
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Robot social navigation: a quantitative
and qualitative benchmark of

state-of-the-art algorithms in real-world

Supervisors

Prof. Marcello CHIABERGE

Eng. Mauro MARTINI

Eng. Andrea OSTUNI

Eng. Andrea EIRALE

Candidate

Stefano TREPELLA

October 2024

Abstract

Social navigation has seen a substantial number of developments in the last few
years, considering that the possible tasks that a robot can perform while being aware
of the presence of other people are numerous. There are many aspects of socially
aware navigation that contribute to the achievement of the current objective, but
this thesis focuses on the local planner, also known as the local controller. The
controller handles the information around the robot to send the velocity command
that controls the rotational and translational speed of the robot. The main objective
of this thesis is to compare the performance of two different algorithms, namely
the DWA and the MPPI, in a set of laboratory experiments. Six total variations
correspond to the base version of the algorithms and two enhanced versions with,
respectively, a social costmap plugin and the Social Force Model. Considering that
the Social Force Model was implemented solely on the DWA algorithm, the first
part of this thesis focused on developing a method to integrate said model into the
MPPI. This led to the development of a plugin that operates alongside the other
critics and computes the social work for the randomly sampled trajectories. The
second half of this work consisted of performing the tests themselves. The main
aspect that differentiates the work developed in this thesis from the other papers
present in the literature is the acquisition of both subjective and objective metrics.
The objective metrics are variables like the time of completion, the social work, and
the minimum distance to the agents that were obtained through the acquisition
of positions and velocities in the laboratory experiments. The subjective metrics,
on the contrary, include unobtrusiveness, friendliness, smoothness, and avoidance
foresight and they were decided by the agents themselves after the end of each
experiment, allowing a complete evaluation of each algorithm. The experiments
were conducted in the PIC4SeR laboratory using the Jackal robot from ClearPath
and a set of VICON cameras which were essential in tracking the position and
the velocities of both the robot and the human agents, who were equipped with
a custom-made accessory each to make them recognizable for the cameras. Eight
different scenarios were developed to test the navigation prowess of the robot in
different conditions. Said scenarios were characterized by a different disposition of
the robot, the human agents, and the static obstacles. Each algorithm was tested
five times, totaling 240 tests.

i

Acknowledgements

I would like to express my gratitude to the PoliTO Interdepartemental Center for
Service Robotics (PIC4SeR) for giving me the resources and support needed to
complete this thesis. My experience in this center has allowed me to deepen my
knowledge in some fields where I had a superficial understanding of the subjects. It
also allowed me to learn some entirely novel notions while gaining some hands-on
experience by interacting with the Jackal robot in the laboratory. I want to thank
my supervisors, Prof. Marcello Chiaberge, Mauro Martini, Andrea Ostuni, and
Andrea Eirale, for the help they have given me throughout this journey. I want to
thank all the thesis students at PIC4SeR, who continuously helped me throughout
my experiments and were pivotal in completing this project. I also thank everyone
else who supported me along the way, including my friends and my family.

"The world ain’t all sunshine and rainbows. It’s a very mean and nasty place and I
don’t care how tough you are it will beat you to your knees and keep you there

permanently if you let it. You, me, or nobody is gonna hit as hard as life. But it
ain’t about how hard you hit. It’s about how hard you can get hit and keep

moving forward. How much you can take and keep moving forward. That’s how
winning is done!"

Rocky Balboa

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

Introduction 1
Introduction to socially aware robot navigation 1
Thesis overview . 3

1 State of the art 5
1.1 Local controller . 5
1.2 Evaluation of social robot navigation 7

2 Methods and theory 10
2.1 DWA . 10

2.1.1 Search space . 10
2.1.2 Optimization function . 11

2.2 MPPI . 12
2.2.1 Stochastic trajectory optimization 12
2.2.2 Matrix formulation . 17
2.2.3 Numerical approximation 17
2.2.4 Control algorithm . 19

2.3 SFM . 21
2.3.1 The social force concept . 21
2.3.2 Formulation of the social force model 22

2.4 Nav2 introduction . 25
2.4.1 Recovery server . 26
2.4.2 Planner server and controller server 26
2.4.3 Perception . 27

iv

3 Implementation 28
3.1 Nav2 implementation . 28

3.1.1 Social costmap plugin . 28
3.1.2 DWA implementation . 30
3.1.3 MPPI implementation . 33

3.2 Social critic . 36
3.3 Simulation . 39

3.3.1 Gazebo . 39
3.3.2 RViz . 39
3.3.3 HunavSim . 40
3.3.4 HuNav gazebo wrapper . 40
3.3.5 Observations made in the simulations 41

3.4 Laboratory experiments . 42
3.4.1 Tools and hardware required 42
3.4.2 Controller parameters . 43
3.4.3 Scenarios . 45

3.5 Test methodology . 48

4 Results 50
4.1 Quantitative metrics . 50
4.2 Qualitative metrics . 57
4.3 Quantitative and qualitative data comparison 62

5 Conclusions 63

Bibliography 64

v

List of Tables

3.1 Social costmap plugin parameters 29
3.2 DWA robot configuration parameters 31
3.3 DWA goal tolerance parameters . 31
3.4 DWA forward simulation parameters 31
3.5 DWA sensor interface parameters 32
3.6 DWA Social Force Model parameters 32
3.7 MPPI controller parameters . 34
3.8 MPPI trajectory visualizer parameters 34
3.9 MPPI path handler parameters . 35
3.10 SocialCritic Configuration . 39
3.11 DWA controller main parameters 44
3.12 MPPI controller main parameters 44
3.13 Social critic parameters . 44

4.1 Quantitative metrics for the first four scenarios, representing the
mean values . 51

4.2 Quantitative metrics for the last four scenarios, representing the
mean values. 52

4.3 Normalized Quantitative Metrics 57
4.4 Qualitative metrics for the first four scenarios 58
4.5 Qualitative metrics for the last four scenarios and the average across

all the experiments . 59

vi

List of Figures

1 An example of a robot for elderly assistance and one for parcel delivery 1
2 Three of the chosen HMI without perspective: text-based, graphical-

based, dual light. (Reproduced from [3], 2021, p. 4) 3

1.1 A representation of the PFZ (triangle with red edges) considered in
the Frozone technique. 6

1.2 The field study performed in a mall using a mobile robot (reproduced
from [8], 2014, p.449) . 7

1.3 Two agents spawned by the HunavSim plugin in a cafeteria environ-
ment. 8

1.4 Different standard scenarios, robot in red, agents in black 9

2.1 Schematic illustration of processes causing behavioral changes (Re-
produced from [19],1995, p.4282) 21

2.2 Representation of Nav2 design (Reproduced from [23], 2020, p.3) . . 26

3.1 The agents in blue are not considered in the computation since they
do not satisfy both requirements; the agent in purple is considered
for the opposite reason. 38

3.2 The Gazebo world used in simulation to test the algorithms. 39
3.3 The RViz panel sets the goals and checks that the robot and agents

are correctly recognized. 40
3.4 The agent markers and the social grid 41
3.5 The Jackal seen from the front and seen from above 42
3.6 Three of the Vicon cameras and one of the agent collars. 43
3.7 Passing and overtaking maps . 45
3.8 The two crossing maps . 46
3.9 The fifth and sixth scenario maps 47
3.10 The seventh and eighth scenario maps 47
3.11 The robot (on the right side) and three agents (on the left side) as

they appear on the Vicon software, represented by orange objects. . 48
3.12 The RViz interface of the robot using MPPI with social critic 49

vii

3.13 Two examples from the laboratory experiments 49

4.1 The average and standard deviation for the social work of the first
six scenarios. On the x-axis, the different algorithms: DWA derived
algorithms and MPPI derived algorithms. On the y-axis, the social
work. The black lines represent the standard deviation. Light blue
represents the base versions of the algorithms, dark blue represent
the social costmap version, purple represents the SFM version. . . . 53

4.2 The average and standard deviation for the social work of the last
two scenarios. On the x-axis, the different algorithms: DWA derived
algorithms and MPPI derived algorithms. On the y-axis, the social
work. The black lines represent the standard deviation. Light blue
represents the base versions of the algorithms, dark blue represent
the social costmap version, purple represents the SFM version. . . . 54

4.3 The average intrusion values for the first six scenarios. On the
x-axis, the different algorithms: DWA,DWA_costmap,SFM_DWA,
MPPI,MPPI_costmap,SFM_MPPI. On the y-axis, the percentage
values of total time. Green represents public space, yellow represents
social space, orange represents personal space, red represents intimate
space. 55

4.4 The average intrusion values for last two scenarios. On the x-
axis, the different algorithms: DWA,DWA_costmap,SFM_DWA,
MPPI,MPPI_costmap,SFM_MPPI. On the y-axis, the percentage
values of total time. Green represents public space, yellow represents
social space, orange represents personal space, red represents intimate
space. 56

4.5 The average qualitative metrics for the first six scenarios. On the
x-axis, the different algorithms: DWA,DWA_costmap,SFM_DWA,
MPPI,MPPI_costmap,SFM_MPPI, showing the values for each
agent if there are multiple. On the y-axis, numerical values from
one to five. The black lines represent the standard deviation, purple
is for UNO, light blue is for FL, green is for SO, yellow is for AF. 60

4.6 The average qualitative metrics for the first six scenarios. On the
x-axis, the different algorithms: DWA,DWA_costmap,SFM_DWA,
MPPI,MPPI_costmap,SFM_MPPI, showing the values for each
agent if there are multiple. On the y-axis, numerical values from
one to five. The black lines represent the standard deviation, purple
is for UNO, light blue is for FL, green is for SO, yellow is for AF. 61

4.7 Two trajectories for the first crossing experiment 62

viii

Acronyms

eHMI
external Human Machine Interface

SFM
Social Force Model

DWA
Dynamic Window Approach

MPPI
Model Path Predictive Integral

GPU
Graphics Processing Unit

ROS2
Robot Operating System 2

NAV2
Navigation 2

DDS
Data Distribution Service

BT
Behavior tree

SLAM
Simultaneous Localization and Mapping

x

NavFn
Navigation Function

LiDaR
Light Detection and Ranging

PIC4SeR
PoliTo Interdepartimental Centre for Service Robotics

TEB
Timed Elastic Band

DRL
Deep Reinforcement Learning

APF
Artificial Potential Fields

MPC
Model Predictive Control

RL
Reinforcement Learning

PPO
Proximal Policy Optimization

PFZ
Potential Freezing Zone

CPU
Central Processing Unit

UNO
Unobtrusiveness

FL
Friendliness

xi

SO
Smoothness

AF
Avoidance foresight

AMD
Average minimum distance

TTC
Time to complete

PL
Path length

SW
Social work

SWsec
Social work per second

SR
Success rate

FOV
Field of view

xii

Introduction

Introduction to socially aware robot navigation

Autonomous navigation has been a topic of paramount importance in research in
recent years.
When discussing autonomous navigation, it must be noted that, in most cases,
the controlled machines may need to traverse populated environments, such as
urban areas. For example, one of the most well-known applications globally is
autonomous navigation in vehicles, particularly cars, for human transportation.
These autonomous navigation tasks, which consider the possibility of people in the
scene, fall under the category of social navigation. This approach aims to guide
the robot through populated environments safely and efficiently and to make the
robot’s behavior "socially acceptable."

The objectives of a socially aware robot can be many, such as a wheeled robot
used for parcel delivery or a humanoid robot designed for elderly assistance (1)

(a) Robot used for parcel delivery, reproduced
from https://upload.wikimedia.org/wikipedia
/commons/c/cc/Cleveron_self-
driving_robot_courier.jpg

(b) Robot used for elderly
assistance, reproduced from
https://pursuit.unimelb.edu.au/articles/are-
robots-the-answer-for-aged-care-during-
pandemics

Figure 1: An example of a robot for elderly assistance and one for parcel delivery

1

The scope of this thesis focuses on socially aware robot navigation. It can be
characterized by different aspects that were detailed in the work of Singamaneni
[1]:

• Robot type: aerial, aquatic, or ground-based,

• Communication capabilities: the ability to interact and negotiate with humans
in the environment,

• Task assignment: independent or assistive roles,

• Planning: how the global and local navigation strategies are handled,

• Social considerations: correct treatment of agents in the scene, obedience to
social norms and avoidance of obstacles/restricted zones,

• Experimental setup: tools for conducting experiments and methods for evalu-
ating robot performance.

A study on human-aware robot navigation can focus on various characteristics.
Some elements, however, remain constant across different studies. For instance,
the primary robots being tested are often ground-based wheeled robots.
Furthermore, evaluation parameters are frequently quantitative, measuring factors
such as the distances between the robot and agents in the scene, which leads to
the use of predominantly objective metrics.

A limitation of using only objective parameters is that they fail to account for
social acceptability. Establishing qualitative parameters is also crucial in ensuring
socially appropriate navigation for a robot. Qualitative parameters can be inferred
by analyzing a robot’s trajectories in different conditions. The paper presented by
Teja et al. [2] compares two different algorithms based on the TEB by introducing
both a short qualitative analysis and a quantitative one. One parameter introduced
in this paper was called entanglement resolution. This resolution defines the
robot’s capability of getting unstuck, and it was deduced by visually comparing
the algorithms’ trajectories.

Even though such an analysis provides different insights into how an algorithm
works, it fails to consider how the people involved in the scene may perceive a robot’s
actions. The psychological impact of seeing a robot autonomously navigate in an
environment can’t be ignored. Therefore, it is crucial to obtain the participants’
opinions to gauge the robot’s performance.

One study [3], for example, concentrated on two different communication modes
for a delivery robot, based on either a display or a light-based EHMI.
Different designs were used for each of these interfaces, resulting in four designs for
each type:

2

• Two text-based designs,

• Two graphical-based designs,

• Two single light designs,

• Two dual light designs.

Figure 2: Three of the chosen HMI without perspective: text-based, graphical-
based, dual light. (Reproduced from [3], 2021, p. 4)

There are two designs for every type due to the presence or absence of the robot
perspective. For instance, "ROBOT" was appended to the text-based designs to
explain that the task to be performed had to be carried out by the machine. Figure
2 shows some of the chosen configurations. The researchers aimed to identify the
design that the experiment participants most liked. Their results showed that
display-based HMIs were judged as the most understandable in most scenarios.
Light-based designs, however, were considered suitable as complementary elements,
suggesting that a redundancy in the information given by the robot could be
appreciated.

Even though the previous example is based on the communication part of
socially aware navigation, it shows that having a subjective input is essential to
understanding what works.

Thesis overview
The aspect of social navigation that this thesis focuses on is the local controller,
which gives the velocity command to the robot. The controller is crucial because a
reliable local controller should not only follow the path given by the global planner;
it should also avoid dynamic obstacles that may be present in the scene. In social
navigation, another critical consideration is how the robot’s trajectory is affected
by people, as the algorithm should treat objects and human beings differently.

The main objective of this thesis was to construct a benchmark for a set of social
scenarios that compares two different algorithms, each in three variants, totaling
six algorithms.

3

The algorithms used were:

• DWA,

• MPPI.

The three variants for each algorithm were:

• Base version of the algorithm.

• Base with the addition of a social costmap.

• Base with the addition of the SFM.

The social costmap and the SFM will be explained in more detail in Chapter 2.
The DWA algorithm already included a direct implementation of the SFM, while
the social costmap could be easily added. In contrast, the MPPI could only access
the social costmap, as the SFM had yet to be implemented.

For this reason, the objectives of this thesis became the following:

1. Adding a SFM implementation in the MPPI,

2. Comparing the six variations in a set of robot navigation scenarios, measuring
quantitative and qualitative parameters.

Regarding the thesis’ structure, it is divided into the following chapters:

• Chapter 1 discusses the possible solutions to make the local controller social
present in the literature. It also acknowledges the methods used to create a
benchmark that other works provide.

• Chapter 2 focuses on the theoretical aspects, beginning with an explanation
of how the DWA and MPPI algorithms work. It then examines the SFM
and introduces the basics on NAV2.

• Chapter 3 analyzes the software and hardware components utilized in the
simulations and the lab experiments. It will also explain the setup used for
the different lab experiments and the evaluation criteria,

• Chapter 4 presents the results obtained,

• Chapter 5 concludes and delves into possible future developments.

4

Chapter 1

State of the art

1.1 Local controller
Many algorithms can be employed to calculate the local motion generation. Most
of these algorithms can be divided into three different approaches:

• planning-based approaches

• force-based approaches

• learning-based approaches

The planning-based approaches first generate a local trajectory for the robot to
pursue, then use it to compute a velocity command for the robot. Many popular
algorithms can be classified as planning-based, such as the DWA, MPC, and TEB.
The force-based approaches, instead, use potential or force fields in the robot’s
environment and interaction forces given by the people’s movement to generate the
robot’s control input. The APF algorithm is based on potential fields, while other
implementations employ the SFM.

Learning-based approaches often do not generate a trajectory; instead, they
compute the velocity command directly based on some form of machine learning
algorithm. Utilizing deep learning, reinforcement learning, or imitation learning
can achieve many possible solutions. These approaches, however, are sometimes
not implemented independently. The literature contains many instances of two
or more of these approaches employed in the same algorithm. The social force
window planner used in this experiment combines the repulsive forces given by the
SFM with the DWA, a planning-based algorithm. In a paper presented this year
by Martini et al. [4], the objective was to improve this algorithm by introducing
a learning phase aimed at dynamically changing the weights present in the cost
function of the Social Force Window planner. The learning phase was introduced

5

State of the art

using a DRL agent whose objective was to learn an optimal policy. The policy
learned by the agent was influenced by a reward function that was characterized
by a set of parameters:

• Goal distance,

• Path alignment,

• Robot velocity,

• Obstacle avoidance,

• Social penalty.

The agent then induced the local planner to select the optimal velocity commands.
This method greatly enhanced the algorithm’s performance, resulting in more
consistent behavior. Instead, a different implementation used the MPC and
reinforcement learning. Romero’s work [5] presents an algorithm called Action-
Critic model predictive control, which uses a differentiable MPC as the final
layer of the actor policy. This approach combines the robustness and replanning
capabilities of an MPC with the flexibility of RL, creating an algorithm whose
commands are always feasible concerning the dynamics. Tests conducted with this
hybrid structure showed an uplift in performance compared to a standard MPC
or a PPO, showing the potential of such a hybrid architecture. A different hybrid
approach was presented by Sathyamoorthy et al. [6] to avoid a common issue in
social navigation known as the freezing robot problem. This solution implements
both DRL-based collision avoidance with a novel technique named Frozone. This
technique first constructs a zone known as PFZ (which could be a zone similar to
that in Fig 1.1), and then it computes a deviation velocity from this zone to prevent
the robot from getting stuck. This approach allowed the robot to handle crowds of
varying densities, leading to a higher success rate than other methodologies.

Figure 1.1: A representation of the PFZ (triangle with red edges) considered in
the Frozone technique.

6

State of the art

1.2 Evaluation of social robot navigation
This thesis also focuses on developing a benchmark that can compare different
types of algorithms. Numerous evaluation criteria can be employed to compare
various algorithms. The paper by Gao et al. [7] thoroughly analyzes the different
evaluation methods employed throughout the years. They can be divided into four
categories:

• case studies study standard robot interaction, like passing, crossing, and
overtaking.

• simulations test the robot in a virtual environment before deploying it in the
real world.

• laboratory studies analyze the robot’s prowess in confined experiments.

• field studies utilize the robot in a larger-scale experiment.

Field studies are often the most difficult to implement among these categories,
considering that a robot’s deployment in a public space is not always allowed.
Nonetheless, many experiments have been performed using this methodology, such
as deploying a mobile robot in a shopping mall described by Shiomi et al. [8]
in 2014. During this experiment, the robot interacted for several hours with the
uninstructed pedestrians (as it can be seen of Fig. 1.2)

Figure 1.2: The field study performed in a mall using a mobile robot (reproduced
from [8], 2014, p.449)

Simulations are used to compare different types of existing algorithms or test
novel solutions, but they alone do not indicate a robot’s social capabilities. Wit-
nessing people’s reactions to a robot’s movement is often essential, and this cannot
be achieved in a simulated framework. An array of simulation platforms have
been developed throughout the years. Among these, one of the most recent is the
HunavSim plugin described by Perez et al. [9] This platform works with different
3D simulators present in ROS2, including Gazebo.

7

State of the art

It provides the possibility to spawn agents with customizable behavior in the
environment, allowing agents to exhibit different reactions around the robots. An
example can be seen in Fig. 1.3

Figure 1.3: Two agents spawned by the HunavSim plugin in a cafeteria environ-
ment.

Laboratory studies often employ experimental tasks, allowing the human partic-
ipants and the robot to move freely. They are easier to organize and allow for the
acquisition of the participants’ opinions, which can’t be achieved in a field study
where the people present aren’t aware of the experiments’ conditions. The study
performed by Mavrogiannis et al. [10] in 2019 was based on a task that consisted
of allowing three participants and a robot to move between six stations. This study
involved more than 100 participants, and both subjective and objective metrics
were collected.

The last category, case studies, is on a smaller scale compared to laboratory
and field studies. It involves studying the robot’s capabilities in a set of routine
interactions that can be performed in a simulated or real-world setting. These
commonly occurring scenarios include:

• passing.

• overtaking.

• crossing.

• approaching.

• following, leading, and accompanying.

8

State of the art

(a) Passing, overtaking, crossing (b) Approaching, following

Figure 1.4: Different standard scenarios, robot in red, agents in black

The scenarios in Fig. 1.4 depict a wide array of interactions the robot could
face in a public environment. A robot should safely pass and overtake people
when traveling on a sidewalk if it is used for parcel delivery; it should also be
able to approach and follow people safely if its intended use is elders’ assistance.
Different researchers studied these fundamental interactions. Pacchierotti, in 2006
[11], focused on the passing scenario in a hallway environment where the human
participant exhibited different behaviors, such as stopping in the middle of the
room or walking at a constant speed. Kretzschmar, in 2016 [12], illustrated using
reinforcement learning to pass two people in a hallway without cutting through
the group. Among these scenarios and evaluation methods, choosing metrics to be
used in the evaluation differentiates the papers throughout the years. As previously
stated in the introduction, relying on quantitative metrics to assess the robot’s
performance is commonly preferred since navigation data allows for a wide array
of metrics depending on the setting. The HunavSim evaluator introduced by Perez
[9] contains a good variety of quantitative metrics, ranging from pure proxemics to
metrics included in the SEAN2.0 evaluator [13] to SFM-based metrics. However,
the qualitative metrics can significantly differ depending on the work proposed
since they could be based on the participants’ opinions or a subjective assessment
of the robot’s trajectory. This thesis relied on the quantitative metrics proposed
by the Hunav evaluator and on a set of qualitative metrics scored by the agents.

9

Chapter 2

Methods and theory

2.1 DWA
The DWA (Dynamic-Window Approach) is a popular motion planning algorithm
used in mobile robotics for local obstacle avoidance. It was first introduced in 1997
[14], and since then, it has been used in many papers as an effective way to handle
autonomous robot motion control in the presence of obstacles [15].

The trajectories of the robot are approximated by a succession of circular arcs,
with a linear bounded error due to a supposition made in the derivation, which
assumes the velocity of the robot to remain constant within a time interval [ti, ti+1].

In this algorithm, the search for commands moving the robot is performed in
the space of velocities, which considers both translational and rotational velocities
(ν, ω). The steps that are performed at each iteration are the following:

1. Restricting the set of possible velocity vectors to a subset called search space.

2. Choosing the velocity that maximizes the optimization function.

2.1.1 Search space
The controller’s frequency determines how often the velocities pruning and opti-
mization are performed. Assuming a frequency of 20 Hz would lead to a 50 ms
time interval. As previously mentioned, the trajectories are approximated by a
series of circular arcs, each uniquely determined by a velocity vector. Creating a
path to a goal pose requires the robot to compute a set of velocities for each time
interval from 0 to n needed to reach the target. This computation significantly
increases the complexity of the problem. In this case, only the velocities considered
for the first time interval are used to make the computations easier to handle.
Using these velocities is not an issue, given that the procedure is repeated at every
time interval.

10

Methods and theory

All possible combinations of rotational and translational velocities are pruned
following two rules:

1. Obstacle avoidance. A velocity is admissible if the robot can stop before
reaching the obstacle. Let ν̇b, and ω̇b be the braking decelerations. Then, the
set Va of admissible velocities is defined as

Va = {ν, ω|ν ≤
ñ

2 · dist(ν, ω) · ν̇b ∧ ω ≤
ñ

2 · dist(ν, ω) · ω̇b} (2.1)

Where dist(ν, ω) is the distance to the closest obstacle, granting the robot the
ability to stop without colliding.

2. Dynamic window. To consider the limited accelerations the motors can
produce, the overall search space is reduced to the dynamic window, which
includes only the velocities that can be obtained within the following time
interval. Let t be the time interval, let ν̇ and ω̇ be the accelerations applied
for the duration of the t with an initial velocity vector νa, ωa. The dynamic
window Vd is defined as

Vd = {ν, ω|ν ∈ [νa − ν̇ · t, νa + ν̇ · t] ∧ ω ∈ [ωa − ω̇ · t, ωa + ω̇ · t]} (2.2)

The center of the dynamic window is fixed around the actual velocity. Fur-
thermore, its size depends on the acceleration which the motor can provide.

The resulting search space is an area Vr, which considers both these limitations.

2.1.2 Optimization function
Once Vr is determined, the maximum of the objective function is computed over
it. The maximizing velocity is then chosen as the one to be used. The objective
function:

G(ν, ω) = σ(α · heading(ν, ω) + β · dist(ν, ω) + γ · velocity(ν, ω)) (2.3)

aims at balancing the following criteria:

• Target heading: measures the angle between the robot and the target direction.
Given by 180-θ, where θ is the angle of the target point relative to the robot’s
heading direction.

• Clearance: aimed at maximizing the distance to obstacles. The function
dist(ν, ω) represents the distance to the closest obstacle intersecting with the
circular arc.

11

Methods and theory

• Velocity: the function velocity (ν, ω) is used to evaluate the robot’s progress
on the corresponding trajectory. It is simply a projection on the translational
velocity ν.

The controller’s behavior depends on how the weights of the optimization functions
are chosen, meaning that a certain amount of tuning is required depending on the
application where this algorithm needs to be employed.

2.2 MPPI
The MPPI controller is a local trajectory planner that employs the Model Predictive
Path Integral algorithm to track a specified path while dynamically adjusting to
prevent collisions. This algorithm is rooted in a stochastic trajectory approach,
specifically within the path integral control framework [16].

2.2.1 Stochastic trajectory optimization
The path integral control method, which leverages random sampling of trajectories,
provides a robust mathematical foundation for creating optimal control algorithms.
Algorithms developed under this framework have a significant advantage in that
they are independent of the need for derivatives of the dynamics or cost functions.
This characteristic allows for more flexible and resilient system dynamics estimation
and cost function design.

Path integral control is generally obtained using an exponential transformation
of the value function within the optimal control problem. Additionally, it assumes
that noise only affects the system’s actuated states. This assumption enables the
transformation of the stochastic Hamilton-Jacobi-Bellman equation into a linear
partial differential equation, which can subsequently be converted into a path
integral using the Feynman-Kac lemma. The resulting path integral represents
an expectation over trajectories under the system’s uncontrolled dynamics and is
approximated using Monte Carlo sampling to determine the control for the current
state.

However, an alternative formulation offers two advantages over the traditional
path integral approach:

1. it allows for noise in both directly and indirectly actuated states by relaxing
the relationship between noise and control authority

2. it provides optimal settings across the entire time horizon rather than just at
the initial time

.In the context of stochastic dynamical systems, where the state and controls at time
t are denoted as xt ∈ Rn and ut ∈ Rm, respectively, these dynamics are influenced

12

Methods and theory

by Brownian motion dw ∈ Rp. Let u(·) : [t0, T] → Rm be the function mapping
time to control inputs, and τ : [t0, T]→ Rn represent the system’s trajectory. In
classical stochastic optimal control, the goal is to find a control sequence u(·) that
minimizes the objective function:

u∗(·) = arg min
u(·)

E
C
φ(xT , T) +

Ú T

t0
L(xt, ut, t) dt

D
(2.4)

With the expectation being evaluated in relation to the dynamics:

dx = F (xt, ut, t) dt + B(xt, t) dw. (2.5)

Here, the cost function L(xt, ut, t) is composed of an arbitrary state-dependent
term and a quadratic control cost:

L(xt, ut, t) = q(xt, t) + 1
2uT

t R(xt, t)ut (2.6)

while the dynamics are affine in controls:

F (xt, ut, t) = f(xt, t) + G(xt, t)ut (2.7)

Path integral control can be interpreted using information-theoretic concepts such
as free energy and relative entropy, like in [17]. The following equality captures
this interpretation:

−λF (S(τ)) = inf
Q

[EQ[S(τ)] + λDKL(Q ∥ P)] (2.8)

Here, λ ∈ R+, and S(τ) represents the state-dependent cost-to-go term φ(xT , T)+s T
t0

q(xt, t) dt. The free energy F (S(τ)) is described as log
1
EP

è
exp

1
− 1

λ
S(τ)

2é2
. P

denotes the probability measure over the space of trajectories generated by the
uncontrolled stochastic dynamics: f(xt, t) dt + B(xt, t) dw. Q is any probability
measure over the space of continuous trajectories with respect to P , meaning they
agree on the sets that have measure zero. The relative entropy DKL(Q ∥ P) is
defined as EQ

è
log

1
dQ
dP

2é
.

Controlled dynamics introduce a different probability measure on the trajectory
space, denoted as Q(u). The relative entropy between the uncontrolled distribution
P and the controlled distribution Q(u) is calculated using Girsanov’s theorem,
leading to:

DKL(Q(u) ∥ P) = 1
2

Ú T

t0
uT

t G(xt, t)T Σ(xt, t)−1G(xt, t) ut dt (2.9)

where Σ(xt, t) = B(xt, t)B(xt, t)T . Supposing that the control cost matrix is of
the form:

13

Methods and theory

R(xt, t) = λG(xt, t)T Σ(xt, t)−1G(xt, t) (2.10)

The following relationship can be established between the right-hand side of the
earlier expression:

EQ(u)[S(τ)] + λDKL(Q ∥ P) = EQ(u)

C
S(τ) + 1

2

Ú T

t0
uT

t R(xt, t)ut dt

D
(2.11)

Additionally, [17] provides an explicit derivation of the optimal probability mea-
sure Q∗in relation to the Radon-Nikodym derivative with respect to the uncontrolled
dynamics. This derivation takes the form:

dQ∗

dP
=

exp
1
− 1

λ
S(τ)

2
EP

è
exp

1
− 1

λ
S(τ)

2é (2.12)

To compute a control law independent of the Hamilton-Jacobi-Bellman (HJB)
equation, it is possible to pursue the following optimization scheme: rather than
directly solving the optimal control problem by computing the solution to the
stochastic HJB equation, the minimization problem can be tackled by optimizing
the probability distribution generated by the controller Q(u) to match as closely
as possible the optimal probability measure, Q∗, given by the Radon-Nikodym
derivative dQ∗

dP
. Employing the relative entropy between Q∗ and Q(u) as a distance

metric leads to the formulation of the following minimization problem:

u∗(·) = arg min
u(·)

DKL(Q∗ ∥ Q(u)) (2.13)

This strategy is intuitively appealing since the optimal probability measure Q∗

resembles a soft-max function with temperature λ. If a trajectory’s cost is low,
then dQ∗

dP
will have a high value. Thus, if a trajectory is sampled from Q∗, it will

likely have a low cost. If Q(u) can become roughly equal to Q∗, then applying
the controls u(·) to the system is likely to produce a low-cost trajectory. One can
aim to reduce the relative entropy between the optimal distribution Q∗ and the
distribution Q(u) induced by the controller. By applying the definition of relative
entropy:

DKL(Q∗ ∥ Q(u)) = EQ∗

C
log

A
dQ∗

dQ(u)

BD
(2.14)

To optimize this function, it is essential to determine an expression for the
Radon-Nikodym derivative dQ∗

dQ(u) :

14

Methods and theory

dQ∗

dQ(u) = dQ∗

dP
· dP

dQ(u) (2.15)

At this moment, Girsanov’s theorem can be applied to compute dP
dQ(u) :

dP

dQ(u) = exp(D(τ, u(·))) (2.16)

Where D(τ, u(·)) is defined as:

D(τ, u(·)) =−
Ú T

0
uT

t G(xt, t)T Σ(xt, t)−1B(xt, t)dw(0)

+ 1
2

Ú T

0
uT

t G(xt, t)T Σ(xt, t)−1G(xt, t)utdt

(2.17)

Here, dw(0) represents a Brownian motion with respect to P , satisfying
EP [

s t
0 dw(0)] = 0 for all t.

Applying the previously derived equation, DKL(Q∗ ∥ Q(u)) can be expressed
as:

DKL(Q∗ ∥ Q(u)) = EQ∗

C
log

A
exp(−S(τ)/λ) · exp(D(τ, u(·)))

EP [exp(−S(τ)/λ)]

BD
(2.18)

This equation can be reformulated as:

DKL(Q∗ ∥ Q(u)) = EQ∗

C
−S(τ)

λ
+ D(τ, u(·))− log(EP [exp(−S(τ)/λ)])

D
(2.19)

Given that S(τ) is independent of the controls u(·), it is possible simplify the
minimization problem:

arg min
u(·)

DKL(Q∗ ∥ Q(u)) = arg min
u(·)

EQ∗ [D(τ, u(·))] (2.20)

The objective is to determine the function u∗(·) that minimizes this equation.
Since control is typically applied at discrete time intervals, it is viable to consider
only step functions :

ut =

...
uj if j∆t ≤ t ≤ (j + 1)∆t
...

(17)

15

Methods and theory

Applying this formulation to D(τ, u(·)), it becomes:

D(τ, u(·)) =−
NØ

j=0
uT

j

Ú tj+1

tj

G(xt, t)dw(0)

+ 1
2uT

j

Ú tj+1

tj

H(xt, t)dtuj

(2.21)

Where:

i. G(x, t) = G(x, t)T Σ(x, t)−1B(x, t)
ii. H(x, t) = G(x, t)T Σ(x, t)−1G(x, t)
iii. N = T/∆t

Since uj is trajectory-independent, applying the expectation operator yields:

EQ∗ [D(τ, u(·))] =−
NØ

j=0
uT

j EQ∗

CÚ tj+1

tj

G(xt, t)dw(0)
D

+
NØ

j=0

1
2uT

j EQ∗

CÚ tj+1

tj

H(xt, t)dt

D
uj

(2.22)

This formulation is convex with respect to each uj. To find u∗
j , the gradient

of the equation can be taken with respect to uj, it can be set to zero, and can be
solved:

u∗
j = EQ∗

CÚ tj+1

tj

H(xt, t)dt

D−1

EQ∗

CÚ tj+1

tj

G(xt, t)dw(0)
D

(2.23)

For small ∆t, the following approximations are reasonable:

Ú tj+1

tj

H(xt, t)dt ≈ H(xtj
, tj)∆t (2.24)Ú tj+1

tj

G(xt, t)dw(0) ≈ G(xtj
, tj)

Ú tj+1

tj

dw(0) (2.25)

This leads to:

u∗
j = 1

∆t
EQ∗ [H(xtj

, tj)]−1EQ∗

C
G(xtj

, tj)
Ú tj+1

tj

dw(0)
D

(2.26)

As sampling from Q∗ is not feasible, it is necessary to modify the expectation
to be with respect to the uncontrolled dynamics P:

16

Methods and theory

u∗
j = 1

∆t
EP

C
exp(− 1

λ
S(τ))H(xtj

, tj)
EP[exp(− 1

λ
S(τ))]

D−1

EP

exp(− 1
λ
S(τ))G(xtj

, tj)
s tj+1

tj
dw(0)

EP[exp(− 1
λ
S(τ))]

(2.27)

To approximate the controls, the trajectories can be sampled from P

2.2.2 Matrix formulation
Assuming the diffusion matrix and the control matrix have the form

B(xt) =
A

Ba(xt) 0
0 Bc

B

G =
A

0
Gc

B (2.28)

In the scenario under examination, no correlations exist between the noise in
directly and indirectly actuated states. Furthermore, the diffusion for the directly
actuated states remains independent of the state. Consequently, the covariance
matrix takes on the following form:

Σ(x) =
C
Ba(x)Ba(x)T 0

0 BcB
T
c

D
(2.29)

The expressions H(xtj
) and G(xt) no longer exhibit state dependence, allowing

for their simplification:

H = GT
c (BcB

T
c)−1Gc (2.30)

G = GT
c (BcB

T
c)−1Bc (2.31)

This state independence permits the extraction of these matrices from the
expectation, resulting in:

u∗
j = 1

∆t
H−1G

A
EP

CÚ tj+1

tj

exp(− 1
λ
S(τ))dw(0)

EP[exp(− 1
λ
S(τ))]

DB
(2.32)

2.2.3 Numerical approximation
At this moment, numerical evaluation of equation 2.32 becomes essential. However,
two distinct challenges must be addressed:

1. Reformulating the equation for discrete-time sampling

17

Methods and theory

2. Devising a method to implement importance sampling in conjunction with
equation 2.32, given that the expectation is relative to the uncontrolled
dynamics

In the discrete-time domain, the system’s dynamics can be expressed as:

dxtj
= (f(xtj

, tj) + G(xtj
, tj)uj)∆t + B(xtj

, tj)ϵj

√
∆t (2.33)

In this context, εj represents a vector where each component is a standard normal
random variable. Incorporating εj

√
∆t into equation 2.32 results in:

u∗
j = 1

∆t
H−1G

Ep

exp(− 1
λ
S(τ))ϵj

√
∆t

Ep[exp]− 1
λ
S(τ))]

 (2.34)

Here, p denotes the probability distribution associated with the discrete-time
uncontrolled dynamics (i.e., equation 2.33 with utj

set to zero). Rather than
sampling from p, one might select a different probability distribution qν

u. Such a
probability distribution is associated with the following dynamics:

dxtj
= f(xtj

, tj)∆t + G(xtj
, tj)utj

∆t + BE(xtj
, tj)ϵj

√
∆t (2.35)

The new diffusion matrix BE is represented as:

BE(xt) =
C
Ba(xt) 0

0 νBc

D
(2.36)

where ν ≥ 1. When sampling from the distribution mentioned above, the
designer can select:

1. The initial controls around which sampling is centered.

2. The magnitude of the exploration variance, which is ν.

To sample from qν
u instead of p, it is necessary to compute the likelihood ratio

between the two distributions [18]. Incorporating the likelihood ratio corresponds
to modifying the running cost from q(xt, t) to:

q̃(xt, ut, ϵt, t) =q(xt, t) + 1
2uT

t Rut + λuTG ϵ√
∆t

+

1
2λ(1− ν−1) ϵT

√
∆t

BT
c (BcBT

c)−1Bc
ϵ√
∆t

(2.37)

The first two additional terms can be explained as penalties for shifting the mean
of the exploration away from zero. In contrast, the last term penalizes sampling

18

Methods and theory

from an overly aggressive variance. Bc
ϵ√
∆t

is the effective change in control input
caused by noise. When sampling from a distribution with non-zero control input,
the update law 2.32 changes. This change is due to the random variable shifting
from the zero-mean term Bcεj

√
∆t to the non-zero mean term: Gcu∆t + BEεj

√
∆t.

Substituting this term in 2.34 and simplifying, and denoting S̃(τ) as:

S̃(τ) = ϕ(xT , T) +
NØ

j=0
q̃(xt, ut, ϵt, t)∆t (2.38)

We obtain the iterative update rule:

u∗
j = uj + H−1G

Eqν
u

 exp(− 1
λ
S̃(τ)) ϵj√

∆t

Eqν
u

è
exp

1
− 1

λ
S̃(τ)

2é
 (2.39)

The component in the parentheses is estimated as:

KØ
k=1

 exp
1
− 1

λ
S̃(τk)

2
ϵj,k√

∆tqK
k=1 exp

1
− 1

λ
S̃(τk)

2
 (2.40)

where each trajectory τk is drawn from the sampling dynamics 2.35. This
iterative update law can be interpreted as computing the new control derived from
a reward-weighted average over trajectories.

2.2.4 Control algorithm
The final update equation 2.39 can be applied in a model predictive control setting.
In this context, optimization is performed dynamically: the trajectory is optimized,
a single control input is executed, and then the optimization is repeated.

The path integral control derivation presented here offers a method for optimizing
the entire control sequence rather than just the control input at the current time step.
Therefore, the unused portion of the control sequence can initiate the subsequent
optimization round.

This approach is essential for the algorithm’s effectiveness, as a complex system
functioning at an adequate control frequency typically allows only a limited number
of iterations to be completed within each time step.

One of the main advantages of the presented implementation is that the bulk
of the computation used in the update rule can be performed in parallel. The
parallelization introduced in this case implies parallel trajectory sampling on a
GPU, an efficient operation that can handle thousands of trajectories from complex
dynamics. The description of the algorithm is given in 1. In order to run this
algorithm, the simplest method is to parallelize the sampling for-loop by employing
one thread per sample, which provides a massive uplift in the time required to
perform the algorithm.

19

Methods and theory

Algorithm 1 MPPI optimization sequence
Given:
K: Number of samples
N : Number of time-steps
(u0, u1, . . . , uN−1): Initial control sequence
∆t, xt0 , f, G, B, BE: System/sampling dynamics
ϕ, q, R, λ: Cost parameters
uinit: Value to initialize new controls to
while task not completed do

for k ← 0 to K − 1 do
x = xt0

for i← 1 to N − 1 do
xi+1 = xi + (f + Gui)∆t + BEϵi,k

√
∆t

S̃(τk) = S(τk) + q̃(xi, ui, ϵi,k, ti)
end for

end for
for i← 0 to N − 1 do

ui = ui +H−1g
3qK

k=1
exp(− 1

λ
S̃(τk))ϵi,k

√
∆tqK

k=1 exp(− 1
λ

S̃(τk))

4
end for
send (u0) to actuators
for i← 0 to N − 2 do

ui = ui+1
end for
uN−1 = uinit
Update the current state after receiving feedback
check for task completion

end while

20

Methods and theory

2.3 SFM
The SFM is a microscopic pedestrian behavior model introduced in 1995 [19]. It is
widely used to model pedestrian movements and interactions in contexts such as:

• Crowd simulation

• Evacuation dynamics

• Urban planning

The SFM handles pedestrians as particles subject to social forces that dictate their
movement. This model operates continuously in space and time, modeling each
pedestrian separately and allowing each agent to exhibit individual characteristics.

2.3.1 The social force concept
Human behavior can be difficult to predict in complex situations, but in simple
instances, a stochastic behavioral model may describe behavioral probabilities that
can be observed in a huge population of individuals [20]. Another approach for
modeling behavioral changes is the usage of the so-called social fields or social
forces, first suggested in 1951 [21]. According to figure 2.1, a sensory stimulus
provokes a behavioral reaction influenced by personal aims and selected from a set
of behavioral alternatives to maximize utility.

The classification of sensory stimuli can be organized into two types:

Figure 2.1: Schematic illustration of processes causing behavioral changes (Re-
produced from [19],1995, p.4282)

21

Methods and theory

• Simple or standard situations are characterized by their predictability;

• Complex or new situations lend themselves to modeling through probabilistic
approaches.

However, it should be noted that pedestrians often develop automatic responses
through repeated exposure to various scenarios. These reactions are shaped by
their accumulated experiences in determining the most efficacious course of action.
Consequently, it becomes feasible to articulate the governing principles of pedestrian
behavior through the formulation of an equation of motion.

According to this equation, the systematic temporal variations dω⃗α

dt
of the

preferred velocity ω⃗α(t) of a pedestrian α are characterized by a vectorial quantity
Fα(t) that can be interpreted as a social force. This force must represent the
influence of the environment (e.g., other pedestrians or boundaries) on the behavior
of the described pedestrian.

Despite that, it is crucial to note that the environment does not physically
exert a social force on a pedestrian’s body. On the contrary, it is a quantity that
describes the concrete motivation to act. In the context of pedestrian behavior, this
incentive causes the physical production of an acceleration or deceleration force
to respond to the perceived information that the individual obtains about their
environment (see Fig. 2.1). In conclusion, one can affirm that a pedestrian behaves
as if they were subject to external forces.

2.3.2 Formulation of the social force model
Multiple effects influence the motion of a pedestrian α. The pedestrian aims to
reach a specific destination r⃗0

α with maximum comfort. Consequently, the individual
typically selects a route without detours, choosing the shortest path. This path
generally assumes the form of a polygon with edges r⃗1

α, . . . , r⃗n
α := r⃗0

α. If r⃗k
α denotes

the next edge of this polygon to be approached, the pedestrian’s desired direction
of motion e⃗α(t) can be expressed as follows:

e⃗α(t) := r⃗k
α − r⃗α(t)
∥r⃗k

α − r⃗α(t)∥
(2.41)

Where r⃗α(t) denotes the current position of the pedestrian at time t, and
∥r⃗k

α − r⃗(t)∥ represents the Euclidean norm. The destinations are typically rep-
resented as gates or areas rather than specific points r⃗k

α. In this scenario, the
pedestrian continuously adjusts their trajectory towards the nearest point r⃗k

α(t) of
the corresponding gate or area at each time t.

In the absence of disturbances, the pedestrian will proceed in the desired direction
e⃗α(t) at a certain desired speed v0

α.

22

Methods and theory

A deviation of the actual velocity v⃗α(t) from the desired velocity v⃗0
α(t) := v0

αe⃗α(t),
necessary to decelerate or to avoid obstacles, results in a tendency to revert to
v⃗0

α(t) within a specific relaxation time τα. An acceleration term of the form can
characterize this behavior:

F⃗0
α(v⃗α, v0

αe⃗α) := 1
τα

(v0
αe⃗α − v⃗α) (2.42)

A pedestrian’s movement is also affected by other pedestrians. Specifically, the
individual maintains a certain distance from other pedestrians dependent on the
pedestrian density and the desired speed v0

α. Here, the private sphere of each
pedestrian, which can be interpreted as territorial effect [22], plays an essential role.
Pedestrians typically feel increasingly uneasy when approaching a stranger, who
may respond aggressively. This discomfort leads to repulsive effects from other
pedestrians β, which vector quantities can depict:

⃗fαβ(r⃗αβ) := −∇ ⃗rαβ
Vαβ[b(r⃗αβ)]. (2.43)

The repulsive potential Vαβ(b) can be represented by a monotonic decreasing
function of b with equipotential lines creating the shape of an ellipse directed into
the direction of motion. This is because a pedestrian requires space for the next
step, which is taken into consideration by other pedestrians. The semi-minor axis
of the ellipse is denoted by b and is given by

2b :=
ñ

(∥r⃗αβ∥+ ∥r⃗αβ − vβ∆te⃗β∥)2 − (vβ∆t)2, (2.44)

where r⃗αβ := r⃗α− r⃗β. sβ := vβ∆t is of the order of the step width of pedestrian β.
Despite the simplicity of this approach, it effectively describes avoidance maneuvers
in pedestrian interactions.

It is important to note that pedestrians also tend to stay far from the borders
of buildings, obstacles, streets, walls, etc. They become increasingly uneasy the
closer to a border they get, considering they need to pay more attention to avoid
getting hurt. A boundary B induces a repulsive effect on a pedestrian, which can
be described as:

F⃗αB (⃗rαB) = −∇r⃗αB
UαB(∥⃗rαB∥) (2.45)

with UαB being a repulsive and monotonically decreasing potential. Here, the
vector r⃗αB := r⃗α − r⃗α

B has been introduced, where r⃗α
B represents the location of the

closest section of boundary B to pedestrian α.
Pedestrians are sometimes attracted to other persons or objects. These attractive

influences f⃗αi at the positions r⃗i can be modeled by attractive, monotonically
increasing potentials Wαi(∥r⃗αi∥, t), similar to the repulsive effects:

23

Methods and theory

f⃗αi(∥⃗rαi∥, t) := −∇r⃗αi
Wαi(∥⃗rαi∥, t) (2.46)

where r⃗αi := r⃗α − r⃗i. The main distinction, however, is that the attractiveness
∥f⃗αi∥ typically decreases over time as interest diminishes. These attractive effects
are, for instance, the main element that causes the formation of pedestrian groups
(which can be associated with molecules).

However, these formulas for attractive and repulsive effects are only applicable
to situations perceived in the intended direction e⃗α(t) of motion. Pedestrians or
objects placed behind the pedestrian have a lessened influence c with 0 < c < 1.
To consider this effect of perception (the effective angle 2φ of sight), direction-
dependent weights are introduced:

w(e⃗, f⃗) :=

1 if e⃗ · f⃗ > ∥f⃗∥ cos φ

c otherwise.
(2.47)

In conclusion, the repulsive and attractive influences on a pedestrian’s behavior
can be expressed as:

F⃗αβ(e⃗α, r⃗α − r⃗β) := w(e⃗α,−f⃗αβ)f⃗αβ(r⃗α − r⃗β), (2.48)

F⃗αi(e⃗α, r⃗α − r⃗i, t) := w(e⃗α, f⃗αi)f⃗αi(r⃗α − r⃗i, t). (2.49)

The equation computing a pedestrian’s total motivation F⃗α(t) can now be
established. Given that all previously mentioned effects concurrently influence a
pedestrian’s decision, their total effect is considered the sum of all such effects,
similar to the summation of forces. This results in:

F⃗α(t) :=F⃗ 0
α(v⃗α, v0

αe⃗α) +
Ø

β

F⃗αβ(e⃗α, r⃗α − r⃗β)

+
Ø
B

F⃗αB(e⃗α, r⃗α − r⃗α
B)

+
Ø

i

F⃗αi(e⃗α, r⃗α − r⃗i, t).

(2.50)

The social force model is then described by:

dw⃗α

dt
= F⃗α(t) + fluctuations. (2.51)

A fluctuation term that accounts for random variations in pedestrian behavior
has been added. These fluctuations originate from ambiguous scenarios in which
multiple behavioral alternatives are equivalent. Moreover, fluctuations occur from
occasional deviations from the standard rules of motion.

24

Methods and theory

Finally, it is necessary to introduce a correlation between the preferred velocity
ω⃗α(t) and the actual velocity v⃗α(t) to complete the pedestrian dynamics. Consider-
ing that the actual speed is bounded by a pedestrian’s maximal acceptable speed
vmax

α , the realized motion is considered to be given by

dr⃗α

dt
= v⃗α(t) := ω⃗α(t)g

A
vmax

α

∥ω⃗α∥

B
(2.52)

with

g

A
vmax

α

∥ω⃗α∥

B
:=

1 if ∥ω⃗α∥ ≤ vmax
α

vmax
α

∥ω⃗α∥ otherwise
(2.53)

2.4 Nav2 introduction
The algorithms used in the experiment were implemented on both the simulations
and the laboratory experiments using ROS2, which is a middleware that is often
used in the field of robotics due to the tools it provides, which greatly help in
connecting the hardware of the robot to its software. The package which allows the
robot to navigate autonomously is called NAV2, introduced by Steve Macenski in
2020 [23]. The Navigation2 package employs a configurable behavior tree to manage
the planning, control, and recovery tasks. Each behavior tree node calls upon a
remote server to compute one of the tasks. Each server uses a standard plugin
interface to implement new techniques or algorithms easily. The main characteristic
of NAV2 are:

• Reliability: ROS2 leverages a DDS communication standard. Using the data
distribution service security features, ROS2 allows a user to safely convey
information to the robot and cloud servers. Moreover, ROS2 introduces
the concept of managed nodes, also called lifecycle nodes. A managed node
follows a structured server model with well-defined state transitions, from
instantiation through destruction. This server is initialized upon the program’s
launch but remains idle until an external stimulus triggers its progression
through a deterministic bring-up process. During shutdown or in the event
of an error, the server transitions through its state machine, moving from an
active to a finalized state. Each state transition carries specific responsibilities,
including managing memory allocation, networking interfaces, and initiating
task processing. In Navigation2, all servers utilize managed nodes to ensure
deterministic program lifecycle management and efficient memory allocation.

25

Methods and theory

• Modularity and reconfigurability: It is possible to create configurable behavior
trees whose nodes and structure can be loaded at run-time. Each BT node
controls the data transmission with a remote server containing an algorithm
that can be written in various languages. The remote servers are modular,
which means that many of them can run at the same time to compute actions.

The overall structure of NAV2 can be seen in figure 2.2.

Figure 2.2: Representation of Nav2 design (Reproduced from [23], 2020, p.3)

The top-level node is where custom-made BT is loaded and run. Each node
call uses a different server to finish a task.

2.4.1 Recovery server
Recovery behaviors are employed to prevent total navigation failures. A recovery
server can initiate a recovery behavior, which can be conservative or aggressive.
Some possible recovery behaviors are:

• Clear costmap: used to clear costmap layers whenever the perception system
fails,

• Spin: used to rotate the robot to help it out of potential local failures,

• Wait: used to wait for dynamic obstacles to move out of the robot trajectory

2.4.2 Planner server and controller server
The objective of the global planner is to compute the shortest route to a goal
while the controller uses local data to evaluate the best control signals. The global
planner used in this thesis was the planner provided by NAV2, called NavFn
planner, which implements a Dijkstra or A* expanded holonomic planner. The
controller used was based on either the DWA or on the MPPI.

26

Methods and theory

2.4.3 Perception
The recovery server, global planner, and local planner all need information about
the robot’s environment to function correctly. Nav2 provides information through a
layered costmap, allowing the user to modify the used layers while also tuning the
rate limits, resolution, etc. This approach also allows the introduction of custom-
made layers, which is essential for this work considering that a social costmap layer
needs to be introduced, which will be discussed in section 3.1. The costmap is a 2D
grid representing the obstacles as black squares on the map (assuming that a scale
of gray is used to visualize the map), which are usually surrounded by a halo of
decreasing intensity to represent a high-cost zone. The costmap can represent the
entire environment around the robot or only a small area surrounding the robot,
called global and local costmap, respectively. The global planner uses the first one,
while the recovery server and the controller use the second one.

The default Nav2 layers that were used include:

• Static layer: uses the static map of the environment, which is either loaded
from disk or obtained by a SLAM, to initialize the grid occupancy data,

• Inflation layer: expands lethal obstacles on the costmap with exponential
decay,

• Obstacle layer: represents dynamic or static obstacles present in the environ-
ment. It can employ a variety of sensors to represent the environment

27

Chapter 3

Implementation

3.1 Nav2 implementation
After introducing the main theoretical concepts related to the algorithms and
the basics of NAV2, it is time to talk about the NAV2 implementation of said
algorithms, along with the social costmap plugin which is required for two of the
six variants of the algorithms.

3.1.1 Social costmap plugin
The social costmap plugin [24] works as an additional layer that can be added
to the costmap to prioritize avoiding human agents. The information about the
agents is obtained through a custom topic /people. This plugin introduces a
high-cost area around the people in the scene that takes the form of an ellipse
whose major axis is parallel to the agent’s heading. Consequently, the shape of the
high-cost area is circular for static agents. This plugin is configurable with a series
of parameters, which include:

Parameter Type Definition
enabled bool (de-

fault: True)
Whether to apply this plugin or
not.

cutoff double (de-
fault: 5.0)

Smallest cost value to publish on
the costmap.

amplitude double (de-
fault: 255.0)

Amplitude of adjustments at
peak. Maximum cost on the per-
son center.

covariance_front_height double (de-
fault: 0.25)

Covariance of the ordinate axis of
the Gaussian at the person head-
ing.

28

Implementation

Parameter Type Definition
covariance_front_width double (de-

fault: 0.25)
Covariance of the abscissa axis
of the Gaussian at the person’s
heading.

covariance_rear_height double (de-
fault: 0.25)

Covariance of the ordinate axis
of the Gaussian at the person’s
rear.

covariance_rear_width double (de-
fault: 0.25)

Covariance of the abscissa axis of
the Gaussian at the person’s rear.

covariance_when_still double (de-
fault: 0.25)

Covariance employed to form a
circular cost around the person
when she is not moving.

use_vel_factor bool (de-
fault: True)

Whether to use the current
person velocity and the
speed_factor_multiplier
to modify the Gaussian at the
person’s front or not.

speed_factor_multiplier double (de-
fault: 5.0)

Factor with which to scale the
velocity.

use_passing bool (de-
fault: True)

Whether to use another Gaussian
on the right side of the person in
order to ease the passing maneu-
vers, for instance, in corridors.

covariance_right_height double (de-
fault: 0.25)

Covariance of the ordinate axis
of the Gaussian at the person’s
right side.

covariance_right_width double (de-
fault: 0.25)

Covariance of the abscissa axis of
the Gaussian at the person’s right
side.

publish_occgrid bool (de-
fault: False)

Whether to publish an Occupan-
cyGrid with only the social costs.

Table 3.1: Social costmap plugin parameters

This thesis used the social costmap plugin only for the local costmap. This
is because the main objective is to evaluate the difference in the performance of
the local controller. Adding a social layer on the global costmap would also cause
the computed global path to be different, giving an advantage to the algorithm
variants using this plugin.

29

Implementation

3.1.2 DWA implementation
There is a variety of algorithms that can be used in NAV2 which provide different
characteristics and can be used on different types of robots [25]. The problem is
that most of them do not include a way to consider the influence of other human
agents in the environment. Taking the DWA algorithm into account, a basic
implementation would be to maximize the optimization function of the DWA (2.3)
on the search space after adding a term that considers the presence of the agents.
This was achieved [26] considering the effect of the SFM as a "social work", which
effectively adds a penalty term to the optimization function. The total social
work comprises the work performed by the robot Wr and the work caused by the
robot on the nearby pedestrians Wp. Considering the robot as agent 0, and a total
number of human agents n:

Wsocial = Wr +
nØ

i=1
Wpi

(3.1)

Where:

• Wr is the summation of the modulus of the robot social force and the robot
obstacle force along the trajectory.

• Wp is the summation of the modulus of the social forces originated by the
robot for each close pedestrian.

The parameters involved in this algorithm consist of the following:

• Robot Configuration Parameters

Parameter Type Definition
max_trans_acc double Maximum acceleration in trans-

lation (m/s2).
max_rot_acc double Maximum acceleration in rota-

tion (rad/s2).
max_trans_vel double Maximum linear velocity

(m/s).
min_trans_vel double Minimum linear velocity (m/s).
max_rot_vel double Maximum angular velocity

(rad/s).
min_rot_vel double Minimum angular velocity

(rad/s).
min_in_place_rot_vel double Angular velocity of stationary

rotations (rad/s).

30

Implementation

Table 3.2: DWA robot configuration parameters

• Goal Tolerance Parameters

Parameter Type Definition
yaw_goal_tolerance double Tolerance in angular distance

(rad) to determine that the goal
has been achieved.

xy_goal_tolerance double Tolerance in Euclidean distance
(m) to determine that the goal
has been achieved.

wp_tolerance double Distance (m) from the robot to
search for the next point of the
global plan to pursue.

Table 3.3: DWA goal tolerance parameters

• Forward Simulation Parameters

Parameter Type Definition
sim_time double Time (seconds) to expand the

robot movement and test for
collisions. (default: 0.5).

sim_granularity double Resolution in meters to divide
the expanded trajectory and
inspect for collisions (default:
0.025).

Table 3.4: DWA forward simulation parameters

• Sensor Interface Parameters
The sensor interface manages the acquisition of sensory input and subsequently
updates the data regarding the social agents in the surrounding environment.

Parameter Type Definition
laser_topic string Topic in which the laser range

finder is being published [sen-
sor_msgs/LaserScan].

31

Implementation

people_topic string Topic in which the people de-
tected are being published [peo-
ple_msgs/People].

odom_topic string Odometry topic
[nav_msgs/Odometry].

max_obstacle_dist double Maximum distance (m) in
which the obstacles are consid-
ered for the social force model.

naive_goal_time double Lookahead time (secs) to pre-
dict an approximate goal for
the pedestrians.

people_velocity double Average velocity of the pedes-
trians (m/s).

Table 3.5: DWA sensor interface parameters

• Social Force Model Parameters
The weights of the SFM forces for people trajectory computation.

Parameter Type Definition
sfm_goal_weight double Weight of the attraction force

to the goal.
sfm_obstacle_weight double Weight of the repulsive force of

the obstacles.
sfm_people_weight double Weight of the repulsive force of

the pedestrians.

Table 3.6: DWA Social Force Model parameters

The function to optimize is slightly modified, and it assumes the following form:

Ctraj = Csωs + Ccmωcm + Caωa + Cνων + Cdωd (3.2)

Where the C terms represent the cost, and their respective weights are:

• social_weight ωs is the weight attributed to Wsocial

• costmap_weight ωcm is the weight attributed to the costmap value.

• angle_weight ωa is the weight attributed to the angle difference between
robot heading and path heading.

• vel_weight ων is the weight attributed to the difference between the linear
maximum velocity allowed and the linear velocity evaluated.

32

Implementation

• distance_weight ωd is the weight attributed to the distance between the
final point of the projected robot trajectory and the current local goal.

It has to be noted that, by setting the social_weight to zero, this function corre-
sponds to a DWA, which means that this algorithm provides both the basic DWA
and the version which implements the SFM.

3.1.3 MPPI implementation
In the NAV2 implementation of the MPPI, the controller leverages tensor repre-
sentations to group process trajectories. The trajectory planner produces randomly
noised controls utilizing Gaussian distributions for each control axis. The generated
controls are added to the previous optimal trajectory’s velocities to develop a
series of trajectories with random disturbances. Constraints are imposed on these
trajectories’ velocity limits and turning radii to render them physically achievable
for omnidirectional, Ackermann, and differential-drive robots. Using time samples
in the trajectory, the velocities are then projected to build the trajectory poses.
Next, these trajectories are scored employing several plugin-based critic functions
to identify the best trajectory in the batch. The output scores are utilized to
set the best control with a softmax function. This control is then considered the
basis of the starting control of the following time step. This implementation of the
MPPI also includes a trajectory visualizer to represent the sampled trajectories
used in the algorithm in real-time (in the case the controller is used in a simulation
environment). The main parameters to be customized are:

• Controller parameters

Parameter Type Definition

motion_model string Default: DiffDrive. Type of model
which represents the used robot.

critics string
Default: None. Critics (plugins)
names to be added to score the
trajectories.

iteration_count int Default 1. Iteration count in MPPI
algorithm.

batch_size int Default 1000. Count of randomly
generated possible trajectories.

time_steps int Default 56. Amount of time steps
(points) in each sampled trajectory.

model_dt double Default 0.05. Time interval (s)
between two sampled points.

33

Implementation

vx_std double Default 0.2. Sampling standard
deviation for vx.

vy_std double Default 0.2. Sampling standard
deviation for vy.

wz_std double Default 0.4. Sampling standard
deviation for Wz.

vx_max double Default 0.5. Max vx (m/s).

vy_max double Default 0.5. Max vy in either
direction, if holonomic (m/s).

vx_min double Default -0.35. Min vx (m/s).
wz_max double Default 1.9. Max wz (rad/s).

temperature double

Default 0.3. Selectiveness of
trajectories by their costs. 0
represents control with the best cost,
while a large value leads in mean of
all trajectories.

gamma double
Default 0.015. A trade-off between
smoothness (high) and low energy
(low).

visualize bool Default false. Publish visualization
of trajectories.

retry_attempt_limit int Default 1. Number of attempts to
find viable trajectories on failure.

regenerate_noises bool Default false. Whether to regenerate
noises each iteration.

Table 3.7: MPPI controller parameters

• Trajectory visualizer parameters

Parameter Type Definition

trajectory_step int

Default: 5. The step between
trajectories to visualize to
downsample candidate trajectory
pool.

time_step int
Default: 3. The step between points
on trajectories to visualize to
downsample trajectory density.

Table 3.8: MPPI trajectory visualizer parameters

34

Implementation

• Path handler parameters

Parameter Type Definition

max_robot_pose_search_dist double

Default: Costmap half-size. Max
integrated distance ahead of robot
pose to search for nearest path point
in case of path looping.

prune_distance double
Default: 1.5.Distance ahead of the
nearest point on the path to the
robot to prune path to (m).

transform_tolerance double Default: 0.1. Time tolerance for
data transformations with TF.

enforce_path_inversion double

Default: False. If true, it will prune
paths containing cusping points for
segments changing directions,
forcing the controller to change
direction at the planner requested
point

inversion_xy_tolerance double

Default: 0.2. Cartesian proximity
(m) to path inversion point to be
considered "achieved" to pass on the
rest of the path after path inversion.

inversion_yaw_tolerance double

Default: 0.4. Angular proximity
(radians) to path inversion point to
be considered "achieved" to pass on
the rest of the path after path
inversion. 0.4 rad = 23 deg.

Table 3.9: MPPI path handler parameters

This controller, by default, includes a wide array of critics, which can greatly impact
the behavior of the MPPI:

• Constraint Critic: when active, the controller is more inclined to keep the
velocity value within the defined limits.

• Goal angle Critic: when active, the controller is more likely to reach the
target with an angle θr that closely approximates the goal pose angle θ.

• Goal Critic: when active, the controller aims to reach the given goal pose.

• Obstacles Critic: when active, the controller tries to avoid obstacles and
keep a large distance from them.

35

Implementation

• Path Align Critic: when active, the controller tries to align its optimal
trajectory to the provided global path.

• Path Angle Critic: when active, the controller keeps its optimal trajectory
parallel to the global path.

• Path Follow Critic: when active, the controller is more inclined to keep
moving along its currently defined trajectory. Keeping this high enough value
is important to prevent the robot from stalling in low-cost areas.

In its basic form, the MPPI controller performs well in obstacle avoidance and
is highly customizable, making it an excellent choice for differential robots. The
only problem is that it is not social on its own, which would make it undesirable
considering the thesis’ scope is on performing experiments in social scenarios. The
plugin structure, however, allows the user to create and implement custom plugins
to add extra functionalities. This customizability led to developing a new plugin
that implements the SFM to score the random trajectories: the social critic.

3.2 Social critic
The social critic acts alongside the other critic functions already provided by the
MPPI controller, so its structure shares some similarities with those plugins. It
starts with an Initialize function and gets all the necessary parameters defined
in the YAML file; the main difference is that three different subscribers and two
publishers are also created. The three subscribers used are:

• people_sub, which gets information about agents in the scene;

• odom_sub, which obtains the odometry of the robot, agent 0;

• laser_sub, which acquires information from the LiDar.

The subscribers mentioned above are associated with three callback functions,
respectively with the people_callback, odom_callback, and laser_callback, which
provide the plugin with the necessary data. The two publishers are instead employed
in creating markers to distinguish the used agents at a particular time from the
points obtained by the LiDaR, respectively. The other aspect consistent with
all the other critics is the presence of the scoring function, which assigns a cost
term to the considered trajectories. One central aspect of this plugin is how the
input parameters are handled. The odom_callback creates the first agent, while
another function called get_Odom gets the current information about odometry
and “freezes” it to be used in the laser_callback. This function is introduced to
use the robot’s current position to transform the points obtained by the LiDaR

36

Implementation

from the robot frame to the global frame, using a roto-translation defined by x
and y coordinates plus the yaw. Another concept employed in the laser_callback
function is the presence of a filter. Before transforming the points, a parameter
laser_filter defines the number of points to be used as obstacles for the agents: the
total amount of points given by the LiDaR is divided by said parameter, leading to
a lower computational burden for the algorithm. Points are chosen by dividing the
observed points into groups with as many elements as defined by the laser_filter
parameter. In each group, the nearest point to the robot is chosen and assigned
in the middle of its interval. The laser points, which are filtered and transformed,
are then passed to a function that calls upon the first publisher. Another critical
component of this algorithm is the people_callback, which transforms the people
in the scene into agents coherent with their definition in the SFM library and adds
the robot as the first agent. The getAgents() part of this code locks the agents’
data for the entirety of the scoring process. This information gathering is then
used in the final part to assign a cost to the chosen trajectories. Another filter,
however, is applied before assigning a penalizing term: this filter is the agent filter.
To lessen the amount of computation needing to be performed, the only agents
considered in the scene are the ones that meet two separate requirements:

• They are within a certain distance from the robot;

• They are within a certain angle with respect to the direction the robot’s
LiDaR is pointing, allowing consideration of only the agents the robot is
looking at directly, angle called FOV

The filter is represented in Fig. 3.1. This filter allows the robot to evaluate the
presence of an agent only when it could significantly impact the trajectory scoring.
It also avoids strange behavior when agents are nearby but far from the possible
chosen trajectories. After the filtering process, the algorithm’s final section is
executed, which contains two for loops:

• an outer loop that iterates through all the different trajectories the controller
selects.

• An inner loop that segments the i-th trajectory into several time steps defined
by the controller.

The outer loop defines the robot agent’s local goal as the trajectory’s endpoint.
It also creates an agent vector to be updated in the inner loop. The inner loop
performs the following operations at every time step:

• computation of the forces defined in the SFM plugin;

• update of the agents’ position and velocity as a result of said forces;

37

Implementation

Figure 3.1: The agents in blue are not considered in the computation since they
do not satisfy both requirements; the agent in purple is considered for the opposite
reason.

• update of the robot’s position and velocity, which are given by the trajectory;

• computation of the social work, which is provided by the sum of the norm of
the social forces;

After the inner loop is completed, the social cost for the i-th trajectory is the
sum of the social work at every time step. Once the outer loop is also completed,
the vector of social costs is used to compute the actual cost used by the MPPI
controller. Every cost is multiplied by a weight and divided by the number of time
steps, allowing this to be considered along with all the other critics. The complete
list of parameters which can be set include:

Parameter Type Definition
enabled bool whether the plugin is enabled or not

cost_power int power of the computed cost, one by
default

social_weight float weight of the social critic

step_grouping int time steps to skip to reduce
computational burden

field_of_view float angle used to reduce the number of
agents considered

max_distance_robo_agent_x float cut-off distance for an agent to be
considered on global x-axis

38

Implementation

max_distance_robo_agent_y float cut-off distance for an agent to be
considered on global y-axis

laser_filter int reduces the number of LiDAR
points for computation

laser_distance_cut_off float distance inside which laser points
are considered

global_frame string name of the global frame to be
considered

Table 3.10: SocialCritic Configuration

3.3 Simulation
After completing the first part of the thesis, the next step was to experiment with
the different variations of the algorithm. Before employing the algorithms on a real
robot, simulations were used to observe the algorithms’ behavior and tune their
parameters accordingly. Different software was used to perform these simulations.

3.3.1 Gazebo
Gazebo was chosen as the simulator for the robot and the agents mainly because it
was compatible with the other software employed in this thesis. Gazebo allows for
the configuration of worlds relatively quickly and allows for the easy implementation
of the robot. In Fig. 3.2, the Gazebo world used to tune the algorithms’ parameters
can be seen.

Figure 3.2: The Gazebo world used in simulation to test the algorithms.

3.3.2 RViz
Alongside Gazebo, RViz is a handy software for visualizing ROS2 topics in a 3D
environment.

39

Implementation

RViz allows the visualization of the trajectory being computed by the robot
along the map loaded by the specific algorithm being tested. It is also the tool
used to set the robot’s objective, making it a crucial part of the simulation.

In Fig. 3.3, there is the RViz panel associated with the Gazebo world.

Figure 3.3: The RViz panel sets the goals and checks that the robot and agents
are correctly recognized.

3.3.3 HunavSim
The HunavSim package, mentioned in Chapter 1, provides many tools that aided
the simulation. The tools included are:

• hunav_agent_manager. This tool handles the number and the behavior of
the agents using a set of behavior trees and a configuration file that can specify
the behavior of each agent.

• hunav_evaluator. This tool evaluates the robot’s performance based on
metrics by gathering information on the /agents and/odom topics.

• hunav_msgs. This tool adds the "Agent" and "Agents" message types used
by the evaluator. This package requires the people_msgs topic [27].

• hunav_rviz_panel. This tool implements an RViz panel, which allows the
agents to easily be configured in the simulation by setting their goals, starting
positions, and behaviors.

3.3.4 HuNav gazebo wrapper
The hunav_gazebo_wrapper is a ROS2 wrapper that allows HuNavSim to be
used inside Gazebo. This wrapper includes a set of different default scenarios,
including other worlds and agent configurations. This tool allows agents to be
spawned in the Gazebo world.

40

Implementation

3.3.5 Observations made in the simulations
The six algorithms’ variations were tested in the Gazebo world shown in Fig. 3.2
to tune the weights and test whether every part of the different algorithms works.
In the simulated environment, which represents a series of connected rooms with
eleven agents, the DWA-derived variations had more difficulty moving, especially
in narrow corners and corridors near human agents. On the other hand, the
MPPI-derived variations were responsive and managed to traverse the scenario
in almost every test. The social costmap plugin worked as intended, adding an
elliptical cost zone around the people, as shown in Fig. 3.4.

The SFM in the DWA algorithm worked as intended, but it was very conservative
with the weights chosen, leading to navigation failures in tight spaces. The social
critic of the MPPI algorithm was a noticeably smoother implementation of the
SFM, leading to a more careful approach near agents while keeping the dexterity
of the MPPI. To check whether the agents were correctly filtered, a publisher was
added to the social critic to implement markers, which could be observed in RViz.
The blue markers belong to the agents and the robot and can be seen in Fig. 3.4.
After the simulation phase was completed, it was time to test the algorithms on
the physical version of the Jackal.

(a) The cost zone attributed to agents by the
social costmap plugin.

(b) Blue markers are the agent which are going
to be considered by the critic.

Figure 3.4: The agent markers and the social grid

41

Implementation

3.4 Laboratory experiments
The laboratory experiments aimed to reproduce various scenarios where a robot
could engage in a typical social navigation activity. The experiments were carried
out in the PIC4SeR laboratory, and eight scenarios were tested. The first four were
based on case studies, while the last four reproduced more complex scenarios. Each
variation of the algorithms was tested five times, reaching 240 experiments.

3.4.1 Tools and hardware required

Information about the robot and the agents was necessary to make the algorithms
work in a real-life test. As previously mentioned, the robot is the Jackal from
ClearPath Robotics, which is relatively light-weight, weighing about seventeen
kilograms. It is also a solid choice in testing because of its small size, good battery
life, and the possibility to install and configure easily ROS2. The internal CPU of
the Jackal was upgraded to an I7 10-th generation chip from Intel to handle some
of the more complex variations of the algorithms. The Jackal was also equipped
with a LiDaR, which allowed it to recognize the surrounding obstacles. The Jackal
with the added LiDaR can be seen in Fig.3.5

(a) This view shows the spheres surrounded
with reflective tape used by the Vicon cameras.

(b) The LiDaR can be seem form this view.

Figure 3.5: The Jackal seen from the front and seen from above

The information about the position of the agents and the odometry was captured
using ten Vicon cameras placed around the laboratory’s perimeter, which allowed
for the tracking of different objects. The different objects were associated with the
Vicon camera system using a unique disposition of spheres surrounded by reflective
tape. In order to recognize the people as agents, each person wore a cardboard
collar that featured many of the spheres mentioned above.

Both the cameras and the "agent identifier" can be seen in Fig. 3.6.

42

Implementation

The complete setup allows one to track both the robot’s and agents’ positions.
The information is then stored in two ROS2 topics, which in this case are called
"/vicon/odom" and "/vicon/people."

(a) Cardboard collar, with some
spheres surrounded by reflective
tape.

(b) Three Vicon cameras.

Figure 3.6: Three of the Vicon cameras and one of the agent collars.

3.4.2 Controller parameters
To keep the comparison between the controllers as fair as possible, the controllers
had their maximum velocity set at 0.6 m/s. In contrast, the minimum velocity was
set at 0.08 m/s. The minimum velocity was set at this value because even though
the MPPI-derived algorithms can go in reverse, the DWA-derived algorithms
can only go forward. The target frequency for all the controllers was set at 20 Hz.
The social costmap plugin was kept the same throughout the two variations that
included it, and its value can be seen in table 3.1. The DWA-derived algorithms
had the following parameters:

DWA parameter Value Cost weight DWA variations
max linear vel 0.6 [m/s] social weight 0.0 / 0.0 / 2.0
min linear vel 0.08 [m/s] costmap weight 2.0 / 2.0 /2.0
max angular vel 1.5 [rad/s] velocity weight 0.8

Continued on next page

43

Implementation

Table 3.11 – continued from previous page
DWA parameter Value Cost weight DWA variations
waypoint tol 2.0 [m] angle weight 0.6
sim time 2.5 [s] distance weight 1.0

Table 3.11: DWA controller main parameters

The difference in the SFM variation is due to increased social weight. The
MPPI-derived algorithms had the following parameters:

MPPI parameter Value Critic MPPI variations
max linear vel 0.6 [m/s] constraint critic 5.0
min linear vel 0.08 [m/s] goal critic 15.0
max angular vel 1.5 [rad/s] obstacles critic 0.45(normal)-20.0(critical)

time per step 0.05 [s] path follow critic 8.0
number of time steps 60 path align critic 2.0
random trajectories 750 social critic 0.0/0.0/22.0

Table 3.12: MPPI controller main parameters

The difference between the standard variation and the SFM implementation
is the enabling of the custom social critic. The social critic had the following
parameters:

Social critic parameter Value
step_grouping 12
field_of_view 90.0 [degrees]
max_distance_robo_agent_x 3.5 [m]
max_distance_robo_agent_y 3.5 [m]
laser_filter 6
laser_distance_cut_off 3.5 [m]
global_frame "map"

Table 3.13: Social critic parameters

Having set both the hardware and software parts of the experiments, the
experiments will now be presented.

44

Implementation

3.4.3 Scenarios
The scenarios aim to present a wide array of situations in which the robot could
be involved. The first scenario is the passing one, one of the standard interactions
between the robot and the agent. The map presents a central corridor that the
robot and one agent traverse in opposite directions. The map for the first scenario
can be seen in Fig. 3.7 a. The second scenario is the overtaking case. The map is
identical to the one presented in the first scenario, but the difference is that the
robot and the agent traverse the corridor in the same direction. The goals of both
the agent and the robot are different and can be seen in Fig. 3.7 b. In every map,
the agents are colored in blue, the robot in red, the robot’s objective in yellow, and
the agents’ objective in green.

(a) Passing map (b) Overtaking map

Figure 3.7: Passing and overtaking maps

The third and fourth scenarios represent two variations of the crossing case.
After traversing a small corridor, the robot has to deal with two agents crossing
the room with a slight delay. The difference is that in the third scenario, the two
agents cross in the same direction. In comparison, in the fourth scenario, the two
agents cross in opposite directions, starting from opposite sides of the room. In
both scenarios, the nearest agent to the robot starts crossing when it has traversed
the corridor, while the second agent crosses when the first agent has traversed half
its path. Both the maps can be seen in 3.8.

45

Implementation

(a) Crossing1 map (b) Crossing2 map

Figure 3.8: The two crossing maps

The fifth scenario is the first non-standard case, which presents a more complex
navigation path: the robot has to go into a hallway while a person is going around
a corner, and the navigation goal is set near a person who is walking back and forth,
making the experiment more unpredictable. The map for the fifth experiment is
represented in Fig. 3.9 a, where the green area around the second agent indicates
that it does not have a fixed objective. The sixth scenario is the first involving three
agents. The first agent walks diagonally to test the robot’s reaction; the second
agent stands still near the middle of the room, and the third walks horizontally as
soon as the robot approaches. The complete configuration is shown in Fig. 3.9 b.

The seventh scenario is an alteration of the crossing scenario, where two agents
walk diagonally side-by-side while the other agent walks in the opposite diagonal
direction. The map is shown in Fig. 3.10 a. The eighth scenario is different because
the single agent present does not have a precise objective; it just aims to disturb
the robot’s trajectory, which has the same starting position and static obstacles as
the seventh scenario. The map is shown in Fig. 3.10 b.

46

Implementation

(a) Fifth scenario map (b) Sixth scenario map

Figure 3.9: The fifth and sixth scenario maps

(a) Seventh scenario map (b) Eighth scenario map

Figure 3.10: The seventh and eighth scenario maps

47

Implementation

3.5 Test methodology
Having prepared all the scenarios and the necessary tools, it was now possible
to conduct the tests. The tests were conducted between the second half of July
and September. The only thing to note is that each person who participated
in the experiment was asked to evaluate the robot’s performance based on four
parameters:

• Unobtrusiveness is the robot’s ability to go unnoticed, which was expressed to
the agent as the level of hindrance provided by the robot.

• Smoothness is the robot’s ability to traverse smoothly in the environment,
penalized by sudden stopping movements.

• Avoidance foresight is the robot’s ability to react to environmental obstacles
and change its trajectory.

• Friendliness, a parameter to express the overall friendliness of the robot, a
slightly more subjective parameter and dependant on the other parameters.

It was possible to visualize the position of the agents and the robot in real-time using
the Vicon software before and during the experiment to ensure correct tracking of
the relevant data to be recorded. Fig. 3.11 shows an example from said software.

Figure 3.11: The robot (on the right side) and three agents (on the left side) as
they appear on the Vicon software, represented by orange objects.

48

Implementation

RViz could also verify that the map server loaded the correct map and that
every frame was being tracked.

Figure 3.12: The RViz interface of the robot using MPPI with social critic

To ensure consistency, a simple Python script was written to start the recording
of a ROS2 bag and then send the NAV2 objective to the robot after two seconds
to start navigation. Moreover, the robot’s objective was continuously published as
a topic for evaluation. Fig. 3.13 shows two runs from the third and fifth scenarios.

(a) First crossing scenario run (b) First advanced scenario run

Figure 3.13: Two examples from the laboratory experiments

49

Chapter 4

Results

After completing the laboratory experiments, it was time to analyze the data
acquired. The experiments were evaluated with the following criteria:

• A run was considered unsuccessful if the robot failed to reach the objective or
collided with an agent. This influenced the robot’s overall success rate.

• A run was considered for evaluation if it was successful or if it resulted in a
collision. Runs that failed due to timeout often raised the standard deviations
of the different metrics by a considerable amount, so they were not included
in the computation of the average and the standard deviations since they had
already reduced the overall success rate of the robot.

The same criteria were applied to both quantitative and qualitative metrics.

4.1 Quantitative metrics
The quantitative metrics considered are some of the ones present in the HuNavSim
evaluator; they consist of the following:

• Success rate (SR) is the ratio between the successful experiments and the
total number of experiments.

• Social work (SW) is obtained by normalizing the values of the social force
between the robot and the different agents throughout the experiment.

• Path length (PL) reflects the total distance the robot travels to reach its
objective.

• Time to complete (TTC) indicates the algorithm’s time to finish the navi-
gation.

50

Results

• Average minimum distance to agents (AMD) shows the average of the
robot’s distance to its nearest agent throughout the experiment.

• Social work per second (SWsec) is the social work over the time to complete;
it expresses the trade-off between completion velocity and social forces applied
to the agents.

• Space intrusion metrics represent the percentage of time the robot spent
in one of four spaces: intimate, personal, social, and public. These spaces are
concentric circles drawn around the agents, with the closest being the intimate
space and the furthest being the public space.

To represent the following metrics, both the mean values and the standard deviations
have been computed. The scenarios have been numbered in the order they were
presented, starting from passing(1) going all the way to the fourth advanced case(8).

Algorithm SR (%) SWsec SW PL[m] TTC[s] AMD[m]
1 DWA 100.00 15.32 478.90 5.18 8.86 1.83

DWA_costmap 100.00 11.13 374.53 5.36 12.71 1.93
SFM_DWA 100.00 9.05 270.06 5.63 10.92 1.77
MPPI 100.00 12.53 492.65 4.78 8.55 2.09
MPPI_costmap 100.00 9.07 551.67 5.24 9.63 1.85
SFM_MPPI 100.00 14.95 479.86 5.49 9.84 2.06

2 DWA 100.00 17.86 600.24 7.34 12.71 0.46
DWA_costmap 100.00 10.01 529.25 6.19 11.50 0.34
SFM_DWA 60.00 14.49 1164.44 8.62 49.59 0.70
MPPI 60.00 15.47 1426.99 5.82 9.00 0.21
MPPI_costmap 100.00 6.78 353.63 6.81 12.62 0.53
SFM_MPPI 80.00 6.62 476.29 6.73 13.51 0.48

3 DWA 100.00 22.11 616.23 4.95 10.46 0.79
DWA_costmap 100.00 24.40 645.97 4.87 10.15 0.72
SFM_DWA 100.00 31.81 745.87 5.84 14.99 1.07
MPPI 100.00 17.41 888.11 4.87 9.51 0.61
MPPI_costmap 80.00 21.83 1132.82 5.63 13.43 0.81
SFM_MPPI 100.00 17.64 542.42 5.38 10.92 0.92

4 DWA 80.00 17.86 459.14 5.05 11.33 0.87
DWA_costmap 100.00 23.57 577.35 5.17 10.30 0.72
SFM_DWA 80.00 33.06 1323.62 8.28 27.38 0.81
MPPI 100.00 17.24 856.16 6.17 14.44 0.79
MPPI_costmap 80.00 15.11 674.98 6.46 14.61 0.70
SFM_MPPI 100.00 12.66 544.54 5.84 11.84 0.77

Table 4.1: Quantitative metrics for the first four scenarios, representing the mean
values

51

Results

Algorithm SR (%) SWsec SW PL[m] TTC[s] AMD[m]
5 DWA 100.00 146.31 6020.52 9.07 17.52 0.34

DWA_costmap 100.00 154.74 6341.91 7.91 19.28 0.36
SFM_DWA 20.00 - - - - -
MPPI 60.00 210.57 9532.01 8.26 14.53 0.51
MPPI_costmap 60.00 75.76 4593.62 8.92 18.38 0.45
SFM_MPPI 100.00 118.42 4687.75 8.02 15.77 0.49

6 DWA 100.00 32.02 1549.96 7.41 27.62 0.22
DWA_lcostmap 80.00 28.12 972.01 7.15 19.89 0.20
SFM_DWA 100.00 37.76 1398.22 10.08 21.28 0.50
MPPI 40.00 20.09 2144.23 7.61 16.66 0.32
MPPI_costmap 80.00 12.09 862.94 12.57 31.96 0.30
SFM_MPPI 80.00 16.61 826.22 8.16 21.82 0.31

7 DWA 100.00 46.87 1181.09 6.66 13.43 1.61
DWA_costmap 100.00 44.50 1281.31 7.50 15.65 1.75
SFM_DWA 100.00 39.23 1167.53 6.92 15.18 1.66
MPPI 100.00 37.60 1504.81 6.46 15.65 1.15
MPPI_costmap 40.00 49.94 2129.33 5.37 23.03 0.88
SFM_MPPI 80.00 44.61 1429.80 6.69 15.55 1.32

8 DWA 100.00 40.46 1624.54 8.41 21.87 0.46
DWA_costmap 100.00 50.95 1834.27 8.39 20.29 0.56
SFM_DWA 80.00 25.52 1663.95 10.61 31.41 0.60
MPPI 100.00 43.39 1819.88 10.24 18.31 1.15
MPPI_costmap 100.00 45.68 1958.47 12.88 17.37 0.89
SFM_MPPI 100.00 45.34 1893.09 8.71 18.06 0.76

Table 4.2: Quantitative metrics for the last four scenarios, representing the mean
values.

In table 4.1 and 4.2, just the mean values were shown, but it has to be noted that
even among the successful experiments, some of them showed a different behavior
compared to overall standard behavior, which can be attributed to:

• The starting position of the robot, which could have slight variations between
one run and the next, even though it was kept fairly consistent

• The different agents across the experiments, since they have slightly different
walking speeds and body types.

• In the case of the MPPI derived algorithms, the randomly generated trajectories
could result in slightly different paths taken even in starting equal conditions.

The social work of the different experiments is represented in Fig. 4.1 and 4.2.

52

Results

(a) passing social work (b) overtaking social work

(c) crossing first social work (d) crossing second social work

(e) advanced first social work (f) advanced second social work

Figure 4.1: The average and standard deviation for the social work of the first six
scenarios. On the x-axis, the different algorithms: DWA derived algorithms and
MPPI derived algorithms. On the y-axis, the social work. The black lines represent
the standard deviation. Light blue represents the base versions of the algorithms,
dark blue represent the social costmap version, purple represents the SFM version.

53

Results

(a) advanced third social work (b) advanced fourth social work

Figure 4.2: The average and standard deviation for the social work of the last
two scenarios. On the x-axis, the different algorithms: DWA derived algorithms
and MPPI derived algorithms. On the y-axis, the social work. The black lines
represent the standard deviation. Light blue represents the base versions of the
algorithms, dark blue represent the social costmap version, purple represents the
SFM version.

As can be seen, the standard deviation is high in certain situations. As an
example, the MPPI base version in the sixth experiment, which is the (f) plot in
Fig. 4.1, shows a high standard deviation given by the fact that one of the runs
that was evaluated resulted in a collision, providing a way higher value of the social
work compared to the standard runs and significantly increasing both the average
and the standard deviation related to the social work.

The (e) plot in Fig. 4.1 also shows that the SFM variation of the DWA wasn’t
evaluated; this is because this is the only case where one of the algorithms failed
to reach the goal in four different runs, making it impossible to calculate both the
average and the standard deviations. There is also one run for the second crossing
experiment of the SFM variation of the DWA, which was way smoother than the
other runs, providing way better results and lowering the average value of the social
work while raising the standard deviation. Apart from the occasional navigation
failure, the DWA-derived algorithms show a more consistent behavior, with an
overall lower standard deviation across the different experiments. As previously
mentioned, the MPPI-derived algorithms show a higher standard deviation across
the board due to their stochastic approach.

The intrusion metrics are going to be represented in Fig. 4.3 and 4.4.

54

Results

(a) passing intrusion (b) overtaking intrusion

(c) crossing first intrusion (d) crossing second intrusion

(e) advanced first intrusion (f) advanced second intrusion

Figure 4.3: The average intrusion values for the first six scenarios.
On the x-axis, the different algorithms: DWA,DWA_costmap,SFM_DWA,
MPPI,MPPI_costmap,SFM_MPPI. On the y-axis, the percentage values of total
time. Green represents public space, yellow represents social space, orange repre-
sents personal space, red represents intimate space.

55

Results

(a) advanced third intrusion (b) advanced fourth intrusion

Figure 4.4: The average intrusion values for last two scenarios.
On the x-axis, the different algorithms: DWA,DWA_costmap,SFM_DWA,
MPPI,MPPI_costmap,SFM_MPPI. On the y-axis, the percentage values of total
time. Green represents public space, yellow represents social space, orange repre-
sents personal space, red represents intimate space.

From these metrics, the intimate space intrusion in the SFM variations has a
lower value in most of the experiments compared to the other variations of the
same algorithm. The SFM variation of the DWA, in particular, shows the lowest
value for space intrusion in most of the experiments, demonstrating that it is the
algorithm that consistently tries to keep the safest distance to the agents. The
problem that can also be observed when analyzing the rest of these metrics is
that this variation also has the highest time to complete in five out of the eight
experiments. This algorithm suffers significantly in situations with a narrow space
to traverse with an agent nearby, which makes the algorithm unable to move
unless the agent moves. This behavior causes this algorithm to fail in 80% of
the cases in the fifth experiment, where the agent is near the goal. The SFM
variation of the MPPI shows, for most of the experiments, a lower social work
compared to the other MPPI variations. It suffers mostly in scenarios where
the other MPPI variations also have problems, in particular the sixth and the
seventh scenario, where the success rate for the MPPI variations is much lower
than the DWA variations. Overall, the success rate for the SFM variation of the
MPPI is higher than the other MPPI controllers, showing that, with the others
parameters being equal, the Social Force Model helps this type of algorithm. On
the contrary, the Social Force Model helps the DWA algorithm only in the more
straightforward passing scenario, but it makes navigation more difficult in more
complicated scenarios.

To get an overall evaluation, some of the quantitative metrics
(SW,SWsec,PL,TTC, and AMD) were given a score from zero to one to compare

56

Results

all the algorithms across different scenarios. This process was performed to decide
the best-performing algorithm compared to the rest. In particular, the score was
assigned following these two criteria:

valuenorm =

min(values)

value for TTC, SWsec, SW, PL
value

max(values) for AMD

given by the fact that TTC,SW,SWsec,PL should be as low as possible while
AMD should be as high as possible. This normalization was done because different
scenarios with different durations and agent numbers wouldn’t be easy to compare
otherwise; this method allows drawing an average between the quantitative metrics
of all the algorithms across every scenario, leading to the result in the tab. 4.3.

Algorithms Success Rate SWsec SW PL TTC AMD
DWA 98% 0.60 0.82 0.92 0.84 0.68
DWA_costmap 98% 0.62 0.83 0.94 0.84 0.66
SFM_DWA 80% 0.60 0.65 0.80 0.55 0.91
MPPI 80% 0.68 0.59 0.92 0.94 0.72
MPPI_costmap 80% 0.87 0.79 0.81 0.74 0.71
SFM_MPPI 93% 0.80 0.88 0.89 0.85 0.76

Table 4.3: Normalized Quantitative Metrics

As it can be seen, the SFM variation of the MPPI shows good results across
the board, being the best performer in SW. The SFM variation of the DWA shows
the best score in AMD, but it suffers in TTC, also leading to an increase in SW,
worsening its performance. The standard MPPI has the fastest average TTC but
also the lowest performance in SW. The costmap variation of the DWA performs
the best in PL and also has good SW performance. The costmap variations in both
cases provide an uplift in performance in both SW and SWsec. After analyzing the
quantitative metrics, the qualitative metrics are going to be presented.

4.2 Qualitative metrics
The qualitative metrics used for evaluation are mentioned in section 3.5, voted
by the agents at the end of each run: unobtrusiveness(UNO), friendliness (FL),
smoothness (SO), avoidance foresight (AF). The results are going to be presented
in a table using the following criteria:

• The average values across the five runs will be presented, including results
from failed runs, since agent feedback could still be obtained and be valid in a
failed run.

57

Results

• For experiments containing multiple agents, the average values between all
the agents will be presented to give an overview of the global performance.

• For the eighth scenario, considering that the agent is actively trying to get in
the robot’s way, the unobtrusiveness parameter will not be considered.

• The average across all the experiments will also be considerd to evaluate the
performance.

The results will be shown in table 4.4 and 4.5.

Algorithms UNO FL SO AF
1 DWA 1.4 1.4 2.4 1.8

DWA_costmap 2.4 2.0 2.4 2.2
SFM_DWA 2.8 2.2 3.2 2.8
MPPI 3.6 3.2 3.4 4.2
MPPI_costmap 3.4 3.0 2.6 3.2
SFM_MPPI 4.0 3.8 3.4 4.2

2 DWA 3.8 3.6 3.8 3.6
DWA_costmap 3.4 3.4 3.4 3.2
SFM_DWA 4.0 3.2 1.4 4.2
MPPI 1.8 1.8 3.6 1.2
MPPI_costmap 3.8 3.4 3.0 3.4
SFM_MPPI 3.4 3.4 2.6 3.2

3 DWA 3.1 3.0 2.9 3.1
DWA_costmap 3.4 2.9 2.5 3.3
SFM_DWA 4.1 3.0 1.3 4.2
MPPI 2.5 2.5 2.9 3.1
MPPI_costmap 3.0 2.8 2.6 2.7
SFM_MPPI 3.7 3.7 3.7 3.5

4 DWA 3.0 2.6 3.0 3.0
DWA_costmap 3.1 2.8 2.8 3.0
SFM_DWA 2.5 2.0 1.5 2.5
MPPI 2.9 2.3 2.3 2.6
MPPI_costmap 1.9 1.9 1.8 1.9
SFM_MPPI 3.9 3.4 3.2 3.7

Table 4.4: Qualitative metrics for the first four scenarios

58

Results

Algorithms UNO FL SO AF
5 DWA 2.6 2.3 3.1 2.8

DWA_costmap 3.2 2.0 2.4 3.4
SFM_DWA 3.6 2.3 1.0 2.6
MPPI 4.0 3.6 3.9 3.9
MPPI_costmap 3.2 3.3 3.3 3.5
SFM_MPPI 3.7 3.7 3.9 3.9

6 DWA 2.7 2.2 1.9 2.5
DWA_costmap 2.5 2.1 2.3 2.3
SFM_DWA 4.2 3.8 3.1 3.7
MPPI 2.8 2.7 3.0 2.9
MPPI_costmap 3.7 3.4 3.4 3.4
SFM_MPPI 2.8 2.7 2.9 2.9

7 DWA 3.6 3.5 3.1 3.5
DWA_costmap 3.8 3.7 2.7 3.3
SFM_DWA 3.5 3.3 3.0 3.4
MPPI 2.9 3.1 3.1 2.9
MPPI_costmap 3.4 3.7 3.1 3.6
SFM_MPPI 2.8 2.9 3.2 2.7

8 DWA - 3.4 2.8 3.0
DWA_costmap - 2.8 2.8 2.8
SFM_DWA - 2.2 2.4 2.4
MPPI - 3.6 3.8 3.4
MPPI_costmap - 3.6 3.8 3.4
SFM_MPPI - 4.4 4.8 4.6

Average DWA 2.89 2.75 2.88 2.91
DWA_costmap 3.11 2.84 2.66 2.94
SFM_DWA 3.53 2.75 2.11 3.23
MPPI 2.93 2.85 3.25 3.03
MPPI_costmap 3.20 3.16 2.95 3.14
SFM_MPPI 3.47 3.53 3.41 3.61

Table 4.5: Qualitative metrics for the last four scenarios and the average across
all the experiments

These average values show how the SFM variation of the MPPI performs the
best in five out of the eight experiments, with the main exceptions being the sixth
and the seventh scenarios where the SR for the MPPI algorithms was quite low.
Also, in the overtaking scenario, this variation didn’t score as highly, mainly due to
some uncertainties shown when trying to surpass the agent, which resulted in an
oscillating behavior, penalizing mainly its smoothness in the agent’s evaluations.
Fig. 4.5 and 4.6 will represent the distinct values for each agent and the standard
deviations.

59

Results

(a) passing qualitative parameters (b) overtaking qualitative parameters

(c) crossing first qualitative parameters (d) crossing second qualitative parameters

(e) advanced first qualitative parameters (f) advanced second qualitative parameters

Figure 4.5: The average qualitative metrics for the first six scenarios.
On the x-axis, the different algorithms: DWA,DWA_costmap,SFM_DWA,
MPPI,MPPI_costmap,SFM_MPPI, showing the values for each agent if there
are multiple. On the y-axis, numerical values from one to five. The black lines
represent the standard deviation, purple is for UNO, light blue is for FL, green is
for SO, yellow is for AF.

60

Results

(a) advanced third qualitative parameters (b) advanced fourth qualitative parameters

Figure 4.6: The average qualitative metrics for the first six scenarios.
On the x-axis, the different algorithms: DWA,DWA_costmap,SFM_DWA,
MPPI,MPPI_costmap,SFM_MPPI, showing the values for each agent if there
are multiple. On the y-axis, numerical values from one to five. The black lines
represent the standard deviation, purple is for UNO, light blue is for FL, green is
for SO, yellow is for AF.

The singular agent behavior reflects the algorithms’ overall performance. The
SFM variation of the DWA has, in most experiments, the worst smoothness score,
mainly due to its uncertain behavior near the participants. At the same time, its
avoidance foresight and unobtrusiveness were usually deemed better. The MPPI
algorithms have a typically higher value for their smoothness compared to the
DWA controllers. The costmap variations for both algorithms perform slightly
better, but the difference is not as noticeable as the inclusion of the SFM. Overall,
the MPPI algorithms are the ones that perform better considering the qualitative
metrics. Considering the average values across all experiments, the algorithm with
the best overall UNO is the SFM variation of the DWA, while the SFM variation
of the MPPI performs the best in all the other metrics.

61

Results

4.3 Quantitative and qualitative data comparison
By confronting both the qualitative and the quantitative metrics, some inferences
can be made:

• In five out of the eight experiments, the unobtrusiveness value is higher for
the algorithm which had the higher overall AMD, proving that the feedback
of the agents and the results obtained from the data are coherent in this case

• The smoothness behavior does not seem to be directly correlated to any of
the metrics shown since the trajectory taken by the robot seems to be much
more important than the total length of its path or the time taken. Figures
4.7 show the differences between a trajectory considered the smoothest and
the least smooth.

• Friendliness is a more difficult value to attribute to a specific quantitative
metric. However, in half of the experiments, the higher friendliness value
corresponds to the algorithm with the lower or second lowest social work
per second. Considering the average parameters, the two algoritms with the
highest FL are the ones with the best SW and SWsec

• Avoidance foresight is scored the best when the AMD is the highest in half
the scenarios. However, once again, this value depends more on the trajectory
the agent sees rather than on a specific quantitative metric.

(a) The trajectory of the SFM
variation of the DWA.

(b) The trajectory of the SFM
variation of the MPPI.

Figure 4.7: Two trajectories for the first crossing experiment

62

Chapter 5

Conclusions

The analysis conducted on the algorithms provided a considerable amount of
information on their navigational capabilities, by testing them in complex scenarios.
The result is a benchmark of their performances that considers both quantitative
and qualitative metrics, providing a complete overview of an algorithm’s capabilities
and also considering the agent’s opinion, that is of paramount importance in social
navigation and allows distinguishing which is the best algorithm in cases when the
quantitative metrics do not provide a clear-cut answer. The implementation of the
SFM works well with the MPPI algorithm, but it often caused problems in the
DWA variation, especially in some of the more complex scenarios. Future tests
could try to implement a FOV to filter the agents and make fewer trajectories
unfeasible, making this implementation more nimble. Furthermore, the paper by
Martini et al. [4] proposes a method to dynamically change the weights during
navigation, which could help overcome some of the most critical cases. The SFM
variation of the MPPI could be improved by implementing a scalable radius for
the agent detected by the robot. This adjustable radius would be based on the
distance to the robot to provide further security to an agent the closer it gets to
the robot. This change could help in computing more trajectories near the agent
with a higher cost, making it more socially capable. In future applications, these
algorithms could be tested on a robot equipped with a camera to recognize the
agents without relying on the VICON camera system. The merits of testing a robot
in a real-life setting must be considered, and procedures that include quantitative
and qualitative metrics should become the standard for future evaluation of different
algorithms.

63

Bibliography

[1] Phani Teja Singamaneni, Pilar Bachiller-Burgos, Luis J. Manso, Anaís Gar-
rell, Alberto Sanfeliu, Anne Spalanzani, and Rachid Alami. «A survey on
socially aware robot navigation: Taxonomy and future challenges». In: The
International Journal of Robotics Research (Feb. 2024). issn: 1741-3176.
doi: 10.1177/02783649241230562. url: http://dx.doi.org/10.1177/
02783649241230562 (cit. on p. 2).

[2] Phani Teja S. and Rachid Alami. «HATEB-2: Reactive Planning and Decision
making in Human-Robot Co-navigation». In: 2020 29th IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN).
2020, pp. 179–186. doi: 10.1109/RO-MAN47096.2020.9223463 (cit. on p. 2).

[3] Shyam Sundar Kannan, Ahreum Lee, and Byung-Cheol Min. «External
Human-Machine Interface on Delivery Robots: Expression of Navigation
Intent of the Robot». In: CoRR abs/2108.03045 (2021). arXiv: 2108.03045.
url: https://arxiv.org/abs/2108.03045 (cit. on pp. 2, 3).

[4] Mauro Martini, Noé Pérez-Higueras, Andrea Ostuni, Marcello Chiaberge,
Fernando Caballero, and Luis Merino. Adaptive Social Force Window Planner
with Reinforcement Learning. 2024. arXiv: 2404.13678 [cs.RO]. url: https:
//arxiv.org/abs/2404.13678 (cit. on pp. 5, 63).

[5] Angel Romero, Yunlong Song, and Davide Scaramuzza. Actor-Critic Model
Predictive Control. 2024. arXiv: 2306.09852 [cs.RO]. url: https://arxiv.
org/abs/2306.09852 (cit. on p. 6).

[6] Adarsh Jagan Sathyamoorthy, Utsav Patel, Tianrui Guan, and Dinesh Manocha.
Frozone: Freezing-Free, Pedestrian-Friendly Navigation in Human Crowds.
2020. arXiv: 2003.05395 [cs.RO]. url: https://arxiv.org/abs/2003.
05395 (cit. on p. 6).

[7] Yuxiang Gao and Chien-Ming Huang. «Evaluation of Socially-Aware Robot
Navigation». In: Frontiers in Robotics and AI 8 (2022), pp. 1–21. doi: 10.33
89/frobt.2021.721317. url: https://www.frontiersin.org/articles/
10.3389/frobt.2021.721317/full (cit. on p. 7).

64

https://doi.org/10.1177/02783649241230562
http://dx.doi.org/10.1177/02783649241230562
http://dx.doi.org/10.1177/02783649241230562
https://doi.org/10.1109/RO-MAN47096.2020.9223463
https://arxiv.org/abs/2108.03045
https://arxiv.org/abs/2108.03045
https://arxiv.org/abs/2404.13678
https://arxiv.org/abs/2404.13678
https://arxiv.org/abs/2404.13678
https://arxiv.org/abs/2306.09852
https://arxiv.org/abs/2306.09852
https://arxiv.org/abs/2306.09852
https://arxiv.org/abs/2003.05395
https://arxiv.org/abs/2003.05395
https://arxiv.org/abs/2003.05395
https://doi.org/10.3389/frobt.2021.721317
https://doi.org/10.3389/frobt.2021.721317
https://www.frontiersin.org/articles/10.3389/frobt.2021.721317/full
https://www.frontiersin.org/articles/10.3389/frobt.2021.721317/full

BIBLIOGRAPHY

[8] Masahiro Shiomi, Francesco Zanlungo, Kotaro Hayashi, and Takayuki Kanda.
«Towards a Socially Acceptable Collision Avoidance for a Mobile Robot
Navigating Among Pedestrians Using a Pedestrian Model». In: International
Journal of Social Robotics 6 (2014), pp. 443–455. url: https://api.semant
icscholar.org/CorpusID:45161498 (cit. on p. 7).

[9] Noé Pérez-Higueras, Roberto Otero, Fernando Caballero, and Luis Merino.
«HuNavSim: A ROS 2 Human Navigation Simulator for Benchmarking Human-
Aware Robot Navigation». In: IEEE Robotics and Automation Letters (Sept.
2023). Preprint Version, pp. 1–8. url: https://github.com/robotics-
upo/hunav_sim (cit. on pp. 7, 9).

[10] Christoforos Mavrogiannis, Alena M. Hutchinson, John Macdonald, Patrícia
Alves-Oliveira, and Ross A. Knepper. «Effects of distinct robot navigation
strategies on human behavior in a crowded environment». In: Proceedings of
the 14th ACM/IEEE International Conference on Human-Robot Interaction.
HRI ’19. Daegu, Republic of Korea: IEEE Press, 2020, pp. 421–430. isbn:
9781538685556 (cit. on p. 8).

[11] Elena Pacchierotti, Henrik I. Christensen, and Patric Jensfelt. «Embodied
Social Interaction for Service Robots in Hallway Environments». In: In-
ternational Symposium on Field and Service Robotics. 2005. url: https:
//api.semanticscholar.org/CorpusID:6993014 (cit. on p. 9).

[12] Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram Burgard.
«Socially compliant mobile robot navigation via inverse reinforcement learn-
ing». In: The International Journal of Robotics Research 35 (2016), pp. 1289–
1307. url: https://api.semanticscholar.org/CorpusID:14275694 (cit.
on p. 9).

[13] Nathan Tsoi et al. «SEAN 2.0: Formalizing and Generating Social Situations
for Robot Navigation». English (US). In: IEEE Robotics and Automation
Letters 7.4 (Oct. 2022). Publisher Copyright: © 2022 IEEE., pp. 11047–11054.
issn: 2377-3766. doi: 10.1109/LRA.2022.3196783 (cit. on p. 9).

[14] D. Fox, W. Burgard, and S. Thrun. «The dynamic window approach to
collision avoidance». In: IEEE Robotics & Automation Magazine 4.1 (1997),
pp. 23–33. doi: 10.1109/100.580977 (cit. on p. 10).

[15] Marija Seder and Ivan Petrovic. «Dynamic window based approach to mobile
robot motion control in the presence of moving obstacles». In: Proceedings
2007 IEEE International Conference on Robotics and Automation. 2007,
pp. 1986–1991. doi: 10.1109/ROBOT.2007.363613 (cit. on p. 10).

65

https://api.semanticscholar.org/CorpusID:45161498
https://api.semanticscholar.org/CorpusID:45161498
https://github.com/robotics-upo/hunav_sim
https://github.com/robotics-upo/hunav_sim
https://api.semanticscholar.org/CorpusID:6993014
https://api.semanticscholar.org/CorpusID:6993014
https://api.semanticscholar.org/CorpusID:14275694
https://doi.org/10.1109/LRA.2022.3196783
https://doi.org/10.1109/100.580977
https://doi.org/10.1109/ROBOT.2007.363613

BIBLIOGRAPHY

[16] Grady Williams, Paul Drews, Brian Goldfain, James M. Rehg, and Evangelos
A. Theodorou. «Aggressive driving with model predictive path integral con-
trol». In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). 2016, pp. 1433–1440. doi: 10.1109/ICRA.2016.7487277 (cit. on
p. 12).

[17] Evangelos A Theodorou and Emanuel Todorov. «Relative entropy and free
energy dualities: Connections to path integral and kl control». In: 2012 ieee
51st ieee conference on decision and control (cdc). IEEE. 2012, pp. 1466–1473
(cit. on pp. 13, 14).

[18] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model Predictive
Path Integral Control using Covariance Variable Importance Sampling. 2015.
arXiv: 1509.01149 [cs.SY]. url: https://arxiv.org/abs/1509.01149
(cit. on p. 18).

[19] Dirk Helbing and Péter Molnár. «Social force model for pedestrian dynamics».
In: Phys. Rev. E 51 (5 May 1995), pp. 4282–4286. doi: 10.1103/PhysRevE.
51.4282. url: https://link.aps.org/doi/10.1103/PhysRevE.51.4282
(cit. on p. 21).

[20] Rainer Feistel. «Weidlich, W., und G. Haag: Concepts and Models of a
Quantitative Sociology. The Dynamics of Interacting Populations. Springer
Series in Synergetics Vol. 14, Berlin, Heidelberg, New York: Springer-Verlag
1983.» In: Zeitschrift für Physikalische Chemie (Sept. 1983) (cit. on p. 21).

[21] Kurt Lewin. Field Theory in Social Science: Selected Theoretical Papers. Ed.
by D. Cartwright. New York: Harper & Row, 1951 (cit. on p. 21).

[22] Albert E. Scheflen and Norman Ashcraft. «Human territories : how we
behave in space-time». In: 1976. url: https://api.semanticscholar.org/
CorpusID:154079003 (cit. on p. 23).

[23] Steve Macenski, Francisco Martin, Ruffin White, and Jonatan Gines Clavero.
«The Marathon 2: A Navigation System». In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Oct. 2020. doi:
10.1109/iros45743.2020.9341207. url: http://dx.doi.org/10.1109/
IROS45743.2020.9341207 (cit. on pp. 25, 26).

[24] Noé Perez-Higueras. Implementation of the social costmap. url: https :
//github.com/robotics- upo/nav2_social_costmap_plugin (cit. on
p. 28).

[25] S. Macenski, T. Moore, DV Lu, A. Merzlyakov, and M. Ferguson. «From the
desks of ROS maintainers: A survey of modern & capable mobile robotics
algorithms in the robot operating system 2». In: Robotics and Autonomous
Systems (2023). url: https://arxiv.org/pdf/2307.15236 (cit. on p. 30).

66

https://doi.org/10.1109/ICRA.2016.7487277
https://arxiv.org/abs/1509.01149
https://arxiv.org/abs/1509.01149
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1103/PhysRevE.51.4282
https://link.aps.org/doi/10.1103/PhysRevE.51.4282
https://api.semanticscholar.org/CorpusID:154079003
https://api.semanticscholar.org/CorpusID:154079003
https://doi.org/10.1109/iros45743.2020.9341207
http://dx.doi.org/10.1109/IROS45743.2020.9341207
http://dx.doi.org/10.1109/IROS45743.2020.9341207
https://github.com/robotics-upo/nav2_social_costmap_plugin
https://github.com/robotics-upo/nav2_social_costmap_plugin
https://arxiv.org/pdf/2307.15236

BIBLIOGRAPHY

[26] Noé Perez-Higueras. Implementation of the DWA algorithm with SFM. url:
https://github.com/robotics- upo/social_force_window_planner
(cit. on p. 30).

[27] David Lu. Implementation of the people as a ROS2 message. url: https:
//github.com/wg-perception/people/tree/ros2 (cit. on p. 40).

67

https://github.com/robotics-upo/social_force_window_planner
https://github.com/wg-perception/people/tree/ros2
https://github.com/wg-perception/people/tree/ros2

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Introduction to socially aware robot navigation
	Thesis overview

	State of the art
	Local controller
	Evaluation of social robot navigation

	Methods and theory
	DWA
	Search space
	Optimization function

	MPPI
	Stochastic trajectory optimization
	Matrix formulation
	Numerical approximation
	Control algorithm

	SFM
	The social force concept
	Formulation of the social force model

	Nav2 introduction
	Recovery server
	Planner server and controller server
	Perception

	Implementation
	Nav2 implementation
	Social costmap plugin
	DWA implementation
	MPPI implementation

	Social critic
	Simulation
	Gazebo
	RViz
	HunavSim
	HuNav gazebo wrapper
	Observations made in the simulations

	Laboratory experiments
	Tools and hardware required
	Controller parameters
	Scenarios

	Test methodology

	Results
	Quantitative metrics
	Qualitative metrics
	Quantitative and qualitative data comparison

	Conclusions
	Bibliography

