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Abstract

As data transmission demands grow, long-haul optical transmission links face
increasing pressure. While bandwidth efficiency has been enhanced by using more
complex modulation formats, further improvements are limited by signal-to-noise
ratio (SNR) thresholds. Expanding usable bandwidth through Ultra-Wide Band
(UWB) systems, utilizing the C, L, S and E bands to exploit up to 30 THz of
bandwidth, has become the primary strategy for increasing transmission capacity.

However, UWB systems present challenges, such as the reliance on backward
Raman amplification in the S band and the complications posed by inter-channel
stimulated Raman scattering (ISRS), which causes uneven signal propagation across
bands. To address these issues, accurate and efficient physical models are required
for real-time optimization, which rely on the knowledge of the power of signals
throughout the fibre span, the power profile.

This thesis develops a novel, more efficient method for computing the power
profile of signals and pumps. Unlike traditional forward-backward approaches
to solving the coupled Raman differential equations, the new method utilizes an
integral form with matrix-based approximations, achieving up to a thirty-fold speed
increase while maintaining an error margin under 0.05 dBm. These results represent
a significant step forward towards reducing optimisation times, and enabling more
extensive studies in ultra-wide band long haul optical transmission.

ii



Acknowledgements

I would like to express my sincerest gratitude to everyone who contributed to the
completion of this thesis.
First and foremost, I would like to thank my thesis supervisor, Professor Pierluigi
Poggiolini. His availability for theoretical discussions, patience throughout this
long process, and brilliant insights were crucial to the development of this work.
Secondly, I would like to extend my deepest thanks to Dr. Yanchao Jiang. Her
support in understanding the existing software, her assistance in testing all the
practical work I conducted, and her constant positivity helped me through the most
challenging tasks—something I will always cherish. I also wish to acknowledge the
support of the Department of Electronics and Telecommunications for taking care
of the logistics that facilitated my work.
Finally, I would like to thank all my colleagues, friends, and family for their
unparalleled support throughout this journey.

iii





Table of Contents

List of Tables vii

List of Figures ix

Introduction 1

1 The Closed Form Physical Model 3
1.1 Physical-Layer Models . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The Role of Physical Layer Models in Optical Transmission
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Challenges and Implications of Ultra-Wide band Systems . . 4
1.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 The closed form GN model . . . . . . . . . . . . . . . . . . . 8
1.2.2 Dependence on the numerically integrated power profile . . . 11
1.2.3 Implementation and limitations . . . . . . . . . . . . . . . . 12

2 The New Algorithm 15
2.1 Key Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Differential to integral form . . . . . . . . . . . . . . . . . . 16
2.1.2 Equation resolution and analysis . . . . . . . . . . . . . . . 17

2.2 Dynamic Pump Calibration Method . . . . . . . . . . . . . . . . . . 20
2.2.1 Loop description . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Technical issues . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Progressive Signal Injection Method . . . . . . . . . . . . . . . . . . 42
2.3.1 Loop description . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3.2 Technical issues . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 The Hybrid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.1 Loop description . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Parameter Automation . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.1 Pump Factor . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



2.5.2 Lower Correction Factor . . . . . . . . . . . . . . . . . . . . 60

3 Performance Evaluation and Comparison 64
3.1 Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Comparison With Conventional Method . . . . . . . . . . . . . . . 68

3.2.1 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Conclusion 81

Bibliography 83

vi



List of Tables

1.1 Optimised values of the parameters a1-a24 for the machine learning
factors in the CFM equations . . . . . . . . . . . . . . . . . . . . . 11

1.2 Time elapsed for each process in the CFM model for a C+L system 13
1.3 Time elapsed for each process in the CFM model for a C+L+S system 14

2.1 Optimal CH values for varying boundary conditions . . . . . . . . . 41
2.2 Optimal CL values for varying boundary conditions . . . . . . . . . 42
2.3 Iterations and Accuracy for Different Step Sizes and Signal Scaling

Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Table showing the performance of PSI for different values of stepdBm

and factorsignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Maximum signal error for different adjustment factors using stepdBm,signal =

0.1 dBm and stepdBm,pump = 0.05 dBm . . . . . . . . . . . . . . . . 52
2.6 Maximum signal error for different adjustment factors using stepdBm,signal =

0.01 dBm and stepdBm,pump = 0.02 dBm . . . . . . . . . . . . . . . 53
2.7 Maximum signal error and iterations for different adjustment factors

using the Hybrid method . . . . . . . . . . . . . . . . . . . . . . . . 57
2.8 Maximum signal error and iterations for different adjustment factors

using the Hybrid method with loosened parameters and Pin=5dBm 58

3.1 Number of iterations until convergence for different signal and pump
powers for CH=5 and CL=0.1 . . . . . . . . . . . . . . . . . . . . . 65

3.2 Average iterations for different CH and CL settings . . . . . . . . . 67
3.3 Number of converged cases for different CH and CL settings . . . . 67
3.4 Average time elapsed by the hybrid method for varying signal and

pump power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Average time elapsed by the conventional bvp4c method for varying

signal and pump power . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 Error Matrix for Different Adjustment Factors and Signal Powers . 69
3.7 Time gain between the conventional and hybrid methods for varying

signal and pump power . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



3.8 Average timing of the hybrid method for non-uniformly powered
C+L systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Average timing of the conventional method for non-uniformly pow-
ered C+L systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10 Error Matrix for non-uniformly powered C+L systems . . . . . . . . 74
3.11 Timing of the hybrid method for non-uniformly powered C+L+S

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.12 Timing of the conventional method for non-uniformly powered

C+L+S systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.13 Error Matrix for non-uniformly powered C+L+S systems . . . . . . 76
3.14 Comparison of time elapsed by the optimisation using the conven-

tional and hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . 77
3.15 Average Time Gain in Different Scenarios . . . . . . . . . . . . . . . 77

viii



List of Figures

1.1 Signal power attenuation per kilometer as a function of frequency . 5
1.2 Raman gain coefficients for an amplifying channel at fc=205 THz . 7

2.1 Power profile initial guess for a C+L system . . . . . . . . . . . . . 21
2.2 Power profile after one iteration for the same C+L system . . . . . 22
2.3 Power profile after first pump correction . . . . . . . . . . . . . . . 24
2.4 Power profile after two iterations for the same C+L system . . . . . 25
2.5 Power profile after second pump correction . . . . . . . . . . . . . 26
2.6 Power profile after three iterations of the same C+L system . . . . 27
2.7 Power profile after third pump correction . . . . . . . . . . . . . . 28
2.8 Power profile after ten iterations of the same C+L system . . . . . 29
2.9 Power profile after tenth pump correction . . . . . . . . . . . . . . 30
2.10 Converged power profile . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11 Pump error throughout the iterations . . . . . . . . . . . . . . . . . 33
2.12 Power profile for the C+L system . . . . . . . . . . . . . . . . . . . 34
2.13 Pump error throughout the iterations . . . . . . . . . . . . . . . . . 36
2.14 Power profile scaled down initial guess for a C+L system . . . . . . 37
2.15 Algorithm solution for a case with Adjustment=0.1 . . . . . . . . . 38
2.16 Pump_Error showcasing oscillation . . . . . . . . . . . . . . . . . . 39
2.17 Pump_Error when oscillation is solved . . . . . . . . . . . . . . . . 40
2.18 Pump_Error when oscillation is solved but with slow parameters . 41
2.19 PSI initial guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.20 PSI Power profile output after 1 iteration . . . . . . . . . . . . . . . 44
2.21 PSI Power profile converged output . . . . . . . . . . . . . . . . . . 46
2.22 Modified PSI initial guess . . . . . . . . . . . . . . . . . . . . . . . 49
2.23 Converged solution with modified PSI method for Adjustment =

0.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.24 Pump_Error curves in the DPC phase of the hybrid method . . . . 56
2.25 Pump_Error after the implementation of CL reduction . . . . . . . 63

ix



3.1 Iterations until convergence for the hybrid method with CH=5,
CL=0.1, stepdBm,signal = 2, stepdBm,pump = 0.5 and factorsignal = 4
for various signal and pump power . . . . . . . . . . . . . . . . . . 66

3.2 Non-uniform signal input power C+L system . . . . . . . . . . . . . 71
3.3 Hybrid method output for non-uniform signal input power C+L

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Conventional method output for non-uniform signal input power

C+L system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Non-uniform signal input power C+L+S system . . . . . . . . . . . 75
3.6 Non-uniform signal input power C+L system with conventional method 79
3.7 Non-uniform signal input power C+L system with hybrid method . 80

x



Introduction

The exponential growth in data transmission demands is driven by different factors:
the increasing numbers of users, the development of more demanding applications
on the software level and the evolution of more complex network architectures
allowing higher throughput to the end user. This growth has placed significant
pressure on the long-haul optical transmission links to increase their provided
throughput. To accomplish this increase, researchers are focusing on two possible
approaches: Increasing the bandwidth efficiency by transmitting more bits per unit
of frequency or increasing the exploitable bandwidth. The first method requires
more complex modulation formats thus faces distance limitations in long-haul
transmission. As a result, bandwidth expansion is becoming the primary solution
to meet rising transmission needs.

The objective of the research of which this thesis is part of is to investigate
Ultra-Wide Band (UWB) systems, which span across multiple frequency bands,
including the C, L, S and E bands. These systems can provide up to 30 THz of
exploitable bandwidth, significantly exceeding the 5 THz available in the C band
alone, traditionally used in optical transmission. While UWB systems offer the
potential for substantial throughput gains, they also introduce new challenges.
One of these is Inter-channel Stimulated Raman Scattering (ISRS), a nonlinear
effect that becomes significant between widely spaced channels, causing power
transfer from higher-frequency channels to lower-frequency ones. Furthermore, as
demonstrated in [1], backward Raman amplification becomes necessary to achieve
higher throughput and maintain flat GSNR curves across the entire usable spectrum.
Consequently, many input parameters such as individual channel and pump input
power and pump frequency need to be optimised to mitigate the effects of ISRS
and maximise the throughput on the link. For this reason, a physical model able to
predict the achievable GSNR on the link according to the input parameters is a must
for the optimal operation of such systems. The most prominent physical models
already in use in the industry are based on the GN and EGN models developed in
[2] and [3]. However, to enable more complex wide-band optimisations and real
time operation, the requirement on these physical models regarding computation
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Introduction

speed has become increasingly more demanding. To address this, Closed Form
Models (CFM) of the GN and EGN models have been developed by Politecinco
di Torino in collaboration with CISCO in [4] and [5], the last of which has been
extensively validated experimentally in [6].
However, one part of the CFM remains dependent on numerical calculations: The
computation of the power profile. That is determining the power of each channel
and pump at every point in the fibre, while taking into account ISRS and backward
Raman amplification. While the CFMs allow for a substantial time gain over the
integrated GN and EGN models, power profile calculations based on numerical
solving of the coupled Raman differential equations now consist the bottleneck,
consuming a staggering 95% of the computation time.

The main objective of this thesis is to develop a more efficient algorithm to
compute the power profile, that is both fast and reliable compared to the conven-
tional method. The successful development of such an algorithm will significantly
reduce the computation time required to assess the achievable GSNR on any given
link. This, in turn, will enable more efficient and large-scale optimization of UWB
systems, facilitating future research of such systems. In practical terms, this ad-
vancement would allow network operators to manage and optimize multi-band
systems in real-time, ensuring robust performance even under dynamic network
conditions. By enhancing the speed of power profile calculations, this algorithm will
lay the groundwork for more widespread adoption of UWB technologies, ultimately
helping to meet the growing demand for high-throughput long-distance optical
communication systems.
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Chapter 1

The Closed Form Physical
Model

In this chapter, the closed form physical model (CFM) of the Enhanced Gaussian
Noise (EGN) model developed by the group at Politecnico di Torino in collaboration
with CISCO will be examined. This model plays a key role in simulating and
optimizing Ultra-Wideband (UWB) systems. The study will be done by first
discussing the importance of physical models in optical networks, followed by an
exploration of how UWB systems impact these models. Finally, the theory behind
the current model will be described, highlighting its reliance on the power profile
and discussing its limitations. A thorough understanding of this model is crucial
for appreciating the potential benefit of a more efficient power profile calculator.

1.1 Physical-Layer Models

Physical-layer models (PLMs) are mathematical representations that rely on well-
established equations and laws to describe and simulate various physical processes.
In the case of optical networking, these models have been developed to analyze
the transmission characteristics of light signals within the fiber. From signal
degradation to the introduction of unwanted noise, a good physical model aims to
account for all the physical effects that impact the signal, allowing for accurate
predictions of the resulting signal-to-noise ratio at the end of the link. In the
following, the important role of such models in the context of optical transmission
will be described.

3



The Closed Form Physical Model

1.1.1 The Role of Physical Layer Models in Optical Trans-
mission Systems

Physical layer modelling has become crucial for all aspects of optical communications.
Having a tool able to predict signal degradation and the final SNR on a given
link is invaluable for the design and optimisation of optical networks as it allows
network engineers to simulate the performance of different system configurations
before deployment. This enables the optimisation of various network parameters
such as modulation formats, optical components and amplification scheme. An
accurate physical model thus ensures that a given system is working in its optimal
point (or local optimum at least), allowing for more efficient bandwidth use.
Additionally, PLMs are essential for capacity planning of a long-haul optical link.
By simulating signal propagation over diverse fibre spans, the model can give
insight into the quality of the signal, allowing operators to choose the most complex
modulation format affordable, in such a way to maximise spectral efficiency while
keeping the quality of transmission intact.

1.1.2 Challenges and Implications of Ultra-Wide band Sys-
tems

In the following, the role of PLMs in UWB systems is going to be discussed, for
which a small definition of these systems is presented.

To better understand what is meant by ultra-wide-band systems, one needs
to explore the different bands of frequency established in optical communications.
The concept is illustrated by examining the curve representing the attenuation
constant α as a function of frequency reported below:

4
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Figure 1.1: Signal power attenuation per kilometer as a function of frequency

α represents the loss in signal power per kilometer traveled inside the fibre. As
shown in the figure, attenuation varies across different frequencies. In fact, some
frequencies, with fairly similar values for α have been grouped in the so-called
frequency bands labeled with the different letters shown in the figure. Particularly,
the C band, also known as the conventional band, came to use due to 2 reasons:
It has the lowest attenuation values and erbium-doped fibre amplifiers (EDFA)
provide a uniform amplification over its whole band. Another set of amplifiers,
happen to work in a uniform way on another set of frequencies that came to be
known as the L band. We note then that the different frequency bands have been
separated by some physical and technological boundaries that facilitated the use of
some over others.
Recently, as mentioned in the introduction, research has focused on utilizing
multiple frequency bands for optical transmission, significantly increasing the
available bandwidth. By exploiting multiple bands simultaneously, ultra-wide-band
systems can accommodate more channels in the same fiber, dramatically enhancing
throughput.

This ultra-wide bandwidth has various impacts on the design of physical models
primarily in two areas: First, certain fibre parameters that could once be approxi-
mated as constants with respect to frequency in single-band systems can no longer
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be considered as such without a significant loss of accuracy. These parameters
include:

1. Attenuation coefficient α.

2. Dispersion coefficient β2.

3. Fibre non linearity coefficient γ.

4. Amplifier noise figure F.

Therefore, physical models designed for UWB systems must account for this
variation by using measured or estimated values of these parameters as they change
with frequency.

The second area that physical models need to address is a nonlinear effect called
Stimulated Raman Scattering (SRS) also known as the Raman effect.

As discussed in [7], when an incident light beam passes through a set of molecules
in a material, a small part of the incident photons gets scattered around in different
directions. Most of the scattered light is of unchanged wavelength, however a
small percentage of the scattered photons end up loosing energy to the scattering
molecules thus moving to a lower frequency. From an optical communications point
of view, this effect can be seen as power transferred from a higher frequency light
channel to other channels at lower frequencies. The amount of power transferred
from a given channel i to another channel j at a given point z0 in the fiber is
expressed as follows:

∆P = gij · Pi(z0) ∗ Pj(z0) (1.1)

where Pi(z0) and Pj(z0) are the powers present in channels i and j respectively at
the point z = z0 in the fibre, and gij is the Raman gain coefficient that depends on
the frequency difference between the two channels.
The following figure shows an experimental curve representing the variation of the
Raman gain coefficient with respect to the frequency for an amplifying channel at
fc = 205 THz.
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Figure 1.2: Raman gain coefficients for an amplifying channel at fc=205 THz

By examining this curve, it can be confirmed that a given channel only amplifies
signals with lower frequencies than itself. The figure further demonstrates that
substantial power transfer is experienced within a frequency range of 5 to 15 THz
away from the channel, peaking at around 13 THz. It should be noted that for
amplifying channels at different frequencies than the one depicted in the above
figure, the Raman gain coefficient curve remains the same up to a scaling factor as
shown in figure 3 of [1].

For systems operating over a broad frequency range greater than 5 THz, such
as in UWB systems, substantial stimulated Raman scattering can occur between
channels, resulting in Inter-Channel Stimulated Raman Scattering (ISRS).

SRS has both drawbacks and advantages. On the one hand, ISRS can cause
unwanted power transfer between channels, leading to signal degradation, especially
in high frequency channels over wide bands. On the other hand, SRS can be
leveraged beneficially through backward Raman amplification. This is achieved
by using high-power pumps containing no useful information positioned at higher
frequencies relative to the channels. These pumps boost signal power and improve
performance across the entire band through SRS, effectively providing continuous
amplification around the end of a span.
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Consequently, a physical model designed to work on UWB systems has to be
able to account for SRS.

In conclusion, PLMs are essential for the optimal design and operation of any
optical transmission system. Their importance becomes even more pronounced
when working with UWB systems, which require accounting for frequency-dependent
parameters and handling stimulated Raman scattering (SRS) between channels
and between channels and Raman pumps.
Since ISRS depletes higher-frequency channels, input power compensation for
these channels should be considered, by giving them additional power in input
with respect to the lower-frequency ones. Through optimization, PLMs can help
determine the optimal input power distribution that maximizes a key performance
metric, such as link throughput. For real-time operation, it is crucial that these
models complete their computations within a reasonable time frame.
This section has thus highlighted the significance of PLMs in optical communication,
particularly in UWB systems, and stressed the importance of making them more
computationally efficient.

1.2 Model Description
In this section, the closed form Physical Layer model developed by the group at
Politecnico di Torino will be thoroughly described. This model builds upon the
Enhanced Gaussian Noise (EGN) model developed in [3], a widely used method for
estimating non-linear interference in optical systems. The EGN model relies on
multi-dimensional numerically evaluated integrals, which can be computationally
intensive. To address this, an approximate closed-form model (CFM) was introduced
in [4] to significantly reduce computation time. This section will first present the
CFM equations, followed by a discussion of its critical dependence on accurately
modeling the channel power profile. Finally, the practical implementation of the
CFM and its limitations will be explored.

1.2.1 The closed form GN model
It is important to first start with a brief distinction between the GN and EGN models.
The Gaussian Noise (GN) model provides a simplified method for estimating non-
linear interference (NLI) in optical fibre communication systems by treating the
NLI as Gaussian-distributed noise and estimating its power spectral density (PSD).
It assumes certain conditions, such as Gaussian-like signals due to high chromatic
dispersion, and relatively low NLI power allowing the interference to be considered
negligible compared to the signal. This makes it less accurate in the first couple of
spans when the signal does not have a fully Gaussian behaviour yet as well as in
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low dispersion fibres and low baud rates. The detailed analytical derivation of the
GN model can be seen here [2].

The Enhanced Gaussian Noise (EGN) model, on the other hand, extends the
GN model by incorporating more detailed interactions between the signal and
non-linear effects, notably by considering the effect of different modulation formats
and completely removing the signal Gaussianity approximation. It also extends
the simple second order fibre dispersion taken by the GN model to the third order
making it more accurate on zero dispersion fibres. This allowed to mitigate the
GN model’s overestimation of NLI noise in the cases mentioned above. However,
the EGN model includes multi-dimensional integrals (triple and quadruple) to
account for these broader interactions, making it more accurate but significantly
more computationally intensive compared to the GN model.

The closed-form EGN model was developed to strike a balance between accuracy
and computational efficiency. It is built by approximating the integral equations in
the original GN model and adding finely tuned machine learning correction factors
to make it better approximate the EGN model.

The closed form equations (1.2) to (1.6) derived in [8] that approximate the
double integrals present in the GN model are reported below:

GRx
NLI(fCUT) =

NspanØ
n=1

G(n)
NLI(fCUT)

NspanÙ
k=n+1

Γ(k)(fCUT) · e−2α(k)(fCUT)L(k)
span

 (1.2)

G
(n)
NLI(fCUT) = 16

27(γ(n))2Γ(n)(fCUT) · e−2α(n)(fCUT)L(n)
span · Ḡ(n)

CUT·ρ(n)
CUT · (Ḡ(n)

CUT)2I
(n)
CUT +

N
(n)
chØ

nch=1,nch /=n
(n)
CUT

1
2ρ(n)

nch
· (Ḡ(n)

nch
)2I(n)

nch

2 (1.3)

I
(n)
CUT = 1

2π|β̄(n)
2,CUT|2α(n)(fCUT)

·

asinh
π2

2

------ β̄
(n)
2,CUT

2α(n)(fCUT)

------R2
CUT


+2

Si

1
π2|β̄(n)

2,CUT|L(n)
spanB

2
CUT

2
πα(n)(fCUT)L(n)

span
·
A

HN(Nspan − 1) + 1 −Nspan

Nspan

B (1.4)

I(n)
nch

=
asinh

A
π2

2

----- β̄
(n)
2,nch

2α(n)(f (n)
nch

)

----- (f (n)
nch

− fCUT − R
(n)
nch

2 ) ·RCUT

B
− asinh

A
π2

2

----- β̄
(n)
2,nch

2α(n)(f (n)
nch

)

----- (f (n)
nch

− fCUT − R
(n)
nch

2 ) ·RCUT

B
4π
---β̄(n)

2,nch

--- · 2α(n)(f (n)
nch)

(1.5)
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β̄
(n)
2,CUT = β

(n)
2 + πβ

(n)
3 (2fCUT − 2f (n)

c ), β̄
(n)
2,nch

= β
(n)
2 + πβ

(n)
3 · (f (n)

nch
+ fCUT − 2f (n)

c ) (1.6)

As a general notation, the superscripts (n) and (k) refer to the nth and kth spans
respectively, while the subscript nch is an index that refers to any channel in the
WDM spectrum and the subscript CUT refers to the channel under test, which is
the one for which the NLI is being estimated.
The quantity GRx

NLI(fCUT) in equation 1.2 refers to the PSD of the accumulated NLI
at the receiver and at the frequency of the CUT, this is ultimately the quantity
that the CFM is estimating since it allows computing the final GSNR of the CUT
through the following formula:

GSNR = PCUT

GRx
NLI(fCUT ) ·RCUT + PASE

(1.7)

The quantities G(n)
NLI(fCUT) present in equation 1.2, that can be calculated using

equation 1.3, represent the PSD of NLI produced on the nth span alone on the
frequency of the CUT.
I

(n)
CUT and I(n)

nch
represent the estimations of Self-Channel Interference (SCI) caused

by the CUT on itself and Cross-Channel Interference (XCI) caused by all other
WDM channels on the CUT in a given span n, respectively.

In equation 1.4, HN stands for the harmonic number and Si is the sine-integral
function.

Finally, the terms ρn
CUT and ρn

nch
present in equation 1.3 are the machine learning

factors added to allow the CFM to approximate the EGN model. In older versions
of the CFM approximating the GN model only, these factors were set to 1. Their
equations are as follows:

ρ
(n)
nch = (1 + a19 · ra20

CUT + a21 · (r(n)
nch

)a22) · {a1 + a2 · (Φ(n)
nch

)a3+
a4 · (Φ(n)

nch
)a5 · (1 + a6 · [|β2,acc(n.nch)| + a7]a8)}

ρCUT = (1 + a23 · ra24
CUT) · {a9 + a10 · (Φa11

CUT + a12 · (ΦCUT)a13·
(1 + a14 ·Ra15

CUT + a16 · [|β2,acc(n.nCUT)| + a17]a18)}

(1.8)

Where RCUT represents the symbol rate of the CUT, rCUT and rnch
are the

roll-off factors of the CUT and the current WDM channel nch, finally, Φnch
is a

constant that depends on the modulation format of the specific channel. a1-a24 are
parameters that were found through a machine learning optimisation approach.

The process of finding the machine learning factors is described broadly in the
following:

10
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The optimisation aims to minimise the error between the PSD estimated by the
CFM and the one estimated by the fully integrated EGN model:

∆ =
|P (n)

NLI,CF M − P
(n)
NLI,EGN |2

|P (n)
NLI,EGN |2

In the purpose of this optimisation, 1500 C-band optical transmission systems,
equally divided between fully and partially loaded randomly generated WDM
spectra and modulation formats were used as a training set. It is noted that
the cost function was evaluated at each span of these systems, providing more
than 11500 error contributions. This process provided specific values for these
parameters, which achieve a peak error of 0.19 dB. The parameters are reported in
the table below.

Parameter Value Parameter Value
a1 +1.0436e0 a13 +1.0229e0
a2 −1.1878e0 a14 −1.1440e0
a3 +1.0573e0 a15 +1.1393e− 2
a4 −1.8309e+ 1 a16 +3.8070e+ 5
a5 +1.6665e0 a17 +1.4785e+ 3
a6 −1.0020e0 a18 −2.2593e0
a7 +9.0933e0 a19 −6.7997e− 1
a8 +6.6420e− 3 a20 +2.0215e0
a9 +8.4481e− 1 a21 −2.9781e− 1
a10 −1.8530e0 a22 +5.5130e− 1
a11 +9.4539e− 1 a23 −3.6718e− 1
a12 −1.5421e+ 1 a24 +1.1486e0

Table 1.1: Optimised values of the parameters a1-a24 for the machine learning
factors in the CFM equations

In conclusion, the equations 1.2 - 1.8 along with the parameters in table 1.1
fully describe the EGN CFM used in the software, able to provide an estimation
for NLI power for a given set of input parameters.

1.2.2 Dependence on the power profile: A key Considera-
tion

In the following, the equations of the CFM are analyzed to explore their dependence
on the power profile. This dependence is crucial because the calculation of the
power profile, especially in backward Raman amplified systems, cannot be done
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in closed form, posing a significant computational bottleneck. A major objective
of this thesis, discussed in the following section, is the development of a novel
algorithm for power profile computation that can potentially make the entire model
faster and more efficient.

In particular, the channel and pump input powers are reflected in key terms
such as Ḡ(n)

CUT and Ḡ(n)
nch

, which represent the input PSDs at the start of the nth

span for the channel under test (CUT) and a WDM channel, respectively. In fact
these terms can be related to the channel input power as follows:

Ḡ
(n)
CUT = P

(n)
CUT

RCUT

Ḡ(n)
nch

= P
(n)
nch

Rnch

Moreover, to account for SRS, the model uses an edited version of the attenuation
constant that contains a z-independent component and a z-dependent one. Its
expression thus becomes:

α(f, z) = α0(f) + α1(f) · e−σ(f)·Z (1.9)

This expression, with the correct values for α0(fch), α1(fch)and σ(fch) is able
to fit the power variation of each channel along the fibre, subject to Raman gain
and loss. While the factor α0 accounts for fibre attenuation, the inclusion of
the z-dependent exponential term allows to capture the equivalent gain or loss
experienced by the channel due to the Raman effects.
The values of these parameters are effectively obtained by best-fitting the curve
P · e−α(fnch

,z)·z to the power profile curve. This means that the accurate description
of each channel power along the fibre, namely the power profile, needs to be known
for determining α(f, z) and for the model to function.

1.2.3 Implementation and limitations
The equations presented thus far are all implemented in MATLAB to form the
CFM able to take in input the link parameters, input channel and pump powers
and frequencies, and accurately estimate the available GSNR on the link for each
channel while taking care for stimulated raman scattering. All of which is done
in closed form aside from the part of the power profile calculation. In fact, the
evaluation of the power profile is governed by the system of coupled non-linear
Raman differential equations that read:
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±dPi(z)

dz
= −α0,iPi(z) +

M+NØ
j=1

gijPj(z)Pi(z)

Pi(0) = Pnch,in for 1 ≤ i ≤ M

Pi(Ls) = Pnpump,in for M + 1 ≤ i ≤ N +M

(1.10)

Where M is the number of channels in the system and N is the number of pumps.
The parameter α0,i represents the attenuation coefficient for channel i.

In the original software, this system is solved using MATLAB’s functions ‘ode45‘
and ‘bvp4c‘, which are capable of solving initial value problems and boundary
value problems, respectively. It is important to note that if backward Raman
amplification is employed, then N /= 0, and the system becomes a boundary value
problem.

In this latter case, the numerical algorithm utilized by MATLAB in the function
‘bvp4c‘ is a finite difference code that implements the three-stage Lobatto IIIa
formula. This algorithm can be highly inefficient, especially with an increasing
number of channels, which is often the case in UWB systems.
From here stems a limitation of the current CFM software as it takes a substantial
amount of time to compute the power profile with respect to all the other compu-
tations including the estimations of the PSDs of NLI and ASE. Two examples of
the time taken by these calculations are shown to illustrate this fact:

• A C+L system with 76 channels and 5 pumps is considered, the channels
have a uniform input power of 0 dBm while the pumps have the following
frequencies and respective power:
Frequencies in THz :[210.56, 208.87, 206.72, 204.51, 200.55]
Power in mW :[360, 320, 200, 130, 180]
The following table shows a profiling of the times taken by the different
processes in the software averaged over 20 runs:

Process Time Elapsed (s)
Power Profile 8.925
Curve Fitting 0.3935

NLI Estimation 0.1767
Total 9.496

Power Profile
Total 0.939

Table 1.2: Time elapsed for each process in the CFM model for a C+L system

• A C+L+S system with 114 channels and 5 pumps is considered, with the
same power and frequency except the last pump is shifted by 2 THz to avoid
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channel overlap, the pump frequencies become in THz: [210.56, 208.87, 206.72,
204.51, 202.55] .
The following table shows a profiling of the times taken by the different
processes in the software averaged over 20 runs:

Process Time Elapsed (s)
Power Profile 30.043
Curve Fitting 0.662

NLI Estimation 0.999
Total 31.042

Power Profile
Total 0.968

Table 1.3: Time elapsed for each process in the CFM model for a C+L+S system

As shown in the tables, the power profile calculation accounts for approximately
95% of the total simulation time. This proportion increases as the system size
grows, indicating further complications when simulating larger systems, such as
those incorporating the S and E bands.

While tens of seconds may not seem like a significant amount of time on their
own, as outlined in Section 1.1, UWB systems rely on the PLM for tasks like
optimizing channel and pump input power to maximize overall link throughput.
Such optimization processes require running the program tens of thousands of
times to converge to a local minimum, potentially taking several days or even
weeks. Therefore, reducing the complexity of the power profile calculations by even
a modest factor can lead to substantial time saving in these optimization processes.

In conclusion, this chapter has effectively described the importance of PLMs
in optical communication. It has described the current CFM EGN model used
for NLI estimation and explored its crucial dependence on the knowledge of the
power profile. Finally, it has shown the inefficiency of the power profile calculations
done by exploiting MATLAB’s functions and the need of a novel algorithm able to
evaluate the power profile in a more efficient way. In the next chapter, a take on
the novel algorithm developed by this thesis is presented in detail.
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Chapter 2

The New Algorithm

In this chapter, the new algorithm for the calculation of the power profile devel-
oped in MATLAB during the course of this thesis will be presented and detailed.
Understanding the underlying concepts and algorithms of this method is essential
for anyone looking to further develop or generalize it.

The chapter will go over the key concept of the algorithm, the two methods
employed to solve the problem and their limitations. Finally the chapter will
describe the merging of the two methods into the final robust and reliable algorithm,
and the automation of the various parameters enabling it to adapt to various system
scenarios.

2.1 Key Concept
The algorithm to be developed is one that presents a more efficient way to compute
the power profile of a given UWB system in which ISRS is significant and pumps are
injected from the other side of the fibre for amplification over the whole useful band.
This is a boundary value problem where the input powers of the signal channels at
the beginning of the fibre, noted Pnch,in, are known and the input powers of the
amplifying pumps at the end of the fibre, noted Pnpump,in, are also known, where nch

and npump are the respective indexes of channels and pumps. The power variation
across the fibre of each channel is affected by attenuation, Raman gain from the
pumps and Raman gain/loss between itself and other channels at higher/lower
frequencies. This interaction can be summarised by the Raman coupled differential
equations. The system to be resolved is thus the one represented by equation 1.10
of section 1.
The new approach of this algorithm is based on the suggestion by [9] of moving to
the integral form of the equations and estimating the resulting integrals using the
trapezoidal rule. This section will explore this passage and will provide an analysis

15



The New Algorithm

of the resulting form of equations.

2.1.1 Differential to integral form
The set of coupled Raman differential equations introduced in section 1.2.3 are
written again in the following:

±dPi(z)
dz

= −α0,iPi(z) +
M+NØ
j=1

gijPj(z)Pi(z) (2.1)

These equations state that the power variation of a channel i in an increment of
the fibre length dz, is determined by the proportion of power lost to attenuation
and that of power lost or gained due to ISRS or Raman pumps amplification. The
upper and lower sign indicate a co-propagating wave (signals or co-propagating
pumps) and a counter-propagating wave (backward pumps) respectively.
The main problem in numerically resolving this system of differential equations lies
in the fact that the system is a boundary value problem where boundary conditions
are imposed at both ends of the fibre. This requires multiple iterations along the
whole fibre length to re-conciliate both boundary conditions. Moreover, due to
the physical properties of the system, the variation of channel power can change
drastically in different regions of the fibre. For example, with backward Raman
amplified systems, the channels typically see no Raman amplification in the begging
of the fibre where pump power is low but then end up being amplified much more
towards the last 10 Km of fibre where pump power is at its highest. This requires
the solver to use variable step sizes for different regions of the fibre which might
render it slower.

Instead, another approach to the resolution of this system was proposed by
[9], by moving to the integral form of the equations, seeking solutions along the
iteration axis rather than the fibre propagation axis.
By dividing both parts of the equation 2.1 by Pi and integrating, the following
integral form results:

Pi(z) = Pi(0) · exp
∓α0,iz ±

M+NØ
j=1

gij

Ú z

0
Pj(ψ) dψ

 (2.2)

In this form, the power profile of channel i at any point z of the fibre, Pi(z) is
explicitly expressed as a function of z. The difference here is that the coupled
system of differential equations are no longer solved directly, which involved multiple
variables affecting each other’s rate of change. Rather the solution is obtained
by iterating through a formula of Pi(z) where each value is updated based on
the values obtained from previous steps. This means that an initial guess for the
power profiles should be taken, feeding this guess to equation 2.2, an updated
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power profile can be obtained. By doing small changes on the obtained profile and
re-feeding it to equation 2.2, a slightly refined power profile can be obtained. This
goes on until the power profile in output from the equations is deemed satisfactory.
More information on this will be given in the next subsection.

2.1.2 Equation resolution and analysis
To use equation 2.2 for generating a power profile, a vectorized approach is used.
MATLAB is optimised for vector operations, this is in fact a big factor as to why
this method is faster and more efficient than solving the differential equations
directly.

A vector Z is created to represent all the steps inside the fiber, with a given
step size ∆Z. This vector is expressed as:

Z = [0,∆Z, 2∆Z, . . . , L− ∆Z,L]

where L is the total length of the fiber. The number of steps is defined as
Nz = ⌈ L

∆Z
⌉ and the total number of channels including signals and pumps is

defined as Nch = M +N .
Another vector Pj of length Nz is created. It represents the powers of channel

j at all the steps in Z. The Nch ×Nz matrix P is then formed by overlaying the
vectors Pi in a vertical fashion, forming the power profile matrix:

P =


P1(0) P1(∆z) · · · P1(L)
P2(0) P2(∆z) · · · P2(L)

... ... . . . ...
PNch(0) PNch(∆z) · · · PNch(L)


Furthermore, the integral

s z
0 Pj(ψ)dψ present in the equation must be numerically

solved. This is accomplished using the trapezoidal rule, which approximates the
integral by dividing the area under the curve into trapezoids.

In this method:

• The width of each trapezoid is ∆Z, the step size.

• The two heights of the trapezoid are the values of the function Pj(ψ) at the
two points defining the base, i.e., the values at Zi and Zi+1.

Mathematically, this approximation can be written for an interval [Zi, Zi+1] as:
Ú Zi+1

Zi

Pj(ψ)dψ ≈ ∆Z (Pj(Zi) + Pj(Zi+1))
2
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In equation 2.2, the integral always has the bounds [0 z], with z being the
point in the fibre on which the equation is estimating the power value Pi(z). The
approximation using the trapezoidal rule will look like this:

Ú z

0
Pj(ψ)dψ ≈ ∆Z (Pj(0) + Pj(∆Z))

2 + ∆Z (Pj(∆Z) + Pj(2∆Z))
2

+ · · · + ∆Z (Pj(z − ∆Z) + Pj(z))
2

By grouping the different powers figuring in the expression the following is
obtained:Ú z

0
Pj(ψ)dψ ≈ ∆Z

31
2Pj(0) + Pj(∆Z) + Pj(2∆Z) + ...+ Pj(z − ∆Z) + 1

2Pj(z)
4

This can be written as the scalar product of the vector Pj with the vector T =
[1/2, 1, ..., 1, 1/2,0 . . . 0] with length equal to the number of steps between the
beginning of the fibre and z then padded with zeros to reach the length of Pj, Nz:Ú z

0
Pj(ψ)dψ ≈ ∆Z · Pj · T

To compute the integral for each possible value of z in the vector Z, an Nz ×Nz

matrix, Ttrig, is constructed. Each column of this matrix represents a version of
the vector T , corresponding to the specific value of z for that column, which means
it contains the value 1/2 at its beginning and end, with z

∆Z
− 1 ones in between.

The column is then padded with zeros to match the length Nz. The matrix takes
the following form:

Ttrig =



0 1/2 1/2 1/2 . . . 1/2
0 1/2 1 1 . . . 1
0 0 1/2 1 . . . 1
0 0 0 1/2 . . . 1
... ... ... ... . . . ...
0 0 0 0 . . . 1/2


It is noted that the first column is all zeros since it corresponds to the integral

evaluated at the bounds [0;0] which should equal 0. The value of the integral at
every step of the vector Z is then obtained by the matrix product

Pj × T · ∆Z (2.3)

To finalize the vector equation, the vector α0 containing all the attenuation
coefficients for the channels and pumps in order and the Nch × Nch matrix G
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containing all the Raman gain coefficients gij are constructed.
The vector equation that computes the power profile vector Pi, containing the
powers of a given channel i sampled at equal steps ∆Z of the fibre thus becomes:

Pi = Pi(0) · exp (∓α0(i)Z ±G(i, :) × P × Ttrig · ∆Z)

The above equation can be extended to compute the whole power profile P in one
shot. For this purpose, an additional vertical vector of length Nch called Direction
is constructed by putting 1 in the position relative to a signal or a co-propagating
pump, and -1 in the position relative to a pump indicating counter-propagation.
Additionally, the vector Z is replicated in a vertical fashion Nch times to form the
Nch ×Nz matrix Zk. The final vector equation, computing the whole power profile
P sampled at equal steps of the fibre, has the following form:

P = P (: ,0) · exp (−Direction · α0 · Zk +Direction ·G× P × Ttrig · ∆Z) (2.4)

Equation 2.4 serves as the foundation for the efficient power profile computation
method presented in this thesis. Starting with an initial guess of the power profile
P and applying the boundary conditions, this equation allows for the propagation
of the profile according to the Raman differential equations, providing a numerical
solution for the system in vector form. However, due to the numerical nature of
the method, the accuracy of the output depends heavily on how close the initial
guess is to the actual solution.

To determine when an algorithm has converged, it is essential to define what
constitutes a "satisfactory solution." A correct solution must first remain stable
when propagated through equation 2.4. Additionally, if the profile obtained after
propagation matches the boundary conditions within a certain error tolerance, it is
considered valid.

Since the initial guess is rarely accurate enough to produce a satisfactory solution
on the first try, an iterative approach is necessary. With each step, the obtained
profile is adjusted slightly for the next iteration, and the boundary conditions are
monitored to ensure convergence towards the correct solution. Three methods that
implement this process in different ways, namely dynamic pump allocation method,
progressive signal injection method and the hybrid method will be described in the
following sections.
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2.2 Dynamic Pump Calibration Method

As specified in the previous section, there is the need for algorithms that exploit
equation 2.4 to achieve a converged solution. They should take an initial guess of
the power profile, along with the boundary conditions and get closer to the correct
power profile with every iteration if possible. The Dynamic Pump Calibration
(DPC) Method is one of these algorithms.

2.2.1 Loop description

To understand how this method works, the first couple of iterations will be discussed
in detail. This will help motivate the choices made in the method logic.

First, an initial guess of the power profile should be provided. A simple guess is
one where all channels, signals and pumps, propagate from the respective ends of
the fibre subject only to fibre attenuation, with no SRS taken into account. This
guess can be expressed as:

Pi(z) = Pi(0) · exp (−Direction(i) · α0(i)z)

Furthermore, a C+L system will be adopted as the case example for the whole
method development. This system has 38 channels in the C band and 38 channels
in the L band, with frequencies spanning in the range [186;195] THz. The channel
spacing is 125 GHz and a symbol rate of 100 Gbaud is used.

For the purpose of amplification 5 counter-propagating pump channels are used
in the frequencies : [210.56, 208.87, 206.72, 204.51, 200.55] THz. The power of each
signal and pump channel at the respective ends of the fibre, forming the boundary
conditions, are variable during the different tests to ensure the generalization of
the method for different power scenarios.
One specific case is taken with uniform signal power per channel:Pnsignal,in = −10
dBm ∀nsignal ∈ [1;M ] and pump powers [ 360 320 200 130 180] mWatts equivalent
to [25.56 25.05 23.01 21.13 22.55] dBm respectively.
The initial guess of this case is represented below in logarithmic scale, as will always
be the case when representing power profiles:
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Figure 2.1: Power profile initial guess for a C+L system

Where the 5 curves with relatively high power are representing the pumps, and
the star at the end of each of these curves is representing their boundary conditions.
The variation of all the curves is linear with different slopes. This is because the
attenuation is exponential and the figure is in logarithmic scale, moreover each
channel has a slightly different value for the attenuation coefficient α0, explaining
the different slopes.

The method propagates this initial guess using equation 2.4. The resulting
power profile is shown below:
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Figure 2.2: Power profile after one iteration for the same C+L system

It is seen that some pump values increased substantially, with respect to their
boundary conditions while others have decreased. As a result, the signals are
amplified in the last 30 Km of the fibre in a significant way. It is logical that an
increase in pump values will be reflected in the signal channels as backward Raman
amplification is significant, since the pumps are positioned around 5-15 THz away
from the signals as described in section 1.1.2. For this reason, this method focuses
on getting correct guesses for the pump profile to achieve an overall accurate power
profile. Thus, the method fixes the signal values at the input of the fibre to the
signal initial conditions and works on the pump profile by pushing it towards the
boundary conditions.
For this purpose, the method uses a metric that measures how far the pumps at the
end of the fibre are from their respective boundary conditions called Pump_Error:

Pump_Error(i) = Ppump,in(i) − P (Nchsignal
+ i, L) (2.5)

where the first term is the boundary condition of pump i in Watts and the second
term is the calculated value at the output of the fibre of pump i in Watts. It is
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noted that when the value of Pump_Error(i) is positive, the pump is lower than
it should be and has been under-calculated while in the opposite case it has been
over-calculated. Consequently, based on the Pump_Error metric, the method will
correct the power profile guess for the next iteration by adding to it a correction
value obtained by multiplying the profile of each pump i with a value proportional
to Pump_Error(i) in the following way:
P (Nchsignal

+ i, :) = P (Nchsignal
+ i, :) + P (Nchsignal

+ i, :) · k · Pump_Error(i)
Leading to the correction equation:

P (Nchsignal
+ i, :) = P (Nchsignal

+ i, :) · (1 + k) · Pump_Error(i) (2.6)
The proportionality coefficient k is called the correction factor. Moreover, a
distinction is made between corrections of under-calculation and over-calculation,
as it will turn out later that the latter is more critical in divergent cases while the
former is important in oscillation, more on this in section 2.2.2. This introduced
two correction factors: Correction factor higher (CH) used in the case of over-
calculation and Correction factor Lower (CL) used in the other case. An analysis
of the correction factor values will be provided in section 2.2.2, for the current
case, the values CL = 1 and CH = 4 are used. By doing this correction step, the
method is changing the guess given to equation 2.4, to a better one, while keeping
the boundary conditions the same, thus pushing the equation to give an estimation
to the power profile slightly more accurate.
The corrected pumps according to 2.6 are represented in the graph below:
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Figure 2.3: Power profile after first pump correction

The pumps that were under-calculated were pushed up by a small factor pro-
portional to the error and are now closer to their boundary conditions. While the
pumps that were above their conditions were pushed down in a more important way
because of the higher value of CH. This is done to remove unnecessary numerically-
introduced high powers in the equation and avoid divergence. In later iterations
these pumps will be pushed back slowly towards their boundary condition. The
corrected pumps are then propagated in the equation 2.4 and the following power
profile is found in output of the second iteration:
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Figure 2.4: Power profile after two iterations for the same C+L system

After this second propagation ISRS between pumps is more visible, and some
pumps are closer to their correct values. The output of the correction stage of the
second iteration is shown:
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Figure 2.5: Power profile after second pump correction

From the pump color coding, it can be seen how the blue and yellow pumps
that are below their boundary value are pushed up by the correction stage, while
the green pump that is over-calculated has been pushed down. This new guess is a
better one in terms of closeness to the boundary conditions than the previous one.

To show the inner workings of the method, two more iterations are shown down
below, number 3 and 10. For each of them, the propagation output is shown along
with the correction that followed, it is noted that all power profile curves are shown
in logarithmic scale for illustration purposes:
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Figure 2.6: Power profile after three iterations of the same C+L system
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Figure 2.7: Power profile after third pump correction
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Figure 2.8: Power profile after ten iterations of the same C+L system
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Figure 2.9: Power profile after tenth pump correction

Already at iteration 10, the pumps got close to their boundary values and the
signals start to be amplified in a correct way.

The loop yields a converged result by fixing a value for the error tolerance, called
tol, below which the pump power error at the end of the link is deemed satisfactory.
In this example tol is set to 2e-3.

Over 40 iterations of propagation and correction, the power profile converges
to a satisfactory solution in the sense defined at the start of this section. The
converged solution is shown below:
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Figure 2.10: Converged power profile

Finally, a pseudo-code of the algorithm of DPC is presented below:
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Algorithm 1 Dynamic Pump Calibration Method
1: Initialize: Set initial guess for power profile P and error tolerance tol
2: while Any(|Pump_Error|) ≥ tol do
3: Pump_Error(i) = Ppump,in(i) − P (Nchsignal

+ i, L)
4: for each pump i do
5: if Pump_Error(i) > 0 then
6: Correct pump under-calculation:
7: P (Nchsignal

+ i, :) = P (Nchsignal
+ i, :) · (1 + CL) · Pump_Error(i)

8: else
9: Correct pump over-calculation:

10: P (Nchsignal
+ i, :) = P (Nchsignal

+ i, :) · (1 + CH) · Pump_Error(i)
11: end if
12: end for
13: Propagate new power profile:
14: P = P (: ,0) · exp (−Direction · α0 · Zk + Direction ·G× P × Ttrig · ∆Z)
15: end while
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To show the convergence achieved by the method, a plot of the Pump_Error
values with respect to the iteration number in the specific case being treated is
shown:

Figure 2.11: Pump error throughout the iterations

Convergence was achieved in the above case in 54 iterations leading to the
following power profile in 0.344 seconds :
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Figure 2.12: Power profile for the C+L system

For reference, the same system is run using MATLAB’s bvp4c function, which
further on will be referred to as the conventional method. It took 6.185 seconds for
that method to converge. The maximum error at any point in the fibre and for any
signal (pump error is not considered as it does not affect the following span and is
not important for the CFM) between the 2 solutions is 0.0546 dBm. This is a time
gain factor of approximately 20 for an error that can be considered negligible.

This section has treated the basic logic behind the Dynamic Pump Calibration
Method and showed a pseudo-code of the operations done inside the loop. It also
showed one result for a specific system, comparing it to the result provided by the
conventional method, showcasing the potential speed-up to power profile calculation
that this method can achieve. In the following a discussion of the technical issues
faced during development and how they were overcome will be provided.

34



The New Algorithm

2.2.2 Technical issues

Some issues in convergence were faced in the deployment of the code described
above for a subset of the boundary conditions imposed on the C+L system. Namely,
these issues are divergence, and oscillation of the system around the correct value.
In the following, each of these issues and how they were resolved will be discussed.

Divergence

The first issue faced, whose resolution was a crucial part of making the algorithm
work for high pump power was divergence.
Because of the exponential nature of the vector equation 2.4, if the value of the
power profile being fed to it gets too high, a positive feedback loop starts to take
place that increases the values of the next guess, eventually leading to MATLAB
NaN values in all of the power profile matrix P. This phenomenon was happening
in the matter of a few iterations showing the high instability of this algorithm
and the need to have a mechanism in place able to deal with that instability. To
showcase divergence, the same C+L system is taken again with different boundary
conditions. A uniform signal input power of 10 dBm is used and higher pump
powers are obtained by scaling the initial case by a factor Adjustment = 0.7 like
so: [360, 320, 200, 130, 180]/Adjustment mW.
For simplicity, from this point on, to increase or decrease input pump power the
parameter Adjustment will be tweaked while keeping the base powers the same,
moreover the amount of pump power is going to be referred to using the value
of Adjustment alone. It is also noted that because of the division sign, for lower
values of Adjustment, higher pump powers are thus used. Below is a figure showing
the Pump_Error curves throughout the iterations for the system described above:
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Figure 2.13: Pump error throughout the iterations

It is noticed that already from iteration number 2 a maximum error of −1.176·1010

is reached, after which the P matrix takes up all NAN values.
The first thing to notice is that divergence happened when pump and signal input
powers were increased. The idea is that when power is high enough inside the
initial guess, propagation through equation 2.4 leads to higher values in P. If those
values are not extremely high, the correction phase should be able to push the
pump profiles down. Picking higher values of the correction factor CH, promotes
this behaviour.
However, if the calculated values of P are too high, the correction phase of the
algorithm may not be powerful enough to enforce stability.
Consequently, another mechanism needs to be put into place to ensure divergence
does not happen.
Because divergence occurs when high values are in the initial guess leading to a lot
of over-calculations, and because this method fixes signals and works with pumps
instead, the solution to this problem turns out to be to scale down the pump powers
in the initial guess by a factor called factorpump. This will ensure that the system
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is in under-calculation most of the time and will converge slowly to higher pump
values by slow correction. This solution is convenient because every other part of
the algorithm can be kept the same, the only difference lies in the initial guess,
where the pumps are scaled down, an example is reported below for factorpump = 3:

Figure 2.14: Power profile scaled down initial guess for a C+L system

The exact value of factorpump depends on the amount of power present in the
equations, until this point it is set manually for each case. However, a method to
automate the choice of this factor will be put into place in the final version of the
algorithm which will be described in later sections.

To understand the impact of this technique, the highest realistic signal power
used in practice is considered, which typically does not exceed 10 dBm. With this
high signal power, the algorithm can only converge when the Adjustment value is
approximately 1.1. This corresponds to a total pump power of less than 1.08 Watts.
This is problematic because it limits the applicability of the algorithm, meaning it
could not be used on systems with higher pump power requirements.
However, by employing pump power scaling, the algorithm is able to converge even
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with Adjustment values as low as 0.1, resulting in total pump powers exceeding 10
Watts—well beyond the normal industry range. This ensures that the algorithm
can converge for virtually any real-world scenario, solving the problem of divergence.
Below is the output of the algorithm for an extreme case of Adjustment = 0.1,
using factorpump = 470, CH = 0.1 and CL = 0.001.

Figure 2.15: Algorithm solution for a case with Adjustment=0.1

Oscillation

A second issue encountered after divergence was resolved is oscillation. It happens
when the power is not big enough to cause divergence, but the correction phase is
not precise enough to allow the algorithm to converge to a solution whose error is
within the tolerance. Of course higher tolerance values will result in less oscillating
systems, but the value of 2e− 3 used in the algorithm is small enough to produce
accurate solutions.

To study it, below is reported the Pump_Error curves of a case where oscil-
lation happens. This time the C+L system is used with 5dBm of signal power,
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Adjustment = 1 while the algorithm parameters are CH=10 and CL=2 (While
treating oscillation, factorpump is considered big enough to not cause divergence):

Figure 2.16: Pump_Error showcasing oscillation

Even after running for 10000 iterations, the algorithm could not converge to a
satisfactory solution, instead it kept oscillating between error values of approxi-
mately -0.2 and 0.2.
To solve this issue, the same case is run again through the algorithm, this time
with lower correction factors such as CH=4 and CL=0.4, the Pump_Error curves
are reported below:
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Figure 2.17: Pump_Error when oscillation is solved

It can be then concluded that lower correction factors will cause the system
to converge. However, if very low correction factors are used, while the system
will still converge, it will do so after taking many iterations, defeating the point of
the method proposed by the thesis of being computationally efficient. Here is the
Pump_Error curves for the same system with CH=0.04 and CL=0.004:
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Figure 2.18: Pump_Error when oscillation is solved but with slow parameters

The curves seem similar to the ones before, however it takes 100 times more
iterations for the algorithm to converge. Consequently, a trade-off between conver-
gence and efficiency exists in the values of the correction factors. And a big issue
of this method is to find the optimal values to use.
To further explore this trade-off, the values for CH and CL that produced conver-
gence in the least amount of iteration were determined manually for 28 cases of
varying signal and pump power (defined by the Adjustment factor). The findings
are reported in the tables below:

Psignal,in (dBm) \Adjustment Factor 1 0.9 0.8 0.7 0.6 0.5 0.4
-10 7 6 4 3 7 6 3
0 6 6 5 4 5 4 1
5 4 5 5.5 5 5 2 4

10 5 7 6 6 4 1 2

Table 2.1: Optimal CH values for varying boundary conditions
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Psignal,in (dBm) \Adjustment Factor 1 0.9 0.8 0.7 0.6 0.5 0.4
-10 0.7 0.6 0.2 0.04 0.035 0.015 0.009
0 0.6 0.6 0.3 0.15 0.05 0.035 0.015
5 0.4 0.5 0.35 0.2 0.1 0.05 0.025
10 0.5 0.7 0.5 0.3 0.2 0.1 0.09

Table 2.2: Optimal CL values for varying boundary conditions

From the tables it is seen that CH is not very critical for convergence as the values
seem to be somewhat constant across all the cases. It is noted that those values
seem to be relatively high with respect to CL. this is because CH is responsible of
correcting pumps in cases of over-calculation that are divergence prone, so keeping
a high CH value is beneficial for avoiding divergence.

On the other hand, CL seems to be much more crucial as values bigger than
the one mentioned in the tables lead to oscillating systems. What is worse is that
the range of values seem to be very wide across the different case scenarios with a
min-max ratio of r = 0.7

0.009 = 77.7.
Moreover, the relationship between the optimal CL values and pump and signal
power is complex; for increasing pump power, optimal CL values tend to go lower
however for increasing signal power these values tend to go higher. Table 2.2 shows
the complex dynamics of the CL values and the difficulty of using a single value
that leads to convergence every time. One could think to exploit these values to
interpolate a surface S(Psignal,in, Adjustment) that would give a good value of CL
to use for some given boundary conditions but this approach could lead to over
fitting the data and the surface might not generalize for other multi-band systems.
Because of this analysis, even if the Dynamic Pump Calibration Method showed
promising results with very fast computation of the power profile, it fails to
generalize for a wide range of case scenarios. For this reason, another method will
be developed that does not depend on correction factors: The Progressive Signal
Injection Method.

2.3 Progressive Signal Injection Method

The Progressive Signal Injection (PSI) Method was thought of because of the need
of a different algorithm that exploits equation 2.4 to compute the power profile
without having to rely on very dynamic factors. Since the method will be used for
a wide range of systems, its parameters should be ideally constant for all cases or
at least slowly changing in an easily traceable way.
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2.3.1 Loop description

The general logic of this method stems from the idea that instability in the algorithm
seems to be due to the interaction between signals and pumps, the more power is
exchanged between the two, the more the equations are unstable.

For this reason, the method starts under the assumption of undepleted pumps,
meaning pumps that have not yet transferred power to the signals. Since the power
transfer between amplifying channels is proportional to the power of both channels,
this is accomplished by injecting signals with negligible power, achieved by scaling
down the signals by factorsignal. For the pumps, instead of starting with pumps
propagated in the fibre subject only to attenuation like in the DPC method, they
are also subjected to ISRS. For doing so a system with only pumps is considered,
forming an initial value problem, which can be efficiently solved using MATLAB’s
ode45 function. The scaled-down signals subject to attenuation are then added
to the pumps to form the initial guess of the power profile. An example of such a
guess is reported below for signal input power of 5 dBm and factorsignal = 30:

Figure 2.19: PSI initial guess
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After propagating the guess through equation 2.4, the following power profile is
achieved:

Figure 2.20: PSI Power profile output after 1 iteration

The solution seems to be immediately a good one, for a system with a signal input
power of -9.52 dBm that is. The method was able to achieve an almost satisfactory
solution from one single iteration. In fact, If the pumps can be considered almost
undepleted because signal power is minimal, something that becomes exactly true
for factorsignal → ∞, then the method is calculating the power profile of pumps and
signals in a separate fashion. Which is dividing the boundary value problem into
two initial value problems. The method then proceeds by moving the signal power
up by steps of stepdBm, a parameter of the method. In each iteration, the signal
power is moved up, and the guess is propagated through the vector equation.
Moreover, because some interaction is anyway happening between the pumps and
the signals, the pump power profiles do get affected by the propagation. In each
iteration this should be corrected by scaling the pumps so they return to their
boundary conditions exactly, like the following:

44



The New Algorithm

P (Nchsignal+i
, :) = P (Nchsignal+i

, :) · Ppump,in(i)
P (Nchsignal+j

, end) (2.7)

The algorithm keeps going until the signal power rejoins the initial condition exactly.
By increasing signal power slowly and correcting the pump profiles each time, the
system is moving from one converged solution of the system to the other, allowing
to finally reach a correct solution with the given boundary conditions.

An algorithm describing the method fully in pseudo-code is presented below.

Algorithm 2 Progressive Signal Injection (PSI) Method
1: Initialize: Scale down Psignal,in by factorsignal), set step size for increasing signal

power stepdBm, and tolerance tol.
2: Solve the initial pump-only power profile as an initial value problem (IVP)

using ode45.
3: Add the scaled-down signals subject to attenuation to form the initial guess for

the power profile.
4: while Any(|Psignal(0) − Psignal,in| > tol) do
5: Correct pump profile:
6: for each pump i do
7: Scale pump profile to match boundary condition:
8: P (Nchsignal

+ i, :) = P (Nchsignal
+ i, :) · Ppump,in(i)

P (Nchsignal
+i,L)

9: end for
10: Increase the signal profile Psignal by stepdBm to form the new guess.
11: Propagate the guess using the vector equation:
12: P = P (: ,0) · exp (−Direction · α0 · Zk + Direction ·G× P × Ttrig · ∆Z)
13: end while

To show the convergence of the PSI method, a C+L system is considered with
Psignal,in = 5 dBm, Adjustment factor=1 and stepdBm is set to 0.05 dBm. The
output of PSI is the presented in the following figure:
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Figure 2.21: PSI Power profile converged output

Convergence was achieved in the above case in 297 iterations leading to the above
power profile in 3.123 seconds. For reference, the same system is run using the
conventional method which took 12.254 seconds. A negligible maximum signal error
of 0.0349 dBm between the 2 methods is seen. A time gain factor of approximately
4 is achieved in this case.

It seems like this method is quite slower than DPC. However, this is largely
influenced by the value of the method’s parameters, namely stepdBm and factorsignal

that provide a better solution at the expense of efficiency. To explore this trade-off,
the same system is solved multiple times with varying parameters, the number of
iterations and maximum signal error with respect to the conventional method’s
solution are reported in the table below:
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Table 2.3: Iterations and Accuracy for Different Step Sizes and Signal Scaling
Factors

stepdBm factorsignal = 50 factorsignal = 30 factorsignal = 10 factorsignal = 5

0.05 Iterations: 341
Error: 0.0276 dBm

297
0.0349 dBm

201
0.0529 dBm Diverged

0.1 Iterations: 171
Error: 0.0391 dBm

149
0.0459 dBm

101
0.619 dBm Diverged

0.25 Iterations: 69
Error: 0.0864 dBm

61
0.169 dBm

41
1.751 dBm

29
20.633 dBm

0.5 Iterations: 35
Error: 0.164 dBm

31
0.191 dBm

21
3.391 dBm

15
11.261 dBm

Table 2.4: Table showing the performance of PSI for different values of stepdBm

and factorsignal

The relationship between the method’s parameters and its performance can be
easily understood. Higher stepdBm lead to less iterations since the signal profile goes
up to the initial condition faster. This however produces less accurate solutions,
since the systems has less iterations to stabilize to the additional power injected
inside of it. On the other hand, higher values of factorsignal ensure that the initial
no pump-signal interaction assumption of the method is respected, producing more
accurate solutions. In some extreme cases, when factorsignal is not big enough,
considerable depletion of the pumps happens during the first iterations causing the
algorithm to be too unstable and the solution to diverge.

If a maximum error of 0.05 dBm is accepted, then the fastest couple of parameters
able to be considered are (stepdBm=0.1, factorsignal = 30) achieving convergence
for this system in 149 iterations, offering a time gain factor of approximately 8 over
the conventional method.

In conclusion, another method for calculating the power profile has been pre-
sented, the Progressive Signal Injection method. On its own, it is slower than DPC
but only depends on 2 parameters; stepdBm and factorsignal that are not crucial to
the convergence of the method (given that factorsignal is big enough), but are rather
concerned with the trade-off of accuracy and efficiency. This method solved the
problem of the DPC method having too dynamic parameters such as the correction
factors. In the following, a discussion of some technical issues faced by PSI is
presented along with how the method was modified to overcome them.
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2.3.2 Technical issues

Similarly to the previous DPC method, even if for them cases it is working perfectly
fine, PSI also faces some technical issues when subjected to certain extreme boundary
conditions. In other words, the method is also divergence-prone for high power
systems. Moreover, because of its easy for it to meet its stopping condition, it does
not have problems in oscillation but rather in accuracy, as the latter cannot be
imposed. In the following, both issues and their resolution will be discussed

Divergence

Divergence in PSI occurs for the same reasons of DPC mentioned in 2.2.2. Very
high power values can cause the exponential nature of 2.4 to give out increasing
values in output with no bound, leading to infinite values and eventually NANs.
This happens even though pumps are corrected exactly to the profile they should
be on using equation 2.7, simply because signals are amplified by these high power
pumps and they are the ones who end up causing divergence, since no correction
can be applied on them.

The approach to resolving divergence in PSI is inspired by the method used
for DPC, specifically through the scaling down of the pumps by the parameter
factorpump in the initialisation phase. Additionally, because the correction in each
iteration involves scaling the pumps to match their boundary conditions Ppump,in,
this boundary condition itself must be scaled by factorpump, resulting in the scaled
boundary condition Ppump,in,scaled. At this stage, the method proceeds as before:
scaling the signals gradually in each iteration while the pumps remain at their
reduced values.

Once the signals have been fully scaled up, the pumps are then incrementally
restored to their true boundary condition. Both the pumps and Ppump,in,scaled are
scaled back in a step-by-step manner over several iterations using a parameter
stepdBm,pump after which the profile is propagated through equation 2.4. Moreover,
in each iteration, the pumps are corrected to align with the scaled boundary
condition at that stage, Ppump,in,scaled. Once the pumps have been fully scaled
back to their actual boundary condition, the entire profile is propagated through
equation 2.4, and the method is considered to have converged.

Accordingly, the initial guess of the method, is one where both signals and
pump are scaled down by different factors, both subject to attenuation with the
pumps also subject to ISRS. The guess for a case where Adjustment = 0.2 and
Psignal,in = 5 while factorpump = 10 and factorsignal = 30 dBm is represented by the
figure below:
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Figure 2.22: Modified PSI initial guess

The modified version of the PSI method is depicted in the algorithm below:
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Algorithm 3 Modified Progressive Signal Injection (PSI) Method
1: Initialize: Scale down signal profile by factorsignal. Set step sizes stepdBm,signal

and stepdBm,pump, and tolerance tol.
2: Scale down pump profile and pump boundary condition (Ppump,in) by factorpump

3: Ppump,in,scaled = Ppump,in
factorpump

4: Solve the initial pump-only power profile using ode45.
5: Initialize flags signal_scaled_up and converged_flag to 0.
6: while Any(|Psignal(0) − Psignal,in| > tol) or converged_flag == 0 do
7: Correct pump profile:
8: for each pump i do
9: Scale pump profile to match scaled down boundary condition:

10: P (Nchsignal
+ i, :) = P (Nchsignal

+ i, :) · Ppump,in,scaled(i)
P (Nchsignal

+i,L)

11: end for
12: if signal_scaled_up == 1 then
13: if Any(|Ppump(L) − Ppump,in|) > tol then
14: Increase pump power by stepdBm,pump

15: Increase Ppump,in,scaled by stepdBm,pump

16: else
17: signaling to get out of the loop
18: converged_flag = 1
19: end if
20: else
21: Increase signal power by stepdBm to form the new guess
22: end if
23: Propagate the guess using the vector equation:
24: P = P (: ,0) · exp (−Direction · α0 · Zk + Direction ·G× P × Ttrig · ∆Z)
25: if Psignal(0) has reached its target then
26: signal_scaled_up = 1
27: end if
28: end while
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It is mentioned that signal_scaled_up is a flag that becomes true when the
method has finished scaling up the signals signaling the initiation of the pump
scaling up process. While converged_flag is initialised to 0 and set to 1, to exit
the loop in the next iteration, when the pumps are scaled back up all the way to
their initial condition Ppump,in.

To understand the impact of this mechanism, the original PSI method described
in 2.3.1 is stress tested with a high realistic signal power of 10 dBm and varying
Adjustment factors. The minimum value of Adjustment factor for which conver-
gence is achievable is 1.05 translating to a total pump power of 1.13 Watts. This
makes the method as of 2.3.1, valid for a small subset of systems of low pump
power.
Instead with the modified PSI, the achievable adjusted factor goes down to 0.25
(corresponding to 4 Watts of total pump input power) for which no divergence
occurs. For this factorsignal = 100 and factorpump = 100 were used. The converged
solution for Psignal,in = 10 dBm is presented below:

Figure 2.23: Converged solution with modified PSI method forAdjustment = 0.25
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In conclusion, this allowed to virtually remove divergence for all realistic scenar-
ios.
Unfortunately, this approach introduces more inaccuracy to the solution. This will
be discussed more in detail below.

Inaccuracy

As shown by the table 2.4, the accuracy of the PSI method depends on its parameters
and is traded-off with efficiency. For low pump powers such as the one used in the
system represented in the table, the method is able to provide a fairly accurate
solution with a low enough complexity. However, when using lower Adjustment
factors representing higher pump powers, the scale down of the pumps as per
algorithm 3 becomes necessary for convergence. Furthermore, because of the scale
down and up of the pump power, the system is solved only once with the correct,
scaled up pump power (in the last iteration), after-which no correction is happening.
This means that there is no control onto where the pump power falls. In some
cases it is far away from the boundary condition, which in turn is reflected in the
signal powers affecting the whole accuracy of the power profile.

To illustrate this inaccuracy, the parameters found after the analysis of table 2.4,
are used to solve systems with 5 dBm of signal power and varying Adjustment factors
by the modified PSI method. Moreover, factorpump is set to 10 and stepdBm,pump to
0.05 dBm. The different maximum signal errors with respect to the conventional
method are shown in the table below:

Adjustment Factor Max Signal Error (dBm)
1.0 0.139
0.9 0.119
0.8 0.123
0.7 0.119
0.6 0.121
0.5 0.109

Table 2.5: Maximum signal error for different adjustment factors using
stepdBm,signal = 0.1 dBm and stepdBm,pump = 0.05 dBm

Each one of these runs took 348 iterations, which still offers a significant time
gain over the conventional method, since these can be computed in around 3
seconds. On the other hand, the maximum signal error is higher than what is
normally requested (at least under 0.1 dBm of error). Additionally, for some other
cases of signal power, these errors can also be higher.

In an effort to lower this error, drastically small stepdBm,signal and stepdBm,pump

are needed, which however will render the method too slow and still not achieve
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sub 0.1 dBm of error in some cases. An example with stepdBm,signal = 0.01 dBm
and stepdBm,pump = 0.02 dBm is reported in the table below:

Adjustment Factor Max Signal Error (dBm)
1.0 0.0725
0.9 0.0465
0.8 0.0471
0.7 0.0472
0.6 0.0805
0.5 0.109

Table 2.6: Maximum signal error for different adjustment factors using
stepdBm,signal = 0.01 dBm and stepdBm,pump = 0.02 dBm

Even if in most cases, with these parameters the PSI method was able to achieve
a sufficiently low error, each one of these runs took 1978 iterations to complete
which takes roughly 16 seconds, no longer offering any efficiency advantage over
the conventional method.

This limitation is mainly due to a non existing control over the quality of the
solution in the PSI method. Instead of stopping according to some metric of
solution quality as done when Pump_Error becomes low enough in DPC, this
method stops when it is done scaling up signals and pumps. Moreover, after it
is done, the method cannot be run multiple times without any modification to
the guess, as its correction phase is imposing the values of the pumps rather than
nudging them in the correct direction. This causes instability and eventually will
cause the solution to diverge after a given number of iterations.

In conclusion, the PSI method is a good method for efficient solving of the
Raman differential equations, since it depends on four easily tunable parameters
that do not vary in a very dynamic way across the different system boundary
conditions. These parameters are: stepdBm,signal, stepdBm,pump, factorsignal and
factorpump. However, it may sometimes output solutions with low accuracy, given
the limited control the method has over the quality of the solution.

2.4 The Hybrid Method
Based on the two methods described in section 2.2.1 and 2.3.1 and the discussion
of their limitations, there is the need for a final method that combines both DPC’s
accuracy control and PSI’s slow parameter dynamic providing a fast, reliable and
easily automated method for efficient power profile computation. In this section,
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this hybrid method will be described along with how it resolved the issues of both
the methods.

2.4.1 Loop description
The merged algorithm works by allowing the modified PSI method to give an
intermediate low accuracy solution. This solution is then passed as a guess to the
original version of the DPC method which then corrects it in an iterative fashion
to finally converge to the accurate solution.

In this way, instead of providing a stand-alone solution, the Progressive Signal
Injection method provides the best guess possible for the Dynamic Pump Calibration
method, thus allowing the latter to operate in a much narrower region around
the true solution in the solution space. This approach exploits PSI’s autonomous
parameters and DPC’s convergence power. Furthermore, because of the guess’s
closeness to the true solution, the correcting factors of DPC become much less
sensitive to the boundary conditions, and a simple value of 1 for CH and 0.1
for CL is enough for convergence in most cases. In section 2.5, a method will
be implemented to automate the values of CL when they are too big to achieve
convergence, allowing the parameter to become fully automatic.

The exact way the algorithm works is actually very similar to the modified PSI
algorithm presented in 3, except after both signals and pumps are done scaling up,
the output of the method is fed to the original DPC algorithm presented in 1. The
hybrid method’s algorithm is reported below:
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Algorithm 4 Hybrid Method
1: Initialize: Scale down signal profile by factorsignal. Set step sizes stepdBm,signal

and stepdBm,pump, and tolerance tol.
2: Scale down pump profile and pump boundary condition (Ppump,in) by factorpump

3: Ppump,in,scaled = Ppump,in
factorpump

4: Solve the initial pump-only power profile using ode45.
5: Initialize flag signal_scaled_up to 0.
6: while true do
7: Correct pump profile:
8: for each pump i do
9: Scale pump profile to match scaled down boundary condition:

10: P (Nchsignal
+ i, :) = P (Nchsignal

+ i, :) · Ppump,in,scaled(i)
P (Nchsignal

+i,L)

11: end for
12: if signal_scaled_up == 1 then
13: if Any(|Ppump(L) − Ppump,in|) > tol then
14: Increase pump power by stepdBm,pump

15: Increase boundary condition Ppump,in,scaled by stepdBm,pump

16: end if
17: if All(|Ppump(L) − Ppump,in|) < tol then
18: Propagate using the vector equation:
19: P = P (: ,0)·exp (−Direction · α0 · Zk + Direction ·G× P × Ttrig · ∆Z)
20: Feed PSI’s guess to DPC method described in 1
21: Break out of while loop when DPC converges
22: end if
23: else
24: Increase signal power by stepdBm to form the new guess
25: end if
26: Propagate the guess using the vector equation:
27: P = P (: ,0) · exp (−Direction · α0 · Zk + Direction ·G× P × Ttrig · ∆Z)
28: if Psignal(0) has reached its target then
29: signal_scaled_up = 1
30: end if
31: end while
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2.4.2 Validation
To appreciate the effect of this hybrid approach, a previous case from table 2.5
is taken, where the adjustment factor is 0.5 and signal input power is 5 dBm.
Previously, this case was solved by the modified PSI method, with an error of
0.109 dBm, a somewhat significant error. Moreover, The method converged in 348
iterations.
The same system is now solved using the Hybrid method, all the parameters of PSI
remain the same as those of table 2.5, CH is set to 1 and CL to 0.1 as mentioned
before. The method achieves convergence in 438 iterations with a maximum signal
error of 0.0166 dBm. Almost a 10 fold increase in accuracy for the cost of 90
iterations.

Below is reported a figure representing the Pump_Error curves produced in
DPC after PSI’s solution was fed to it:

Figure 2.24: Pump_Error curves in the DPC phase of the hybrid method

As seen, in just 90 iterations the DPC method is able to impose an error on
the input values of the pumps (with respect to the boundary conditions) smaller
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than tol. Something that is reflected positively on the accuracy of the whole power
profile.
As a validation for the Hybrid method, table 2.5 is repeated using the hybrid
method with the same parameters described above and the results are shown below:

Adjustment Factor Max Signal Error (dBm) Iterations
1.0 0.0554 421
0.9 0.0626 411
0.8 0.0541 401
0.7 0.0396 392
0.6 0.0324 411
0.5 0.0166 438

Table 2.7: Maximum signal error and iterations for different adjustment factors
using the Hybrid method

Out of all the cases, the maximum additional cost is for an Adjustment factor of
0.5 where 90 additional iterations were needed. For all the cases, the Hybrid method
produced solutions with a sub 0.1 dBm error with respect to the conventional
method. And in all of them, the same correction factors CH=1 and CL=0.1 were
used. This simple test proves that the Hybrid method is able to solve both DPC
and PSI’s problems of highly dynamic parameters and low accuracy respectively.

Additionally, another benefit can be obtained from this hybrid approach. In
fact, because the output of PSI is no longer used on its own as a solution but
rather as a guess for DPC to improve, previous constraints put on the parameters
in an attempt to produce accurate solutions can be loosened. The parameters in
question are stepdBm,pump, stepdBm,singal and factorsignal, previously set to 0.05, 0.1
and 30 respectively. Loosening these parameters would influence the efficiency of
the algorithm allowing for less iterations and a significant time gain at the cost of
accuracy, which however is no longer a big concern of PSI in the context of the
hybrid method. To loosen the constraints on the parameters, the dBm steps can
be increased and the signal scale down factor can be decreased. For example, the
values 0.5 dBm, 2 dBm and 4 are used for the respective parameters and the test
of table 2.5 is repeated, the following table is obtained:
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Adjustment Factor Max Signal Error (dBm) Iterations
1.0 0.0451 143
0.9 0.0531 120
0.8 0.0386 137
0.7 0.0401 125
0.6 0.0440 158
0.5 0.0385 187

Table 2.8: Maximum signal error and iterations for different adjustment factors
using the Hybrid method with loosened parameters and Pin=5dBm

From the table, it can be concluded that loosening the parameters, not only
rendered the method much faster, saving more than 200 iterations and giving an
output in less than a second, but did not have a negative effect on the accuracy,
this is because DPC is taking care of that aspect.

To conclude, the approach of the hybrid method is a big step forward in the
efficient solving of the power profile. It produces accurate solutions in a little
number of iterations, and can ensure convergence in a big subset of boundary
conditions. The only thing remaining is to ensure all of its parameters work well
for different scenarios through parameter automation.

2.5 Parameter Automation
As mentioned in the theoretical part of the thesis, the main objective is to develop
a method for efficient power profile calculation that can be inserted in the closed
form GN model, to render it faster and enable it to be used in real-time application
and perform efficient complex optimisation. Those objectives require the developed
method to solve different UWB systems in a vast space of signal and pump power.
For this reason, the method’s parameters should all be set to some value that works
in most realistic cases or at least have an adaptive mechanism that adapts them to
an acceptable value for each case scenario.
The Hybrid method described in 4, has the following tunable parameters:

• CH

• CL

• stepdBm,signal

• stepdBm,pump

• factorsignal
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• factorpump

• Stopping number

All of the mentioned parameters have been seen before throughout chapter 2 except
for Stopping number which is just a threshold on the number of total iterations,
after which the method stops and declares it is not able to converge over a solution.
This is useful to avoid infinite oscillating systems.

Most of these parameters can be given one value that works fairly well for all
the cases. The values are assigned as the following:

• CH = 5, as seen in table 2.1, this parameter is not very dynamic and is mostly
useful to avoid divergence. An average value of those figuring in the table is
taken, as it seems to be working well.

• stepdBm,signal = 2. This value allows the method to be efficient by scaling up
the signals quickly while maintaining a good accuracy.

• stepdBm,pump = 0.5. This value allows the method to be efficient by scaling up
the pumps quickly while maintaining a good accuracy.

• factorsignal = 4. Fast enough with no real effect on convergence or accuracy.

• Stopping number = 3000. As most systems converge before this amount of
iterations.

The given values may not be the optimal ones. Some optimisation could be done
in future research to determine the optimal values, which would definitely have
an impact on both efficiency and robustness. However, heavily tested values have
been given that seem to be working well in most cases.

The 2 remaining parameters that on the other hand do not seem to have one
specific value that can be reused every time are CL and factorpump. This was
seen by the vastly different values taken by CL in table 2.2, and by the fact that
the highest percentage of power inside the system is injected through the pumps,
meaning factorpump needs to be dependent on it.
Consequently, 2 simple algorithms are put into place to make these 2 parameters
adaptive to the specific case the Hybrid method is solving. Each of which will be
discussed below.

2.5.1 Pump Factor
A simple way to automate the pump factor can be done by exploiting the speed
at which divergence happens. As seen in figure 2.13, when the method diverges
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because of too high pump power, it does so in a couple of iterations after which
the loop is exited. Meaning that no significant loss of time happens if the system
diverges and is rerun with a different value of factorpump. The idea is to start the
algorithm with no pump scale down (a value of 1), then if divergence happens,
the system is rerun with a new value of factorpump picked from a vector of Factors
containing increasing values, for example Factors = [151015].
Divergence is detected by checking the P matrix for NANs. The algorithm is as
follows:

Algorithm 5 Automated Pump Factor Adjustment Algorithm
1: Initialize: Define the Factors vector, k=1, factorpump = Factors(k), nanflag=1
2: while nanflag == 1 do
3: Run algorithm in 4 with current factorpump.
4: Check for divergence:
5: if any(isnan(P )) then
6: nanflag = 0; ▷ No NANs, algorithm converged
7: else
8: k = k + 1;
9: if k > length(factorpumps) then

10: divergence_flag = 1; ▷ Algorithm diverged for all pump scales
11: Break;
12: else
13: Update pump factor: factorpump = factorpumps(k);
14: end if
15: end if
16: end while

This way, the factors in Factors are tried one by one. If the method could not
converge for any of those it assumes that power is too high and no convergence
can be achieved. It breaks and signals what happened through the divergence flag.
Otherwise, if no NANs are found in the converged P, nanflag is set to 0 and the
loop is exited.

2.5.2 Lower Correction Factor
As discussed in 2.2.2, the lower correction factor (CL) addresses the trade-off
between oscillation and efficiency. If the value is too high, it can cause infinite
oscillation with frequency proportional to the value of CL, while a very low value
may result in slow convergence. The challenge lies in finding the right balance
every time, as this trade-off shifts across different boundary conditions, as shown
in table 2.2. In this table it is also seen that bigger values of CL work well in low
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pump power scenarios. As power increases the system becomes more sensitive and
a finer CL should be used.

A good way to address this issue relies on early oscillation detection. The
method can start with a big enough CL that works well for low pump powers, then
a mechanism is put in place to detect oscillation as it is happening. The method
can then lower the value of CL every time oscillation is detected.

To detect oscillation, a MATLAB function called "findpeaks" can be used on one
of the Pump_Error curves, returning the values of the peaks and their position.
Of course, not all peaks should be considered, but only those with significant
magnitude. Oscillation is assumed when the number of peaks with a value bigger
than magnitudethresh is bigger than a certain threshold Peaksthresh. As as response,
the CL value is reduced proportionally to the frequency of the oscillations as follows:

CL = CL

c0 · length(peaks)
where c0 is a proportionality coefficient that determines how sensitive to the
oscillation frequency the CL reduction should be. It is initially set to 1 and left for
future optimisation.

Oscillation is checked every 100 iterations. At each check, MATLAB’s findpeaks
function is applied to one of the Pump_Error curves, examining the section from
the last recorded CL adjustment (last_change) to the current iteration. Initially,
last_change is set to 1 and updated whenever the CL is reduced. This approach
ensures that oscillations that might emerge over a longer period can still be detected,
while the peaks that triggered previous CL reductions are no longer considered in
subsequent checks
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The algorithm works as follows:

Algorithm 6 Lower Correction Factor Adjustment Algorithm
1: Initialize: Set initial correction factor CL, last_change = 1, oscillation check

every 100 iterations, threshold values magnitudethresh = 0.3 and Peaksthresh = 2,
and proportionality constant c0 = 1.

2: while algorithm is running do
3: if iter_number ∈ oscillation_check_values then
4: Extract pump error:
5: Pump_Error_1 = Pump_Error(last_change : iter_number, 1)
6: Find peaks in the Pump Error curve:
7: peaks = findpeaks(Pump_Error_1)
8: Filter insignificant peaks:
9: peaks = peaks(peaks > magnitudethresh × max(Pump_Error_1))

10: if length(peaks) > Peaksthresh then
11: Adjust correction factor:
12: CL = CL

c0×length(peaks)
13: Update last change iteration:
14: last_change = iter_number
15: end if
16: end if
17: Continue with the rest of the algorithm.
18: end while

This algorithm is inserted at the end of the while loop of the DPC method
described in 1, right after the propagation through equation 2.4. The initial CL
value should be determined, some test showed that a value of 0.1 seems to be
working well for low pump power, thus the method starts with it and then reduces
it as it sees fit.

To show the utility of this mechanism, a case is considered where Psignal,in =
−5dBm and Adjustment = 0.5, the initial CL value is set to 0.1. The Pump_Error
curves are reported below:
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Figure 2.25: Pump_Error after the implementation of CL reduction

It is clear in the figure how at the 200th and the 600th iterations, the CL factor
was reduced and consequently, the oscillation frequency reduced with it until a
good value of CL=0.0083 was found allowing the algorithm to converge.

In this chapter, various methods exploiting equation 2.4 to efficiently solve the
Raman-coupled differential equations have been thoroughly explored, able to provide
accurate power profiles for the closed form EGN model. From the limitations of
the DPC and PSI methods to the introduction of the hybrid method with adaptive
parameters, a strong foundation has been established for solving these complex
systems. The hybrid method is promising in addressing the challenges faced,
particularly through its flexibility and reliability. The next chapter will present
a comprehensive performance analysis, comparing this method with conventional
approaches, and testing its applicability to UWB systems with non-uniform signal
power. This testing is crucial to establishing the working conditions where the
algorithm delivers optimal performance.
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Chapter 3

Performance Evaluation and
Comparison

Following the complete description of the final hybrid method developed throughout
this thesis, along with all its parameters and the values applied, this chapter focuses
on assessing its performance. For the proper use of the method, it is important to
understand its reliability across different scenarios, and its time-saving potential
in comparison to traditional power profile computation methods. The analysis
includes extensive testing under extreme signal and pump power conditions and
various ultra-wide band systems not previously explored during the method’s
development, along with a detailed comparison of speed, accuracy and convergence.
Additionally, an overview of the average time gain achieved by the hybrid method in
an optimization scenario, relative to the conventional approach, will be presented.

3.1 Stress Test
The hybrid method showed great potential in the efficient resolution of the coupled
Raman differential equations. It seems to be converging on accurate solutions in a
small number of iterations, this is demonstrated by table 2.8 which shows accurate
convergence within less than 200 iterations for the C+L system with 5 dBm of
uniform signal input power and varying pump adjustment factors. It is important
to understand if this performance will remain the same for more extensive cases of
signal and pump powers and eventually for wider UWB systems.

For this purpose, the hybrid method is used to solve C+L systems with adjust-
ment factors going from 1 to 0.1 with steps of 0.1. It should be noted that the
adjustment factor divides the original pump powers as shown in 2.2.2 to scale them
up or down, meaning that a low Adjustment factor indicates high pump powers.
Furthermore, the systems have uniform signal input powers ranging from -10 to
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+10 dBm with steps of 1 dBm. For each case, the number of iterations is reported
in the table below, where divergence and infinite oscillation are indicated with Div
and Osc respectively:

Psignal,in(dBm) \Adjustment 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
-10 55 187 155 430 181 840 Div Div Div Div
-9 58 179 150 298 171 1211 Div Div Div Div
-8 61 172 142 169 453 586 Div Div Div Div
-7 66 160 145 169 540 980 Div Div Div Div
-6 73 215 197 676 348 751 Div Div Div Div
-5 108 59 192 361 270 702 1631 Osc Div Div
-4 228 48 186 155 280 360 1507 Osc Div Div
-3 219 85 180 146 254 470 868 Div Div Div
-2 89 143 175 226 370 423 1457 Div Div Div
-1 64 203 169 189 159 304 421 Div Div Div
0 99 195 164 138 366 186 510 Div Div Div
1 123 190 159 131 221 291 1069 Osc Div Div
2 135 183 155 145 138 255 581 Osc Div Div
3 123 177 151 135 169 251 376 2329 Div Div
4 201 173 147 147 238 201 403 1467 Div Div
5 197 170 145 117 171 335 553 877 Div Div
6 194 168 143 115 159 177 320 Osc Div Div
7 192 167 142 113 180 154 581 1047 Div Div
8 191 167 143 116 185 270 368 777 Div Div
9 193 167 143 112 184 177 Osc 693 Div Div
10 233 159 145 116 186 170 Osc 445 Div Div

Table 3.1: Number of iterations until convergence for different signal and pump
powers for CH=5 and CL=0.1

Below is a surface plot visualizing the same data, in which a value of -100
is considered to signal divergence while a value of 0 is considered if oscillation
happens.
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Figure 3.1: Iterations until convergence for the hybrid method with CH=5,
CL=0.1, stepdBm,signal = 2, stepdBm,pump = 0.5 and factorsignal = 4 for various
signal and pump power

From this data it can be seen that the method is able to achieve convergence
for most cases of Adjustment > 0.2.
If a maximum total pump power of 3 Watts is considered, corresponding to
Adjustmentmin = 0.4, and signal input power is bounded between -5 and 10 dBm,
the hybrid method converges in all but 2 cases; namely the (Psignal,in, Adjustment)
couples (9 , 0.4) and (10 , 0.4) which can be considered extreme cases.
Furthermore, the average number of iterations taken by the method to achieve
convergence in the filtered case mentioned is 263. For reference, 263 iterations are
computed in less than two seconds using an Intel Core i7-1255U processor (1.7
GHz).

To search for better CH and CL parameters, the above test is repeated six times
for values of CH in [1 3 5] and CL in [0.1 0.05]. Six matrices, similar to the one
above, are obtained. The average number of iterations for convergence in each case,
along with the number of converged cases, is reported in the table below:
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CH CL = 0.1 CL = 0.05
1 395.6733 367.7152
3 313.6776 352.7417
5 321.5197 395.6340

Table 3.2: Average iterations for different CH and CL settings

CH CL = 0.1 CL = 0.05
1 150 151
3 152 151
5 152 153

Table 3.3: Number of converged cases for different CH and CL settings
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From the above tables, it can be understood that the values of the correction
factors CH and CL do not have a big effect on convergence as it is achieved for
almost the same number of cases across all values considered. Moreover, the pair
CH = 3, CL = 0.1 seem to achieve a slight gain in efficiency (through average
iteration number) with respect to the case CH = 5, CL = 0.1. Consequently it is
beneficial to switch to CH = 3 in the method parameters, which will be applied in
the following tests.

This study shows how the method is able to provide a solution for the Raman
coupled differential equations in most cases of a C+L system with uniform input
power. It also shows that the method does so in a relatively low average number of
iterations, completing the initial objective.

3.2 Comparison With Conventional Method
In this section, a comparison between the developed hybrid method and the
conventional method based on MATLAB’s bvp4c function is presented. The focus
will be on the speed of each method in different UWB systems, such as the C+L
one used in chapter 2, but also C+L+S and C+L+S+E systems. the relationship
between increasing bandwidth and the efficiency difference between the two methods
will be explored. Moreover, convergence will be compared, highlighting cases where
the hybrid method successfully converges in situations where the conventional
method fails

3.2.1 Speed
C+L systems with uniform signal input power

In the previous section, table 3.1 showed that the hybrid method takes around 260
iterations on average to converge for a C+L system. To see how much this method
improves over the conventional one a study similar to the one reported in table
3.1 is done, with reduced cases because, as preliminary results have already shown,
the conventional method is computationally expensive. The Adjustment values
considered are [1 0.7 0.4] while those of Psignal,in are [-5 0 5 10]. The conventional
bvp4c method is run three times for each case and the elapsed time is averaged
to reduce the impact of measurement noise. The same is done with the hybrid
method for comparison.
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The results are presented in the following tables:

Psignal,in (dBm) Adjustment = 1 Adjustment = 0.7 Adjustment = 0.4
-5 0.4388 2.7875 4.9895
0 0.7254 1.1965 2.9472
5 1.5989 0.5950 1.9007
10 1.5121 0.8363 osc

Table 3.4: Average time elapsed by the hybrid method for varying signal and
pump power

Psignal,in(dBm) Adjustment = 1 Adjustment = 0.7 Adjustment = 0.4
-5 11.8595 13.4503 17.2416
0 18.2212 26.9112 23.5033
5 13.4306 15.9686 24.7477
10 22.5177 16.5569 25.8477

Table 3.5: Average time elapsed by the conventional bvp4c method for varying
signal and pump power

The error between the 2 methods is reported below. The case where complex
numbers appear are due to the conventional mehtod not converging. This will be
further discussed in the convergence section 3.2.2.

Psignal,in (dBm) Adjustment = 1 Adjustment = 0.7 Adjustment = 0.4
-5 0.0884 0.0392 0.0188
0 0.0625 0.0144 -23.2393 + 13.6438i
5 0.0484 0.0386 0.8974
10 0.0472 0.0574 NA

Table 3.6: Error Matrix for Different Adjustment Factors and Signal Powers
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The amount of gain in time between the 2 methods is seen to be substantial.
To quantify it, the time gain is defined as:

TimeGain = Timeconventional

TimeHybrid

It is computed using all the data in tables 3.4 and 3.5. The following table is
obtained:

Psignal,in (dBm) Adjustment = 1 Adjustment = 0.7 Adjustment = 0.4
-5 27.03 4.83 3.46
0 25.12 22.49 7.97
5 8.40 26.84 13.02
10 14.89 19.80 NaN (osc)

Table 3.7: Time gain between the conventional and hybrid methods for varying
signal and pump power

The gain is substantial, it seems to get lower for increasing pump power (decreas-
ing Adjustment factors) and for lower signal input power. This can be explained
by the fact that the hybrid method would need to scale down the pumps in cases
of high pump power, loosing efficiency.

The values of table 3.7 are averaged for all the cases to obtain the average time
gain achieved by the hybrid method over all C+L cases considered. That value is :
15.80

C+L systems with non uniform signal input power

The developed method’s performance is now compared to the conventional one in
the case of more realistic C+L systems where the signal power is not uniform but
varying according to the following figure:
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Figure 3.2: Non-uniform signal input power C+L system

The varying signal input power illustrated above is applied to the same C+L
system used before. The pumps used are the same as the previous sections with
Adjustemnt = 1. The output of both methods is shown below, along with the time
elapsed averaged over five tries and the error:
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Figure 3.3: Hybrid method output for non-uniform signal input power C+L
system
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Figure 3.4: Conventional method output for non-uniform signal input power C+L
system
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The two figures look similar, in fact the error between the two is 0.0352 dBm,
an accepted one. More importantly, the average time for convergence of the hybrid
method is 0.910 seconds while the conventional one takes 23.307 seconds to converge,
representing an average time gain of approximately 25.

To further test this time gain, the experiment is repeated for different scenarios
of non uniform signal input power. The input powers shown in 3.2 are scaled by
a factor k where it takes values in [1 2 3] while the Adjustment factor is varied
between the values [1 0.7 0.4]. The average times taken by both methods after 3
runs of the 9 scenarios are reported below:

k Factor Adjustment = 1 Adjustment = 0.7 Adjustment = 0.4
1 0.5873 1.3039 4.9541
2 0.7754 1.0539 2.0868
3 1.0778 1.3084 2.3356

Table 3.8: Average timing of the hybrid method for non-uniformly powered C+L
systems

k Factor Adjustment = 1 Adjustment = 0.7 Adjustment = 0.4
1 30.1953 46.2053 48.8202
2 35.2815 40.0672 42.4700
3 25.4631 54.1620 39.7435

Table 3.9: Average timing of the conventional method for non-uniformly powered
C+L systems

The error between the 2 methods is reported below, where complex values
indicate the non convergence of the conventional "bvp4c" method. This will be
further studied in 3.2.2.

k Factor Adjustment = 1 Adjustment = 0.7 Adjustment = 0.4
1 0.0611 0.0304 -27.9443 + 13.6438i
2 0.0620 0.0364 -27.3306 + 13.6438i
3 0.0591 0.0395 -26.3177 + 13.6438i

Table 3.10: Error Matrix for non-uniformly powered C+L systems

Over all the scenarios, the hybrid method is able to outperform the conventional
one in non-uniform signal input power C+L systems with an overall average time
gain of 31.40
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C+L+S systems

At this stage, the performance of the method is compared for wider UWB systems,
namely ones with the added S band. This band takes the range of frequency
between 196 and 201 THz. Along with the C+L channels considered before, 38
channels are added in the range of the S band with a channel spacing of 125 GHz
and a symbol rate of 100 GBaud. The signal channels are powered in input in a
realistic non-uniform fashion as illustrated by the figure below.

Moreover the pumps are similar to the ones used before with the same power
scalable by the Adjustment factor, however their frequencies are shifted by 5 THz
to make room for the S band. The pump frequencies thus look like this: [215.56,
213.87, 211.72, 209.51, 205.55] THz.

Figure 3.5: Non-uniform signal input power C+L+S system

This system’s power profile throughout the span of the fibre is solved four times
with different boundary conditions. Namely by varying the Adjustment factor
between the values [1 0.5] and the k factor, introduced in 3.5, between [1 2]. The
time elapsed by both methods, averaged over 3 runs is reported below, along with
the error that will be discussed in the final section.
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k Factor Adjustment = 1 Adjustment = 0.5
1 0.6933 1.3664
2 0.9243 1.5358

Table 3.11: Timing of the hybrid method for non-uniformly powered C+L+S
systems

k Factor Adjustment = 1 Adjustment = 0.5
1 35.9251 52.1826
2 27.8826 48.9343

Table 3.12: Timing of the conventional method for non-uniformly powered C+L+S
systems

k Factor Adjustment = 1 Adjustment = 0.5
1 0.0603 0.4079
2 0.0482 0.0323

Table 3.13: Error Matrix for non-uniformly powered C+L+S systems

Consequently, the average time gain achieved over all runs of C+L+S systems,
is 38.009

Performance In The Main Software

The original purpose of the efficient calculation of the power profile is to eventually
use it to estimate the NLI noise and the GSNR over the link using the closed form
EGN model, allowing for optimisation of throughput, among other things. The
previous studies of this section 3.2.1, have shown the average time gain the hybrid
method was achieving over the conventional one in increasingly complex scenarios.
Here, an optimisation is done to get a practical estimation of the average time gain
achieved by the method. The optimisation is done on a 10 span, 1000 Km long
C+L+S+E system with 125 GHz channel spacing and 100 Gbaud symbol rate.
The cost function is one that maximises throughput over the entirety of the link.
Below is a table showing the amount of times the cost function was calculated
(loops) by the CFM using both methods along with the time elapsed accordingly.
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Table 3.14: Comparison of time elapsed by the optimisation using the conventional
and hybrid Methods

Method Number of Loops Time Elapsed (s)
Reference Method 835 192764
Hybrid Method 1736 14979

A small proportionality computation can be done to compare the two times.
Since each method performed a different amount of loops, the time gain is calculated
as follows :

TimeGain =
192764·1736

835
14979 = 27.8

.

Conclusions On The Efficiency

To conclude, the method for power profile computation developed throughout this
thesis, referred to as the hybrid method, achieves substantial time gain over the
bvp4c method of MATLAB in all of the possible cases. A summary of all the time
gains is reported below:

Scenario Average Time Gain
C+L Uniform 15.80

C+L Non-Uniform 31.40
C+L+S Non-Uniform 38.01

C+L+S+E Optimization 27.8

Table 3.15: Average Time Gain in Different Scenarios

It is thus concluded that the efficiency of the hybrid method increases for
increasing signal input power complexity and increasing bands. This is hypothesised
to be due to the fact that with increasing bands, the only thing different for the
developed method is the size of the matrices in equation 2.4. Whereas other methods
that try to solve the differential equations directly, would have an increasing number
of coupled equations which would be increasingly less efficient to solve. This makes
the hybrid method an even more important step forward towards the efficient power
profile computation in the context of ultra-wide band systems

Finally, an explanation of the reason why the hybrid method seems to be so much
faster than the bvp4c method is given. For solving the coupled Raman differential
equations, the conventional method relies on MATLAB’s bvp4c function, which
addresses the boundary value problem by solving two initial value problems, one
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forward and one backward from opposite ends of the fiber. The method iterates by
adjusting initial guesses until the solutions from both directions converge. According
to the solver’s output, the solution is reached after 148068 calls to the ODE function
and 494 calls to the boundary condition function.

Each iteration of the conventional method involves complex numerical calcu-
lations, which accumulate over a large number of iterations. In contrast, the
hybrid method developed in this work achieves the same results through efficient
matrix multiplications and requires only a few hundred iterations on average. This
significant efficiency difference arises from the hybrid method’s ability to reduce
the computational complexity per iteration, and number of iterations, thus offering
substantial time savings while maintaining accuracy.

3.2.2 Convergence
The efficiency study done in section 3.2.1 has already shown that both methods
converge for most of the systems presented. The error tables 3.6, 3.10 and 3.13
showed the maximum error between the power profiles computed by each of the
methods to be negligible in most cases indicating that both are accurate enough.
However, in some cases the error is a complex number. This indicates that one of
the methods did not converge.

Consequently, to compare the two methods in terms convergence, an example is
taken where the error is complex.

A case from table 3.10 is taken where k = 2 and Adjustment = 0.4. The error
was shown to be complex with high magnitude. In fact the power profile in output
of the conventional method is the following:
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Figure 3.6: Non-uniform signal input power C+L system with conventional
method

While the solution provided by the hybrid method is reported below:
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Figure 3.7: Non-uniform signal input power C+L system with hybrid method

It is immediately seen that the output of the conventional method is erroneous,
because of the dip in the power of one of the pumps. In fact this pump has a
complex profile inside the matrix P. This in turn affects the signals and the whole
reliability of this method. On the other hand the hybrid method provided a real
solution.

As seen in the different error tables, this scenario happens multiple times. In
all of which the hybrid method is able to provide real solutions while the complex
values arise in "bvp4c".
It is concluded that the hybrid method not only outperforms bvp4c in efficiency
but is also applicable to a wider range of systems.

Through extensive testing, it has been demonstrated that the method developed
in this work is significantly more efficient than the conventional approach previously
used. On average, it achieves a time gain factor of around 30, depending on the
specific scenario. Additionally, the hybrid method has shown robust convergence
across a wide variety of cases, even in situations where the conventional method
fails. This makes the developed approach superior in all critical aspects, particularly
in terms of efficiency and reliability.
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In this thesis, advanced technologies for modeling and optimizing Ultra-Wide Band
long-haul Raman-amplified coherent optical transmission systems were studied,
with the aim of facilitating future commercial implementation. Such systems are
critical for achieving higher throughput in optical links, addressing the increasing
demands of users and the complexity of modern applications. Specifically, the
thesis explored the Enhanced Gaussian Noise (EGN) model, a closed-form physical
layer model that efficiently estimates non-linear noise on optical links given the
power profile of signals. However, calculating this power profile, governed by non-
linear coupled differential equations, is computationally demanding. The primary
objective was the development of a more efficient, reliable, and adaptive method for
power profile calculation, leading to significant speedup of the closed-form model,
thus paving the way for real-time application in commercial systems.

During the course of this thesis, a detailed study of the coupled Raman differential
equations governing the variation of signal and pump powers across the fibers
was conducted. A new approach was taken in solving these equation that led
to the development of two novel methods: Dynamic Pump Calibration (DPC)
and Progressive Signal Injection (PSI). Both methods were based on the integral
form of the equations but followed different strategies to ensure convergence to
a solution. While both methods performed well, each faced specific limitations.
DPC struggled with highly dynamic parameters that were difficult to adapt to
every scenario, whereas PSI encountered accuracy issues, lacking control over
precision metrics. The core contribution of this thesis was the development of a
hybrid method that combined these two approaches, transitioning from PSI to
DPC in a serial manner, where PSI’s final solution is passed to DPC as an initial
guess. This integration allowed the hybrid method to retain the strengths of both
while overcoming their respective shortcomings. Through extensive testing, the
hybrid method demonstrated robustness by achieving convergence in all practical
scenarios, even in cases where conventional methods failed. Moreover, it proved
to be significantly more efficient with no loss in accuracy, delivering an average
time factor improvement of 30 compared to the existing method. Furthermore,
it has been shown that the efficiency of the developed method increases with
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the complexity and the bandwidth of the system. This advancement enabled
optimizations on 1000 km multi-band systems to be performed in a fraction of
the time required by conventional approaches. Such improvements will make it
possible to conduct complex optimizations on increasingly larger UWB systems
much faster, accelerating research in this field and driving the commercial viability
of these technologies.
Although the developed method has proven to be robust, there is still room for
improvement in future research. Enhancements could focus on better adaptability of
the parameters across a wider range of scenarios through the use of more advanced
algorithms. Additionally, optimizing these parameters could further improve both
efficiency and robustness. Finally, further testing should be conducted to evaluate
the method’s performance in systems with co-propagating pumps.

Ultimately, the method developed in this thesis paves the way for more efficient
resolutions of Raman differential equations. This advancement in computational
efficiency will significantly contribute to the research and deployment of UWB
systems, enabling complex optimizations across multiple bands, ones that were
previously hardly feasible due to the extended simulation times required. Finally,
beyond the field of optical communications, it is intriguing to wonder whether
these methods might find broader applications in the efficient resolution of general
coupled differential equations, potentially unlocking new possibilities in other areas
of science and engineering.
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