing, synchronisation, and data transfer, such as how data should

5https://www.educative.io/answers/unix-socket-programming-in-c
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Figure 2.5: Sockets in a client-server architecture5

be transmitted, the timing of the signals of each transmission, how to regulate
concurrent requests on the bus (bus arbitration), the error detection and correction
mechanisms and many other details. Thus, a bus protocol ensures that the
communications are reliable, efficient and consistent.

One of the most widely used bus protocols in embedded systems is the Advanced
Microcontroller Bus Architecture (AMBA), an open-standard developed by
Arm for high-performance, on-chip communications in microcontroller systems.
The standard comprises five protocols:

• the Advanced High-performance Bus (AHB), responsible for high per-
formance interconnections between high-speed peripherals, processors, and
memory units;

• the Advanced Peripheral Bus (APB), which focuses on efficient and low-
bandwidth connectivity with peripherals’ register interfaces. It proposes a
simple address and data phase with a low complexity signal list;

• the Advanced eXtensible Interface (AXI), an advanced system bus that
supports multiple masters and slaves, burst transfers, out-of-order transactions
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and quality of service for high-performance interconnects;

• the AXI Coherency Extension (ACE), an extension of AXI that supports
system-wide cache coherency. At the same time, it also enables one-way
coherency, allowing network interfaces to read from the caches of a fully
coherent ACE processor;

• the Coherent Hub Interface (CHI), an high performance system bus with
additional features to manage traffic congestion.

The following section will focus on AXI, the protocol that has been integrated
within MESSY during the thesis work. Its implementation on the extra-functional
simulator, instead, will be described in a later chapter.

2.5.1 The AXI protocol

Designed to target high performance and high clock frequency systems, Advanced
eXtensible Interface (AXI), introduced with the third version of the AMBA protocol,
is an interface specification. Thus, rather than on the bus, its focus is on the
interfaces that need to be integrated by each module of the system. Two types of
interfaces are defined by the standard, which are involved in every transmission:
manager and subordinate. These are symmetrical and, therefore, contain the
same signals, facilitating their integration.

Figure 2.6: AXI multi-master interconnection [25]

The AXI specification describes a point-to-point protocol between the two
interfaces. Transactions are always started by a manager module and they target a
single subordinate block at a time. Figure 2.6 shows the interfaces arrangement
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for a two-manager, four-subordinate system. Note that the interconnection also
implements them: this is caused by the point-to-point nature of the standard.
Additionally, due to the protocol design, the bus has to act as a routing component
for each exchange, though its implementation is left to the designers. The interfaces
use for communication five different channels, as evidenced by Figure 2.7. Write
Address (AW), Write Data (W) and Write Response (B) are used for manager to
subordinate write operations, while Read Address (AR) and Read Data (R) are
used for reading data from subordinate blocks. Having separate channels for the
two operations helps to improve bandwidth performances of the interfaces. In the

Figure 2.7: AXI channels [25]

following, a simple explanation of how a write and read operations are executed is
given, considering only the signals and procedures implemented during the thesis
work (see Section 4.2.1 for more details on these restrictions). A list of all the
signals implemented is reported in Table 2.1.

AW channel W channel B channel AR channel R channel

AWADDRESS WDATA BRESP ARADDRESS RDATA

AWVALID WVALID BVALID ARVALID RVALID

AWREADY WREADY BREADY ARREADY RREADY

WLAST ARLEN RRESP

RLAST

Table 2.1: Signals implemented during the thesis work for each channel

A write operation is composed of three phases. The first one takes place on the
AW channel. Here, the manager block writes the address of the first register it needs
to update on the AWADDRESS channel and signals the beginning of a transmission
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to the other system blocks by raising the AWVALID line. Then, it waits until
the corresponding subordinate block raises the AWREADY bit, indicating that
the transaction can safely occur. Once both AWVALID and AWREADY have
been raised, the communication moves on to the second phase, occurring on the
W channel. At this time, the subordinate is waiting for data with WREADY set
to high. When the manager is ready, it starts sending data on the WDATA data
line. To indicate that the messages are being sent, the WVALID line is raised with
each exchange. Upon the last data, the WLAST bitline is raised, to indicate to
the subordinate that, after storing the current message, it will need to move to the
final phase. During this last phase, occurring on the B channel, the manager is on
hold with BREADY high, while the subordinate examines the received messages
and produces a response to send back. This response is sent through BRESP with
the BVALID bit set to high at the same time. After receiving the response, the
transmission is over. A graphical representation of the process can be found in
Figure 2.8.

Figure 2.8: AXI write transaction [25]

A read operation, instead, is composed of two phases. The first one takes place
on the AR channel. Here, the manager block writes the address of the first register
it needs to read on the ARADDRESS channel and signals the beginning of a
transmission to the other system blocks by raising the ARVALID line. Then, it
waits until the corresponding subordinate block raises the ARREADY bit, similarly
to what happens during the first phase of a write operation. An additional signal,
ARLEN, is used to define how many registers the master node wants to read from
the subordinate. Once both ARVALID and ARREADY have been raised, the
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transaction can move to the second phase on the R channel. Contrary to the
write operation’s second phase, in this situation it is the subordinate that takes
control of the data and valid signals, while the manager is waiting with RREADY
high. For each data transmitted, the subordinate needs to have the RVALID line
raised, while updating RDATA and, when the last element to send is reached,
RLAST. An ulterior difference with the write operation is that the response is sent
together with the data, thus requiring the subordinate interface to also update the
RRESP data line during each exchange. Once all data have been transmitted, the
communication is over. The process is shown in Figure 2.9.

Figure 2.9: AXI read transaction [25]
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Chapter 3

Related works

This chapter aims at presenting the most relevant works for this thesis and the
current state of knowledge around the explored topics. First, it delves into a
thorough description of the simulators constituting the foundation of this work:
GVSoC (see Section 3.1), a functional ISS for RISC-V based processors, MESSY
(see Section 3.2), a simulation framework for non-functional properties, and Webots
(see Section 3.3), a robotic simulation tool. Afterwards, it briefly explores attempts
at creating a communication channel between GVSoC and Webots and functioning
AXI implementations for SystemC-based systems (see Section 3.4).

3.1 GVSoC: an event-driven simulation platform
for PULP-based architectures

GVSoC [2] is an open-source simulator for PULP-based architectures. It can
simulate complex platforms, which can include multiple cores, multiple memory
levels, multiple I/O peripherals, and accelerators, with less than 10% of error
with respect to the physical hardware implementation. This level of accuracy is
reached while simultaneously providing a faster simulation experience compared
to cycle-accurate simulators. As a consequence, the design space can be explored
more easily and quicker, facilitating developers during the early stages of system
development. Another key factor that enables faster DSE through GVSoC is
given by its structure. The simulator, in fact, is based on three key components:
C++ models, used to describe the behaviour of system components such as cores,
memories and peripherals; configuration JSON files to customize the parameters
of the instantiated modules; and a set of Python generators to instantiate all
components of the system. This modular structure allows to compile the C++
models of the system components at the beginning and then to build a specific
platform modifying the JSON files without recompiling the simulator.
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GVSoC simulation is event-driven. All events are stored in a circular buffer,
which is read by the simulation engine to determine the next actions to process.
To include the simulator in a more complex system, GVSoC exposes some APIs to
interact with the simulation time and event queue. One example of such functions is
the step_until() method, which advances the simulation until the given timeframe
and returns the timestamp of the next event of the queue.

During the thesis work, GVSoC was used to simulate an implementation of a
PULP-based microprocessor called GAP81, developed by GreenWaves Technologies.

3.2 MESSY: a system-level simulation framework
for extra-functional properties

MESSY (Multi-layer Extra-functional Simulator in SystemC) [1] is an open-source
framework that integrates a functional RISC-V simulator, namely GVSoC, with
SystemC-AMS to model extra-functional aspects, in detail power storage and distri-
bution. To manage this integration, a bus-centric paradigm is exploited, where an
interconnection is modeled for each aspect to be simulated. Each system component
is then connected to each bus by implementing one model per interconnection. In
this way, the functional model of a module handles its behaviour, while the power
model determines the estimates of power demand. Figure 3.1 shows the architecture
of the framework. The combination of both functional and extra-functional aspects
in a single simulation framework allows to perform a Design Space Exploration
(DSE) that accounts for the mutual impact between them, providing a significantly
improved design experience.

Figure 3.1: High-level scheme of the framework architecture [1]

1https://greenwaves-technologies.com/gap8_mcu_ai/
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MESSY, in its current state, is shipped with GVSoC as its functional simulator.
However, the modularity of its architecture allows it to connect it to any functional
ISS that satisfies certain constraints:

• the simulator must be written in C/C++;

• the simulator must model instruction-level timing, to allow MESSY to make
estimates on power consumption over time;

• the simulator must be embeddable as a software component within a SystemC
module and must expose APIs to export state information or direct power
estimates.

For the development of this thesis, MESSY was chosen for its great modularity.
In fact, the framework allows the definition of the list of system components through
a JavaScript Object Notation (JSON) file. Here, customization parameters can
be defined for each component, such as the number of internal registers or the
amount of current drawn from each read or write access, to further adapt the
architecture to the design specifications. In case this level of characterization is
still not sufficient to properly represent a logic or power component, the modules’
behaviour and energy model can be adapted to the requirements with the aid of
some knowledge of the C++ and SystemC languages.

3.2.1 SystemC

SystemC [26] is a system-level modeling language designed to aid developers during
the design and verification phases of the system architecture, independent of any
detailed hardware and software implementations. This higher level of abstraction
enables considerably faster, more productive trade-off analysis, design, and redesign
than is possible at the more detailed RT level. It is built in standard C++ by
extending the programming language with the use of class libraries. Through
these extensions, it provides an event-driven simulation interface, where concurrent
processes can be defined and interact with each other in a real-time environment.

3.2.2 SystemC-AMS

SystemC-AMS [27] is an extension to the base SystemC language that introduces
system-level design and modeling capabilities for embedded Analog/Mixed-Signal
(AMS) systems. Through this extension, it is granted the possibility to create
mixed-signal virtual prototypes to model more analog-based applications, such as
communication, automotive and sensor applications. Between the various features
introduced, one of the most notables is the Timed Data Flow (TDF) computation
model, which allows to describe continuous signals in a discrete-time manner.
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3.2.3 Integration of GVSoC with SystemC-AMS

GVSoC is integrated within MESSY like any other component: it is encapsulated
inside a SystemC module and instantiated at the start of the simulation, together
with all the other system blocks. After instantiation, while SystemC manages
the remaining blocks by executing them once, GVSoC initializes its event queue
by starting software execution. The simulation then proceeds by alternating the
execution of GVSoC and SystemC-AMS. In detail:

1. the functional model of the core invokes the step_until() API function of
GVSoC, which executes the SoC functionality and returns the timestamp of
the following event in the GVSoC queue;

2. the core executes a SystemC-AMS wait() until the next GVSoC event, to
allow the execution of other SystemC-AMS components and the temporal
alignment of the two simulators;

3. these two steps are repeated until the simulation is complete.

Whenever GVSoC needs to communicate with an external component, it does
so by propagating the request’s information to the functional model of the core
through an AXI_Request(). The SystemC model then sends the data through the
functional bus to the target block. The inverse process is applied when external
components want to exchange information with GVSoC, with the only difference
being the usage of AXI_Response() to initiate a communication with the ISS. A
more detailed view of the system framework, together with the API functions used
to interact with the functional simulator, can be seen in Figure 3.2.

Figure 3.2: Framework integration between GVSoC and SystemC-AMS [1]

3.3 Webots: a robotic systems simulator

Webots [3] is an open-source professional robot simulation software. It provides a
virtual prototyping environment that allows user to create 3D worlds with physic
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properties such as mass and friction, which developers can use to design, program
and test simple to complex robotic systems. Different types of robots can be created
inside the environment, thanks to the wide number of objects and properties at
user’s disposal. Moreover, they can be equipped with several sensors and actuators,
such as cameras and distance sensors, to better simulate their behaviour in working
conditions. In case the software needs to be used only as a testing environment, it
offers several robot models from the most important manufacturers. It also provides
various interfaces to import custom models defined using specialized software (i.e.
Blender, SolidWorks).

A Webots simulation is primarily composed of a world file and one or more
controller programs. The former is a description of the properties of robots and
their environments, managed using a hierarchical structure. The latter, instead,
are computer programs written to control the robots placed in the virtual world.
Each robot is assigned only one controller file. Controllers can be written using
five different programming languages: C, C++, Java, Python and MATLAB. This
gives developers more flexibililty over the code implementation, due to the different
capabilities offered by each language and its libraries. For example, by using Python
or MATLAB, it becomes much easier to implement a machine learning model or
perform sensor data analysis. It is thanks to this amount of freedom that Webots
was chosen as the robotic simulator for this thesis, since other popular software
programs, such as ROS [28, 29], do not allow for custom programs to be executed
by virtual prototypes.

3.4 Similar works

Although several implementations of the AXI bus protocol exist in hardware de-
scription languages like VHDL, Verilog and SystemVerilog [30, 31], only one, as of
the time of writing, has been realized for the SystemC and SystemC-AMS languages.
The SystemC-Components library [32], developed by MINRES Technologies, pro-
vides all the interfaces and transaction components to fully integrate an AXI-based
bus into an existing system. The library implements the data exchange through
the Transaction Level Modeling (TLM) 2.0 standard interfaces and traces all the
involved signals, offering essential debugging capabilities for designers. Even though
the library implements every aspect of the protocol, such as channel arbitration
and out-of-order transactions, it was decided not to integrate it inside MESSY due
to the high-level of abstraction it is based on. Since MESSY aims at simulating
as accurately as possible the power consumption of the system’s modules and its
overall effect on the system’s battery, it was deemed more appropriate to create
a custom-made bus to manually manage the timing information. However, the
library was kept as a reference during the bus implementation.
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As for connecting GVSoC to Webots, the topic has been explored in only a
single publication. GAPBOTS [33] is a Python program that creates a direct
connection between the two simulators through the multitasking library. It does not
launch the programs themselves, rather, it connects to them through their exposed
APIs using two separate threads. The simulators are programmed to execute their
tasks independently and exchange data only when GVSoC finishes processing its
instructions, since it is the slowest between the two simulators. At that point,
the most recent sensor acquisitions are written inside the functional simulator’s
main memory through the mem_write() API function, to decide the next actions
of the robot, while Webots reads the current output from the memory through
the mem_read() function. Even though the program works, it was decided not
to base the thesis’ implementation on such approach, given the inconsistency of
the memory access times reported by the publication itself. In addition, since the
thesis revolves around MESSY, it was decided to harness its capabilities and build
the connection upon them, instead of creating an external program to control the
flow of operations of the two applications, which would create an excessive layer of
complexity. The implementation of the communication channel, reported later in
more detail, was carried out in collaboration with another master thesis’ student,
whose work also revolved around MESSY.
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Chapter 4

Methodology

This chapter focuses on the decisions, tools and techniques used to implement the
communication channel between the two simulators and the system bus protocol. It
is organized in two sections, each revolving around one of the main topics. Section
4.1 discusses the motivations behind the necessity of the link and the desired
example use case. It then describes the realized architecture and details all the
undertaken steps. Finally, it shows the achieved simulation flow. Section 4.2,
instead, details the process of converting the high-level functional bus, connecting
all of MESSY’s modules, into a real, protocol-based, low-level functional bus.

4.1 Moving the Panda through MESSY

MESSY is a simulator that handles both the functional and extra-functional
aspects of an embedded system running a custom application. However, due to
its implementation, it operates entirely within an isolated environment: the
energy consumption of each module is fixed, while sensor data are provided by
designers, making systems easier to test and validate, but, at the same time, less
realistic. In addition, the behaviour of more complex systems might be harder to
evaluate with a command-line simulation environment. For example, a vacuum
cleaner robot contains an embedded system responsible for managing its movement.
In the case that such a system is the target of a MESSY simulation, when the
machine encounters an obstacle on its path, it might be difficult to understand
how the situation was handled and what decisions were made based solely on
raw data. The goal of the first part of this thesis was to develop a method for
MESSY to become a more open virtual prototyping framework. As a consequence
of this, the simulator will be able to take part in a more detailed environment,
allowing external applications to drive sensor data or receive the results computed
by GVSoC for further analysis and usage. Thus, the simulated system will not only
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comprise its computational part, but it will also integrate mechanical and electrical
components, making the simulation more complex and realistic. Additionally,
simulations can be made more accessible through data exchanges with graphical
interfaces. To demonstrate the capabilities of the improved architecture, the
framework was connected to Webots, tasked with managing the movements of a
Franka Emika Panda in a pick and place scenario. The arm is equipped with a
camera sensor, which produces images that a RISC-V processor analyzes using an
object classification network to determine the location of a target block. Once the
space coordinates have been determined, the robotic arm moves to its location,
ready to pick up the block and transport it to another location. Several steps were
taken to build this setup:

1. the virtual environment containing the Franka Emika Panda and the target
block was created within Webots;

2. a library to create and use sockets to host the communication channel was built
and integrated within MESSY’s modules and the Webots arm’s controller;

3. a kinematics library was implemented in the robot’s controller, to automate
the movements of the machine within the simulated environment once the
target coordinates are received;

4. a camera and a controller peripherals were added to the system simulated by
MESSY. Their implementation targeted the communication with Webots to
exchange the necessary data for the pick and place application;

5. the controller of the robotic arm and the program run by GVSoC were created.
The controller is programmed to wait for commands from MESSY before
performing any kind of action, while GVSoC runs an application that requests
data from the camera and controls, based on the object detection network
results, the joints of the robot.

To attain the aforementioned flow, all components and structures built in MESSY
are based on the C++ and SystemC constructs, while the controller for the Webots
instance of the robotic arm was written in Python due to the library that was
selected for managing kinematic operations, Robotics Toolbox for Python. The
virtual environment in Webots, although very simple, was built from scratch. Due
to a lack of trained object classification networks for the task at hand, and since
the thesis did not focus on modeling and training one, GVSoC executes a wait
statement that simulates the inference time of a potential network and delivers the
exact coordinates of the object to pick to the robotic simulator. In the following
subsections, each major step of the work is detailed: Subsection 4.1.1 briefly
describes the virtual environment built within Webots to host the robotic arm and
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the target block; Subsection 4.1.2 focuses on the connection between the simulators;
Subsection 4.1.3 details the process of using inverse kinematic solvers to automate
the movement of the arm; Subsection 4.1.4 presents the sensor modules added in
MESSY, their behaviours and their communications with Webots; Subsection 4.1.5
details the general flow of the controller and GVSoC’s program executions. It then
shows the simulation flow for the completed pick and place application.

4.1.1 Creating the virtual environment

The virtual environment was built from scratch within Webots, hosting only the
nodes required for the example application: the Franka Emika Panda robot model
and the target object that the machine will reach during the simulation. Since
the robotic arm is typically used for pick and place applications involving small
objects, the scene nodes were placed on top of a table. The block dimensions were
determined based on the maximum width of the Emika Panda’s gripper. Given
that the gripper measures 80mm, the block is 50mm by 20mm. Figure 4.1 shows
the constructed virtual environment.

Figure 4.1: Virtual environment realized in Webots

A camera module was attached to the end-effector of the robot, the Franka Hand,
to take pictures of the desk, which will then be analyzed by GVSoC to locate the
position of the target block. It consists of a small block that contains a camera node.
The module is represented in Figure 4.2, where the camera node is highlighted in
orange. Whenever the cameras are mounted on the robot’s end-effector (eye-in-hand
camera) and there are no external ones to observe the workspace (eye-to-hand
camera), depth cameras are used to assist the detection networks in determining
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the space coordinates of the target object. Since Webots does not support depth
cameras, and due to the lack of the object detection network within the simulation
flow, a simple RGB camera, following the specification of an Intel RealSense D4551,
was used. The resolution of the produced images is 1280 × 800.

Figure 4.2: Camera module attached to the robotic arm

The timestep of the simulation was lowered from the default value of 32ms to
10ms to improve its accuracy, while the Emika Panda was programmed to move
for twice that duration to create smooth motions.

4.1.2 The VirtualConnector library

To establish the connection between the simulators, sockets were employed. Since
their structures are part of every operating system, calling their APIs does not
require any external components or libraries and provides minimal performance
overhead. Additionally, due to their extensive use in web applications, they are
widely supported. To further reduce performance overhead, Unix sockets were
chosen, at the cost of limiting MESSY to be connected only with locally available
software. Two additional design choices were made to avoid excessive complexity
in the connection’s implementation: MESSY can be connected to one application
only and, due to the framework requesting external data to better model sensors

1https://www.intelrealsense.com/depth-camera-d455/
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and providing results for external usage, it was chosen to act as the client in the
network architecture. To facilitate the use of the socket for communications, a
small library, named VirtualConnector, was created. It contains two classes:

• ConnectionConfig, which hosts the file descriptors of the socket and handles
its creation, initialization and termination;

• VirtualConnector, which manages the read and write operations that will
occur through the socket.

At the start of the simulation, MESSY instantiates a ConnectionConfig object
and, through the initialize_connection() method, it creates a socket and initializes
its connection to the external application. Then, it assigns the instance to every
module connected to the functional bus, except for the core, allowing each of
them to exchange data with the other application. The core was ignored since
the synchronization between the functional and extra-functional simulations could
be impacted by requests from the external software. The implementation of the
creation and initialization procedure of the socket follows the description mentioned
in Subsection 2.4.1 and it is shown in Listing A.1.

During the simulation, any module can request data or send data through the
channel, thanks to the read_from_channel() and write_on_channel() functions
exposed by the VirtualConnector class. However, each transmission consists of two
operations: a write transaction followed by a read operation. The former is used
to indicate to the other program which information are required by the sensor or
to deliver the data processed by GVSoC, while the latter is used to receive the
requested information or an ACK message, to verify that the data were correctly
received by the external software. Each read and write operation further consists
of two steps:

1. in case of a write operation, the number of bytes of the message is sent as an
integer value, while for a read operation, four bytes are read from the channel
to determine the amount of bytes that compose the incoming message. This
value allows for knowing in advance how much data to expect on the channel
and for allocating the correct amount of memory to host the buffer;

2. the data are read or written on the channel.

To ensure that the connection can be established with any potential actor, the
library sends data using the JSON format and expects packets with the same
structure during read operations. Since C++ does not have a built-in library for
creating and handling JSON objects, an external one was included. The Nlohmann
JSON library [34] was chosen due to its simplicity and its handling of the json
data type, which employs an approach similar to that of Python. Listing A.2 and
Listing A.3 show how the two operations were implemented in MESSY.
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To simplify the controller in Webots, a VirtualConnector library, encapsulating
the aforementioned methods to handle the socket structure, was also written for
Python. The implementation of the read and write methods can be found in Listing
A.4 and Listing A.5.

4.1.3 Automating the trajectory of the Panda

Computing the position of the joints to reach specific coordinates in 3D space
requires solving complex inverse kinematics problems, which involve differential
equations and Jacobian matrices [35, 36]. For this reason, a library implementing
solvers for this kind of problems, that supported the chosen robotic arm model, was
integrated into the Webots controller. Robotics Toolbox for Python [22] was chosen
for its simple and well-documented approach on handling different robotic arms.
Furthermore, its solvers are based on the specifications and virtual models provided
by manufacturers, making the obtained results more accurate. In particular, the
information regarding the Emika Panda manipulator are based on the URDF file
provided by the franka_ros2 package. URDF is an XML format for representing
a robot model, commonly used by Gazebo simulator and the Robotic Operating
System (ROS) tools. Unfortunately, the version of Webots used during the thesis
work (R2023b) presented an arm model different from the one included inside the
Python library. The two of them, in fact, had different rotating axes for some
of the joints, making it difficult to adopt the results computed by the library
without further elaborations. To remedy this issue, the model used by the library
was compiled from scratch and imported as a new Robot entity in Webots to
replace the original one. Since the repository stored the robot model in a Xacro file
format, an XML extension for describing how the joints of a robot are connected to
create its structure, two compilation steps were required to produce the PROTO
file needed to import the model in Webots. A PROTO file contains the same
information about the structure of the robot as the Xacro file, but it specifies
additional properties used by the virtual environment to improve the simulation of
the robot’s mechanical structure. First, ROS was used to compile the Xacro files
into a URDF description. Then, using the urdf2webots3 Python library, the URDF
model was converted in a PROTO file that could be imported by Webots.

Once the manipulator was correctly imported into the virtual environment, it
was time to integrate the library to manage its movements. The computation of
the movements’ trajectories and the relocation of the joints were implemented in
a standalone function, called move_arm(), which could be invoked at any point

2https://frankaemika.github.io/docs/control_parameters.html

3https://github.com/cyberbotics/urdf2webots/
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during the controller’s execution to improve code flexibility. It requires only one
argument: a list of three values detailing the target coordinates. The method is
shown in Listing 4.1.

1 de f move_arm( f i n a l _ p o s i t i o n ) :
2 arm_pos = [ ]
3 f o r i in range (7 ) :
4 arm_pos . append ( s e n s o r s [ i ] . getValue ( ) )
5

6 panda = rtb . models .DH. Panda ( )
7 panda . q = np . array (arm_pos )
8

9 # Compute t rans fo rmat ion matrix
10 x = f i n a l _ p o s i t i o n [ 0 ] − arm_base . g e t P o s i t i o n ( ) [ 0 ]
11 y = f i n a l _ p o s i t i o n [ 1 ] − arm_base . g e t P o s i t i o n ( ) [ 1 ]
12 z = f i n a l _ p o s i t i o n [ 2 ] − arm_base . g e t P o s i t i o n ( ) [ 2 ]
13 T_matrix = SE3 . Trans (x , y , z ) ∗ SE3 .OA( [ 0 , 1 , 0 ] , [ 0 , 0 , −1])
14

15 # Search f o r a v a l i d s o l u t i o n to the i n v e r s e k inemat ic problem
16 not_val id = True
17 whi le not_val id == True :
18 not_val id = False
19 i nve r s ek_so l = ( panda . ikine_LM ( T_matrix ) ) . q
20 f o r i in range (7 ) :
21 i f not ( motors [ i ] . getMinPos i t ion ( )<inve r s ek_so l [ i ] and
22 motors [ i ] . getMaxPosit ion ( )>inve r s ek_so l [ i ] ) :
23 not_val id = True
24

25 # Perform the movement u n t i l i t i s f i n i s h e d
26 f o r i in range (7 ) :
27 motors [ i ] . s e t P o s i t i o n ( inve r s ek_so l [ i ] )
28

29 f o r i in range (7 ) :
30 curr_pos = motors [ i ] . g e tPos i t i onSenso r ( ) . getValue ( )
31 whi le ( ( ( abs ( curr_pos−i nve r s ek_so l [ i ] ) )<=THRESHOLD)==False ) :
32 arm_node . s tep (TIME_STEP)
33 curr_pos = motors [ i ] . g e tPos i t i onSenso r ( ) . getValue ( )
34

35 re turn 0

Listing 4.1: move_arm() function implementation

Initially, the function retrieves the rotation angle of each joint and instantiates
the virtual model of the Emika Panda provided by the library. Then, it assigns
the recovered angles to the virtual model to establish the starting position of
the movement. Next, it computes the transformation matrix, which combines
information about the translation and rotation movements to be performed to
reach the end point. To avoid unreachable position errors when the goal is within
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range, the coordinates of the end point have to be relative with respect to the base
of the robot. After providing the model with the starting position of the robot
and the desired transformation, the solution of the inverse kinematics problem
is computed through the ikine_LM() method of the virtual model. Before using
the received output, a verification step is performed to make sure that every joint
can perform that specific motion. Therefore, each new angle is compared against
the minimum and maximum rotational limits of the interested joint. Whenever a
non-valid solution is found, the method is called again, to recover another possible
set of values to be tested and, possibly, used. Finally, the Webots manipulator is
moved according to the resulting values.

4.1.4 Implementing the peripherals in MESSY

In order to build the proposed scenario, two peripherals were added to the embedded
system simulated by MESSY:

• a camera sensor, to handle the information provided by the module placed
on the end-effector of the robot;

• a controller module, to simulate the dialogue between the main processor,
which runs the network inference, and a secondary microcontroller, which
solves the inverse kinematics problem and controls the motors.

These peripherals were integrated into the system through their addition to the list
of system components, specified in a configuration file using the JSON data format.
For each generated module, a header file and a source file were created. The former
hosts the description of the hardware block connected to the system’s bus. It
contains the list of the input, output and internal signals, the list of processes to be
simulated, as well as the variables and class methods. The latter, instead, is used to
implement all those introduced methods. The files created during the compilation
of the framework are provided with all the necessary functions to properly connect
to the functional and power buses, together with the management of read and
write operations on internal registers. After recompiling MESSY to generate and
integrate these peripherals, their behaviour was customized to include the necessary
operations for the pick and place application.

The camera peripheral makes use of a control register to decide which action to
perform. In this specific application, the module is responsible only with retrieving
the image data from Webots, therefore a single control bit sequence was defined.
Whenever a write operation occurs on the control register of the module, its bits
are checked and, if the new value matches the bit sequence for the "new image"
command, an image request is sent to Webots using the get_camera_image()
function. This method harnesses the VirtualConnector library’s capabilities to
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communicate with the robotic simulator. First, it creates the JSON structure
containing the request and sends it. Next, it reads the channel to store the image
information. Finally, it unpacks the JSON structure and stores its data in the
internal registers using a dedicated function called json_parser(). The two methods
are displayed in Listing 4.2 and Listing 4.3.

1 void Sensor_camera_functional : : get_camera_image ( ) {
2 j s on request , data ;
3

4 // Send reque s t
5 r eque s t [ "command" ] = "GET_IMAGE" ;
6 VirtualConnector : : write_on_channel ( socket_fd , r eque s t ) ;
7

8 // Await data
9 data = VirtualConnector : : read_from_channel ( socket_fd ) ;

10 j son_parser ( data ) ;
11 }

Listing 4.2: get_camera_image() function implementation

1 void Sensor_camera_functional : : j son_parser ( j son in ) {
2 i n t width , height , index ;
3 std : : vector<unsigned char> image , image_default ;
4

5 // Loop through the l i s t o f o b j e c t s
6 f o r ( auto& item : in . i tems ( ) ) {
7 i f ( item . key ( ) == " camera " ) {
8 width = item . value ( ) . va lue ( " width " , 0) ;
9 he ight = item . value ( ) . va lue ( " he ight " , 0) ;

10

11 image_default . c l e a r ( ) ;
12 image = item . value ( ) . va lue ( " image " , image_default ) ;
13

14 /∗ The p i x e l s in fo rmat ion a r r i v e as four chars :
15 ∗ R (0) | G (1) | B (2 ) | Alpha (3 )
16 ∗/
17 f o r ( i n t i = 0 ; i < (4 ∗ width ∗ he ight ) ; i++)
18 register_memory [ i + DATA_REG_OFFSET] = image [ i ] ;
19 }
20 }
21 }

Listing 4.3: json_parser() function implementation

After completing the transmission and handling the received data, a status register
is updated to signal to GVSoC that the data can be read and used for the inference
task.

The controller peripheral follows the same implementation structure as the
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camera module, but it manages two operations: sending the target coordinates
to the robotic manipulator and commanding Webots to stop the simulation. The
first operation is executed by the set_ee_position() function, while the second one
is requested by the set_end_program() function. Both methods follow the same
procedure: first, they create the JSON data structure with the request and send
it to Webots; then, they wait until the simulator produces an ACK response and
sends it back. The ACK message transports an integer value indicating the status
of the request. For the movement of the end-effector, two statuses can be expected:
the movement could not be completed, indicated by a value of 0, or the movement
was completed successfully, indicated by a value of 1. The conclusion of the robotic
simulation, instead, can generate only a single response, indicated by the value
of 0: simulation terminated. The received status values are converted by the two
functions to avoid reporting a 0 to the core, interpreted by GVSoC as if no update
has been received.

1 i n t Sensor_contro l l e r_wrapper_funct iona l : : s e t_ee_pos i t ion ( ) {
2 i n t r e t = −1;
3 j s on request , pos , data_rec ;
4 c o n t r o l l e r _ t ∗wrapper = ( c o n t r o l l e r _ t ∗) register_memory ;
5

6 // Send reque s t
7 pos [ " x " ] = wrapper−>x ;
8 pos [ " y " ] = wrapper−>y ;
9 pos [ " z " ] = wrapper−>z ;

10 r eque s t [ "command" ] = "MOVE_EE" ;
11 r eque s t [ " p o s i t i o n " ] = pos ;
12 r eque s t [ " time " ] = wrapper−>time ;
13 VirtualConnector : : write_on_channel ( socket_fd , r eque s t ) ;
14

15 // Await ACK
16 data_rec = VirtualConnector : : read_from_channel ( socket_fd ) ;
17 f o r ( auto& item : data_rec . i tems ( ) ) {
18 i f ( item . key ( ) == "mov_end" ) {
19 i f ( item . value ( ) == 0)
20 r e t = 1 ;
21 e l s e
22 r e t = 2 ;
23 }
24 }
25 re turn r e t ;
26 }

Listing 4.4: set_ee_position() function implementation

After each operation is completed, the status register is updated to indicate to
GVSoC that the data were correctly received by Webots. Listing 4.4 and Listing
4.5 show the implementations of the two functions.
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1 i n t Sensor_contro l l e r_wrapper_funct iona l : : set_end_program ( ) {
2 i n t r e t = −1;
3 j s on request , data_rec ;
4

5 // Send reque s t
6 r eque s t [ "command" ] = "END_PROGRAM" ;
7 VirtualConnector : : write_on_channel ( socket_fd , r eque s t ) ;
8

9 // Await ACK
10 data_rec = VirtualConnector : : read_from_channel ( socket_fd ) ;
11 f o r ( auto& item : data_rec . i tems ( ) ) {
12 i f ( item . key ( ) == " ack " ) {
13 i f ( item . value ( ) == 0)
14 r e t = 1 ;
15

16 break ;
17 }
18 }
19

20 re turn r e t ;
21 }

Listing 4.5: set_end_program() function implementation

4.1.5 Simulation flow

After implementing all of the modules and structures needed for the communication
and simulation processes, the programs launched by GVSoC and Webots to manage
the flow of the pick and place example application were implemented. The robot
manipulator’s controller is initially tasked with creating the server socket, listening
for an incoming connection from MESSY and initializing all the sensors and
actuators of the robotic arm. Afterwards, it enters an infinite loop, waiting for any
command from the main controller. When a command is received, it is parsed and
executed. The loop is exited only after receiving the "END_PROGRAM" request
from MESSY. Once the loop is terminated, the channel is closed and the simulation
concluded. The infinite loop is shown in Listing 4.6. The GVSoC program, instead,
starts by declaring pointers to the memory addresses of control, status and data
registers of the two peripherals. Once the relevant memory regions can be accessed,
the image of the camera module is requested from Webots. After storing the pixels’
information in the internal registers of the camera module, the inference of the object
classification network is simulated through a pi_time_wait_us statement. Then,
the position of the target block is stored within the registers of the controller module
and the command to move the end-effector is sent to the robotic manipulator. Once
the movement is concluded, the simulation is stopped and the program terminates.
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The complete code implementation of the executed program can be found in Listing
4.7.

1 whi le robot . s tep ( time_step ) != −1:
2 data_rec = None
3 data_send = d i c t ( )
4

5 # Wait f o r a r eques t from MESSY
6 data_rec = vir t_connector . rece ive_message ( )
7

8 i f data_rec [ "command" ] :
9 # Based on the command rece ived , send back d i f f e r e n t data

10 i f data_rec [ "command" ] == "GET_IMAGE" :
11 data_send [ " camera " ] = s e l f . json_camera ( )
12

13 e l i f data_rec [ "command" ] == "MOVE_EE" :
14 pos = [ data_rec [ " p o s i t i o n " ] [ " x " ] ,
15 data_rec [ " p o s i t i o n " ] [ " y " ] ,
16 data_rec [ " p o s i t i o n " ] [ " z " ] ]
17 data_send [ "mov_end" ] = s e l f . move_arm( pos )
18

19 e l i f data_rec [ "command" ] == "END_PROGRAM" :
20 data_send [ " ack " ] = 0
21 stop_execut ion_request = True
22

23 # Send the reques ted data to MESSY
24 v i r t_connector . send_message ( data_send )
25 i f s top_execut ion_request == True :
26 break

Listing 4.6: Emika Panda’s controller main loop

GVSoC

RISC-V

Functional Bus

Power Bus

Battery Harvester

Camera sensor

Controller sensor

MESSY

Webots

Socket channel

Figure 4.3: System architecture for the pick and place scenario
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1 i n t main ( void ) {
2 uint8_t ∗ camera_ctrl = ( v o l a t i l e uint8_t ∗) (CAMERA_CTRL_OFF) ;
3 uint8_t ∗ camera_status = ( v o l a t i l e uint8_t ∗) (CAMERA_STATUS_OFF) ;
4 uint8_t ∗ camera_sensor = ( v o l a t i l e uint8_t ∗) (CAMERA_DATA_OFF) ;
5

6 c o n t r o l l e r _ t wrapper_data ;
7 c o n t r o l l e r _ t ∗ cont ro l l e r_data = CONTR_OFF;
8 uint8_t ∗ c o n t r o l l e r _ c t r l = ( v o l a t i l e uint8_t ∗) (CONTR_CTRL_OFF) ;
9 uint8_t ∗ c o n t r o l l e r _ s t a t u s = ( v o l a t i l e uint8_t ∗) (CONTR_STATUS) ;

10

11 // Request image and wait u n t i l data i s r ecovered
12 ∗ camera_ctrl = 0x01 ;
13 whi le ( (∗ camera_status ) != 0x01 ) ;
14 ∗ camera_ctrl = 0x00 ;
15

16 pi_time_wait_us (INFERENCE_TIME) ;
17

18 // Write red block p o s i t i o n
19 wrapper_data . c o n t r o l = 0x00 ;
20 wrapper_data . s t a tu s = (∗ c o n t r o l l e r _ s t a t u s ) ;
21 wrapper_data . x = X_POS;
22 wrapper_data . y = Y_POS;
23 wrapper_data . z = Z_POS;
24 ∗ cont ro l l e r_data = wrapper_data ;
25

26 // Send the data
27 ∗ c o n t r o l l e r _ c t r l = 0x01 ;
28 whi le ( (∗ c o n t r o l l e r _ s t a t u s ) == 0x00 ) ;
29

30 // Close Webots connect ion
31 ∗ c o n t r o l l e r _ c t r l = 0xFF ;
32 whi le ( (∗ c o n t r o l l e r _ s t a t u s ) != 0x01 ) ;
33

34 re turn 1 ;
35 }

Listing 4.7: Program executed by GVSoC

After implementing the two programs, the scenario can finally be simulated. To
properly launch the simulation, Webots must first start the manipulator’s controller
to create the server socket. Then, the functional and extra-functional simulations
managed by MESSY can be launched, establishing a communication channel by
connecting to the socket. The overall system architecture can be seen in Figure
4.3, with the functional and power aspects are highlighted using different colors.
Figure 4.4, on the other hand, graphically represents how communication between
the two software systems occurs and the sequential order of the operations involved.
Whenever one of the operations demands only a specific framework to be completed,
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the other application is put on hold.

Arm movement

Inference

Simulation end

Figure 4.4: Operations’ flow between the two simulators
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4.2 Improving the functional bus

Although MESSY tries to simulate an embedded system as accurately as possible,
the results produced by the framework differ from the ones measured on a physical
system due to its high-level implementation. The execution times of simulated
tasks might vary because of the fixed timings of read and write operations on
internal registers or the instantaneous communications occurring between modules,
a consequence of the ideal implementation of the functional bus. The power
consumption of the peripherals does not transition realistically between different
states but changes abruptly between fixed values, indicated through the JSON
configuration file. Therefore, even if the characteristics and behaviour of the
battery are properly simulated, its capacity over time and the current drawn by the
system’s modules are inaccurate, causing the system to operate longer or shorter
than expected. Thus, the second half of this thesis focused on improving the
framework to produce more realistic results. In particular, the communication
mechanism of the system was entirely reworked to establish a real, protocol-based,
low-level functional bus. The new interconnection was based on one of the most
used protocols in the embedded domain: AXI. To build and integrate the low-level
bus into MESSY, the procedure described below was followed:

• the manager and subordinate interfaces were implemented separately;

• a small system, composed of two entities, was built to test and validate the
interfaces and the transmissions occurring through them;

• the test system was extended through the addition of a bus module, and all
the communications between the two entities were forwarded through it;

• the functional bus and the interfaces were integrated into MESSY.

In the following subsections, the aforementioned steps are detailed: Subsection
4.2.1 describes the architecture of a system characterized by point-to-point AXI
communications and focuses on the implementation of the master and slave modules,
as well as the underlying software structures; Subsection 4.2.2 extends the base
implementation with the addition of a bus module; Subsection 4.2.3 details the
process of integrating the communication mechanism into the simulation framework
of MESSY.

4.2.1 Building a point-to-point communication system

The communication system and its software structures were implemented so that
they could be configured and integrated into the simulated system through the same
process as the other modules. To further facilitate the system’s generation, it was
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decided to separate, as much as possible, the management of the communication
signals and processes of each module from the internal signals, variables and
procedures used to describe its behaviour. As a consequence, each block has
the structure shown in Figure 4.5: it is described by a main construct, which
incorporates the ports of the manager and subordinate interfaces, as well as the
module that details the block’s behaviour.

Generic module

Internal processes

AXI Interface

AXI Master

AXI Slave

System

<module>_axi.hpp

<module>_functional.hpp

Figure 4.5: Module implementation

A header file was created to host common signal and interface definitions for
the master and slave blocks. In this file, two structures containing the definition
of the input and output signals of the five channels employed by the protocol
were defined. The structure used by the manager module is represented in Listing
A.6, while the one employed by the subordinate block can be easily obtained by
inverting the manager structure’s signal types. Additionally, two virtual classes
were created to define the methods that have to be called or implemented by
the block’s behavioural description to properly exchange information with other
modules: Master_2_AXI_Port and AXI_2_Slave_Port. Depending on the role
of the module within the architecture, one or both interfaces must be inherited.
The former class targets hardware blocks that make read or write requests to other
system modules, such as the core of the architecture or a DMA controller, and
defines two callable functions:

• a read function, to request a specific amount of bytes from a given address;

• a write function, to send information at a specific address.

Both methods’ inputs and outputs must be handled by the caller. Conversely,
the latter interface targets modules that need to respond to those read and write
requests. It contains functions that must be implemented by the inheriting class,
such as:
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• a read and write function, used by the subordinate process to request a load
or store operation on internal registers;

• an is_ready function, used to check whether the communication request can
be accepted or not by the peripheral;

• a start_transaction and close_transaction, used to block the execution of
internal processes until the transmission is concluded, thus avoiding concurrent
accesses or modifications to the registers’ values.

The two interfaces were built in separate files as SystemC modules. The manager
module inherits the Master_2_AXI_Port virtual class and implements its read
and write operations as detailed by the AXI protocol (see Subsection 2.5.1 for
more information about these two operations). Since the system simulated by
MESSY, except for the functional ISS contained within the core, does not operate
based on clock signals, while the protocol requires one due to having a low-level
implementation, it was decided that the master interface should generate a clock
signal and send it to the subordinate interface during the data exchange. The
slave module, instead, is composed of only one method, which waits indefinitely
for a read or write request. When one of these two requests is received, it awaits
the conclusion of all internal operations, blocks them using the start_transaction
method and, then, proceeds to handle the related channel’s signals as described by
the protocol. Finally, it restarts the internal processes.

As previously reported in Section 2.5.1, the AXI protocol was not fully imple-
mented: only the base versions of the read and write operations were realized, with
the list of all the included signals shown in Table 2.1. The protocol was tailored
to the current state of MESSY. Since the framework supports solely a single core
and, at present, there is no integrated DMA controller module, the architecture
hosts only a single manager block. Thus, the arbitration mechanism, atomic access
management and protection level support are not required by the system and would
not only increase the complexity of the protocol implementation, but also make the
simulation heavier and slower. Additionally, transactions were not implemented
because read and write operations are executed sequentially, without interruption.
Therefore, the protocol was integrated in a form suitable for the architecture,
avoiding the addition of structures and procedures that are not used and would
hinder its internal processes.

To test the two modules, a system composed of two blocks, a core and a generic
sensor, was built. The core was tasked solely with making read and write requests
to the sensor, therefore it was equipped only with a manager interface. The data
and addresses provided to each operation were manually defined to facilitate the
validation of the communication mechanism. The sensor, instead, only handled the
received requests, thus requiring solely a subordinate interface. A simple process
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simulating an internal workload through a wait statement was defined to test the
correct execution of the start_transaction and close_transaction methods. The
two blocks were connected directly using a testbench module, which was also tasked
with monitoring the channels’ signals. The system can be seen in Figure 4.6.
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Figure 4.6: Point-to-point system architecture

4.2.2 Introducing a bus between modules

Since embedded systems do not allow different modules to communicate directly,
but rather through a common interconnection, a bus was introduced to the afore-
mentioned point-to-point architecture. Therefore, each transmission occurring
between the core and sensor blocks had to pass through this channel. The updated
system is shown in Figure 4.7.
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Figure 4.7: Bus-centric system architecture

The bus line was implemented with a structure similar to the one represented
in Figure 4.5. It employs both manager and subordinate interfaces to properly
handle read and write operations across the system. Whenever a module acting

41



Methodology

as a manager initiates a communication, it sends the request’s information to the
functional bus through its slave interface. The interconnection examines the target
address and activates the corresponding system component. It then acts as the
manager, requesting or writing data to that component while storing the requested
information and related responses. Finally, the bus reports the obtained data back
to the original transmitter. A graphical representation of the described flow can be
seen in Figure 4.8. The behavioural processes implement the routing capabilities
of the interconnection.

Core SensorFunctional Bus

request

forwarded request

response

forwarded response

M S M S

Figure 4.8: Flow of communication within the bus-centric architecture

To properly handle the communication process described above, a small memory
buffer was introduced within the bus structure to store the data that the master
wants to read from or write to at the destination addresses. It does not have a
specific dimension, but, instead, it is allocated dynamically based on the amount
of bytes that are involved during the transmission. The subordinate interface
was also modified so that, after collecting the request’s information, it signals
to the internal processes that the transmission can be forwarded to the target
unit, while the transmitter is put on hold. An additional virtual class defining
the methods used to handle the routing operation and check its termination was
defined: AXI_2_Bus_Port. It declares three operations:

• is_response_ready, to verify the status of the transaction between the
interconnection and the destination module;

• send_request, to signal that a routing operation has to start;
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• write, to store the data to be sent to the destination within an internal
memory buffer.

With the introduction of the bus channel into the system architecture, the
response signals of the Read Data (R) and Write Response (B) channels were finally
assigned appropriate values. It was not done earlier because errors have to be
managed by either the bus or the receivers, depending on the specific circumstances.
The list of values that each response can assume is reported in Table 4.1. Since

Error code Description

00 Normal access success or exclusive access failure

01 Only a portion of an exclusive access has been successful

10 Successful access, but the subordinate encounters an error

11 No subordinate block was found at the requested address

Table 4.1: Error codes for the RRESP and BRESP signals

exclusive accesses were not managed during the implementation of the protocol,
the code error "01" cannot be received by manager modules. Instead, the "10"
bit sequence is produced by subordinate blocks whenever the requested address
cannot be accessed, while the "11" error sequence is generated by the functional
bus whenever there is no peripheral associated with the received address. As an
example, imagine to have a system with two sensors and the memory map shown
in Table 4.2. In the case where the architecture’s core wants to read five bytes

Module Base address End address Memory register size

Sensor1 0x20000000 0x200000FF 256

Sensor2 0x20000100 0x2000010F 16

Table 4.2: Memory map of the system

starting at address 0x2000010E, the functional bus correctly identifies Sensor2 as
the destination component, enables its communication module and initiates a read
transaction. It requests five bytes, but only two of them can be accessed. As a
consequence, the responses produced by the subordinate will be: 00, 00, 10, 10, 10.
Instead, in the case where the read address is 0x20000115, the functional bus does
not locate any subordinate blocks and responds to the transmitter with: 11, 11, 11,
11, 11.

To test the new bus-centric structure, a testbench instantiating two sensors
and a core was created. The core is tasked with executing the same read and
write operations as before across the two peripherals, while the two sensors simply
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simulate a workload through a wait statement. All of the communication signals of
these modules were connected directly to the functional bus’s AXI signals, except
for the subordinate interfaces’ output signals. Since multiple sensors are attached to
the interconnection, these signals are multiplexed based on the peripheral enabled
by the functional bus’s behavioural process.

4.2.3 Integrating the communication protocol into MESSY

Integrating the interconnection and the two interfaces into MESSY required several
modifications to the original framework’s structure. First of all, the original version
of the functional bus was replaced by the newly created one, while the header
files containing the software structures, along with the manager and subordinate
interfaces used by the protocol, were simply added to the system. Next, the core
module was rewritten to separate the communication-related signals and processes
from those managing the functional ISS. The final structure of the processor
block is similar to the one realized for the isolated testing environments, which
is shown in Figure 4.6 and Figure 4.7. The updated functional model inherits
from the Master_2_AXI_Port virtual class and employs its methods within the
handle_request function to transmit data over the interconnection when requested
by GVSoC. Then, the focus shifted to the peripherals. They were heavily reworked
to achieve two goals:

• to enable the system’s generation process of MESSY to create specific source
files that host custom code for each hardware block, allowing procedures
such as connecting to external applications or reading and writing files to be
implemented without having to modify the communication and register file
processes;

• to separate, as was done for the core module, the communication-related
signals and processes from the behavioural ones.

To accomplish the first objective, a SystemC base class named Sensor was
created. It contains the enable and power signals, as well as the register file memory
pointer, a ConnectionConfig reference and delay variables. It primarily implements
three methods:

• a function to implement the behavioural process of the peripheral, called
sensor_logic. It contains an infinite loop where it continuously checks for any
communication requests and, after resolving them, executes a custom_logic
function, located within the custom source files generated by MESSY;

• a function to simulate the delays and energy consumption associated with
the read and write operations of the peripheral, named power_logic. The
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statements executed by this function are similar to the original portions of
code contained within each sensor module, with the difference of using specific
variables to store the configured consumption and delay values. The procedure
must be called by the methods that manage the read and write operations on
internal registers;

• a function to store the socket connection information, identical to the one orig-
inally contained within each sensor, named set_connection_parameters.

The peripherals generated by MESSY must inherit from this base class and define
only the implementation of the custom routines, along with the values for the
number of memory registers and delays for access operations, thereby separating the
simulation aspects from the more abstract ones as much as possible. To separate
the communication-related structures from the hardware block description, instead,
a framework similar to that represented in Figure 4.6 or Figure 4.7 has been used.
However, in order to maintain the source files provided to the designers without
any non-custom aspects, the virtual AXI_2_Slave_Port class is inherited and
implemented by the Sensor class. Within the interface implementation, power and
timing information are considered during read and write register operations by
calling the power_logic function. Since read operations are managed by subordinate
blocks, the power procedure is called during each operation, whereas for write oper-
ations, it is called once at the end of the data stream for as many times as the bytes
received. This approach ensures that the write delays do not hinder the execution
of the communication protocol. A method, called postwrite_move_simulation(),
was created and added to the virtual class for the subordinate interface to launch
the power management functions after the reception of write data. Figure 4.9
shows a class diagram representing the relations between the involved classes.

After revising the peripherals’ structures, the testbench was altered to instantiate
the correct modules and to incorporate the multiplexer process for the intercon-
nection’s AXI manager input signals. The pick and place application built to test
the connection between GVSoC and Webots described in the previous section was
employed to validate the improved system architecture.
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Sensor

enable, power_signal

register_memory

ConnectionConfig

sensor_logic()
power_logic()
set_connection_parameter()

Camera

registers, delays

custom_logic()

AXI_2_Slave_Port

is_ready()
start_transaction()
close_transaction()
read()
write()
postwrite_move_simulation()

Figure 4.9: Camera module class diagram
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Experimental results

This chapter presents the experiments performed upon the modified architecture and
the corresponding results. Several sections are used to separate the different tests:
Section 5.1 details the configuration parameters used by the two software systems
and describes the motivations behind them; Section 5.2 presents the measured
execution times for the pick and place application with different configuration
setups; Section 5.3 analyzes the case where the camera needs to be regularly
accessed during the arm’s motions for possible coordinates adjustments; Section
5.4 discusses the performance of the newly integrated interconnection compared to
the original one.

5.1 Testing setup for the joint simulation

Apart from some modifications to the general flow of the simulated example
scenario, which are discussed in the relevant sections, the same parameters were
used to configure the Webots and MESSY environments for all of the tests. As
already discussed in Subsection 4.1.1, the timestep of the robotic simulation, which
defines the duration of a single simulation step in milliseconds, was reduced from
the default value of 32ms to 10ms to improve the response times of the Emika
Panda manipulator’s controller and the accuracy of the machine’s movements. The
manipulator, instead, was programmed to have a movement timestep of twice
that duration, allowing for smoother motions. Moving to the camera module
that was attached to the end-effector of the robotic arm, it was configured based
on the specifications of an Intel RealSense D455. Thus, the resolution of the
generated images is 1280 × 800, while its field of view is 90 × 65○. Focusing
on MESSY, the functional and extra-functional simulations were configured to
terminate whenever they exceeded 1000 seconds, while the clock period for the
AXI-based interconnection was set to 2ms. Aside from the simulation aspect, the
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configurations mainly revolved around the camera and controller peripherals. These
sensors were added to the system and later configured through the same JSON
file used to define the system’s components. The JSON objects describing the two
modules are shown in Listing 5.1 and Listing 5.2.

1 " camera " : {
2 " register_memory " : 8192000 ,
3 " s t a t e s " : {
4 " read " : {
5 " cur r ent " : " 0 . 12 " ,
6 " de lay " : " 30 "
7 } ,
8 " wr i t e " : {
9 " cur r ent " : " 0 . 16 " ,

10 " de lay " : " 30 "
11 } ,
12 " i d l e " : {
13 " cur r ent " : " 0 . 002 "
14 }
15 }
16 }

Listing 5.1: Camera peripheral configuration

The camera module contains 8192000 byte registers, sufficient to hold control and
status values, as well as to store the data for a single image. Each register takes
30ms to be accessed, regardless of the type of operation. The controller peripheral
makes use of the same delay information, while it has a smaller register memory,
comprised of only 256 byte registers.

1 " contro l l e r_wrapper " : {
2 " register_memory " : 256 ,
3 " s t a t e s " : {
4 " read " : {
5 " cur r ent " : " 0 . 12 " ,
6 " de lay " : " 30 "
7 } ,
8 " wr i t e " : {
9 " cur r ent " : " 0 . 16 " ,

10 " de lay " : " 30 "
11 } ,
12 " i d l e " : {
13 " cur r ent " : " 0 . 002 "
14 }
15 }
16 }

Listing 5.2: Controller peripheral configuration
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A final configuration was necessary to simulate the execution of an object detection
network within the simulation flow. As mentioned in Section 4.1, due to a lack of
trained neural networks for the pick and place application, GVSoC executes a wait
statement that simulates the inference time of a potential network, after which
it sends the coordinates of the target object to the manipulator. A wait time of
130ms was used, based on the inference latency of a Squeezed Edge YOLO [37]
when simulated on a GAP8 processor through GVSoC.

5.2 Measuring the simulation times

As a starting point for evaluating the framework, the simulation times under
various setups were measured. First, the time required to move the arm from
its idle position to the target object was measured in Webots, without involving
any communication with MESSY. Next, the two simulators were connected to
measure the time needed to run an oracle version of the example application. In
this scenario, MESSY already knows the location of the target block and transmits
it directly to Webots, without requesting an image to infer it from. This setup is
used to evaluate the additional time required by the overall simulation, compared
to the Webots-only scenario, when a small amount of data is transferred between
the two software systems. To deepen the analysis, measurements were taken on

Webots Functional bus AXI bus
0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 (

s
)

Simulation times for Oracles

Figure 5.1: Oracles’ simulation times
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both the original implementation of the interconnection and its reworked version.
The results, shown in Figure 5.1, demonstrate that the major contribution to the
overall simulation is given by the computation of the trajectories and the movement
of the robotic manipulator, while the management of the integrated system and
the communication between the two simulators, occurring via socket, amount to an
increase of simulation time between 10.91%, whenever the original implementation
of the bus is involved, and 18.14%, in case the protocol-based interconnection is
used. The usage of the AXI-based channel alone, without altering the previously
described flow, increased the simulation time by about 8.13%, highlighting the
impact of low-level signal exchanges. Whenever large amounts of data need to
be transferred, as will be the case later, the presence of these exchanges increase
will further separate the two simulations, becoming the leading contributor to the
overall simulation time.

After this first test, the complete simulation, as originally planned (see Subsec-
tion 4.1.5), was launched and analyzed. As with the previous test, measurements
were taken for the framework using both the original implementation of the inter-
connection and its reworked version. For this evaluation, however, the simulations
were measured twice: first with the previously detailed flow, and then with the wait
statements, used to simulate the presence of an object detection network within the
simulation flow, replaced by the introduction of FLOPS instructions to simulate the
operations that would have been executed by a real network. These operations do
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Figure 5.2: Simulation times for the complete pick and place flow
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not involve any data from the camera module and are executed for the amount of
time needed to advance the simulation of approximately 130ms. The results of this
test are represented in Figure 5.2. From this graph, it can be seen that the addition
of an image request to the operations’ flow was not as impactful as expected when
the original channel was involved, even though a considerable amount of data
(∼ 18.5MB) was exchanged through the socket connection. The simulation time,
in fact, increased of about 17.85% compared to the previous test. However, this
value rose to 43.62% for the protocol-based interconnection, highlighting once again
the significant importance of the low-level exchanges. An additional, yet crucial,
observation can be made regarding the time differences between simulations using
wait statements and those substituting them with FLOPS computations: the wait
statement only advances the simulation’s internal signals by the provided amount
of time but does not perform any actual workload to simulate it. In fact, whenever
FLOPS are integrated into the simulation, even though they advance it by the
same time interval, the total execution time increases by approximately 3 seconds.
In particular, the original framework implementation gains 2.88 seconds (42.52% of
increase), while the AXI-based simulation gains 3.28 seconds (34.63% of increase).

5.3 Precision adjustments overhead

Most of the times, a single image is enough for an object detection network to
accurately locate the position of a fixed target object within the environment.
However, in some situations, the pick and place application may involve moving
objects. In these scenarios, images need to be captured during the movement of the
robotic manipulator in order to correctly track the shifting position of the target
and adjust the machine’s trajectory accordingly. Such possibilities were tested
using the modified virtual prototyping framework by altering the operations’ flow.
For this test, the program launched by GVSoC executes an internal loop where
an image is requested to Webots, parsed and the results are sent to the robotic
arm, along with a new parameter indicating the time interval to dedicate to the
arm’s motions, before responding to MESSY, allowing to regulate the number of
images to capture within a second. The loop is exited whenever the arm reaches
the target coordinates. The test was performed on the framework using both the

1 fps 2 fps 4 fps

Functional bus 3.6 5.6 12.4

AXI bus 3.8 6.5 12.6

Table 5.1: Average number of captures to terminate the arm’s motion

original implementation of the interconnection and its reworked version and, since
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a wait time of 130ms is used to simulate the object detection network, it measured
the simulation times for one, two and four images captured per second on the two
architectures.
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Figure 5.3: Measured times with varying number of captures

The results, represented in Table 5.1 and Figure 5.3, are computed as average
values after running ten simulations on both architectures. Figure 5.3 also includes
the standard deviation for each measurement, highlighting the amount of variation
of the values from the computed mean. As it can be seen, the simulation with
the functional bus that requests one image per second has a one-second overhead
compared to the normal simulation scenario, the measurement of which is shown
in Figure 5.2, while higher frames per second further increase this value, causing
the simulation to run for more than twice the normal execution time. This
increment can be explained by the additional capture requests made to Webots,
which rose from an average of 3.6 to an average of 12.4. The same increment
in number of captures, though, did not have the same effect on the simulation
times for the AXI-based software system. Due to the low-level signaling occurring
between the system’s different units during communication, each new image request
exponentially increases the overall simulation time. Specifically, when MESSY
requests a single image per second, the simulation time is 2.3x the normal execution

52



Experimental results

time, while this value grows to 6.4x for four requests per second. The time
differences of running this example scenario on the two framework implementations
vary from 64.32% to 73.55%.

5.4 AXI-induced overhead

As for the final analysis, the focus shifted from simulating the pick and place
application to testing and evaluating the protocol-based interconnection. To evalu-
ate its implementation, it was decided to measure the amount of time needed by
GVSoC to perform a specific number of readings on a system’s peripheral. Thus, a
different, yet simpler, program was realized, containing only the necessary opera-
tions. The analysis was performed on three different versions of the architecture:
one implementing the original interconnection, a second integrating the delays
of the AXI protocol’s operations into the functional bus implementation, and a
third incorporating the low-level communication channel. The second version of
the framework was analyzed to ensure that the implementation of the protocol
functioned as expected. In order to compute the delays of the AXI protocol’s
read and write operations, the number of clock cycles required by each phase was
counted and converted into simulation time, knowing that the clock period is 2ms.
The clock cycles are reported in Table 5.2. Eight clock cycles are required to

Operation type Phase Actor #Clock Cycles

Read
AR

Manager 3

Subordinate 3

R
Manager 1

Subordinate 1

Write

AW
Manager 3

Subordinate 3

W
Manager 1

Subordinate 1

B
Manager 2

Subordinate 3

Table 5.2: Number of clock cycles for each phase of a read and write operation

perform a single read operation, totaling 16ms, while a write operation, on the
other hand, requires thirteen clock cycles, totaling 26ms. The timing information
of the operations performed by the three channels are reported in Table 5.3.

The measurements related to the test are shown in Figure 5.4. As expected, it
can be seen that the original implementation of the interconnection takes less time
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Bus implementation
Operation type

Read (ms) Write (ms)

Functional bus 30 30

Functional bus + AXI delays 46 56

AXI bus 46 56

Table 5.3: Execution times for the read and write operations

to perform the same number of readings as the other two channel implementations,
since it does not simulate any low-level exchanges associated with a specific protocol.
However, it can be noted that the three curves converge to the same simulation
time whenever the number of readings increases to 50000, as the simulated time
for that number of readings exceeds the configured limit of a 1000 seconds. The
other two curves, instead, are quite similar, presenting negligible time variations
for a higher number of readings and demonstrating the correct implementation
of the protocol. On average, between the protocol-related curves and the original
interconnection curve, a simulation time increase of about 50.49% was measured.
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Figure 5.4: Time required by the channels to read a certain number of registers
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A variation of this analysis was performed to verify that the AXI channel
implementation did not introduce any simulation overhead, aside from further
advancing the internal simulated time. To verify the presence of such overhead, the
version of the framework containing the high-level implementation of the bus was
used to simulate the infinite reading of registers, which was only interrupted upon
reaching a specific simulated time, corresponding to the ending time of the other
curves represented in Figure 5.4 for a specific number of register accesses. The same
measurements as before were taken on the simulator containing the AXI-based
interconnection, along with the ending simulated times for each number of readings.
The measured ending times are shown in Table 5.4. These values were then used to

# of readings 1000 2000 10000 20000

Ending simulated time (ms) 46002 92002 480002 960002

Table 5.4: Ending simulated times for the AXI-based framework

configure the maximum simulation time allowed for simulating the infinite reading
of registers performed by the version of the framework containing the high-level
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Figure 5.5: Time required by the channels to reach the same simulated time
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bus implementation. The results are represented in Figure 5.5, but note that, even
though the plot uses the number of readings as the x-axis, the measured values
for the version of the framework containing the high-level interconnection refer
to the ending times associated with that number of register accesses. The results
show that to reach the same simulated time as the protocol-based channels, the
functional implementation of the bus requires the same time, demonstrating that no
overhead is introduced. Specifically, a difference between the curves exist; however,
it consists of about 2.43%, making it negligible.
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Chapter 6

Conclusion and Outlook

The aim of this thesis was the integration of a connectivity module and a protocol-
based bus implementation into MESSY, a virtual prototyping framework for simulat-
ing both functional and extra-functional aspects of an embedded system. The goal
of these two additions was to offer a more comprehensive and realistic environment
for testing such complex systems. The connectivity module was integrated into the
framework using a C-based library named VirtualConnector. This library allows the
simulated system’s components to connect to an external application and exchange
data through a Unix socket structure, simulating aspects that would be difficult to
cover with a purely C-based approach. In order to establish communication with
any kind of software system, messages are exchanged using a JSON format. On the
other hand, the AXI-based interconnection was implemented to integrate a low-
level bus channel into the simulator, allowing realistic communication between the
system’s units. In parallel with its integration into the architecture, the structure
of the peripheral components was reworked to further separate custom code imple-
mentations from system integration and internal operations, allowing developers to
focus on their application-specific requirements. The modified simulator was tested
through a pick and place application, where it was connected to Webots and tasked
with managing a Franka Emika Panda robotic manipulator. Several measurements
were taken, highlighting the importance of simulating low-level exchanges and the
difference between manually advancing the simulated time and executing FLOPS
operations to reach the same objective. Furthermore, the newly integrated inter-
connection demonstrated a negligible simulation overhead of about 2% compared
to the original version, making it ideal for testing a more realistic environment.
Future developments can further expand the work in different directions: a more
comprehensive version of the bus protocol can be implemented, adding features to
handle multiple manager systems, out-of-order transactions and protection level
support; the connectivity module can be extended to support multiple connections
and message formats, allowing to connect to more constrained applications; the
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example application involving the pick and place simulation within the Webots’
environment can be extended to support other robotic manipulators or a more
detailed operations’ flow.
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Appendix A

Listings

1 i n t ConnectionConfig : : i n i t i a l i z e _ c o n n e c t i o n ( ) {
2 s t r u c t sockaddr_un server_address ;
3

4 // Create the UNIX socket
5 i f ( ( th i s −>server_fd = socket (AF_UNIX, SOCK_STREAM, 0) ) == −1)
6 re turn −1;
7

8 // Conf igure i t with the in fo rmat ion about the s e r v e r socket
9 memset(&server_address , 0 , s i z e o f ( server_address ) ) ;

10 se rver_address . sun_family = AF_UNIX;
11 s trncpy ( server_address . sun_path , th i s −>socket_path , s i z e o f (

Ç se rver_address . sun_path ) −1) ;
12

13 // Connect to the s e r v e r
14 i f ( ( th i s −>connect ion_fd = connect ( th i s −>server_fd , ( s t r u c t

Ç sockaddr ∗) &server_address , s i z e o f ( se rver_address ) ) ) == −1)
15 re turn −1;
16

17 re turn 0 ;
18 }

Listing A.1: Socket creation and initialization in MESSY

59



Listings

1 j s on VirtualConnector : : read_from_channel ( i n t fd ) {
2 i n t num_read , counter_read , s t r ing_length ;
3 unsigned char rd_len_buffer [ 4 ] ;
4 char ∗ rd_json_buffer ;
5 j s on data ;
6

7 // Read how many c ha r a c t e r s the j son w i l l be long
8 s t r ing_length = 0 ;
9 num_read = read ( fd , &rd_len_buffer , 4) ;

10 f o r ( i n t i = 0 ; i < num_read ; i++)
11 s t r ing_length = st r ing_length | ( rd_len_buffer [ i ] << (8∗ i ) ) ;
12

13 // Al l o ca t e the memory r equ i r ed to s t o r e the j son s t r i n g
14 num_read = 0 ;
15 counter_read = 0 ;
16 rd_json_buffer = ( char ∗) mal loc ( s t r ing_length ∗ s i z e o f ( char ) ) ;
17

18 // Read the message
19 whi le ( counter_read < st r ing_length ) {
20 num_read = read ( fd , rd_json_buffer + counter_read ,

Ç s t r ing_length − counter_read ) ;
21 counter_read += num_read ;
22

23 i f (num_read == 0)
24 break ;
25 }
26

27 // Convert to JSON
28 data = json : : parse ( rd_json_buffer ) ;
29 f r e e ( rd_json_buffer ) ;
30 re turn data ;
31 }

Listing A.2: Read operation from the socket channel in MESSY
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1 void VirtualConnector : : write_on_channel ( i n t fd , j son data ) {
2 unsigned char l ength_buf f e r [ 4 ] ;
3 char ∗ wr_buffer ;
4 i n t j son_length ;
5 std : : s t r i n g j son_st r ing ;
6

7 j s on_st r ing = data . dump( ) ;
8 j son_length = j son_st r ing . s i z e ( ) ;
9

10 // Send the number o f bytes
11 l ength_buf f e r [ 0 ] = json_length & 0x000000FF ;
12 l ength_buf f e r [ 1 ] = ( json_length >> 8) & 0x000000FF ;
13 l ength_buf f e r [ 2 ] = ( json_length >> 16) & 0x000000FF ;
14 l ength_buf f e r [ 3 ] = ( json_length >> 24) & 0x000000FF ;
15 wr i t e ( fd , l ength_buf fer , s i z e o f ( l ength_buf f e r ) ) ;
16

17 // Write the message on the channel
18 wr_buffer = ( char ∗) mal loc ( j son_length ∗ s i z e o f ( char ) ) ;
19 s trncpy ( wr_buffer , j s on_st r ing . c_str ( ) , j son_length ) ;
20 wr i t e ( fd , wr_buffer , j son_length ) ;
21 f r e e ( wr_buffer ) ;
22 }

Listing A.3: Write operation on the socket channel in MESSY
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1 de f rece ive_message ( s e l f ) :
2 msg = " "
3 byte_read = 0
4 msg_length = 0
5

6 # Read how many cha r a c t e r s the MESSY json w i l l be long
7 msg = s e l f . c l i e n t_s oc ke t . recv (4 )
8 i f msg == b ’ ’ :
9 r a i s e RuntimeError ( )

10

11 f o r i in range (4 ) :
12 msg_length = msg_length or (msg [ i ] << (8 ∗ i ) )
13

14 # Acquire the c o r r e c t amount o f c ha r a c t e r s to compone the j son
15 byte_read = 0
16 msg = [ ]
17 whi le byte_read < msg_length :
18 msg_part = s e l f . c l i e n t_s oc ke t . recv (min ( msg_length − byte_read

Ç , 4096) )
19 i f msg_part == b ’ ’ :
20 r a i s e RuntimeError ( )
21

22 byte_read += len ( msg_part )
23 msg . append ( msg_part )
24

25 msg = b ’ ’ . j o i n (msg) . decode ( " utf −8" )
26 data = json . l oads (msg)
27 re turn data

Listing A.4: Read from socket channel in Python
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1 de f send_message ( s e l f , data ) :
2 msg = bytearray ( j son . dumps( data ) , " ut f −8" ) + bytearray (b ’ \0 ’ )
3 msg_length = len (msg)
4

5 # Send the l ength o f the j son
6 byte_sent = s e l f . c l i e n t_s oc ke t . send ( msg_length . to_bytes (4 , "

Ç l i t t l e " ) , 4)
7 i f byte_sent == 0 :
8 r a i s e RuntimeError ( )
9

10 # Send the j son now
11 byte_sent = 0
12 to ta l_sent = 0
13 whi le to ta l_sent < msg_length :
14 byte_sent = s e l f . c l i e n t_s oc ke t . send (msg [ to ta l_sent : ] )
15 i f byte_sent == 0 :
16 r a i s e RuntimeError ( )
17

18 to ta l_sent += byte_sent
19

20 re turn

Listing A.5: Write on socket channel in Python
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1 s t r u c t AXI_M_Interface {
2

3 // Clock
4 sc_out<bool> c lk { " Clock " } ;
5

6 // Read address channel (AR)
7 sc_in<bool> AR_ready{ "AR_ready" } ;
8 sc_out<int > AR_address{ "AR_Address " } ;
9 sc_out<uint8_t> AR_length{ " AR_length " } ;

10 sc_out<bool> AR_valid{ " AR_valid " } ;
11

12 // Read data channel (R)
13 sc_in<bool> R_last{ " R_Last " } ;
14 sc_in<bool> R_valid{ " R_Valid " } ;
15 sc_in<sc_uint<2>> R_resp{ " R_resp " } ;
16 sc_in<uint8_t> R_data{ "R_Data" } ;
17 sc_out<bool> R_ready{ "R_Ready" } ;
18

19 // Write address channel (AW)
20 sc_in<bool> AW_ready{ "AW_ready" } ;
21 sc_out<int > AW_address{ "AW_Address" } ;
22 sc_out<bool> AW_valid{ "AW_valid " } ;
23

24 // Write data channel (W)
25 sc_in<bool> W_ready{ "W_Ready" } ;
26 sc_out<uint8_t> W_data{ "W_Data" } ;
27 sc_out<bool> W_last{ "W_Last" } ;
28 sc_out<bool> W_valid{ "W_Valid" } ;
29

30 // Write re sponse channel (B)
31 sc_in<bool> B_valid{ " B_valid " } ;
32 sc_in<sc_uint<2>> B_resp{ " B_resp " } ;
33 sc_out<bool> B_ready{ " B_ready " } ;
34 } ;

Listing A.6: AXI manager port signals
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1 c l a s s Master_2_AXI_Port : v i r t u a l pub l i c s c _ i n t e r f a c e {
2

3 pub l i c :
4 v i r t u a l void read ( i n t address , i n t length ,
5 uint8_t ∗ data , uint8_t ∗ re sponse ) =0;
6 v i r t u a l i n t wr i t e ( i n t address , uint8_t ∗ data , i n t l ength ) =0;
7 } ;
8

9 c l a s s AXI_2_Slave_Port : v i r t u a l pub l i c s c _ i n t e r f a c e {
10

11 pub l i c :
12 v i r t u a l bool is_ready ( ) =0;
13 v i r t u a l void s t a r t_t ran sac t i on ( ) =0;
14 v i r t u a l void c l o s e_t ran sac t i on ( ) =0;
15

16 v i r t u a l bool read ( i n t address , uint8_t ∗ data ) =0;
17 v i r t u a l i n t wr i t e ( i n t address , uint8_t data ) =0;
18 } ;

Listing A.7: Virtual classes definition
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