POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

o 10 f'l dl Torl no

Master’s Degree Thesis

Functional and extra functional
simulation of a RISC-V based unmanned
aerial vehicle through SystemC-AMS

Supervisors Candidate
Prof. Sara VINCO .
Pietro FURBATTO
Prof. Daniele Jahier PAGLIARI
Prof. Alessio BURELLO
Dr. Giovanni POLLO

Dr. Mohamed Amine HAMDI

October 2024

Summary

Nowadays, the rise of the RISC-V instruction set architecture (ISA) has led to
an increasing interest towards the development of royalty-free and open-source
products. Thanks to RISC-V, hardware architectures can be customised to suit
specific product needs, offering a flexible and scalable approach that benefits both
Original Equipment Manufacturer (OEM) producers and final consumers.

To design products, companies strongly rely on simulations to explore the various
design choices and the possible flaws of a design, reducing both the development
times and costs. Being a rather recent technology, however, there is still a lack
of comprehensive simulation frameworks for RISC-V cores, especially for ones
targeting both functional and extra-functional aspects such as power consumption.

In the landscape of functional simulation, GVSoC represents one of the most
noteworthy options, allowing for a highly configurable and timing-accurate simula-
tion for GAPS, a powerful RISC-V based IoT-oriented processor. GVSoC enables
practical functional and performance analysis at the full-platform level, but lacks
the support for any other external components and extra functional properties.

To overcome these shortcomings, the MESSY framework has recently been
developed: by combining GVSoC and the expressive power of SystemC-AMS,
this tool provides a scalable yet easily customizable solution to satisfy the need
of a system-level simulation framework for embedded to industrial applications.
Although the software has already reached a quite mature state, very few tests have
been conducted to evaluate the effectiveness of the system in simulating properties
of real, complex products.

This thesis thus focuses on modelling a complex robotic system within MESSY.
To model the complex mechanics of a robotic system without impacting the
complexity of simulation setup, MESSY has been connected to Webots, an open
source application which provides a complete development environment to model,
program and simulate robots and that can provide realistic sensor data to further
enhance the realism of the simulation environment.

The target platform for this study is the GAP8-based Crazyflie 2.1 nano drone.
Nano drones have recently received a lot of interest in the academic world due
to their versatility and the widespread of on-edge Artificial Intelligence (AI). As

11

battery-powered devices, the interest in extra functional properties is extremely
valuable, as simulations allow for estimating the impact on battery life of various
control algorithms and the exploration of several hardware choices. Additionally,
nano drones present unique challenges due to their complex control and the need
for multiple sensors, making them ideal candidates for the purpose of this work.

All of these aspects have been integrated in a virtual platform that combines
MESSY and Webots, in order to achieve a "digital twin" version of the Crazyflie
drone that closely represents its architecture behaviour and power consumption.

The thesis successfully demonstrates the effectiveness of the system-level simula-
tion capabilities offered by MESSY, along with its minimal impact on the Webots
simulation times. Furthermore, the analyses of the impact on flight time of different
batteries, control algorithms and environment conditions serve as an example to
highlight some of the meaningful insights that can be gathered from such simulation
framework, showcasing its potential for comprehensive performance evaluation and
optimization.

II1

Acknowledgements

Questa tesi rappresenta il culmine, ma anche il termine, della mia lunga carriera
universitaria, oltre che da studente in generale. Un percorso come quello di tanti
altri, certo, che pero confesso ha avuto qualcosa di unico ed irripetibile. Guardan-
domi indietro, mi & impossibile non accorgermi di quante difficola ho incontrato
e superato, soprattuto grazie all’aiuto che ho ricevuto da tantissime persone, a
ciascuna delle quali questo capitolo e dedicato.

Un grazie in primis a Giovanni, Amine, Daniele, Sara ed Alessio. La vostra costanza
e il vostro interesse nella risucita di questa tesi e senza dubbio stato di enorme
aiuto: avete reso tutto piu leggero e stimolante, consentendomi di arrivare qui oggi
con la consapevolezza di avere concluso questo percorso nel migliore dei modi. Un
grazie a Matteo, compagno di tesi e amico da sempre. Oltre alle partite a Clash, ti
sono debitore di parecchie dritte per questo lavoro... ma non solo.

Grazie alla mia famiglia. Un ENORME grazie a voi. Mamma, papa, Anna, Lorenzo
e nonna: siete stati la mia bussola in ogni circostanza, e il vostro affetto e supporto e
sempre stato fondamentale per la buona riuscita di questo e dei miei altri traguardi.
E un altrettanto gigantesco grazie a chi mi ¢ stato vicino in questi ultimi anni.
Per primi ci siete voi, gli autodefiniti "amici di classe Z". Crupi, Gianci e Faggio, a
voi devo davvero tanto di chi sono ora. Siamo stati assieme da quando eravamo
ragazzini, e portero per sempre con me le nostre risate e ogni avventura e riflessione
che abbiamo condiviso. Un altro super grazie lo devo agli amici del mare: abbiamo
trascorso di tutto, di bello e di meno bello, ma siete stati un punto saldo di questi
ultimi 9 (si, davvero 9) anni e la vera anima di tutte le mie estati. Come non
ringraziare poi Ale, Gabri, Bis e Parry: non ci sono riusciti la fine del liceo ne il
covid a separarci, e mi auguro che la nostra amicizia possa durare ancora a lungo.
Grazie anche a te Cassi, e ai nostri interminabili audio dove abbiamo condiviso le
nostre cose piu intime.

Infine, un grazie specifico lo devo forse soprattutto a voi, amici dell’uni. Eleonora,
Mattias, Giorgio, Angelo, Fabrizio, Filippo, Elena, Samuel, Valentina e Jessica.
Questi anni li avete davvero alleggeriti, e spero che, tra le fatiche dei progetti e le
nostre uscite, ciascuno di voi conservi gli stessi bei ricordi che portero con me. E,
in particolare, grazie anche a voi, Peppe e Combe, per ’enorme aiuto che mi/ci

v

avete dato, e per la vostra risata tremendamente contagiosa.

Un enorme e sentito grazie va a tutte quelle persone con cui ho condiviso anni,
giorni, o anche solo un istante di tutto questo percorso. Un gesto gentile, una
chiacchierata piacevole, un’uscita per un caffe. Tanti di voi non li ho citati, di altri
non so nemmeno il nome... ma avete davvero contribuito a rendere ciascuno di
questi giorni piu facile e speciale, facendomi affrontare ogni sfida con una carica in
piu.

Insomma, un grazie profondo a chi ci ¢ stato. Non so cosa mi riservera la vita e
come continuera la mia strada. Ma la forza che mi avete donato mi aiutera a vivere
le cose come ho fatto in questi anni: con tanta voglia di continuare e sempre con
un semplice, ma sincero, sorriso.

Table of Contents

List of Tables IX
List of Figures X
Acronyms XIII
1 Introduction 1
2 Background)
2.1 RISC-V . . e 5
2.1.1 PULP 6

2.1.2 GAPS . . . 7

2.2 System simulation for virtual prototyping 8
2.2.1 Functional simulation 9

2.2.2 Extra-functional simulation 10

2.3 Inter-Process Communication through network sockets 10
2.3.1 UNIX sockets 12

2.4 Unmanned aerial vehicles 13
2.4.1 Introduction to drones and nanodrones 13

2.4.2 Drone controllers 17

2.4.3 The Crazyflie 2.1 nanodrone 19

3 Related works 25
3.1 Functional ISS simulation 25
3.1.1 GVSoC 26

3.1.2 SystemC 27

3.2 System-level simulation 28
3.2.1 SystemC-AMS 28

3.2.2 MESSY 29

3.3 Robotics simulation 31
3.3.1 ROS 31

3.3.2 Webots s 32

3.4 Drone power models 33
3.4.1 Overview of theoretical models 34

3.4.2 Final considerations 36

3.4.3 Empirical model oo 37

4 Methodologies 39
4.1 Establishing the connection between MESSY and Webots 39
4.1.1 The VirtualConnector library 39

4.2 Crazyflie architecture modelling in MESSY 41
4.2.1 Sensors and SoC: camera and STM32 microprocessor 45

4.2.2 PID controller 53

4.2.3 Handling the simulation from the main 59

4.2.4 General improvements 60

4.3 GVSoC program 64
4.4 The Webots controller 68
4.5 Power modellingo 71
4.5.1 Sensors. 75

4.5.2 Power buses 78

4.5.3 Energy consumption models 78

4.5.4 Battery and battery converter 80

5 Experimental Results 83
5.1 Scenario overview and power models comparison 83
5.2 System-level simulation overhead and time offset 87
5.3 Changing simulation parameters 90
5.4 Testing different batteries 93

6 Conclusions and future works 100
A Additional power models 102
B VirtualConnector class 103
C PID iteration function 105
D GVSoC program - Initial definitions and most important methods108
E Webots controller - main and sampleRun methods 112
Bibliography 117

VIII

List of Tables

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
9.3
0.4

Summary of energy consumption models and their feasibility
Power consumption measurements for the Crazyflie drone

Camera Registers
STM32 Registers
STM32 control/status register commands
Parameters for D’Andrea model.
Parameters for Stolaroff model.

Simulation time measurements excluding MESSY (data in ms).
Simulation time measurements including MESSY (data in ms).

4 corners time measurements excluding MESSY (data in ms).
4 corners time measurements including MESSY (data in ms).

IX

List of Figures

2.1

2.2

2.3
24
2.5
2.6

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
2.3
5.4
9.5
5.6
5.7

0.8
5.9

Overview of client and server operations in typical UNIX domain

socket connectiono
Growth trajectories in UAV research directions from January 2020

to December 2022 [28]o
PID controller scheme [32].
The Crazyflie 2.1 drone by Bitcraze
Propellers direction of motion,
Useful terms about UAV motion

Example of an LES block.

Visual representation of the MESSY default flow.
Visual representation of the bus-camera-Webots interaction.

Battery connector scheme. L0
Motor schematics.
Overview of the connection between battery and motors.
STM32 pins.
VCC reference circuit. o
Overview of the use of VCC and its generation.
LPHDG6520030 charge-voltage discharge graph [61].

Overview of Webots 3D environment.
The drone at the beginning of the simulation.
The drone passing a gate.
Shots of the Crazyflie drone during the simulation.
Power and battery information shown at the end of the simulation.

Comparison of the battery discharge curves.
Power and battery information (empirical model) for 4 corners

simulation. Lo
8 ms timestep. L.
16 ms timestep.o

5.10
5.11
5.12
5.13
5.14
5.15
5.16
0.17

32 ms timestep. L 93
Battery discharge curves for different timesteps. 93
UFX402525 battery discharge curves. 94
UFX 250 mAh battery results. 95
Cyclone 300 battery discharge curves. 96
Cyclone 300 mAh battery results. 97
LiPol 350 mAh battery results. 98
Comparison of the battery discharge with the three batteries.. . . . 99

XI

Acronyms

Al

ALU

AMS

API

ARM

BLE

CAD

CARE

CCW

CNN

CMOS

CISC

CPI

CPU

CW

Artificial Intelligence

Arithmetic Logic Unit

Analog/Mixed-Signal

Application Programming Interface
Advanced RISC Machines

Bluetooth Low Energy

Computer-Aided Design

Continuous-time Algebraic Riccati Equation
Counter-Clockwise

Convolutional Neural Network
Complementary Metal-Oxide-Semiconductor
Complex Instruction Set Computer

Camera Parallel Interface

Central Processing Unit

Clockwise

XIII

DC

DMA

DSE

ELN

EMI

FC

FP

FPGA

FPS

GPS

GUI

HDL

12C

125

IMU

IP

IPC

ISA

ISS

Direct Current

Direct Memory Access

Design Space Exploration
Electrical Linear Networks
Electromagnetic Interference
Fabric Controller

Floating Point
Field-Programmable Gate Array
Frames Per Second

Global Positioning System
Graphical User Interface
Hardware Description Language
Inter-Integrated Circuit
Inter-IC Sound

Inertial Measurement Unit
Intellectual Property
Inter-Process Communication
Instruction Set Architecture

Instruction Set Simulator

X1V

IoT Internet of Things

L1 Level 1

L2 Level 2

LDO Low DropOut

LED Light Emitting Diode

LiDAR Laser Imaging Detection and Ranging
LiPo Lithium Polymer

LQR Linear Quadratic Regulator
LSF Linear Signal Flow

MAC Multiply-ACcumulate

MCU Micro-Controller Unit

ML Machine Learning

MPU Memory Protection Unit

NN Neural Network

0OS Operating System

PID Proportional-Integral-Derivative
PULP Parallel Ultra Low Power

PWM Pulse Width Modulation

RAM Random Access Memory

XV

RISC

ROS

RPC

RPM

RTL

SLAM

SOC

SoC

SP

SPI

SW

TDF

TLM

ToF

UAV

UART

Reduced Instruction Set Computer
Robot Operating System

Remote Procedure Call

Rotations Per Minute

Register Transfer Level
Simultaneous Localization and Mapping
State Of Charge

System on Chip

Set Point

Serial Peripheral Interface
Software

Timed Data Flow
Transaction-Level Modeling

Time of Flight

Unmanned Aerial Vehicle

Universal Asynchronous Receiver-Transmitter

XVI

Chapter 1

Introduction

In the latest years, the interest towards unmanned air vehicles (UAVs) has taken
off quite significantly. The appeal of drones is in fact both industrial and academic,
due to their great versatility and cheap cost. They are able to provide significant
advantages over any other aerial vehicle in several fields, ranging from agriculture
analytics, package delivery and military defense, to rescue operations, cinema, and
weather forecasting?.

In essence, drones are a category of aircrafts that do not carry a human operator,
and make use of the airfoil principle to provide vehicle lift. They are either
autonomous or remotely controlled, making them also very appealing to research
and other specialised purposes. The great adoption of such technology has led to
different kinds of drones, developed to suit specific size and speed needs. Among
those, one of the latest and most interesting classes of vehicles is the one of nano
drones.

Also known as miniature or small unmanned aerial vehicles, nano drones are, to
put it simply, a downscaled version of standard drones, offering as a result a unique
combination of size, agility, and affordability. These tiny, lightweight drones are
designed for specific tasks (such as reconnaissance, surveillance, and communication
relay?), and their desirability has recently increased even further thanks to the
spread of on-edge Artificial Intelligence (AI) technology [1], allowing for example
the autonomous exploration of complex and dynamic spaces, or the use of several
of those in drone swarms and other recreational flying applications in general.

Being particularly small, however, nano drones are able to support only small
battery packages, which results in having at their disposal a very limited flight time.

thttps:/ /www.cbinsights.com /research /drone-impact-society-uav/

https:/ /www.stratechos.com /techtonics /nano-drones%3A-small-size%2C-big-impact-in-
modern-industries

Introduction

Nevertheless, this drawback can be easily studied prior to the drone production
thanks to the availability of simulation softwares, which allow to emulate the impact
on flight time of several batteries, different scenarios and other drone characteristics.

More broadly speaking, the ability of using simulations to investigate possible
flaws and enhancements during the design phase of a product is a highly valuable
strategy for companies in general: it allows in fact to explore the design space
without the need of developing physical prototypes, resulting in huge time and
cost savings. This is especially true for hardware companies, where rigorous logic
verifications have to be carried out before moving into the production phase of
processors and other high-end electronic components. To accommodate this need
for hardware simulation, several softwares have emerged in the past years. As
better detailed later in the document, these include programs such as Simulink [2],
QEMU [3] and RENODE [4], which share the ability of enabling detailed functional
simulations per different architectures (each focusing for slightly different use cases).

In this context, the rise of the RISC-V architecture [5] opened a new set of
advantages for functional simulation: its open-source nature as well as its extensible
and customizable instruction set makes it particularly suited for simulation envi-
ronments, allowing for rapid prototyping and testing of hardware designs without
the constraints imposed by proprietary architectures. This customizability allows
developers and researchers to ease and accelerate the exploration process®, giving
even more importance to the simulation stage. Hardware emulation is also much
more accurate than others, as it allows for a very precise modelling of internal
delays and other timing related characteristics.

But the concept of functional simulation is widely spread at higher levels as
well. In the field of robotics, for example, Webots [6] stands out as a very powerful
piece of software providing a convenient way to create testing environments for a
vast quantity of robotic systems. In this case, the simulation involves the model
of one (or more) robots through their sensors (such as cameras, LiDARs, GPS,
microphones, etc.) and actuators (like linear and rotational motors, propellers,
brakes, etc.). These are then placed inside a realistic 3D environment, which can
be customised with models of both static and dynamic objects to replicate with
great accuracy specific industrial or everyday scenarios. The robot(s) can then
be programmed to interact with the surroundings, enabling developers to gather
relevant information about its behavior and to collect the data recorded by the
device sensors.

Hardware and functional simulation are however just one of the two most
important aspects when dealing with electronic devices, especially when considering

3https://www.ust.com/en/insights/risc-v-the-underdog-chip-poised-to-reshape-the-tech-
landscape

Introduction

battery powered ones such as nano drones. In fact, as said, being able to carry
only a limited battery capacity is one of the main drawbacks of these vehicles:
hence, it is evident how the simulation of a robot may profit from the inclusion of
extra-functional aspects such as power consumption. The need to model energy
intake may also be extremely useful in other scenarios too, such as when dealing
with several robots attached to the power line in an industrial plant.

Among the several solutions that condense both the functional and the extra-
functional aspects inside a unique platform, SystemC [7] and its expansion SystemC-
AMS [8] are particularly noteworthy. They provide a comprehensive environment
that allows to model and simulate both digital and analog/mixed-signal systems.
By enabling the co-simulation of functional behaviors (such as logic operations and
control algorithms) along with extra-functional aspects like power consumption,
timing, and signal integrity, they represent very ideal tools to model complex
systems like nano drones and robots in general.

To ease the development and use of such SystemC-based simulations, the MESSY
framework [9] was recently developed by Politecnico di Torino. This tool exploits
the expressive power of SystemC for functional and extra-functional aspects and
provides the user with a customizable interface to automatically generate ready-
to-use codes for sensors, actuators, batteries and more. Moreover, it enhances the
simulation capabilities of robotic systems by integrating GVSoC [10], a powerful and
almost cycle-accurate functional hardware simulator for GAPS8, which is, in turn,
a versatile RISC-V processor tailored for Internet of Things (IoT) and embedded
applications. By combining the two, MESSY is able to provide a comprehensive
simulation framework for a wide range of RISC-V based devices, allowing for precise
system-level simulations.

However, being MESSY a recent development, no attempt has ever been carried
out to test the actual capabilities of the software, especially when considering the
simulation of real, complex products. In parallel with other projects, the following
thesis will thus address the challenge of using MESSY to build a simulation
environment to model as accurately as possible the functional and extra-functional
characteristics of a RISC-V based nano drone: the Crazyflie 2.1 [11] by BitCraze.
In order to make the simulation even more realistic, MESSY will be integrated
with Webots: making use of its robust physical engine, the resulting system will
enable the testing of control algorithms and potential neural networks running on
the drone onboard processor while estimating in real time the battery performance
and the underlying hardware dynamics.

To describe the development process of such a system, the following chapters
are structured as follows. Chapter 2 delves deeper into the fundamental topics the
whole thesis is based on: starting from a more in-depth introduction on the RISC-V
architecture, the interest shifts towards sockets (the inter-process communication
mechanism to establish the communication between MESSY and Webots), system

3

Introduction

simulations and the nano drone structure, control and hardware architecture.
Chapter 3 provides an overview at the current state-of-art of Instruction Set
Simulators (ISSs), functional and robotics simulations, and later moves onto the
description of the drone power models available in literature. Moving to the core
part of the thesis, Chapter 4 illustrates how the connection of MESSY and Webots
can be achieved. The discussion then documents the modelling of the Crazyflie
nano drone in the two softwares, starting from the control logic and its sensors up
to the energy consumption evaluation models. In Chapter 5, several tests illustrate
the low overhead of the system with respect to purely functional simulations and
better highlight its potential for Design Space Exploration (DSE). Finally, Chapter
6 recaps the major benefits and limits of the developed environment, focusing on
the several possible improvements that could be considered to further enhance the
simulation on both the functional and power perspectives.

Chapter 2

Background

The following chapter will introduce all the background knowledge necessary to
fully comprehend the thesis topics. In particular, great attention will be posed
on the RISC-V [5] architecture in Section 2.1, in order to grasp the necessary
details about this quickly growing instruction set and better identify the potentials
and limits of its adoption. Secondly, a general overview of simulations will be
proposed in Section 2.2 to make the reader aware of their several benefits and their
importance in this context and in other fields as well. In Section 2.3, the interest
will shift towards sockets, and especially UNIX sockets, as those are the underlying
mechanism through which the communication between MESSY [9] and Webots
[6] will be established. Some general information about drones will be given in
Section 2.4 and, lastly, the spotlight will be pointed towards the Crazyflie 2.1 [11]
architecture.

2.1 RISC-V

Being one of the most promising projects in the field of computer architecture,
RISC-V [5] is an open standard instruction set architecture (ISA) born in 2010
at the University of California, Berkeley. Differently to most of its competitors,
this design is provided under royalty-free open-source licenses, which make it very
appealing for both research and hardware production purposes.

As also stated in its name, RISC-V belongs to the family of Reduced Instruc-
tion Set Computer (RISC) architectures, whose focus is providing an instruction
set with fewer and faster (ideally, lasting one clock cycle only) operations. Rather
than CISC (Complex Instruction Set Computer), which focuses on completing
a task with the fewest lines possible, the approach for RISC-V is to divide com-
plex tasks in simpler flows of instructions by exploiting the so called "load-store"

5

Background

architecture: operations belonging to the ALU (Arithmetic and Logic Unit, the
section of the processor devoted to arithmetical and logical operations) support only
register-register operands, meaning there is a complete separation between ALU
and memory operations. As a consequence, stored operands should first be loaded
from memory to register, and vice versa to save the result. While CISC dates back
to 1970s and has dominated the market for both consumer and server computing
due to its small code size and lower reliance on memory and on software, the
RISC approach is recently gaining more and more attention® due to its simplicity,
scalability and general efficiency. As an example, this is the approach towards
which the personal computer market is moving to?, on both MacOS (with the M
series chips) and Windows (with the very recent Snapdragon X Elite series) devices.
RISC is also the basis of ARM (formerly an acronym for Advanced RISC Machines,
now part of the British semiconductor company Arm Ltd.) chips, which have vastly
dominated® both embedded and mobile (smartphones, tablets, etc.) markets in the
last decade, due again to their power efficiency and cost advantages.

The problem, however, is the fact that all of these solutions are either closed
source or protected by license: this is the case for the ARM designs, which are sold
as IPs (Intellectual Properties) to third parties through licensing agreements. The
reader should hence be aware of the several benefits of developing an open RISC
hardware: the open-source nature of RISC-V introduces an unmatched flexibility
and ease of customizability, allowing developers to optimize the architecture to suit
a specific application. The modular design of RISC-V facilitates its implementa-
tion also on FPGAs (Field Programmable Gate Arrays), enabling the possibility
of prototyping even entire processors without the need of physical models. Its
adaptability makes RISC-V particularly well-suited for embedded systems as well,
where power efficiency and tailored performance are the main concerns. For more
complex designs, several RISC-V cores can be integrated on the same chips and
interfaced with custom hardware (Al accelerators, I/O controllers, etc.) , expanding
its possibilities even further.

2.1.1 PULP

It should be underlined, however, that RISC-V ISA is defined in a way which is
deliberately not focused on hardware implementation, but rather seeks to provide
an efficient and flexible approach that can be adapted across a wide range of

thttps://riscv.org/blog/2024/04 /risc-v-impact-on-technology-and-innovation /
2https://www.nextmsc.com/report/arm-based-pc-processors-market
3https://www.statista.com/statistics /1132112 /arm-market-share-targets,/

6

Background

applications. One noteworthy example of how this flexibility is leveraged in practice
is the PULP (Parallel Ultra-Low Power) [12, 13] platform, which is a project that
implements the RISC-V architecture in a way that is optimized for energy efficiency
and performance for low-power embedded systems and ToT (Internet of Things)
applications. PULP is a joint project between the Integrated Systems Laboratory
(IIS) of ETH Zurich and the Energy-efficient Embedded Systems (EEES) group
of University of Bologna that was born to develop an open, scalable hardware
and software research platform with the goal to break the pJ/op barrier. The
project consists of a set of IPs described in the SystemVerilog language, the related
simulation and synthesis scripts, as well as the runtime software written in C and
RISC-V assembly. Several are the platforms that have already been developed to
suite different application scenarios. The most notable ones are: PULP (multi-core,
organized in clusters of RISC-V cores which share together a tightly-coupled data
memory), PULPino [14] (single-core, similar to a microcontroller without caches
nor DMA), PULPissimo [15] (single-core, which is a "boosted" version of PULPino,
including additional peripherals such as micro-DMA) and RI5CY [16] (32-bit,
in-order RISC-V core with a 4-stage pipeline that implements the RV32I ISA and
some PULP custom extensions). The latter is of particular interest in the context
of this document, as it provides the basis to the GAPS8 [17] processor, the multi-core
RISC-V chip that can be installed on the Crazyflie 2.1 drone.

2.1.2 GAPS

GAPS [17, 18] is a fully programmable RISC-V based IoT-edge computing engine
developed by GreenWave Technologies. The PULP platform is the core basis
of the processing power of the chip: the design features in fact 8 RISCY cores,
plus one additional high performance RISC-V based core. The two have different
purposes: the 8-cores cluster can execute in parallel, and provide high performance
calculation for image processing, audio processing, signal modulation, etc., while
the single core, referred to as the “Fabric Controller” or simply FC, is used as
micro-controller, meaning it is in charge of controlling all the operations of GAP8
like the micro-DMA. Completing the architecture, GAPS also features: 64 KB of
level 1 (L1) memory shared by all the cores in the cluster, 8 KB of L1 memory
owned by the FC, 512 KB of L2 cache for all cores, a lightweight and completely
autonomous micro-DMA, a multi-channel cluster-DMA that controls the trans-
actions between the L2 and L1 memory, 2 programmable clocks and a Memory
Protection Unit (MPU). In addition to all of this, this SoC (System-on-a-Chip)
features a custom CNN (Convolutional Neural Network) accelerator unit named
HWCE, which is suitable for accelerating convolution operations. As a result,
GAPS8 can deliver up to 10 GMAC/s for CNN inference (90 MHz, 1.0V) at the

7

Background

energy efficiency of 600 GMAC /s/W within a worst-case power envelope of 75 mW*.

Lastly, it is important to notice the support of communication protocols such
as 12C (Inter-Integrated Circuit), 12S (Inter-IC Sound), CPI (Camera Parallel
Interface), SPI (Serial Peripheral Interface), and UART (Universal Asynchronous
Receiver-Transmitter), which are enabled by several on-board interfaces. The
presence of these, along with the micro-DMA and the CNN accelerator, make
this chip very suitable for nano drones, as they allow for a energy-aware hardware
support for the image processing and neural network inference tasks that have
to be performed in general Al-related applications. This is even enhanced by the
fact that all the cores and peripherals are power switchable and their voltages and
frequencies are adjustable on demand, allowing GAPS8 to adapt extremely quickly
to the processing/energy requirements of a running application. The biggest limit
of the chip is arguably the lack of floating point (FP) operations support, which
would however impose a significantly higher power consumption. Moreover, CNNs
can actually be run in fixed point without significant loss of precision, limiting the
usefulness of a dedicated FP unit.

2.2 System simulation for virtual prototyping

As stated earlier in Section 1, simulation is a fundamental concept and a very
important step in the design and development of complex systems. In the field
of engineering, simulation can be thought of as the process of creating a virtual
model of a real entity inside a software with the scope of testing it against some
conditions and verifying some of its characteristics. The reader should be aware of
the fact that using simulations helps in multiple ways: it does not limit itself to help
identifying potential flaws, but it also allows to explore various design alternatives
and make informed decisions, all while reducing time-to-market and development
costs. Of course, these benefits led to a wide spread of simulations in several other
fields, such as aerodynamics [19], economics [20], architecture [21], medicine® and
biology [22]. The thesis however will deal with Instruction Set Simulators (or ISSs).

As suggested by its name, ISS is a general term for a software which mimics
the behavior of a processor at the instruction set level. It can be used to develop
and debug code without the need of having access to the hardware, possibly offering
speedups and cost savings. This is even more true considering the fact that such
simulation can be performed at lower levels of accuracy, or may be used to model

4http://asic.ethz.ch/2017/GAP8.html
Shttps://cambridgemedicine.org/doi/cmj.2021.08.001

8

Background

slower embedded processors on much powerful machines. They are available for a

wide range of platforms, from mainstream to specific ones®.

2.2.1 Functional simulation

In a lot of cases, simulators are used for functional purposes only. A simulation of
a design is considered functional when the focus is purely oriented towards logic
rather than timing or other parameters. In a functional simulation, delays and
latencies may not be accurately reflected in results, as the interest is to check
only the "behavior" of the object being tested. An excellent example of functional
only simulation is the one that is obtained when using an Hardware Description
Language (HDL) to create a Register Transfer Level (RTL) model of a circuit
design. In such a case, the simulation of a component can be carried out by
means of a testbench and finally loaded onto some simulator softwares to check the
intended behavior of the device. Later in the development, such circuit undergoes
the synthesis stage, after which it is possible to obtain also useful information about
the circuit timings. For the scope of the following, it should be highlighted that
also Webots provides what can be considered a functional simulation environment,
despite the fact that robots are the actual entities whose behavior is going to be
verified rather than circuits.

As a general idea, three are the main approaches through which the simulation of
an instruction set can be achieved. Those are, namely, the following:

» interpretation: each of the program lines is decoded and executed once at
a time, resulting in an easier overall implementation which however can be
relatively slow (due to the time required to process instructions individually);

o virtualization: a simulated environment is created in which code can be
executed as close as possible to the real hardware, due to the implementation
of the ISS at the OS (Operating System) level. In this case, the code (which
can also be precompiled) can execute much faster, at the expense of the
complexity of virtual environment resource requirements;

o just-in-time: a middle way approach that dynamically translates the program
code into the host (i.e, the machine "hosting" the simulation) native language,
which balances the advantages and trade-offs of the former.

On a last note, it should be evidenced that these programs may help emulate
the behavior of various system components too such as memory, bus, I/O devices,
user input and so on, further enhancing the simulation capabilities.

5Some examples for RISC, ARM and MIPS can be found at http://www.fast-iss.org/

9

Background

2.2.2 Extra-functional simulation

As underlined earlier in the document, the pure behavior of a device is certainly
not the only characteristic that may be of interest to simulate. Speaking of circuits,
it was already mentioned the fact that timing simulations may be of great interest,
for example when checking the occurrence of problems in a circuit at different
clock frequencies [23]. This concept however can be expanded for other properties
too, with the main ones being signal integrity, thermal efficiency, electromagnetic
interference (EMI) and, most importantly, power consumption. Considering again
the circuit design flow example, this set of properties can be tested after the place
and route phase: at this stage, knowing the physical placement of cells on the die, it
is possible to use software to evaluate these parameters with close-to-real-hardware
simulations, to identify for example signal distortions or possible inefficiencies in
the thermal distribution. Some power analysis can be performed too, but with the
catch that, along with the static/leakage power draw, the dynamic consumption
can only be estimated on the basis of some general indications about the switching
activities of the inputs.

In general, those properties are not included inside ISS simulations, with the
exception of timing: the ultimate goal of an ISS would be in fact to simulate a
micro architecture in a cycle-accurate way, mimicking the exact timing and behavior
of the original hardware.

Along with timing, one the most crucial factors to be included in hardware simula-
tors is power consumption. Being able to dynamically evaluate the consumption of
a chip has a great impact on the accuracy in estimating either battery life or the
running cost of a device, especially in the embedded environment [24]. Of course,
this would imply an additional overhead in the simulation, introducing the need of
finding a good trade off between simulation time and accuracy.

2.3 Inter-Process Communication through net-
work sockets

Any computer program can be run on a machine by means of a process, which is
basically the instance of such program being executed by one or many threads. A
process can be either independent or co-operating with other processes, meaning in
the latter case that its execution is affected by other running processes, which can
be done, as an example, for data exchange or synchronization scopes. Inter-process
communication (IPC) is the mechanism that allows processes to communicate with
each other and synchronize their actions. The communication takes place using one

10

Background

of two general approaches: either the two share a common reference to a memory
area or a connection channel is first established and messages are then exchanged
on such medium. Nonetheless, it would be wrong to categorise the IPC techniques
in these two sets only, as their boundary line is not always sufficiently clear. Hence,
follows a list of the main IPC mechanisms, outlining on a case by case basis the
working principle through which the communication is achieved:

Pipes: one-way communication mode that exploits system calls provided by
an OS. Simpler, but slower and uni-directional;

FIFOs: half-duplex version of pipes (also known as "named pipes"), in which
communication happens through a specific file handled by the OS;

Signals: mechanism used to send asynchronous notifications (signals) across
processes. Generally used to handle events rather than transferring data;

Message Queues: it allows messages to be passed using either a single or
several message queues. It is managed by the system kernel, and the messages
are coordinated using an API (Application Programming Interface);

Shared memory: it consists of using a shared RAM memory region, where
multiple processes can access the same data and perform read /write operations.
This is a very fast approach, but requires a synchronization mechanism between
the processes (such as semaphores or mutexes);

Memory-Mapped Files: mapping between a file and part of the OS address
space, which enables multiple processes to modify the file by reading and
writing directly to the memory, improving read and write speeds especially
for larger files. They can also be persistent, meaning they are associated with
a source file on a disk;

Network domain sockets: data is sent over a network interface, offering a
connection which is computer and OS independent. They are mostly used to
communicate over a network, but can also be used for processes on the same
machine;

UNIX domain socket: very similar to sockets, but in this case all commu-
nications occurs within the kernel of a machine. Domain sockets use the file
system as their address space, so they can avoid some checks and operations
(like routing), which makes them faster and lighter;

Remote Procedure Calls (RPCs): in a distributed network, RPCs happen
when a computer program causes a procedure (subroutine) to execute in a
different address space (either on the same or on a remote computer) as if
they were local.

11

Background

Further distinctions can be made between blocking and non-blocking mechanisms.
Blocking mechanisms, such as some implementations of pipes or message queues,
cause the process to wait until the operation is complete, ensuring synchronization
but potentially leading to inefficiencies. Non-blocking mechanisms, instead, allow
the process to continue executing other tasks while waiting for the communication to
complete, providing better performance but requiring more complex error handling
and synchronization strategies.

Follows now a deeper focus on the working principle of UNIX sockets (the IPC
technique this thesis will mainly deal with), explaining to the reader how the
connection is established and managed from a higher level perspective.

2.3.1 UNIX sockets

To introduce the working details of UNIX sockets [25], it must be first specified
that the connection is composed of a client and server. In practice, both of them
create a socket and the client then connects to the one of the server, which in turn
accepts the request.

The entire list of operations that is done by the server in the lifetime of a
socket is represented in the list below. Be aware that some coding-like names for
the system calls will be used, to make the reader familiarise with some of the terms
which will be used later in the discussion of the C++ code that controls both
MESSY and Webots.

o socket(): the first command to be issued is the socket () system call, which
returns a file descriptor that can be used for future references to the socket;

e bind(): follows the binding of the socket to a known address, so that the
client can later connect to it;

e listen(): with this command, the socket is marked as "passive', i.e., it is
listening for incoming connection requests;

» accept(): a blocking step that halts the code execution until a request has
arrived. When so, it accepts such request and returns a new file descriptor,
different from the one obtained with the socket () call, that shall be used for
any communication with the client;

e read() and write(): once the connection is established, these two system
calls can be used to exchange data with the client. Note that the read ()
operation can be either blocking or non-blocking;

e close(): at the end of the program, it is good practice to use this command
to release the file descriptors and make available again the used resources.

12

Background

On the client side, instead, the standard actions to be performed are the
following;:

» socket(): as per the prior case, a socket is first created on the client side too;

e connect(): it is used to connect to the server passive socket, which is reachable
thanks to its well-known address;

e read() and write(): once again, read and write operations can now be
performed on the socket;

e close(): finally, the connection is closed in order to de-allocate the used
resources.

To ease the understanding, Figure 2.1 recaps the general flow of execution on both
the client and the server sides. As a last addition, the reader should be informed
that the server socket can accept many client connections. This is the reason why
the server side uses the file descriptor returned by accept () rather than the one
obtained after the socket () system call.

2.4 Unmanned aerial vehicles

2.4.1 Introduction to drones and nanodrones

As stated earlier in Chapter 1, drones are a class of aerial vehicles that can fly
either autonomously or remotely controlled. The absence of a human pilot on
board is the reason why this class of aircrafts is also known as unmanned (meaning,
without a human pilot) aerial vehicles.

Drones are suitable for a wide spectrum of tasks, but, in essence, two are the
main contexts the drones are utilised: transport and camera/sensors monitoring.
About the former, the convenience of drones is quite evident: they provide a
cost-effective way to reach even remote or narrow spots, making it ideal for exam-
ple in rescue missions and package delivery in bigger cities. This has led to the
creation of largely sized drones, some weighing even more than 150 kg. About the
other applications, such as defense or infrastructure inspection, drones provide an
unmatched combination of efficiency and agility, making it easy to both monitor
small and wider spaces with cameras (e.g., for agriculture and military purposes)
and gathering data from LiDAR (Laser Imaging Detection and Ranging), radars,

Thttps://medium.com/swlh/getting-started-with-unix-domain-sockets-4472c0db4eb1

13

Background

Server Process Client Process
socket () socket ()
\/ \/
bind() —1 connect()
[SERSSERerRon S Sy
\
listen()
iy A o~ ~ =
accept()
< accuenptt i(l) hbelr?ec ks _|

Gray calls below use fd returned by accept ()

“oclll R write()
v v
WITTEEL L R » read()

Sockets facilitate
communication
between processes

________ p——

close() closel()

Figure 2.1: Overview of client and server operations in typical UNIX domain
socket connection’.

pressure sensors, etc. for IoT, weather forecasting, and so on®.

8https://www.cbinsights.com /research /drone-impact-society-uav/

14

Background

The interest in UAVs has surely grown even more with the spread of Al tech-
nologies. Several peer review studies were conducted in the past years to analyze
the state-of-art of research in the field of drones [26, 27|, with [28] being one of the
most noteworthy. One of the analyses proposed by the paper goes over the number
of drone-related publications in each research direction. As reported by the results,
depicted in Figure 2.2, the growth of Al is the most significant, surpassing even
the one of antennas (which has been the most attractive as the transmission and
reception of signals are essential for the teleoperation of UAVSs).

4500

Years
4016.5
4000 —
.
] 3500
K=
E 3000
_‘7: 2632
2500 . LTl
ﬂ
c 2000 — 1853
Q -
E 1500 1402
-1 - 1193 -
o . "
8 1000 1216 604
516
500 3*14_’/
0
2020 2021 2022
==Antenna x 0.5 3036.5 3481.5 4016.5
Aircraft Detection 1349 1756 2243
Remote Sensing 1216 1193 1402
Al 2343 3085 4074
==loT 384 516 694
——Energy-Efficient 1703 1853 2282
——Control 2237 2352 2632
—=-Swarm Behavior 73 133 182

Figure 2.2: Growth trajectories in UAV research directions from January 2020 to
December 2022 [28]

It is in fact true that Al algorithms are revolutionising the way in which UAVs
operate. By using these, UAVs can achieve improved autonomous flight and
decision-making capabilities, especially when combining together data from cam-
eras, LIDARs and other sensors. As an example, computer vision can enable the
UAV to recognize objects and people in its environment, which can be used to
improve safety and prevent collisions, meanwhile, LiDARs can provide detailed
information about the UAV surroundings, including the distance, size, and speed
of the objects, which can be used to more effectively navigate and model complex

15

Background

environments such as for SLAM (Simultaneous Localization And Mapping) algo-
rithms. Another way AI can be used in UAVs is through the optimization of flight
paths: by using Neural Networks (NNs) , UAVs can learn from past flights and
optimize their routes to reduce energy consumption and increase efficiency [29, 30].
This can be achieved by analyzing data such as wind speed, temperature, and other
environmental factors.

As said, the many possibilities opened by drones and the integration of Al would
come useful in several scenarios. Being potentially very different from each other,
several models of drones have been proposed, with changes in speed, maximum
payload, range, and, most importantly, weight and size. Drones can be in fact
categorised as follows:

e Nano if the weight is lower than 250 g;

Micro if the weight is between 250 g and 2 kg;

Small if the weight is between 2 kg and 25 kg;

Medium if the weight is between 25 kg and 150 kg;

Large if the weight is higher than 150 kg;

Once more, it is important to stress that the gross differences in size will reflect
the very different capabilities, consumption and applications of each of these classes.

As stated earlier, the following document will deal with a nano drone, a de-
vice belonging to the most lightweight class of drones. These devices share some
common characteristics: they are all battery powered (while other drones may use
fuel or solar panels), all have more than one rotational motor, they are usually not
build to transport any additional payloads (other than the drone weight itself), and
they have low range and low altitude capabilities. This category of devices is very
suitable for some specific tasks, mainly the ones that require a great agility and
maneuverability, especially in restricted spaces. Among the most important, nano
drones are used for surveillance purposes?, inspections of machines and pipes'?,
drone racing and even very specific ones like artificial pollination [31]. Needless
to say, combining drones with AI will surely benefit any of those, allowing to
perform the tasks in a completely automated manner. However, it is important to

https://www.stratechos.com/techtonics/nano-drones%3A-small-size’
2C-big-impact-in-modern-industries
Onttps://candrone.com/blogs/news/revolutionizing-pipeline-inspections\
-the-role-of-drone-technology

16

https://www.stratechos.com/techtonics/nano-drones%3A-small-size%2C-big-impact-in-modern-industries
https://www.stratechos.com/techtonics/nano-drones%3A-small-size%2C-big-impact-in-modern-industries
https://candrone.com/blogs/news/revolutionizing-pipeline-inspections\-the-role-of-drone-technology
https://candrone.com/blogs/news/revolutionizing-pipeline-inspections\-the-role-of-drone-technology

Background

consider that, being nano drones significantly smaller than the others, less power
will be consumed by the motors (as they need to produce less lift) and the energy
contribution of a neural network will be significantly more relevant.

2.4.2 Drone controllers

Because of their small size and weight, the task of controlling a UAV presents some
great challenges: the dynamics of drones have to face problems as underactuation
(robots with fewer actuators than degrees of freedom), non-linearity, static insta-
bility, and strong coupling between the dynamic states. The discussion slightly
changes when limiting it to devices operating with rotatory motors: this category of
vehicles, which share two or multiple pairs of identical fixed pitch propellers, allow
a much higher maneuverability, leading to an overall greater range of movement
and ease of programming.

These aircrafts may be controlled by means of either linear or nonlinear con-
trollers. About the former, this set of algorithms assume that the drone can
be accurately approximated by means of linear equations. Two are the most
worth mentioning techniques: PID (Partial Integral Derivative) and LQR (Linear
Quadratic Regulator) controllers [32].

As suggested by its name, a PID control function works on the basis of three
main components: a partial (P), an integral (I) and a derivative (D) one. The
function exploits a closed-loop feedback system that continuously calculates an error
value e(t) as the difference between a desired setpoint (SP, r(¢)) and a measured
process variable (PV, y(t)), which gives the information about the current status
of the system. Once e(t) = r(t) — y(¢) has been evaluated, it applies a correction to
the system based on P, I, D terms. As a general idea, the P term is proportional to
the current value of the error signal, the I term accounts for past values of the error
and integrates them over time, while the D coefficient (also known as "anticipatory
control") provides a mechanism to estimate the future trend of the error based on
its current rate. These three contributions are taken into account by multiplying
the error, its integral in time and its derivative with respect to time with the K,
K; and K, coefficients, respectively. The system, whose graphical representation is
reported in Figure 2.3, will thus output the following u(t) signal:

u(t) = K, -e(t) + K; - /Ot e(t)dt + K4 - dz(tt) (2.1)

Of course, some test shall first be carried out before implementing a PID controller,

17

Background

|
I
— KP
|
I
—Setpoint—+ —Error:—
|]
I
| — KD
|
|

Dynamics

:’ UAVs Statg
|
|
|
|
|

Feedback

Figure 2.3: PID controller scheme [32].

in order to tune the three coefficients with optimum values for the desired control
response. Being so adjustable, PIDs are a very general method that finds applica-
tion in several other fields as well, such as in speed control in electric vehicles [33]
and temperature management in electric furnaces [34].

On the other hand, LQR controllers represent another valid type of functions
that can be used to command multirotors [35]. They describe a system with a
set of linear differential equations plus a quadratic cost function. The core idea
is to minimise this cost function, which typically consists of parameters such as
the distance from the desired state and the energy consumed to perform corrective
actions. As per the PID, this kind of controller works continuously by sensing the
current conditions of the drone (again, forming a feedback loop) and producing at
each step a new set of control inputs for the drone. One key difference, however, is
that LQR controllers focus on finding the optimal strategy to minimise the cost
function, rather than simply reacting to errors.

An LQR cost function generally takes a form like the following:

inf
J :/0 WI(t) - R-u(t) + 27(t) - Q - (t))dt (2.2)

where J is the (quadratic) cost function, u is the vector of the control input, z is
the state vector, () is a weight matrix that penalizes the state deviation from the
desired one, and R is another matrix that penalized the control effort. The solution
of such equation can then be found by evaluating u(¢) on the basis of some other
known equations (such as the Continuous-time version of the Algebraic Riccati
Equation, CARE). This method proves to be both robust and flexible, with the

18

Background

downside of requiring a very difficult tuning.

About the nonlinear models instead, these controlling algorithms are derived
from the original dynamic model of the UAVs, which leads to the overall best
performance. Among these, feedback linearization, backstepping, sliding mode
control, adaptive control, and model predictive control are the ones that have lately
received the most attention [32]. However, as this kind of controllers results in
more complex models, a more in-depth discussion will be omitted for the sake of
brevity.

For the scope of this thesis, a PID controller will be considered throughout all
the tests. Despite not being the most optimized or adaptive approach, PIDs have
proven to behave sufficiently well in tasks such as stabilization and hovering motion,
showing good robustness and performance while providing an extreme ease of
implementation.

2.4.3 The Crazyflie 2.1 nanodrone

As previously anticipated, the case-study for this work will be the Crazyflie 2.1,
shown in Figure 2.4. This nanodrone (which is going to be referred to as "Crazyflie'
for convenience) stands out due to its modular and open source architecture, which
allows for high flexibility and adaptability in various applications, especially in
research. This robot was developed by Bitcraze, a company which has its roots
precisely in the development and manufacturing of the Crazyflie series and their
expansion kits, which were created with the goal of developing an "electronic board
that flies", and make it available as an open source development platform.

This drone is a quadrotor (alternatively called quadrucopter), meaning it pos-
sesses four rotors (i.e., rotatory motors) with the following configuration: looking
from the top of the drone, two rotors on a diagonal spin clockwise (CW) and the
other two counterclockwise (CCW). This is done because if they all shared the
same direction the drone body would receive a reaction torque from the motion
of the propellers in the opposite direction. A scheme of the rotation of the four
propellers is reported in Figure 2.5.

Since it belongs to the nanodrones category, it is no surprise that the drone
structure is considerably small indeed: looking from the top, the distance between

Hhttps:/ /www.bitcraze.io/products/old-products/crazyflie-2-1/

2https:/ /www.bitcraze.io/documentation /tutorials/getting-started-with-crazyflie-2-x/

19

Background

Figure 2.4: The Crazyflie 2.1 drone by Bitcraze!l.

the rotors is less than 10 cm (92 mm per each pair of adjacent motors), with a total
height of just 29 mm. As a result, the drone weight is extremely contained too,
settling at just 27 grams. The robot has sufficient power to lift with an additional
payload, which however must not exceed 15 g.

At its core, the drone architecture is based on the cooperation of two different
low-power MCUs (MicroController Units):

¢ STM32F405'3: a chip from ST Microelectronics featuring a single core
Cortex-M4, running at 168 MHz, with 192 kB SRAM, 1 MB flash and 15
communication interfaces including USART and SPI. This chip provides a
good compromise between performance and power consumption, since, due
to the 90 nm manufacturing and the dynamic power scaling, can reach a
consumption as low as 238 pA/MHz. It is used to run the main firmware,
which is in charge of several tasks: motor and flight control, sensor reading,

Bhttps://www.st.com/en/microcontrollers-microprocessors/stm32f405-415.html

20

https://www.st.com/en/microcontrollers-microprocessors/stm32f405-415.html

Background

Front e
. . ’v’ Sy
direction .
LN)
¥ S 1
VY &
. 1
A NN
‘\. \\.):‘
£ .“.""!--l-’"
&+)" _____ .
ri // s
4 L7 \
TOP A ¢ |
N ‘_/ / g

Figure 2.5: Propellers direction of motion'2.

telemetry and battery tracking. In addition, this is also the target chip for

any user application;

nRF51822': a radio and power management MCU. It is a single core, ultra-
low power SoC that uses a Cortex-M0 running at a maximum of 32 MHz with
16 kB SRAM and 128 kB flash. One of the most noteworthy characteristics
of this chip is the support for Bluetooth®Low Energy (BLE) and other 2.4
GHz protocol stacks. In the context of the Crazyflie, this chip is in charge of
handling the ON/OFF logic, enabling power to the rest of the system (STM32,
sensors, etc.), manage battery charging, radio, BLE communication and detect

the installed expansion boards.

About the latters, one of the most remarkable features of the Crazyflie drone is
its support for the so-called expansion decks or expansion boards. These decks
are modular add-ons that can be attached to the drone to extend its capabilities.
The barebone drone in fact only has one IMU (Inertial Measurement Unit) sensor,
which consists of a 3 axis accelerometer /gyroscope (BMI088!5), and a high precision
pressure sensor (BMP388%). With the help of such expansions, the drone can be

Yhttps://www.nordicsemi.com/Products/nRF51822

5https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi088/

16https://www.bosch-sensortec.com/products/environmental-sensors/

pressure-sensors/bmp388/

21

https://www.nordicsemi.com/Products/nRF51822
https://www.bosch-sensortec.com/products/motion-sensors/imus/bmi088/
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp388/
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/bmp388/

Background

equipped with several other components to enhance its features. Some expansion
deck examples are the Flow Deck, which adds a ToF (Time of Flight) sensor (which
measures the distance to the ground with high precision) and an optical flow sensor
(which measures movements in relation to the ground); the Multiranger Deck,
which adds five ToF sensors (to measure distance up to 4 meters within a few
millimeters in five directions) and the Z-Ranger Deck, which adds a laser sensor
to measure distance from ground. Other decks provide additional LEDs, buzzers
and better positioning systems, which collectively increase the range of possibilities
of the drone and allow its customization on the basis of the specific application needs.

For the scope of this thesis, only one deck will be considered: the AI deck. This
expansion kit integrates a RISC-V processor and a camera in a 4.4 g package,
allowing the Crazyflie to run Al algorithms directly on-board and enabling ad-
vanced functionalities such as computer vision and object detection. The processor
embedded in the kit is the GAPS8 processor, described earlier in section 2.1.2. As
just said, this SoC is paired with a camera, which in this case is an HM01BO!"
sensor from HIMAX. This ultra-low-power CMOS sensor is capable of capturing
320x320 (pixels) images at a maximum frame rate of 51 FPS (Frames Per Second),
all within a package of 5 mm by 5 mm. Moreover, the kit also features a ESP32
MCU (the NINA-W102) which enables the WiFi connectivity. Together, this
combination of chips extends the computational capabilities of the Crazyflie and
enables complex artificial intelligence-based workloads to run onboard, with the
possibility of achieving fully autonomous navigation capabilities.

As a last detail, the drone is equipped with a 250 mAh LiPo battery, which
provides approximately 7 minutes of hovering. No information is given by the com-
pany about the specific model, and the only known information are the dimensions
(code 682030, hence it is a 6.8x20x30 mm (HxWxL) battery) nominal voltage (3.7
V), and the maximum charge (2 C) and discharge (15 C) rates.

Note that the drone was very recently discontinued in favour of an updated
version (named Crazyflie 2.14+), which features an upgraded battery and different
propellers which are able to provide about 15% more battery life. Hence, it must
be specified that the model that is going to be used for this thesis is the original
Crazyflie 2.1 version. Nonetheless, both the updates introduced in the + version
would not have a significant impact on the actual simulations, as the modifications
could be easily taken into account with minor adjustments.

Thttps://www.himax.com.tw/products/cmos-image-sensor/
always-on-vision-sensors/hm01b0/

22

https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/
https://www.himax.com.tw/products/cmos-image-sensor/always-on-vision-sensors/hm01b0/

Background

Before moving to section 3, it may be useful to familiarise with some basic terms
of the UAVs motion. In particular, drones have 3 axes, one per couple of degrees
of freedom. Those are:

» Longitudinal (roll): has origin at the centre of gravity and is directed
parallel to the "forward" direction of the drone. Motion about this axis, called
roll, allows for the right and left movements. To achieve it, the rotational
velocity of the motors towards the right direction (the two rightmost motors of
Figure 2.5) has to be changed with respect to the other, in order to generate
a different intensity for the lift for the two sides of the drone;

» Transverse (pitch): has again origin at the centre of gravity but is directed
on the axis orthogonal to the roll axis on the plane formed by the propellers.
In this case, the motion along this, called pitch, allows for the forward and
backwards movements. To achieve it, it is necessary to change the rotational

velocity of the motors towards the front with respect to the ones towards the
back;

« Vertical (yaw): once again, has its origin at the center of gravity and is
directed towards the top of the aircraft, perpendicularly to the propellers. The
rotation about this axis, which provides the in-place rotation of the drone, is
referred to as yaw. To achieve it, it is necessary to change the speed of either
the CW or the CCW propellers in order to make the net torque on the drone
body not null.

Note that having same-spin-direction motors on the two diagonals prevents the
drone from unwanted rotations during roll and pitch changes, as during these
maneuvers two adjacent motors will always have the same absolute speed leading
to a zero net torque.

Lastly, one additional term that the reader must be aware of is thrust, meaning
the net vertical force produced by the propellers that generates the lift of the drone.
To summarise, a graphical representation of these terms on a Crazyflie drone is
reported in Figure 2.6.

Bhttps://labs.dese.iisc.ac.in/embeddedlab /flying-crazyflie-using-hand-gestures,/
23

Background

Pitch

Thrust

Roll

Figure 2.6: Useful terms about UAV motion!®.

24

Chapter 3

Related works

This chapter has the goal of providing an overview of the most important resources
that contributed directly and indirectly to this work, evidencing the current state-
of-art in the field of ISS, extra-functional and robotic simulations, along with the
most known power consumption models for UAVs. The focus will be oriented
towards the works that are the most related to the discussion topics, in order to
further clarify their benefits and the limits that this thesis aims to overcome.

3.1 Functional ISS simulation

As mentioned aforehand, ISS simulators mimic the behavior of processors at the
instruction set level. This implies that the simulation is limited to a purely functional
one, meaning that the sole purpose of these programs is to allow programmers
to develop software without the need of hardware prototypes, representing for
companies a huge saving in time and cost terms. Among the most important ones,
it is worth mentioning:

« QEMU [3]: QEMU is a highly versatile emulator that can simulate multiple
processor architectures (such as x86, ARM, MIPS, RISC-V) and even full
systems including peripherals. It allows to run entire OSs or applications on
virtual hardware, making it a powerful cross-architecture ISS that is however
best suited for virtualization purposes rather than simulations.

« RENODE [4]: RENODE, on the other hand, is a system simulator with
ISS capabilities specialised in multi-core embedded systems (mainly ARM,
RISC-V, and PowerPC) and their peripherals. It can simulate instruction
execution along with elements such as sensors, timers, and communications
buses, making it more targeted for systems involving multiple interacting
components.

25

Related works

 Spike [36]: Spike, instead, is the official simulator for the RISC-V architecture.
It is a pure ISS targeting RISC-V based chips only. Contrary to the previous
two, it does not simulate any peripheral devices or full systems, hence it is
often used in the early stages of development to verify the correctness of
software targeting RISC-V cores.

Several higher level simulators exist, such as Simulink [2]. However, Simulink
simulates the behavior of systems with much more abstraction, focusing on block-
based models rather than instruction-level. This kind of simulators should thus not
be included in the list, as they do not simulate the low-level execution of machine
code on specific hardware architectures like a typical ISS.

3.1.1 GVSoC

Among the other options, GVSoC [10] is of particular interest for the scope of this
thesis, as it is one of the core building blocks of MESSY. It is an ISS developed by
GreenWaves Technology that was built to simulate the GAPS8 processor (presented
earlier in Section 2.1.2).

GVSoC is functionally equivalent to the real RISC-V platform. The compiled
code that can run on one of these chip will also run as is on the simulator!, which
is indeed one of the main benefit of an ISS.

However, unlike some higher-level softwares that focus only on instruction
execution, this program goes further by providing cycle-level accuracy, meaning
that it models the timing and behavior of the system at each clock cycle. This makes
it able to perform analysis at the best possible detail level. Moreover, beyond just
the cores, GVSoC simulates peripherals, memories, and interconnections, making
it a comprehensive simulator that allows to test how software interacts with the
entire system, including hardware components like timers, GPI1O, SPI, etc.

As a general idea, the system to be simulated is modeled using a component-
based approach. Each piece of hardware is a component and is interacting with
other components only through bindings. Bindings are connections between a
master port of a component and a slave port of another connection. They allow
both sides to interact together using function calls. Moreover, each port has a
signature, which is the set of methods that a component can call on the other ones.

This component-based architecture extends to both the RISC-V cores and the
peripherals: each of those is implemented as a distinct module, communicating
through defined interfaces. Cores are connected to memory controllers, 1/O pe-
ripherals, and other system components via these bindings, enabling a detailed

Thttps:/ /greenwaves-technologies.com/gvsoc-the-full-system-simulator-for-profiling-gap-
applications/

26

Related works

interaction and data transfer modeling. The event-driven simulation model ensures
that these interactions are synchronized with the system clock, handling in an
accurate way events such as instruction executions, memory accesses, and interrupt
signals, which have all been timed to match the ones of the real platform.

Overall, GreenWaves declares that the software is able to maintain a timing
error lower than 10% for nominal cases, and that this does not exceed 20% even
for corner cases?. GVSoC is also able to estimate the chip power consumption
interpolating the temperature, voltage and frequency data, with a maximum error
of 20% with respect to real values®. In addition, according to the company, it can
simulate up to 20 million instructions per second, which is approximately 10 times
less than the actual performance of GAP8?2.

3.1.2 SystemC

SystemC [7] is not an ISS by itself, but rather a language to describe, model and
simulate/verify hardware. Nonetheless, it strongly contributes to the functional
verification aspect of MESSY.

The language is built by extending the standard C++ with some open-source
class libraries. In essence, these modifications allow developers to design entire
hardware systems using a component-based approach, where each module represents
a specific block (such as a processor, memory, or bus). These modules communicate
through ports and signals, which enable interaction between different parts of the
system using interfaces. Each component can execute independently, synchronized
through the SystemC kernel, which is in charge of managing the scheduling of the
events and the simulation time.

The simulation model is event-driven, allowing SystemC to simulate the behavior
of these components at various levels of abstraction. In particular, designers can rely
on a wide spectrum of approaches, ranging from transaction-level modeling (TLM,
where interactions between hardware components are represented as transactions
rather than individual signals), to RTL (lower-level technique used for describing
digital circuits in terms of registers and data transfers). This makes SystemC
particularly effective for functional simulation (or better, verification) of digital
systems: through TLM models, designers can verify communication protocols, data
transfers, and overall system behavior without needing a fully detailed implementa-
tion. This accelerates the prototyping and testing of hardware-software interfaces,
facilitating detection of flaws and performance bottlenecks earlier in the design
phase, before considering any actual hardware implementation.

https://pulp-platform.org/docs/lugano2023/gvsoc_ pulp_anniversary.pdf
27

Related works

3.2 System-level simulation

Despite the usefulness of functional simulators, these kinds of softwares do not
include any information about other relevant extra-functional aspects, such as
thermal distribution and energy dissipation. The following section explains what
SystemC-AMS is and how it can be used to overcome some of these limitations.
Then, the discussion shifts to the introduction of the MESSY framework, and how
the integration of SystemC-AMS makes the software able to provide a mechanism
to model power consumption.

3.2.1 SystemC-AMS

The SystemC-AMS standard [8] introduces system-level design and modeling of
embedded Analog/Mixed-Signal (AMS) systems, i.e. heterogeneous systems that
involve both digital and analog components. It is an extension of SystemC but,
while SystemC focuses on digital hardware and software design and verification,
SystemC-AMS expands its capabilities to include analog, electrical, and mixed-
signal behaviors, allowing designers to simulate extra-functional properties like
power consumption, signal integrity, noise, thermal effects and even mechanical
dynamics. These properties are critical in analog and mixed-signal circuits, where
the performance of the overall system can be affected by physical factors (which is
not usually the case for purely digital systems).

SystemC-AMS uses combination of discrete-time static non-linear and continuous
time dynamic linear model abstractions to offer three modeling frameworks:

« Timed Data Flow (TDF): a high-level modeling style that represents data
flow between modules with time annotation, useful for modeling continuous
signals (e.g., audio, RF signals) and interactions between analog and digital
components in a discrete-time modeling style. In TDF, signals are considered
as sampled data at specific time intervals, with each sample carrying discrete
or continuous values such as amplitudes.

+ Electrical Linear Networks (ELN): allows the modeling of linear electrical
circuits such as resistors, capacitors, and inductors, and their interaction with
digital control circuits thanks to some predefined linear network primitives. It
fills the gap between abstract dataflow and more detailed circuit simulation,
making it possible to represent both high-level system behavior and specific
electrical characteristics in a unified manner.

o Linear Signal Flow (LSF): model of computation that allows the modeling
of AMS behaviors using relationships defined by sets of linear differential
algebraic equations. It is a continuous-time modeling style that uses discrete,

28

Related works

real-valued signals, resulting in a non-conservative system description that
represents the equation system. Signal flow models can be visualized as
block diagrams (such as the one reported in Figure 3.1), where each block
represents a basic function or component. The connections between blocks
define mathematical relationships, which are solved to simulate the system
behavior.

Port-to-port binding ~| sig1 sig2 dJ
x(t) k1 ot y(t)
LSF input port sig3 LSF output port
k2
/ / \
SystemC parent module LSF signal Part-to-port binding

Figure 3.1: Example of an LFS block.

Considering the timing aspect, instead, the SystemC-AMS simulation kernel
enhances the standard SystemC kernel through the incorporation of a couple
of additional elements: a TDF scheduler (which organizes TDF modules into
clusters, and then constructs a static schedule for each cluster) and a linear
Differential-Algebraic Equation solver (to manage ELN and LSF models). In
the end, a synchronization layer utilises the activation time step of each module,
primitive, and cluster to integrate the execution of SystemC-AMS elements into
the conventional SystemC simulation flow. The effectiveness of these mechanisms,
combined together, made SystemC-AMS a worldwide standard for system-level
design and modeling of embedded analog/mixed-signal systems at higher levels
of abstraction, resulting in a good balance of modeling accuracy, fidelity and
simulation speed.

3.2.2 MESSY

As previously mentioned, the MESSY framework [9] is a recently developed, open-
source tool that allows for system-level simulations of RISC-V based chips. At its
core, it integrates GVSoC and SystemC-AMS. As seen, the former is used to obtain
the functional simulation capabilities for the software running on the chip, while

29

Related works

the latter is included to model extra-functional aspects, with a focus on power
storage and distribution.

In order to provide both functionalities, the internal architecture of MESSY
exploits a bus-centric paradigm, splitting the two properties in different, intercon-
nected domains. As a consequence, the platform features one bus for the functional
aspect (functional_bus) and another one for extra-functional ones (power_bus).
Each system component is connected to each bus by implementing a different
model. For example, a sensor will have a couple of implementations: a functional
implementation (_functional), that describes instruction processing connected
to the functional bus and handles the timing behavior of the system, and a power
model (_power), which estimates the corresponding power demand and exports it
(through a DC-DC converter) to the power bus. Speaking of the latter, MESSY
uses the power bus to model all the power flow as an aggregation of all the load
demands on the bus, in order to determine the amount of current required from
the energy sources (batteries, harvesters, etc.).

The functional bus, on the other hand, is principally used for the flow of
information when the program executing in GVSoC needs to communicate with
one of the components (such as a sensor). In this case, the bus broadcasts the
necessary pieces of information (i.e., address, control signals, data), which are then
intercepted by the appropriate receiver. Every functional instance of the peripherals
can execute different types of actions, each of which is associated with a different
power consumption as indicated in the previous paragraph.

The mutual interdependence between the functional and the power models
is achieved through an information exchange that is implemented using direct
SystemC ports and signals.

Moreover, the SystemC core unit handles the simulation and facilitates the
interaction with GVSoC, which is organised as follows. At the beginning, the
sc_main function (the entry point of SystemC programs) instantiates GVSoC and
all SystemC-AMS components. Then, GVSoC initialises its queues by starting
SW execution, while SystemC initialises them by executing all components exactly
once. From that point on, the simulation proceeds by alternating the execution
of GVSoC and SystemC-AMS: first, the functional model of the core invokes
the step_until() function of GVSoC (which executes the SoC functionality and
returns the timestamp ¢ of the following GVSoC event); secondly, it executes a
SystemC-AMS wait() until time ¢ (to allow the execution of other SystemC-AMS
components while maintaining the temporal alignment among the two simulators).
These steps are repeated until the end of the simulation, when control is given back
to SystemC to correctly exit the simulation.

All of these features are already integrated in MESSY, and the user is given
some useful Python scripts and indications to interact with the framework. In
particular, the tool is able to generate ready-to-deploy code by requiring a single

30

Related works

JSON configuration file, limiting the user job to the sole customization of each
component/power behavior and the GVSoC program.

3.3 Robotics simulation

Simulations have a critical role also in the fields of robotics. They are used to
explore control algorithms and approaches to solve problems, training Al models
and, most importantly, mimic the interaction between a robot and its surroundings
2. As previously discussed, the availability of virtual models for the robots prevents
the need of physical machines, thus saving cost and time in the development and
test phases of products. In some cases, such applications can be transferred onto
a physical robot (or rebuilt) without modification, while in others they serve for
preliminary verifications on the robot behavior.

The main use of robotics simulators is to create 3D models of robots and
their environments. These simulators provide virtual robots that can mimic the
movements of real ones in realistic settings. However, their focus on extra-functional
aspects is primarily geared towards simulating external factors like aerodynamics
and physical interactions, rather than accurately modeling the internal behavior of
the underlying hardware.

Some good examples of general robotics simulators are : Gazebo [37], RoboDK
[38] and Webots [6]. In the past years, however, several additional softwares have
emerged to better suit the need for modelling of specific types of robots. In the
case of UAVs, for example, various softwares have been made available, such as
Microsoft AirSim [39] and FlightGear [40], with several studies going over their
respective advantages and disadvantages [41].

3.3.1 ROS

Robot Operating System (ROS) [42] is a flexible, open-source framework that
provides a collection of tools and libraries for building robotic applications. ROS
is designed to handle the complexities of software development for robotics by
offering essential capabilities such as hardware abstraction, device drivers, libraries
for commonly used functionalities, and tools for system integration, testing, and
debugging. One of its core features is the ability to manage distributed computing
systems where different parts of the robot (like sensors, actuators, and control
logic) can be developed and run separately, often across multiple computers, while
communicating efficiently.

Zhttps://blogs.nvidia.com /blog/what-is-robotics-simulation /
31

Related works

ROS operates on a publish/subscribe messaging architecture, where different
components of a robot, known as nodes, exchange information through topics. Each
node performs a specific function (e.g., sensor data processing or motor control)
and communicates asynchronously with other nodes. A node can publish data
(such as sensor readings) to a topic, and other nodes can subscribe to this topic
to receive the data. This architecture makes ROS very modular and allows easy
integration of various hardware and software components.

Its support for hardware abstraction and sensor integration is particularly useful
to create very effective models for complex robots. For example, the Crazyflie drone
can be simulated using ROS with tools that mimic its flight dynamics, sensor input,
and control systems. However, while ROS is excellent for system-level simulation
and software testing, it has some drawbacks when simulating detailed low-level
hardware or real-time constraints that may arise in a deeply embedded environment
like the Crazyflie. Being the integration of these extra-functional aspects one of
the main scopes of this thesis, ROS was thus excluded from the virtual platform,
making the MESSY-Webots combination the most advantageous choice. Webots
in fact offers more accurate simulations of real-world physics, timing, and resource
management. Moreover, it is specifically designed for real-time embedded systems,
and hence more suitable for low-level control and hardware/software co-design.

3.3.2 Webots

Webots [6] is an open-source robot simulation project that enables the modeling
and simulation of complex robotic systems in highly detailed 3D environments. It
is widely used for educational, research, and industrial purposes due to its ability
to simulate realistic physical interactions between robots and their environments.

Thanks to its physics engine (fork of ODE) and an OpenGL 3.3 rendering
engine (wren), Webots allows for an easy creation of diverse simulation scenarios,
ranging from industrial settings to everyday environments, where the behavior
and performance of robots can be tested before real-world deployment. All of this
can be achieved through the provided asset library, which includes robots, sensors,
actuators, objects and materials. In addition to this, Webots allows importing
custom CAD (Computer-Aided Design) models of robots, from Blender or from
URDF (Unified Robot Description Format, an XML format for representing a
robot model). Each robot, sensor, and any object within the environment is a so
called node, and presents a set of properties that allow users to adapt it to their
specific requirements. These properties can be easily modified through the GUI
(Graphical User Interface) or within the Scene description file (.wbt).

A key feature of Webots is the concept of controllers, which are the softwares
that govern the robot actions during the simulation. A Webots controller can
be written in multiple programming languages, including C++, Python, Java,

32

Related works

and MATLAB, providing flexibility in how the robotic system is programmed
and controlled. The controller allows a user to simulate sensor inputs, process
data, and define motor commands, offering a realistic platform to evaluate robotic
performance in dynamic environments.

Time in Webots is handled using discrete time steps, where each step represents
a fixed time interval. This approach allows for step-by-step advancement of the
simulation, ensuring that each physical interaction, sensor reading, or control action
is updated synchronously. The length of the time step can be adjusted depending
on the level of accuracy and performance desired for the simulation: a smaller time
step leads to more precise results but requires more computational resources, while
a larger time step increases speed but may compromise accuracy. The user can
configure the time step by adjusting the basicTimeStep parameter (expressed in
ms) at the very beginning of the simulation, and this cannot be changed once the
simulation is started.

Webots supports ROS, but in this case all the control and handling of the drone
sensors was chosen to be given to MESSY: as anticipated in one of the previous
paragraphs, there is in fact no need of ROS at all, as MESSY already provides
the necessary control and resource management capabilities needed for the chosen
scenario. With it, Webots becomes the ideal tool for creating a virtual simulation
platform for the Crazyflie, as its ability of creating a sufficiently detailed 3D
environments and the possibility of gathering realistic sensor data give to MESSY
all the necessary items to model both the functional and extra-functional aspects.

3.4 Drone power models

The following section will present several possible approaches to model the power
consumption of the Crazyflie motors. It should be kept in mind that the development
of power consumption models for UAVs has primarily been driven by the need to
estimate energy usage for transport and delivery applications [43, 44]. Many of
the models available in the literature are tailored for larger drones, with a focus
on payload capacity and long-range flights. However, these models often do not
provide accurate results when applied to smaller UAVs, such as nano-drones, where
different physical factors, such as aerodynamic drag and motor efficiency, become
more significant in determining energy consumption. However, to the best of the
author’s knowledge, only very few models target drones of such small dimensions
and all of these are generally impractical as they require access to very specific
data about the drone structure and dynamics.

This chapter provides a comprehensive review of the existing power models,
with a focus on their applicability across different UAV sizes and missions. The
discussion will be divided into two parts: the first part will present the main

33

Related works

power models from the literature, categorizing them based on their complexity
and the number of input parameters required; while the second one focuses on
the development of an empirical model, tailored for the Crazyflie drone, based on
direct measurements taken by the company from the robot itself.

3.4.1 Overview of theoretical models

Theoretical energy consumption models are generally based on physical principles
such as aerodynamics, battery characteristics, and flight dynamics. Most theoretical
approaches consider variables like payload, flight speed, altitude and atmospheric
resistance, with the most complex ones adding contributions such as drag coef-
ficients, inertial matrixes and motor efficiency. This chapter reviews the most
prominent theoretical models, emphasising their assumptions, input requirements,
and applicability. Then, the discussion makes use of a table to evidence whether
these models provide a sufficient balance between accuracy and practicality, in
order to identify the ones that could be actually selected to be implemented in the
power model of the Crazyflie motors.

Note that some more niche models were not included in the discussion because
of their higher complexity, but have been briefly described in Appendix A.

D’Andrea (2014)

D’Andrea’s model [45] is one of the simplest, focusing on the total mass and the
gravitational force acting on the drone, scaled up by the efficiency of the system.
It is a foundational equation for estimating energy needs based on basic physical
principles, and posed the basis for further models.

The mass is obtained as the sum of the one of the drone, of the payload and
the battery, v, is the velocity, while 7 represents the power transfer efficiency for
propellers. 7 is the lift-to-drag ratio and p the power consumption of the electronics.

Dorling et al. (2017)

Dorling et al. [46] expanded the previous model by incorporating aerodynamic
factors, particularly air density and velocity, making it more suitable for drones
operating at various altitudes. The equation factors in the dynamic nature of flight,
emphasising velocity and air resistance, which becomes critical for delivery drones
that travel long distances.

34

Related works

T3 (Zizl mkg) ’

2npfs 2npp

In this case, it is considered again the total mass, as well as the number of rotors
n, the air density p (equal to 1.225 kg/m?) and the area swept by the propeller
blade of one motor (/). This model is one of the most commonly used, such as in
[47] and [48]. Note however that it does not depend on velocity: this is due to the
assumption that most of the power consumption is caused by the hovering motion
of the drone, which has to generate a thrust greater than the gravitational force
generated towards the Earth.

Power =

Stolaroff et al. (2018)

Stolaroff et al. [49] push the complexity further, modeling energy consumption
by considering aerodynamic drag, thrust, and angles of flight. This model takes
into account more specific flight mechanics, including induced velocity and angle of
attack, and is particularly useful in assessing energy requirements in varying flight

conditions.
T3 /2

\/%WDQRp -

3 3
1
T=g E my + §p E C’dkAkvz
=1 k=1

Power =

Where

and
2 Mpody - g - tan(a)

Cp=
P UZ : Abody

Moreover, the model says that at high velocities, the following equation is valid:
Power = T(v, sin o + v;)

Where v; is the induced velocity and can be calculated as:

2T
WnDQp\/(U cos())? + (vsin(a) + v)?

V; =

Cp is the drag coefficient, p the air density, and Aj.q, the area projected by
the drone. « is the angle of attack (i.e., the pitch angle), D the diameter of the
propeller, n the number of rotors and the other letters resemble the same quantities
as per the other equations.

35

Related works

Kirschstein (2020)

Kirschstein [50] equations were built on top of the previous models by integrating
additional environmental factors and drag coefficients into the calculation, offering
a highly detailed approach that takes into account the drone aerodynamic profile.
In this case, the model is expressed as E,,,, i.e. the energy required for steady
flight per unit distance [J/m].

Eppm - -

1.5 0.5
1 [(wkTW 13 ko (Ziet Mg 3
» +§pZCdkAkUZ+ (=) + K3 kag Vg
a k k=1

—1 a

Where:

3 2 3 2
1
T = <Z mkg> + (p Z CdkAkU?L)
k=1 2 k=1

k is the lifting power markup, W the downwash coefficient and x2 and 3 reflect
details of the rotors and environment.

Tseng (2017b)

Lastly, Tseng’s model focuses on small payload drones and is tailored for low-speed
scenarios. This has been reported as one of the empirical models that can be found
in literature. The equation provided is relatively simple (it is made by numerically
interpolating measured data) but is highly specialised, focusing on specific drone
sizes and operational conditions. It was obtained from a nine-term nonlinear
regression model that includes horizontal and vertical speeds and acceleration.
Again, it is expressed in E),,,, and it targets the SDR Solo drone.

0.197mq + 251.7

Uq

Eppm = —2.595 +

3.4.2 Final considerations

From a practical standpoint, only the models by D’Andrea, Dorling, and Stolaroff
are feasible for the selected use case, as Kirschstein, Tseng and all the others
either require specific simulation parameters or are designed for very particular
scenarios that do not align with the selected case study. Moreover, it should be
considered that some data about the Crazyflie is not publically available. Despite
the presence of few resources [51] that detail some of the mechanical and dynamics
characteristics of the drone, it is not always possible to fulfill the need of all the
data, excluding other model options such as [52] and [53].

36

Related works

Model Name Input Parameters Feasibility
D’Andrea (2014) Mass, Gravity, Efficiency Yes
Dorling et al. (2017) Mass, Gravity, Velocity, Air Density Yes
Stolaroff et al. (2018) | Thrust, Angle, Induced Velocity, Efficiency Yes
Kirschstein (2020) Drag Coefficient, Area, Mass, Velocity No
Tseng (2017) Payload Mass, Velocity No

Table 3.1: Summary of energy consumption models and their feasibility

3.4.3 Empirical model

A different approach to power modelling is represented by empirical models, which
are based on the availability of the actual drone consumption data for different
velocities of the motor. For the case of the Crazyflie drone, Bitcraze itself has
proposed on its website an article [54] in which are reported measurements of the
drawn current and battery voltage for different RPM (Rotations Per Minute) values
of the motors. The team used optical switches to measure motor RPM by logging
the timing data at a high sampling rate (500 Hz). For thrust, a simple setup was
built where the drone was held down on a scale, allowing the lift to be measured
by the weight reduction. Current (amps) was measured with a multimeter in series
with the power source, while the firmware was modified to gradually increase thrust
and log key metrics like voltage, PWM (Pulse Width Modulation), and RPM.

The results obtained by the company are reported in Table 3.2.

Knowing the power consumption data of the Crazyflie drone from the table,
it was possible to create the empirical power model. As a first factor, it should
be considered that the relation between drained current and velocity is very close
to a linear one, hence a quadratic regression was done on the two variables in
order to obtain a function that outputs with a sufficiently good approximation the
measured current drain. Then, the relationship between the consumed current and
the battery voltage was approximated. This, instead, can be modeled linearly, as
the battery voltage drops due to internal resistance: when the current increases, the
voltage drop becomes larger, making this linear relationship useful for predictions.

Additionally, a correction factor must be applied because the RPM values
simulated in Webots do not perfectly match the real-world RPM. To address this,
the drone hovering point (i.e., where the generated lift equals the drone weight)
was used to find the correct RPM for hover. This allows the introduction of a
multiplicative factor that aligns the simulation RPM with the actual flight behavior.

As a result, the obtained empirical model was the one composed of the following
equations:

37

Related works

Amps | Thrust (g) | Voltage | PWM (%) | Average RPM
0.24 0.0 4.01 0 0
0.37 1.6 3.98 6.25 4485
0.56 4.8 3.95 12.5 7570
0.75 7.9 3.92 18.75 9374
0.94 10.9 3.88 25 10885
1.15 13.9 3.84 31.25 12277
1.37 17.3 3.80 37.5 13522
1.59 21.0 3.76 43.25 14691
1.83 24.4 3.71 50 15924
2.11 28.6 3.67 56.25 17174
2.39 32.8 3.65 62.5 18179
2.71 37.3 3.62 68.75 19397
3.06 41.7 3.56 75 20539
3.46 46.0 3.48 81.25 21692
3.88 51.9 3.40 87.5 22598
4.44 57.9 3.30 93.75 23882

Table 3.2: Power consumption measurements for the Crazyflie drone

Livaim = (0.00100706) - RPM? + (—0.0143) - RPM + 032618 (3.1)
Viattery = (—0.16302) - Ljpain + 4.03495 (3.2)
Power = ‘/battery : Idrain (33)

Note that the equations output the lgq;, and Viguer, variables expressed in A
and V', respectively.

38

Chapter 4

Methodologies

4.1 Establishing the connection between MESSY
and Webots

As anticipated in Chapter 1, part of the discussion is going to be dedicated to
explaining the establishment of the connection between Webots and MESSY. In
this case, the mechanism used to create the communication channel was blocking
UNIX sockets. Such choice can be easily justified considering three main aspects:
first, the two programs are meant to be run on the same machine, excluding the
need of other slower mechanisms suitable for computer networks; secondly, the
connection is meant to be half duplex, meaning that only one of the two will send
data to the other during the execution, excluding the need of pipes; thirdly, they
are much easier to implement than others, exploiting simple library functions rather
than the more complex synchronisation mechanisms used for shared memory and
similar approaches.

In particular, the communication may be established through the use of the
methods contained in a user defined library, named VirtualConnector, which is
described in the following.

4.1.1 The VirtualConnector library

The VirtualConnector library consists of two main classes, ConnectionConfig
and VirtualConnector, each of which plays a different role in managing the
communication between the software and Webots. Note that these have been
developed in C++, as this is the language used on both MESSY and Webots.
The ConnectionConfig class is responsible for setting up and managing the
UNIX socket connection. It provides several methods: initialize_ connection
to establish a connection to the server, get_server_FD and get_connection_FD

39

Methodologies

to retrieve the file descriptors, and close_connection to terminate the connection.
This set of functions is rather simple, using only a few system calls that operate
on the two file descriptors (one for the server, and one for the connection) objects
directly contained in the class. Among those, the initialize connection is
surely the most important. Its code, reported in the Listing 4.1, works as the client
side explained earlier in Section 2.3:

o it creates a UNIX socket with the socket (AF_UNIX, SOCK_STREAM, 0) com-
mand;

o initialises the address with the sockaddr_un and sets the type to AF_UNIX;

» sets the socket path by copying socket _path in server_address.sun_path;

attempts the connection to the server with the connect method.
In case any error arises, the method returns a -1 value.

Listing 4.1: Implementation of the connection initialization method

int ConnectionConfig:: initialize_connection () {
struct sockaddr_un server_address;

if ((this—>server_fd = socket (AF_UNIX, SOCK STREAM, 0)) = —1)
return —1;

memset(&server__address, 0, sizeof(server_address));
server__address.sun_ family = AF_UNIX;

strncpy (server__address.sun_path, this—>socket_ path, sizeof(
server__address.sun_path)—1);

if ((this—>connection fd = connect(this—>server fd, (struct
sockaddrx) &server address, sizeof(server address))) = —1)

return —1;

return 0;

Together, this and the other ConnectionConfig functions, which will not be
commented further for brevity concerns, ease the management of the socket, while
the actual data exchange (specifically, reading and writing JSON-formatted mes-
sages through the socket) is instead handled by the other class, VirtualConnector.
In particular, this class uses the JSON library (the nlohmann/json library [55])
to receive and send JSON-formatted data. The two functionalities are achieved
using two methods, included in Appendix B, which are described in the following
paragraphs.

The first method, read from_channel, is used to read data from the socket.
In particular, it reads the length of the incoming packet, dynamically allocates

40

Methodologies

memory for the message to be received, and parses it into a JSON object. More in
detail, the algorithm (whose pseudo code is reported in Algorithm 1) works in 6
fundamental steps. First, after initializing some variables, it gets from the channel
the amount of bytes to be read and saves it in rd_len buffer. This value is then
converted into an integer in step 2 and it is used in step 3 to reserve in memory (in
the space pointed by rd_json_buffer) the correct amount of bytes. Next, a while
loop performs several reads on the socket channel up to when either the number
of read bytes exceeds the expected one or if no byte was received at the last read.
Note that the reading functionality must be split in several iterations in order to
ensure the correct receival of the packet also for messages exceeding the maximum
possible dimension per single transfer (which depends on several factors). As last
steps, the code parses the received message into a JSON object (returned at the
end of the function) and frees the memory allocated to accommodate the packet.

Conversely, write_on_channel converts a JSON object into a string and sends
first its length and then its content via the socket (functioning in a way that is
complementary to the read_from_channel explained earlier). The function, whose
pseudo code has been reported in Algorithm 2, works in 5 steps. In the first one,
the data JSON object passed to the function is converted into a string, in order
to be inserted in a packet, and its length is evaluated. Then, this length is used
to create a 4-byte value in step 2, which is sent on the socket on the next step. A
new memory section is allocated knowing the number of bytes to be sent and, after
copying the data JSON object to this space, the information contained in such
buffer is sent on the socket. As a last step, the memory is freed and returned to
the OS.

The modularity of the code, along with the divisions between socket manage-
ment (ConnectionConfig) and data handling (VirtualConnector), enhances the
flexibility and reusability of such functions inside all the components that must
communicate with Webots through the socket. Moreover, the inclusion of JSON
further simplifies this standardised exchange of data, making the communication
between the software and Webots more efficient and human readable.

4.2 Crazyflie architecture modelling in MESSY

As anticipated earlier in Chapter 2.4.3, the processing power of the Crazyflie 2.1
drone is composed of a couple of chips: an STM32 and an nRF51822. The STM
chip handles most of the drone computational tasks, including the flight control,
the sensor data processing, and the execution of the main flight algorithms. It runs
the core firmware and manages the motors and communication interfaces. On the
other hand, the nRF chip is primarily responsible for wireless communication and
power management. It uses Bluetooth and radio protocols to enable remote control

41

Methodologies

Algorithm 1 VirtualConnector::read from channel pseudo code

1: procedure READ__FROM__CHANNEL(fd)
2 > Initialize variables
3 num_ read <— 0, counter__read < 0, string_length < 0
4: rd_len_buf fer < [0,0,0,0]
5:
6 > Step 1: Read the length of the incoming JSON packet
7 num_ read <— READ(fd, rd_len_ buffer, 4)
8
9: > Step 2: Calculate the JSON string length
10: for i = 0 to num_read do
11: string_length < string_length | (rd_len_buf fer[i] < (8 x1))
12: end for
13:
14: > Step 3: Allocate memory for the JSON string
15: rd_json_buf fer < ALLOCATE_MEMORY (string length + 1)
16:
17: > Step 4: Read the actual JSON string
18: while counter read < string length do
19: num_ read < READ(fd, rd_json_buffer + counter read, string length
- counter_ read)
20: counter read < counter read + num_read
21: if num_read == 0 then
22: break
23: end if
24: end while
25: rd_json_buf fer[counter read] <’ \(/ > Null-terminate the string
26:
27: > Step 5: Parse the JSON string
28: data <— PARSE__JSON(rd__json_ buffer)
29:
30: > Step 6: Free memory and return parsed data
31: FREE_MEMORY (rd_json buffer)
32: return data

33: end procedure

42

Methodologies

Algorithm 2 VirtualConnector::write_from_ channel pseudo code

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

procedure WRITE__ON__CHANNEL(fd, data)

> Step 1: Convert the JSON object to a string
json__string <— DATA.TO__STRING
json_length <— LENGTH(json _string)

> Step 2: Prepare the length of the JSON string to be sent
length_buf fer[0] < json_length&O0zFF

length_buf fer[l] <— (json_length > 8)&0zFF
length_buf fer[2] < (json_length > 16)&0xFF
length_buf fer[3] < (json_length > 24)&0xFF

> Step 3: Send the length of the JSON string
WRITE(fd, length _buffer, 4)

> Step 4: Send the JSON string itself

wr_buf fer < ALLOCATE__MEMORY (json_ length)
COPY__TO_ BUFFER(wr_ buffer, json_ string, json_ length)
WRITE(fd, wr__buffer, json_length)

> Step 5: Free the allocated memory
FREE__MEMORY (wr__buffer)

22: end procedure

43

Methodologies

and data transmission between the drone and a mobile device.

However, in this work it was also considered the presence of the Al deck, which
introduces a GAPS chip and a camera. This Al deck allows the Crazyflie to perform
more complex tasks, and it should be included as it is needed for the case study
scenario of this thesis, which is described in the following.

This work aims at simulating a scenario in which a Crazyflie drone is au-
tonomously navigating in a drone racing environment, where it must start itself,
fly through a sequence of gates and finally come back to the start position and
stop the motors. Considering this setting, the main computational task is handled
by the GAPS8 chip, which processes images captured by the onboard camera using
a neural network. Based on the results of this processing, the GAP8 determines
the next drone movement coordinates, which are then transmitted to the STM32
chip. In turn, this is responsible for converting them into actual motor commands,
allowing the drone to adjust its flight and pass through the gates accurately.

The GAPS chip is emulated using GVSoC, allowing for a reproduction of its
behavior in the real hardware. Meanwhile, MESSY is used to model both the
power consumption and the functional behavior of other key components, such as
the camera sensor, the STM32 chip, the battery, and the motors (motors are also
critical, as they receive the processed flight commands and execute the physical
movements of the drone). However, not all the real components of the Crazyflie
have been modeled accurately: for example, the nRF chip was excluded, due to the
difficulties that were encountered when modelling its power consumption (which is
strongly correlated to the firmware running on the chip itself). Nonetheless, its
contribution to the energy balance of the device was taken into account in the
consumption model of the motors.

Webots, instead, plays the role of handling the drone interaction within the
3D environment. In addition to simulating the physical movements of the drone,
Webots is also responsible for emulating certain sensors that are necessary for the
drone navigation but for which precise power consumption data (which are needed
for a proper model on MESSY) is not available. In particular, those are the GPS
(Global Positioning System), the gyroscope and the IMU (Inertial Measurement
Unit), which are essential for the functioning of the PID.

Another goal of this setup is to ensure that the entire system operates in real-
time, with a target frame rate of 30 FPS (Frames Per Second). To meet this
requirement, the process of capturing an image, running the NN inference on the
GAPS, and translating the resulting coordinates into motor commands must be
completed within a 33 ms time window. This ensures that the drone can timely
react to environmental changes and maintain a smooth and efficient flight path
during the race.

This chapter presents an overview of the development process for each of the
drone parts to be modeled on MESSY, grouping them in categories according to

44

Methodologies

the similar logic functions. Before moving on, note that the discussion is going to
deal only with the modifications introduced to tailor the simulation environment
for the Crazyflie drone. Hence, no in-depth description will be proposed for the
modules that were left untouched with respect to the automatically generated ones,
such as the core and some battery submodules.

4.2.1 Sensors and SoC: camera and STM32 microprocessor
Sensors introduction and simulation overview

Most of the drone components are simulated by means of customized sensors. In
MESSY, sensors are the main entities that can be used to simulate the various
subparts of an embedded system, for which a code can automatically be generated
starting from the JSON configuration file. As partially anticipated in Section
3.2.2, every sensor is composed of two distinguished parts: a functional and a
power one. Each of those is associated with a different piece of code, which is
automatically generated and integrated with the rest of the system.

Upon generation, in fact, MESSY creates per each of the sensors configured in
the JSON file a new SystemC module for the functional part and a SystemC-AMS
module for the power part. The former is responsible for the definition of the
internal characteristics of a sensor. It is a standard SC_MODULE already equipped
with a series of signals that integrate it with the functional bus, in order to enable
the communication with the core (for which a different couple of functional /power
codes are also generated). Along with those, a sensor_logic method is created,
as better explained later in the document.

Speaking of the power side, a SCA_TDF_MODULE is used instead. This code in
fact has to include a set of analog-mixed signals that connect to the power bus, and
which are used to represent the behavior of the voltage and current of the device in
order for the power source(s) to accurately simulate the power consumption. The
power side also controls the "status" of the sensor, as better detailed later in the
discussion.

As a general idea, the flow of operations of any simulation on MESSY has been
reported in Figure 4.1.

The sc_main program initializes all the modules (the core, the sensors, the
buses, etc.), connects them with the signals and starts the simulation with a
sc_start command. At this point, the core (i.e., the GAPS8 chip simulated by
GVSoC) runs the main program and interacts with the various peripherals/sensors
by accessing the associated memory space. Once this happens, a transaction on the
functional bus is created and the functional part of the involved sensor retrieves
the details of the request, such as the address, read/write flag, and data. Once
parsed, the request is handled by the sensor logic which, at the current state of
MESSY, is composed by default of a set of "statuses", identified with sequences of

45

Methodologies

CAMERA
FUNCTIONAL FUNCTIONAL

CORE BUS 3
MAIN) |_E X CAMERA POWER
_,—) Request image == Processing data

sc_start — 7

Save image (_I—Sensor logic =3 Processing
|— Response 51 TG
7

Get image

POWER BUS

Figure 4.1: Visual representation of the MESSY default flow.

if statements, which trigger a certain logic reaction on the basis of the request that
has been received. After this step, the power instance is activated. Each status
is associated with a specific current draw from the power source(s) and a specific
delay: this information is used to evaluate the energy that is associated to that
specific status of the sensor, while also advancing the SystemC simulation core to
mimic the time taken to handle the request. After these operations, the power
instance sets an IDLE state and gives the control back to the functional instance,
which can then prepare the output signals accordingly to reply to the core.

The simulation keeps running in this manner until the end of the GVSoC
program has been reached. Once the remaining pending operations on the SystemC
side have also been completed, the simulation stops and sc_main returns.

As said in the previous paragraph, the core has to target a certain address to
interact with a specific sensor. In MESSY, each sensor can be configured to have a
specific amount of memory, which is mainly used to mimic the presence of status
registers, control registers, and the internal memory. The capacity of each sensor is
defined in the JSON configuration file, with the value expressing how many bytes
(8-bit registers) are at disposal of such peripheral. Once MESSY is instructed to
build the SystemC code on the basis of the given configuration, it creates per each
sensor a register_memory private uint8_t array variable inside the functional
part of the code. This memory is the same one used by the automatically generated
sensor_logic method, which is able to understand when and where a read/write
operation has occurred, and instructs how to react accordingly (this is in fact the
function that needs to be targeted by the developers in order to specify any of the
sensor functionalities).

The focus is now going to shift towards the specific cases of the camera
and STM32, highlighting how their register_memory is organized and how the
sensor_logic was modified to provide the wanted functionality on the basis of
the register the core is interacting with.

46

Methodologies

Camera

The camera mounted on the AI deck expansion of the Crazyflie drone is an
HIMAX HMO01B0-MNA-00FT870'. As previously noticed, the camera produces
320p monochrome images that are supposed to undergo the NN inference to produce
the next target coordinates.

To model the behavior of the real camera, the simulation environment has to
work as follows. First, the program running on GVSoC should be able to inform
the camera sensor that an image is needed. Then, the camera module of MESSY
(sensor_camera_functional) should react and request an image from the camera
sensor present in Webots. Once the photo is shot from the sensor, this has to
be sent back to the camera module of MESSY, which in turn informs GVSoC of
the availability of the image. In order to do so, the sensor _camera_functional
module should have a control register to handle the image request, a status register
to be polled by GVSoC to inform when the image is ready and a memory space
to save the image information, in order for the GAPS to retrieve it. The register
structure was thus organized as shown in Table 4.1.

Reg Description | Functionality

0 Control register | IF 1: GET IMAGE, asks the drone to capture an
image
1 Status register | IF 1: GET IMAGE COMPLETED, image was

successfully taken
2-102401 | Image registers | Store the image information

Table 4.1: Camera Registers

A 1-byte control register was created for the request to happen. When the
GAPS chip writes a 1 in such register, it triggers the sensor_logic function, which
handles the process of getting the image from Webots. Once this has been obtained,
the image is stored in the registers from 2 to 102401 (which have a total capacity
of 102400 bytes, i.e. the space needed for a 320x320 monochrome image) and the
1-byte status register is updated with a 1 to flag the completion of the process.

In order for the module to provide the functionality of getting the image, two
additional methods were created: get_camera_image and json_parser. As the
sensor_logic function senses the enable and ready signals to be high and the
flag_wr to be low (meaning the sensor is enabled and a read is being performed
on it), it extracts the add address and uses it to populate its memory with the

https://mm.digikey.com/VolumeO/opasdata/d220001/medias/docus/4886/
HMO1BO-MNA-OOFT870.pdf

47

https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/4886/HM01B0-MNA-00FT870.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/4886/HM01B0-MNA-00FT870.pdf

Methodologies

passed data. If the target of the message is the control register and a GET IMAGE
command was issued, the module reacts by calling the get_camera_image function.

This, in turn, writes on the socket a JSON packet with a specific request
(command = GET_IMAGE) that has to be sent to Webots. Then, it brings the camera
module in a wait state by using a blocking read until the image arrival. As the
picture has been obtained from Webots by means of another JSON packet, it calls
the json_parser method. This loops through the JSON object searching for the
key "camera" and, when this key is found, it retrieves the width and height of the
image followed by the data from the image itself (stored as an array of unsigned
characters). The image is retrieved (with an index that uses the width and height
to loop along the pixels) and then transferred into the register_memory, where
each byte is stored sequentially starting from the third index (i.e., skipping the
control and status registers). At the end of the transaction, the control is handed
back to the sensor_logic function and other signals are activated to inform the
power instance of the sensor about the current consumption. Once the function
completes, the sensor goes back to the wait state. From that point on, any change
in the ready signal will trigger again the execution of sensor_logic: this happens
because of the inclusion of such signal inside the sensitivity list of the module. To
ease the reading, a scheme of the communication happening between the functional
bus, the camera and Webots has been reported in Figure 4.2.

FUNCTIONAL BUS CAMERA WEBOTS

[————> CONTROL
REGISTER=1 —

p sensor_logic()

p get_camera_image ()

——— STATUS T GET IMAGE
REGISTER=? — |
STATUS ~ «—]
| REGISTER=0 (mage) < |

. —

p json_parser ()

> STATUS
REGISTER=? — |

STATUS «— |
. — REGISTER =1

Figure 4.2: Visual representation of the bus-camera-Webots interaction.

Note that the sensor_logic function also advances the simulation by the
amount of time needed by the real sensor to capture an image. In this case, a value
of 16 ms was chosen, in order to be compliant with the 60 FPS specification of

48

Methodologies

the real camera. By default, MESSY also asks to specify a delay for the cases in
which GVSoC performs a write on the registers with respect to a read. Its value
(set to 4 ms) is not necessary nor relevant for the scope of this thesis, and was
included simply to maintain the original code structure. In this case, the function
calls the advance_simul method, whose details are going to be described later in
the chapter.

The module also has a set_connection_parameters function and a
ConnectionConfig attribute: these are needed in order to ensure that the camera
is able to correctly receive and save the socket file descriptor during the execution
of the sc_main.

As a final remark, be aware that the set of operations described for the
sensor_logic function, the presence of the advance_simul and
set_connection_parameters methods are going to be common to every sensor,
hence will be omitted in the next descriptions for brevity concerns.

STM32

The STM32 microcontroller is responsible for managing the control of the drone
motors, handling the received commands from GVSoC, and processing sensor data.
More in detail, the tasks of this module are setting the target positions, initializing
the PID controller for motor control, and managing the power consumption based
on the drone operations. On MESSY, the architecture of this sensor can be
implemented by simply including a control register and a status register (allowing
to check which type of operation is needed and to signal the completion of a task),
as well as a memory region to store the target positions that have to be passed
to the PID when setting a new destination. About the latter, three double (8
bytes) values are needed to store the X, the Y and the Z coordinates. The resulting
register configuration of the sensor has been reported in Table 4.2.

Reg Description Functionality
0 Control register | See Table 4.3
1 Status register | See Table 4.3
2-9 | Target Position X | Target position for the X coordinate
10-17 | Target Position Y | Target position for the Y coordinate
17-25 | Target Position Z | Target position for the Z coordinate

Table 4.2: STM32 Registers

Due to the large quantities of operations to be performed by the STM32 mod-
ule, a different table (Table 4.3) was created to recap those and the associated
control/status register codes. Similarly to the prior case, a name is associated to

49

Methodologies

each command, in order to easily identify it (in the code, this corresponds to the
usage of several #define statements).

Code Name Control Register Func-| Status Register Function
tion

1 INIT PID Runs the function to initial- | PID initialization was com-

ize the PID parameters pleted successfully

2 GET STABLE Drone lifts from ground and | Drone is now stable at 1 m

reaches a height of 1 m +/- tolerance

3 SET TARGET Sets the program to update | Target was correctly set

the target

4 RUN SINGLE STEP PID | Runs a single step of the PID | PID single iteration has
ended

) RUN PID Runs PID until the target | Target reached (continuous

reached run of the PID case)

6 TARGET REACHED — Target has been reached
(step-by-step run of the PID
case)

7 GO DOWN Signals the STM32 the need | Landing has completed

for landing the drone
8 PRINT SIMUL TIME Prints the current simula-| —
tion time + offset
9 BATTERY LOW — Battery is too low
10 ITER ADVANCE Advances the Webots simu- | Simulation was correctly ad-

lation

vanced

Table 4.3: STM32 control/status register commands

Follows a high-level description of the functions implemented inside the STM32

module.

As per the camera, the sensor_logic function continuously monitors the control

register of the STM32 to handle the requests from GVSoC, reading the address to
which they are destinated as well as the data. Depending on the command that
was written on the control register (like INIT PID, GET STABLE, or SET TARGET),
it triggers the corresponding actions, which is often associated to the execution of
one of the other method contained in the STM32 class. At the completion of such
method, the status register is updated with the correct code in order to inform
GVSoC.

In case a PID INIT command is received, PID init is called. The function
initializes the PID controller by setting the initial conditions for the motors PID.
It also communicates with Webots to retrieve some necessary data: among all,

50

Methodologies

this function obtains the simulation timestep, which is fundamental for both the
PID and the correct compensation of the sensor delay offsets. In the meanwhile, it
ensures the drone remains stable at a defined target position until new instructions
are received.

Once the initialization is completed, get_stable can be called: this forces the
drone to lift from ground and reach a stable altitude of 1 m by adjusting the PID
controller accordingly.

Once it has reached a stable position, the drone can start receiving commands
to move around the environment. This functionality can be achieved by means
of several methods, and it may happen in a controlled or partially autonomous
manner. In the former case, the PID iterations are executed once at a time in a
controlled manner, in order to simulate the single iterations that would occur in
the real case scenario of the drone continuously capturing images and moving one
step at a time. In the latter case, instead, the iterations are called repetitively
until the drone has reached the target position, without further intervention from
GVSoC. That happens if a RUN PID command is sensed at the control register,
which triggers the PID_loop function.

In both cases, however, the central method that runs the de-facto PID is
PID iteration. This function will be better detailed later in Section 4.2.2; but for
now the reader should be informed of the fact that it uses get_sensor_data to read
some data from the Webots simulation, including its current position, orientation,
and altitude. This information is then used to generate the motor commands by
calculating the desired adjustments to the drone position. Moreover, it then updates
the motor power values accordingly to the send _data_to_motor, which sends the
updated motor velocity values to the motors (which in turn sends them to Webots
and waits for an acknowledgment before completing the command). This function
exploits a direct connection with the motors, and uses the send command port to
inform the presence of new motor values and the send_completed one to understand
when the information was correctly received and processed. PID_iteration is
either triggered by the PID_loop or the receival of a RUN SINGLE STEP PID:
in the latter case, before returning, the sensor_logic function checks both if the
battery is low (setting the status to BATTERY LOW) or if the target position of
the PID was met (in such case, the target position of the PID is updated according
to the logic explained in section 4.2.2).

In case GVSoC wants to advance the simulation by a specific amount of time (in
order for example to simulate the time elapsed during the running of the inference
of the neural network), it can do so by writing in the control register of the STM32
sensor a number greater than ITER ADVANCE (which corresponds to a 10). This
value, which is going to be decreased by 10, represents the number of ms that both
the MESSY and the Webots simulation should advance of.

As a target position is reached (for example, a gate was just traversed) and

51

Methodologies

there is the need of setting a new target destination for the PID controller, this can
be achieved by writing a SET TARGET command. In this case, the sensor_logic
function retrieves the data from the target position registers (2-25) and sets the
internal target values of the PID, resetting the target reached flag.

Once the drone has completed the race, it can reach the ground again and stop
the motors. This action is triggered by the GO DOWN command: in this case,
the sensor_logic function communicates with Webots to set the new target
coordinates to the ones of the ground. This action is split in two steps (setting the
target position slightly above ground first, then to the height of 0 m) in order for
the drone to reach the ground with a lower speed and avoid damages.

Finally, as suggested by the name, the end_simulation function is called to
communicate the stop of the simulation to Webots. In turn, Webots slows down the
motors to a null velocity and answers back once it confirms that those have been
successfully powered off. The end_simulation function also handles the cleanup
of the simulation and synchronisation between MESSY and Webots.

Once the simulation has correctly ended, GVSoC can call a PRINT SIMUL
TIME to launch the time_print function, which outputs the current time and
estimated error between MESSY and Webots time to assess simulation accuracy.

It should be evident how the connection with Webots is necessary for the
simulation flow: the PID needs to receive constant data from some sensors, and
variables such as the position in space of the drone are essential pieces of information
for the STM32 sensor in general.

For this reason, it might be noteworthy to briefly mention how the packets
exchanged with Webots are generally formatted. The messages that go through
the socket use the JSON format, and they all contain a command field in which the
type of operation that is needed is reported: Webots checks this field to interpret
the received message and plan its actions accordingly. Then, depending on the
function, several other entries are added to this, such as COORDINATE X to request
the X position of the drone from the GPS or ROLL to get the rolling angle.

Before moving on, it should be noted that, as said, sensors are supposed to
advance the simulation time while performing some actions. Different actions
should correspond to different times: the execution time of a single calculation may
greatly differ from the run of a complex algorithm for example. Unfortunately, due
to the impossibility of knowing the time consumed by the STM chip to perform any
of the actions considered in the simulation (such as converting the coordinates into
motor commands, and the time taken to inform the motors), the timing information
was excluded from most of the operations. As a result, the points in which the
simulation is advanced are:

o during the initialization of the PID, as Webots requires a 2000 ms delay
when starting the simulation to ensure the synchronization of the system
components;

52

Methodologies

o during the set of the target position, with a delay of 5 ms;
o during the receival of an ITER ADVANCE;

o during end_simulation, where Webots informs MESSY of the time that has
elapsed while shutting down the motors

Also in this case, the sensor_logic function includes the case in which a write
is performed on a sensor. This action is set to last 1 ms, even if, in reality, this
operation can not happen.

4.2.2 PID controller

By default, the firmware running on the real Crazyflie 2.1 drone utilizes a PID
controller to manage the drone state. More in detail, it employs distinct PID
controllers for each control level: position, velocity, attitude, and attitude rate.
The attitude refers to the orientation of the drone in space, including its roll, pitch,
and yaw angles. In contrast, attitude rate is the rate at which these orientation
angles change over time, i.e. measuring how quickly the drone is adjusting its roll,
pitch, or yaw.

The output of each controller feeds into the input of the next one, forming
a cascaded PID structure. Depending on the control mode, different setpoints
can be fed into the system, influencing which PID controllers are activated. For
instance, when using attitude rate setpoints, only the attitude rate PID controller
is active; for attitude setpoints, both the attitude and attitude rate PID controllers
are used; and so on for velocity and position setpoints. Ultimately, regardless of
the control mode, the angle rate controller translates the desired angle rates into
PWM commands for the motors.

In the simulation environment considered in this work, instead, the control of
the Crazyflie drone was given to a single PID function, which is in practice the
PID_iteration function contained in the STM32 module. In order for this to work,
a couple of files were also needed: pid_controller.hpp and pid_controller.cpp.
These two contain some classes, methods and attributes definitions which provide
the complete set of items that one may need to control the simulated version of
the device, and partially resemble the ones running on the actual firmware of the
drone. Note that these files were created on the basis of the Webots controller
files already made at disposal by the Bitcraze company itself [56]. However, some
important modifications were introduced to convert the given C code in a C++
class (PIDController) with additional control functionalities. In order for it to be
included in the STM32 component, it was simply needed to include the two files
and instantiate an object of the PIDController class into the set of the private
attributes of the module.

53

Methodologies

To start, it is important to recall that the PID_init function must first be called
before any usage of the PID: this function is used to initialize variables such as the
current position of the robot in the world, the various velocities and angles, the PID
gains (the proportional (kp), derivative (kd), and integral (ki) gains for velocity
and attitude), the current simulation time and the timestep. From that point on,
the PID iterations may be run consecutively to move the drone. The position that
is used as a current destination is specified by the TARGET (x, y, z) coordinates:
together, these represent the point in the Webots simulation environment that the
PID uses to compute the error signal. Remember in fact that the idea is that,
at each iteration of the PID, the STM32 sensor computes the error between the
current and the target position and uses it to evaluate the velocities to be applied
to the motors at that specific timestep to smoothly reach the destination.

The algorithm running on the STM32 module has been reported in the form of a
pseudo code in Algorithm 3, while the complete version may be found in Appendix
C instead. Note that the code presents some variables which are local and some
others belonging to the PIDController class, which are used by the module thanks
to the inclusion of a pid attribute among its private objects.

First, the needed sensor data is obtained through the get_sensor_data method,
and variables like the global X and Y velocities (vx_global and vy_global) are
computed based on the change in position over the time elapsed since the last
iteration. Then, the global velocities are transformed into the drone body-fixed
frame using its yaw (rotation), with the cosine and sine of the yaw angle to compute
the body-fixed velocities vx and vy. Next, the set of desired state variables for the
drone movement (roll, pitch, velocity, yaw rate) is initialized to zero. At this point,
the algorithm computes the difference between the drone current position (x_global,
y_global, altitude) and the already-set target position (targetposition) for
the three axes. This information is used to set the desired state variables, which are
updated depending on whether the difference on each axis is positive or negative.
Now, the pidVelocityFixedHeightController can be called passing these values.
The function computes the motor power values (m1, m2, m3, m4), which are then sent
to the motors module that forwards them to Webots. Finally, the function finishes
by updating the past state values (past_time, past_x_global, past_y_global)
for the next iteration.

In order to work, the pidVelocityFixedHeightController makes use of the
functions included in the PIDController class. In detail, it uses the following
sequence of methods. First, it adjusts the horizontal velocities with
pidHorizontalVelocityController, which works by adjusting the roll and pitch
based on the velocity errors in the X and Y directions. Then, it handles the altitude
with pidFixedHeightController: this function computes the error between the
desired and actual altitude, applies PID control, and adjusts the altitude. Next,
the attitude is changed by means of pidAttitudeController, which adjusts the

o4

Methodologies

Algorithm 3 PID _iteration pseudo code

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39: end procedure

: procedure PID_ITERATION

> Step 1: Get sensor data
GET_SENSOR__ DATA

> Step 2: Calculate time difference and velocities

pid.time__dt < pid.currenttime — pid.past__time
pid.x__global—pid.past__x__global
vx__global < idtime di
«— pid.y_global—pid.past_y global
pid.time__dt

vy__global

> Step 3: Compute body-fixed velocities

cos_yaw <— cos(pid.actualY aw)

sin_yaw < sin(pid.actualY aw)

pid.actualstate.vx < vr__global - cos _yaw + vy global - sin_yaw
pid.actualstate.vy <— —vx__global - sin_yaw + vy __global - cos__yaw

> Step 4: Initialize desired state values
Initialize pid.desiredstate variables to 0

> Step 5: Calculate differences between current and target positions
> Step 6: Determine the maximum axis deviation
See Listing 4.2

> Step 7: Compute movement coefficients for shortest path

> Step 8: Update desired velocities based on position difference
> Step 9: Check if the target is reached

See Listing 4.3

> Step 10: Generate control values through the PID
PIDVELOCITYFIXEDHEIGHTCONTROLLER

> Step 11: Communicate the velocities to motors
Write m1, m2, m3, m4 to the ports communicating with the motors
SEND_DATA_TO_MOTOR

> Step 12: Update some variables for the next iteration
pid.past__time < pid.currenttime;
pid.past_x_global <— pid.x__global;
pid.past_y__global < pid.y_global,;

59

NN N
N

NN
o

§)

Methodologies

roll, pitch, and yaw using PID control based on the errors between the desired
and actual attitudes. As a final step, it converts the roll, pitch, yaw, and altitude
commands into the individual motor values with motorMixing.

It is important to evidence that, while the PID is able to adjusts the drone
altitude, roll, pitch, and yaw using the position/velocity feedback and driving
motor commands based on the difference between the current and desired states, no
mechanism is present in order to know when the target position is met. Moreover,
no control is performed to ensure that the drone follows the shortest trajectory
to the destination and some errors may generate in case the target position may
not be reached, for example, due to obstacles. To solve these issues, the following
modifications were introduced into the algorithm.

In order to ensure that the drone follows the most direct path (i.e., the shortest)
to the target, the algorithm was modified as shown in Listing 4.2

Listing 4.2: Implementation of the straight path

double x_ diff = pid.x_global — pid.targetposition.x;
double y_diff = pid.y_global — pid.targetposition.y;
double z_ diff = pid.actualstate.altitude — pid.targetposition.z;

double x_abs = abs(x_ diff);
double y_abs = abs(y_ diff);
double z_abs = abs(z_diff);
double max_abs = 0;

if (x_abs > y_abs) {
if (x_abs > z_abs) {
max_abs = x_abs;

else {
max_abs = z_abs;
}
}
else {
if (y_abs > z_abs) {
max_abs = y_ abs;
}
else {
max_abs = z_ abs;
}
}

double x_ coeff = x_abs/max_abs;
double y_ coeff = y_ abs/max_abs;
double z_ coeff = z_abs/max_abs;

56

Methodologies

In essence, after having evaluated the differences from the current and the
target position in x_diff, y_diff and z_diff, the absolute value of these is
calculated, and the direction with the greatest value is saved in max_abs. Then,
a new coefficient is generated per each axis by scaling the (absolute) difference
with respect to the maximum one: in this way, the PID makes sure to orient
its corrections on the axis that needs it the most, producing a response that is
proportional to the magnitude of the distance of each axis from the target position.
Conveniently enough, these modifications allow to generate the linear trajectory to
the destination, as the normalised values are then used to evaluate the magnitude
of the desired movements (sideways, forward, height difference).

To make the system able to evaluate whether the destination position is met
or not, instead, the concept of tolerance was introduced. The drone receives a
target position, and the system considers it to be effectively reached only if the
drone has remained for enough time in the close proximity of such coordinate.
In order words, the target position is not a point anymore, but the set of points
that are within a distance of tolerance from the destination. In fact, it would be
impossible for the drone to remain stable at the very exact destination point, as
even the slightest changes in the motor velocities would make it oscillate around
that position. Moreover, it is necessary to ensure that the drone has remained
still for some time, as, in the current implementation, the PID does not make the
drone slow down before the target position is met, meaning that, if the target was
a specified coordinate, the drone would traverse it with a certain speed rather than
stopping at it. Using a tolerance also allows the drone to start the deceleration as
it is tolerance far from the destination, allowing it to settle in the close proximity
of the original target.

To implement these corrections in the algorithm, an additional temp_counter
variable was inserted in the STM32 code, as shown in the code snippet reported in
Listing 4.3. This is set to 0 at the beginning of each iteration, and is incremented if
the difference from the current drone position and the target coordinate (contained
in the x_diff, y_diff and z_diff variables) is found to be larger than tolerance
in any direction. If at the end of these checks the variable is still 0, meaning
that the drone is within tolerance distance from the target in any direction, the
target_counter variable is incremented. Once the drone has remained close to
the target for enough cycles (denoted by TARGET_CYCLES), the position is marked
as reached: the target_reached variable is set to true and the status register is
updated with the correct code.

Note that both the target_counter and the tolerance variables were inserted
in the PIDController class, as they are properties of the PID that should be
maintained throughout the simulation.

57

Methodologies

Listing 4.3: Implementation of the tolerance and the target reached command

2 if (x_diff > pid.tolerance) {
3 sideways_desired = x_ coeff % 0.5;
| temp_ counter++;

6 if (x_diff < —pid.tolerance) {
7 sideways_desired = — x_ coeff % 0.5;
8 temp_ counter+4+;

10 if (y_diff > pid.tolerance) {
11 forward__desired = — y_ coeff x 0.5;
12 temp_ counter++;

14 if (y_diff < —pid.tolerance) {
15 forward_desired = y_ coeff x 0.5;
16 temp_ counter++;

18 if (z_diff > pid.tolerance) {
19 height_diff desired = — z_ coeff x 0.2;
0 temp_ counter++;

N =

if (z_diff < —pid.tolerance) {
height_diff_ desired = z_ coeff * 0.2;
temp_ counter+4+;

w

W ON NN N NN NN NN
5 b N

I
6

7 if (temp_counter = 0) {

8 pid.target__counter 4= 1;

9 if (pid.target__counter >= TARGET CYCLES){

0 pid.target_reached = true;

31 *(register__memory + STATUS REG OFF) = TARGET REACHED;
32 pid .num__iteration = 0;

33 }

34 }

35 pid.num_ iteration += 1;

36 if (pid.num_iteration >= UNLOCK CYCLES%32/webots_timestep) {
37 pid.target_reached = true;
38 x(register_memory + STATUS REG_OFF) = TARGET REACHED;

39 pid.num_ iteration = 0;

Moreover, note the few lines at the bottom. These were inserted in order to
allow for the drone to unlock the simulation in the case the target position could
not be reached (for example, due to the presence of an obstacle). In order to
do so, the simulation keeps track of the number of iterations performed with
num_iteration and, if these exceed a specified number of cycles (UNLOCK_CYCLES,

58

Methodologies

which is a configurable variable that has to be set bigger than TARGET_CYCLES),
the position is marked as reached as well. The number of cycles needed to unlock
the simulation is scaled to the Webots timestep, in order to avoid any possible
misbehavior with smaller time granularities.

As a final remark, it should be evidenced that the PID is able to adapt to
different timesteps and different delays between the iterations, in order not to
generate problems, for example, when the asynchronous delay of some sensors
have advanced the simulation before the next PID iteration. To do so, it is simply
necessary to evaluate the time difference from the last iteration by saving the
previous simulation time in past_time and by obtaining at the beginning of the
iteration the current simulation time from Webots (achieved by means of the
get_sensor_data function).

4.2.3 Handling the simulation from the main

The code that serves as a wrapper for all the systems and actually makes the
simulation start is the main. cpp file. This contains the sc_main function: while a
normal C++ uses int main as its entry point, SystemC programs use instead the
int sc_main method. This is because the SystemC library has the main function
already defined in its kernel, which internally calls sc_main passing (if necessary)
the needed command-line parameters.

The changes that were needed to be introduced in the sc_main are related
to the connection of the custom ports that were created for the communication
between the STM32 and the motors components, and the ones that enable the
connection between the functional and power modules of the motors. Furthermore,
a few additional lines were inserted in order to make the method able to open the
connection with Webots. To do so, it was simply needed to create a new object
of type ConnectionConfig (whose class has been defined in the VirtualConnector
library as seen in section 4.1.1) and call the initialize_connection method. Once
the connection is successfully established, all the parameters related to the socket
are passed to the individual sensors by using their set_connection_parameters
methods.

Next, the open_files method of the motors component is called. As better
described later, this allows the module to keep track of the measured consumption
for the selected power models in several files. Then, the sc_start (SIM_LEN ,
SIM_RESOLUTION) command is executed to start the simulation with a predefined
resolution (SIM_RESOLUTION) for a maximum amount of time (SIM_LEN). As the
simulation has ended, the socket connection is closed (cc.close_connection), as
well as the motors and trace files.

59

Methodologies

4.2.4 General improvements

This section reports a set of meaningful modifications that were introduced to
either tailor the simulation environment for the selected scenario or to improve the
user interaction with MESSY.

Time accuracy

A particular attention was given in order to ensure that the SystemC core time
and the Webots time were aligned during the simulation. This problem might look
trivial, but there are multiple ways in which the two may diverge from each other.
In this subsection, the several developed mechanisms that ensure the maximum
synchronism possible are presented, along with a final remark on the impossibility
of having a perfect match between the two.

The most important modification that was introduced to solve this issue was the
inclusion of a custom advance_simul () method in each of the sensors, which is
called instead of the standard request_delay function provided by MESSY. This
function was created to correctly keep track of any discrepancy between the two
simulation times which may arise due to the different timesteps that the Webots
simulation may use. In fact, while it is possible to configure MESSY to use any
time resolution without significant drawbacks, a specific timestep should be set
on Webots in order to strike the best balance between accuracy and simulation
time. In other words, the Webots timestep (meaning the minimum unit of time
that the simulation can be advanced of) may be chosen to be more or less accurate
on the basis of the simulation complexity and execution time. As a result, while
MESSY can have a finer-grained resolution (in this work, the accuracy is set to
1 ms), the other program may be forced to advance simulations with a different
granularity, such as 4, 8, 16 or 32 ms. This surely creates a problem when the
sensors delays are not multiples of the timestep: misalignments with the time of
MESSY may occur, and, for example, smaller delays may not be modeled on 16 or
32 ms simulations while would be considered for 2 and 4 ms. Hence, this function
was created in order to maintain the best synchronisation possible. For the reader’s
convenience, a simplified version of the algorithm has been reported in Listing 4.4,
and it is going to be explained in the following paragraph.

Once a certain action has to be performed on the sensor, the SystemC simu-
lation kernel is advanced by the correct amount of time (sensor_time) using a
request_delay function (which basically is a method of the core made at disposal
by MESSY that allows the GVSoC program to keep executing its instructions in
that interval of time in order to simulate the concurrency of the real device). Then,
the closest timestep multiple is evaluated in this way.

Consider this numerical example. If the sensor_time to be simulated is 29 ms
and the webots_timestep is 8 ms, the closest multiple to correctly represent such

60

Methodologies

delay in Webots is 32. In this case, q, meaning the multiple of the timesteps that
the simulation should be advanced of, is 4, and r, meaning the difference between
the time elapsed on MESSY (29 ms) with respect to the one of Webots (32 ms) is
-3 ms. In the first step (lines 11-12), the q and r parameters are evaluated as the
simple quotient and remainder of the division between the sensor delay and the
Webots timestep. Then, a corrective procedure (lines 14 to 17) is performed: if the
reminder is greater than half of the timestep (in other words, the following multiple
is distant less that webots_timestep/2), the next multiple should be considered
(@ = g+1) and the reminder should be updated accordingly.

This approach allows to work with any couple of sensor delay and timestep,
making it suitable to work also in the presence of a timestep equal to 1 ms (requiring
r to be strictly greater than half of the timestep rather than greater or equal).

As an additional note, be aware that a check is done in order to ensure that
the Webots time step is non-zero. If that is not the case, that means that the
simulation has already ended or not started at all, meaning that the time offset
should not be sent to Webots but should be compensated at the final calculation
of the Webots time.

Listing 4.4: Example of Webots timestep control

core—>request__delay (current_time , sensor_time, SIM_ RESOLUTION) ;

if (webots_timestep = 0) {

sensors_offset = sensors_offset + sensor_time;

cout << "updated offset (camera)"' << endl;

return ;
¥
// Advance Webots by the closest multiple of the timestep
int q = sensor_time / webots_timestep; // q = quotient
int r = sensor_time % webots_timestep; // r = remainder

if (r > (webots_timestep / 2)) {

q=9q+ 1
r = r — webots__timestep;
}
request ["command"] = "ADVANCE TIME';
request ["time"] = q * webots_timestep;
sensors_offset = sensors_offset + r;
VirtualConnector :: write_on_ channel (connection—>get_server_ FD (),
request) ;

In addition to this, the algorithm also serves as an example to show how the
communication with Webots occurs: the sensors use the read from channel and

61

Methodologies

write from channel methods explained earlier in order to send a JSON packet
with a certain request in the command field and then wait (blocking wait) for the
answer.

This mechanism allows to correctly compensate for the offset due to the sensors
delays, which are accumulated in the global sensor_offset variable. However,
there is still an important error source that should be considered. When performing
any request_delay action with a specified ¢ time, MESSY actually does not
advance the simulation by ¢, but rather gives the control to the core in order to
keep executing the actions present in its queue. Each action is associated to a
certain execution time related to the one of the real chip, and it is allowed to
dispatch those until time ¢ has been reached. However, as a result, the execution
of these operations usually goes over ¢ by some us, generating very small time
offsets that become non negligible as they accumulate. To solve this issue, a simple
modification can be inserted per each call of the request_delay function, as shown
in Listing 4.5.

Listing 4.5: Adjusting possible time offsets deriving from request_delay

double timel = sc_time_stamp () .to_double()/1000000000;
core—>request__delay (current_time ,time ,SIM_RESOLUTION) ;
double time2 = sc_time_stamp () .to_double()/1000000000;
sim_ off accum = sim_ off accum 4+ time2 — timel — time;

In this approach, the current simulation time is saved before (timel) and after
(time2) the command that is issued to advance the simulation. Then, a simple
difference is evaluated between the difference of the old time minus the new one
(time2- timel) and the time that was meant to elapse (time). Any residual is
saved in the sim_off accum global variable, which accumulates this kind of time
errors during the course of the whole simulation.

These two mechanisms allow the two simulations to be almost perfectly aligned.
Unfortunately, there is still going to be a difference due to some delays originating
in GVSoC. While executing its instructions, in fact, a small time error is generated,
and this is not captured with ps precision on the MESSY side. Despite the use
of several strategies to investigate the origin of the problem, it was impossible to
point out its exact cause. As a simple observation, it should be evidenced that this
delay seems proportional with the number of instructions executed by the GAP8
program. Nonetheless, these appear to impact the simulation in a very minor way
(< 0.1%), as shown by the measurements reported in Section 5.

Configuration files and debug mode

Along with the config.hpp configuration file provided by MESSY, a new one was
created to allow the user to easily customize the simulation. This file, named
simul_configs.hpp, can be used to set the power model to be considered, the

62

Methodologies

debugging level, the battery to be used and a few variables, namely the tolerance
of the PID (expressed in m), the number of cycles of the PID to consider the
position reached (TARGET_CYCLES) and the one needed unlock the simulation if the
target was not met yet (UNLOCK_CYCLES).

Among the configurations provided by simul_configs.hpp, lies the setting of
the multi-level debugging. In general, the code was developed in order to include
meaningful messages that could be used during the simulation to check the correct
functioning of the virtual simulation platform. The presence of several levels allows
the user to choose which type of information should be included:

o DEBUG_LEVEL_NONE is the lowest level, providing only the core information;

o DEBUG_LEVEL_LOW includes few details, such as the received image width /height
and the operations detected on the bus;

o DEBUG_LEVEL_MED exposes a big number of information, including the Webots
requests and the sensor data during PID execution;

o DEBUG_LEVEL_HIGH provides instead the user with all the possible information,
including all the packets exchanged through the socket.

Of course, the inclusion of the debug messages has a negative impact on the
simulation performance, and it is hence advised to be used only during development.

Adapting the simulation to the use-case scenario

Finally, it is important to evidence one last modification that was introduced in
order to prepare the MESSY-Webots virtual platform for the Crazyflie racing
environment scenario. In particular, it was said that this setting would have
involved the drone to perform, every 33 ms, a sequence of actions: getting a photo
from the camera, running an inference, passing the target coordinates to the STM32
chip and translating these into motor commands. This, however, creates a problem
with certain Webots timesteps. Consider this numerical example: the camera takes
7 ms to capture an image, the inference lasts 12 ms, the translation into PWM
commands takes the remaining 14 ms, and the Webots simulation timestep is set to
32 ms. If the delays of each step were modeled individually, the simulation would
never be able to advance: each of them is lower than webots_timestep/2, meaning
that the closest multiple of the timestep is 0 ms. In order to solve this issue, the
delays generated by the various sensors in a single iteration were accumulated in a
specific variable, named iter_delay.

Basically, at the beginning of each iteration, the camera module captures the
image and sets iter_delay to 16 ms (i.e., the delay associated with the image
capturing process). Then, GVSoC triggers the ITER ADVANCE function on the

63

Methodologies

STM32 to simulate the time taken to run the inference on the network. Such time
is extracted and added to the iter_delay (in the considered scenario, this is equal
to 10 ms). Finally, 7 ms are added to account for the time that passes between
the translation of the GVSoC coordinates to the PWM commands reaching the
motors after having executed the PID_iteration function. Note that these delays
were inserted to be as realistic as possible, but do not match any measured value.
For the camera, its delay value was chosen knowing the fact that is able to run at a
maximum of 60 FPS, while a measurement performed by GreenWaves Technology
on some CNN network ? was used as the reference for the inference time (note in
fact that the ISS was not meant to simulate a real inference due to lack of a proper
trained network that calculates the target gate position on the basis of a Webots
image). The remaining ms were used to model the other operations, which in the
real drone would depend on the firmware of the STM32 chip and on the switching
time of the gates connecting its GPIO (General Purpose Input/Ouput) pins to the
motors.

Finally, note that both at the beginning and at the end of the simulation the
iter_delay variable is set to be equal to the timestep: this choice was done in order

to prevent the rise of possible errors, and to maintain the maximum synchronism
between MESSY and Webots.

4.3 GVSoC program

As said multiple times, the system is mainly controlled by the program running on
GVSoC, the GAP8 emulator. The code, written in C, is compiled with the libraries
already present in MESSY and used as the main program during the simulation. A
brief description of the code is reported below, and a schematic recap of the main
functionalities is reported in Algorithm 4 (due to the complexity of the program,
only the three main methods have been reported). Moreover, the original versions
of those methods have also been reported in their entirety in Appendix D.

The program starts with the definition of a series of macros. In particular, these
are used to define the basis address of the peripherals, the offset to be applied
to reach the various registers of the camera and STM32 modules, as well as the
commands reported earlier in Table 4.3. The code continues with the definition
of the function prototypes, and the initialization of the pointers that are going
to be needed to access the individual registers and other variables needed for the
simulation.

’https://greenwaves-technologies.com/gap8-versus-arm-m7-embedded-cnns/

64

https://greenwaves-technologies.com/gap8-versus-arm-m7-embedded-cnns/

Methodologies

Algorithm 4 GVSoC program pseudo code

1: Initialize macros for the basis address of the peripherals, the register offsets,
and commands

2: Function prototypes

3: Initialize registers pointers

4: procedure MAIN

5: if DEBUG MODE enabled then

6: Check camera and STM32 registers

7 end if

8: Call init_pid and get_stable

9: if CORNERS TEST enabled then

10: Set and reach targets at defined corners

11: else

12: for i =1 to NUM__OF _CIRCUIT_LOOPS do
13: Set and reach various simulation targets

14: end for

15: end if

16: Call go_down and print completion message

17: Return errors

18: end procedure

19: procedure SET _TARGET(z, y, 2)
20: if low_ battery is false then
21: Set new target coordinates for STM32
22: while target not reached and battery not low do
23: Call get_image, advance_simul(10), and run_single pid_iter
24: end while
25: Reset control and status registers
26: else
27: Skip target due to low battery
28: end if
29: end procedure
30: procedure RUN__ SINGLE_ PID__ITER
31 Send command to STM32 to run a single PID step
32 while STM32 status does not indicate completion do
33: if battery is low then
34: Set low_battery flag and return
35: else if target is reached then
36: Set target_reached flag and return
37: end if

38: end while
39: end procedure

65

Methodologies

Listing 4.6: Scheme of general operation execution for GVSoC code

*(module__control_reg) = TARGET OP;

while (*(module_status_reg) != TARGET OP);
*(module_status_reg) = 0;
*(module_control reg) = 0;

Pointers are used to reference the control and status registers, and each operation
works as shown in Listing 4.6: the opcode of the wanted operations is written
on the control register, then the status register is polled until the same code is
retrieved. Once so, both registers are reset back to 0 to clear them and prevent
possible errors. This approach is used for several of the methods that are called by
the program. Namely, those are:

o get_image, used to force the camera to capture an image;
e init_pid, used to call the PID_init function of the STM32 sensor;
o get_stable, used to call the get_stable function of the STM32 sensor;

e advance_simul, used to simulate the presence of an inference and advance
the simulation by a specific amount of time;

e go_down, used to trigger the actions to make the drone descend to ground at
the end of the simulation;

e run_pid, used to call the PID_run function of the STM32 sensor;

e print_simul_ time, used at the end of the program to print the current
simulation time (in this case, no reset of the control/status register is performed,
as the simulation is almost finished).

A couple of other methods have been inserted to complete the program func-
tionalities: those are set_target and run_single_pid_iter.

The first method is the one that has to be used inside the main function to set
and reach a new destination. This method receives as inputs the space coordinate
of the destination and, after writing them inside the proper registers of the STM32,
informs the SystemC module that new target coordinates have been provided. In
turn, this updates the local variables of the pid object, and sets the status register
to inform of the task completion. Once that condition is sensed by set_target,
the function enters a while loop that performs the three main actions of the
drone to be performed sequentially throughout the simulation: gets an image from
the camera (get_image), simulates the inference of the image (advance_simul)
and finally runs the PID (run_single_pid_iter). The while loop terminates
in two conditions: either the position was effectively reached (with the local
target_reached variable being set to 1), or the battery level was found to be too

66

Methodologies

low to continue (low_battery = 1). When so happens, it resets target_reached
as well as the STM32 control and status registers to prepare for the next actions.
If the battery was found to be too low when entering set_target, the function
simply skips its action in order for the simulation to terminate as soon as possible.

As said, by using run_single pid_iter, GVSoC is able to run an iteration
of the PID controller. This operation is performed in a way similar to the other
methods: the specific operation code (RUN SINGLE STEP PID) is written on the
control register, and the status register is polled until the completion of the task on
the SystemC side is signaled by the same code. However, the status register content
is checked also against two other codes: LOW BATTERY (which triggers the update
with a 1 of low_battery and breaks from the loop) and TARGET REACHED
(which, along with signalling the completion of the single PID iteration, also makes
GVSoC aware that the target was reached by updating the target_reached to 1).
With these two functions, GVSoC is enabled to be fully aware of the current state
of the simulation, and can plan its reaction accordingly.

Having discussed all the possible operations, it is now fundamental to explain
how these are used by the main function to obtain a working simulation. The order
of operations is the following. After a few messages are printed on the terminal for
the user to know that the simulation has started, the program issues a init_pid
command to initialize the system. Follows get_stable, which makes the Crazyflie
liftt and reach a stable position. Now, the drone is ready to traverse the 10 gates:
with a sequence of 10 set_target functions, the program gives to the device
the coordinates of the points that it must reach in order to pass through all the
targets. This process is repeated a number of times, selectable by the user with
the NUM_OF_CIRCUIT_LOOPS macro. Finally, the drone is brought to ground with
go_down, which also shuts down the drone motors and stops the Webots simulation.
Before concluding, GVSoC issues a print_simul_time to make the STM32 sensor
print the current simulation time.

Note that the code also supports a debug mode. If enabled (i.e., if a DEBUG_MODE
macro is defined), it shows at the very beginning of the program the values of the
two peripherals registers, by calling specific functions (check_camera_registers
and check_stm32_registers) that access them and print on terminal their content.
Moreover, the presence of the CORNERS _TEST macro triggers a different simulation
type: instead of making the drone traversing the gates, it pilots the device to the
four edges of the map as many times as the value of the macro. This function was
included to provide a "debugging" simulation type, that can be used to simulate a
much more linear (steady) flight, which helps focusing on simpler scenarios (very
useful when there is the need of testing new control algorithms and the effectiveness
of several batteries).

67

10

12

14

Methodologies

4.4 The Webots controller

Before moving to the modelling of the power consumption, the Webots controller
should be described in order to complete the overview of the functional aspect of
the simulation. The code, which again is used to answer the requests of GVSoC and
to handle the 3D environment, is rather complex, and for this reason a pseudo code
version has been reported in Algorithm 5. Note that just a couple of the original
methods have been reported, and the reader can consult the original version in
Appendix E.

The controller, developed in C++, was structured as follows. First, a set of
#include commands is used to include all the libraries, along with several #defines
to create some useful macros. Among these, lies SIM_ACCURACY, used to configure
the timestep: depending on this value, the global variable simul_timestep is
updated with the number of ms corresponding to the smallest unit of time of
the simulation. Note that this value should match the one of basicTimeStep, an
attribute of the WorldInfo node that should be set manually through the GUI.
After the function prototypes definitions, lies the main function. This is the entry
point of the simulation, and it performs the following actions. First, it initializes
the robot and creates the socket connection. Being the server, the actions to be
performed are the ones seen in Section 2.3. Those have been reported in the code
snippet of Listing 4.7: the socket is created, its address is filled with the right
information, it gets binned to a path, then it listens to any process that wants to
communicate with it and, as a client is detected, it accepts the connection. Each
operation is associated with an error management strategy, that makes the main
function return a -1 in presence of any error.

Listing 4.7: Server side socket creation and connection establishment

server_socket = socket (AF_UNIX, SOCK STREAM, 0);
if (server_socket =— —1) {...}

memset(&address, 0, sizeof(address));
address.sun_ family = AF UNIX;

strepy (address.sun_path, socket_ path.data());
unlink (socket path.data());

if (bind(server socket, (struct sockaddrx*) &address, sizeof (

address)) = —-1) {...}
if (listen (server_socket, 1) = —1) {... }

client__socket = accept(server_socket , NULL, NULL);
if (client_socket = —1){...}

If the connection was successfully established, the motors are initialised by

68

Methodologies

Algorithm 5 Webots controller pseudo code

1: Libraries inclusion, macro definitions and function prototypes
2: function MAIN

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
: function SAMPLERUN

19

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39

Initialize Webots environment, create an instance of the robot

Create the socket connection
Connect the client

Initialize all the motors and the sensor
Enable IMU, GPS, gyro, camera, and distance sensors

Wait for 2 seconds

while stop is not active do
Run SAMPLERUN

end while

Close the connection

Clean up the resources

end function

Receive command from the MESSY client in JSON format

if command == “GET _INIT DATA” then
Send initial data

else if command == “GET IMAGE” then
Send camera image

else if command == “GET SENSORS” then
Send sensor data

else if command == “SET VELOCITY” then
Set motor velocities

else if command == “GET_ DATA 2” then
Send data for model 2

else if command == “GET_DATA_ 3” then
Send data for model 3

else if command == “STOP” then
Stop the simulation and send elapsed time

else if command == “ADVANCE TIME” then
Advance the simulation

end if

end function
: Other methods definition
40: ...

69

Methodologies

setting the internal Webots PID associated to each of them to have a certain initial
velocity and not to have any initial target position. Then, the sensors are initialised
and set to operate at the same timestep of the simulation. At this point, 2 seconds
are waited, in order for the sensors to align and for the Webots PIDs to make the
motors reach the initial velocity. Now, the program can effectively start. The run
of all the functions is handled by the sampleRun function, which is repetitively
called until the simulation has stopped (signalled by the global stop variable being
found equal to 1). When so happens, the controller closes the connection, deletes
the robot and terminates the simulation.

It should be evident how sampleRun plays a central role in the simulation. This
function, which receives as inputs the pointers to every component of the robot,
basically parses the JSON packet received from MESSY and performs a sequence
of actions on the basis of the content of the command field, calling other methods
if necessary. The function either returns (ready for the next iteration) or sends
back to Webots some data. Follows a high-level description of the eight possible
commands and how these are handled by the function.

If a GET__ command (either a GET_INIT_DATA, a GET_SENSORS, a GET_DATA_2
or a GET_DATA_3) has been received, Webots answers back to MESSY with a packet
containing the required sensor data, putting each piece of information in a different
field. As an example, it returns the GPS coordinates, the time and the timestep at
the receival of a GET_INIT_DATA and the horizontal plane velocity in the case of
GET_DATA_2. While the first command is requested by the PID _init function to get
the initial data (and is handled by the getInitData Webots method), GET_SENSORS
is received at each step of the PID to provide the necessary data for the current
iteration to occur. In this case, the operations are handled by getSensors. The
other two GET_DATA commands are instead sent from the MESSY motors, which
have the need of gathering data for the energy consumption evaluation performed by
two distinct power models. On the Webots side, the packet containing the necessary
information is created by means of send_data model 2 and send_data_model 3.

If a GET_IMAGE is received, Webots should return to MESSY the image currently
visualised by the camera sensor. This is handled by the getCameraImage method,
described in the following. In order to work with the camera, however, this has
first to be characterized in a way that is fully compliant with the real device
specifications. As it is not possible to force the camera to be monochrome, the
only modification needed for the camera node was the setting of the image width
and height (320x320). The conversion into a monochrome image was instead
performed inside the function by using the following approach. First, the raw image
is retrieved from the camera using the camera->getImage function. A gray-scale
transformation is then applied to each pixel of the image: this is done by iterating
through every pixel in the image using the width and height information and
applying the function camera->imageGetGray to extract the gray scale value of

70

Methodologies

each single pixel. The value, which represents the average color intensity of the
pixel, is stored in a dynamically allocated memory buffer (imageData), which can
then be sent on the socket by means of a JSON packet.

In the case of a SET_VELOCITY command, Webots extracts the velocities to be
applied to the four rotors and calls the setMotors function to apply each of them
to the corresponding actuator present on the simulated version of the drone. As it
does so, the simulation is advanced by one timestep: in case multiple timesteps are
needed to simulate the 33 ms loop, the command is simply sent another ¢-1 times
by the MESSY motors.

When the command is sensed to be ADVANCE_TIME, the controller extracts the
amount of time that should elapse, and advances the simulation accordingly.

Finally, the STOP command (called by the end_simulation method of the
STM32 sensor) instructs Webots to stop the drone motors and end the simulation.
To do so, the controller calls the stop_simul method, which basically waits for the
drone to reach an effective speed of 0 and reports the elapsed time back to MESSY
to keep the time alignment. The reader should in fact be reminded that the model
of the motors present in Webots has an internal PID, completely independent
from the one of the STM32. When setting the speed to 0, the velocity drop is
not instantaneous, but rather decreases in time according to the internal PID
parameters. As the motors are stopped, the stop variable is set to 1 in order to
break from the while loop that encapsulates sampleRun.

Note that the communication with Webots happens through JSON packets,
which are received and sent with the very same functions (called receiveMessage
and sendMessage, respectively) contained in the VirtualConnector library on the
MESSY side.

As a final addition, a debug mode was also inserted on the Webots side. In
this case, this enables the logging of each of the exchanged packets, plus the print
of some additional messages related to the simulation. The debug mode can be
enabled by simply defining a DEBUG_MODE macro.

4.5 Power modelling

This section describes the modelling of the most significant extra-functional property:
power consumption. Due to the openness of the Crazyflie architecture, most of the
information needed to deploy such model have already been made at disposal by
the BitCraze company itself, while some approximations are going to be introduced
to deal with the aspects not covered by the drone components datasheets.

In particular, the main contributors to the energy consumption of the device are
the core (whose contribution is automatically taken into account on MESSY), the
camera, the STM32 chip, the nRF chip and, most importantly, the motors. Other

71

Methodologies

sources, such as the ones of the Bluetooth/WiFi antennas (supposed to be shut
off) and the ones of the individual chips (like GPS, IMU, etc., for which it was
impossible to gather detailed consumption information) were not considered. In
addition to this, it should also be taken into account the fact that the transmission
of the power is not ideal, hence MESSY simulates the efficiencies of the various
DC-DC converters, as well as the internal resistance of the battery, to provide the
best accuracy possible.

The standard configuration of MESSY to evaluate power consumption is the
following. Each component (namely, the core and the sensors) is connected to a
power bus, which has a fixed associated voltage and which periodically (by default,
every 1 ms) collects all the individual contributions to create the total current drain.
This current request is then forwarded to the power sources. MESSY supports two
types of energy harvesters: batteries (which are more complex and are defined by
means of SystemC-AMS) and sources (defined in a much simpler way, and which
represent elements that can provide a current that dispenses the system to take it
from the batteries). In this work, only one battery was considered to model the
real drone setting.

While the core has its own set of states and associated power consumption,
each sensor status is generally associated to a current consumption, specified in
the JSON configuration file. In particular, MESSY identifies 3 statuses for any
sensor (reading, writing and idle, which are the fundamental ones), but the user
may specify his own set of status-consumption pairs, which comes especially useful
when modelling sensors with complex behaviors.

For both the core and the sensors, the connection to the power bus is obtained
by means of a DC-DC converter. In essence, each of the system components has an
additional module, named as module_x_converter, which connects to the power
instance of the device to produce at the output the effective current consumed
by that module on the basis of a customizable efficiency value. By default, the
converter gets from the power instance the voltage specified in the JSON file, as
well as the current consumed by the current sensor state. Moreover, the simulation
automatically sets the efficiency to 1 in the sc_main by using the set_efficiency
methods included in the modules themselves.

Also the battery has an inbuilt DC-DC converter, battery_converter, that
simulates the efficiency of the battery with respect to the drained current exploiting a
LUT (Look Up Table) based approach: it uses some of the known relations between
the battery voltage (or current) and efficiency of the real device to accurately
evaluate the inefficiencies.

Before going over the single components, however, it is important to have a look
at the architecture of the real drone in order to understand which modifications
are needed to be introduced in the MESSY automatic configuration to suit the
Crazyflie. In particular, some useful pieces of information may be taken from the

72

Methodologies

official website [57] and the schematics provided the company [58], which help to
have an idea of the other sources of power inefficiencies and dissipation.

Speaking of the drone schematics, these reveal a couple of very important details.
The first one regards the relation of a motor with the battery, whose schematics
has been reported in Figure 4.5. As evidenced by the image, rather than being

+BATH

D3
BATS4
P7
CONN_2

CABLE_RELIEF

S

CABLE_RELIEF

Figure 4.3: Battery connector scheme.

o
[}
—
p-
]
<

o

+

3
IS

CONN_BAT|
P5

CJ2302

Figure 4.4: Motor schematics.

Figure 4.5: Overview of the connection between battery and motors.

connected to VCC (which is a regulated power reference also used by other system
components), the motors are exposed to the raw battery voltage. In fact, excluding
the presence of the Schottky diode (which protects the circuit from the voltage
spikes generated by the inductive load of the motor when it turns off) and the
low-side switch N-MOS (which enables/stops the current to flow through the
motor), the motors are directly inserted across the positive battery tension and the
(virtual) ground of the Drain (D) terminal of the transistor. This means that a
second power bus needs to be introduced in MESSY, to which the sole motors are
attached, and whose voltage value dynamically varies with the one of the battery.

Having a look at Figure 4.8, instead, it is possible to see that the STM32 chip
reference voltage is VCC and how this is obtained from the battery voltage +BATT.

The generation of VCC (which is a stable 3.0 V that feeds the input of the
STM32 chip and the camera) and the other references voltages are obtained by

73

Methodologies

VBAT
VDD
VDD
VDD vss |—18
VDD vss 03
VDDA VSSA 12
STM32F405RG
Figure 4.6: STM32 pins.
UL’ VCOM
VusB 13 [y our |10 o) waozwu}j .
12 |y 21 GND
ser| [T] r— T3 o LU e

1 o000 |7 PM_PGOOD
2 | gar e PM_CHG
BAT
17 | 1pao Jee |4 PM_CHG EN
15

C
vss SYSOFF
BQ24075 17

U3 10

VEN_D

=
I
e

> SiP32431

3N ——ouT

1 oM Ex
DVCOM_EXP
= E GND —2
U1l

Figure 4.7: VCC reference circuit.

Figure 4.8: Overview of the use of VCC and its generation.

means of a couple of devices: a BQ24075 battery charger and a LP2985-30 Low
DropOut voltage (LDO) regulator. The first is the chip that connects the battery to
the charger port to allow for the correct charging operation when an USB (Universal
Serial Bus) power source (in the range of 4.5 - 5.5 V') is connected. Moreover,
the chip is used to track the battery status and to protect the circuitry from
overcurrents or other malfunctions. According to its datasheet?, this component is
able to produce a maximum output current of 5 A with a dropout voltage of 0.1 V'
with respect to the one of the battery when the charger is disconnected. In doing

so, a very small quiescent current is consumed by the device (max: 1.1 mA).

The second is instead a LDO regulator, which has the role of stabilizing its

3https://www.ti.com/1lit/ds/symlink/bq24073.pdf?7ts=1727457139132

74

https://www.ti.com/lit/ds/symlink/bq24073.pdf?ts=1727457139132

Methodologies

output voltage at a fixed 3.0 V independently on the input one (which, in the
Crazyflie, is the one output by the battery charger). Accordingly to the datasheet?,
this component is able to stabilize the input up to the point at which this has
reached a value between 3.15 and 3.10 V' (being 0.12/0.145 V' the typical and
maximum dropout voltage for an output current of 50 mA). Apart from that, the
DC-DC conversion produces a very low quiescent current, which sits at about 750
1A in the maximum output current condition.

Considering these aspects, it is possible to evaluate the efficiency of the power
transmission as follows. The efficiency 7 is the ratio between the output and the
input power, which is in turn the product of the input and output currents and
voltages. Since I, and I,,; differ from each other by just the leakage current Ij..x
(which is negligible for both the charger and the LDO), the two terms can be
cancelled out, and the efficiency can be simply modeled as the ratio between the
output and input voltage. To ease the reading, this process has been resumed in
Equation 4.1.

o Pout o V;)ut . Iout o V;)ut) Iout o ‘/out
B -Pz B V;n . Iz'n B V; : (]out +Ileakage) B ‘/;

(4.1)

The insertion of this inefficiency in the power transmission from the battery to the
STM32 and the camera is the second modification to be introduced in order to
create a sufficiently accurate modelling of the drone.

Note that, for a true, complete estimate of the power consumption, all the
quiescent currents of the passive components should also be included, as well as
the inefficiencies of the few other chips (such as the RF frontend and the IMU
sensors). However, being these contributions virtually insignificant with respect to
the others, they were excluded from the model.

4.5.1 Sensors

The power model of the three sensors (the STM32, the camera and the motors)
mainly involved the customization of their power modules and converters.

All power instances have three default methods: set_attributes, initialize
and processing. These are part of the standard methods used for TDF computa-
tions. In all cases, set_attributes is used to define the timestep and the delay
of the ports, while the specific behavior of the module is specified in processing.
About the latter, this method simply senses the value at the func_signal port to
understand the sensor status, and communicates both the associated current and
voltage to the converter. In turn, this module (which is also composed of the very

‘https://www.ti.com/1it/ds/symlink/1p2985a.pdf7ts=1720429702974

75

https://www.ti.com/lit/ds/symlink/lp2985a.pdf?ts=1720429702974

Methodologies

same three methods) senses the current, scales it according to the wanted efficiency
(defaulted to 1) and returns it to the power bus.

Camera

To adjust the camera consumption for the reading (which corresponds to the
capture of an image), writing and idle states, the datasheet was used. The camera
contribution was set at 1.75 mA, 1.75 mA, 0.14 mA for the three cases, respectively.
The first is equal to the current actively consumed by the device when operating
QVGA quality at 60 FPS, while the third one was set to be equal to the typical
standby current in the worst operating conditions. The second value was simply
copied from the first one, as the writing condition is never used inside this simulation
(as noted in previous chapters).

STM32

Unfortunately, the consumption of the STM32 chip would strongly depend on the
firmware. This would of course change depending on the actual operations to be
executed (running a single PID step would require a different energy with respect
to the setting of the targets, for example). For this reason, the current for the
reading, writing and idle status was set respectively to 150 mA, 150 mA, 60 mA:
the first two values represent the 102 mA consumed by the STM32 in run mode
at 168 M Hz (the maximum frequency) plus the contributions of the IMU sensor,
while the last was chosen according to the maximum typical current consumed in
standby at 168 M Hz. These values were obtained from the component datasheet
® as per the camera. Note that these values were meant also to include an estimate
of the power consumption of the nRF chip. Since a detailed modelling of this chip
was out of the scope of this thesis, its consumption (the chip is effectively active
most of the time to manage the power delivery) was aggregated to the one of the
STM32.

Motors

Being strongly related to the power aspect, no information was yet given about the
motors. Hence, an overview of both its functional and extra functional modules is
presented in the next paragraph.

Starting with the functional side, the motors expose the following functions,
grouped accordingly to their similarities:

Shttps://www.st.com/resource/en/datasheet/stm32f415rg. pdf

76

https://www.st.com/resource/en/datasheet/stm32f415rg.pdf

Methodologies

o sensor_logic: this senses the presence of a new set of commands for the
motors on the send_command port and calls send_data and consumed_power
to send them to Webots and evaluate the current power consumption. Once
so, it informs the motors that the send has been completed by raising
send_completed for a single delta cycle;

o open_files and close_files: these functions handle the opening and the
closure of three files, which are used by the motors to keep track of the
instantaneous power consumption of the three chosen power models. As seen,
both are called inside the main;

o send_data: this method prepares the packet containing the SET_VELOCITY
command and writes it on the socket. As seen, this command is repeated
q times, as Webots advances the simulation one timestep at a time. Note
that the simulation is advanced by iter_delay-1 ms to compensate for the
1 ms required (by one of the next methods) to send the current value to
the motor power instance. Furthermore, several mechanisms described in
Section 4.2.4 are present to keep track of the offsets due to iter_delay and
request_delay;

o consumed_power: as better explained in 4.5.3, this method calculates the
current power consumption according to the three chosen models;

o send_to_power_model: it is the function that communicates the drawn cur-
rent to the power instance. This is done by a simple protocol, which writes
the value on the current_value port and raises the send_current to high
to signal the presence of new data. A delay of 1 ms was inserted before the
down raise of that signal, as that is the minimum sampling resolution of the
power instance;

e get_data_model 1, get _data_model 2 and get_data_model_3: these meth-
ods are called by consumed_power to obtain from Webots the necessary data
for all the power models.

On the power side, motors maintain a structure similar to the ones of the
other sensors: the sampling resolution of the ports is set by the set_attributes
function while processing writes the current voltage and current values to the
motors converter (which shares the same properties as the others). The only
changes with respect to the other two modules are represented by the presence
of the two ports that enable the direct communication with the motor functional
instance.

7

Methodologies

4.5.2 Power buses

As said, two power buses should be modeled in the system: the standard VCC
one, which provides power to the STM32 chip and the camera, and the bus of the
battery voltage, used to feed the motors.

The two were organized in the following way. The new power bus
(Motor_power_bus) was created on the basis of the standard one. It shared the
very same structure as the other, but without the core contribution: 2 input ports
are present to obtain the voltage and current values from the motor converter, and
the current batteries output port informs the battery converter of the motor
current draw.

Conversely, the VCC power bus was modified from the automatically generated
one to exclude the signals related to the motors. As a result, the standard power
bus takes the power information from the core, the camera and the STM32 sending
the sum of their current draws to the battery converter.

The latter, which is the module supposed to inform the battery about the total
contribution, collects current from both buses by using an efficiency parameter of 1
for the motor current and the % efficiency derived in Section 4.1 for the ones
coming from the other sensors.

Note that the voltage information received by the VCC power bus comes from
the very same signal used by the power instances of the modules to inform their
sensor converters of the current voltage.

4.5.3 Energy consumption models

Among all the contributions, the energy drawn by the motors is surely the most
relevant. To evaluate it, several models were previously proposed in Section 3.4,
but only three of those could actually be implemented in the considered scenario,
either due to the lack of simulation/drone data or due to their complexity. Those
models are the empirical one, based on the current measurements performed on
the real drone, the D’Andrea one and the one from Stolaroff. About the latter,
there was no need to include the correction for high velocities, as that aspect is not
part of the considered scenario. Those models were included inside the functional
instance of the motors, specifically in the consumed_power method, in order to be
called as soon as a new motor velocity is received.

About the empirical model, no data is actually needed from Webots, as the
consumption is evaluated by means of a quadratic relation between the current and
the velocity values produced by the PID. The current is evaluated in mA, while
the motor velocity is expressed in rad/s. The velocity value fed into the equation
is simply obtained as the average velocity from the four motors (calculated in
get_data_model_1). Knowing the current drain, the battery voltage was estimated
by means of the linear equation mentioned earlier in Section 3.4.3.

78

Methodologies

The D’Andrea model required instead the declaration of a few variables inside
the set of private attributes of the functional instance of the motors. In particular,
the most important ones have been reported in Table 4.4.

Variable Value [Unit] Description
mass_drone 0.0199 [kg] Drone mass
mass_aideck 0.0044 [kg] AT deck mass

mass_battery 0.0071 [kg] Battery mass
g 9.81 [m/s?] Gravity acceleration
r 3 [(adimensional)] Lift-to-drag ratio

Efficiency of power transfer
from battery to propellers
P_avio 0.350 [W] Power due to electronics
Power consumed by the
motors during hover

efficiency | 0.9 [(adimensional)]

P_hover 8.7 [W]

Table 4.4: Parameters for D’Andrea model.

The mass was set considering the drone structure (19.9 ¢) plus the weight of the
battery (7.1 g) and the Al deck (4.4 g). Following the author’s suggestions, the
lift-to-drag ratio was set to 3, a pessimistic estimate for vehicles that are capable of
vertical takeoff and landing. The efficiency was set to 0.8 instead, in order to model
any power loss due to thermal, vibration and noise, while still considering the direct
connection of the batteries and the propellers (for example, D’Andrea estimates this
to be about 0.5, while Stolaroff 0.7). The power taken from the electronics was set
to always be 350 mW, rather than taking the one from the STM32 component and
the camera. This was done for three primary reasons. First, the power modelling
of both sensors is rather approximate due to the impossibility of performing direct
measurements on the real devices while testing the algorithms. Secondly, opening
the communication with the sensors would have implied a significant increase on
the setup complexity and general orchestration. Finally, the Bitcraze forum already
provides some values for the consumption of the drone while hovering [59, 60],
providing a much more accurate way of estimating the real one. The same reasoning
goes for the hovering power, which was again estimated on the basis of the data
provided by the company itself: the 8.7 W values was obtained by having a look at
the measurements on drone consumption for different thrust values (the one for 32
g was chosen). Note that this value was not mentioned in the original model: the
D’Andrea equation targets drones of much larger sizes, in which consumption can
be modeled to be linearly related to velocity. In this case, the power consumption
introduced by hovering was added to the velocity dependent term to obtain more
accurate results. From Webots, this model only needs the current drone velocity,

79

Methodologies

which is obtained by means of get_data_model 2.
The parameters presented in Table 4.5 were instead used to characterize the
missing parameters of the Stolaroff model.

Variable Name | Value [Unit] | Description
n 4 [(adimensional)] | Number of rotors
beta 0.001589 [m?] | Area of spinning blade
ro 1.225 [kg/m?®] | Air density
A 0.008464 [m?] Projected area

Table 4.5: Parameters for Stolaroff model.

The drone is a quadrotor (n = 4), and [was evaluated as the area of a single
spinning blade (A = 7 - 7%, where 7 is 22.5 mm, i.e. half of the propeller diameter®).
For air density, the value was taken considering the sea level conditions with 0%
humidity and a temperature of 15° C. The projected body area, instead, was
considered to be the product between the drone width and length (92 mm by 92
mm). This ignores the presence of some empty space between the propellers, and
possible modifications due to the battery installation, which were however quite
complex to model without the possibility of performing measurements on the real
device. Finally, note that the model also needs the horizontal velocity of the drone,
obtained through the get_data_model 3 method.

Along with the current consumption, the battery voltage estimate obtained for
the first model was also used to compute the power for each model. These values
were then logged in the three different files opened by the open_files method in
order to ease the comparison process performed at the end of the simulation.

As a last addition, remind that, among the others, these models were the least
complex ones. Despite that, the previous paragraphs should have evidenced how
many approximations were already needed to create a realistic set of parameters,
and how the introduction of further complexity would not have benefited the
accuracy of the results.

4.5.4 Battery and battery converter

The Crazyflie drone mounts by default a 250 mAh battery. This single cell battery
features a nominal voltage of 3.7 V' and a maximum charge/discharge current of
2C/15C (0.5 A / 3.75 A) in a 682030 package (WxHxD: 20x7x30 mm). Considering
the integrated Molex connector, the battery weighs about 7.1 g and allows the

Shttps://store.bitcraze.io/collections/spare-parts/products/propeller-pack

80

https://store.bitcraze.io/collections/spare-parts/products/propeller-pack

Methodologies

drone to hover for about 7 minutes”.

In order to model the battery in MESSY, its discharge curves are needed, in
particular the ones revealing the relation between the capacity and the voltage.
Unfortunately, Bitcraze does not declare the manufacturer of this component,
making it impossible to know the performance of the real one. To compensate for
this problem, however, batteries with similar specifications could be used. Among
these, the LPHD6520030 battery [61] from LiPol Battery seems to match in its
entirety the original model: it is a 250 mAH battery, capable of a 15C discharge,
with same nominal voltage and package dimensions. The curve of such battery,
made available by the producer, has been reported in Figure 4.9.

Rate Capability

421 0.2¢ 0.5C 16 ==320 T ==3C sc

Voltage (V)

i - i

e - 3 I S S T S S S SR S T S S S A
0 10 20 30 40 S0 60 70 80 90 100
Capacity (%)

CHARGE : CC(0.5C)/CV([4.15V to 0.05C) at 25°C
DISCHARGE : CC to 3.0V at 25°C

Figure 4.9: LPHDG6520030 charge-voltage discharge graph [61].

To use these curves, some samples were taken from different current rates and
then interpolated by means of a fourth order polynomial. To obtain the samples,
the PlotDigitizer app [62] was used. Then, these were fed into the Digipyze program
[63] to obtain the coefficients. The resulting equations made it possible to model
the relations between the SOC (State Of Charge) with the battery open circuit

"https://www.bitcraze.io/support/f-a-q/
81

https://www.bitcraze.io/support/f-a-q/

Methodologies

voltage v,. (useful to estimate the remaining battery charge) and internal resistance
rs (useful to model the ohmic voltage drop when a current flows). These have been
reported in Equations 4.2 and 4.3.

Voe = 1.39609 - SOC* — 2.95149 - SOC3+

4.2
1.60142 - SOC? — 0.10038 - SOC + 4.15517 (42)

rs = 0.0027310 - SOC* — 0.0058076 - SOC*+

4.3
0.0031560 - SOC? + 0.00005570 - SOC + 0.00001875 (4:3)

These two could then be used in MESSY to simulate the real-time behav-
ior of the battery. To handle battery operations, the platform provides three
different SystemC-AMS modules, which are able to accurately estimate the re-
maining battery capacity, the discharge current, the battery voltage, the v,
and the r,. The module that has to be customized with such equation is the
Harvester_battery_battery_voc. This class is the one handling the core bat-
tery functionality, which includes updating the SOC based on the current drawn
(received from the battery converter through the i port) and using it to estimate
the voltage and internal resistance. Note that the SOC is updated continuously by
solving an equation that takes into account the current drawn in the current and
previous time instants. Moreover, this equation was split in several sub operations
in order to prevent overflows, which appeared in the original implementation for
battery capacities exceeding 250 mAh.

Additionally, this module is also used in order to check the current status of the
battery. In particular, if the SOC falls below 10%, the system triggers an alert,
which reaches GVSoC. As seen in Section 4.3, this condition instructs the program
to force the drone to go down, and the simulation to terminate. This approach
ensures a more realistic testing condition, preventing the battery from falling below
0%.

Finally, it is worth mentioning that the battery_converter works as previously
discussed: it gets all the system currents and calculates the total one as the sum
of the motors contribution (efficiency = 1 due to the direct connection) and the
current coming from the sensors (scaled by the efficiency, which is found to be %
as shown in Equation 4.1). The latter is also checked for being in the range of 0 to
1: if it does exceed these boundaries, it is saturated to either 0 or 1, respectively,
in order to avoid possible errors.

82

Chapter 5

Experimental Results

5.1 Scenario overview and power models compar-
ison

Once the architecture was correctly developed, it was possible to test the virtual
platform with some simulations to verify its correctness. In order to do so, a
new world file was first created in Webots. This was then setup: a sequence of
gates were added, along with the drone, in order to match the wanted scenario.
The result of the 3D simulation environment has been reported in Figure 5.1. As

Figure 5.1: Overview of Webots 3D environment.

previously highlighted, the drone is meant to start from ground (red circle on the
bottom of the image), lift up and then traverse the gates (the yellow squares) in

83

Experimental Results

order. Then, the start position is reached again and the drone is brought down to
ground to stop the motors.

The simulation was first performed using the default Webots timestep, which is
automatically set to 32 ms. This value was manually set in the Webots controller
to ensure the alignment between the two. On the MESSY side, instead, the files
for the core, sensors, etc. were created with the codegen command. After porting
all the necessary modifications (the ones evidenced throughout Chapter 4), the
simulation was finally started by compiling the GVSoC program and launching it.
Note that a value of 0.1 m was chosen for the tolerance, the TARGET CYCLES
were set to 100 and the UNLOCK CYCLES to 5000. Debug mode was set to level
NONE to maximise the performances.

During the run of the application, it was possible to see the drone starting from
the initial position and traversing the gates one by one, as shown in Figure 5.4. At

Figure 5.2: The drone at the beginning of

the simulation. Figure 5.3: The drone passing a

gate.

Figure 5.4: Shots of the Crazyflie drone during the simulation.

the very end of the simulation, the Webots controller was instructed to print the
total simulation time on the terminal, and the same was done by MESSY. In the
latter case, two values were actually printed: the simulation time of the SystemC
core and the estimated Webots time (which differs from the real one due to the
errors introduced by GVSoC, as seen in 4.2.4). These information were printed in
order to be collected and analyzed, as seen in the next paragraphs.

In addition to this, a Python script was set to be automatically executed at
the end of the simulation. This collects the power and battery data from the
traces and the motors log files in order to plot the estimated power consumption
of the three models, as well as the battery level throughout the simulation. For
the specific configuration settings specified at the beginning of this chapter, the

84

Battery capacity [%]

Experimental Results

obtained graphs were the ones reported in Figure 5.5. In particular, the chosen
battery model (despite logging each of them, only one is selected for the evaluation
of the battery charge) was set to the empirical one (explained earlier in Section

3.4.3).
Empirical model
100 — 111
=
=10
=
I
90
0 20 40 60 80 100 120 140
Time (s)
D'Andrea model
80 9.125
=
=09.100
()
$9.075
70
9.050
0 20 40 60 80 100 120 140
Time (s)
Stlaroff model
60
— 101
=
5 9
=
50 £ g
0 50 100 150 0 20 40 60 80 100 120 140
Time [s] Time (s)

Figure 5.5: Power and battery information shown at the end of the simulation.

By looking at the X-axis of the battery graphs, the simulation lasted about 150
s. However, there is a difference in the range of this graph and the ones of the
battery models, with the latter reporting a time of about 140 s. Two are the main
causes of this gap. First, it should be noted that, while the battery graph is based
on the data coming from MESSY, the others reports are based on the Webots
simulation, which is called to terminate before the one of MESSY. Moreover, the
collection of the data for the motor log files is set to exclude the cases in which the
velocity of the drone propellers is 0: this data is not useful to be plot and would
also cause issues in the readability of the graphs, greatly increasing the Y-axis scale
range. This implies that the represented values exclude the few seconds at the very
beginning and at the very end of the simulation.

By looking at these graphs, few observations can already be made. For example,

85

Experimental Results

Bitcraze declares a battery life of about 7 minutes (420 s) while hovering! for
the drone. The current simulation seems not to diverge too far from that value,
as about 50% of the battery charge was consumed in about 160 s while moving,
leading to an estimated battery life of about 330 s.

The battery discharge is almost linear, with a different slope in the very last
instants: this is because in this time the four motor values are set to 0, and the
only power drawn from the battery comes from the electronics. The power models
instead show evident spikes in several points of the simulation.

The first model, the empirical one, shows a great increase in the power during
the initial lift (as the motors are set to higher RPM values to reach in the fastest
way possible the stable altitude), with only minor oscillations during the drone
movement and descent. This was sort of expected, as the only variable factored
into the equation is the motor velocity, which is just slightly modified during the
drone movement.

In the D’Andrea model (the second one), it is possible to notice 11 spikes,
corresponding to the time instants in which the drone was traversing the 10 gates
and then returning to the initial point. The rest of the time, where the drone
simply hovers, the consumption remains flat to the 8.7 W indicated by the P_hover
variable: this is because this model is directly proportional to the drone velocity in
the X/Y plane, obtained by the Webots GPS sensor.

Lastly, the Stolaroff model reported significant transients in multiple points
of the simulation. These were found to be much shorter in time than the ones
from D’Andrea, as the model is greatly influenced by the pitch angle which varies
significantly especially during accelerations and decelerations. In a specific point
of the simulation, the graph is particularly messy: this is due to the corrective
maneuvers performed by the PID when the drone falls out of the tolerance region,
which makes it rapidly take the opposite direction causing significant oscillations
before it is effectively able to stabilise itself. Note however that the data shown for
the Stolaroff model was obtained by multiplying by a factor of 5 the original power
consumption points to obtain a plausible range of values. Unfortunately, being
the model targeted to a very different kind of drones, it was not able to provide
realistic data for nano drones. Nevertheless, it was still worth it to include it as a
comparison and to understand how the drone maneuvers affect its consumption.

This correction allows to obtain, per each model, data that is in the range of
expected values and close to the measurements performed on the physical drone
model [54]. As a result, also the battery discharge curves of the three models are
very similar between each other, as reported in Figure 5.6.

https://www.bitcraze.io/support/f-a-q/

86

https://www.bitcraze.io/support/f-a-q/

Battery Charge [%]

100

90

80

70

60

50

40

Experimental Results

Comparison of the battery SOC across the 3 models

Empirical Model
D'Andrea Model
Stolaroff Model

| | | | | | | | |

0 20 40 60 80 100 120 140 160 180

Time [s]

Figure 5.6: Comparison of the battery discharge curves.

5.2 System-level simulation overhead and time
offset

Once that the simulation was effectively validated, it was possible to start with
more focused tests. In particular, the first ones were oriented towards the evaluation
of the impact on performance that the introduction of MESSY has brought into
Webots, with the introduction of the UNIX socket communication, the simulation
of the real hardware, and the power consumption estimation. To do so, the GVSoC
program, as well as the functions of the STM32 and the camera, were brought
inside a new controller and adapted in order to perform the same operations using
only Webots. By comparing the execution times of the two simulations, it was
then possible to estimate the overhead of the virtual platform approach.

To perform the tests, a Linux machine was used. The system was powered by a
quad core Intel Core i5-8250U processor, which has an integrated graphics (Intel
UHD Graphics 620), and 8 GB of DDR4 RAM running at 2400 MHz. Before each
test, the CPU (Central Processing Unit) load was taken to the 10-15% range by
closing any other user process.

To measure the execution time of the Webots simulation, the command reported
in Listing 5.1 was launched.

87

Experimental Results

Listing 5.1: Command to measure Webots execution time

time webots —log—performance=/home/performance_log.txt —no—
rendering —stdout —minimize —mode=fast /home/user/Desktop/
Crazyflie__gates_world.wbt

The UNIX time command was used to execute the program while tracking the
elapsed time from start to finish (using the real value, which included the time
spent waiting for I/O and other processes). Webots was then launched with a
series of arguments:

o -log-performance, which makes it possible to track the simulation perfor-
mance in a custom file;

e —no_rendering, which disables the 3D rendering of the scene, to ease the load
on the system;

» -stdout, to redirect the Webots console output to the standard output (useful
to manually terminate the program at its completion);

e -minimize, to let the process start in background, saving a bit of system
resources;

« -mode=fast to enable the simulation to go at the fastest speed possible rather
than 1x (i.e., real time).

Unfortunately, the Webots process does not terminate itself as the controller returns,
so the program was manually stopped as soon as the last simulation prints appeared
on the console output. To mitigate the possible errors due to human reaction times
and other conditions affecting the system speed, each measurement was repeated
three times and an average of those was used as the final value.

The tests on the performance drop were done on the basis of different timesteps
to test very different simulation times (with finer time granularity, the number of
PID iterations, on the Webots side, is much higher). Moreover, this approach also
allowed to verify the discontinuities between Webots and MESSY time. In fact, at
the end of the simulation MESSY also produces the estimated Webots time, which
however is different from the real one due to some unknown GVSoC-related delays,
as formerly explained in Section 4.2.4. It is important to underline that these
tests were performed on the exact same 3D environment, by properly adjusting the
basicTimeStep variable at each iteration and by recompiling the controller to use
that same value as timestep.

The system was tested on the 8, 16, 24 and 32 ms timestep. Running the
Webots-only simulation led to the values of Table 5.1. This includes the effective
user execution time (FEzec. time) as well as the total duration of the simulation
(Webots). The times obtained including MESSY, instead, were reported in Table

88

Experimental Results

5.2. The columns represent, in order, the timestep, the user execution time, the
SystemC core time, the Webots time, the estimate of the Webots time performed
by MESSY and error between the latter two (expressed as a percentage of the real

value).
Timestep | Exec. time | Webots
8 71239 108896
16 42108 122208
24 30536 132264
32 25212 145592

Table 5.1: Simulation time measurements excluding MESSY (data in ms).

Timestep | Exec. time | MESSY | Webots | Webots est. | Webots est.-real (%)
8 _ _ _ - -
16 212343 163732 137644 137730 0.0625
24 241893 200416 131736 131818 0.0622
32 212006 168113 142144 142210 0.0464

Table 5.2: Simulation time measurements including MESSY (data in ms).

Speaking of the first table, it is possible to see how the execution time was
found to be linearly related to the timestep: since the simulation is composed of
more iterations, even if the effective time to be simulated is lower, the number of
advancements to be performed increases as the timestep decreases. On this note,
the reader should be reminded of the fact that the Webots simulation lasts less for
lower timesteps, as the PID is able to perform a more accurate tuning of the motor
values to reach the destination, which leads to the need of less cycles.

Comparing the Webots results with the ones of the other table, the values were
found to be quite consistent. The few s differences between the Webots time of
the two simulations may be imputable to the sensor delays, which also influence
the PID response and, consecutively, the behavior of the drone. On the topic of
the PID, note that no value is present for the 8 ms timestep: being the single
PID iterations dependent on the time elapsed from the previous one, changing
timestep leads to different time differences, which generates different commands
for the motors. During such simulation, the generated motor velocities made the
drone collide with one of the gates and flip over itself. Being the current versions
of the PID not able to handle such situations, it was impossible to terminate the
simulation. This same observation was also true for timesteps greater than 32
ms: with the provided C code, it was not possible to build a "universal" controller,
requiring the developer to modify the position of the gates or to further adjust the

89

Experimental Results

PID gains with a set of trial and errors in case other simulation timesteps were
needed.

The two tables also allow to get an idea of the performance loss that are
introduced in the simulation by including MESSY. In particular, it is possible to
see that the time taken by the system to simulate the standard scenario varies
from 30 to 70 s, while about 220 s are needed to run the simulation with MESSY:
in this case, the performance hence degraded by a factor that oscillates between
66% and 88%. This result was sort of expected: with MESSY, several processes
are run in parallel and should be able to communicate a lot of data (e.g., camera
images, which weight over 0.1 MB each, are sent about 4000 times) between each
other, while that is not the case for the Webots-only simulation. On top of that,
the compiler may be doing some optimization on the Webots code, as elements
such as the camera images are generated but never used by that controller.

Finally, it was possible to see that the misalignment that forms between the
real and the estimated Webots time is very marginal, with values being always
lower than 0.1%. As previously noted, several modifications were introduced during
the tests to identify the origin of such a problem. In particular, it was found
that this offset seemed not to appear when the drone was set to run continuously,
i.e. without needing it to send an image and perform one PID iteration every
33 ms. This approach eliminates the loop used for the PID on the GVSoC side
and transfers it to MESSY (which does it using the PID_loop function), making
the former program execute drastically less instructions. Since this modification
allowed to have a ms precision of the Webots estimation time, the most probable
cause of the offset is hence related to some small time deviations that arise during
the simulation of the GVSoC instructions.

5.3 Changing simulation parameters

The simulation was then changed in order to verify the system behavior in other
conditions. In particular, the CORNER_MODE macro was activated in the GVSoC
program to evaluate again the execution times, the offsets of the two simulations
and the degradation of the system performances with a different kind of drone
trajectory. In particular, the code was set so that the drone is instructed to reach
the four corner points of the map and return back to the start position. The new
set of measurements for the Webots-only simulation led to the values of Table 5.3,
while Table 5.4 contains the ones that were obtained by including MESSY'.

With respect to before, the simulation lasted longer, due to the different path
taken by the drone. Comparing the obtained results with the ones of Table 5.1
and Table 5.2, it is possible to see that, while for the Webots-only simulations
the execution time is linearly dependent on the timestep (i.e., on the number of

90

Experimental Results

Timestep | Exec. time | Webots
8 124399 184504
16 65863 191472
24 45971 197952
32 36173 204096

Table 5.3: 4 corners time measurements excluding MESSY (data in ms).

Timestep | Exec. time | MESSY | Webots | Webots est. | Webots est.-real (%)
8 348069 235223 195632 195731 0.0506
16 342202 239287 199616 199715 0.0496
24 441168 307773 197736 197864 0.0647
32 340446 203872 203872 203970 0.0481

Table 5.4: 4 corners time measurements including MESSY (data in ms).

advancements performed during the simulation), that was not the case for the ones
run with MESSY. In the latter case, the machine time seems to be completely
independent: this is probably related to the fact that the CPU is very constrained
by the socket connection, and, since the number of PID iterations remained almost
the same per each case (simulations take very similar times, and the operations are
always performed at a 33 ms rate), the advancement of multiple timesteps at a
time has almost no impact on the performances. In both scenarios, an exception
should be made for the 24 ms case: this simulation always took longer to complete,
probably due to the fact that this is the only number not belonging to the set of
powers of 2, which makes computations less efficient on the MESSY side. Note also
that, in this case, the absence of obstacles made it possible to test the simulation
performances with the 8 ms timesteps, as the drone could not collide with objects
anymore.

Another meaningful observation is the fact that execution time does not depend
on the used power model, as the simulation kernel is advanced of the same amount
of time independently on the operations to be performed. The models may have
an impact on the time taken by the machine to run the program, due to the
specific calculations being performed per each model. However, since standard C++
operators were used for the motor consumption equations, no practical difference
was found.

Speaking of the actual performance of the simulation, these were found to be
consistent with the ones of Section 5.1: the drop in performance with respect to
the Webots only simulation (expressed as a percentage) was in the order of 64%
- 90%. The result again would have greatly improved by limiting the amount of

91

Battery capacity [%]

100

90

80

70

60

50

40

30

Experimental Results

images sent over the socket with the usage of the PID_loop function rather than
the current setup.

This new simulation also confirmed two important observations: the estimated
Webots time is evaluated very accurately by MESSY (with an error that is always
lower than 0.1%), and there is a strong consistency between that value and the

real one, with minor changes imputable to the differences in the generated motor
values.

Empirical model

— 111
=
510
=
£ of
0 50 100 150 200
Time (s)
D'Andrea model
g 9.10
g 9.08+
£
9.06
0 50 100 150 200
Time (s)
Stlaroff model
g 104
o
=
£ 8
50 100 150 200 0 50 100 150 200
Time [s] Time (s)

Figure 5.7: Power and battery information (empirical model) for 4 corners
simulation.

Having a look at the consumption data (reported in Figure 5.7 considering the
empirical model with the 8 ms timestep), it is possible to notice that the longer
simulation led to a higher battery consumption, as expected. Considering the three
power models in general, less peaks are found (only five, one per each of the four
targets and the final one to reach the start position). Also the oscillations have
reduced drastically, especially when considering the Stolaroff model: the velocity is
maintained constant most of the time, without rapid direction changes as relative
accelerations/decelerations. Moreover, the battery discharge was found to be very
consistent between the three models, and among the different timesteps as well.
As an example, the discharge curve of the battery (according to the empirical

92

Experimental Results

model) for the 8 ms, 16 ms and 32 ms timesteps have been reported in Figure 5.11.
The resulting charge drop is slightly dissimilar, which is imputable to the different
length of the simulation given by the different motor commands produced by the
PID: as seen in Section 5.1, in fact, the tests proved again that lower simulation
times are obtained with lower timesteps.

100 100 100

90 9 %0

80 80 80

70 70 70

60 60 60

Battery capacity [%]
Battery capacity [%]
Battery capacity [%]

50 50 50

40 20 40

30 30 30

0 50 100 150 200

0 50 100 150 200 250 0 50 100 150 200 250
Time [s]

Time [s] Time [s]

]F"igure 5.8: 8 ms Figure 5.9: 16 ms Figure 5.10: 32 ms
timestep. timestep. timestep.

Figure 5.11: Battery discharge curves for different timesteps.

5.4 Testing different batteries

In this paragraph, a deeper focus on power is presented, in order to provide
an example of the usefulness of the developed virtual simulation platform for
DSE. Among the different choices that could be made to improve the drone
performance, the selection of the battery is surely one of the most noteworthy.
Larger batteries provide additional power to the system, but their additional weight
may counterbalance the benefits. Moreover, larger batteries may be more expensive,
and being able to simulate their behavior is thus a very valuable strategy for saving
unnecessary costs.

Three batteries were chosen to be tested against the original one. Note that,
to change battery model, only the battery capacity, its mass and the fourth-order
equations contained in the Harvester_battery_battery_voc should be updated
with the new ones. As per the prior case, the latter may be obtained from the
respective discharge curves by means of the Digipyze program [63]. The obtained

93

Experimental Results

values for the two equations were then included in this module, in order for the user
to select which battery to simulate by adjusting the BATTERY MODEL macro defined
in the simulation_configs.cpp file. Speaking of the configuration file, note that
the same environment was used throughout the various simulations, with the same
settings specified in Section 5.1 (drone traversing 10 gates, 32 ms timestep).

The chosen battery model was the Stolaroff one. This was selected as it is going
to be the most accurate between the three: despite being based on a corrective
coefficient, is the only one that truly takes into account the effect of mass, as the
D’Andrea model includes a fixed hovering power (which however should change
linearly with the mass) and the empirical one does not factor it in at all.

The first battery that was tested was the UFX402525 250 mAh 3.7 V 25C
battery from Guangdong UFine New Energy Co. [64]. This was chosen to see if
any effect can be noticed by using a battery with identical specifications coming
from another manufacturer. With respect to the previous one, this battery can be
bought for cheaper, and it weighs less than the original one (5.8 g versus 7.1 g).
The scope of the simulation was then to check whether the choice of this model is
truly more convenient, or not. Its discharge curve is represented in Figure 5.12,
while Equation 5.1 and Equation 5.2 report the models (equations) for the internal
series resistance and open circuit voltage.

DISCHARGE RATE CHARACTERISTICS

4300
——05C =—I1C plo 3C =——5C
4100 NS

3.900

3.700

(v}

3.500

3.300

VOLTAGE

3.100

2.500

Charge: CC-CV, 0.5C., 4.2V, 0.02C cut off@25°C |
Discharge: CC. 0.5C/1C/2C/20/5C, 2.75V cut off

2,700

2.500
0.00% 20.00% 40.00% 60.00% 20.00% 100.00%

CAPACITY (34)

Figure 5.12: UFX402525 battery discharge curves.

94

Battery capacity [%]

100

90

80

70

60

Experimental Results

Vpe = —3.55202 - SOC* + 5.59181 - SOC?—
1.95993 - SOC? — 0.98731 - SOC + 4.16759

r, = 0.0013721 - SOC* — 0.0018010 - SOC3+

5.2
0.0006004 - SOC? + 0.00000473 - SOC + 0.00017039 (

The power information obtained after the simulation is reported in Figure 5.13.

Empirical model

)

— 111
=
510
=
g o
0 20 40 60 80 100 120 140
Time (s)
D'Andrea model
9.1254
% 9.100
Q
£ 9.075
o
9.050
0 20 40 60 80 100 120 140
Time (s)
Stlaroff model
107
2 9
g
g 8
(=
7_
50 100 150 0 20 40 60 80 100 120 140
Time [s] Time (s)

Figure 5.13: UFX 250 mAh battery results.

By comparing the performances of this battery with the original ones, it is
possible to state that the two showed a very comparable behavior. However, the
UFX battery seemed to have a slight advantage in terms of efficiency: the battery
discharged by 3% less at the end of the simulation, making it de-facto the best
possible choice when comparing it to the original one considering both performances
and cost. The effectiveness of the battery is surely related to its lower weight: by
looking at the consumption data, it was possible to see that per each model less
power was consumed with the UFX one. This advantage greatly reduces the needed

95

Experimental Results

amount of power, making the differences introduced by the internal behavior of
the battery less significant.

A second battery was included in order to verify the system behavior in the
presence of a higher capacity. The model that was considered was the 300 mAh 3.7
V' 20C battery from Cyclone [65]. In particular, this was chosen in order to test
whether the additional energy would benefit the simulation, by considering a product
from yet another manufacturer. The battery weighs 8.1 g, and its dimensions
are not too far off from the ones of the original one (WxHxD = 30x3.5x48 mm).
Figure 5.14 represent the relation between battery charge and voltage, while the
corresponding equations have been reported in Equation 5.3 and Equation 5.4.

45
—1C (300mA)
—5C (1.504)
—9C (2.70A)
12C (3.60A)
15C (4.504) |
——18C (5.40A)
——20C (6.00A)

}e\\\

0 20 40 &0 80 100120 140 180 180 200 220 240 260 280 300 320

Capacity (mAh)

777

Figure 5.14: Cyclone 300 battery discharge curves.

Vpe = —2.88116 - SOC* 4 3.95055 - SOC?—

5.3
0.75681 - SOC? — 1.06078 - SOC + 4.15788 (5:3)

s = 0.00065739 - SOC* — 0.0008854 - SOC*+

5.4
0.00043203 - SOC? — 0.0001729 - SOC + 0.0001722 (5.4)

The results have been reported in Figure 5.15. Also in this case, the selected
battery appeared to overcome the performance of the original one. In this scenario,

96

Battery capacity [%]

100

90

80

70

60

Experimental Results

Empirical model

— 111
=
510
=
£ of
0 20 40 60 80 100 120 140
Time (s)
D'Andrea model
__9.1251
=
— 9.100+
2
) 9.0754
9.0501 : . i i i ; i i
0 20 40 60 80 100 120 140
Time (s)
Stlaroff model
111
= 101
g o
(o]
a.
8,
50 100 150 0 20 40 60 80 100 120 140
Time [s] Time (s)

Figure 5.15: Cyclone 300 mAh battery results.

the additional capacity made the difference: the higher weight (which is however
limited to 1 additional gram) was counterbalanced by the extra amount of energy
made at disposal by the Cyclone battery, leading to better overall results. This
comes at a greater expense however, opening the need to find the best ratio between
performances and costs.

Finally, a third battery was tested to simulate the Crazyflie behavior for an even
higher capacity. This was done as Bitcraze also sells 350 m Ah batteries from Tattu
that can be used to improve the hover-time (up to about 3 additional minutes ?)
at a higher cost. Unfortunately, it was impossible to gather the needed curves for
the original battery (very few LiPo manufacturers actually make these public), but
the LPHD7820030 model from LiPol Battery was close enough to the Tattu one,
considering both dimensions(20x8x33 vs 20x7.8x30 mm), capacity, voltage (3.7
V), weight (9.1 g vs 9.2 g), number of cells (1) and C-rate (15C'). The company
provides for this model the same battery discharge curves that have been reported

’https://store.bitcraze.io/collections/accessories/products/
350mah-lipo-battery

97

https://store.bitcraze.io/collections/accessories/products/350mah-lipo-battery
https://store.bitcraze.io/collections/accessories/products/350mah-lipo-battery

Battery capacity [%]

100

95

90

85

80

75

70

65

Experimental Results

in Figure 4.9, while the v,. and rs equations were calculated accordingly to the
new capacity and are reported in Equation 5.5 and Equation 5.6, respectively.

Voe = 1.39609 - SOC* — 2.95149 - SOC3+

5.5
1.60142 - SOC? — 0.10038 - SOC' + 4.15517 (5:5)

r. = 0.0019507 - SOC* — 0.0041482 - SOC3+

5.6
0.0022543 - SOC?* + 0.00003978 - SOC' + 0.00001339 (5.6)

The obtained performances have been reported in Figure 5.16. Also in this case,

Empirical model

— 111
=
5 10
=
£ o
0 20 40 60 80 100 120 140
Time (s)
D'Andrea model
— 9.1251
=
 9.100+
g
$ 9.075
9.050+
0 20 40 60 80 100 120 140
Time (s)
Stlaroff model
— 111
=
w104
(8]
=
g 9
50 100 150 0 20 40 60 80 100 120 140
Time [s] Time (s)

Figure 5.16: LiPol 350 mAh battery results.

the additional capacity made it worth the upgrade: the battery was able to last
even more than the previous one, leading to an estimated flight time that was a
bit lower than the declared one (450 s instead of 600 s). Hence, this test led to
another Pareto point, as this battery has proved to provide the best performance
at the highest cost. A company should carefully evaluate these aspects to identify
the best choice, along with considering the scope of the product. For example,

98

Battery Charge [%]

100

95

90

85

80

75

70

65

60

55

50

Experimental Results

remember that the Crazyflie drone was built as a modular device, with several
decks that can be purchased to enhance the system functionalities. Hence, it is
not always worth the extra battery life: the additional grams introduced by the
battery would also limit the payload that could be transported by the drone, which
is not necessarily the best option.

As a final comparison, a curve including the battery discharges per each of the
three batteries has been reported in Figure 5.17.

Comparison of the battery SOC across the 3 batteries

UFX 250 mAh
Cyclone 300 mAh
LiPol 350 mAh

| | | | | | | | |

0 20 40 60 80 100 120 140 160 180

Time [s]

Figure 5.17: Comparison of the battery discharge with the three batteries.

These simulations surely allow companies to make more informed choices, but
may benefit the customer as well, as they could be used to evaluate if the battery
upgrade is worth for the desired use case or not.

99

Chapter 6

Conclusions and future
works

This thesis has successfully proven the effectiveness of MESSY in modelling func-
tional and extra-functional parameters of a complex robotic device. The inclusion
of Webots allowed the virtual platform to provide a complete test environment to
verify the Crazyflie behaviour, as well as its power performance. Nonetheless, the
system may benefit from further works in multiple aspects.

The first one is related to the improvement of the drone implementation. In
particular, at its current version, the drone PID controller suffers some known limits
that were also evidenced during the tests. Being a very simple implementation, this
control algorithm is not capable of handling the yaw rotation correctly, meaning
that the drone is able to change its altitude and speed, but struggles when dealing
with rotations. Moreover, this issue makes the drone not capable of recovering from
drone collisions or rapid speed changes, making the system response potentially
unbound and hence more difficult to perform simulations with different timesteps.
On the topic of the PID, the partial and integral PID gains were experimentally
adjusted to provide a sufficiently good response, but additional tests may help in
further tuning these parameters.

On the MESSY side, the simulation capabilities could be further enhanced by
adding the models of the other sensors of the Crazyflie, such as the GPS or the
IMU. A deeper study on the firmware could also be beneficial, in order to model
more accurately both the functional and the power specifications of the STM32,
the camera and the nRF chip. Moreover, BitCraze actually provides some Python
bindings for the real firmware [66], which could be integrated in MESSY to have a
true representation of the performed operations.

On the GVSoC side, instead, a neural network could be developed to generate
the target coordinates on the basis of the image captured by the camera. This

100

Conclusions and future works

approach would help to simulate with a much higher accuracy the capabilities
of the algorithm, and would be more realistic especially for the extra-functional
aspects.

Another point to consider regards the power models that were used to estimate
the motor power consumption. Despite being sufficiently accurate for the purposes
of this thesis, those still did not consider various aerodynamic and physics effects
which would significantly influence the total consumption. As a result, even the
most accurate model of the onboard electronics would become meaningless, as the
contribution of the four propellers is undoubtedly the biggest. Models such as [53]
or [50] could be implemented to mitigate or even solve these issues, allowing to
obtain a true and accurate functional and extra-functional representation of the
system performance.

In addition to all of this, other IPC mechanisms could be put under test in order
to explore the performance of the other approaches, which may be found to be more
effective than the UNIX sockets and would help in reducing the performance gaps.
Some speedups may also be obtained by opting for much simpler packets, as the
inclusion of the JSON library surely introduced a significant overhead, especially
for smaller messages.

Nevertheless, the obtained virtual platform already produced satisfactory and
meaningful results. An example of verification and DSE was provided in this
thesis, and the system showed to be entirely functional with output results closely
matching the real model data.

Together, these considerations underline the potential and the ease of customiza-
tion provided by MESSY, showcasing its capabilities as a very powerful functional
and extra-functional simulation environment for RISC-V based systems.

101

Appendix A

Additional power models

Gong et al.

This model [67] is much more detailed with respect to the considered ones, with
strong focus on nanodrones with multirotors characteristics. It combines the
different stages of the drone flight: ascend, horizontal flight and descent.

Chan and Kam

Chan and Kam [68] propose instead a systematic evaluation of the contribution of
propellers and electric parts (focusing in this case on the losses along the power
path). Also in this case, the contributions are splitted across the different phases
of the drone flight, such as hover, tilted flight and descent.

Jacewicz et al.

In this case [52], the model considers aspects such as momentum of inertia (measured
experimentally) and non-linear aerodynamics aspects.

Phung and Moring

The model proposed by Phange and Moring [69] targets the Vertical Take Off
and Landing (VTOL) UAVs and was developed combining the study of propeller
profiles, momentum and blade theory.

Michel et al.

Finally, this model [53] tries to incorporate all the contributions in one single system
of equations. The included aspects are physics, aerodynamics of the rotor-propeller
assembly, battery, electro-mechanical dynamics of motors and motor controller,
plus the rigid body dynamic of the airframe.

102

Appendix B

VirtualConnector class

json VirtualConnector ::read_ from_channel(int fd) {

int num_read, counter_ read, string_ length;
unsigned char rd_len_ buffer [4];

5 char *rd_json_ buffer;

6 json data;

8 // Read how many characters the json will be long
9 string_length = 0;
10 num_read = read (fd, &rd_len_buffer, 4);

12 for (int i = 0; i < num_read; i++)
13 string_length = string length | (rd_len_ buffer[i] << (8 * i))

bl

15 #if DEBUG_LEVEL >= DEBUG_LEVEL HIGH

16 std :: cout << "Incoming packet of length: " << string_length <<
endl;

17 #endif

18

19 // Use the number to allocate memory required to store the json
string

20 num_read = 0;

21 counter_read = 0;

22 rd_json_buffer = (char %) malloc((string length + 1)% sizeof(
char));

24 while (counter_read < string_length) {

2 num_read = read (fd, rd_json_buffer + counter_ read,
string_length — counter_read);

26 counter_read += num_ read;

103

VirtualConnector class

if (num_read = 0)
break ;

¥
rd__json_ buffer [counter_read] = "\0’;
#if DEBUG_LEVEL >= DEBUG_LEVEL HIGH
std::cout << "Packet received with length: " << counter_read <<
endl;
#endif

// Parse the json

data = json::parse(rd_json_buffer);
free(rd_json_buffer);

return data;

}

5| void VirtualConnector :: write_on_ channel(int fd, json data) {

unsigned char length_ buffer [4];
char xwr_ buffer;

int json_length;

std ::string json_string;

json_string = data.dump() ;
json_length = json_string.size();

#if DEBUG_LEVEL >= DEBUG_LEVEL HIGH
std :: cout << json_string << endl;
#endif
length__buffer [0] = json_length & 0x000000FF ;
length__buffer [1] = (json_length >> 8) & 0x000000FF;
length__buffer [2] (json_length >> 16) & 0x000000FF ;
length_buffer [3] = (json_length >> 24) & 0x000000FF ;
write (fd, length_ buffer, sizeof(length_ buffer));

wr__buffer = (char x) malloc(json_length * sizeof(char));
strncpy (wr__buffer, json_string.c_str(), json_length);
write (fd, wr_buffer, json_length);

free (wr__buffer);

104

Appendix C

PID iteration function

void Sensor_stm32 wrapper_functional:: PID iteration () {

1

3 Sensor_stm32_ wrapper_functional:: get_ sensor_data();

1

5 pid.time_dt = pid.currenttime — pid.past_time;

6 double vx_global = (pid.x_global — pid.past_x_global) / pid.
time_ dt;

7 double vy_global = (pid.y_global — pid.past_y_global) / pid.
time_dt;

9 // Get body fixed velocities

10 double cosyaw = std::cos(pid.actualYaw);

11 double sinyaw = std::sin(pid.actualYaw);

12 pid.actualstate.vx = vx_global % cosyaw 4+ vy_ global % sinyaw;

13 pid.actualstate.vy = —vx_ global * sinyaw + vy_ global x cosyaw;

14

15 // Initialize other values

16 pid. desiredstate.roll = 0;

pid. desiredstate.pitch = 0;
pid. desiredstate.vx = 0;
pid.desiredstate.vy = 0;

pid. desiredstate .yaw_rate = 0;
double forward desired = 0;
double sideways_desired = 0;
double yaw__desired = O0;

double height_ diff desired = 0;

NONONNN NN E e e
R W N R O © w

// Logic for generation of next movement based on current status
with respect to target

7 double x_ diff = pid.x_global — pid.targetposition .x;

double y_diff = pid.y_global — pid.targetposition.y;

105

NN
o'

PID iteration function

double z_diff = pid.actualstate.altitude — pid.targetposition.z;

// Logic to make the drone follow the shortest path to reach the
target destination

double x_abs = abs(x_ diff);

double y_abs = abs(y_diff);

double z_abs = abs(z_diff);

double max_ abs = 0;

it (x_abs > y_abs) {
if (x_abs > z_abs) {

max_abs = x_abs;

else {
max_abs = z_abs;
}
}

else {
if (y_abs > z_abs) {
max_abs = y_abs;

}

else {
max_abs = z_ abs;
}

}

double x_ coeff = x_abs/max_abs;
double y_ coeff = y_abs/max_abs;
double z__coeff = z_abs/max_abs;

int temp_counter = 0;

if (x_diff > pid.tolerance) {
sideways_desired = x_ coeff % 0.5;
temp__counter+-+;

if (x_diff < —pid.tolerance) {
sideways_desired = — x_ coeff % 0.5;
temp_ counter-++;

if (y_diff > pid.tolerance) {
forward__desired = — y_ coeff x 0.5;
temp_ counter++;

if (y_diff < —pid.tolerance) {
forward__desired = y_ coeff x 0.5;

temp_ counter+4+;

if (z_diff > pid.tolerance) {
height_diff desired = — z_ coeff % 0.2;

106

88
89
90
91

92

97

98

99
100
101
102
103
104
105
106

107

108

109

PID iteration function

temp_ counter++;

if (z_diff < —pid.tolerance) {
height_diff_ desired = z_ coeff % 0.2;
temp_ counter++;

}

if (temp_counter = 0) { // Meaning: if all the conditions are
valid (drone is whithin tolerance distance from the target in all
directions)
pid.target__counter 4= 1;
if (pid.target__counter >= TARGET_ CYCLES){
pid.target_reached = true;
x(register__memory + STATUS REG OFF) = TARGET REACHED;
pid.num_ iteration = 0;
}
}
pid.num_ iteration += 1;
if (pid.num_iteration >= UNLOCK_CYCLES%32/webots_timestep) { //
Scaling the number of cycles to the timestep to avoid possible
misbehaviors with smaller timesteps
pid.target_reached = true;
x(register_memory + STATUS REG_OFF) = TARGET REACHED;
cout << "Warning: target position could not be reached!
Bypassing to the next one... " << endl;
pid.num_ iteration = 0;
}

// Updating the desired values

pid . height_desired += height_diff_ desired * pid.time_dt;
pid. desiredstate .yaw_rate = yaw_ desired;

pid. desiredstate.vy sideways_ desired ;

pid. desiredstate.vx = forward_ desired;
pid.desiredstate.altitude = pid.height_desired;

pid.pidVelocityFixedHeightController (pid.actualstate , &pid.
desiredstate , pid.pidgains, pid.time_ dt, &pid.motorpower);

// Communicating the values to be applied to the motors, and
preparing for the next iteration

motl. write (pid.motorpower.ml) ;

mot2. write (pid . motorpower .m2) ;

mot3. write (pid.motorpower.m3) ;

mot4 . write (pid . motorpower.m4) ;

Sensor__stm32__wrapper_ functional :: send__data_to_motor () ;
pid.past_time = pid.currenttime;

pid.past_x_global = pid.x_global;

pid.past_y_global = pid.y_global;

107

Appendix D

GVSoC program - Initial
definitions and most
important methods

#include "pmsis.h'

#ifdef GAP SDK

#define
#else

s|#define
| #endif

#define
#define
#define
#define
#define

s|#define

#define

s|#define

#define

#define
#define
#define
#define

s|#define
a|#define
s|#define

AXI BASE 0x80000000

AXI _BASE 0x20000000

NUM._ITERS 10
CAMERA CIRL REG OFFSET 0

CAMERA IMAGE OFFSET 2

STM32 CIRL REG OFFSET 102402
STM32 STAT REG OFFSET 102403
STM32 TARGET POS X OFFSET 102404
STM32_TARGET POS_ Y OFFSET 102412
STM32 TARGET POS Z OFFSET 102420

GET IMAGE 1

INIT PID 1

GET STABLE 2

SET TARGET 3
RUN_SINGLE STEP PID 4
RUN _PID 5

TARGET REACHED 6

GO _DOWN 7

108

41

o

44

GVSoC program - Initial definitions and most important methods

s|#define PRINT SIMUL TIME 8

#define BATTERY LOW 9
#define ITER ADVANCE 10

// Uncomment the specific line to use the wanted debug feature
/] #define DEBUG _MODE
// #define CORNERS_TEST 4

// Define the number of times the circuit is repeated throughout the
simulation

s|#define NUM_OF CIRCUIT LOOPS 1

7| // Main variables

charx camera_control = (volatile char x)AXI BASE +
CAMERA CIRL REG OFFSET;

charx camera_image = (volatile char x)AXI BASE + CAMERA IMAGE OFFSET;

char*x stm32_control = (volatile char %)AXI_BASE +
STM32 CTRL REG OFFSET;

charx stm32_status = (volatile char x)AXI BASE +
STM32 STAT REG OFFSET ;

doublex stm32_x = (volatile double =*)(AXI BASE +
STM32_TARGET POS X OFFSET) ;

doublex stm32 y = (volatile double =) (AXI BASE +
STM32 TARGET POS Y OFFSET) ;

doublex stm32_z = (volatile double =*)(AXI_BASE +
STM32 TARGET POS Z OFFSET) ;

int target_reached = 0;

ilint low__battery = 0;

int target_point = 1;

int main(void)
{
uint32_t errors = 10;
uint32_t core_id = pi_core_id(), cluster_id = pi_cluster_id();

#ifdef DEBUG MODE

// Imitial check

printf("[GVoC] List of sensors and respective initial data:");
check__camera_registers () ;

check_stm32_registers () ;

#endif

init_pid();
get__stable () ;

// Debug mode — Corners simulation

#ifdef CORNERS TEST

#if CORNERS TEST > 0

109

116

GVSoC program - Initial definitions and most important methods

printf (" [GVoC] Reaching the first target cormer\n");
set__target(—1, 11, 1.15);
#endif

#if CORNERS_TEST > 1

printf (" [GVoC] Reaching the second target corner\n");
set__target (17, 11, 1.15);

#endif

#if CORNERS_TEST > 2

printf (" [GVoC] Reaching the third target corner\n");
set__target (17, —11, 1.15);

#endif

#if CORNERS_TEST > 3

printf("[GVoC] Reaching the fourth target corner\n");
set__target(—1, —11, 1.15);

set__target(—2.6, 0, 1);

#endif

#endif

// Standard mode — gate traversing simulation
#ifndef CORNERS_TEST

#ifdef NUM_OF_CIRCUIT LOOPS

for (int i = 0; i < NUM_OF_CIRCUIT LOOPS; i++) {

set_target(—0.8, 1.5, 1.00);
set__target (2, —0.4, 1.00);
set_target (4.7, 1.7, 1.00);
set_target (7.7, 3.1, 1.00);
set_target (9.8, 2, 1.00);
set_target (11.3, —3.5, 1.00);
set_target (9.4, —6.4, 2.15);
set__target (5.3, —6.5, 3.15);
set_target (1.6, —5.8, 1.65);
set__target (—0.3, —4.7, 1.35);
set_target(—2.6, 0, 1);

¥

#endif

#endif

printf("\n[GVoC] Making the drone descend... ");

go_down () ;

printf("ground reached!\n");

printf("\n[GVoC] End of simulation! \n[GVoC] Bye from GVSoC!");
print_simul_time () ;

110

117
118
119

12

121
122

123

124
125
126
127
128
129
130
131

132

133
134
135
136
137
138
139
140

141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160

GVSoC program - Initial definitions and most important methods

return errors;

}

void set_target(double x, double y, double z) {

if (!low_battery) {
printf("\n[GVoC] New destination: point %d...", target_point)

target_point +=I;
*stm32_x = X;
*stm32_y = y;
*stm32_z = z;

perform (SET_TARGET) ;

while (! target_reached && !low_battery) {
get__image () ;
advance_simul (10); // Advancing the simulation by 20 ms
to emulate the neural network inference time
run_single_pid_iter () ;
}

target_reached = 0;

*(stm32 control) = 0;
*(stm32_status) = 0;
printf("reached!\n");

if (low_battery) {
printf("\n[GVoC] Skipping gate %d: LOW BATTERY", target_point
)

}

target_point +=I;

}

void run_single_pid_iter () {

#(stm32 control) = RUN SINGLE STEP PID;
while (% (stm32_status) != RUN_SINGLE STEP_ PID) {
if (*(stm32_status) == BATTERY LOW) {
low__battery = 1;
printf("\n[GVoC] Low battery !\n");

return;

}

if (*(stm32_status) == TARGET REACHED) {
target_reached = 1;
return ;

111

Appendix E

Webots controller - main and
sampleRun methods

=~ N

NN N NN N NN
o w 5

-3

int main() {

int server_socket, client_socket;
struct sockaddr_un address;
Robot *robot = new Robot () ;

#ifdef DEBUG _MODE
logfile .open("simulation.log");
if (llogfile) {

cerr << "An error has occurred while opening the logfile!" <<
endl;

return —1;
cout << " " << endl;
#endif

// Socket creation
#ifdef DEBUG_MODE

logfile << "Sockets creation..." << endl;
#endif
server__socket = socket (AF_UNIX, SOCK STREAM, 0);
if (server_socket = —1) {
cout << "> Cannot create the socket! Exiting... " << endl;

return —1;

}

// Fill in socket address
memset(&address, 0, sizeof(address));

112

34

66

67

69

-~ ~
¥

Webots controller - main and sampleRun methods

address.sun_ family = AF UNIX;
strepy (address.sun_path, socket__path.data());
unlink (socket__path.data());

// Bind the socket to a path

if (bind(server_ socket, (struct sockaddrx) &address, sizeof (

address)) = —1) {

cout << "> Cannot bind path to the socket! Exiting...
endl;

close (server_socket);

return —1;

}

// Listen to any process who wants to communicate
if (listen (server_socket, 1) = —1) {

cout << "> Cannot listen to any connection! Exiting...

endl;
close (server_socket);
return —1;

}

// Wait for a client to connect
client__socket = accept(server_socket, NULL, NULL);
if (client_socket = —1){
cout << "Error while accepting connection! Exiting...
endl;
close (server_socket);
return —1;

}

// Initialize motors

Motor *ml_ motor = robot—>getMotor ("ml motor");
ml_ motor—>setPosition (INFINITY);

ml motor—>setVelocity (—1.0);

Motor *m2_motor = robot—>getMotor ("m2 motor");
m2_motor—>setPosition (INFINITY) ;
m2_motor—>setVelocity (1.0) ;

Motor *m3_motor = robot—>getMotor ("m3_motor") ;
m3_motor—>setPosition (INFINITY) ;

m3 motor—>setVelocity (—1.0);

Motor *m4_motor = robot—>getMotor ("m4 motor");
m4_motor—>setPosition (INFINITY) ;
m4_motor—>setVelocity (1.0) ;

// Initialize sensors

<<

n <<

[<<

InertialUnit *imu = robot—>getInertialUnit ("inertial unit");

imu—>enable (simul__timestep);
GPS *gps = robot—>getGPS("gps");
gps—>enable (simul__timestep) ;

113

Webots controller - main and sampleRun methods

73 Gyro xgyro = robot—>getGyro("gyro");

74 gyro—>enable (simul_timestep) ;

75 Camera xcamera = robot—>getCamera("camera');

76 camera—>enable (simul_timestep) ;

77 DistanceSensor xrange_front = robot—>getDistanceSensor ("
range_front");

78 range_ front—>enable (simul__timestep);

79 DistanceSensor xrange_left = robot—>getDistanceSensor("range left
")

80 range_left —>enable (simul_timestep);

81 DistanceSensor xrange_back = robot—>getDistanceSensor ("range back
")

82 range_ back—>enable (simul__timestep);

83 DistanceSensor xrange_right = robot—>getDistanceSensor ("
range_right");

84 range_right—>enable (simul_timestep);

85

86 // Wait for 2 seconds (required by the current implementation of
get_stable_ position)

87 robot—>step (2000) ;

89 int width = camera—>getWidth

()
90 int height = camera—>getHeight () ;
92 while (!'stop){
93 sampleRun(client socket , camera, width, height, ml motor,
m2_motor, m3_motor, m4 motor, robot, imu, gps, gyro);

o }

96 #ifdef DEBUG MODE

97 logfile << "Closing sockets and cleanup..." << endl;
08 logfile.close ();

99 #endif

100

101 close (client__socket);

102 close (server_socket);

103
104 delete robot;
105 return 0;

106 }
107
10s| void sampleRun(int client_socket , Camera xcamera, int width, int
height , Motor *ml, Motor *m2, Motor *m3, Motor *m4, Robot *robot,
InertialUnit ximu, GPS xgps, Gyro sgyro) {

109
110 json sendme;

111 json received = receiveMessage (client_socket);

113 // Reading the command

114

Webots controller - main and sampleRun methods

114 string rd_command = received ["command"];

115

116 #ifdef DEBUG _MODE

17 logfile << "Received command was " << rd_command << endl;
118 #endif

119

120 // Check which command was received

121

122 if (rd_command = "GET INIT DATA") {

123 sendme = getInitData (robot, gps);

124

125 #ifdef DEBUG _MODE

126 logfile << "Sending initial data..." << endl;
127 #endif

128

129 if (rd_command = "GET IMAGE") {

130 sendme = getCameralmage (width, height, camera);
131

132 #ifdef DEBUG_MODE

133 logfile << "Sending an image..." << endl;

134 #endif

135

136 if (rd_command = "GET_SENSORS") {

137 sendme = getSensors(robot, imu, gps, gyro);
138

139 #ifdef DEBUG_MODE

140 logfile << "Sending sensor data..." << endl;
141 #endif

142

143 if (rd_command = "SET VELOCITY") {

144 motor__power__t mp;

145 mp.ml = received ["ml"];

146 mp.m2 = received ["m2"];

147 mp.m3 = received ["m3"];

148 mp.m4 = received ["md"];

149 setMotors (ml, m2, m3, m4, mp, robot);

150 return ;

151

152 if (rd_command = "GET_DATA 2") {

153 sendme = send_data_model 2(robot, gps);

154

155 #ifdef DEBUG MODE

156 logfile << "Sending data for model 2" << endl;
157 #endif

158

159 if (rd_command = "GET DATA 3") {

160 sendme = send__data_model 3(robot, gps, imu);
161

162 #ifdef DEBUG MODE

115

Webots controller - main and sampleRun methods

163 logfile << "Sending data for model 3" << endl;

164 #endif

165

166 if (rd_command = "STOP") {

167 sendme = stop_simul(robot, gps);

168 stop = 1;

169

170 #ifdef DEBUG_MODE

171 logfile << "Detected the necessity of stopping the simulation
I'" << endl;

172 #endif

173

174 if (rd_command = "ADVANCE TIME") {

175 int time = received|["time"];

176 robot—>step (time) ;

177

178 #ifdef DEBUG MODE

179 logfile << "Simulation advanced by " << time << " ms' << endl
180 #endif

181 return;

182 }

183

184 #ifdef DEBUG MODE

185 // Saving the JSON in a file for debugging purposes
186 std :: ofstream file ("output.json");

187 file << setw(4) << sendme << endl;

188 #endif

189

190 // Sending the produced result

191 sendMessage (client__socket , sendme) ;

192 return;

193 }

116

Bibliography

Daniel Caballero-Martin, Jose Manuel Lopez-Guede, Julian Estevez, and
Manuel GraC=a. «Artificial Intelligence Applied to Drone Control: A State
of the Art». In: Drones 8.7 (2024). DOIL: 10 . 3390/ drones8070296. URL:
https://www.mdpi.com/2504-446X/8/7/296 (cit. on p. 1).

Simulink Documentation. Simulation and Model-Based Design. 2020. URL:
https://www.mathworks.com/products/simulink.html (cit. on pp. 2, 26).

Fabrice Bellard. « QEMU, a fast and portable dynamic translator». In: Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference.
ATEC ’05. Anaheim, CA: USENIX Association, 2005, p. 41 (cit. on pp. 2,
25).

Antmicro. Renode: a development framework for embedded systems. https:
//renode.io/. Accessed: 2024-09-10. 2024 (cit. on pp. 2, 25).

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovi¢.
The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA. Tech.
rep. UCB/EECS-2011-62. May 2011. URL: http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2011/EECS-2011-62.html (cit. on pp. 2, 5).

Olivier Michel. «WebotsTM: Professional Mobile Robot Simulation». In:
International Journal of Advanced Robotic Systems 1 (Mar. 2004). DOI: 10.
5772/5618 (cit. on pp. 2, 5, 31, 32).

«IEEE Standard for Standard System(C® Language Reference Manual». In:
IEEFE Std 1666-2023 (Revision of IEEE Std 1666-2011) (2023), pp. 1-618.
DOI: 10.1109/IEEESTD.2023.10246125 (cit. on pp. 3, 27).

«IEEE Standard for Standard SystemC(R) Analog/Mixed-Signal Extensions
Language Reference Manualy. In: IEEE Std 1666.1-2016 (2016), pp. 1-236.
DOL: 10.1109/IEEESTD. 20167448795 (cit. on pp. 3, 28).

117

https://doi.org/10.3390/drones8070296
https://www.mdpi.com/2504-446X/8/7/296
https://www.mathworks.com/products/simulink.html
https://renode.io/
https://renode.io/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html
https://doi.org/10.5772/5618
https://doi.org/10.5772/5618
https://doi.org/10.1109/IEEESTD.2023.10246125
https://doi.org/10.1109/IEEESTD.2016.7448795

BIBLIOGRAPHY

[10]

[12]

[13]

[14]

[15]

[16]

Mohamed Amine Hamdi, Giovanni Pollo, Matteo Risso, Germain Haugou,
Alessio Burrello, Enrico Macii, Massimo Poncino, Sara Vinco, and Daniele
Jahier Pagliari. Integrating SystemC-AMS Power Modeling with a RISC-V
ISS for Virtual Prototyping of Battery-operated Embedded Devices. Tech. rep.
arXiv:2404.01861. 2024. URL: https://arxiv.org/abs/2404.01861 (cit. on
pp- 3, 5, 29).

Nazareno Bruschi, Germain Haugou, Giuseppe Tagliavini, Francesco Conti,
Luca Benini, and Davide Rossi. «GVSoC: A Highly Configurable, Fast and
Accurate Full-Platform Simulator for RISC-V based IoT Processors». In: 2021
IEEE 39th International Conference on Computer Design (ICCD). IEEE,
Oct. 2021. DOI: 10.1109/iccd53106.2021.00071. URL: http://dx.doi.
org/10.1109/ICCD53106.2021.00071 (cit. on pp. 3, 26).

Bitcraze AB. Crazyfiie 2.1 Nano Quadcopter. Accessed: 2024-08-30. 2017. URL:
https://www.bitcraze.io/products/old-products/crazyflie-2-1/
(cit. on pp. 3, 5).

Stuart Mitchell, Michael O’Sullivan, and Iain Dunning. «PuLLP : A Linear
Programming Toolkit for Python». In: 2011. URL: https://api.semantics
cholar.org/CorpusID: 14277904 (cit. on p. 7).

PULP Platform. PULP Platform GitHub Repository. https://github.com/
pulp-platform. Accessed: 2024-08-30. 2024 (cit. on p. 7).

PULP Platform. PULPino: A Small Single-core RISC-V SoC. https://
github.com/pulp-platform/pulpino. Accessed: 2024-08-30. 2024 (cit. on
p. 7).

Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Alfio Di Mauro,
Francesco Conti, and Luca Benini. «Quentin: an Ultra-Low-Power PULPissimo
SoC in 22nm FDX». In: 2018 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S). 2018, pp. 1-3. DOI: 10.1109/83S.2018.
8640145 (cit. on p. 7).

Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi,
Antonio Pullini, Davide Rossi, Eric Flamand, Frank Gurkaynak, and Luca
Benini. Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT
Endpoint Devices. Feb. 2017. DOI1: 10.1109/TVLSI . 2017 . 2654506. URL:
https://ieeexplore.ieee.org/document/7864441 (cit. on p. 7).

GreenWaves Technologies. GAPS8 MCU Al: Ultra-Low Power RISC-V IoT
Application Processor. https : //greenwaves - technologies . com/gap8 _
mcu_ai/. Accessed: 2024-08-30. 2024 (cit. on p. 7).

GreenWaves Technologies. GAPS8 Documentation. https://github. com/

GreenWaves-Technologies/gap8_docs/blob/master/home/header . md.
Accessed: 2024-08-30. 2024 (cit. on p. 7).

118

https://arxiv.org/abs/2404.01861
https://doi.org/10.1109/iccd53106.2021.00071
http://dx.doi.org/10.1109/ICCD53106.2021.00071
http://dx.doi.org/10.1109/ICCD53106.2021.00071
https://www.bitcraze.io/products/old-products/crazyflie-2-1/
https://api.semanticscholar.org/CorpusID:14277904
https://api.semanticscholar.org/CorpusID:14277904
https://github.com/pulp-platform
https://github.com/pulp-platform
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino
https://doi.org/10.1109/S3S.2018.8640145
https://doi.org/10.1109/S3S.2018.8640145
https://doi.org/10.1109/TVLSI.2017.2654506
https://ieeexplore.ieee.org/document/7864441
https://greenwaves-technologies.com/gap8_mcu_ai/
https://greenwaves-technologies.com/gap8_mcu_ai/
https://github.com/GreenWaves-Technologies/gap8_docs/blob/master/home/header.md
https://github.com/GreenWaves-Technologies/gap8_docs/blob/master/home/header.md

BIBLIOGRAPHY

[19]

[20]

[21]

[24]

[27]

Daniel Garcia, Mehdi Ghommem, Nathan Collier, BON Varga, and Victor
Calo. «PyFly: A fast, portable aerodynamics simulator». In: Journal of
Computational and Applied Mathematics 344 (Mar. 2018). DOI: 10.1016/j.
cam.2018.03.003 (cit. on p. 8).

Aki Lehtinen and Jaakko Kuorikoski. « Computer Simulations in Economicsy.
In: Dec. 2021, pp. 355-369. 1SBN: 9781138824201 (cit. on p. 8).

Rhys Goldstein and Azam Khan. «Simulation-Based Architectural Designy.
In: Guide to Simulation-Based Disciplines: Advancing Our Computational
Future. Ed. by Saurabh Mittal, Umut Durak, and Tuncer Oren. Springer
International Publishing, 2017. DO1: 10.1007/978-3-319-61264-5_8. URL:
https://doi.org/10.1007/978-3-319-61264-5_8 (cit. on p. 8).

Leili Javidpour. «Computer Simulations of Protein Folding». In: Computing
in Science and Engineering (Mar. 2012). DOI: 10.1109/MCSE.2012.21 (cit. on
p. 8).

R.A. Shafik, A. Das, S. Yang, G. Merrett, and B.M. Al-Hashimi. «9 - Design
considerations for reliable embedded systemsy. In: Reliability Characterisation
of Electrical and FElectronic Systems. Ed. by Jonathan Swingler. Oxford:
Woodhead Publishing, 2015, pp. 169-194. 1SBN: 978-1-78242-221-1. DOIL: ht
tps://doi.org/10.1016/B978-1-78242-221-1.00009-5. URL: https://
www . sciencedirect.com/science/article/pii/B9781782422211000095
(cit. on p. 10).

Majdi Richa, Jean-Christophe Prévotet, Mickaél Dardaillon, Mohamad Mroué,
and Abed Ellatif Samhat. «High-level power estimation techniques in embed-
ded systems hardware: an overview». In: The Journal of Supercomputing 79.4
(2023), pp. 3771-3790. 1SSN: 1573-0484. DOIL: 10.1007/511227-022-04798-5.
URL: https://doi.org/10.1007/s11227-022-04798-5 (cit. on p. 10).

Michael Kerrisk. UNIX(7) - Linux Programmer’s Manual. https://man7 .
org/linux/man-pages/man7/unix.7 .html. Accessed: 2024-08-30. 2024
(cit. on p. 12).

Asif Ali Laghari, Awais Khan Jumani, Rashid Ali Laghari, and Haque Nawaz.
«Unmanned aerial vehicles: A reviewy. In: Cognitive Robotics 3 (2023), pp. 8-
22. 1SSN: 2667-2413. DOI: https://doi.org/10.1016/j.cogr.2022.12.
004. URL: https://www.sciencedirect . com/science/article/pii/
S2667241322000258 (cit. on p. 15).

Faiyaz Ahmed, J. C. Mohanta, Anupam Keshari, and Pankaj Singh Yadav.
«Recent Advances in Unmanned Aerial Vehicles: A Review». In: Arabian
Journal for Science and Engineering 47.7 (2022), pp. 7963-7984. 1SSN: 2191-
4281. DOIL: 10.1007/s13369-022-06738-0. URL: https://doi.org/10.
1007/s13369-022-06738-0 (cit. on p. 15).

119

https://doi.org/10.1016/j.cam.2018.03.003
https://doi.org/10.1016/j.cam.2018.03.003
https://doi.org/10.1007/978-3-319-61264-5_8
https://doi.org/10.1007/978-3-319-61264-5_8
https://doi.org/10.1109/MCSE.2012.21
https://doi.org/https://doi.org/10.1016/B978-1-78242-221-1.00009-5
https://doi.org/https://doi.org/10.1016/B978-1-78242-221-1.00009-5
https://www.sciencedirect.com/science/article/pii/B9781782422211000095
https://www.sciencedirect.com/science/article/pii/B9781782422211000095
https://doi.org/10.1007/s11227-022-04798-5
https://doi.org/10.1007/s11227-022-04798-5
https://man7.org/linux/man-pages/man7/unix.7.html
https://man7.org/linux/man-pages/man7/unix.7.html
https://doi.org/https://doi.org/10.1016/j.cogr.2022.12.004
https://doi.org/https://doi.org/10.1016/j.cogr.2022.12.004
https://www.sciencedirect.com/science/article/pii/S2667241322000258
https://www.sciencedirect.com/science/article/pii/S2667241322000258
https://doi.org/10.1007/s13369-022-06738-0
https://doi.org/10.1007/s13369-022-06738-0
https://doi.org/10.1007/s13369-022-06738-0

BIBLIOGRAPHY

28]

[29]

32]

[33]

[34]

Khaled Telli, Okba Kraa, Yassine Himeur, Abdelmalik Ouamane, Mohamed
Boumehraz, Shadi Atalla, and Wathiq Mansoor. « A Comprehensive Review of
Recent Research Trends on Unmanned Aerial Vehicles (UAVs)». In: Systems
11.8 (2023). 1SSN: 2079-8954. DOI: 10.3390/systems11080400. URL: https:
//www.mdpi . com/2079-8954/11/8/400 (cit. on p. 15).

Adam Zourari, My abdelkader Youssefi, Youssef Youssef, Rachid Dakir, and
Mohamed BAKIR. «Enhancing Autonomous Drone Navigation in Unfamiliar
Environments with Predictive PID Control and Neural Network Integration».
In: Sept. 2024, pp. 64-70. 1SBN: 978-3-031-70991-3. DOI: 10.1007/978-3-
031-70992-0_6 (cit. on p. 16).

Gopi Gugan and Anwar Haque. «Path Planning for Autonomous Drones:
Challenges and Future Directionsy». In: Drones 7.3 (2023). URL: https :
//www.mdpi . com/2504-446X/7/3/169 (cit. on p. 16).

Isabel Pinheiro, André Aguiar, André Figueiredo, Tatiana Pinho, Anténio
Valente, and Filipe Santos. «Nano Aerial Vehicles for Tree Pollination».
In: Applied Sciences 13.7 (2023). URL: https://www .mdpi . com/ 2076~
3417/13/7/4265 (cit. on p. 16).

Hoa Nguyen, Toan Quyen, Van-Cuong Nguyen, Anh Le, Hoa Tran, and Minh
Nguyen. «Control Algorithms for UAVs: A Comprehensive Survey». In: FAI
Endorsed Transactions on Industrial Networks and Intelligent Systems 7 (May
2020), p. 164586. DOI: 10.4108/eai.18-5-2020.164586 (cit. on pp. 17*19).

Bashra Oleiwi and Mohamed Mohamed. «Optimal design of linear and non-
linear PID controllers for speed control of an electric vehicley». In: Journal of
Intelligent Systems 33 (Sept. 2024). DOI: 10.1515/jisys-2024-0028 (cit. on
p. 18).

Abdelhakim Idir, A. Zemmit, H. Akroum, Mokhtar Nesri, Guedida Sifelislam,
and Laurent Canale. Enhancing Temperature Control of Electric Furnaces

Using a Modified Pid Controller Design Strategy. Aug. 2024. DOI: 10.21203/
rs.3.rs-4967918/v1 (cit. on p. 18).

Tri Kuntoro Priyambodo, Oktaf Agni Dhewa, and Try Susanto. «Model
of Linear Quadratic Regulator (LQR) Control System in Waypoint Flight
Mission of Flying Wing UAV». In: Journal of Telecommunication, Electronic
and Computer Engineering (JTEC) 12.4 (Dec. 2020), pp. 43-49. URL: https:
//jtec.utem.edu.my/jtec/article/view/5696 (cit. on p. 18).

RISC-V Software Source. Spike RISC-V ISA Simulator. https://github.
com/riscv-software-src/riscv-isa-sim. Accessed: 2024-09-12. 2024
(cit. on p. 26).

120

https://doi.org/10.3390/systems11080400
https://www.mdpi.com/2079-8954/11/8/400
https://www.mdpi.com/2079-8954/11/8/400
https://doi.org/10.1007/978-3-031-70992-0_6
https://doi.org/10.1007/978-3-031-70992-0_6
https://www.mdpi.com/2504-446X/7/3/169
https://www.mdpi.com/2504-446X/7/3/169
https://www.mdpi.com/2076-3417/13/7/4265
https://www.mdpi.com/2076-3417/13/7/4265
https://doi.org/10.4108/eai.18-5-2020.164586
https://doi.org/10.1515/jisys-2024-0028
https://doi.org/10.21203/rs.3.rs-4967918/v1
https://doi.org/10.21203/rs.3.rs-4967918/v1
https://jtec.utem.edu.my/jtec/article/view/5696
https://jtec.utem.edu.my/jtec/article/view/5696
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim

BIBLIOGRAPHY

[37]

[40]

[41]

[42]

N. Koenig and A. Howard. «Design and use paradigms for Gazebo, an open-
source multi-robot simulator». In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3.
2004, 21492154 vol.3. por: 10.1109/IR0S.2004.1389727 (Cit. on p. 31).

RoboDK. RoboDK: Simulation and Offline Programming Software for Indus-
trial Robots. Accessed: 2024-09-12. 2024. URL: https://robodk.com/ (cit. on
p. 31).

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. « AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehicles». In:
Field and Service Robotics. 2017. eprint: arXiv:1705.05065. URL: https:
//arxiv.org/abs/1705.05065 (cit. on p. 31).

FlightGear. FlightGear: Open Source Flight Simulator. Accessed: 2024-09-12.
2024. URL: https://www.flightgear.org/ (cit. on p. 31).

Aicha Hentati, Lobna Krichen, Fourati Mohamed, and Lamia Fourati. «Simu-
lation Tools, Environments and Frameworks for UAV Systems Performance
Analysisy». In: June 2018, pp. 1495-1500. DOI: 10.1109/IWCMC.2018.8450505
(cit. on p. 31).

Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. «ROS: an open-source
Robot Operating System». In: Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics. Kobe, Japan, May
2009 (cit. on p. 31).

Juan Zhang, James Campbell, Donald Sweeney II, and Andrea Hupman.
«Energy Consumption Models for Delivery Drones: A Comparison and As-
sessment». In: (May 2020) (cit. on p. 33).

Pedram Beigi, Mohammad Sadra Rajabi, and Sina Aghakhani. «An Overview
of Drone Energy Consumption Factors and Models». In: Aug. 2022, pp. 1-20.
ISBN: 978-3-030-72322-4. DOI: 10.1007/978-3-030-72322-4 200-1 (Cit. on
p. 33).

Raffaello D’Andrea. «Guest Editorial Can Drones Deliver?» In: Automation

Science and Engineering, IEEE Transactions on 11 (July 2014), pp. 647-648.
DOI: 10.1109/TASE.2014.2326952 (cit. on p. 34).

Kevin Dorling, Jordan Heinrichs, Geoffrey Messier, and Sebastian Magierowski.
«Vehicle Routing Problems for Drone Delivery». In: IEEE Transactions on
Systems, Man, and Cybernetics: Systems 47 (Aug. 2016), pp. 1-16. DOL:
10.1109/TSMC. 2016 .2582745 (cit. on p. 34).

121

https://doi.org/10.1109/IROS.2004.1389727
https://robodk.com/
arXiv:1705.05065
https://arxiv.org/abs/1705.05065
https://arxiv.org/abs/1705.05065
https://www.flightgear.org/
https://doi.org/10.1109/IWCMC.2018.8450505
https://doi.org/10.1007/978-3-030-72322-4_200-1
https://doi.org/10.1109/TASE.2014.2326952
https://doi.org/10.1109/TSMC.2016.2582745

BIBLIOGRAPHY

[47]

[49]

[50]

[51]

[52]

[53]

[54]

Yukai Chen, Donkyu Baek, Alberto Bocca, Alberto Macii, Enrico Macii, and
Massimo Poncino. «A Case for a Battery-Aware Model of Drone Energy
Consumption». In: Oct. 2018, pp. 1-8. DOI: 10.1109/INTLEC.2018.8612333
(cit. on p. 35).

Hasini Abeywickrama, Beeshanga Jayawickrama, Ying He, and Eryk Dutkiewicz|
«Comprehensive Energy Consumption Model for Unmanned Aerial Vehicles,
Based on Empirical Studies of Battery Performance». In: IEEFE Access PP
(Oct. 2018), pp. 1-1. DOI: 10.1109/ACCESS . 20182875040 (cit. on p. 35).

Joshuah Stolaroff, Constantine Samaras, Emma O’Neill, Alia Lubers, Alexan-
dra Mitchell, and Daniel Ceperley. «Energy use and life cycle greenhouse
gas emissions of drones for commercial package delivery». In: Nature Com-
munications 9 (Feb. 2018). DOI: 10.1038/s41467-017-02411-5 (cit. on
p. 35).

T. Kirschstein. «Comparison of energy demands of drone-based and ground-
based parcel delivery services». In: Transportation Research Part D: Transport
and Environment 78 (Jan. 2020), p. 102209. poI: 10.1016/j.trd.2019.
102209 (cit. on pp. 36, 101).

David Meyer. «Crazyflie 2.0 Quadrocopter: System Identification and Con-
troller Design». PhD thesis. ETH Zurich, 2015. DO1: 10.3929/ethz-b-
000214143. URL: https://doi.org/10.3929/ethz-b-000214143 (cit. on
p. 36).

Mariusz Jacewicz, Marcin Zugaj, Robert Glebocki, and Przemystaw Bibik.
«Quadrotor Model for Energy Consumption Analysis». In: Energies 15.19
(2022). por: 10.3390/en15197136. URL: https://www.mdpi.com/ 1996~
1073/15/19/7136 (cit. on pp. 36, 102).

Nicolas Michel, Peng Wei, Zhaodan Kong, Anish Kumar Sinha, and Xinfan
Lin. «Modeling and validation of electric multirotor unmanned aerial vehicle
system energy dynamicsy. In: e Transportation 12 (2022), p. 100173. 1SSN: 2590-
1168. DOI: https://doi.org/10.1016/j.etran.2022.100173. URL: https:
//www.sciencedirect .com/science/article/pii/S2590116822000194
(cit. on pp. 36, 101, 102).

Bitcraze. PWM to Thrust Conversion for Crazyflie Firmware. https://www.
bitcraze.io/documentation/repository/crazyflie-firmware/master/
functional-areas/pwm-to-thrust/. Accessed: 2024-08-28. 2024 (cit. on
pp. 37, 86).

Niels Lohmann. JSON for Modern C++. Version 3.11.3. Nov. 2023. URL:
https://github.com/nlohmann (cit. on p. 40).

122

https://doi.org/10.1109/INTLEC.2018.8612333
https://doi.org/10.1109/ACCESS.2018.2875040
https://doi.org/10.1038/s41467-017-02411-5
https://doi.org/10.1016/j.trd.2019.102209
https://doi.org/10.1016/j.trd.2019.102209
https://doi.org/10.3929/ethz-b-000214143
https://doi.org/10.3929/ethz-b-000214143
https://doi.org/10.3929/ethz-b-000214143
https://doi.org/10.3390/en15197136
https://www.mdpi.com/1996-1073/15/19/7136
https://www.mdpi.com/1996-1073/15/19/7136
https://doi.org/https://doi.org/10.1016/j.etran.2022.100173
https://www.sciencedirect.com/science/article/pii/S2590116822000194
https://www.sciencedirect.com/science/article/pii/S2590116822000194
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/pwm-to-thrust/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/pwm-to-thrust/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/pwm-to-thrust/
https://github.com/nlohmann

BIBLIOGRAPHY

[58]

Bitcraze. Crazyflie Simulation - C-based Controllers. https://github.com/
bitcraze/crazyflie-simulation/tree/main/controllers_shared/c_
based. Accessed: 2024-09-25. 2023 (cit. on p. 53).

Bitcraze. Crazyflie 2.z Platform Architecture. https://www.bitcraze.io/
documentation/system/platform/cf2-architecture/. Accessed: 2024-
09-27. 2024. URL: https://www.bitcraze.io/documentation/system/
platform/cf2-architecture/ (cit. on p. 73).

Bitcraze. Hardware documentation and design - Crazyflie 2.1 schematics.
https://github.com/bitcraze/hardware/blob/master/src/products/
crazyflie-2_1/electronics/crazyflie_2.1_schematics_rev.b.pdf.
Accessed: 2024-09-27. 2024. URL: https://github. com/bitcraze/hardwar
e/blob/master/src/products/crazyflie-2_1/electronics/crazyflie_
2.1_schematics_rev.b.pdf (cit. on p. 73).

Bitcraze Forum User. Power consumption and energy efficiency in Crazyflie.
Accessed: 2024-09-28. 2021. URL: https://forum.bitcraze.io/viewtopic.
php?p=11134#p11134 (cit. on p. 79).

Bitcraze Forum User. Crazyflie Power Consumption Details. Accessed: 2024-
09-28. 2022. URL: https://forum.bitcraze.io/viewtopic.php?t=5146
(cit. on p. 79).

LipoBattery.us. High Rate Lithium-ion Battery 15C. Accessed: 2024-09-28. n.d.
URL: https://www.lipobattery.us/high-rate-lithium-ion-battery-
15¢c-2/ (cit. on p. 81).

PlotDigitizer. PlotDigitizer. Accessed: 2024-09-28. n.d. URL: https://plotd
igitizer.com/app (cit. on p. 81).

Giovanni Pollo. Digipyze. Accessed: 2024-09-30. 2024. URL: https://github.
com/eml-eda/digipyze (cit. on pp. 81, 93).

Ltd. Guangdong UFine New Energy Co. UFX /02525 250mAh 3.7V Smallest
Rechargeable Battery. https://www.gdufinebattery.com/products/ufx-
402525-250mah-37v-smallest-rechargeable-battery. Accessed: 2024-09-
30. 2024 (cit. on p. 94).

Atomic Workshop. 300mAh HD LiPo 60C Battery (High Power, Ultra-
Compact). https : / /www . atomicworkshop . co . uk / 300LiPoHDPUP . htm.
Accessed: 2024-09-30. 2024 (cit. on p. 96).

Bitcraze. Crazyflie Simulation - Firmware Python Bindings. https://www.
bitcraze.io/documentation/repository/crazyflie-simulation/main/
functional areas/controllers/#firmware-python-bindings. Accessed:

2024-09-30. 2024 (cit. on p. 100).

123

https://github.com/bitcraze/crazyflie-simulation/tree/main/controllers_shared/c_based
https://github.com/bitcraze/crazyflie-simulation/tree/main/controllers_shared/c_based
https://github.com/bitcraze/crazyflie-simulation/tree/main/controllers_shared/c_based
https://www.bitcraze.io/documentation/system/platform/cf2-architecture/
https://www.bitcraze.io/documentation/system/platform/cf2-architecture/
https://www.bitcraze.io/documentation/system/platform/cf2-architecture/
https://www.bitcraze.io/documentation/system/platform/cf2-architecture/
https://github.com/bitcraze/hardware/blob/master/src/products/crazyflie-2_1/electronics/crazyflie_2.1_schematics_rev.b.pdf
https://github.com/bitcraze/hardware/blob/master/src/products/crazyflie-2_1/electronics/crazyflie_2.1_schematics_rev.b.pdf
https://github.com/bitcraze/hardware/blob/master/src/products/crazyflie-2_1/electronics/crazyflie_2.1_schematics_rev.b.pdf
https://github.com/bitcraze/hardware/blob/master/src/products/crazyflie-2_1/electronics/crazyflie_2.1_schematics_rev.b.pdf
https://github.com/bitcraze/hardware/blob/master/src/products/crazyflie-2_1/electronics/crazyflie_2.1_schematics_rev.b.pdf
https://forum.bitcraze.io/viewtopic.php?p=11134#p11134
https://forum.bitcraze.io/viewtopic.php?p=11134#p11134
https://forum.bitcraze.io/viewtopic.php?t=5146
https://www.lipobattery.us/high-rate-lithium-ion-battery-15c-2/
https://www.lipobattery.us/high-rate-lithium-ion-battery-15c-2/
https://plotdigitizer.com/app
https://plotdigitizer.com/app
https://github.com/eml-eda/digipyze
https://github.com/eml-eda/digipyze
https://www.gdufinebattery.com/products/ufx-402525-250mah-37v-smallest-rechargeable-battery
https://www.gdufinebattery.com/products/ufx-402525-250mah-37v-smallest-rechargeable-battery
https://www.atomicworkshop.co.uk/300LiPoHDPUP.htm
https://www.bitcraze.io/documentation/repository/crazyflie-simulation/main/functional_areas/controllers/#firmware-python-bindings
https://www.bitcraze.io/documentation/repository/crazyflie-simulation/main/functional_areas/controllers/#firmware-python-bindings
https://www.bitcraze.io/documentation/repository/crazyflie-simulation/main/functional_areas/controllers/#firmware-python-bindings

BIBLIOGRAPHY

[67] Hao Gong, Baoqi Huang, Bing Jia, and Hansu Dai. Modelling Power Con-
sumptions for Multi-rotor UAVs. 2022. arXiv: 2209.04128 [cs.R0O]. URL:
https://arxiv.org/abs/2209.04128 (cit. on p. 102).

[68] C. Chan and Tai Yan Kam. «A procedure for power consumption estimation
of multi-rotor unmanned aerial vehicley. In: Journal of Physics: Conference
Series 1509 (Apr. 2020), p. 012015. por: 10.1088/1742-6596/1509/1/
012015 (cit. on p. 102).

[69] Duc-Kien Phung and Pascal Morin. «Modeling and Energy Evaluation of
Small Convertible UAVs*». In: IFAC Proceedings Volumes 46.30 (2013). 2nd
IFAC Workshop on Research, Education and Development of Unmanned
Aerial Systems, pp. 212-219. 1SSN: 1474-6670. DOI: https://doi.org/10.
3182/20131120-3-FR-4045.00004. URL: https://www.sciencedirect.
com/science/article/pii/S1474667015402964 (cit. on p. 102).

124

https://arxiv.org/abs/2209.04128
https://arxiv.org/abs/2209.04128
https://doi.org/10.1088/1742-6596/1509/1/012015
https://doi.org/10.1088/1742-6596/1509/1/012015
https://doi.org/https://doi.org/10.3182/20131120-3-FR-4045.00004
https://doi.org/https://doi.org/10.3182/20131120-3-FR-4045.00004
https://www.sciencedirect.com/science/article/pii/S1474667015402964
https://www.sciencedirect.com/science/article/pii/S1474667015402964

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	RISC-V
	PULP
	GAP8

	System simulation for virtual prototyping
	Functional simulation
	Extra-functional simulation

	Inter-Process Communication through network sockets
	UNIX sockets

	Unmanned aerial vehicles
	Introduction to drones and nanodrones
	Drone controllers
	The Crazyflie 2.1 nanodrone

	Related works
	Functional ISS simulation
	GVSoC
	SystemC

	System-level simulation
	SystemC-AMS
	MESSY

	Robotics simulation
	ROS
	Webots

	Drone power models
	Overview of theoretical models
	Final considerations
	Empirical model

	Methodologies
	Establishing the connection between MESSY and Webots
	The VirtualConnector library

	Crazyflie architecture modelling in MESSY
	Sensors and SoC: camera and STM32 microprocessor
	PID controller
	Handling the simulation from the main
	General improvements

	GVSoC program
	The Webots controller
	Power modelling
	Sensors
	Power buses
	Energy consumption models
	Battery and battery converter

	Experimental Results
	Scenario overview and power models comparison
	System-level simulation overhead and time offset
	Changing simulation parameters
	Testing different batteries

	Conclusions and future works
	Additional power models
	VirtualConnector class
	PID iteration function
	GVSoC program - Initial definitions and most important methods
	Webots controller - main and sampleRun methods
	Bibliography

