
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Software Implementation of Image
Processing Techniques for EV Socket Pose
Estimation with Neural Network Support

Supervisors
Prof. Marcello CHIABERGE

Dr. Marina MONDIN

Dr. Fereydoun DANESHGARAN

Candidate
Francesco MAULA

October 2024

Abstract

The increasing adoption of electric vehicles (EVs) highlights the growing need for
efficient and safe charging systems. A significant challenge in automating these
systems is the accurate detection and alignment of the charging socket, especially
in high-power environments where manual handling poses safety risks and reduces
operational efficiency. This thesis, developed at California State University Los
Angeles in collaboration with InnoTech System LLC, focuses on the CCS Type 1
charging socket, a widely adopted standard in North America, with the aim of
automating its detection and pose estimation.

The motivation for this work arises from the need to automate the charging process
to enhance both safety and efficiency. A pre-trained YOLOv8 neural network was
used to detect the socket and provide an initial estimate of its position, but further
refinement was required. Detecting both the position and orientation of the socket
is essential to ensure proper plug alignment, a critical aspect for fully automated
systems.

The main objective of this thesis is to develop a system capable of detecting not
only the position of the socket but also its orientation. The process begins with the
YOLOv8 neural network’s estimate, followed by a series of refinement steps using
OpenCV in Python for image processing. Testing under various environmental
conditions ensures robustness and reliability in real-world scenarios, where factors
such as lighting and occlusions may affect performance.

This thesis integrates machine learning with image processing to address these
challenges, presenting a reliable and adaptable solution for the automation of EV
charging systems. The research is structured across key chapters, including a review
of the state of the art, an in-depth discussion of the components used, a detailed
explanation of the detection and pose estimation methods, and a comprehensive
evaluation of the system’s performance through extensive testing.

i

Acknowledgements

After five years of study, it is now time to bid farewell to the Politecnico di Torino
with this final project. This journey has been filled with challenges, but also
abundant rewards, and I extend my deepest gratitude to everyone who supported
me along the way.

I would like to begin by reflecting upon the path that led to this moment. My
experience in Los Angeles was unforgettable. Although the culture and habits were
very different from what I was used to, after just a few weeks I started to feel at
home. For this, I am especially grateful to my American supervisors, Dr. Marina
Mondin and Dr. Fereydoun Daneshgaran, who offered me both professional and
personal support. I also want to express my gratitude to my friend, Taus Enrico,
who was an ideal companion throughout this journey. I am equally grateful to the
incredible people I met at California State University, who created such a positive
environment and provided all the resources I needed to complete my research.

Furthermore, I want to extend my heartfelt thanks to my Italian supervisor, Prof.
Marcello Chiaberge, for his invaluable support throughout this period. I am also
very grateful to my friends and colleagues, who remained with me during good and
tough times, offering constant help and encouragement.

Finally, I owe everything to my family, whose endless love and unwavering support
made this achievement possible. This thesis is not just the result of hard work, but
also the reflection of the immense support I received from so many along the way.

Thank you all.

“Life is beautiful”
To my family

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement and Objectives 4

1.3 Research Hypotheses . 4

1.4 Methodology Overview . 5

1.5 Thesis Structure . 5

2 State of the Art 7

2.1 Recent Developments . 7

2.2 Methodological Approaches . 9

3 Components and Technical Background 13

3.1 The Robotic Arm . 13

3.1.1 Reference Systems and Transformation Matrices 13

3.1.2 Main Features and Performances 15

iii

3.2 Stereo Camera . 16

3.2.1 Pinhole Camera Model . 16

3.2.2 Intrinsic and Extrinsic Camera Parameters 18

3.2.3 Stereoscopic Vision . 18

3.2.4 ZED Mini . 21

3.3 The GPU . 24

4 Socket Detection and Pose Estimation 25

4.1 Proposed Approach . 25

4.2 The Neural Network . 27

4.2.1 YOLOv8 . 27

4.2.2 The NN Inference . 28

4.3 OpenCV . 29

4.4 Image Processing . 30

4.4.1 Grayscale Conversion . 31

4.4.2 Median Filter . 32

4.4.3 Histogram Equalization . 33

4.4.4 Power-Law (Gamma) Transformation 36

4.4.5 Image Binarization . 37

4.4.6 Canny Edge Detection . 38

4.4.7 Contours Extraction . 41

4.5 Circle Fitting and Classification . 42

4.5.1 Least Squares Fitting . 43

4.5.2 Circle Classification . 45

4.6 Socket Pose Estimation . 48

4.6.1 PnP Algorithm . 48

iv

4.7 Parameter Tuning . 52

5 Test and Results 55

5.1 Circle detection . 55

5.2 Pose Estimation . 58

5.2.1 Position . 58

5.2.2 Orientation . 59

6 Conclusion 60

A Implemented Codes 62

Bibliography 70

v

List of Tables

2.1 Methods comparison, advantages and disadvantages 12

3.1 Features of ZED Mini Stereo Camera [8] 23

5.1 Position errors . 58

5.2 Orientation errors . 59

vi

List of Figures

1.1 Electric Vehicle (EV) Connector Types across the world 3

2.1 RocSys ROC-1 Autonomous Charging System 8

3.1 UFactory xArm 5-DoF Robotic Arm 14

3.2 UFactory xArm 5 Coordinate Systems 15

3.3 UFactory xArm 5 Workspace . 16

3.4 Pinhole camera model geometry . 17

3.5 Stereoscopic vision geometry . 19

3.6 Epipolar geometry . 20

3.7 ZED Mini Stereo Camera . 21

3.8 Functional ZED SDK Diagram [8] 23

3.9 Nvidia Jetson Nano . 24

4.1 Proposed approach . 26

4.2 Input and output of the detection step with the NN 28

4.3 Generated output of the Neural Network 29

4.4 Implemented image processing steps 31

4.5 Grayscale and median filtered images 32

4.6 Histogram equalization . 34

vii

4.7 Median filtered image and corresponding histogram 35

4.8 Equalized histogram image and corresponding histogram 35

4.9 Gamma transformation characteristic 36

4.10 Gamma transformed image . 37

4.11 Binarized image . 38

4.12 Example of hysteresis thresholding in Canny algorithm 40

4.13 Image after Canny algorithm . 40

4.14 CCS Type 1 Socket, labeled circles 42

4.15 Input and output of Least Squares (LS) Ellipse Fitting 43

4.16 Input and output of the classification stage 46

4.17 Image with fitted circles and sub-rectangles 47

4.18 Images with extracted ellipses . 47

4.19 Perspective-n-Point (PnP) algorithm visual scheme 48

4.20 CCS Local Coordinate System and Centers 50

4.21 Schematic representation of the PnP implementation 51

4.22 Parameter tuning considering at least 4 detected points 53

4.23 Parameter tuning considering at least 6 detected points 53

5.1 Number of detected centers for the validation set of images 56

5.2 Number of detected centers in an adequately illuminated environment 57

5.3 Percentage of detection for each circle 57

viii

Acronyms

AI Artificial Intelligence

CCS Combined Charging System

CDF Cumulative Distribution Function

CNN Convolutional Neural Network

CTMA Cluster Template Matching Algorithm

DLT Direct Linear Transform

DoF Degrees of Freedom

EPnP Efficient Perspective-n-Point

EV Electric Vehicle

LED Light Emitting Diode

LS Least Squares

NN Neural Network

PnP Perspective-n-Point

SDK Software Development Kit

TCP Tool Center Point

ix

Chapter 1

Introduction

1.1 Background and Motivation

The advancement of autonomous technologies has significantly impacted various
industries, leading to the development of automated systems for tasks that require
precision, efficiency, and safety. One such area of development is the automation
of charging systems for electric vehicles (EVs). The motivation behind this thesis
project addresses the growing demand for electric mobility solutions and the need
for an efficient and reliable charging infrastructure.

Automated charging systems are crucial for the future of electric mobility. As the
adoption of electric vehicles continues to increase, there is a corresponding need
for an automatic charging infrastructure. Manual handling of charging connectors
poses risks to human safety, particularly in environments where high-power charging
is required. By automating the charging process, these risks can be mitigated,
ensuring safer and more efficient operation.

Although the automotive sector is a primary focus, the need for automated charging
systems extends beyond electric vehicles for personal use. Heavy industrial environ-
ments, such as ports, also face significant challenges due to the physical demands
of handling large and heavy cables for high-current charging. In these settings,
automated charging solutions are not only a matter of convenience but are essential
for worker safety, as cables required to support large-scale machinery and logistics
vehicles can be cumbersome and difficult to manage manually. Similar needs arise
in the logistics and infrastructure sectors, where efficient charging systems are

1

Introduction

critical to maintaining continuous operations and minimizing downtime.

Moreover, current solutions for automated charging systems are often costly, making
their widespread adoption challenging for both the automotive and industrial sectors.
The motivation behind this research is to develop a more affordable automated
charging system while maintaining the reliability and performance expected from
high-quality solutions. By reducing the cost of these systems, the research aims
to make automated charging technology more accessible to a broader range of
applications, including fleet management, public charging stations, and heavy-duty
industrial operations.

A key component of an automated charging system is the accurate detection and
positioning of the charging socket. This process involves using advanced computer
vision techniques and machine learning algorithms to identify the location and
orientation of the socket. The detection system typically uses cameras and sensors
to capture images and depth information of the charging port area of the vehicle.

Recent advances in neural networks, such as the YOLOv8 model, have enabled
real-time, highly accurate detection of objects, including charging sockets. These
models can process visual data to locate the socket with high precision, even
in varying lighting conditions and complex environments. Using depth sensors
improves the ability of the system to understand the position and shape of objects,
which is important for accurately positioning and aligning the plug.

Automating the connection process eliminates direct human contact with the
charging interface, significantly reducing the risks associated with manual handling.
Furthermore, automated systems can be designed to handle the mechanical stresses
and demands of repeated high-power charging cycles more effectively than manual
operations.

In addition to safety, automated charging systems offer improved efficiency and
convenience. They can operate continuously, and their integration with smart
grid technologies can optimize energy use. This is particularly important for fleet
operations and public charging infrastructure, where high throughput and reliability
are critical.

2

Introduction

CCS Type 1 Plug

The project focuses on Electric Vehicle (EV) sockets. As shown in Figure 1.1,
the type of EV charging connector varies significantly across different regions and
models. One of the most widely adopted standards for EV charging, particularly
in North America, is the CSS Type 1 plug. This plug combines a standard AC
connector with a high-speed DC connector, allowing both types of charging to be
accessed through a single port.

The Type 1 connector (SAE J1772) has five pins and operates with single-phase AC
from the mains for charging EV. The Combined Charging System (CCS) connector
builds on the J1772 charging inlet by adding two additional pins below it. This
combination of a Type 1 connector with high-speed charging pins gives CCS its
name and supports high-power charging (up to 350 kW), making it suitable for a
variety of EVs and charging scenarios. In North America, almost every automaker,
with the exception of Tesla, has adopted the CCS standard.

In the context of automated charging systems, the CSS Type 1 plug presents
unique challenges and opportunities. Its design requires precise detection strategies,
alignment, and a secure connection to ensure efficient power transfer and safety.

Focusing on the accurate detection of the pose of CSS Type 1 socket, this research
aims to develop a robust and versatile automated charging solution capable of
handling one of the most common standards in the EV industry.

Figure 1.1: EV Connector Types across the world

3

Introduction

1.2 Problem Statement and Objectives

The primary goal of this project is to develop a system that accurately detects
the position and orientation of CSS Type 1 charging socket. Initial detection of
the plug’s position is accomplished using a pre-trained neural network with stereo
camera images. The objective is to refine this estimate using additional camera
data to accurately determine the position and orientation of the socket. To achieve
this goal, the following objectives are identified:

• Initial Detection: Utilize the pre-trained neural network and stereo camera
images to detect the plug and provide an initial estimate of the position of
the center.

• Orientation Retrieval: Develop and implement algorithms to further refine
the position of the socket and to estimate precisely the orientation, using the
stereo camera data.

• Integration with 5 DoF Robot: Adapt the system for a 5 Degrees of Freedom
robotic arm.

• Validation and Testing: Test the system in various conditions to ensure robust
performance, validating the accuracy of both the position and orientation
estimations facilitated by the stereo camera setup.

1.3 Research Hypotheses

In developing this system, the following research hypotheses are formulated to
guide the project:

• Hypothesis 1 : The neural network, using stereo camera images, provides a
valid and reliable initial detection of the socket, which serves as a basis for
subsequent position refinement and orientation determination.

• Hypothesis 2 : By aligning the plug in the roll orientation relative to the
5 Degrees of Freedom (DoF) robotic arm, one degree of freedom can be
effectively excluded. This alignment simplifies movement operations without
compromising the accuracy of position and orientation determination for EV
socket interaction.

4

Introduction

1.4 Methodology Overview

This research employs a systematic approach to achieve precise detection and pose
estimation of the CCS Type 1 charging socket. The methodology integrates both
hardware and software components to ensure robustness and precision. Key aspects
include:

• System Integration: Utilizing a robotic arm for automated plug alignment.

• Initial Detection: Using a pre-trained neural network to provide initial position
estimates from stereo camera images.

• 3D Perception: Using the ZED Mini stereo camera to capture depth informa-
tion essential for pose estimation.

• Image Processing: Applying techniques to enhance image quality for accurate
feature extraction.

• Feature Detection and Classification: Detecting and classifying features to
refine initial estimates.

• Pose Estimation: Employing a pose estimation algorithm for precise pose
determination.

• Optimization and Validation: Tuning parameters and validating performance
through extensive testing.

This methodology ensures a comprehensive and effective solution for detecting and
positioning the CCS Type 1 plug.

1.5 Thesis Structure

The thesis is organized as follows:

• Chapter 2: State of the Art
This chapter reviews recent developments in the field of automatic EV charging
robots and provides a detailed examination of the methodologies used to detect
and retrieve poses of objects, focusing on current image processing techniques.

5

Introduction

• Chapter 3: Components and Technical Background
This chapter introduces the main components used in the study, including the
robotic arm and the stereo camera. It discusses their technical specifications,
features, and theoretical foundations relevant to their use in the project.

• Chapter 4: Socket Detection and Pose Estimation
This chapter details the proposed approach for socket detection and pose esti-
mation. Covers the neural network architecture, image processing techniques,
and algorithms used for estimating the socket’s position and orientation.

• Chapter 5: Test and Results
This chapter presents the results of the tests conducted to validate the system.
It includes a detailed analysis of the system’s performance in terms of circle
detection, and the accuracy of the position and orientation determinations.

• Chapter 6: Conclusion
The final chapter summarizes the findings of the research, discusses the
implications of the results, and suggests directions for future work.

6

Chapter 2

State of the Art

The first part of this chapter presents a general overview of recent developments in
automatic EV charging robots. The second part offers a more in-depth examination
of the methodologies used for detecting and retrieving object poses, focusing on
the current state of the art in image processing techniques.

2.1 Recent Developments

This section provides a general review of recent developments in automatic charging
robots, highlighting their main features.

Volkswagen Mobile Charging Robot

One of the initial developments identified in the research is the Volkswagen Group
mobile charging robot. The primary function of this prototype is to autonomously
charge vehicles in confined parking areas, such as underground car parks. Acti-
vated via an app or Car-to-X communication, the charging robot operates entirely
autonomously. Navigates to the vehicle, communicates with it, opens the charging
socket flap, connects the plug, and later disconnects it, all without human inter-
vention. To charge multiple vehicles simultaneously, the robot transports a mobile
energy storage unit to the vehicle, connects it, and uses it to charge the vehicle’s
battery. The storage unit remains with the vehicle throughout the charging process,
while the robot moves on to charge other vehicles. After charging is complete,

7

State of the Art

the robot retrieves the energy storage unit and returns it to the central charging
station [1].

Siemens Autonomous Charging System

The Siemens Autonomous Charging System is an advanced solution for automatic
charging of EVs with standardized CCS connectors. Presented at IAA Mobility
in Munich, this system uses a robot to connect to a vehicle charging port in a
minute. The robot moves on all spatial axes to connect to the vehicle charging
port. The system provides up to 300 kW of power, with plans to achieve 1 MW for
heavy-load transport vehicles. Artificial intelligence and optical sensors determine
the precise position and orientation of the charging port, even in adverse weather
conditions. This technology is suitable for autonomous vehicles, standard EVs, and
heavy-load transport vehicles, handling variations in vehicle types, port placements,
and parking positions. A prototype in close production has been tested under real
conditions [2].

Rocsys Autonomous Charging System

Figure 2.1: RocSys ROC-1 Autonomous Charging System

A commercially available product is the Rocsys Autonomous Charging System,
which was showcased at the Advanced Clean Transportation Expo (ACT) in Las
Vegas in May 2024. The ROC-1 robot, shown in Figure 2.1, automates the entire

8

State of the Art

process of connecting the charging connector to the electric vehicle. Communicates
with the vehicle throughout the docking process, from the initial connection to
the end of the charge cycle. Rocsys’ hands-free charging solutions use Artificial
Intelligence (AI)-based computer vision, patented soft robotics, and remote ser-
vices. The advanced vision system captures 3D information using a single camera,
enabling the robot to navigate the plug to the socket with precision. Deep-learning
algorithms ensure functionality in various weather conditions. Integrated LED
lighting allows for continuous operation. In addition, soft robotics technology
enables safe plug connection in demanding environments, supporting ongoing cus-
tomer activities. Robotics can handle sudden shocks, ensuring reliable performance
without interrupting customer operations [3].

2.2 Methodological Approaches

The aim of this section is to provide a comprehensive overview of the methodologies,
algorithms, and technologies developed and utilized to accurately detect and
determine the pose of the sockets.

Since one of the requirements of the project was the use of a stereo camera to detect
and estimate the pose of the electrical socket, one of the first recent implementations
analyzed was the one presented by Tadic [4]. In the project, a new approach for
automatic charging socket detection using a ZED 2i depth sensor was proposed.
Moreover, some common image processing techniques were used. The proposed
algorithm utilizes both RGB and depth images captured by the ZED 2i depth
sensor. The process involves the following steps:

1. Preprocessing: Converts the image to grayscale and applies the intensity
transformation using the gamma function and contrast stretching to enhance
the image.

2. Noise Reduction: Applies filtering to remove noise.

3. Morphological Operations: Performs a series of morphological operations to
obtain a binary mask of the socket area and determine the center coordinates.

4. Socket Detection: Uses logical operations to combine the binary mask with
the thresholded and binarized RGB images to detect the socket region.

9

State of the Art

5. Depth Map Analysis: Extracts the socket area from the original depth map
using logical operations.

6. Pose Estimation: Determines the tilt angles of the socket in the XY, XZ, and
YZ planes using the depth information and binary mask.

Another recent development in this area is presented by Pan et al. [5]. Their
project involves the use of a 6 DoF robotic arm and a single lens camera, with a
particularly interesting strategy. The proposed technique is characterized by the
following steps:

1. Recognition: Uses a Convolutional Neural Network (CNN) to identify the
charging port. The CNN model is trained with images of charging ports under
various lighting conditions to achieve high recognition accuracy.

2. Location: Employs a pose measurement algorithm based on circle features.
This method involves preprocessing the image for brightness adjustment and
denoising, followed by segmentation, edge detection, and ellipse fitting to
determine the precise pose of the charging port.

Quan et al. [6] proposed a different method divided into two main stages:

1. Rough Positioning: Uses Hough circle and Hough line algorithms to locate the
charging port by identifying circular and linear features. This stage provides
an approximate position of the charging port.

2. Precise Positioning: Uses the Canny operator to extract contour information
from both the original and gradient images. The contours are fitted into ellipses
using the Quadratic Curve Standardization (QCS) method. The Perspective-
n-Point (PnP) algorithm is then employed to determine the exact position of
the charging port.

Moreover, Quan et al. [7] proposed a furher method for recognizing and localizing
an EV charging port based on a Cluster Template Matching Algorithm (CTMA)
and divided into two phases:

1. Search Phase: In the search phase, images are collected, converted to grayscale,
and undergo bilateral filtering. Contours are detected using the Canny algo-
rithm and smaller contours are eliminated. The feature circle algorithm fits

10

State of the Art

the remaining contours to ellipses, and irrelevant ellipses are discarded. Once
six or more feature points are identified, their pixel coordinates are converted
to a position matrix, and the Efficient Perspective-n-Point (EPnP) algorithm
calculates the pose of the socket relative to the camera.

2. Aiming Phase: In the aiming phase, images are taken in front of the charging
port and templates are created using feature and gradient extraction software.
Bilateral filtering is applied to these images, and contours are extracted with
the Canny operator. The CTMA matches the feature points by evaluating
the contour information, reducing the matching time, and improving the
robustness. Finally, the EPnP algorithm refines the pose of the socket, guiding
the robot to complete the plug-in accurately.

Table 2.1 groups the principal characteristics of each analyzed method, highlighting
their main advantages and disadvantages.

Methods Advantages Disadvantages
Tadic [4]: image
processing techniques
from a stereo camera.

High detection accuracy
(94%). Robust to noise.

Sensitive to inade-
quate lighting.

Pan et al. [5]: CNN
for socket recognition
followed by image pro-
cessing and ellipse fit-
ting for pose estima-
tion.

High recognition accuracy
(98.9%). Precise location
(position error within 1.4
mm, angle error within
1.6°).

Requires complex pre-
processing and precise
calibration.

Quan et al. [6]: Hough
circle algorithm fol-
lowed by precise con-
tour extraction and fit-
ting.

High recognition accuracy
(97.9% for rough position-
ing, 94.8% for the entire sys-
tem). Precise location (dis-
placement error: 0.60 mm,
0.83 mm, 1.23 mm; angular
errors: 1.19°, 0.97°, 0.50°).
Robust in various environ-
ments.

Requires precise cam-
era and hand-eye cali-
bration. Sensitivity to
strong light conditions.

Continue on the next page

11

State of the Art

Methods Advantages Disadvantages
Quan et al. [7]: Im-
age processing with
contour extraction,
CTMA and EPnP
algorithm.

High efficiency and accu-
racy. Effective in various
light and environmental con-
ditions. High success rate
(95%).

Multi-step process
with sophisticated pre-
processing. Sensitivity
to extreme lighting
conditions.

Table 2.1: Methods comparison, advantages and disadvantages

12

Chapter 3

Components and Technical
Background

In this chapter, a detailed overview of the main components used in the research
is provided, specifically focusing on the robot and the stereo camera system. The
theoretical principles underlying each component are also introduced to provide a
comprehensive understanding of their functionalities and applications.

3.1 The Robotic Arm

For the project, the UFactory xArm 5 robotic arm was utilized. The robot, shown in
Figure 3.1, is an anthropomorphic arm of 5 DoF from Shenzen UFactory Company.

The following sections provide an introduction to the main theoretical concepts in
robotics and a discussion of the key features of the UFactory robotic arm used in
this project.

3.1.1 Reference Systems and Transformation Matrices

Reference systems and transformation matrices are fundamental concepts in robotics.
A reference system, or coordinate frame, provides a structured way to define the
position and orientation of objects in space. In robotics, multiple reference frames
are often used, such as the base frame, joint frames, and the end-effector frame.

13

Components and Technical Background

Figure 3.1: UFactory xArm 5-DoF Robotic Arm

Transformation matrices are mathematical tools that are used to convert coordinates
from one reference frame to another. These matrices encapsulate both rotation and
translation information, allowing for seamless transitions between different frames
of reference.

A typical transformation matrix is a homogeneous 4x4 matrix, which includes
a 3x3 rotation matrix R and a translation vector t = [tx, ty, tz]T , as shown in
Equation 3.1.

T =
C
R t
0 1

D
=

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (3.1)

The transformation matrix T can be used to relate the coordinates of a point P in
one frame to its coordinates in another frame. If PA represents the coordinates of
the point in the frame A and PB represents the coordinates in the frame B, the
relationship can be expressed as shown in Equation 3.2.

PB = TA→BPA (3.2)

Here, PA and PB are expressed in homogeneous coordinates, an extension of
Cartesian coordinates that enables more convenient mathematical manipulations
of transformations. A point in a 3D space with Cartesian coordinates (x, y, z) can
be represented in homogeneous coordinates as (x, y, z, 1).

Euler angles are a method to describe the orientation of a rigid body with respect
to a fixed coordinate system. They consist of three angles, typically called roll

14

Components and Technical Background

(ϕ), pitch (θ), and yaw (ψ). These angles represent rotations on the axes of the
coordinate system and can be used to construct the rotation matrix R, as shown
in Equation 3.3. Rx(ϕ), Ry(θ), and Rz(ψ) are the rotation matrices around the x,
y, and z axes, respectively.

R = Rz(ψ)Ry(θ)Rx(ϕ) (3.3)

The UFactory xArm 5 has two main coordinate systems, as shown in Figure 3.2:

• A: Base Coordinate System, based on the mounting base of the robotic arm.

• B: Tool Coordinate System, which consists of the Tool Center Point (TCP)
and coordinate orientation.

Moreover, the user can define additional reference systems, called user coordinate
systems (C).

Figure 3.2: UFactory xArm 5 Coordinate Systems

3.1.2 Main Features and Performances

The UF xArm 5 is made up of five rotational joints, each of which allows a single
degree of motion. An index of robot performance is the workspace, which is the
region described by the origin of the end-effector frame when all the manipulator
joints execute all possible motions. Figure 3.3 reports the robot workspace in terms
of side view and top view.

15

Components and Technical Background

(a) Side view (b) Top view

Figure 3.3: UFactory xArm 5 Workspace

Another significant performance metric for robots is repeatability, which measures
the manipulator’s ability to return to a previously reached position. It relies on the
mechanical structure’s characteristics, the resolution of transducers, and the control
strategy implemented by the robot’s software. The UF xArm 5 has a repeatability
of ±0.1 mm, indicating its ability to reliably return to previously reached positions.

3.2 Stereo Camera

A stereo camera is a type of camera constituted by two or more lenses. In the project,
the ZED Mini camera of Stereolabs has been used. It is equipped with two lenses.
The camera configuration allows it to simulate human binocular vision, giving it
the ability to capture three-dimensional images. In the following paragraph, a more
in-depth study of the camera model and stereo photography will be conducted.

3.2.1 Pinhole Camera Model

The pinhole camera model is characterized by equations which describe the forma-
tion of an image through the projection of 3D points onto the image plane. The
geometry of the model consists of the following elements:

• The center of projection C, also known as the optical center, where the origin

16

Components and Technical Background

of a Euclidean coordinate system is defined.

• The line from the camera center perpendicular to the image plane, called the
principal axis or principal ray. The Z axis of the coordinate system is parallel
to this line.

• The plane Z = f , known as the image plane or the optical plane.

• The plane passing through the center of the camera parallel to the image
plane, known as the principal plane.

• The point of intersection between the principal axis and the image plane,
called the principal point.

Figure 3.4: Pinhole camera model geometry

As depicted in Figure 3.4, using triangle proportions, a point in space with coor-
dinates [X, Y, Z]T is mapped onto the image plane as [fX

Z
, fY

Z
, f]T . The central

projection can be expressed as a linear mapping between the world homogeneous
coordinates and the image ones, using matrix multiplication, as shown in Equation
3.4. This means that in the 2D coordinate system placed in the image plane with
origin at p, the point x = fX

Z
and y = fY

Z
.

fX

fY

Z

 =

f 0 0 0
0 f 0 0
0 0 1 0

Xcam

Ycam

Zcam

1

 (3.4)

17

Components and Technical Background

3.2.2 Intrinsic and Extrinsic Camera Parameters

In the pinhole model, the optical center in the image plane is assumed to be at
(0,0). In reality, the camera has a different principal point (cx, cy) which differs
from the point p. Moreover, the focal lengths (fx, fy) are defined in terms of pixel
dimensions for the x-axis and the y-axis, respectively. These characteristics are
included in the intrinsic camera parameters and define the intrinsic camera
matrix, also called the calibration matrix. Thus, Equation 3.4 is modified with the
new parameters to obtain Equation 3.5, where K represents the calibration matrix.

fxX + Zcx

fyY + Zcy

Z

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0

Xcam

Ycam

Zcam

1

 = K

Xcam

Ycam

Zcam

1

 (3.5)

The previous equations are referred to as the camera coordinate system. The
extrinsic (or external) parameters relate the world coordinate system to the
camera coordinate system. This relation is represented by the extrinsic camera
matrix. It consists of a matrix 3 × 4 formed by combining a 3 × 3 rotation matrix
R and a 3 × 1 translation vector t. This matrix transforms points from world
coordinates to camera coordinates. Let Xw = [Xw, Yw, Zw,1]T be the coordinates
of the point in the world coordinates, Xcam is given by Equation 3.6.

Xcam = [R|t]Xw =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

Xw (3.6)

3.2.3 Stereoscopic Vision

Stereo vision allows to estimate the depth of a point object from the camera using
two cameras. It replies the 3D perception of the human vision, which is based on the
concept of triangulation of rays from multiple viewpoints. Firstly, it is important
to analyze the geometrical components of the system. In order to simplify the
explanation and the calculation, a parallel stereo system is considered. This means
that the two cameras have their optical axis aligned horizontally, as in human
vision.

18

Components and Technical Background

Figure 3.5: Stereoscopic vision geometry

As shown in Figure 3.5, the distance between the optical centers O1 and O2 of
the left and right cameras is called the baseline b. The perception of depth is
based on the concept of disparity, which is the difference in image location of the
same 3D point when projected under perspective to two different cameras. Since a
parallel stereo system is considered, the two images differ only in the x coordinates
of their respective image plane. Consequently, the disparity d can be expressed as
d = x2 − x1, where x1 and x2 are the coordinates of the point considered in the
left and right images, respectively.

Using the proportion of triangles, it is possible to construct the system of equation
3.7.

X : x1 = (Z − f) : f
(b−X) : x2 = (Z − f) : f

(3.7)

Solving the system by isolating the unknown depth Z, the result obtained is shown
in Equation 3.8.

Z = f · b
x2 − x1

= f · b
d

(3.8)

19

Components and Technical Background

The method of determining depth from disparity is called triangulation. The focal
length f and the baseline b are typically obtained from the stereo camera datasheet
or through the camera calibration process. The objective of triangulation is to
establish correspondences between points in the left and right images to compute
the disparity.

Figure 3.6: Epipolar geometry

The correspondence problem relies on the principles of epipolar geometry. In
Figure 3.6, the two camera centers O1 and O2, along with a 3D point of interest
P , define a plane known as the epipolar plane. Let p and p′ be the corresponding
points of P in the left and right images, respectively. The points e and e′, where
the baseline O1O2 intersects the image planes of the left and right cameras, are
termed epipoles. The intersection of the epipolar plane with the image plane defines
the epipolar lines. For instance, the line formed by p and e represents an epipolar
line for the left image.

Given p as the observation of the point P in 3D world coordinates, the corresponding
observation p′ in the right camera should lie on the epipolar line. This imposes a
constraint on the possible locations of p′ in the second image. Assuming calibrated
cameras (i.e., known intrinsic and extrinsic parameters), the concept of epipolar
lines facilitates establishing a relationship between p and p′.

The epipolar geometry is simplified when the image planes of the two cameras
coincide. In such cases, the epipolar lines are parallel to the baseline O1O2, allowing
the determination of the corresponding points by scanning along horizontal lines
(epipolar constraint).

20

Components and Technical Background

In scenarios involving non-parallel systems, image rectification transforms images to
share a common image plane, simplifying the correspondence problem by analyzing
only horizontal lines.

A fundamental algorithm for finding the corresponding pixels is the Block Matching
algorithm. It involves comparing a small window around a point in the left image
with multiple small windows along the same horizontal line in the second image
(assuming rectified images). For each pair of windows, a loss function is computed.
The point (x̄, y) in the second image with the minimum loss is considered the best
match for the point (x, y) in the first image. Consequently, the disparity value
at the coordinate (x, y) is calculated as d(x, y) = x̄ − x. The Sum of Absolute
Differences (SAD) is a commonly used loss function, defined as:

SAD(WL,WR) =
NØ

i=1

MØ
j=1

---WL
ij −WR

ij

--- (3.9)

Another useful function is the Sum of Squared Differences (SSD), defined as:

SSD(WL,WR) =
NØ

i=1

MØ
j=1

(WL
ij −WR

ij)2 (3.10)

Generally, SAD is preferred over SSD due to its speed and robustness to noise and
outliers.

3.2.4 ZED Mini

Figure 3.7: ZED Mini Stereo Camera

For the project, the ZED Mini Stereo Camera (Figure 3.7) from Stereolabs has
been used. The principal property of the ZED Mini camera lies in its ability to
capture high-quality stereoscopic 3D images and videos. This camera utilizes two
lenses, allowing for depth perception and creating immersive visual experiences. Its
compact size and versatility make it suitable for various applications such as virtual

21

Components and Technical Background

reality, augmented reality, 3D scanning, and robotics. Furthermore, the ZED Mini
camera offers real-time depth-sensing and spatial mapping capabilities, making it
a valuable tool for developers and researchers in the field of computer vision and
spatial understanding. The technical specifications are reported in Table 3.1.

An important aspect of Stereolabs products is the ZED Software Development Kit
(SDK), whose functional diagram is shown in Figure 3.8. As indicated in Table 3.1,
the ZED SDK leverages the computational power of a GPU to perform complex
tasks in real-time. For this project, an Nvidia Jetson Nano GPU has been utilized,
and the next section will provide more information about this processing unit.
The SDK is responsible for depth perception, rectifying the images from the two
cameras, and computing the disparity to generate the depth map in real time. In
addition, the software includes comprehensive APIs with support for both C++
and Python, which are useful for accessing and manipulating camera data, as well
as retrieving images, videos, and depth maps.

As an example and for documentation purposes, the following Python code demon-
strates how to retrieve all intrinsic parameters of the left camera using the SDK
API:

1 import pyzed .sl as sl
2 ...
3 # Create a ZED camera object
4 cam = sl. Camera ()
5 ...
6 # Retrieving left camera parameters
7 intrinsic = cam. get_camera_information (). camera_configuration .
8 calibration_parameters . left_cam
9 fx = intrinsic .fx

10 fy = intrinsic .fy
11 cx = intrinsic .cx
12 cy = intrinsic .cy
13 k1 , k2 , p1 , p2 , k3 = intrinsic . disto

The cam object represents the camera from which it is possible to manipulate and
retrieve all the information of the ZED Mini. fx, fy, cx, cy are the intrinsic
parameters, as explained in the previous section. k1, k2, p1, p2, k3 are the
distortion coefficients, which are usually zero because the SDK provides undistorted
images directly to the user. This code is used in the project because these parameters
are essential for one of the main steps to retrieve the socket pose.

22

Components and Technical Background

Figure 3.8: Functional ZED SDK Diagram [8]

Table 3.1: Features of ZED Mini Stereo Camera [8]

Features ZED Mini
Size and weight Dimensions: 124.5 × 30.5 × 26.5 mm

Weight: 62.9 g
Working tempera-
ture

0◦C to +45◦C

Connectivity USB 3.0 Type-C port (5 V/380 mA)
Lenses Field of View: Max. 90◦ (H) × 60◦ (V) × 100◦ (D)

Focal length: 2.8 mm
f/2.0 aperture

Resolutions Side by Side
2K: 2 × (2208 × 1242) @ 15fps
HD1080: 2 × (1920 × 1080) @ 30fps
HD720: 2 × (1280 × 720) @ 60fps
VGA: 2 × (672 × 376) @ 100fps

Depth Sensing Baseline: 63 mm
Depth Range: 0.10 m – 15 m
Depth Map Resolution: Native Video Resolution
Depth Accuracy: < 1.5% up to 3 m, < 7% up to 15 m

Motion Motion Sensors: Gyroscope, Accelerometer
Technology: Visual-inertial stereo SLAM

SDK Requirements Dual-core 2.3 GHz or faster
Minimum 4GB RAM Memory
Nvidia GPU with Compute Capability ≥ 3.0

23

Components and Technical Background

3.3 The GPU

A Graphics Processing Unit (GPU) is a specialized electronic circuit designed to
accelerate the processing of images and complex calculations, particularly those
involving parallel processing. It is widely used in applications such as gaming,
artificial intelligence, and real-time data processing due to its high computational
power and efficiency.

For this project, a Nvidia Jetson Nano (Figure 3.9) was utilized. It is a com-
pact and powerful device specifically designed for edge AI applications. Its main
characteristics [9] include the following:

• CUDA Cores: 128-core Maxwell architecture, providing substantial parallel
processing capabilities.

• Performance: Capable of delivering up to 472 GFLOPs of computational
power, making it suitable for AI and deep learning tasks.

• Memory: 4 GB of LPDDR4 memory, ensuring smooth handling of large
datasets and complex models.

• Connectivity: Includes multiple interfaces such as USB 3.0, HDMI, and Gigabit
Ethernet, allowing for versatile connectivity options.

• Power Efficiency: Designed to operate with a power consumption of as low as
5 to 10 watts, making it energy-efficient for embedded systems.

Figure 3.9: Nvidia Jetson Nano

24

Chapter 4

Socket Detection and Pose
Estimation

4.1 Proposed Approach

The proposed approach for socket detection and pose estimation utilizes several
techniques analyzed in the state of the art. Figure 4.1 summarizes all the steps.
The inputs to the proposed solution are the darker blocks in the scheme: the left
image, the depth map, and the calibration parameters, all retrieved from the ZED
Mini Stereo Camera.

The approach starts with utilizing the existing neural network for initial detection,
specifically the YOLOv8 model, known for its strong performance in real-time
object detection and segmentation tasks. Following initial detection, several image
processing techniques are applied to refine the results, including grayscale conversion,
median filtering for noise reduction, histogram equalization, and power law (gamma)
transformation to enhance image contrast [4]. Subsequent steps involve image
binarization and edge detection using the Canny algorithm, facilitating contour
extraction. Contour extraction is crucial for the next phase, where least-squares
fitting identifies elliptical shapes within the contours. This step is essential for
accurately classifying and fitting circles. Once identified, socket pose estimation is
performed using the Perspective-n-Point (PnP) algorithm, calculating the 3D pose
of the socket based on the 2D coordinates of the detected circles. The following
sections will provide a detailed explanation of each step.

25

Socket Detection and Pose Estimation

Figure 4.1: Proposed approach

26

Socket Detection and Pose Estimation

4.2 The Neural Network

The first step of the detection strategy is implemented using a Neural Network (NN).
The implementation and training of the NN has already been done, as explained in
section 1.2. However, for completeness, a general explanation of the NN used and
its generated output will be provided in this section.

4.2.1 YOLOv8

YOLO (You Only Look Once) is a popular object detection and image segmentation
NN model developed by Joseph Redmon and Ali Farhadi at the University of
Washington [10]. Traditional methods often relied on sliding-window approaches,
which were computationally expensive and slow. YOLO revolutionized the field by
treating object detection as a single regression problem. Instead of sliding windows,
YOLO predicts bounding boxes and class probabilities for objects directly from the
input image in a single forward pass, making it significantly faster.

YOLOv8 is the latest version in the YOLO series of real-time object detectors,
provided by the GitHub repository Ultralytics. The YOLOv8 architecture can be
divided into three main components:

• Backbone: It is a CNN responsible for extracting features from the input
image. The architecture consists of 53 convolutional layers and uses cross-stage
partial connections to improve the information flow between different layers.

• Neck: Combines feature maps from various stages of the backbone to capture
multi-scale information. This module integrates high-level semantic features
with low-level spatial details to improve accuracy.

• Head: Handles the final predictions. YOLOv8 includes multiple detection
modules that predict bounding boxes, objectness scores, and class probabilities
for each cell on the feature map. These predictions are then aggregated to
form the final detection.

YOLOv8 offers several advantages over its predecessors:

• Real-time Performance: The model delivers fast inference speeds, making it
ideal for applications that require real-time processing, such as robotics and
autonomous vehicles.

27

Socket Detection and Pose Estimation

• Enhanced Accuracy: The model achieves cutting-edge accuracy on various
object detection benchmarks.

• Resource Efficiency: The model is designed to be lightweight and needs fewer
computational resources compared to other models.

For these reasons, previous researchers chose this type of model NN for the project.

4.2.2 The NN Inference

Figure 4.2: Input and output of the detection step with the NN

Once the model is trained, it can be used to predict outcomes from new data.
This is known as the inference phase. Figure 4.2 illustrates in detail the input and
output of the network. The implemented NN takes as input an HD color image
with dimensions 1280 × 720. This image is the left image from the ZED Mini
Stereo Camera. As output, it returns the coordinates and centers of two rectangles
that enclose the socket, as shown in Figure 4.3. Using the information from the
depth map and the calibration parameters of the camera, it is then possible to
express the coordinates of the estimated center of the socket in the camera’s spatial
coordinates, specifically the x, y, and z positions of the center with respect to the
left eye of the camera.

Occasionally, the network returns only one of the rectangles due to poor image
conditions, particularly in terms of lighting. In other cases, the neural network
might not fully recognize the socket. This typically occurs under extreme lighting
conditions, such as in complete darkness or when excessive light is directed at the
plug. As explained in the Introduction (chapter 1), for the part of the project
that is the focus of this thesis, one of the assumptions is that the neural network
functions correctly.

28

Socket Detection and Pose Estimation

Figure 4.3: Generated output of the Neural Network

4.3 OpenCV

Before delving into the explanation of the implemented technique, it is useful to
introduce the library used for certain parts of the algorithm, especially for image
processing stages. OpenCV is a powerful open source library that offers a wide
range of algorithms and tools for image and video manipulation, making it one of
the most commonly used libraries in the field of computer vision. Its key features
are outlined below:

• Feature Detection and Description: OpenCV encompasses various methods
for detecting and describing features in images, which are essential for tasks
such as object recognition, tracking, and matching. This feature is particularly
useful for applications that require the precise localization of objects within
images.

• Cross-Platform Support: OpenCV is available in C++, Python, and Java,
making it a versatile library. For this project, Python was chosen as the
primary programming language due to its ease of use and strong support for
scientific computing and image processing tasks.

• Real-Time Optimization: OpenCV is highly optimized for real-time appli-
cations, supporting a wide range of computer vision tasks as well as the

29

Socket Detection and Pose Estimation

execution of machine learning models. This makes it ideal for projects where
performance and speed are critical, such as real-time socket detection and
tracking.

• Image Processing and Analysis: The library facilitates the reading, writing,
and processing of images. Key tasks include edge detection, image filtering,
and morphological operations, which are essential to improve image quality
and enhance important features.

• Object Detection and Tracking: OpenCV provides robust tools for detecting
specific objects in both images and videos. Additionally, it can be used to track
objects over time, allowing for the analysis of their movement and direction in
dynamic environments.

The broad functionality of OpenCV, combined with its performance optimizations
and ease of integration with machine learning frameworks, made it the ideal choice
for the image processing needs of this project.

4.4 Image Processing

In the following paragraph, a detailed explanation of the image processing techniques
used for the project will be provided. The goal was to identify specific features
of the socket with high precision. It was decided to focus on the circular shapes
that make up the socket. Before all the image processing steps, the generated
output of the neural network is used to isolate the socket from the rest of the image
(that is, the image is cropped to include only the socket). To effectively identify
circles, the process begins by modifying the image with some preprocessing stages
in order to enhance the characteristics that permit the identification of the circular
shapes of the socket. The image processing stages are shown in Figure 4.4, and
the code implemented for all the preprocessing steps is provided in Listing A.2 in
Appendix A. The contours of the socket are then extracted, followed by applying
an ellipse fitting algorithm to better approximate the detected circular regions.

30

Socket Detection and Pose Estimation

Figure 4.4: Implemented image processing steps

4.4.1 Grayscale Conversion

The grayscale color model is one of the simplest models, representing only the
luminance component of the pixel, typically described by a value ranging from
0 (black) to 255 (white). Grayscale images convey less color information than
other color models, but require less storage space and computational resources.
Consequently, it is a common practice in image processing to initially convert
colored images to grayscale images.

The ZED Mini stereo camera provides images in the RGB color format. Converting
these RGB images to grayscale often involves averaging the color values for each
pixel. The Equation 4.1 illustrates this conversion process, where Y represents the
resulting grayscale value for the pixel.

Y = R +G+B

3 (4.1)

Figure 4.3 shows the original image retrieved from the left camera of the ZED.
Meanwhile, Figure 4.5a shows the grayscale image, cropped to focus on the socket,
and converted using the respective OpenCV function.

31

Socket Detection and Pose Estimation

(a) Grayscale image (b) Median filtered image

Figure 4.5: Grayscale and median filtered images

4.4.2 Median Filter

The median filter is a commonly used non-linear digital filter, especially renowned
for its effectiveness in combating salt-and-pepper noise in images. It operates by
scanning the image pixel by pixel and replacing each entry with the median value
of itself and its neighboring entries. The set of neighboring entries is referred
to as a window or kernel, which moves throughout the image. Therefore, upon
selecting a kernel size, the median filter computes the median value of all pixels
within the kernel area and substitutes the central element with this computed value.
The median filter is a smoothing technique in image processing. This implies its
proficiency in reducing noise in smooth areas of a signal. In addition, it exhibits
notable effectiveness against "salt-and-pepper" noise. This type of noise, also known
as impulsive noise, is characterized by sporadic occurrences of white and black
pixels, typically caused by abrupt disturbances in the image signal.

Moreover, unlike traditional filters, such as the mean filter, the median filter is
very good at preserving edges and fine details in images. This is because the
median operation removes extreme noise values that can blur the boundaries of
the image. The median filter’s ability to reduce noise selectively helps keep sharp
edges, contours, and important features intact, making it great for applications
where keeping structural information is important. For these reasons, the median

32

Socket Detection and Pose Estimation

filter has been chosen as one of the main techniques to apply to the image.

Figure 4.5b shows the socket image after applying a median filter with a kernel
size of 5 × 5, which provides a good balance between noise reduction and detail
preservation. With respect to 4.5a, the image is noticeably smoothed, but the
details remain intact.

4.4.3 Histogram Equalization

Histogram equalization is a technique used in image processing to enhance the
contrast of an image. This method increases the global contrast of images, especially
when the usable data of the image are represented by close contrast values. By
adjusting the intensities, the values can be more evenly distributed on the histogram,
allowing areas of lower local contrast to gain higher contrast.

A significant portion of image processing techniques focuses on gray-level transfor-
mations, primarily because enhancing an image often involves directly adjusting
pixel intensities. Image enhancement techniques can be summarized by the Equa-
tion s = T [r], where T represents a transformation, r = f(x, y) and s = g(x, y)
denote the normalized gray levels of the input image f and the output image g at
the pixel located at position (x, y).

One of the main challenges in computer vision algorithms is to automatically adapt
to changes in the lighting of the scene. Enhancement techniques offer solutions
to this problem, with histogram equalization being one of the most important
methods.

The histogram of a digital image with intensity levels in the range [0, L− 1] is a
discrete function h(rk) = nk, where:

• rk is the kth intensity value.

• nk is the number of pixels in the image with intensity rk.

L is the total number of gray levels in the image (256). A normalized histogram is
given by:

p(rk) = nk

n
(4.2)

where n is the total number of pixels in the image.

33

Socket Detection and Pose Estimation

A peaked density function corresponds to an image in which luminosity levels are
concentrated around a specific value. The goal is to redistribute the levels across
the entire available range, making details more distinguishable than in the original
image. This operation is executed by remapping the luminosity levels using a
function that substitutes one level with another, ensuring that if pixel A is brighter
than pixel B in the original image, it will remain brighter in the processed image.
This process is known as histogram equalization, as shown schematically in
Figure 4.6.

Figure 4.6: Histogram equalization

To derive the transformation function T , the cumulative distribution function
(CDF), defined in Equation 4.3, is used.

cdf(rk) =
kØ

j=0
p(rj) (4.3)

The aim is to create a transformation of the form s = T [r] to produce a new image
s with a flat histogram, resulting in a linearized CDF throughout the value range.
The properties of the CDF allow for such a transformation, defined as follows:

sk = T (rk) = (L− 1)
kØ

j=0
p(rj) = (L− 1)cdf(rk) (4.4)

Figures 4.7 and 4.8 show the image before and after histogram equalization, re-
spectively, together with the histogram plots and cumulative distributions. Before
applying the transformation for histogram equalization, it is noticeable that the
image histogram (Figure 4.7b) is concentrated on the lower pixel values. In other
words, the histogram lies in the darker regions. After histogram equalization,
the socket appears more visible. The histogram plot (Figure 4.8b) is more evenly

34

Socket Detection and Pose Estimation

distributed and Cumulative Distribution Function (CDF) is now linearized. This en-
hanced contrast makes the details of the image more distinguishable, demonstrating
the effectiveness of the histogram equalization technique.

(a) Median filtered image (b) Corresponding histogram an cumulative histogram

Figure 4.7: Median filtered image and corresponding histogram

(a) Equalized histogram image (b) Corresponding histogram and cumulative histogram

Figure 4.8: Equalized histogram image and corresponding histogram

35

Socket Detection and Pose Estimation

4.4.4 Power-Law (Gamma) Transformation

After the histogram equalization, another enhancement technique is applied. The
gamma transform, a common technique, is utilized by Tadic [4] for the proposed
socket detection algorithm. It is also known as the power-law transformation,
mathematically expressed by Equation 4.5, where c and γ are positive constants.

s = c · rγ (4.5)

The parameter γ dictates the shape of the transformation curve that maps the
intensity values from the input gray level to the output.

Figure 4.9: Gamma transformation characteristic

Figure 4.9 illustrates the characteristic of the gamma transformation with c = 1
and various values of γ. When γ takes on a fractional value, the mapping favors
higher output values, effectively widening the range of output values for a narrow
range of dark input values. Since the socket is completely black, a fractional γ
value helps increase the luminosity of the image, thereby making the contours more
visible.

Figure 4.10 shows the socket image after the gamma transformation with a γ value
of 0.7. The image does not appear very different from the one before the application

36

Socket Detection and Pose Estimation

of this transformation, but it was observed that the performance improved slightly
with this technique. More information on the selection of the appropriate gamma
value will be described in section 4.7, which provides a more detailed explanation
of the parameter choice process.

Figure 4.10: Gamma transformed image

4.4.5 Image Binarization

Image binarization, also known as image thresholding, is a technique used to convert
a grayscale or RGB image into a binary image. Binarization simplifies an image by
representing it in binary form, where each pixel is assigned a value of 0 or 1. The
process involves selecting a threshold value. All pixel values below the threshold
are set to 0, while those above are set to 1. The choice of threshold is critical
and can be determined using various methods. Some techniques are classified as
global thresholding, where a single threshold value is used for the entire image. In
contrast, there is adaptive thresholding, where the threshold is determined locally
for each pixel based on its neighborhood. Adaptive thresholding performs better in
handling varying illumination conditions. For the project, an adaptive binarization
algorithm based on the mean has been selected. After specifying a kernel area and
a constant c, the threshold value is defined as the mean of the neighborhood area
minus the constant c. This approach allows for the use of different thresholds for
different regions of the same image.

Figure 4.11 shows the binarized socket image after applying mean thresholding

37

Socket Detection and Pose Estimation

using the OpenCV function cv2.adaptiveThreshold() with a kernel size of 13
and a constant c equal to 0. A detailed explanation of the choice of kernel size for
the binarization process will be provided in section 4.7.

Figure 4.11: Binarized image

4.4.6 Canny Edge Detection

Canny Edge Detection is a multi-stage edge detection algorithm developed by John
Canny in 1986 [11]. It is widely used for its ability to detect edges while suppressing
noise. In OpenCV, the algorithm is implemented through the function cv2.canny()
[12]. The algorithm’s steps are explained below.

1. Gaussian Smoothing. This step involves the convolution of the input image
I(x, y) with a Gaussian kernel to reduce noise. The Gaussian kernel is defined
as in Equation 4.6.

G(x, y, σ) = 1
2πσ2 e

− x2+y2

2σ2 (4.6)

The smoothed image is then obtained as follows: Ismoothed(x, y) = I(x, y) ∗
G(x, y, σ). Inside the function cv2.canny() in OpenCV, a 5 × 5 Gaussian
filter is applied for this step.

2. Gradient Calculation. The smoothed image is then filtered with a Sobel
kernel used to compute the gradients along the horizontal (Gx) and vertical

38

Socket Detection and Pose Estimation

(Gy) directions. The matrices used to calculate the two gradients are shown
in Equation 4.7.

Gx =

−1 0 1
−2 0 2
−1 0 1

 , Gy =

−1 −2 −1
0 0 0
1 2 1

 (4.7)

The gradient magnitude and angle can be calculated as shown in Equation
4.8.

Magnitude(G) =
ñ
G2

x +G2
y Angle (θ) = tan−1

A
Gy

Gx

B
(4.8)

The gradient direction is always perpendicular to edges.

3. Non-maximum Suppression. In this step, the gradient magnitude is thresh-
olded to remove weak edges. For each pixel (x, y), the gradient magnitude is
compared with its neighbors along the gradient direction. If the magnitude
of the pixel is greater than the magnitudes of its neighbors in the gradient
direction, the pixel value is retained; otherwise, it is suppressed (set to zero).

4. Hysteresis Thresholding. This final step involves double thresholding. Two
thresholds, maxV al and minV al, are used to classify pixels as strong, weak,
or non-edges. Any pixel with a gradient magnitude greater than maxV al is
classified as a strong edge pixel. Any pixel with a magnitude less than minV al
is classified as a non-edge pixel. Pixels that lie between the two thresholds are
classified as weak edges. Starting from strong edge pixels, weak edge pixels are
traced recursively in the neighborhood. If a weak edge pixel is connected to a
strong edge pixel, it is classified as part of the edge. This process continues
until no more weak edges can be linked to strong edges.

As shown in Figure 4.12, pixel A is considered a strong edge pixel because it is
above the maxV al. Pixel C is a weak edge, but since it is connected to edge A,
it is also considered a valid edge. On the contrary, pixel B, which is classified
as weak, is not connected to any strong edge and is thus discarded. This
step is also useful for removing small pixel noises. In the OpenCV function
cv2.canny(), the second and third arguments are the two thresholding values.
They have been chosen using a trial and error method.

39

Socket Detection and Pose Estimation

Figure 4.12: Example of hysteresis thresholding in Canny algorithm

Figure 4.13 shows the result of applying the Canny algorithm to the binarized
socket image. At this point, the image contains only the edges. The circles to be
fitted are visible, but there are also many distracting elements. The main focus of
the following steps is to extract information about useful edges.

Figure 4.13: Image after Canny algorithm

40

Socket Detection and Pose Estimation

4.4.7 Contours Extraction

After applying the edge detection algorithm, the next step was to extract the con-
tours that delineate the detected edges. These contours are essential for identifying
shapes, such as ellipses, in subsequent processing stages. In computer vision, a
contour is defined as a curve that joins all continuous points along a boundary
that share the same intensity or color. The OpenCV library provides a widely used
function, cv2.findContours(), to extract these contours from binary images. The
function returns a list of contours, where each contour is represented as a sequence
of 2D coordinates corresponding to points on the boundary of an object.

The underlying algorithm implemented in cv2.findContours() is based on the
work of Suzuki et al. [13]. This method focuses on identifying object contours within
a binary image using a technique known as border following. The algorithm
scans the image, pixel by pixel, in search of transitions between foreground (object)
and background pixels, which signify the beginning of a contour. Upon detecting a
transition, the algorithm starts following the boundary of the object by iterating
through the neighboring pixels, capturing the contour structure in a clockwise or
counterclockwise manner.

This algorithm is designed to efficiently extract contours by focusing solely on
boundary pixels, avoiding redundant operations on pixels located inside the object.
This makes the method computationally efficient, an important consideration for
real-time computer vision applications. Furthermore, it preserves the topological
structure of the image, which means that it can handle complex objects with
nested or overlapping contours without altering the spatial relationships between
different contour components.

The function cv2.findContours() requires a binary image as input and offers
several configuration parameters:

• The contour retrieval mode, which defines how contours are organized and
stored (e.g., hierarchical relationships between contours can be retrieved using
cv2.RETR_TREE, or all contours can be retrieved without hierarchy using
cv2.RETR_LIST).

• The contour approximation method, which specifies the precision with which the
contour points are approximated. For example, cv2.CHAIN_APPROX_SIMPLE
compresses horizontal, vertical, and diagonal segments and leaves only their
endpoints, thereby reducing the number of points stored, while

41

Socket Detection and Pose Estimation

cv2.CHAIN_APPROX_NONE retains all contour points.

In the case of the implemented algorithm, the contours are retrieved without
hierarchy using cv2.RETR_LIST, which ensures that all detected contours are
returned as a flat list. Furthermore, the contour approximation method used is
cv2.CHAIN_APPROX_NONE, meaning that all contour points are retained without any
compression. This approach is advantageous because it provides greater precision
in subsequent processing steps, particularly in ellipse fitting, where the retention of
all boundary points allows a more accurate approximation.

4.5 Circle Fitting and Classification

In this section, a comprehensive analysis of the ellipse fitting method and its
classification will be carried out. Having obtained a list of all the contours in the
image through the previous steps, the subsequent task was to determine if it was
possible to fit each contour with an ellipse. The decision to seek ellipses is based
on the fact that images can be captured from various angles. Since a circle viewed
from different angles appears as an ellipse and high precision is required, an ellipse
detection method was preferable. Subsequently, focusing on the known geometry
of the socket, the objective was to accurately identify the ellipses. It was decided
to focus on 10 circles on the socket, as depicted in Figure 4.14. The commented
code for this part of the algorithm is provided in Listing A.3.

Figure 4.14: CCS Type 1 Socket, labeled circles

42

Socket Detection and Pose Estimation

4.5.1 Least Squares Fitting

Figure 4.15: Input and output of Least Squares (LS) Ellipse Fitting

The chosen method for fitting ellipses employs a LS approach, based on the
algorithm devised by R. Hal oy and J. Flusser [14]. An ellipse can be described
by an implicit second-order polynomial equation along with a specific constraint,
as shown in Equation 4.9.

ax2 + bxy + cy2 + dx+ ey + f = 0, b2 − 4ac < 0 (4.9)

By introducing the parameter vector θ = [a b c d e f]T , the conic equation
can be represented in matrix form as:

è
x2 xy y2 x y 1

é
· θ = 0 (4.10)

The conic equation describes the algebraic distance of a point (x, y) to the conic,
which is zero for points on the conic. Thus, fitting a general conic to a set of points
(xi, yi), i = 1...N involves minimizing the sum of squared algebraic distances. This
is achieved by building a design matrix D, where each row corresponds to the
quadratic and linear terms of an input point.

D =

x2

1 x1y1 y2
1 x1 y1 1

x2
2 x2y2 y2

2 x2 y2 1
...
x2

n xnyn y2
n xn yn 1

 (4.11)

As proposed by Fitzgibbon [15], it is essential to introduce a constraint to control
the sign of the conic discriminant. The discriminant must be strictly negative
to ensure that the conic is an ellipse. To fix the scale and maintain consistency,
the inequality constraint given by the discriminant can be transformed into the
equality constraint b2 − 4ac = −1. Therefore, after defining the constraint matrix

43

Socket Detection and Pose Estimation

C as shown in Equation 4.12, the ellipse fitting problem can be reformulated as
demonstrated in Equation 4.13.

C =

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(4.12)

min
θ

∥D · θ∥2 s.t. θTCθ = 1 (4.13)

Introducing the Lagrange multiplier λ and differentiating to find the minimum
(Equation 4.14), Equation 4.15 is derived, where λ is the eigenvector and θ is the
eigenvalue.

∇θL = 2DTDθ − λ · 2Cθ = 0 (4.14)

θ = λ · (S)−1Cθ (4.15)

The matrix S = DTD is also known as the scatter matrix. It is important to note
that the objective function of the minimization equals the Lagrange multiplier:
∥Dθ∥2 = λ. Therefore, the optimal conic parameters θ are obtained by taking
the eigenvector corresponding to the smallest strictly positive eigenvalue. The
original approach proposed by Fitzgibbon has some drawbacks and can produce
suboptimal or incorrect results. Halir and Flusser simplified the structure of the
various matrices. The design matrix D is decomposed into its quadratic and linear
parts, D = [D1, D2], where

D1 =

x2

1 x1y1 y2
1

x2
2 x2y2 y2

2
...
x2

n xnyn y2
n

 D2 =

x1 y1 1
x2 y2 1
...
xn yn 1

 (4.16)

The scatter matrix S is divided as shown in Equation 4.17, where S1 = DT
1 D1,

44

Socket Detection and Pose Estimation

S2 = DT
1 D2, and S3 = DT

2 D2.

S =
C

S1 S2

ST
2 S3

D
(4.17)

Similarly, the constraint matrix C is decomposed as shown in Equation 4.18.

C =
C
C1 0
0 0

D
(4.18)

Finally, the vector of coefficients θ is divided into θ = [θ1 θ2]T , where θ1 =
[a b c]T and θ2 = [d e f]T . With this alternative formulation, the algorithm
can be expressed as the set of Equations 4.19, where M = C−1

1 (S1 − S2S
−1
3 ST

2) is
the reduced scatter matrix.

Mθ1 = λθ1

θT
1 C1θ1 = 1
θ2 = −S−1

3 ST
2 θ1

θ = [θ1 θ2]T

(4.19)

The algorithm is computationally unambiguous and can be implemented in a
numerically stable manner. Therefore, it was chosen for the detection of ellipses
in the project. The implemented function in Python is provided in Listing A.4.
Figure 4.15 schematically illustrates the main inputs and outputs of this fitting
step.

4.5.2 Circle Classification

After fitting the ellipses, the next step involves classifying it to determine whether
it corresponds to one of the circles shown in Figure 4.14 or if it is an outlier. To
perform an accurate classification, the known geometry of the socket was utilized,
along with the segmentation output generated by the neural network. The schematic
representation of the inputs and outputs for this step is illustrated in Figure 4.16.

Since the neural network produces two rectangles that isolate the socket from the

45

Socket Detection and Pose Estimation

Figure 4.16: Input and output of the classification stage

rest of the image, it was decided to utilize the depth map to compute the mean
value of the depth within the region containing the socket. Knowing the precise
values of the different circles’ radii, it becomes possible to calculate the expected
pixel dimensions of the circle radii in the image. This is achieved by evaluating
the average depth and applying the relationships presented in the pinhole camera
model, which establish a correlation between the position of a point in the real
world and its position in the image plane using focal length and depth. In this
manner, it becomes feasible to establish certain constraints for the dimensions of
the circle radii. Since the previous algorithms identify ellipses, a mean radius for
the ellipses has been defined as shown in Equation 4.20, where a and b, respectively,
represent the lengths of the major and minor axes of the fitted ellipses.

rmean = a+ b

2 (4.20)

This approach allows for the classification of ellipses based on their different mean
radii dimensions. By understanding the expected dimensions of the radii and the
reciprocal proportion of one ellipse’s radius to another, intervals can be defined.
Ellipses belonging to a particular interval are classified on the basis of four different
dimensions.

Since there are multiple ellipses with the same dimensions, apart from the largest
external one, an additional constraint is required to correctly identify the class. A
positional constraint has been selected based on the output of the neural network.
The two rectangles provided by the neural network have been subdivided into
smaller rectangles, as illustrated in Figure 4.17. These rectangles are utilized to
unequivocally identify the ellipses.

46

Socket Detection and Pose Estimation

Figure 4.17: Image with fitted circles and sub-rectangles

Figure 4.18 shows the socket image with all detected ellipses, labeled by numbers.
This is the final output of the image processing and ellipse detection steps imple-
mented in the project. The result is taken from one of the images in which the
algorithm performs the best. The general results of the algorithm implemented
will be discussed in chapter 5.

Figure 4.18: Images with extracted ellipses

47

Socket Detection and Pose Estimation

4.6 Socket Pose Estimation

The final step to achieve the project goal is to estimate the pose of the charging
port, specifically its position and orientation. The following section will provide
a detailed explanation of the selected algorithm for determining the pose of the
socket: the PnP algorithm.

4.6.1 PnP Algorithm

The Perspective-n-Point (PnP) algorithm is used in computer vision to estimate
the position and orientation of an object in the camera’s coordinate system, given
a set of object points, their corresponding image projections, and the camera’s
intrinsic matrix and distortion coefficients.

Figure 4.19: PnP algorithm visual scheme

Input Data and Objective

As shown in Figure 4.19, the PnP algorithm requires the following input data:

• A set of 3D points ci = (Xi, Yi, Zi) representing specific points on the object
with respect to a defined world coordinate system.

48

Socket Detection and Pose Estimation

• The corresponding 2D points ui = (ui, vi) in the image plane.

In addition, intrinsic camera parameters are needed, typically represented by the
camera matrix K. The Python code used to extract these parameters is presented
and discussed in section 3.2. The relationship between a 3D point ci on the object
and its 2D projection ui on the image is represented by Equation 4.21, which has
already been discussed in chapter 3.

ui = K[R|t]ci (4.21)

R represents the rotation matrix and t is the translation vector. The goal of the
algorithm is to find R and t that best satisfy Equation 4.21 for all given point
correspondences, thus determining the pose of the object.

The minimum number of correspondent points required to solve the PnP algorithm
depends on the number of unknowns. The pose of the object involves six degrees
of freedom, comprising three for translation and three for rotation. Each point i in
the image provides two constraints represented by ui and vi. To solve for these six
unknowns, theoretically, at least three points are necessary. However, with only
three points, the system provides exactly six equations, resulting in a determined
system with no redundancy, which is impractical for real-world scenarios affected
by noise.

For general PnP problems involving non-coplanar points, a minimum of four points
is required. This provides eight equations, offering some redundancy that helps
in managing noise and errors. In the case of planar objects, such as the socket,
the points lie on a single plane. This can lead to underconstrained scenarios in
some configurations. Nevertheless, the mathematical requirement of at least four
points still applies to ensure solvability of the equations. In practice, using at least
six points is commonly recommended as a practical minimum. This number of
points provides sufficient redundancy to handle noise and mitigates issues related
to planar degeneracies.

In the implemented project, the chosen world coordinate system is defined as the
object’s local coordinate system, as shown in Figure 4.20. The 3D points used for
the algorithm, as well as the corresponding 2D points in the image plane, are the
centers of the circles, as shown in Figure 4.20. Therefore, it is possible to retrieve
correspondences for a maximum of eight points.

49

Socket Detection and Pose Estimation

Figure 4.20: CCS Local Coordinate System and Centers

Initialization Step

The PnP algorithm begins with the initialization step, where an initial guess is
made for the rotation matrix R an the translation vector t. One common method to
obtain this initial guess is Direct Linear Transform (DLT). This method linearizes
the problem by ignoring the non-linear nature of the camera projection model. The
DLT method works by solving a system of linear equations, providing an initial
estimate for the transformation parameters.

Sometimes, instead of using the DLT method, it is possible to directly use the
estimated values for R and t obtained from previous steps. In the case of the
project presented, it is a good idea to use the translation vector t estimated directly
by NN. In this way, a more accurate starting point for the optimization process is
provided. Using these estimates can, moreover, reduce the number of iterations
needed for the optimization to converge and improve the overall accuracy of the
final pose estimation.

Optimization Step

Once an initial estimate for R and t is obtained, the next step is to refine the
values using iterative optimization techniques. The goal of this optimization is to
minimize the reprojection error, which measures how well the projected 3D points
align with the observed 2D points in the image. The reprojection error is defined
in Equation 4.22, where ui are the observed 2D points and ûi are the projected

50

Socket Detection and Pose Estimation

3D points using the current estimates of R and t. The projected points ûi are
calculated using Equation 4.21.

Reprojection Error =
Ø

i

∥ui − ûi∥2 (4.22)

To achieve this, non-linear optimization techniques are commonly used. The
Levenberg-Marquardt algorithm combines the advantages of the Gauss-Newton
algorithm and the gradient descent method, which makes it well suited to solve
non-linear LS problems [16]. During each iteration, the algorithm adjusts R and
t to reduce the reprojection error. Adjustments are made based on the Jacobian
matrix, which contains partial derivatives of the reprojection error with respect
to R and t. The iterative optimization process continues until the change in the
reprojection error is below a predefined threshold or the maximum number of
iterations is reached.

Figure 4.21 schematically illustrates the main steps, inputs, and outputs of the
algorithm implemented. The corresponding Python code is provided in Listing A.5.

Figure 4.21: Schematic representation of the PnP implementation

51

Socket Detection and Pose Estimation

4.7 Parameter Tuning

In this section, an overall discussion of the techniques used for choosing the
parameters at various stages of image processing will be presented. The specific
values to be decided are:

• The kernel size for the median filter

• The gamma value for the power-law transformation

• The kernel size for adaptive threshold binarization

• The two thresholds, maxVal and minVal, for the Canny algorithm

The chosen kernel size for the median filter is 5, and a detailed explanation of this
selection has already been provided in the respective section. For the remaining
three parameters, further discussion is required.

The most critical parameters for the successful outcome of the image processing
steps were observed to be the gamma value and the block size for binarization.
Therefore, a precise parameter adjustment was performed for these two values. For
the two Canny thresholds, common values were used.

To apply a parameter-tuning approach, an evaluation metric was needed. As
explained in the previous section, the PnP algorithm theoretically requires at least
four detected points in an image to function properly. Therefore, the number of
images with at least four detected points was chosen as the evaluation metric.
However, since the algorithm works more reliably with six points in practice, the
number of images with at least six detected points was also used as an additional
evaluation metric.

A set of 240 images was created, for which the neural network generates valid output,
under different environmental conditions. This set was divided into a training set
for parameter tuning, which contains half of the images, and a validation set for
subsequent testing, composed of the other half.

First, the number of training images with at least four points was evaluated. A
grid search approach was used to exhaustively search for gamma and block size
values that yield the best evaluation metric. For gamma, values ranging from 0.1
to 1 in steps of 0.1 were evaluated. For the block size used in binarization, odd
values from 5 to 21 were considered.

52

Socket Detection and Pose Estimation

Figure 4.22 shows the table of the percentage of images with at least four detected
points across different gamma values and block sizes. The goal of the parameter-
tuning process is to maximize the percentage of valid images. Therefore, by
analyzing the table in Figure 4.22, values greater than 93% can be considered a
good result. This means that the PnP algorithm can be launched 93% of the time.
Using this threshold, it is possible to discard gamma values of 0.1 and 0.2 and
block size values of 5, 19, and 21.

Figure 4.22: Parameter tuning considering at least 4 detected points

Figure 4.23: Parameter tuning considering at least 6 detected points

Subsequently, a detailed analysis of the algorithm’s performance considered the
number of images with at least six detected points. This analysis focused only on

53

Socket Detection and Pose Estimation

block sizes and gamma values that showed high results in the previous evaluation.
Figure 4.23 illustrates curves of the percentage of images with at least six detected
points across gamma values, with each line representing different block sizes.

Using this evaluation metric, the maximum of 84.6% is achieved with combinations
(11, 0.7) and (11, 0.8). However, in these cases, the value of the metric considered
before is below 93%. Consolidating the findings of both evaluations, the chosen
values are gamma = 0.7 and block size = 13. This combination closely approaches
(82.9%) the maximum percentage of images in the latter consideration and maintains
a valid image percentage for the PnP algorithm above 93%. Further evaluation of
the performance will be done in the next chapter using the validation set of images.

54

Chapter 5

Test and Results

In this chapter, the experiments and their results are explained in detail. As
mentioned in the Introduction (chapter 1), the goal of the project is to accurately
determine the pose of the socket. One of the prerequisites is to use the existing
neural network to preliminarily detect the socket. Therefore, for the experimental
evaluation of the proposed approach, only the conditions where the neural network
provides a valid output are examined.

5.1 Circle detection

In this section, the circle detection algorithm is evaluated, which includes all the
image processing techniques implemented. The goal of the algorithm is to detect
10 circles within the socket, as explained in the previous chapter.

A key factor in developing the image processing algorithm is obtaining high-quality
input images. In addition to using a high-quality capturing device (the ZED Mini
Camera), another main challenge is to ensure the validity of the algorithm across
various scenarios. Therefore, the images were taken in different environmental
settings. Some images were captured with artificial illumination Light Emitting
Diode (LED) at different times of the day, with varying levels of natural light, but
with the same artificial lights positioned around the setup.

To further diversify the image set, additional images were taken in a different range
of artificial lighting scenarios, including some without any lights, with varying

55

Test and Results

natural illumination, and even in darker environments. Since the number of images
taken for each scenario is insufficient for generalization, all these images were
grouped together, forming a set of 240 images.

This set was then divided into two subsets: 120 images for parameter fitting, and
the remaining 120 for validation. To evaluate the performance of the algorithm,
the validation set was used and the number of centers detected was evaluated, with
a maximum of eight.

Figure 5.1: Number of detected centers for the validation set of images

Figure 5.1 shows the percentage of images, out of the set of 120, for which a fixed
number of centers were detected. In 49% of the cases, all possible centers were
detected. Considering that the practical number of centers for the PnP algorithm
to work well is 6, as explained in the previous section, the percentage of images
with 6 or more detected centers is 80%. Furthermore, if a threshold of at least 4
points is considered for the PnP algorithm to give a result, the percentage reaches
94%. These values are slightly lower, especially considering the evaluation metrics
of at least six points, compared to the performance obtained during the parameter
fitting phase, but the values are still appreciable.

If only the subset of images taken under adequate LED illumination is considered,
consisting of 93 images, the performance is much better, as shown in Figure 5.2.
In this case, the percentage of images with at least 6 detected points is 91%, and
the percentage of images for which the PnP algorithm can be implemented is 98%.
This means that in 98% of cases, in adequately illuminated environments, the

56

Test and Results

Figure 5.2: Number of detected centers in an adequately illuminated environment

algorithm to retrieve the pose can work, even if some degeneracies are encountered.
However, to be more confident in the outcome of the algorithm, the percentage
decreases to 91%, which is still a good result.

Figure 5.3: Percentage of detection for each circle

Another useful parameter to analyze is which circles are detected most frequently.
Figure 5.3 examines this aspect, showing the detection percentage for each circle.
The numbers on the horizontal axis correspond to those in Figure 4.14. The image

57

Test and Results

set used for this analysis is the entire validation set, consisting of 120 images. The
average detection percentage for circles is 80%. Circles 1, 2, 7, and 9 have the
highest scores. The largest circle (number 10) has one of the lowest scores, along
with circles 3 and 4, which are the smallest. The dimension ranges used to classify
each circle might not always be accurate for the smallest and largest circles, as
these ranges depend on the average distance calculated from the depth map of the
stereo camera. Another reason could be that the image processing stages cannot
effectively extract the contours of the smallest and largest circles. However, these
values do not deviate significantly from the average, with a standard deviation of
11%.

5.2 Pose Estimation

This section evaluates the results of the final step of the project, which involves the
PnP algorithm. The primary objective of this thesis is to accurately determine the
position and orientation of the socket. To achieve this, the results produced by the
algorithm are compared to the robot’s recorded pose at the moment each photo
was captured. By comparing these values, errors are calculated and analyzed.

5.2.1 Position

To evaluate the error in position, 18 different starting positions of the camera were
verified. Knowing the position of the base of the robot with respect to the socket
and the position of the camera with respect to the base of the robot, it is possible
to calculate the actual position of the socket with respect to the camera using a
simple multiplication of transformation matrices. Hence, the algorithm was tested
for each starting position and the results were evaluated. Table 5.1 reports the
evaluated position error for each axis.

Axis Error (mm)
x 2.95
y 2.47
z 2.07

Table 5.1: Position errors

The reference system used is the TCP reference system, as reported in Figure 3.2,

58

Test and Results

where the x axis points towards the plug, the y axis points to the right, and the
z axis points downward. The error is evaluated as the standard deviation of the
difference between the measured position and the one returned by the algorithm.
The mean represents a bias given by a fixed error in the measurement of the starting
position. The greatest error is observed in the x direction, which represents the
depth. The values in the other directions are slightly better.

5.2.2 Orientation

To evaluate the orientation error, images were taken from different starting angles
of the robot’s end effector. The base of the robot was positioned such that it was
rotationally aligned with the socket. This setup ensures that, given a defined angle
to the camera, the expected solution of the algorithm should be the opposite value
of the one given for the respective rotational axis. During the evaluation, it was
observed that the algorithm sometimes produces very inaccurate values due to
degeneracies that arise from detecting only 4 or 5 points. Such cases were excluded
from the algorithm performance evaluation.

A set of 69 valid images, taken from various angles and under different environmental
conditions, was used for the evaluation. The errors were calculated as the standard
deviation of the difference between the solution provided by the PnP algorithm
and the opposite angles of the camera’s initial position. The results are reported
in Table 5.2. The roll axis showed the best precision, while the other axes had
slightly higher errors but still remained below 2 degrees. This level of precision
can be considered a good result, consistent with those obtained in previous works
analyzed in the State of the Art (chapter 2).

Direction Error (°)
Roll (Rx) 0.68

Pitch (Ry) 1.98
Yaw (Rz) 1.68

Table 5.2: Orientation errors

Overall, the results obtained are satisfactory for the requirement of achieving
precise alignment. The final step of plug insertion will be performed using a force
control algorithm that accounts for the compliance of the robotic arm, allowing it
to compensate for small alignment errors.

59

Chapter 6

Conclusion

This thesis presents a comprehensive study on the development and implementation
of a robotic system for automatic EV charging. The system integrates a stereo
camera with deep learning techniques to accurately detect and estimate the pose
of the CCS Type 1 charging socket. The adoption of YOLOv8 for object detection,
together with a PnP algorithm for pose estimation, has proven to be effective in
providing reliable and accurate results.

The primary goal of this research was to develop a system capable of detecting
the position and orientation of an EV charging socket, which allows autonomous
connection of a charging plug. The key findings of this work demonstrate the feasi-
bility and reliability of such a system. Through the integration of a stereo camera
and a pre-trained neural network, the system was able to accurately identify the
position of the charging socket. The use of image processing techniques, including
grayscale conversion, histogram equalization, and edge detection, further enhanced
the accuracy of detection. The implementation of a pose estimation algorithm
using the PnP method successfully achieved minimal errors in the determination
of position and orientation. Testing under various conditions confirmed the robust-
ness and reliability of the system, making it a viable solution for autonomous EV
charging applications.

Future work can focus on addressing the challenges associated with the final stages
of the charging process, specifically the insertion and disinsertion of the charging
plug. The next steps of this research include the integration of a force sensor to

60

Conclusion

achieve precise control during these critical stages. The force sensor provides real-
time feedback on the forces exerted during the insertion and disinsertion processes,
ensuring safe and accurate handling of the plug. This is essential to prevent any
potential damage to the robot or the vehicle’s charging socket.

In addition to the force sensor, an impedance control strategy is implemented. This
control approach manages the interaction between the robotic arm and the charging
socket, allowing the robot to adjust its movements based on the sensed forces. This
strategy is crucial to providing compliant and safe interactions, particularly when
dealing with delicate components of the charging infrastructure. Furthermore, this
research can explore the use of machine learning techniques to optimize control
algorithms, enhancing the system’s adaptability to different vehicle models and
socket placements. This is expected to improve the robustness and efficiency of the
system, making it more suitable for deployment in real world scenarios.

In conclusion, this thesis has established a solid foundation for the development of
an automatic EV charging system using robotic technology. The results achieved
thus far indicate the potential of the system, but more work is needed to address the
remaining technical challenges. The next phase of research will focus on improving
the precision and reliability of the system, with an emphasis on practical application.
Continued advances in sensor technology and control systems will be crucial to
making autonomous charging EV a practical reality.

61

Appendix A

Implemented Codes

Listing A.1: Definition of the main function and parameter loading
1 def image_processing (image_path , coord_path , depth_path , image_flag , params):
2 """
3 Processes an image to identify and classify ellipses based on contours and

depth information .
4

5 Args:
6 image_path (str): Path to the input image .
7 coord_path (str): Path to the file containing segmented coordinates .
8 depth_path (str): Path to the file containing the depth map.
9 image_flag (int): Flag to indicate whether to display intermediate images

(1 for display , 0 otherwise).
10 params (list): List containing calibration parameters [fx , fy , cx , cy ,

k1 , k2 , p1 , p2 , k3].
11

12 Returns :
13 tuple : A tuple containing :
14 - int: Status code (1 for success , -1 for failure).
15 - list: List of classified ellipses , or None if not found .
16 - numpy . ndarray : The final processed image with annotated ellipses ,

or None if not applicable .
17 """
18

19 # Values from calibration file of ZED mini
20 fx , fy = params [0] , params [1]
21

22 # Load the image
23 image = cv2. imread (image_path)
24 shape = image . shape
25 if image is None:
26 print (" Failed to load image .")
27 return -1, None , None
28

29 # Load the segmented coordinates

62

Implemented Codes

30 if coord_path :
31 with open (coord_path , ’r’) as file :
32 content = file .read (). replace (’\n’, ’’)
33 array = np. array (content . replace (’,’, ’ ’). replace (’(’, ’’). replace (’)’,

’’). split () , dtype =int)
34

35 if len(array) == 8: # The NN returns both rectangles
36 x_min , x_max , y_min , y_max = array [4] , array [6] , array [1] , array [7]
37 rect_1 = np. array ([[array [4] , array [5]] , [array [6] , array [7]]])
38 rect_2 = np. array ([[array [0] , array [1]] , [array [2] , array [3]]])
39 both = 1
40 elif len(array) == 4: # The NN returns only the lower rectangle
41 x_min , x_max , y_min , y_max = array [0] , array [2] , array [1] , array [3]
42 rect_2 = np. array ([[array [0] , array [1]] , [array [2] , array [3]]])
43 both = 0
44 if x_min > x_max :
45 print (’Incorrect segmentation ’)
46 return -1, None , None
47 else :
48 print (’Incorrect segmentation ’)
49 return -1, None , None
50

51 # Load the depth map
52 with open (depth_path , ’r’) as file :
53 depth_map = np. array ([[float (val) if val not in [’nan ’, ’inf ’, ’-inf ’]

else 0 for val in line. split ()] for line in file])

Listing A.2: Pre-processing stage
1 def image_processing (image_path , coord_path , depth_path , image_flag , params):
2

3 # ... Loading images and parameters ...
4

5 # Values for pre - processing
6 gamma = 0.7
7 block_size_th = 13
8 canny_minVal = 200
9 canny_maxVal = 300

10

11 # Isolate the plug using NN output
12 image_cut = image [y_min :y_max , x_min : x_max]
13

14 # Grayscale conversion
15 gray_image_cut = cv2. cvtColor (image_cut , cv2. COLOR_BGR2GRAY)
16

17 # Noise removal (median filter)
18 median = cv2. medianBlur (gray_image_cut , 5)
19

20 # Histogram equalization
21 equalized = cv2. equalizeHist (median)
22

23 # Increase luminosity using Gamma transformation
24 gamma_corrected_image = np. uint8 (((equalized / 255.0) ** gamma) * 255)
25

26 # Image binarization (adaptive thresholding)

63

Implemented Codes

27 im_th_mean = cv2. adaptiveThreshold (gamma_corrected_image , 255 ,
cv2. ADAPTIVE_THRESH_MEAN_C , cv2. THRESH_BINARY_INV ,

28 block_size_th , 0)
29

30 # Canny edge detection
31 edges = cv2. Canny (im_th_mean , canny_minVal , canny_maxVal , apertureSize =7)
32

33 # Restoring image to original dimensions for contour matching
34 post_processed = np. zeros ((shape [0] , shape [1]) , dtype =np. uint8)
35 post_processed [y_min :y_max , x_min : x_max] = edges
36 contours , _ = cv2. findContours (post_processed , cv2.RETR_LIST ,

cv2. CHAIN_APPROX_NONE)

Listing A.3: Ellipses fitting and classification
1 def image_processing (image_path , coord_path , depth_path , image_flag , params):
2

3 # ... Loading images and parameters ...
4 # ... Pre - processing ...
5

6 p = 0.2 # Percentage for size tolerance
7 r = 0.3 # Percentage for the ratio a/b tolerance
8 ss = 4 # Minimum radius in mm
9 ll = 9.5 # Maximum radius in mm

10

11 # Isolate the depth map using the NN output to extract the mean value of z
12 depth_map_cut = depth_map [y_min :y_max , x_min : x_max]
13 vec = depth_map_cut [depth_map_cut != 0]
14 z_mean = np.mean(vec)
15

16 # Calculate the value of the radius in pixels
17 f_mean = (fx + fy) / 2
18 maximum = ll * f_mean / z_mean # Maximum radius in pixels
19 minimum = ss * f_mean / z_mean # Minimum radius in pixels
20

21 ellipses = []
22 classified = [None] * 10
23

24 # Split the lower rectangle into two
25 if both:
26 x_mean = (rect_1 [0, 0] + rect_1 [1, 0]) / 2
27 r1 = np. array ([rect_1 [0, :], [x_mean , rect_1 [1, 1]]])
28 r2 = np. array ([[x_mean , rect_1 [0, 1]] , rect_1 [1, :]])
29

30 # Split the upper rectangle into four
31 x_mean = (rect_2 [0, 0] + rect_2 [1, 0]) / 2
32 y_mean = (rect_2 [0, 1] + rect_2 [1, 1]) / 2
33 r3 = np. array ([rect_2 [0, :], [x_mean , y_mean]])
34 r4 = np. array ([[x_mean , rect_2 [0, 1]] , [rect_2 [1, 0], y_mean]])
35 r5 = np. array ([[rect_2 [0, 0], y_mean], [x_mean , rect_2 [1, 1]]])
36 r6 = np. array ([[x_mean , y_mean], rect_2 [1, :]])
37 r7 = np. array ([[rect_2 [0, 0], y_mean], rect_2 [1, :]])
38

39 # Ellipse fitting
40 for cnt in contours :

64

Implemented Codes

41 x, y = cnt [:, 0, 0]. astype (float), cnt [:, 0, 1]. astype (float)
42 try:
43 ell = ls_ellipse (x, y)
44 ap , bp , error = ell.major_len , ell.minor_len , ell. error
45

46 # Only the ellipses inside a certain range of the axis ratio and
below a certain value of the fitting error are considered

47 if (1 - r) < ap / bp < (1 + r) and error < 700:
48 ellipses . append (ell)
49 except Exception :
50 continue
51

52 # Ellipse classification
53 try:
54 ellipses .sort(key= lambda e: e. error) # Order the ellipses per ascending

fitting error
55 if not both:
56 ellipses = [e for e in ellipses if e.mean >= 0.3 * maximum]
57 minimum = ellipses [0]. mean
58

59 for ell in ellipses :
60 # Classification in case the NN returns both rectangles
61 if both:
62 # Small holes
63 if 0.35 * maximum * (1 - p) < ell.mean < 0.35 * maximum * (1 + p):
64 if ell. is_inside (r1) and not classified [2]:
65 classified [2] = ell
66 elif ell. is_inside (r2) and not classified [3]:
67 classified [3] = ell
68 elif ell. is_inside (r5) and not classified [4]:
69 classified [4] = ell
70 elif ell. is_inside (r6) and not classified [5]:
71 classified [5] = ell
72 # Medium holes
73 elif 0.55 * maximum * (1 - p) < ell.mean < 0.55 * maximum * (1 +

p):
74 if ell. is_inside (r3) and not classified [6]:
75 classified [6] = ell
76 elif ell. is_inside (r4) and not classified [8]:
77 classified [8] = ell
78 elif ell. is_inside (r7) and not classified [7]:
79 classified [7] = ell
80 # Large holes
81 elif maximum * (1 - p) < ell.mean < maximum * (1 + p):
82 if ell. is_inside (r1) and not classified [0]:
83 classified [0] = ell
84 elif ell. is_inside (r2) and not classified [1]:
85 classified [1] = ell
86 # XLarge hole
87 elif 1.65 * maximum * (1 - p) < ell.mean < 1.65 * maximum * (1 +

p) and ell. is_inside (rect_2) and not classified [9]:
88 classified [9] = ell
89

90 # Classification in case the NN returns only the upper rectangle
91 else :
92 # Small holes

65

Implemented Codes

93 if minimum * (1 - p) < ell.mean < minimum * (1 + p):
94 if ell. is_inside (r5) and not classified [4]:
95 classified [4] = ell
96 elif ell. is_inside (r6) and not classified [5]:
97 classified [5] = ell
98 # Medium holes
99 elif 1.3 * minimum * (1 - p) < ell.mean < 1.3 * minimum * (1 + p):

100 if ell. is_inside (r3) and not classified [6]:
101 classified [6] = ell
102 elif ell. is_inside (r4) and not classified [8]:
103 classified [8] = ell
104 elif ell. is_inside (r7) and not classified [7]:
105 classified [7] = ell
106 # XLarge holes
107 elif 4 * minimum * (1 - p) < ell.mean < 4 * minimum * (1 + p) and

not classified [9]:
108 classified [9] = ell
109

110 for i, ell in enumerate (classified):
111 if ell is not None:
112 # Extract ellipse parameters ...
113

114 # Draw ellipse on the image ...
115

116 # Display image if flag is set
117 if image_flag == 1:
118 cv2. imshow (’image ’, image [y_min :y_max , x_min : x_max])
119 cv2. waitKey (0)
120

121 return 1, classified , image
122

123 except Exception :
124 print (’No ellipses found .’)
125 return -1, None , None

Listing A.4: Least square ellipse fitting function
1 def fit_ellipse (x, y):
2 """
3 Fits an ellipse to a set of data points (x, y) using the Direct Least Squares

Fitting method .
4

5 Parameters :
6 x (array -like): 1D array of x- coordinates of the data points .
7 y (array -like): 1D array of y- coordinates of the data points .
8

9 Returns :
10 tuple :
11 coeffs (numpy array): Array of coefficients [a, b, c, d, e, f] of the

fitted ellipse .
12 norm_2 (float): The L2 norm of the residuals , which indicates the quality

of the fit.
13 """
14

15 # Form the design matrices D1 and D2

66

Implemented Codes

16 D1 = np. vstack ([x**2 , x*y, y **2]) .T # Terms quadratic in x and y
17 D2 = np. vstack ([x, y, np.ones(len(x))]).T # Linear and constant terms
18

19 # Scatter matrices
20 S1 = D1.T @ D1 # S1 is a 3x3 matrix for the quadratic terms
21 S2 = D1.T @ D2 # S2 is a 3x3 matrix representing cross - terms
22 S3 = D2.T @ D2 # S3 is a 3x3 matrix for the linear and constant terms
23

24 # Constraint matrix , ensuring the ellipse is not a degenerate conic section
25 C = np. array ([[0 , 0, 2], [0, -1, 0], [2, 0, 0]] , dtype = float)
26

27 # Compute the inverse of S3 and form matrix T
28 T = -np. linalg .inv(S3) @ S2.T # T is used to transform the problem into a

smaller subspace
29

30 M = S1 + S2 @ T
31 M = np. linalg .inv(C) @ M # Apply the constraint matrix
32 eigval , eigvec = np. linalg .eig(M) # Eigenvalue decomposition of M
33

34 # Ensure that the conic section is an ellipse (con > 0)
35 con = 4 * eigvec [0]* eigvec [2] - eigvec [1]**2
36 ak = eigvec [:, np. nonzero (con > 0) [0]]. flatten ()
37

38 # Combine the coefficients for the quadratic and linear terms
39 D = np. vstack ([D1.T, D2.T]).T
40 coeffs = np. concatenate ((ak , T @ ak)). ravel ()
41

42 # Compute the L2 norm of the residuals (quality of fit)
43 norm_2 = np. linalg .norm(D @ coeffs)
44

45 return coeffs , norm_2

Listing A.5: PnP Algorithm implementation
1 def pnp_algorithm (classified , params , initial_estimate_tvec =None):
2 """
3 Estimates the pose of an object using the PnP algorithm .
4

5 Args:
6 classified (list): A list of detected ellipses .
7 params (tuple): Camera intrinsic parameters (fx , fy , cx , cy , k1 , k2 , p1 ,

p2 , k3).
8 initial_estimate_tvec (numpy .ndarray , optional): Initial translation

vector estimate .
9

10 Returns :
11 tuple : (1, [x_rob , y_rob , z_rob , roll , pitch , yaw]) on success , or -1 on

failure .
12 """
13 if classified != [None] * 10:
14 # Camera intrinsic parameters
15 fx , fy , cx , cy , k1 , k2 , p1 , p2 , k3 = params
16 dist_coeff = np. array ([k1 , k2 , p1 , p2 , k3], dtype =np. float64)
17 # Camera matrix

67

Implemented Codes

18 camera_mat = np. array ([[fx , 0, cx], [0, fy , cy], [0, 0, 1]] ,
dtype =np. float64)

19 # Known 3D points in the object coordinate system
20 known_center = [(-12.67 , 39.79 , 0) , (12.67 , 39.79 , 0) , (-10.5 , 4.63 , 0) ,

(10.5 , 4.63 , 0) ,
21 (-7.5 , -8.14 , 0) , (0, 9.32 , 0) , (7.5 , -8.14 , 0) , (0,

-1.76 , 0)]
22 # Arrays for detected 2D points and corresponding 3D points
23 point2d = np. empty ((0 , 2) , dtype =np. float64)
24 point3d = np. empty ((0 , 3) , dtype =np. float64)
25 is_detected = np. zeros (10)
26

27 # Collect detected points
28 for i in range (10):
29 if classified [i] is not None:
30 is_detected [i] = 1
31 if i > 3:
32 point2d = np. vstack ([point2d , classified [i]. center])
33 point3d = np. vstack ([point3d , known_center [i - 2]])
34

35 # Additional checks for certain key points
36 if is_detected [0]:
37 point2d = np. vstack ([point2d , classified [0]. center])
38 point3d = np. vstack ([point3d , known_center [0]])
39 elif is_detected [2]:
40 point2d = np. vstack ([point2d , classified [2]. center])
41 point3d = np. vstack ([point3d , known_center [0]])
42

43 if is_detected [1]:
44 point2d = np. vstack ([point2d , classified [1]. center])
45 point3d = np. vstack ([point3d , known_center [1]])
46 elif is_detected [3]:
47 point2d = np. vstack ([point2d , classified [3]. center])
48 point3d = np. vstack ([point3d , known_center [1]])
49

50 # Ensure at least 4 points are available for solvePnP
51 if len(point2d) >= 4:
52 if initial_estimate_tvec is None:
53 ret_val , rvec , tvec = cv2. solvePnP (
54 point3d , point2d , camera_mat , dist_coeff ,

flags =cv2. SOLVEPNP_ITERATIVE)
55 else :
56 initial_estimate_rvec = np. zeros ((3 , 1) , dtype =np. float64)
57 initial_estimate_tvec = initial_estimate_tvec . reshape (3, 1)
58 ret_val , rvec , tvec = cv2. solvePnP (
59 point3d , point2d , camera_mat , dist_coeff ,

initial_estimate_rvec , initial_estimate_tvec , True ,
60 flags =cv2. SOLVEPNP_ITERATIVE)
61

62 if not ret_val :
63 return -1
64

65 # Convert rotation vector to rotation matrix
66 rot_mat , _ = cv2. Rodrigues (rvec)
67 # Convert rotation matrix to Euler angles (in radians)
68 r_x_mat , r_y_mat , r_z_mat = rotationMatrixToEulerAngles (rot_mat)

68

Implemented Codes

69 # Convert from radians to degrees
70 r_x = np. degrees (r_x_mat)
71 r_y = np. degrees (r_y_mat)
72 r_z = np. degrees (r_z_mat)
73 # Convert into the robot coordinate system
74 x_rob = float (tvec [2])
75 y_rob = float (tvec [0])
76 z_rob = float (tvec [1])
77 roll = float (r_z)
78 pitch = float (r_x)
79 yaw = float (r_y)
80

81 return 1, [x_rob , y_rob , z_rob , roll , pitch , yaw]
82 else :
83 print (’Insufficient number of detected ellipses ’)
84 return -1
85

86 else :
87 return -1

69

Bibliography

[1] Initial contact: The mobile charging robot – Presenting a vision. Accessed:
2024-07-03. url: https://www.volkswagen-group.com/en/press-rele
ases/initial-contact-the-mobile-charging-robot-presenting-a-
vision-16731 (cit. on p. 8).

[2] Siemens autonomous charging station for electric vehicles. Accessed: 2024-
07-17. url: https://www.siemens.com/global/en/company/storie
s/research- technologies/energytransition/autonomous- charging-
system.html (cit. on p. 8).

[3] Autonomous Charging Technology, RocSys. Accessed: 2024-07-03. url: https:
//www.rocsys.com/technology (cit. on p. 9).

[4] Vladimir Tadic. «Study on Automatic Electric Vehicle Charging Socket
Detection Using ZED 2i Depth Sensor». In: Electronics 12.4 (2023). issn:
2079-9292. doi: 10.3390/electronics12040912. url: https://www.mdpi.
com/2079-9292/12/4/912 (cit. on pp. 9, 11, 25, 36).

[5] Mingqiang Pan, Cheng Sun, Jizhu Liu, and Yangjun Wang. «Automatic
recognition and location system for electric vehicle charging port in complex
environment». In: IET Image Processing 14.10 (2020), pp. 2263–2272. doi:
https : / / doi . org / 10 . 1049 / iet - ipr . 2019 . 1138. eprint: https : / /
ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet- ipr.
2019.1138. url: https://ietresearch.onlinelibrary.wiley.com/doi/
abs/10.1049/iet-ipr.2019.1138 (cit. on pp. 10, 11).

[6] Quan Pengkun, Ya’nan Lou, Haoyu Lin, Zhuo Liang, and Shichun Di. «Re-
search on Fast Identification and Location of Contour Features of Electric
Vehicle Charging Port in Complex Scenes». In: IEEE Access PP (June 2021),
pp. 1–1. doi: 10.1109/ACCESS.2021.3092210 (cit. on pp. 10, 11).

70

https://www.volkswagen-group.com/en/press-releases/initial-contact-the-mobile-charging-robot-presenting-a-vision-16731
https://www.volkswagen-group.com/en/press-releases/initial-contact-the-mobile-charging-robot-presenting-a-vision-16731
https://www.volkswagen-group.com/en/press-releases/initial-contact-the-mobile-charging-robot-presenting-a-vision-16731
https://www.siemens.com/global/en/company/stories/research-technologies/energytransition/autonomous-charging-system.html
https://www.siemens.com/global/en/company/stories/research-technologies/energytransition/autonomous-charging-system.html
https://www.siemens.com/global/en/company/stories/research-technologies/energytransition/autonomous-charging-system.html
https://www.rocsys.com/technology
https://www.rocsys.com/technology
https://doi.org/10.3390/electronics12040912
https://www.mdpi.com/2079-9292/12/4/912
https://www.mdpi.com/2079-9292/12/4/912
https://doi.org/https://doi.org/10.1049/iet-ipr.2019.1138
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ipr.2019.1138
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ipr.2019.1138
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ipr.2019.1138
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.2019.1138
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.2019.1138
https://doi.org/10.1109/ACCESS.2021.3092210

BIBLIOGRAPHY

[7] Pengkun Quan, Ya’nan Lou, Haoyu Lin, Zhuo Liang, Dongbo Wei, and
Shichun Di. «Research on Fast Recognition and Localization of an Electric
Vehicle Charging Port Based on a Cluster Template Matching Algorithm».
In: Sensors 22.9 (2022). issn: 1424-8220. doi: 10.3390/s22093599. url:
https://www.mdpi.com/1424-8220/22/9/3599 (cit. on pp. 10, 12).

[8] ZED Mini Datasheet. Accessed: 2024-06-28. url: https://store.stereola
bs.com/cdn/shop/files/ZED_Mini_Datasheet.pdf?v=1032989265567174
4459 (cit. on p. 23).

[9] NVIDIA Jetson Nano. Accessed: 2024-07-17. url: https://www.nvidia.
com/en- us/autonomous- machines/embedded- systems/jetson- nano/
product-development (cit. on p. 24).

[10] Ultralytics YOLO Docs. Accessed: 2024-06-24. url: https://docs.ultraly
tics.com/ (cit. on p. 27).

[11] John Canny. «A Computational Approach to Edge Detection». In: IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8.6 (1986),
pp. 679–698. doi: 10.1109/TPAMI.1986.4767851 (cit. on p. 38).

[12] OpenCV documentation, Canny Edge Detection. Accessed: 2024-05-13. url:
https://docs.opencv.org/4.9.0/da/d22/tutorial_py_canny.html
(cit. on p. 38).

[13] Satoshi Suzuki and KeiichiA be. «Topological structural analysis of digitized
binary images by border following». In: Computer Vision, Graphics, and
Image Processing 30.1 (1985), pp. 32–46. issn: 0734-189X. doi: https://doi.
org/10.1016/0734-189X(85)90016-7. url: https://www.sciencedirect.
com/science/article/pii/0734189X85900167 (cit. on p. 41).

[14] Radim Hal oy and Jan Flusser. «Numerically Stable Direct Least Squares
Fitting of Ellipses». In: (1998). url: https://api.semanticscholar.org/
CorpusID:15772208 (cit. on p. 43).

[15] A. Fitzgibbon, M. Pilu, and R.B. Fisher. «Direct least square fitting of
ellipses». In: IEEE Transactions on Pattern Analysis and Machine Intelligence
21.5 (1999), pp. 476–480. doi: 10.1109/34.765658 (cit. on p. 43).

[16] Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. Methods for Non-Linear
Least Squares Problems (2nd ed.) English. 2004 (cit. on p. 51).

71

https://doi.org/10.3390/s22093599
https://www.mdpi.com/1424-8220/22/9/3599
https://store.stereolabs.com/cdn/shop/files/ZED_Mini_Datasheet.pdf?v=10329892655671744459
https://store.stereolabs.com/cdn/shop/files/ZED_Mini_Datasheet.pdf?v=10329892655671744459
https://store.stereolabs.com/cdn/shop/files/ZED_Mini_Datasheet.pdf?v=10329892655671744459
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development
https://docs.ultralytics.com/
https://docs.ultralytics.com/
https://doi.org/10.1109/TPAMI.1986.4767851
https://docs.opencv.org/4.9.0/da/d22/tutorial_py_canny.html
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://www.sciencedirect.com/science/article/pii/0734189X85900167
https://www.sciencedirect.com/science/article/pii/0734189X85900167
https://api.semanticscholar.org/CorpusID:15772208
https://api.semanticscholar.org/CorpusID:15772208
https://doi.org/10.1109/34.765658

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background and Motivation
	Problem Statement and Objectives
	Research Hypotheses
	Methodology Overview
	Thesis Structure

	State of the Art
	Recent Developments
	Methodological Approaches

	Components and Technical Background
	The Robotic Arm
	Reference Systems and Transformation Matrices
	Main Features and Performances

	Stereo Camera
	Pinhole Camera Model
	Intrinsic and Extrinsic Camera Parameters
	Stereoscopic Vision
	ZED Mini

	The GPU

	Socket Detection and Pose Estimation
	Proposed Approach
	The Neural Network
	YOLOv8
	The NN Inference

	OpenCV
	Image Processing
	Grayscale Conversion
	Median Filter
	Histogram Equalization
	Power-Law (Gamma) Transformation
	Image Binarization
	Canny Edge Detection
	Contours Extraction

	Circle Fitting and Classification
	Least Squares Fitting
	Circle Classification

	Socket Pose Estimation
	PnP Algorithm

	Parameter Tuning

	Test and Results
	Circle detection
	Pose Estimation
	Position
	Orientation

	Conclusion
	Implemented Codes
	Bibliography

