
Master of Science in Computer Engineering

Master Degree Thesis

Security automation for stateful
firewalls

Supervisors
prof. Fulvio Valenza
prof. Riccardo Sisto
dott. Daniele Bringhenti

Candidate

Luana Pulignano

Academic Year 2023-2024

This work is subject to the Creative Commons Licence

Summary

Stateful functions are functions that keep some internal state across invocations,
allowing them to retain information from previous executions. This is in contrast
to stateless functions, which do not preserve any information between calls and
always behave in the same way regardless of how many times they are called.

In networking, stateful functions play a crucial role in ensuring proper communi-
cation, security, and efficient data transfer. They are used to monitor connections,
manage active sessions, and maintain information about the status of network ac-
tivities. This helps provide continuity, reliability, and control over traffic and re-
sources.

This thesis focuses on stateful firewalls, a key application of stateful functions.
Stateful firewalls are crucial for network management because they enhance the
control and monitoring of data traffic by maintaining the state of active connections.
This capability allows the firewall to make informed decisions about whether to
allow or block traffic based on the state of each session. By preserving connection
states, stateful firewalls significantly improve system security, as they can more
effectively detect and block potential attacks.

This work specifically focuses on enhancing the functionality of VEREFOO, a
framework designed to automatically allocate and configure packet filtering firewalls
within a service graph, meeting the security and connectivity requirements specified
by the user.

As first thing, a series of verification tests were conducted to evaluate the cor-
rectness of the Verification Problem within the framework, which had not been fully
tested previously. These tests use a Service Graph, representing the network con-
figuration, and a set of Network Security Requirements (NSRs) that the network
must adhere to. Various scenarios were tested, all involving stateful firewalls that
were already deployed in the network and configured with their respective rules.
The objective of these tests was to determine whether the NSRs were met under
the given configuration. The test cases were written in XML files and provided to
the platform for analysis.

Following these tests, the analysis shifts to the Refinement Problem, where the
framework automatically generates and optimally allocates firewalls in the network
based on the input Network Security Requirements (NSRs). To model this problem
with stateful firewalls, several Boolean logic formulas were defined. These formulas
aim to describe the behavior of a stateful firewall, specifying when traffic should be
blocked or permitted, and when to consider the connection state in making these
decisions.

3

In the final part of this work, a set of translators for stateful firewalls was
implemented in Java. These translators process XML files containing network con-
figurations and the security policies to be applied. The XML content is translated
into configuration files used by specific firewall technologies, including Iptables, Ip-
Firewall, and Open vSwitch. The resulting configuration files are tailored to each
chosen technology and include all the commands necessary to recreate the network
configuration described in the XML files. Executing these configuration files will
set up a network with the configured security policies in place.

4

Acknowledgements

First, I want to thank my parents, who allowed me to continue my academic journey
and were there for me at every moment, ready to help with any doubt or difficulty.

I also thank the rest of my family, who always believed in me and encouraged
me to achieve this goal.

A special thanks to Peppe, for sharing this chapter of life with me. You were
always there when I needed you, never leaving me alone. In you, I found someone
to celebrate with during the good times, and you gave me support and comfort
when things didn’t go as I wanted. Thank you for your unconditional presence.

I thank my friends from campus for all the moments we spent together and the
laughter we shared. Here, I was able to form meaningful bonds that I hope will
last over time. Your presence made me feel at home, even though I was a thousand
kilometers away.

Thanks to my classmates, with whom I shared the emotions of this journey.
Despite being in different courses, we still managed to build our friendship, even
beyond academic life.

Thanks to my friends back home. The distance may have separated us, but you
showed me that those who truly care for me will always be there, even if we can’t
see each other as often as before.

Finally, I thank myself for not giving up, for finding the courage to leave home
and change my life. It was difficult at first, but this experience allowed me to
broaden my horizons while also realizing how strong my connection to my homeland
is. My wish for myself is to maintain the same dedication and perseverance I’ve
shown over these five years, for all the challenges that await me in the future. Ad
maiora semper!

5

Contents

List of Figures 8

List of Tables 9

Listings 10

Introduction 12

1 Stateful Functions 15

1.1 Stateful meaning . 15

1.1.1 Stateful vs. Stateless . 16

1.2 Network stateful functions . 16

1.2.1 Stateful Functions in Cloud 18

1.3 Stateful Firewall . 20

1.3.1 Generic Structure . 20

1.4 Management Tools and Technologies 21

1.4.1 Iptables . 22

1.4.2 IpFirewall . 23

1.4.3 Open vSwitch . 24

2 z3 theorem prover and VEREFOO 27

2.1 z3 theorem prover . 27

2.1.1 SAT and SMT problems . 29

2.1.2 MaxSMT problem . 30

2.2 Network and Security context . 31

2.3 VEREFOO Model inputs . 33

2.3.1 Service Graph and Allocation Graph 34

2.3.2 Network Security Requirements 35

2.4 VEREFOO Model outputs . 36

6

2.5 VEREFOO Structure . 37

2.5.1 Problem formulation . 38

2.6 Formal models . 38

2.6.1 Traffic model . 39

2.6.2 Network Functions model 39

2.6.3 Traffic Flow model . 41

2.6.4 Service and Allocation Graph models 41

2.6.5 Network Security Requirements model 43

2.6.6 Firewall configuration . 44

3 Thesis objective 48

4 Verification test and Refinement logical model 50

4.1 Stateful Verification test . 50

4.1.1 Verification Policy . 53

4.2 Refinement problem . 61

4.2.1 From stateless to stateful firewalls 62

4.2.2 New constraint formulations 66

5 Translators for stateful firewall technology 69

5.1 Implementation . 69

5.1.1 Iptables . 70

5.1.2 IpFirewall . 72

5.1.3 Open vSwitch . 74

5.2 Examples . 76

Conclusions 83

Bibliography 84

7

List of Figures

1.1 Network graph with stateful nodes 17

1.2 Stateful firewall . 21

1.3 iptables chain example . 22

1.4 The components and interfaces of Open vSwitch 25

2.1 z3 architecture . 28

2.2 SDN architecture . 32

2.3 NFV architecture . 33

2.4 Example of Service Graph . 34

2.5 Example of Allocation Graph referring to the Service Graph in Fig-
ure 2.4 . 35

2.6 VEREFOO components . 37

4.1 Example 1 . 56

4.2 Example 2 . 56

4.3 Stateless schema . 63

4.4 Stateful schema . 64

4.5 Schema for accept conditionally hard constraint 66

5.1 Firewall translator classes schema 70

5.2 Execution of an Iptables script on a Linux machine 81

5.3 Execution of an OVS script on a Linux machine 82

8

List of Tables

1.1 Stateful Network Functions and their states and computations . . . 20

9

Listings

4.1 Example of an XML network graph 51
4.2 Example of an XML stateful firewall containing two rules 53
4.3 Example of an XML list of Property 57
4.4 Complete Example of an XML test case 58
4.5 Additional property . 61
5.1 FirewallDeploy enum . 70
5.2 iptables preliminary commands . 71
5.3 iptables default rule for accepting return traffic 71
5.4 iptables example . 72
5.5 ipfw prelimary commands . 72
5.6 ipfw default rules . 73
5.7 ipfw example . 74
5.8 ovs default rules . 75
5.9 ovs example . 76
5.10 XML input file example . 77
5.11 Firewall A iptables translation . 78
5.12 Firewall B iptables translation . 79
5.13 Firewall A ipfw translation . 79
5.14 Firewall B ipfw translation . 79
5.15 Firewall A ovs translation . 80
5.16 Firewall B ovs translation . 80

10

Introduction

In an era of increasing network complexity and growing cybersecurity threats, the
ability to manage and protect network traffic efficiently is more important than
ever. One of the foundational concepts in modern network security is the distinc-
tion between stateless and stateful functions. Stateless functions treat each request
in isolation, with no memory of previous interactions, making decisions based solely
on static rules like source and destination IP addresses or port numbers. While this
approach may suffice for simple operations, it lacks the flexibility and contextual
awareness needed to address the sophisticated threats and dynamic nature of to-
day’s network environments.

Stateful functions, on the other hand, maintain information about the state of
a connection across multiple invocations, allowing them to make decisions based
on the entire history of the interaction. This capability is crucial in various fields,
including network security, where it enables technologies like stateful firewalls to
monitor and manage data flows more effectively. Unlike stateless firewalls, which
operate on predefined, rigid rules, stateful firewalls track the status of active con-
nections and adjust their behavior dynamically based on the context of the com-
munication. This allows for more intelligent traffic filtering, improved efficiency,
and enhanced security.

The advantages of stateful firewalls are numerous. By keeping track of con-
nection states, they enable more precise and informed decisions about whether to
permit or block traffic. Once a legitimate connection is established, stateful firewalls
allow subsequent traffic to pass without reapplying the same rules for every packet,
reducing the computational load on the system. This dynamic filtering not only
optimizes network resource usage but also improves overall network performance.
Furthermore, from a security perspective, stateful firewalls are significantly better
equipped to detect and mitigate sophisticated attacks. By monitoring the entire
session and not just individual packets, they can identify and block complex threats
such as Denial of Service (DoS) attacks, TCP session hijacking, man-in-the-middle
attacks, and replay or spoofing attempts.

This thesis focuses on extending and improving the functionality of VEREFOO,
a framework designed to automate the allocation and configuration of firewalls
within a network’s service graph. VEREFOO is particularly valuable in security
automation, which aims to manage and enforce security policies with minimal hu-
man intervention. Automation in cybersecurity has become critical as it enables
organizations to respond more quickly to emerging threats, reduce the risk of human
error, and free up security teams to focus on more strategic initiatives. However,
while automation enhances efficiency, it must be carefully designed to complement

12

Introduction

human oversight and ensure that automated systems are both reliable and adapt-
able to changing circumstances.

In particular, this thesis explores the integration and enhancement of stateful
firewalls within the VEREFOO framework. Prior to this work, VEREFOO had
focused primarily on stateless firewalls, and the potential of stateful firewalls had
not been fully explored. Given their superior capability to handle complex, state-
dependent network traffic, the goal of this research is to expand the framework to
better support the advanced features of stateful firewalls. To achieve this, several
key objectives were set.

After introducing the problems and objectives addressed in this thesis, the fol-
lowing section provides a description of how the work is structured.

• Chapter 1: This chapter delves into the concept of stateful functions, high-
lighting the differences between stateful and stateless functions. It provides
an overview of various types of network stateful functions, including those
increasingly used in cloud systems, which have rapidly expanded in recent
years. A particular emphasis is placed on stateful firewalls, the central topic
of this thesis, explaining in detail how state management is handled. The
chapter concludes with a description of several firewall technologies applied
in real-world environments, such as Iptables, IpFirewall, and Open vSwitch.
These tools will be utilized in the implementation phase of the project.

• Chapter 2: This chapter introduces the z3 theorem prover, a solver for the
MaxSMT problem, which is used within the VEREFOO framework to address
the allocation problem. The chapter provides an in-depth explanation of
the MaxSMT problem, tracing its evolution from simpler problems to its
theoretical formulation. Following this, the network and security context is
discussed, with a particular focus on emerging technologies such as Software-
Defined Networking (SDN) and Network Functions Virtualization (NFV).
The chapter then presents the inputs and outputs of VEREFOO, along with a
detailed description of its internal components. Finally, several formal models
employed by the platform are explained, including key concepts such as hard
and soft constraints.

• Chapter 3: This chapter provides a brief overview of the objectives of this
project, explaining the growing importance of stateful firewalls in modern
network security. It highlights why the use of stateful firewalls is strongly
recommended today, focusing on their ability to detect and prevent attacks
by analyzing the state of active connections.

• Chapter 4: This chapter explains two of the three key contributions of this
thesis. The first part focuses on verification tests, conducted to demonstrate
that the framework correctly verifies whether the Network Security Require-
ments (NSRs) are met within a given network graph configuration. New types
of policies are introduced to incorporate stateful functions into the frame-
work. In the second part, new logical statements are formulated to address
the refinement problem for stateful firewalls, detailing how firewalls should
handle packets based on connection state. To implement these features, new
constraints are defined.

13

Introduction

• Chapter 5: This chapter explains the final contribution to the thesis: the
translation from medium-level configuration (XML files) to low-level configu-
ration, utilizing the previously presented technologies for real-world applica-
tions, namely Iptables, IpFirewall, and Open vSwitch. The chapter provides
detailed explanations of how rules are constructed for each tool, presenting all
available options. Finally, some translation examples are included to demon-
strate the correct functionality of the translation process.

• Conclusions: This final chapter presents the conclusions of this work, summa-
rizing the results achieved and offering suggestions for future research, aimed
at expanding the innovations for stateful firewalls introduced in this project.

14

Chapter 1

Stateful Functions

The use of stateful functions has seen significant growth in recent years due to the
numerous advantages they offer in enhancing network operability. These advantages
include improved security, better performance, and increased reliability.

The first part of the chapter explains the meaning of the term ”stateful” in a
general sense. It includes a comparison between stateful and stateless functions to
highlight their differences and determine the appropriate use case for each.

Afterwards, we present an introduction to the application of stateful functions
in network environments. As networks become more complex and demanding,
the ability of stateful functions to maintain context and state information across
multiple interactions has become increasingly valuable, making them a critical com-
ponent in modern network management.

Following this, the chapter delves into the application of stateful functions
within the realm of firewalls. It explains how stateful firewalls operate, detailing
their ability to track and manage the state of network connections. The discussion
covers how stateful firewalls apply filtering rules based on the state and context of
each connection, as opposed to stateless firewalls that treat each packet in isola-
tion. The chapter also highlights the advantages of using stateful firewalls, such as
enhanced security and more effective control over network traffic.

1.1 Stateful meaning

Stateful functions refer to functions that retain some form of state across multiple
invocations, rather than operating solely based on the inputs provided during a
single call. The state refers to the stored data or information that a function or an
object has at a particular time. When a function is stateful, it can remember what
happened during previous calls, influencing its behavior in future calls.

Stateful applications and processes enable users to save, retrieve, and revisit
previously established information and processes online. In these applications, the
server tracks the state of each user session, retaining information about the user’s
interactions and past requests. This allows users to return to their sessions repeat-
edly, with the current interaction potentially influenced by previous ones. Data are

15

Stateful Functions

stored in variables that persist between invocations. The state can be mutable,
meaning it can change over time. Each function call can modify the state, which
will be used in future calls.

1.1.1 Stateful vs. Stateless

In general, stateful systems are more complex than stateless ones because they
require the management and preservation of state across interactions, rather than
depending solely on the data provided at each individual step.

A stateless system does not retain any information about previous interactions
or transactions. Each request or function call is independent and self-contained,
meaning the system does not remember anything about past requests. Stateless
operations are often idempotent, meaning that performing the same operation mul-
tiple times will yield the same result. For example, fetching a resource should return
the same data regardless of how many times the request is made. Since each request
is independent, it can be distributed across multiple servers without concerns about
shared state, making the system easy to scale and load balance. In contrast, com-
plex interactions that rely on past data cannot be managed by a stateless system
and require additional mechanisms to handle state effectively.

On the other hand, stateful systems retain information about past interactions
or transactions, allowing the system to remember previous states or data when
handling future requests. This capability enables the system to make decisions or
perform operations based on historical data. However, managing state introduces
additional complexity, as the system must keep track of multiple states and handle
transitions between them. Despite this complexity, stateful systems can reduce
data transmission overhead and enhance certain system properties.

Therefore, stateful functions are often necessary to meet the requirements of
more sophisticated applications that rely on historical data and context.

1.2 Network stateful functions

In networking, stateful functions refer to operations or processes that maintain
awareness of the state of network connections or sessions over time. Stateful func-
tions are integral to various network components like firewalls, load balancers, and
routing systems, enabling them to make more informed decisions about how to
handle traffic.

Stateful devices keep track of the state of network connections, such as TCP
connections. When a packet arrives, the stateful device checks if it belongs to an
existing connection. If it does, the device knows how to handle it based on the
connection’s state. If it’s a new connection, the device decides whether to allow
it and starts tracking it. The Figure 1.1 shows an example of a network graph
containing stateful nodes.

16

Stateful Functions

Figure 1.1. Network graph with stateful nodes

Some network elements where stateful functions can be found include the fol-
lowing:

• Stateful Load Balancers: They play a crucial role in managing network traffic
by distributing incoming requests across multiple servers while maintaining
awareness of active sessions. This function is particularly important for ap-
plications that require consistent user experiences, such as web applications.
By tracking the state of each session, stateful load balancers ensure that all
packets related to a specific user interaction are directed to the same server.
This capability, often referred to as ”sticky sessions,” guarantees that once
a user logs into an application, their subsequent interactions are handled by
the same server, thus preserving the continuity of their session and improving
the overall user experience.

• Network Address Translation: NAT devices, particularly stateful NAT de-
vices, are essential for managing the translation of internal IP addresses and
ports to external ones. These devices maintain a translation table that records
each active connection. This table allows them to correctly map outgoing
packets to a public IP address and port and ensure that incoming responses
are routed back to the appropriate internal device. For example, when a de-
vice on a private network initiates a connection to the internet, the stateful
NAT device translates the device’s internal IP address and port to a public
address. When a response returns from the internet, the NAT device uses
its state table to direct the response to the correct internal device, ensuring
seamless communication.

• Application-Level Gateways: ALGs are specialized stateful devices designed
to handle specific application protocols such as FTP or SIP, which require

17

Stateful Functions

more intricate management than basic packet forwarding. ALGs maintain
the state of application-layer connections, allowing them to dynamically open
or close ports as needed and to manage complex interactions between clients
and servers. For instance, an FTP ALG monitors the state of an FTP ses-
sion, which includes both control and data connections. It can dynamically
open the necessary ports for data transfer, ensuring that the session remains
operational and that data is correctly routed.

• Session-aware routers: they use stateful functions to manage network ses-
sions across different interfaces or network segments. These advanced routers
ensure that packets belonging to a particular session are consistently routed
along the same path through the network. This is crucial in scenarios involv-
ing multi-path routing, where maintaining session integrity is vital to prevent
out-of-order packet delivery and session disruptions. By tracking the state
of sessions, session-aware routers enhance the reliability and performance of
network communications, ensuring that all packets of a session follow the
intended route and are delivered in sequence.

Firewalls have been intentionally excluded from this list, as they are a central
focus of this thesis and will be addressed in a separate section later in the chapter.

1.2.1 Stateful Functions in Cloud

In the evolving landscape of cloud computing, Function-as-a-Service (FaaS) has
emerged as a prevalent paradigm, allowing users to develop and deploy discrete
functions without worrying about the underlying infrastructure [1]. Traditionally,
in FaaS, these functions operate statelessly, meaning they perform computations
based on data read from external storage systems and write results back to these
systems without retaining any internal state between invocations. This stateless
nature enables efficient scaling and parallel execution but does not support state
management within the function itself.

Recently, however, there has been a shift towards integrating stateful functions
into the serverless model. This integration aims to address the limitations of state-
less functions by enabling applications that require consistent state management
and high throughput [2].

The introduction of stateful functions brings significant benefits, particularly
for use cases where state consistency and transaction coordination are critical. For
example, in microservices architectures, maintaining state consistency and manag-
ing transactions has traditionally been challenging due to the need for low-latency
responses, even under high load. By integrating stateful functions, applications can
better handle complex state management scenarios, providing a more robust and
reliable solution.

Deploying stateful functions in the cloud, however, presents its own set of op-
erational challenges. Managing state across multiple function instances requires
careful consideration of elasticity and failure recovery. Key challenges include:

18

Stateful Functions

1. State Partitioning and Replication: To manage state efficiently, it should be
either partitioned or replicated across active instances of a function. Input
events need to be routed to the appropriate partition deterministically. Dur-
ing scale-out, state partitions may need to be further sharded, while scale-in
requires merging partitions.

2. Snapshot Management: Maintaining a global consistent snapshot of the ap-
plication’s state is crucial for recovery. This involves capturing snapshots of
partitioned state and combining them to ensure consistency at specific points
in time. In the event of a failure, a new instance can be instantiated us-
ing the latest snapshot, allowing it to reprocess events from the most recent
checkpoint.

3. Integration with Stream Processing: By integrating stateful functions into a
stream processing topology and deploying them on streaming dataflow en-
gines, it is possible to leverage existing research and solutions for more effec-
tive state management.

Despite these challenges, the simplicity and cost-effectiveness of Function as a
Service (FaaS) make it an appealing choice. To address the need for performant
and consistent state management, it is essential to explore designs that combine
the benefits of autoscaling and operational efficiency with stateful capabilities. This
“stateful” serverless model aims to expand the range of applications and algorithms
that can benefit from this type of architectures, showing that serverless computing
can support stateful applications while maintaining the ease of use and scalability
that characterize the serverless programming model.

As a result, stateful functions are now adopted from many cloud providers in
their virtualized environments. Servers use them to manage private address spaces,
and offer better QoS and security. Some of the stateful functions supported by
public cloud providers are reported in Table 1.1, specifying how the state is man-
aged and detailing the types of computations performed by each function [3]. These
functions can be categorized into two main types: some require maintaining state
for each individual flow, while others manage state at a coarser level of granular-
ity. Techniques like counters and sketches are used to monitor network usage for
diagnostics and billing.

An example of stateful network function adopted in a cloud environment is
virtual network peering that enables messages between VMs in different virtual
networks (vnets). For it to function correctly, each VM in the involved virtual
network must be capable of translating a virtual IP address from any vnet to
its corresponding physical address. This translation must be regularly updated
whenever VMs are deployed or relocated. Modern implementations of vnet peering
store this translation in a stateful layer within the VMs.

Another example is private links. This feature enables VMs to connect with
PaaS (Platform as a Service) solutions that have public IP addresses through a
more direct route. In this arrangement, a stateful layer within each VM encap-
sulates outgoing traffic using the VM’s virtual network ID and the PaaS service’s
private IP address. On the other hand, a stateful layer at the PaaS service retains

19

Stateful Functions

Stateful Network
Function

State at each VM Computation

Private address spaces A dictionary that maps
customer’s private ad-
dresses to the provider’s
physical addresses; one
entry per remote end-
point that the VM speaks
with.

Lookups, adds and
deletes into the mapping
dictionary

Stateful ACLs Per ongoing flow that
has passed the ACLs, a
hashmap containing the
flow’s five tuple and the
reverse five tuple

Lookups, adds and
deletes into the per-flow
hash table

Billing Total bytes, sliced by
windows and per bill-
able communicating en-
tity such as a datacenter
or a cloud service; also,
bursts and peak rates

Multiple counters and
sketches

Stateful NATs, load bal-
ancers

Per ongoing flow, the
new flow to masquerade
as.

Lookups, adds and
deletes into the rewrite
dictionary

Table 1.1. Stateful Network Functions and their states and computations

information about the virtual and physical addresses from which a flow originates
during decapsulation and uses this data to correctly encapsulate packets for delivery
back to the correct VM.

1.3 Stateful Firewall

In the broader field of applications, stateful functions are notably used in firewalls.
Stateful functions in firewalls refer to the capability of a firewall to keep track of
the state of network connections and apply filtering rules based on this state. This
method enhances security and control compared to stateless filtering, where each
packet is treated independently. A stateful firewall monitors the state of active
connections and makes filtering decisions based on the state and context of each
connection. In contrast, a stateless firewall makes decisions based solely on packet
headers, without considering the connection state.

1.3.1 Generic Structure

A stateful firewall maintains a state table (or connection table) that records de-
tails about active connections, such as source and destination IP addresses, port

20

Stateful Functions

numbers, and the connection state (e.g., established, new). When a packet arrives,
the inspection engine checks the state table to determine if the packet is part of an
existing connection or a new one, as showed in Figure 1.2. This allows the firewall
to make more informed decisions. For a new connection, the firewall examines the
packet against predefined rules and, if allowed, creates a new entry in the state
table. Subsequent packets that match an entry in the state table are permitted
based on the existing connection state, ensuring that only valid packets are allowed
through.

The packets that arrive to the firewall can assume several different states:

• New: The initial packet of a connection attempt.

• Established: Packets belonging to a connection that has been established and
is ongoing.

• Related: Packets that are related to an existing connection but are not part
of the original connection.

• Invalid: Packets that do not match any known connection or have malformed
headers.

Figure 1.2. Stateful firewall

1.4 Management Tools and Technologies

Stateful firewalls can be managed using various tools designed for network traffic
management and firewall configuration. Each tool has its own unique features, so
the choice of technology should be based on the specific goals of the configuration.
Many of these tools are operated through a Linux terminal, while others provide a
web-based GUI for easier management. The following tools are the ones utilized in
this thesis work.

21

Stateful Functions

1.4.1 Iptables

The primary firewall tool used in Linux is Iptables [4]. An Iptables ruleset is
processed by the Linux kernel for each packet, with rules evaluated sequentially.
The action is also known as a target and is only applied if the packet meets the
criteria specified by the rule. A collection of rules is organized into what is called a
chain and it’s possible to jump between chains or return to a previous one during
processing. The most common actions taken by the Linux kernel are to either
ACCEPT or DROP the packet.

For example, consider the firewall rules illustrated in Figure 1.3. The ruleset
begins with the INPUT chain. In the first rule, all incoming packets are directed
to a user-defined chain called DOS PROTECT, where rate limiting is applied. If a
packet does not exceed certain limits, it passes through this chain and RETURNs to
the second rule of the INPUT chain without being DROPped. In this second rule,
the firewall allows all packets belonging to already ESTABLISHED or RELATED
connections, which is generally considered good practice. The ESTABLISHED rule
often accepts the majority of packets and is typically placed at the beginning of
a ruleset for performance reasons. The interesting aspect occurs when the firewall
accepts a packet that does not yet belong to an established connection. Once a
packet is accepted, subsequent packets from the same connection are treated as
ESTABLISHED. The rules that follow are crucial, as they define what types of
connections are allowed and which are forbidden. For instance, certain services,
identified by their port numbers, are blocked, ensuring that packets with those
destination ports cannot establish a connection. At the end the firewall allows all
packets from the local network with IP address 192.168.0.0/16, while all the other
packets are dropped.

Figure 1.3. iptables chain example

22

Stateful Functions

The rulesets of Iptables can be populated by launching a command like the
following one:

iptables -A TCP -p tcp --dport 22 -j ACCEPT

in which it’s specified to accept all the TCP packets destinated to the port
22. To work with stateful functions, Iptables exploits the functionalities of the
conntrack module, that manages the states of the connections. The commands
used become as the followings

iptables -A INPUT -p tcp --dport 22 -m conntrack --ctstate NEW -j ACCEPT

This new rule states that all the incoming TCP packets on port 22 that are part
of a new connection are allowed and a local states is saved when they are recieved.

iptables -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

This rule permits packets related to an established/related communication for
which there is a state expressed in other rules of type -m conntrack --ctstate

NEW like the first one.

1.4.2 IpFirewall

IpFirewall (IPFW) is a stateful firewall written for FreeBSD, a Unix-like operating
system [5]. It presents different components, like the kernel firewall filter rule
processor, NAT, stateful inspection and a lot of facilities for accounting, logging,
and traffic shaping.

IPFW operates using a list of rules that are evaluated in order. Each rule
defines conditions for matching network packets and specifies an action to be taken
if a packet matches the rule. Each rule is assigned a number, which determines the
order in which it is evaluated. Rules are checked from lowest to highest number, and
once a packet matches a rule, the corresponding action is taken, and no further rules
are checked, unless the rule specifies to continue. IPFW can filter packets based on
whether they are incoming (input), outgoing (output), or being forwarded by the
system, for routing scenarios. Rules can match packets based on various criteria like
source and destination IP addresses, source and destination ports, protocol, packet
flags (such as SYN, ACK in TCP) and interface. The actions that the system can
perform on a packet are the subsequent:

• ACCEPT: Allow the packet to continue processing.

• DENY: Drop the packet.

• REJECT: Block the packet and send an error message back to the sender.

• COUNT: Just count the packet but don’t alter its flow.

23

Stateful Functions

• DIVERT: Divert packets to a user-level process, often used with NAT.

• PIPE: Pass the packet through a pipe for traffic shaping.

IPFW is integrated with the tool Dummynet that provides traffic shaping by
using pipes, which control bandwidth, delay, and lossand, and queues that manage
packet scheduling. Stateful packet inspection is supported by creating dynamic
rules that track connections. An example is the following rule

ipfw -q add allow tcp from any to any 80 out via tun0 setup keep-state

which permits TCP outgoing traffic from any IP address to any IP address with
destination port 80 and network interface tun0 to pass through the firewall. The
setup option matches packets that are initiating a new TCP connection, that is
those with the SYN flag set. The option keep-state is responsible of dynamically
create a temporary rule that allows packets that are part of this connection to pass
through, ensuring that the entire connection (not just the initial packet) is allowed.

1.4.3 Open vSwitch

Open vSwitch (OVS) is an open-source, multilayer virtual switch designed to en-
able network automation while supporting standard management interfaces and
protocols [6]. It is primarily used to provide switching for virtualized environ-
ments, including virtual machines and containers like Docker. Open vSwitch is
widely used in cloud computing, data center environments, and Software-Defined
Networking (SDN) architectures. Open vSwitch is designed to integrate seamlessly
with hypervisors like KVM, Xen, and VMware, providing networking capabilities
to VMs and containers. It supports OpenFlow, a protocol that allows direct access
and manipulation of the forwarding plane of network devices, in accordance with
SDN architectures. OVS can perform packet filtering, traffic shaping, and routing,
similar to what traditional physical switches and routers do.

In Open vSwitch, two primary components are responsible for directing packet
forwarding. The first is ovs-vswitchd, a userspace daemon that remains consis-
tent across different operating systems and environments. The second is a datapath
kernel module, typically customized for the host operating system to optimize per-
formance.

Figure 1.4 illustrates how these two components collaborate to manage packet
forwarding. Initially, the kernel’s datapath module receives packets from either a
physical NIC or a virtual NIC of a VM. If ovs-vswitchd has already provided
instructions on how to handle packets of this type, the datapath follows those in-
structions, which could include actions like transmitting the packet through specific
ports, modifying the packet, sampling it, or even dropping it. If the datapath has no
prior instructions, it forwards the packet to ovs-vswitchd in userspace, where the
appropriate handling method is determined. After processing, ovs-vswitchd sends
the packet back to the datapath with the required actions. Typically, ovs-vswitchd
also instructs the datapath to cache these actions for more efficient processing of
similar packets in the future.

24

Stateful Functions

Figure 1.4. The components and interfaces of Open vSwitch

Open vSwitch uses a tuple space search classifier for packet classification in
both the kernel and userspace. This approach involves organizing flow tables into
hash tables based on the fields they match. When flows with different matching
criteria are added, the classifier creates additional hash tables for each unique set
of matched fields. During a search, the classifier checks all relevant hash tables. If
a match is found in one, that flow is returned; if matches exist in multiple tables,
the flow with the highest priority is selected. The classifier dynamically expands
to include more hash tables as new flows with different match criteria are added.

OVS can be used with the Connection tracking system to track the state of a
connection, supporting both stateless and stateful protocols [7]. The module used
for stateful packet inspection is called conntrack. An example in which is used this
module is the following rule

match: in_port(1),tcp,conn_state=-tracked; action: conntrack(zone=10),

normal

This specifies that the rule matches TCP packets that are entering the switch
on port 1. The in port is a virtual or physical port on the switch. conn state

refers to the connection state of the packet as tracked by the conntrack module.
tracked means that it’s the first time the packet is being seen by the switch, so
it doesn’t yet have a connection state associated with it. Each state is preceded
by either a “+” for a flag that must be set, or a “-” for a flag that must be unset.
conntrack(zone=10) assigns the packet to a specific zone, in this case, zone 10.

25

Stateful Functions

Zones are a way to isolate different sets of connections, allowing different connection
tracking rules or behaviors for different zones. normal tells the switch to process
the packet according to its usual switching and routing logic, rather than applying
specific OpenFlow rules. The described rule is often paired with rules that manage
already established connections, like the following

match: in_port(2),tcp,conn_state=+established; action: output:1

This specifies that the rule matches TCP packets that are entering the switch
through port 2. +established means the rule matches packets that are part of an
already established connection. These packets will be forwarded out of port 1.

26

Chapter 2

z3 theorem prover and VEREFOO

In recent years, automation has emerged as a critical concept in the realms of
networking and cybersecurity. As networks and systems become more complex,
the traditional methods of manual configuration and management are increasingly
prone to errors and inefficiencies. Automation addresses these challenges by stream-
lining processes, reducing human intervention, and enhancing overall system relia-
bility. The VEREFOO framework has been developed to address these new security
needs while also providing optimal solutions.

One of the framework’s problems that has been the focus of this thesis work has
been formulated as a MaxSMT problem, discussed in the first part of the chapter.
This problem type is addressed by the z3 theorem prover, which provides both a
model and a solution.

The second part of the chapter outlines the background problems that led to the
emergence of this new model. The remainder of the chapter discusses VEREFOO,
detailing its components and the functionalities it offers.

2.1 z3 theorem prover

One of the framework’s problems that has been the focus of this thesis work has
been formulated as a MaxSMT problem. This problem type is addressed by the z3
theorem prover, which provides both a model and a solution.

z3, developed by Microsoft Research, is a high-performance SMT solver specifi-
cally aimed at addressing problems encountered in software verification and analysis
[8]. Satisfiability Modulo Theories (SMT) extends Boolean satisfiability (SAT) by
incorporating reasoning with additional first-order theories, such as equality, arith-
metic, fixed-size bit-vectors, arrays, and quantifiers. An SMT solver is a tool de-
signed to determine the satisfiability or equivalently, the validity of formulas within
these theories. SMT solvers are used for different aims, including extended static
checking, predicate abstraction, test case generation, and bounded model checking
over infinite domains.

27

z3 theorem prover and VEREFOO

Figure 2.1. z3 architecture

z3 works by converting logical formulas into a format it can process and then
applying a series of algorithms and heuristics to determine whether the formula
is satisfiable (i.e., there exists an assignment of variables that makes the formula
true) or unsatisfiable (no such assignment exists). If the formula is satisfiable,
z3 can also produce a model, which is an example of an assignment that satisfies
the formula. It providess APIs (Application Programming Interfaces) in various
high-level programming languages, C, C++, Java and Python.

z3 is built on a layered architecture that includes:

• Front-End Parsing: z3 can accept inputs in various formats like SMT-LIB, a
standard language for SMT solvers, and custom formats like Python bindings
for more interactive use.

• Preprocessing: z3 includes several preprocessing techniques to simplify and
normalize the input formulas before they are passed to the core solving en-
gine. This can include formula rewriting, constant propagation, and variable
elimination.

• Core Solving Engine: The heart of Z3, this engine uses a combination of
SAT solving and theory-specific reasoning. SAT solvers handle the proposi-
tional logic part, while specialized theory solvers handle constraints related
to arithmetic, arrays, bit-vectors, etc.

• Theory Combination: z3 uses different techniques to combine results from
different theory solvers, allowing it to solve complex formulas that involve
multiple theories simultaneously.

28

z3 theorem prover and VEREFOO

• Conflict Resolution and Learning: z3 employs techniques from SAT solving
like conflict-driven clause learning (CDCL) to efficiently prune the search
space and avoid redundant calculations.

To get the solution, one of the possible solvers is used. The solution provided
can be optimized by z3 thanks to the use of an optimizer engine called z3Opt. The
image 2.1shows the described process.

2.1.1 SAT and SMT problems

The SAT (Boolean Satisfiability) problem is a fundamental problem in computer
science and mathematical logic. It involves determining whether there exists an
assignment of truth values (true or false) to variables in a Boolean formula such
that the formula evaluates to true.

A Boolean formula is composed of variables, logical operators (AND, OR, NOT),
and possibly parentheses to group expressions. The problem asks if it’s possible to
assign the variables in such a way that the entire formula becomes true. If such
an assignment exists, the formula is satisfiable; otherwise, it is unsatisfiable. Given
the structure of the problem, a SAT solver doesn’t need to optimize the solution
but it only needs to find one.

SAT is an NP-complete problem, meaning that any problem in the class NP
(nondeterministic polynomial time) can be reduced to it. This complexity implies
that, while it is easy to verify a solution to a SAT problem, finding that solution
is potentially very hard. No polynomial-time algorithm is known for solving all
instances of SAT.

The Satisfiability Modulo Theories (SMT) problem is an extension of the Boolean
Satisfiability (SAT) problem that involves logical formulas with constraints from
various mathematical theories.

SMT extends Boolean logic by incorporating constraints from various theories.
These theories represent different types of mathematical or logical domains and pro-
vide specialized methods for reasoning about constraints. Common theories include
linear and non-linear arithmetic, arrays, bit-vectors, floating point arithmetic and
uninterpreted functions. The language obtained is the so-called first-order logic.
The formula needs to be satisfied by finding an assignment of values to variables
that satisfies both the Boolean part and the theory-specific constraints.

SMT is generally decidable, meaning that there is an algorithm that will cor-
rectly determine the satisfiability of any given formula. However, the complexity
can vary based on the theories involved. For instance, SMT with quantifiers can be
PSPACE-complete, which is a more complex class than NP-complete. The complex-
ity can be higher when dealing with non-linear arithmetic or certain combinations
of theories.

z3 is highly optimized for performance and can handle both SAT and complex
SMT problems efficiently. It supports incremental solving, which allows users to
add constraints dynamically and solve updated problems without restarting from
scratch. Also, it offers a wide range of theories and their combinations.

29

z3 theorem prover and VEREFOO

2.1.2 MaxSMT problem

MaxSMT (Maximum Satisfiability Modulo Theories) is an extension of the Satisfi-
ability Modulo Theories (SMT) problem. While SMT seeks to determine whether
a formula can be satisfied under given constraints, MaxSMT goes a step further
by trying to maximize the number of satisfiable constraints or optimize a weighted
sum of satisfiable constraints. It’s particularly useful in scenarios where not all
constraints can be satisfied simultaneously, and the goal is to find the best possible
solution under the circumstances.

MaxSMT problems can be classified into different types based on how the soft
constraints are handled, the nature of the optimization goal, and the types of
theories involved. Below are some of the most used models:

• Unweighted MaxSMT: In an unweighted MaxSMT problem, all soft con-
straints are treated equally. The goal is to maximize the number of soft
constraints that are satisfied. This type is useful in scenarios where there
is no preference among the soft constraints, and the objective is simply to
satisfy as many as possible.

• Weighted MaxSMT: In a weighted MaxSMT problem, each soft constraint is
assigned a weight, representing its importance. The goal is to maximize the
total weight of the satisfied soft constraints. This type is useful when some
soft constraints are more important than others, and you want to prioritize
satisfying the more critical ones.

• Partial MaxSMT: In a partial MaxSMT problem, the set of constraints is di-
vided into hard and soft constraints. The goal is to satisfy all hard constraints
and as many soft constraints as possible, similar to unweighted MaxSMT, but
with a clear distinction between mandatory and optional constraints. This
type is suitable for situations where some constraints must absolutely be sat-
isfied, and the others are desirable but not mandatory.

• Weighted Partial MaxSMT: Weighted Partial MaxSMT is a specific type of
MaxSMT problem that combines elements of both weighted MaxSMT and
partial MaxSMT. In this type of problem, constraints are divided into two
categories: hard constraints that must be satisfied and soft constraints that
are weighted. The goal is to satisfy all hard constraints while maximizing the
total weight of the satisfied soft constraints.

Among the various contributions of this thesis to the VEREFOO framework,
one significant aspect is related to weighted partial MaxSMT. This approach dis-
tinguishes between hard and soft constraints. Hard constraints are non-negotiable.
Any solution must satisfy all hard constraints. If even one hard constraint cannot
be satisfied, the problem is unsatisfiable. Soft constraints are desirable but not
mandatory. Each soft constraint is assigned a weight, indicating its importance
or priority. The solver’s goal is to maximize the total weight of the satisfied soft
constraints.

A weighted partial MaxSMT problem is typically formulated as follows:

Given

30

z3 theorem prover and VEREFOO

• A set of hard constraints H = {hi | i = 1, 2, . . . ,m} where hi denotes the i-th
hard constraint

• A set of soft constraints S = {(si, wi) | i = 1, 2, . . . , n} where si denotes the
i-th soft constraint and wi represents its associated weight

The weighted partial MaxSMT problem is expressed as

max
S∑︂

i=1

wi · si

subject to hj, ∀j ∈ [1, H]

To address this type of problem, the z3 solver has been used because it allows
for the inclusion of both hard and soft constraints to find the optimal solution.

2.2 Network and Security context

With the rapid advancement of technology, the landscape of networking and soft-
ware development has undergone significant changes. In particular, new paradigms
like Software-Defined Networking (SDN) and Network Functions Virtualization
(NFV) have recently been introduced, revolutionizing the way networks are de-
signed and managed. These technologies have brought a new level of flexibility and
adaptability to software, enabling it to be more elastic and dynamic in response to
changing demands.

SDN decouples the network control plane from the data plane, allowing for
centralized management and greater control over network traffic [9]. This separation
simplifies the network architecture, making it easier to implement changes, optimize
performance (Figure 2.2).

NFV, on the other hand, virtualizes network functions that were traditionally
carried out by dedicated hardware devices, such as routers, firewalls, and load
balancers [10]. By virtualizing these functions, NFV allows them to run on standard
servers, reducing hardware costs and increasing the agility of network operations.
An example of an NFV architecture is shown in Figure 2.3.

31

z3 theorem prover and VEREFOO

Figure 2.2. SDN architecture

Together, SDN and NFV enable organizations to respond more quickly to evolv-
ing business needs and technological developments. They allow for the rapid de-
ployment and scaling of network services, without the need for extensive hardware
changes. This dynamic approach not only improves efficiency but also supports the
creation of more resilient and adaptive networks that can better handle the com-
plexities of modern digital environments. As a result, these paradigms are playing a
crucial role in shaping the future of networking and software development, driving
innovation and enabling more agile, scalable, and secure solutions.

Thanks to these new technologies, users are able to dynamically create Service
Function Graphs (SG), which represent virtual networks that are independent of
the underlying physical infrastructure.

A key challenge is ensuring that the Network Security Requirements (NSRs) are
met within these SGs. Traditionally, the management of security has been separate
from network management, which can lead to potential errors or suboptimal con-
figurations due to miscommunication or lack of expertise. Additionally, the manual
configuration of Network Security Functions (NSFs), such as firewalls, is slow and
prone to human error, increasing the risk of vulnerabilities.

32

z3 theorem prover and VEREFOO

Figure 2.3. NFV architecture

With the rise of virtualized networks and SDN, distributed architectures have
become more common, allowing firewalls to be placed at multiple points to enhance
security and efficiency. However, manually configuring these complex architectures
is challenging and demands automation, alongside formal verification techniques,
to ensure correct and optimized solutions.

Despite the importance of the issue, the automation of network security con-
figuration has been underexplored in the literature. To address these challenges,
VEREFOO has been designed to tackle these emerging problems, as described in
[11], [12] and [13]. This approach aims to automatically allocate and configure
packet filters—traditional firewall technology—within an SG defined by the service
designer, ensuring that the specified security requirements are met. The method
uses a formal model to guarantee correctness (correctness-by-construction) and op-
timizes the placement and configuration of firewalls, minimizing the number of
firewalls and rules, thus improving performance and reducing resource costs [14].

The proposed solution formulates the problem as a partial weighted Maximum
Satisfiability Modulo Theories (MaxSMT) problem, which can be solved automat-
ically. This approach guarantees that the solution satisfies all the hard logical
constraints and is optimal according to the defined criteria.

2.3 VEREFOO Model inputs

This section introduces the components used by the framework as input: the Service
Graph (SG), that represents the logical topology of the network and the NSRs, that

33

z3 theorem prover and VEREFOO

are the security properties that the network must satisfy. The SG is often reduced
in the Allocation Graph(AG), explained later.

2.3.1 Service Graph and Allocation Graph

A Service Graph (SG) represents the logical topology of a virtual network, encom-
passing an interconnected set of service functions and network nodes that together
deliver a complete end-to-end network service. Unlike a Service Function Chain
(SFC), where functions are arranged linearly, an SG can feature a complex archi-
tecture with multiple traffic paths from sources to destinations. The SG is designed
by a network service designer, focusing solely on providing networking services to
users, whose access points are represented by the SG’s endpoints (e.g., clients,
servers, subnetworks). Security considerations are not involved at this stage. An
example of a Service Graph can be seen in Figure 2.4.

The functions available to the service designer for constructing an SG are known
as Network Functions (NFs), which provide various functionalities such as web
caching and load balancing. Low-level functions like switches and routers, which
simply forward incoming packets based on a forwarding or routing table, are not
explicitly included in the SG. However, this does not mean they are absent from the
real network; rather, the SG abstracts these functions, concentrating on more com-
plex service functions while assuming the low-level functions correctly implement
the SG connections.

Figure 2.4. Example of Service Graph

The SG designed by the service designer is automatically processed to create
an internal representation called the Allocation Graph (AG). By default, for each
link between network nodes or functions, a placeholder element known as an Al-
location Place (AP) is generated. The tool then determines whether to place a
firewall at each AP to achieve the optimal allocation scheme. Figure 2.5 shows the
corresponding Allocation Graph referring to the Service Graph in Figure 2.4.

34

z3 theorem prover and VEREFOO

However, a security-skilled service designer has the flexibility to either enforce
the placement of a firewall at a specific AP, preventing its removal by the tool, or
prohibit certain APs from being considered as valid firewall positions. This capa-
bility enhances the flexibility of the methodology and reduces computation time
by narrowing the solution space the tool must search. It is particularly useful in
mixed scenarios where firewalls are implemented not only by Virtual Network Func-
tions (VNFs) but also by existing hardware packet filters, which can be modeled
as immutable firewalls within the tool.

Figure 2.5. Example of Allocation Graph referring to the Service Graph in Figure 2.4

While these manual inputs can be beneficial, they also carry the risk of prevent-
ing the tool from finding a solution or leading to a suboptimal one, as potentially
acceptable—and even optimal—solutions might be excluded based on user input.

2.3.2 Network Security Requirements

The methodology used primarily addresses the security requirements related to
connectivity within the network service, specifically focusing on which traffic flows
should be permitted or blocked between any pair of endpoints in the Service Graph
(SG). These security constraints are a key input to the framework and are defined by
a default behavior that applies to traffic flows for which no specific instructions are
provided by the user, and a set of specific Network Security Requirements (NSRs),
which indicate whether a particular traffic flow should be allowed (reachability
requirement) or blocked by a firewall (isolation requirement).

The service designer has three approaches to define these security constraints.
The first two approaches rely on traditional whitelisting and blacklisting methods.
In the whitelisting approach, all traffic flows are blocked by default, except for those
explicitly allowed by the user through reachability requirements. Conversely, in the
blacklisting approach, all traffic flows are permitted by default, except for those
explicitly denied through isolation requirements.

35

z3 theorem prover and VEREFOO

The third approach, known as the specific approach, allows the service designer
to explicitly define only the requirements of interest, including both isolation and
reachability constraints. The system will then compute the optimal solution based
solely on this specific set of constraints, automatically determining whether to al-
low or block unspecified traffic flows. In this approach, it is assumed that the
entire set of security requirements is conflict-free. This assumption ensures that no
prioritization criteria are needed in the formulation of the security constraints.

2.4 VEREFOO Model outputs

This section outlines the potential outputs of the framework after resolving a se-
curity issue using automated technology. The following analysis is referred to the
logical level and not the physical one.

In the event of a successful outcome, the framework provides two key outputs,
that are the allocation scheme for distributed firewall instances within the Service
Graph (SG), and the Filtering Policy (FP) for each allocated firewall. The firewall
allocation scheme identifies the specific Allocation Places (APs) where firewall in-
stances should be deployed. Each FP consists of a set of filtering rules configured for
the allocated firewalls, expressed in an abstract language that remains independent
of any specific firewall configuration languages.

A Filtering Policy includes a default action that can be whitelisting or black-
listing. In the first case the firewall blocks all traffic unless explicitly allowed while
in the second the firewall permits all traffic unless explicitly blocked. The FP also
includes a set of automatically generated rules, free from anomalies, that state how
specific types of traffic flows are managed.

The allocation scheme produced ensures the deployment of the minimum num-
ber of firewall required to apply all the Network Security Requirements, thereby
optimizing resource usage. Simultaneously, each Filtering Policy is allocated with
the minimum number of rules necessary to meet the requirements, reducing memory
consumption and enhancing firewall performance.

Once the output solution is generated, it can be automatically deployed into
the virtual network using existing technologies. If a new security configuration
is needed, such as in response to a new detected attack, new Network Security
Requirements can be provided to the tool, that will automatically generate the
necessary configuration updates.

However, if no viable solution is found, the framework generates a non-enforceability
report. This report helps the user understand why the NSRs could not be applied.
A potential motivation for failure could be that the SG does not provide adequate
Allocation Places for firewall setting due to user-imposed constraints. In such cases,
one strategy for obtaining a working solution is to relax some of the user-defined
constraints and rerun the process.

36

z3 theorem prover and VEREFOO

2.5 VEREFOO Structure

VEREFOO handles the configuration of a complex network, represented by a Ser-
vice Graph (SG) or Allocation Graph (AG), and allocates a set of Network Security
Functions in order to meet the specified security policies. The process is automated
and delivers an optimized solution. The framework is organized into modules, which
are presented below and showed in the picture 2.6.

Figure 2.6. VEREFOO components

First, users can define Network Security Requirements (NSRs) using the Pol-
icy GUI, with the option to express them as either High-Level Policies (HLP) or
Medium-Level Policies (MLP), depending on their experience. HLPs are automati-
cally translated into MLPs by the H2M (High-to-Medium) Module. MLPs contain
all the detailed information necessary for configuring the Network Security Func-
tions (NSFs) later.

The Policy Analysis (PAN) module represents a preliminary phase, where it
receives the NSRs as input and checks for errors and conflicts. It ensures that the

37

z3 theorem prover and VEREFOO

NSRs are conflict-free and returns a minimal set of constraints to be satisfied. If
conflicts cannot be automatically resolved, the module provides a report detailing
the issues. Next, the NF Selection Module (SE) reviews the expressed NSRs and
selects the necessary NSFs from a pre-built NF catalog, which includes all available
functions for the system.

The central component of the architecture is the Allocation, Distribution, and
Placement (ADP) Module. It computes the final Service Graph with the selected
NSFs, using the medium-level NSRs, the list of chosen NSFs, and the original Ser-
vice Graph, which is transformed into the corresponding Allocation Graph. The
ADP module employs a partial weighted MaxSMT solver, z3Opt, to find the op-
timal allocation of NSFs within the network. The solver treats security require-
ments as non-negotiable hard constraints, while other specifications are treated as
weighted, optional soft constraints to achieve the most optimal solution.

Finally, the M2L (Medium-to-Low) Module translates the medium-level policy
rules generated by the solver into low-level language. This translation is tailored to
the specific implementation of each network function that needs to be configured.

2.5.1 Problem formulation

To achieve the correct solution for the firewall allocation and auto-configuration
problem, a partial weighted MaxSMT problem is employed. This formulation is
essential to meet the three main goals of the proposed approach: full automation,
optimization, and formal correctness. The first one is guaranteed since a MaxSMT
problem can be solved without human intervention, apart from the initial input
specification. Optimization is accomplished by representing the objectives as soft
constraints, while formal correctness is ensured by defining the correctness require-
ments as hard constraints. The used approach not only enhances confidence in the
solution’s accuracy but also eliminates the need for post-verification, as the solution
is considered formally correct if all components are modeled accurately.

It is essential that these models capture all relevant information influencing the
solution’s correctness, including both the security requirements and the network’s
forwarding behavior where these requirements must be applied. Additionally, to
maintain scalability, the number and complexity of constraints in the MaxSMT
problem must be minimized. Therefore, effective modeling of the problem compo-
nents during MaxSMT formulation is a critical step.

2.6 Formal models

This section presents the formal models defined and used in VEREFOO to describe
network elements, including Allocation and Service Graph, traffic, firewalls, and the
predicates and functions employed.

38

z3 theorem prover and VEREFOO

2.6.1 Traffic model

The traffic t, also called class of packet, is represented as a predicate based on
the values of the TCP/IP 5-tuple packet fields [15]. In particular, t is represented
as a disjunction of predicates qt,1 ∨ qt,2 ∨ · · · ∨ qt,n, where each qt,i is defined over
the 5-tuple fields. A packet is part of class t if and only if its 5-tuple satisfies at
least one qt,i. To maintain simplicity while ensuring a flexible model, each qt,i is
assumed to be the conjunction of five predicates, one for each field in the 5-tuple.
For convenience, each qt,i is written as:

qt,i = (IPSrc, IPDst, pSrc, pDst, tPrt)

where IPSrc, IPDst, pSrc, pDst, and tPrt are the five predicates.

In the case of IPv4 addresses, it’s supposed that IPSrc and IPDst are conjunc-
tions of four predicates, one for each byte of the IP address. Each of these four
predicates can represent either a single integer or a range of values between 0 and
255. The predicates for IPSrc or IPDst are written using dotted-decimal notation
ip1 : ip2 : ip3 : ip4, where ipi is either a single decimal number or a range of values,
denoted [ipi,l, ipi,h]. The wildcard ‘*’is used to exprress the range [0, 255]. If ipi
represents a range, the predicates following it must be ‘*’, in order to correctly
represent network IP addresses. For instance, IPSrc = 127 : 100 : 9 : ∗ stands for
the predicate x1 = 127∧x2 = 1002∧x3 = 9, where xi is the variable corresponding
to the i-th byte of the source IP address packet field. This predicate matches all
IP addresses within 130.192.5.0/24.

The predicates for source and destination ports sPort and dPort can specify
a single integer value or a range in the bounds of 0 to 65535. The notation with
the wildcard ‘*’, used for each byte of an IP address is also used for port numbers,
to indicate the range [0, 65535]. For example, ”90” refers to the predicate x = 90,
and ”[600, 700]” refers to x ≤ 700 ∧ x ≥ 600, where x represents the port field.

The predicate tPrt is used for the transport-layer protocol and it can identify a
single value or a group of values from a finite set of possible protocols, in most of
the case a set containing “TCP” and “UDP” as protocols. In this case, the wildcard
‘*’ is used to represent all the protocols admitted.

The symbol t0 represents the empty set of packets. In case t0 = false, it indicates
absence traffic. Let Q represent the set of all predicates qt,i that can be defined
using the notation just described, and let T denote the set of all disjunctions of such
predicates, which corresponds to the set of all packet classes t that can be expressed
by this model. It can be shown that T is closed under conjunction, disjunction,
and negation. For two traffic predicates t1, t2 ∈ T , t1 is considered a sub-traffic of
t2, denoted as t1 ⊆ t2, if t1 represents a subset of the packets that t2 represents,
meaning t1 ⇒ t2.

2.6.2 Network Functions model

Each Virtual Network Function (VNF) in the Service Graph (SG) processes incom-
ing traffic and generates corresponding output traffic. Its behavior is determined

39

z3 theorem prover and VEREFOO

by its configuration and it is abstractly represented using two functions. The first
one is for the forwarding behavior, so it decides which input packets are dropped by
the VNF and which are allowed through. The other one is for the transformation
behavior, that states how packets are modified as output for each class of input
traffic.

The forwarding behavior of a VNF at node ni ∈ NA is modeled by the predicate
denyi : T → B, which returns true for incoming traffic t ∈ T if node ni drops
all packets represented by t. The traffic I id represents the set of packets that are
dropped, meaning denyi(t) is true if and only if t ⊆ I id. On the other hand, I ia
represents the complement of I id, indicating the packets that are allowed through
the VNF (i.e., not dropped). Thus, I id ∪ I ia = true and I id ∩ I ia = false. This
definition will be expanded in the following chapters, where Stateful Firewalls will
be discussed in greater detail.

The transformation behavior of the VNF at node ni ∈ NA is captured by the
function Ti : T → T , called the transformer, which maps input traffic to the
corresponding output traffic.

Even though the transformer function Ti alone may be sufficient, it is important
to keep it separate from denyi(t), as the former represents the transformation be-
havior, while the latter deals with the forwarding behavior. For instance, Ti(t) = t0
applies to all t where denyi(t) is true. However, a transformer handles traffic modi-
fications independently of whether packets are dropped. For example, a firewall can
be modeled as a VNF where Ti(t) = t, which is the identity function, as the fire-
wall does not alter forwarded traffic, while the denyi(t) predicate indicates whether
packets are dropped according to firewall rules. This separation enables traffic
transformations to be calculated independently of firewall configurations, which
are governed solely by the denyi predicates.

For many VNFs, Ti is the identity function, and the following constraint applies
to the deny predicate because they do not block packets:

denyi(t) = false.

This model usually suits traffic monitoring functions, which examine and send on
packets without alteration, as well as load balancers, which send on packets without
modification but to destinations determined dynamically. Since the decision on
packet forwarding is not predictable, a load balancer is shaped as a function that
can potentially send any packet to any destination.

There are also VNFs that do not use an identity transformer. One example is
NAT, which can perform two different transformations. The first transformation
modifies the source IP address of outgoing packets, typically used to allow devices
on a private network to access the public internet by replacing their internal private
IP with the NAT device’s public IP address. The second transformation modifies
the destination IP address of incoming packets, which is useful when services inside
the private network (such as a web server) need to be accessed externally. In other
cases, the NAT leaves the packet unchanged.

40

z3 theorem prover and VEREFOO

2.6.3 Traffic Flow model

To define the transformation behavior of an Allocation Graph (AG) a set of traffic
flows, denoted as F , is required. Each flow f ∈ F stands for a class of packets
created by a source endpoint ns ∈ NA, directed towards a destination endpoint nd ∈
NA, and routed through an ordered sequence of intermediate nodes na, nb, · · · ∈
NA. These intermediate nodes send the packets at each hop, potentially altering
them, as is done by a NAT, or dropping them. Formally, a flow is represented as
a list [ns, ts,a, na, ta,b, nb, . . . , nk, tk,d, nd], where ti,j stands for the traffic sent from
ni to nj. Each ti,j results from the alteration of the previous traffic in the flow by
node ni.

Additionally, each ti,j is homogeneous for node nj, meaning all packets rep-
resented by ti,j are treated identically by nj, either being fully dropped or fully
forwarded. If node nj enforces transformations, such as a NAT, all packets must
belong to the same class.

To complement this definition, three additional functions feature AG flows:

1. π : F → (NA)∗, which maps a flow to the ordered sequence of network nodes
traversed by the flow, including the destination but excluding the source.

2. τ : F × NA → T , which maps a flow and a node to the ingress traffic for
that node belonging to the flow. If the flow f does not cross node n, then
τ(f, n) = t0.

3. ν : NA × F → NA ∪ {n0}, which maps a node n and a flow f to the next
node in the flow after n. If n is not in f or is the last node, the function
returns n0, meaning no node.

If two flows f1 and f2 traverse the same list of nodes and, for each of those
nodes, the ingress traffic of f1 is a subset of the ingress traffic of f2, then f1 is
called a subflow of f2, denoted as f1 ⊆ f2.

2.6.4 Service and Allocation Graph models

A Service Graph (SG) is represented as a directed graph, denoted byGS = (NS, LS),
where NS is the set of vertices symbolizing the network nodes in the SG, and LS is
the set of edges that depict the directed connections between these nodes. Specifi-
cally, the vertex set NS consists of two disjoint subsets: ES and SS. The subset ES

includes end points, which can correspond to terminals, physical servers, or sub-
networks within the underlying infrastructure where virtual instances of functions
are deployed. On the other hand, SS consists of service functions—basic Network
Functions (NFs) that do not provide security against cyberattacks but are used to
establish end-to-end services.

Each element in NS is uniquely identified by a non-negative integer index k.
Let nk indicate the element of NS corresponding to index k. In turn, each edge
in LS is represented by a pair of non-negative integers li,j ∈ LS, where i /= j,
indicating a directed connection from node ni to node nj. We define index(nk) = k.

41

z3 theorem prover and VEREFOO

Additionally, each node nk ∈ NS is associated with either a single IP address, an
IP address range, or, more generally, a set of IP addresses. Let I be the set of all
IP addresses, and α : NS → 2I be a function that assigns each node n ∈ NS a set
of IP addresses.

An Allocation Graph (AG) is also a directed graph, denoted as GA = (NA, LA),
where NA is the set of vertices representing network nodes, and LA) is the set
of links interconnecting them. The primary distinction between the AG and the
Service Graph (SG) lies in the composition of the vertex set. Particularly, in the
AG, the set NA is divided into three disjoint subsets: NA = EA ∪ SA ∪ AA. Here,
EA and SA represent endpoints and middleboxes, respectively, while AA represents
the set of Allocation Places (APs) where firewall instances may be deployed.

When the AG is automatically generated from the SG, it incorporates additional
requirements regarding firewall placement provided by the service designer. In this
process, the endpoints and service functions remain unchanged, so EA = ES and
SA = SS. Since the IP address assignments also remain the same from the SG to the
AG, the mapping function α is extended to apply to NA without any modifications.

The process of allocating firewalls in an AG is based on Boolean logic and
specific constraints derived from the SG. The AG is modeled by adding APs between
network nodes when necessary. The decision to allocate a firewall at a particular
node is governed by a predicate allocated(n), which indicates whether the node n
has been assigned a firewall.

In this model, two Boolean predicates are critical: forbidden(li,j) and forced(li,j),
which apply to each edge li,j between nodes ni and nj. These predicates specify
whether the creation of an AP on that edge is prohibited or required, respectively.
The key constraint ensures that both predicates cannot be true simultaneously for
the same edge:

∀li,j ∈ LS.¬(forbidden(li,j) ∧ forced(li,j))

This means that an edge cannot both prohibit and require the allocation of a
firewall.

The allocation process follows two rules:

1. 1. If an AP is not prohibited on an edge (i.e., forbidden(li,j) = false), an AP
ah is created between nodes ni and nj, replacing the original edge with two
new edges. This adds the AP to the AG:

∀li,j ∈ LS.(¬forbidden(li,j)) =⇒ (ah ∈ AA ∧ li,h ∈ LA ∧ lh,j ∈ LA)

2. 2. If an AP is prohibited on an edge (i.e., forbidden(li,j) = true), the edge
remains unchanged in the AG:

∀li,j ∈ LS.(forbidden(li,j)) =⇒ (li,j ∈ LA)

Finally, if a firewall is explicitly required on an edge (i.e., forced(li,j) = true),
the predicate ensures that the AP ah created on that edge must have a firewall
allocated:

∀li,j ∈ LS.(forced(li,j)) =⇒ allocated(ah)

42

z3 theorem prover and VEREFOO

These rules provide a structured approach to determining where firewalls are
placed in the network, ensuring that the allocation meets the service designer’s
requirements while respecting the constraints on AP creation.

2.6.5 Network Security Requirements model

The Network Security Requirements (NSRs) for a Service Graph (SG) involve a
default behavior D, which can be one of the already explained in section 2.3.2.
Additionally, there is a set of specific NSRs, denoted as Rs. Each element r ∈ Rs is
expressed in a medium-level language as a pair r = (C, a), where C is the condition
and a is the action to be applied to the flows that meet the condition.

The condition C is a predicate similar to those used to define packet classes,
written as C = (IPSrc, IPDst, pSrc, pDst, tPrt). Here, IPSrc and pSrc define
the traffic source, while IPDst, pDst, and tPrt specify the destination and protocol
involved in the requirement. A flow f = [es, ts,a, . . . , tk,d, ed] fulfills C if the following
conditions are met:

1. The source and destination endpoints es and ed have IP addresses that match
IPSrc and IPDst, (a(es) ⊆ C.IPSrc and a(ed) ⊆ C.IPDst).

2. The source traffic matches IPSrc and pSrc, (ts,a ⊆ (C.IPSrc, ∗, C.pSrc, ∗, ∗)).

3. The destination traffic matches IPDst, pDst, and tPrt, (tk,d ⊆ (∗, C.IPDst,
∗, C.pDst, C.tPrt)).

Let Fr ⊆ F represent the set of flows that fulfill r.C. Consequently, all subflows
of any flow in Fr are also in Fr.

The action a belongs to the set AT = {DENY,ALLOW}. If r.a = DENY, the
requirement is called an isolation requirement, meaning that all flows fulfilling r.C
are dropped, so the packets does not reach their destination. If r.a = ALLOW, it
is a reachability requirement, meaning at least one flow fulfilling r.C is allowed to
reach the destination.

An isolation requirement r can be formally written as:

∀f ∈ Fr.∃i.(ni ∈ p(f) ∧ allocated(ni) ∧ denyi(t(f, ni)))

A reachability requirement r can be formally written as:

∃f ∈ Fr.∀i.(ni ∈ p(f) ∧ allocated(ni) =⇒ ¬denyi(t(f, ni)))

As will be discussed in Chapter 4, the definitions of isolation and reachability
requirements currently used by VEREFOO will be reused and extended in the new
formulations for stateful firewalls.

The requirements formulated here are passed as hard constraints in the MaxSMT
problem used to configure the firewall, meaning they must always be respected.

The set RD is defined to constitute the default behavior when D is either black-
listing or whitelisting. For every correct combination of 5-tuple elements not cov-
ered by any requirement in Rs, there is an element in RD, where r.C matches
that combination and r.a = ALLOW if D = blacklisting, or r.a = DENY if
D = whitelisting. The complete set of requirements is given by R = Rs ∪RD.

43

z3 theorem prover and VEREFOO

2.6.6 Firewall configuration

To correctly configure the firewalls, the MaxSMT problem plays a crucial role.
Specifically, both hard constraints, as presented in the previous section, and soft
constraints must be defined to properly structure the problem.

Soft constraints are essential for determining the optimal allocation and configu-
ration of firewalls. These constraints incorporate free variables that allow the solver
to explore different possibilities. The soft clauses are designed with two primary
optimization objectives in mind: minimizing the number of allocated firewalls and
minimizing the number of rules assigned to each firewall. Since the free variables
are shared across all clauses, the solution that satisfies both goals simultaneously is
considered optimal. However, weights are assigned to prioritize minimizing firewalls
since is more relevant from a prestational point of view.

To achieve the first objective, since a firewall can be allocated at any ah ∈ AA, a
set of soft clauses is introduced to express a preference for not allocating firewalls at
each ah. This is represented by the following expression, where Soft(f, c) denotes
a soft clause with formula f and weight c:

∀ah ∈ AA.Soft(allocated(ah) = false, ch)

This structure helps the solver prioritize solutions that reduce the number of
firewalls while ensuring the overall optimization objectives are met.

To achieve the second optimization goal (minimizing the number of rules for
each firewall), each firewall placed at ah ∈ AA is characterized by a default action,
dh, and a set of specific rules, Uh. Each rule u ∈ Uh is defined by a condition
C, which includes parameters such as source/destination IP addresses, ports, and
protocol types, and an action a, which can either be DENY or ALLOW. This
is similar to how Network Service Requirements (NSRs) are defined, though the
relationship between NSRs and firewall rules is not one-to-one; a single firewall rule
can address multiple NSRs, and a single NSR might require multiple firewall rules
across different nodes.

Given the potentially large number of firewall rules, it is important to limit the
number of soft clauses required to minimize the rules, ensuring a balance between
scalability and accuracy. To achieve this, the default action dh for each firewall is
determined before solving the MaxSMT problem, aiming to minimize the number
of rules needed to satisfy the NSRs.

The default action is chosen based on the NSRs that impact the AP ah. If
more reachability requirements (which allow traffic) pass through ah than isolation
requirements (which block traffic), the default action dh is set to ALLOW. Other-
wise, it is set to DENY. This pre-selection reduces the need for specific rules, thus
minimizing the total number of rules required.

This approach is formalized by the predicate wlst : AA → B, which is true if the
default action of a firewall at ah is DENY. Additionally, the predicate enforces :
AT ×R → B indicates whether the default action dh satisfies a given requirement r,
i.e., if dh = r.a. This method ensures an efficient firewall configuration by reducing
unnecessary rules and focusing on optimal default actions.

44

z3 theorem prover and VEREFOO

To optimize firewall configuration, it is necessary to determine the set of rules
that might be useful for each firewall allocated at an allocation place (AP) ah ∈ AA.
These rules are referred to as placeholder rules and form the set Ph, where each
rule pi = (C, a) is similar to the real firewall rules in Uh. A placeholder rule pi is
included in Ph if it might be needed to satisfy security requirements for the flows
passing through ah and if the default action dh assigned to the firewall is insufficient
to meet those requirements.

The set Qh represents all the possible packet (5-tuples) classes for which specific
rules might be needed in the firewall located at ah. A 5-tuple is included in Qh if
two conditions are met:

1. The traffic flow f passes through ah (ah ∈ p(f)).

2. The default action dh of the firewall in ah does not satisfy the security re-
quirement r (enforces(dh, r) is false).

Thus, Qh is the smallest set of 5-tuples that satisfy these conditions:

∀r ∈ R, ∀f ∈ FM
r .(ah ∈ p(f) ∧ ¬enforces(dh, r)) ⇒ (∀q ∈ t(f, ah).q ∈ Qh)

This ensures that Qh contains only the packet classes for which specific firewall
rules are necessary. If a packet q ∈ Qh meets these conditions, a corresponding
placeholder rule pi is defined in Ph with an action opposite to dh. The conditions
for each pi are expressed using free variables, whose values are not fixed in ad-
vance but are automatically determined by the solver. These values are calculated
in accordance with the hard constraints defined in the MaxSMT problem, ensur-
ing that the solution respects the given constraints while optimizing the firewall
configuration.

Placeholder rules will only be included in Uh if the solver determines they are
necessary to achieve the optimal solution. This decision is represented by the
predicate configured : Ph → B, which is true if a placeholder rule is configured
in the firewall. To minimize the number of rules, a soft constraint is introduced,
favoring a solution where as few rules as possible are configured, possibly no one:

∀pi ∈ Ph.Soft(¬configured(pi), ch,i)

If at least one placeholder rule pi ∈ Ph is configured, a firewall instance must
be placed at ah, as indicated by the following hard constraint:

(∃pi ∈ Ph.configured(pi)) ⇒ allocated(ah)

Finally, since the primary goal is to minimize the number of firewalls allocated,
the weight of the soft constraint for firewall allocation allocated(ah) must be greater
than the sum of the weights associated with all placeholder rules:∑︂

i:pi∈Ph

ch,i < ch

45

z3 theorem prover and VEREFOO

A second category of soft clauses is introduced to emphasize the preference
for using wildcards in each component of filtering rules. Wildcards are beneficial
not only for minimizing the number of placeholder rules during the pre-processing
phase but also for reducing the number of rules in the solution of the MaxSMT
problem. The following statements specify the use of wildcards for each of the four
components of IP addresses in dotted quad notation and also for transport-level
ports and protocols:

∀i,∀j, πi ∈ Πk : ∀j ∈ {1, 2, 3, 4}.Soft(πi : IPSrcj = ∗; ckij1)

∀i, ∀j, πi ∈ Πk : ∀j ∈ {1, 2, 3, 4}.Soft(πi : IPDstj = ∗; ckij2)

∀pi ∈ Pk. Soft(pi.pSrc = [0, 65535], cki3)

∀pi ∈ Pk. Soft(pi.pDst = [0, 65535], cki4)

∀pi ∈ Pk. Soft(pi.tProto = ∗, cki5)

The weight given to the configuration of the placeholder rule must exceed the
total weight of the wildcard-based rules. If the placeholder rule is unnecessary and
thus not configured, there is no point in attempting to apply wildcards for that rule.
Therefore, the following constraint must be satisfied for every placeholder rule:

4∑︂
j=1

(ckij1 + ckij2) < cki

The generated set of statements is subsequently handled by the MaxSMT solver.
If partial satisfiability is attained, the solver returns the optimal firewall alloca-
tion and configuration. However, if partial satisfiability is not achieved, a non-
enforceability report is produced. This report may highlight a lack of APs caused
by additional user-defined constraints that hinder their creation. The insights from
the report can guide adjustments for the next iteration of the tool, once the inputs
have been updated accordingly.

To finalize the configuration of each firewall’s filtering policy (FP), additional
hard clauses are necessary beyond those previously introduced. These clauses en-
sure that the firewall’s configuration is consistent with its allocation and traffic
policies. For each access point ah, the potential input traffic set Th must be con-
sidered. For each traffic t ∈ Th, two hard constraints are defined: one for when the
firewall must drop t and another for when it must allow t.

To formulate these constraints, the predicates matchAll : Ph × Q → B and
matchNone : Ph ×Q → B are introduced. Given a placeholder rule pi ∈ Ph and a
5-tuple q ∈ Q:

• The matchAll predicate returns true if the rule conditions completely include
the values of the 5-tuple fields, i.e., if matchAll(pi, q) ⇐⇒ q ⊆ pi : C.

46

z3 theorem prover and VEREFOO

• The matchNone predicate returns true if the packet classes expressed by the
rule conditions and by the 5-tuple fields are disjoint, i.e., ifmatchNone(pi, q) ⇐⇒
¬(q ∩ pi : C).

Then, for each t ∈ Th, the two hard clauses are defined as follows:

1. When the firewall must drop traffic t:

allocated(ah) ∧ denyh(t) ⇒ (a) ∨ (b)

where:

(a) = wlst(ah) ∧ ∀q ∈ t. (∀pi ∈ Ph.¬configured(pi) ∧matchNone(pi, q))

(b) = ¬wlst(ah) ∧ ∃pi ∈ Ph.(configured(pi) ∧matchAll(pi, q))

In this formula, the right side states that either condition (a) or condition (b)
must hold. Condition (a) requires the firewall to be in whitelisting mode and
for all 5-tuple fields of traffic t to match none of the configured placeholder
rules. Condition (b) states that if the firewall is in blacklisting mode, at least
one configured rule must match all fields of the traffic t, explicitly blocking
it.

2. When the firewall must allow traffic t:

allocated(ah) ∧ ¬denyh(t) ⇒ (a) ∨ (b)

where:

(a) = wlst(ah) ∧ ∃pi ∈ Ph.(configured(pi) ∧matchAll(pi, q))

(b) = ¬wlst(ah) ∧ ∀q ∈ t. (∀pi ∈ Ph.¬configured(pi) ∧matchNone(pi, q))

Here, Condition (a) states that if the firewall is in whitelisting mode, there
must be at least one configured rule that matches all fields of traffic t. Con-
dition (b) indicates that if the firewall is in blacklisting mode, none of the
configured rules can block the traffic t, allowing it through.

These formulas ensure that the firewall behaves correctly according to its con-
figuration regarding whether to drop or allow specific traffic flows.

47

Chapter 3

Thesis objective

Security automation involves the use of software and technology to manage security
tasks with minimal human intervention, enhancing both efficiency and response
times in dealing with cyber threats. It plays a critical role in modern cybersecurity
by automating repetitive or complex tasks.

By automating many of the repetitive and time-consuming tasks in cyberse-
curity, organizations reduce the risk of human error and can respond to threats
faster, often within milliseconds. This reduces the potential for damage and data
loss, while also allowing security teams to focus on more critical or strategic initia-
tives. Automating policy enforcement, warning control, prioritization, and incident
management will significantly enhance business efficiency and reduce costs [16].

It improves threat detection, speeds up response times, simplifies compliance,
and reduces the burden on security teams, allowing for a more scalable and con-
sistent security posture across the board. However, implementing and managing
automation requires careful planning to ensure it complements human oversight
without over-reliance on automated processes.

This problem has been addressed in the VEREFOO framework, which aims
to enhance security automation within network systems. In particular, this thesis
focuses on expanding the functionalities of VEREFOO, with a specific emphasis on
stateful firewalls, a feature that had not been explored in detail prior to this work.

A stateful firewall is a critical component of modern network security due to its
ability to monitor and manage the state of active connections, making it far more
effective than stateless firewalls in protecting networks. Unlike stateless firewalls,
which make decisions based solely on static rules such as source/destination IP
addresses or port numbers, stateful firewalls track the entire context of a connection,
including its state (whether it’s established, related, or new).

These firewalls enable dynamic packet filtering, reducing the load on network
resources and improving efficiency. Once a legitimate connection is established,
stateful firewalls allow traffic to flow without constantly checking the rules for each
individual packet, saving time and resources.

From a security standpoint, stateful firewalls are more effective at recognizing
abnormal behavior and blocking unauthorized access attempts or malicious traffic,
making them highly effective in defending against Denial of Service (DoS) attacks.

48

Thesis objective

By monitoring the entire session, they can prevent complex attacks like TCP session
hijacking or man-in-the-middle attacks. Additionally, stateful firewalls are essential
in preventing spoofing and replay attacks, as they track the sequence and timing
of packets.

The objectives of this thesis are to present a method for implementing security
automation, with a specific focus on stateful firewalls, in order to highlight the
importance of integrating stateful firewalls into modern systems to enhance security
and accelerate processes.

This work aims to extend the VEREFOO platform with new functionalities,
following an initial phase dedicated to verifying the correctness of the existing fea-
tures. Specifically, this phase involves conducting tests to demonstrate the accurate
functioning of the Verification Problem.

In the subsequent phase, a logical model has been proposed to represent Stateful
Firewalls within the framework. Finally, a translator has been implemented to
adapt network configurations specified as input into configuration files for various
platforms, including Iptables, Open vSwitch, and IpFirewall.

49

Chapter 4

Verification test and Refinement
logical model

This chapter presents the effective contribution of this thesis work. The central
element of this work is represented by stateful firewalls, and all the next works are
incentred on this topic. Furthermore all the completed tasks aim to extend the
functionalities of the VEREFOO framework, described in the previous chapter.

As first thing, verification tests were done, in order to show the correctness of the
verification part of the framework. Thus, a group of test case have been written
and executed to show if the presented network configuration with the contained
policy matches the Network Security Requirement given in input.

The second part of this chapter presents a formal model, proposed to define
an auto-configuration algorithm for the refinement problem with the presence of
stateful firewalls. In particular the model has been defined through the use of
boolean logic formulas.

4.1 Stateful Verification test

In this part of the work, a group of test case has been submitted to the algorithm,
to show its correctness in the verification process. In particular, this process differs
from the one of auto-configuration in which the position of the firewalls and the
policy to insert inside the firewalls are decided by the algorithm. In this case,
instead, the firewalls are already allocated and they contains the filtering policy
written.

The scope of the verification part is to check if the Network Security Policy
(NSPs) given as input are compatible with the structure of the network presented.
In doing so, VEREFOO formulates this issue as a MaxSMT problem managed by
z3, whose functions are exploited in the Java code of the algorithm. The framework
takes the specification in input through an XML file while the output is showed
in the console. In particular, the framework returns SAT if the NSPs can be
satisfied by the presented configuration and UNSAT if they don’t meet the network
disposition.

50

Verification test and Refinement logical model

The XML file contains the graph describing the network composition. Every
element is inserted as a node element and it can be of many functional types:
Stateful Firewall, Load Balancer, NAT, WebClient, WebServer and others. An IP
address is associated to every node, used also to express the neighbourhood with
other nodes.

In 4.1 is showed an example of an XML file describing a network graph with its
elements inside.

<graphs>

<graph id="0">

<node functional_type="WEBCLIENT" name="10.0.0.1">

<neighbour name="30.0.0.2"/>

<configuration description="A simple description" name="confA">

<webclient nameWebServer="20.0.0.1"/>

</configuration>

</node>

<node functional_type="WEBCLIENT" name="10.0.0.2">

<neighbour name="30.0.0.2"/>

<configuration description="A simple description" name="confB">

<webclient nameWebServer="20.0.0.1"/>

</configuration>

</node>

<node functional_type="TRAFFIC_MONITOR" name="30.0.0.2">

<neighbour name="10.0.0.1" />

<neighbour name="10.0.0.2" />

<neighbour name="30.0.0.1" />

</node>

<node functional_type="STATEFUL_FIREWALL" name="30.0.0.1">

<neighbour name="30.0.0.2"/>

<neighbour name="20.0.0.1" />

<configuration description="A simple description" name="conf1">

<stateful_firewall defaultAction="DENY">

</stateful_firewall>

</configuration>

</node>

<node functional_type="WEBSERVER" name="20.0.0.1">

<neighbour name="30.0.0.1"/>

<configuration description="A simple description" name="confB">

<webserver>

<name>b</name>

</webserver>

</configuration>

</node>

</graph>

</graphs>

Listing 4.1. Example of an XML network graph

The relevant type is the Stateful Firewall, in which are inserted the rules used
to block or allow the connections. In the firewall is always expressed a default
action, used when there aren’t specific rules that match the packets that arrives
to the firewall. In VEREFOO, three types of actions are possible, as specified
in Chapter 2: blacklisting, whitelisting and specific, but, in this framework, for
stateful firewalls only the whitelisting mode can be used. As a consequence, the

51

Verification test and Refinement logical model

default action applied is always DENY.

A substantial difference between stateless and stateful firewalls in VEREFOO
is the type of actions that they support. Indeed, in a stateless firewall only two
actions are permitted:

• ALLOW, used to consent the passage of a specific packet or class of packets.

• DENY, used to block the passage of a specific packet or class of packets.

Instead, a stateful firewall offers these actions and a new one, that is AL-
LOW COND. This action is the one that permits to work with a state because
it consents or blocks the traffic conditionally. In particular, given a source A and a
destnation B on which a traffic t is built on, a rule of ALLOW COND applied on
t means that

• the traffic from the source A to the destination B is always permitted.

• the traffic from the destination B to the source A is permitted conditionally.

Therefore, this action implies two operations at the same time. Particularly,
the ALLOW COND action corresponds to the ALLOW for the first part, so if
a stateless rule is needed, both ALLOW COND and ALLOW can be used, but
remebering that the first option enables a return connection.

To model the concept of time, that should be used for a stateful connection,
the command ALLOW COND includes the first connection (from A to B) that
is always permitted and the second (from B to A) that is permitted as a respose
to the first one. This means that, in temporal order, the latter must come after
the former. Otherwise, in case the first request would come frome B to A, the
connection would be denied by the firewall because it’s not a response to A. So, the
construction of this command permits to introduce the concept of time for stateful
firewalls.

What is explained above is reported also in the XML files used for testing. In
particular, a rule is inserted in the firewall as a element. Each element contains the
following:

• action, that can be ALLOW or ALLOW COND

• source, the source IP address. It can be a single IP address or a subnet
expressed with the use of -1.

• destination, the destination IP address. It can be a single IP address or a
subnet expressed with the use of -1.

• protocol, that is the protocol used. It can be TCP, UDP or ANY that means
both.

• src port, the source port. It can be a single port number or an interval. The
wildcard ’*’ means all the port numbers.

52

Verification test and Refinement logical model

• dst port, the destination port. It can be a single port number or an interval.
The wildcard ’*’ means all the port numbers.

In Listing 4.2 is reported a stateful firewall containing two rules. The first con-
tains an ALLOW COND rule with 10.0.0.1 as source IP address and 20.3.0.0/16
as destination IP address of the subnet. The second is an ALLOW rule having
10.0.0.2 as source IP address and 20.6.2.0/24 as destination IP address of the sub-
net.

<node functional_type="STATEFUL_FIREWALL" name="30.0.0.1">

<neighbour name="30.0.0.2"/>

<neighbour name="20.0.0.1" />

<configuration description="A simple description" name="conf1">

<stateful_firewall defaultAction="DENY">

<elements>

<action>ALLOW_COND</action>

<source>10.0.0.1</source>

<destination>20.3.-1.-1</destination>

<protocol>TCP</protocol>

<src_port>10</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>10.0.0.2</source>

<destination>20.6.2.-1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>300-400</dst_port>

</elements>

</stateful_firewall>

</configuration>

</node>

Listing 4.2. Example of an XML stateful firewall containing two rules

4.1.1 Verification Policy

In the context of firewalls, a Network Security Policy (NSP) outlines the rules and
protocols that govern how a firewall controls inbound and outbound traffic. As
the primary defense in network security, firewalls implement these policies to either
allow or deny data packets, aligning with the organization’s security goals. A robust
firewall policy plays a crucial role in safeguarding the network from unauthorized
access, malicious traffic, and potential security breaches.

Unlike the stateless case, where only two types of NSPs are considered, the Ver-
ification Problem with Stateful Firewalls takes into account four types of Network
Security Policies (NSPs):

• Isolation

• Simple Reachability

53

Verification test and Refinement logical model

• Strong Reachability

• Conditional Reachability

Each of them has a formal definition in First-Order Logic. To introduce this
notation, we need to describe some predicates and functions, as they are used to
define our policies.

• allocated(n) : N → B. Predicate that returns true if a firewall is allocated in
the allocation node n ∈ N .

• deny(t) : T → B. Predicate that returns true for ingress traffic t ∈ T if
the node drops all packets belonging to t while it returns false if there is the
possibility that it allows the ingress traffic t.

• cond permit(t) : T → B. Predicate that returns true if the possibility that
t ∈ T is allowed by n ∈ N is conditioned by the existence of a state while it
returns false if either the traffic t is blocked or it may be allowed independently
from the existence of a state.

• π(f) : F → (N)∗. Function that maps a flow f ∈ F to the ordered list of
network nodes that are crossed by that flow, including the destination, but
not the source.

• τ(f, n) : F × N → T. Function which maps a flow f ∈ F and a node n ∈ N
to the ingress traffic of that node belonging to that flow. In case flow f does
not cross node n, the function returns t0, that is the empty set.

Isolation Policy

∀f ∈ Fr. ∃i. (ni ∈ π(f) ∧ allocated(ni) ∧ denyi(τ(f, ni)))

For all the possible flows satisfying the requirement conditions, it must exist at
least a function allocated in the flow path that blocks the flow traffic it receives.

This definition is independent from the presence of stateful functions.

Simple Reachability Policy

∃f ∈ Fr. ∀i. (ni ∈ π(f) ∧ allocated(ni) → ¬denyi(τ(f, ni)))

There exists at least a flow satisfying the requirement conditions where, for all
flow path nodes, if a function is there allocated, there is the possibility that it allows
the flow traffic it receives.

This definition is independent from the presence of stateful functions.

Strong Reachability Policy

54

Verification test and Refinement logical model

∃f ∈ Fr. ∀i.(ni ∈ π(f) ∧ allocated(ni) → ¬denyi(τ(f, ni))

∧ ¬cond permiti(τ(f, ni)))

It must exist a possible flow satisfying the requirement conditions, such that,
for all the nodes of the flow path, if there is a function allocated, then it allows the
traffic (independently from the state):

1. If the node has a stateless function allocated, then it allows the flow traffic;

2. If the node has a stateful function allocated, then it allows the flow traffic
indipendently from the state.

Conditional Reachability Policy

∃f ∈ Fr
(︁
(1) ∧ (2) ∧

(︁
∀f ∈ Fr

(︁
(1) ∧ (2) ∨ (3)

)︁)︁)︁
(1) = ∀i

(︁
ni ∈ π(f) ∧ allocated(ni) → ¬denyi(τ(f, ni))

)︁
(2) = ∃i

(︁
ni ∈ π(f) ∧ allocated(ni) ∧ cond permiti(τ(f, ni))

)︁
(3) = ∃i

(︁
ni ∈ π(f) ∧ allocated(ni) ∧ denyi(τ(f, ni))

)︁
For all the possible flows satisfying the requirement conditions, two conditions

must be true:

1. For all the nodes of the flow path, if there is a function allocated, then there
is the possibility that it allows the traffic (¬denyi(τ(f, ni)));

2. There exists at least a node of the path which allows that traffic only if there
is a state (cond permiti(τ(f, ni))).

The denyi and cond permiti predicates have different meanings:

• denyi(p) is true if ni blocks p, while it is false if there is the possibility that
it allows p;

• cond permiti(p) is true if the possibility that p is allowed by ni is conditioned
by the existence of a state, while it is false if either the traffic is blocked or it
may be allowed independently from the existence of a state.

To better understand how these types of policies work, the following examples
are provided, illustrating whether the presented policies are satisfied or not, along
with the reasons behind it.

In the first example, there are two nodes separated by a stateful firewall. In the
second configuration, the setup is similar, but a third node is introduced, connecting
the first two.

55

Verification test and Refinement logical model

The stateful firewall fi allows traffic from e1 to e2, and it saves the state (so,
there is the possibility that it allows the return traffic from e2 to e1) and it has
”deny” as the default action.

Figure 4.1. Example 1

Figure 4.2. Example 2

• The isolation policy from e2 to e1 is NOT satisfied in any example.

– In Example 1, there is the possibility that the firewall fi allows the
traffic.

– In Example 2, there is a path through nj where the traffic can always
flow.

• The simple reachability policy from e2 to e1 is satisfied in BOTH examples.

– In Example 1, there is the possibility that the firewall fi allows the
traffic.

– In Example 2, there is a path through nj where the traffic can always
flow.

• The strong reachability policy from e2 to e1 is satisfied ONLY in Example 2.

– In Example 1, there is the possibility that the firewall fi blocks the
traffic.

56

Verification test and Refinement logical model

– In Example 2, there is a path through nj where the traffic can always
flow.

• The conditional reachability policy from e2 to e1 is satisfied ONLY in Example
1.

– In Example 1, there is the stateful firewall fi that allows the traffic only
conditionally.

– In Example 2, there is a path through nj where the traffic can always
flow.

The described policies are included in the XML input file for the Verification
process. Specifically, they are utilized within the Property element to define the
Network Security Requirements that the network configurations must satisfy.

The XML Property attribute refers to the input graph by using its ID and spec-
ifies the source and destination where the policy is applied through IP addresses.
In Listing 4.3, an example is provided that demonstrates a list of properties defined
for various network elements within the same network schema.

<PropertyDefinition>

<Property graph="0" name="StrongReachabilityProperty" src="10.0.0.1"

dst="20.0.0.1"/>

<Property graph="0" name="ConditionalReachabilityProperty" src="20.0.0.1"

dst="10.0.0.1"/>

<Property graph="0" name="ReachabilityProperty" src="20.0.0.1"

dst="10.0.0.1"/>

<Property graph="0" name="StrongReachabilityProperty" src="10.0.0.2"

dst="20.0.0.1"/>

<Property graph="0" name="IsolationProperty" src="20.0.0.1"

dst="10.0.0.2"/>

</PropertyDefinition>

Listing 4.3. Example of an XML list of Property

Right away, a complete example of a Verification Test is provided (Listing 4.4).
In this test case, three WebClients interact with two WebServers. The clients are
hidden behind a NAT that communicates with the public network. Two stateful
firewalls are present: the first one between the clients and the NAT, with IP address
20.0.0.3, and the second one between the NAT and the servers, with IP address
20.0.0.2.

In the first firewall, rules are defined for each client, specifying which server they
are allowed to connect to. Specifically, clients 10.0.0.1 and 10.0.0.2 can connect to
server 30.0.5.2, while client 10.0.0.3 can connect to server 30.0.5.3. The second
firewall contains the rules concerning the NAT, with IP address 20.0.0.1, and the
servers on the network.

At the end of the XML file, the properties that we want to ensure in this
network are defined. To determine whether these properties are satisfied, we need
to compare them with the firewall rules and verify their compatibility with the
NSRs.

57

Verification test and Refinement logical model

After running the Java code with the XML file as input, the program produces
the following output:

17:53:48.739 [main] INFO result - SAT

This indicates that the problem is satisfied (i.e., the properties conform to the
firewall rules). The rest of the output, not shown here, provides additional infor-
mation regarding the computation process. The properties are satisfied because

• The connection between the WebClient 10.0.0.1 and the WebServer 30.0.5.2
respects the StrongReachabilityProperty, as the first firewall contains a rule
of ALLOW COND from 10.0.0.1 to 30.0.5.2 and the second contains a rule
of ALLOW COND from 20.0.0.1 to 30.0.5.2.

• The connection between the WebServer 30.0.5.2 and the WebClient 10.0.0.1
respects the ConditionalReachabilityProperty, as the first firewall contains
a rule of ALLOW COND from 10.0.0.1 to 30.0.5.2 and the second contains a
rule of ALLOW COND from 20.0.0.1 to 30.0.5.2.

• The connection between the WebClient 10.0.0.2 and the WebServer 30.0.5.2
respects the StrongReachabilityProperty, as the first firewall contains a rule
of ALLOW from 10.0.0.2 to 30.0.5.2 and the second contains a rule of AL-
LOW COND from 20.0.0.1 to 30.0.5.2.

• The connection between the WebServer 30.0.5.2 and the WebClient 10.0.0.2
respects the IsolationProperty, as the first firewall contains a rule of ALLOW
from 10.0.0.2 to 30.0.5.2 and the second contains a rule of ALLOW COND
from 20.0.0.1 to 30.0.5.2.

• The connection between the WebClient 10.0.0.3 and the WebServer 30.0.5.3
respects the ReachabilityProperty, as the first firewall contains a rule of
ALLOW COND from 10.0.0.3 to 30.0.5.3 and the second contains a rule of
ALLOW COND from 20.0.0.1 to 30.0.5.3.

• The connection between the WebServer 30.0.5.3 and the WebClient 10.0.0.3
respects the ConditionalReachabilityProperty, as the first firewall contains
a rule of ALLOW COND from 10.0.0.3 to 30.0.5.3 and the second contains a
rule of ALLOW COND from 20.0.0.1 to 30.0.5.3.

<?xml version="1.0" encoding="UTF-8"?>

<NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../../xsd/nfvSchema.xsd">

<graphs>

<graph id="0">

<node functional_type="WEBCLIENT" name="10.0.0.1">

<neighbour name="20.0.0.3" />

<configuration description="A simple description"

name="confA">

<webclient nameWebServer="30.0.5.2" />

</configuration>

</node>

58

Verification test and Refinement logical model

<node functional_type="WEBCLIENT" name="10.0.0.2">

<neighbour name="20.0.0.3" />

<configuration description="A simple description"

name="confA">

<webclient nameWebServer="30.0.5.2" />

</configuration>

</node>

<node functional_type="WEBCLIENT" name="10.0.0.3">

<neighbour name="20.0.0.3" />

<configuration description="A simple description"

name="confA">

<webclient nameWebServer="30.0.5.3" />

</configuration>

</node>

<node functional_type="STATEFUL_FIREWALL" name="20.0.0.3">

<neighbour name="10.0.0.1" />

<neighbour name="10.0.0.2" />

<neighbour name="10.0.0.3" />

<neighbour name="20.0.0.1" />

<configuration description="A simple description" name="conf1">

<stateful_firewall defaultAction="DENY">

<elements>

<action>ALLOW_COND</action>

<source>10.0.0.1</source>

<destination>30.0.5.2</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>10.0.0.2</source>

<destination>30.0.5.2</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW_COND</action>

<source>10.0.0.3</source>

<destination>30.0.5.3</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</stateful_firewall>

</configuration>

</node>

<node functional_type="NAT" name="20.0.0.1">

<neighbour name="20.0.0.3" />

<neighbour name="20.0.0.2" />

<configuration description="A simple description" name="conf2">

<nat>

<source>10.0.0.1</source>

<source>10.0.0.2</source>

<source>10.0.0.3</source>

59

Verification test and Refinement logical model

</nat>

</configuration>

</node>

<node functional_type="STATEFUL_FIREWALL" name="20.0.0.2">

<neighbour name="20.0.0.1" />

<neighbour name="30.0.5.2" />

<neighbour name="30.0.5.3" />

<configuration description="A simple description" name="conf1">

<stateful_firewall defaultAction="DENY">

<elements>

<action>ALLOW_COND</action>

<source>20.0.0.1</source>

<destination>30.0.5.2</destination>

<protocol>ANY</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

</elements>

<elements>

<action>ALLOW_COND</action>

<source>20.0.0.1</source>

<destination>30.0.5.3</destination>

<protocol>ANY</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

</elements>

</stateful_firewall>

</configuration>

</node>

<node functional_type="WEBSERVER" name="30.0.5.2">

<neighbour name="20.0.0.2" />

<configuration description="A simple description"

name="confB">

<webserver>

<name>30.0.5.2</name>

</webserver>

</configuration>

</node>

<node functional_type="WEBSERVER" name="30.0.5.3">

<neighbour name="20.0.0.2" />

<configuration description="A simple description"

name="confB">

<webserver>

<name>30.0.5.3</name>

</webserver>

</configuration>

</node>

</graph>

</graphs>

<PropertyDefinition>

<Property graph="0" name="StrongReachabilityProperty" src="10.0.0.1"

dst="30.0.5.2" />

<Property graph="0" name="ConditionalReachabilityProperty"

src="30.0.5.2" dst="10.0.0.1" />

<Property graph="0" name="StrongReachabilityProperty" src="10.0.0.2"

dst="30.0.5.2" />

60

Verification test and Refinement logical model

<Property graph="0" name="IsolationProperty" src="30.0.5.2"

dst="10.0.0.2" />

<Property graph="0" name="ReachabilityProperty" src="10.0.0.3"

dst="30.0.5.3" />

<Property graph="0" name="ConditionalReachabilityProperty"

src="30.0.5.3" dst="10.0.0.3" />

</PropertyDefinition>

<ParsingString></ParsingString>

</NFV>

Listing 4.4. Complete Example of an XML test case

If, in another case, we were to add the property shown in Listing 4.5 to the
same test case, the output of the problem would be as follows:

19:27:04.013 [main] INFO result - UNSAT

because the IsolationProperty from 30.0.5.3 to 10.0.0.3 cannot be satisfied due
to the ALLOW COND rule from 10.0.0.3 to 30.0.5.3 in the first firewall and the
ALLOW COND rule from 20.0.0.1 to 30.0.5.3 in the second firewall.

<Property graph="0" name="IsolationProperty" src="30.0.5.3" dst="10.0.0.3" />

Listing 4.5. Additional property

In the same way, a series of test cases was executed, and their outputs produced
the expected results, demonstrating that the Verification Problem is correctly im-
plemented and solved in VEREFOO.

4.2 Refinement problem

This part thesis addresses the Refinement Problem for stateful firewalls, focusing
on VEREFOO’s solution for the automatic allocation and configuration of firewalls
within a given Service Graph (SG). This methodology ensures that the firewall setup
adheres to user-defined Network Security Requirements (NSRs) while minimizing
the number of firewalls and the rules associated with them.

A key advantage of this approach is its applicability to real-world scenarios. It
supports situations where new security policies need to be applied to an already
existing SG or where a manually defined SG requires automatic enhancement with
security functions. The process not only computes optimal firewall placements but
also generates the required rules, ensuring strict compliance with NSRs. Moreover,
the methodology is based on a formal model, ensuring correctness and efficiency,
providing a complete and robust solution.

The following sections outline the transition from a stateless to a stateful ap-
proach, highlighting key analogies and differences between the two. After this
comparison, a logical model is proposed to define how stateful firewalls should be
implemented and developed, offering a structured framework for their integration.

61

Verification test and Refinement logical model

4.2.1 From stateless to stateful firewalls

In this problem, it is crucial to differentiate the types of packets that a firewall
processes in order to understand its behavior, particularly in highlighting the ad-
ditional functionality that a stateful firewall provides over a stateless one.

Figure 4.3 illustrates the set of input packets for a stateless firewall, denoted as
ni. Specifically, the input packet class is divided into two categories:

• Iai , representing the class of packets that the firewall allows (i.e., it does not
drop them);

• Idi , representing the class of packets that the firewall drops.

These classes can be derived from any firewall configuration, regardless of whether
the firewall operates under a whitelisting or blacklisting mode. The two classes are
represented as predicates that are disjunctions of elementary conditions defined
over the IP 5-tuple:

• Iai = q1,i,a ∨ q2,i,a ∨ · · · ∨ qn1,i,a;

• Idi = q1,i,d ∨ q2,i,d ∨ · · · ∨ qn1,i,d.

where each elementary predicate q is defined as (IPSrc, IPDst, pSrc, pDst, tProto),
specifying the source and destination IP addresses, source and destination ports,
and the protocol type.

When applying the concept of atomic predicates, we can express each predicate
q, which represents a class of packets, as a disjunction of atomic predicates:

qx,i,a = p1,x,i,a ∨ p2,x,i,a ∨ · · · ∨ pnx,x,i,a

In this expression, each pk,x,i,a is an atomic predicate, representing a minimal,
disjoint subset of packets. These atomic predicates cannot be further divided and
do not overlap with each other. This way of breaking down packet classes allows for
a more granular representation of the traffic a firewall must handle. For instance, if
qx,i,a describes a broader class of packets (like all packets from a certain source IP),
each atomic predicate pk,x,i,a would represent a smaller, non-overlapping sub-class
(e.g., packets from the source IP with a specific protocol and port number).

To refine the firewall’s behavior, we introduce notations to describe the rela-
tionships between these packet classes and their atomic predicates:

• q ∈ Izi means that the predicate q is a sub-class of the packet class Izi . For
example, Izi might represent all packets the firewall is configured to handle,
and q is one of the specific sub-classes (like allowed or denied packets).

• p ∈ q means that p (an atomic predicate) is a sub-class of q, meaning that p
is one of the atomic predicates in the disjunction representing q.

62

Verification test and Refinement logical model

In the MaxSMT problem based on atomic predicates, two key hard constraints
must be satisfied:

1. Accepting Packets:

∀q ∈ Iai .∀p ∈ q.¬denyi(p)

This constraint ensures that for all packet classes q in the set Iai (the set
of packets that the firewall allows), and for all atomic predicates p that are
part of those packet classes q, the firewall must not deny those packets. This
essentially guarantees that all packets in the allowed class are permitted by
the firewall.

2. Dropping Packets:

∀q ∈ Idi .∀p ∈ q. denyi(p)

This constraint ensures that for all packet classes q in the set Idi (the set
of packets that the firewall denies), and for all atomic predicates p in those
packet classes, the firewall must deny them. This guarantees that all packets
in the denied class are blocked by the firewall.

These constraints formalize how a firewall processes packets, either allowing or
denying them based on the atomic predicates. The firewall must respect these
constraints, ensuring that packets in Iai are always allowed and packets in Idi are
always denied. This methodology provides a clear and rigorous approach to enforc-
ing security policies in firewalls, using atomic predicates to manage packet flow in
a formal and optimized manner.

Figure 4.3. Stateless schema

The stateless firewall model is simple and functional but can be extended to
enhance security in a network. The following section presents the theoretical for-
mulation of a stateful firewall in the VEREFOO model.

In this extended model, the input packet class is divided into four distinct
categories:

63

Verification test and Refinement logical model

• Iai represents the class of packets that the firewall never drops, and for which
no state is saved.

• Idi corresponds to the class of packets that the firewall always drops, regardless
of state.

• Iasi is the class of packets that the firewall never drops but for which a state
is saved.

• Iaci represents packets that the firewall does not drop, provided a matching
state exists.

where a stands for accept, d stands for drop, as stands for accept and save and
ac stands for accept conditionally. Figure 4.4 illustrates the set of input packets for
a stateful firewall, denoted as ni.

These classes are defined based on the actions taken by the firewall with respect
to saving or requiring state information, which is particularly important for stateful
firewalls where the handling of packets depends on the existence of a previous
connection.

Also the cond permiti(p) predicate defined in Section 4.1.1 assumes different
values based on the input packet set:

• For stateless functions, ∀p. cond permiti(p) = false

• For stateful functions:

1. ∀q ∈ (Iai ∪ Idi ∪ Iasi).∀p ∈ q. cond permiti(p) = false

2. ∀q ∈ Iaci .∀p ∈ q. cond permiti(p) = true

Figure 4.4. Stateful schema

The packet classes Iasi and Iaci are closely related. Specifically, the set Iasi ,
which covers packets accepted with saved state, can be expressed as a disjunction
of atomic predicates:

Iasi = q1,i,as ∨ q2,i,as ∨ · · · ∨ qnas,i,as

64

Verification test and Refinement logical model

where the predicates qx,i,as are derived from rules that indicate new connections.

On the other hand, Iaci corresponds to rules that handles established or related
connections. The set Iaci can also be expressed as a disjunction:

Iaci = q1,i,ac ∨ q2,i,ac ∨ · · · ∨ qnac,i,ac

where

qx,i,ac = inv qx,i,as = (q1,i,as.IPDst, q1,i,as.IPSrc, q1,i,as.pDst, q1,i,as.pSrc, q1,i,as.tProto)

Each predicate qx,i,ac is the inverse of a corresponding predicate in Iasi . This inverse
is constructed by matching parameters such as destination and source IP addresses,
ports, and protocol types from qx,i,as, reflecting how established connections are
tracked.

A unique feature of the VEREFOO model is the absence of a concept of time.
In traditional stateful models, state often involves time, but in this case, the state
is defined differently. Particularly, a stateful firewall ni accepts a class of packets
qx,i,ac ∈ Iaci if certain conditions are met:

1. A traffic flow that leads packets in the class inv(qx,i,ac) to the firewall ni is
generated.

2. The packet class inv(qx,i,ac) is not blocked by ni or by any previous node in
the path from its source.

Incorporating this stateful behavior into a MaxSMT problem allows for the
formulation of hard constraints that enforce these behaviors. Three primary classes
of constraints can be defined:

• ∀q ∈ Iai .∀p ∈ q.¬denyi(p): This ensures that packets in the Iai set (those
always accepted) are never denied by the firewall.

• ∀q ∈ Idi .∀p ∈ q. denyi(p): This ensures that packets in the Idi set (those
always dropped) are always denied.

• ∀q ∈ Iasi .∀p ∈ q.¬denyi(p): This guarantees that packets that establish a
new connection (and save state) are accepted.

A fourth class of constraints governs conditionally accepted packets. For packets
in Iaci , the firewall does not deny them if certain conditions are met. This type of
situation is shown in Figure 4.5. This is formalized as:

∀q ∈ Iaci .∀p ∈ q.¬denyi(p) = ⊗

where:
⊗ = ∀p′ ∈ inv(q). ∃f ∈ FR. (1) ∧ (2) ∧ (3)

The three conditions that must hold are:

(1) τ(ni, f) = p′

65

Verification test and Refinement logical model

This condition means that the firewall ni has observed the ”inverse” of the current
packet. Here, τ is a function that returns an atomic predicate and p′ is the atomic
predicate for the inverse packet. The ”inverse” packet refers to a packet flowing in
the opposite direction of the current one, such as a reply to a request. This ensures
that the firewall is aware of the packet’s corresponding traffic.

(2) τ(ni, f) ∧ Iasi

This condition ensures that the inverse packet has successfully established a valid
connection. By combining τ(ni, f) with Iasi , this guarantees that the firewall not
only saw the inverse packet but also recorded the necessary state information,
indicating that a legitimate connection exists.

(3) ∀nj ∈ π(f) | nj < ni, j /= i.¬denyj(τ(nj, f))

This condition checks that no earlier firewall along the network path has blocked the
flow. Here, π(f) represents the path taken by the flow f , and the term nj < ni indi-
cates that nj is an earlier node on the path than ni. The condition ¬denyj(τ(nj, f))
ensures that none of the previous firewalls nj have denied the atomic predicate
τ(nj, f) of the flow. Essentially, this condition ensures that the flow remains un-
blocked as it travels through earlier firewalls before reaching ni.

The behaviour of the functions τ and π is explained in Section 4.1.1 while the
function FR ⊆ F denote the set of flows that satisfy R.

This formulation integrates both stateless and stateful behaviors into a unified
model, enabling the firewall to dynamically handle packets based on their state
while ensuring robust security policies are enforced across a network.

Figure 4.5. Schema for accept conditionally hard constraint

4.2.2 New constraint formulations

To configure a stateful firewall automatically, the version used in stateless firewalls
must be modified by adding new rules and constraints, both hard and soft.

In the solver used to tackle the firewall allocation problem, two types of predi-
cates can be applied:

• The first is the deny predicate, where conditions can be specified to block
certain traffic.

• The second is the cond permit predicate, which regulates traffic conditioned
by a prior connection on the reverse traffic.

66

Verification test and Refinement logical model

In the stateless version, there is only one hard constraint that uses the deny
predicate, formulated as:

deny(n, t) = used(n) ∧ [(whitelist(n) ∧ ¬rule(t)) ∨ (¬whitelist(n) ∧ rule(t))]

Here, the formula takes as input the node n, where the current firewall is located,
and the traffic t, which needs to be either blocked or allowed depending on the
policy. The predicates used in the formula are defined as follows:

• used(n): indicates whether the firewall is active on node n. If the firewall is
not deployed at node n, the rest of the formula is irrelevant, and the firewall
doesn’t handle the traffic at that node.

• whitelist(n): specifies if the firewall at node n is in whitelist mode. In
whitelist mode, only explicitly allowed traffic is permitted; everything else
is blocked by default.

• rule(t): determines if there is a rule allowing traffic t.

The formula means the firewall will block traffic t if it is in whitelist mode and
there is no rule allowing t (i.e., anything not explicitly allowed is blocked) or it is
in blacklist mode and there is a rule explicitly blocking the traffic t.

For stateful firewalls, which operate exclusively in whitelist mode, two types of
rules are possible:

• ALLOW: permits traffic from source A to destination B, as in stateless fire-
walls.

• ALLOW COND: always allows traffic from A to B but conditionally allows
traffic from B back to A.

Given these additional features, the pre-existing constraint on deny must be
updated, as it only considered the ALLOW rule, and a new constraint for the
cond permit predicate must be introduced to handle conditional connections. The
new hard constraints are defined as:

deny(n, t) = used(n) ∧ whitelist(n) ∧ ¬ruleallow(t) ∧ ¬ruleallow cond(t)

∧ ¬ruleallow cond(t
−1)

cond permit(n, t) = used(n) ∧ whitelist(n) ∧ ruleallow cond(t
−1) ∧ ¬ruleallow(t)

∧ ¬ruleallow cond(t)

where the predicates used(n) and whitelist(n) are the same as in the previous
formulation, while the others are:

• ruleallow(t): checks if there is a rule allowing traffic t.

67

Verification test and Refinement logical model

• ruleallow cond(t): checks if a rule exists that both allows traffic t and condi-
tionally permits reverse traffic t−1.

• ruleallow cond(t
−1): checks if a rule exists that both allows traffic t−1 and con-

ditionally permits reverse traffic t.

The definition of the deny(n, t) predicate is similar to that of the stateless case,
with a few key differences. In the stateful firewall, the possibility of operating
in blacklist mode is removed, as stateful firewalls operate exclusively in whitelist
mode. Additionally, new rules have been introduced. Specifically, to deny a packet,
it is not enough to check for the absence of an explicit rule allowing the packet; any
conditional rules that might allow the packet must also be absent. Otherwise, the
packet cannot be denied outright.

The cond permit(n, t) predicate is unique to stateful firewalls and becomes true
only when certain specific conditions are met. The first two conditions, used(n) and
whitelist(n), are the same as in the deny(n, t) predicate, indicating that the firewall
is deployed at node n and operates in whitelist mode, as previously discussed.

The key element that characterizes the cond permit(n, t) constraint is the pred-
icate ruleallow cond(t

−1). This predicate must be true because it signifies that traf-
fic t, as the inverse of t−1, is conditionally allowed. Without this predicate, the
cond permit(n, t) constraint would lose its purpose, as it relies on the conditional
nature of the traffic being permitted.

For cond permit(n, t) to be valid, two additional conditions must also hold:
there must not be an unconditional rule allowing traffic t (i.e., ¬ruleallow(t)), and
there must not be a conditional rule allowing traffic t (i.e., ¬ruleallow cond(t)). These
conditions are necessary because if either of those rules existed, traffic t would be
allowed unconditionally rather than conditionally, thus invalidating the logic of the
cond permit(n, t) constraint, which only applies to conditional traffic permissions.

In addition, the soft constraints must be adjusted due to the introduction of
these additional rules. Whenever possible, the solver should prioritize minimizing
the number of rules written in the firewalls. An ALLOW COND rule is preferable
to an ALLOW rule because it covers both the direct traffic from A to B and the
conditional reverse traffic from B to A, thus reducing the total number of rules in
the firewall.

To reflect this preference, weights should be assigned to rules: a lower weight
indicates higher priority, while a higher weight means a less important rule. Con-
sequently, an ALLOW COND rule should have a lower weight compared to an
ALLOW rule.

68

Chapter 5

Translators for stateful firewall
technology

This chapter presents the final part of the contribution to the thesis. Specifically,
the objective is to develop a translator that converts the configuration from a
medium-level XML format for a stateful firewall to a low-level format compatible
with a real stateful firewall technology.

The XML configuration is the same as the one presented in Chapter 4. In
particular, the rules already present within the firewall are translated according to
the semantics and syntax of the chosen technology. Three technologies were imple-
mented and developed, as described in Chapter 1: iptables, IpFirewall, and Open
vSwitch. The translator generates an output file that contains executable rules
tailored for the respective platform, allowing users to replicate the configuration
specified in the XML file. Essentially, it produces a ready-to-use script that can be
directly executed to implement the desired network setup.

5.1 Implementation

To implement these functionalities, a set of Java classes has been developed. The
connections between these classes are illustrated in the diagram in Figure 5.1. The
main class, FirewallSerializer, receives as input the XML file containing the stateful
firewall configuration and determines which type of firewall technology to use and
create. This class acts as a dispatcher, coordinating all the submodules that may be
instantiated. To achieve this, the FirewallDeploy enum is used, enabling the selec-
tion between the three available configurations, as shown in Listing 5.1. The listing
also includes a fourth option, ALL, which can be selected when all configurations
need to be analyzed, typically for testing purposes.

69

Translators for stateful firewall technology

Figure 5.1. Firewall translator classes schema

public enum FirewallDeploy {

IPFIREWALL,

IPTABLES,

OPENVSWITCH,

ALL

}

Listing 5.1. FirewallDeploy enum

In the following sections, the platforms used in the translation process are exam-
ined in greater detail compared to their presentation in Chapter 1, with a particular
focus on how the rules in the configuration files are structured.

5.1.1 Iptables

Iptables is the default firewall technology used on Linux systems. Before creating a
script that can be executed directly on the platform, some preliminary steps must
be completed.

In particular, Listing 5.2 indicate the commands that have to be executed be-
fore starting to populate the firewall [17]. The script begins with the shebang
#!/bin/sh, which specifies that the commands will be executed in the sh shell.
It then assigns the variable cmd to sudo iptables, which ensures that all firewall
commands will be executed with superuser privileges.

70

Translators for stateful firewall technology

The script clears any existing firewall rules using ${cmd} -F, which effectively
resets the firewall configuration. Next, it sets to DROP the default policies for
three main firewall chains: INPUT, FORWARD, and OUTPUT.

#!/bin/sh

cmd="sudo iptables"

${cmd} -F

${cmd} -P INPUT DROP

${cmd} -P FORWARD DROP

${cmd} -P OUTPUT DROP

Listing 5.2. iptables preliminary commands

The following commands apply to the FORWARD chain, which is responsible
for handling packets forwarded between network interfaces. Specifically, the com-
mand -A FORWARD appends a rule to the end of the FORWARD chain. A crucial
component for this implementation is the -m option, which specifies the conntrack
module needed for tracking states in stateful firewalls. This option will be used
exclusively for stateful rules that save the state of packets or conditionally accept
them.

The first rule is always inserted after the preliminary operations and ensures
that return traffic from RELATED or ESTABLISHED connections is allowed to
pass through the system (Listing 5.3). These states characterize a saved connection,
meaning packets accepted conditionally will always be permitted.

${cmd} -A FORWARD -m conntrack --ctstate RELATED,ESTABLISHED -j

ACCEPT

Listing 5.3. iptables default rule for accepting return traffic

Packets that need to be tracked will use the option -m conntrack --ctstate

NEW, which allows for the saving of a new connection state. The other commands
supported by the translator for creating additional rules include:

• -p protocol : Specifies the protocol, which can be tcp or udp. If the protocol
is not specified (written as ANY in the XML file), two rules will be generated
for each possible value.

• -s source IP : Specifies the source IP address. When generated from the XML
file, the translator will automatically add the netmask.

• -d destination IP : Specifies the destination IP address. Similar to the source
IP, the translator will automatically add the netmask.

• -sport sourcePort : Specifies the source port, which can be a single number
or a range (e.g., 1000:2000). If the XML file contains the * symbol, indicating
all ports, this option will not appear in the rule.

71

Translators for stateful firewall technology

• -dport destinationPort : Specifies the destination port, formatted similarly
to the source port. The presence of the * symbol in the XML file means this
option will be omitted.

• -j action: Specifies the action to take. Since stateful firewalls operate in
whitelisting mode, the only possible action is ACCEPT, allowing packets
that conform to the rules.

The practical application of the presented concepts can be seen in the example
provided in Listing 5.4. In the first line, a rule is appended to allow TCP packets
from the source 10.0.0.3/32 to the destination 30.0.5.3/32, without involving any
stateful operations. The following lines show similar rules, but duplicated for both
the TCP and UDP protocols. In these lines, along with the IP addresses, a source
port range of 6:10 is specified, and the option to track the state of new connections
is enabled using the conntrack module.

${cmd} -A FORWARD -p tcp -s 10.0.0.3/32 -d 30.0.5.3/32 -j ACCEPT

${cmd} -A FORWARD -p tcp -s 10.0.0.4/32 -d 30.0.5.2/32 --sport

6:10 -m conntrack --ctstate NEW -j ACCEPT

${cmd} -A FORWARD -p udp -s 10.0.0.4/32 -d 30.0.5.2/32 --sport

6:10 -m conntrack --ctstate NEW -j ACCEPT

Listing 5.4. iptables example

5.1.2 IpFirewall

IpFirewall, commonly referred to as ipfw, is the packet filtering technology utilized
in FreeBSD operating systems. It is distinguished by two key concepts: sets and
priorities [18].

Sets enable the grouping of rules for more efficient management. Each set is
identified by a number ranging from 0 to 31, allowing rules within the same set to
be manipulated collectively. If no set is specified, rules are added to set 0 by default.
Each rule in ipfw is assigned a priority (or rule number), which dictates the order
in which the rules are evaluated. Lower numbers indicate higher priority, meaning
those rules are processed first. The range for rule numbers is from 0 to 65535,
with 65535 representing the lowest priority. It is crucial to note that a rule with a
lower priority but within a certain set will be executed before a higher-priority rule
located in a set with a higher number.

Also with ipfw scripts preliminary commands must be executed. The script
begins with the shebang line #!/bin/sh and assigns the variable cmd to the com-
mand /sbin/ipfw -q, which is used to execute ipfw on FreeBSD. Subsequently,
all current rules are removed using the command $cmd -f flush (see Listing 5.5).

#!/bin/sh

cmd="/sbin/ipfw -q"

72

Translators for stateful firewall technology

${cmd} -f flush

${cmd} delete set 31

Listing 5.5. ipfw prelimary commands

Set 31, which typically contains the default rules, is not affected by the flush
command. Therefore, a specific rule is necessary to delete any previously inserted
rules. This set is used at the end of the script, where the last default rule is added.
This rule has the lowest priority (65534 and not 65535 because it’s reserved) and
is placed in the final set to ensure it is evaluated last. Specifically, it denies traffic
that does not match any of the preceding rules, adhering to the whitelisting mode,
as illustrated in Listing 5.6.

Once the old rules have been deleted, the first rule added is the check-state

default rule that permits existing stateful connections, allowing packets that are
already being tracked. This rule is assigned a priority of 0 to ensure it is evaluated
first.

${cmd} add 0 check-state

${cmd} add 65534 set 31 deny ip from any to any

Listing 5.6. ipfw default rules

Rules in ipfw are inserted using the command add, and the following parameters
can be specified when creating a rule:

• action: This parameter defines the rule’s action, such as allow or deny. For
stateful firewalls, the only available action is allow.

• priority : This specifies the rule’s priority, which determines its order of eval-
uation relative to other rules following the add command.

• set setNumber : This indicates the set number to which the rule will be added,
facilitating easier management of groups of rules.

• protocol : This defines the protocol to be used, which can be tcp, udp, or ip
(for all IP traffic).

• from sourceIP : This parameter specifies the source IP address. IP addresses
with this translator are defined with a netmask. The keyword any can be
used to indicate all possible addresses.

• to destinationIP : This parameter specifies the destination IP address. IP
addresses with this translator are defined with a netmask. The keyword any

can be used to indicate all possible addresses.

• sourcePort : This follows the source IP address and specifies the source port.
It can be a single port number or a range (e.g., ‘1024-2048‘).

• destinationPort : This follows the destination IP address and specifies the
destination port. It can be a single port number or a range (e.g., ‘1024-2048‘).

73

Translators for stateful firewall technology

• keep-state: This option can be included in a rule when traffic needs to
be conditionally accepted. It keeps track of whether a connection has been
established, allowing the firewall to permit or deny subsequent packets based
on the connection’s state.

In general, rules are added with priority 1 and assigned to set 1 to ensure they
are executed after the rule for existing stateful connections and before the default
rule. In the following example, two rules are presented.

The first rule allows TCP packets from the address 10.0.0.3 to the address
30.0.5.3, permitting traffic from all source ports to the destination port range 100-
200.

The second rule allows both TCP and UDP packets from the address 10.0.0.4
to the address 30.0.5.2, permitting traffic from source ports 6-10 to all destination
ports. This second rule is stateful because it tracks the state of the connection,
allowing return traffic as part of the established connection.

${cmd} add 1 set 1 allow tcp from 10.0.0.3/32 0-65535 to

30.0.5.3/32 100-200

${cmd} add 1 set 1 allow ip from 10.0.0.4/32 6-10 to 30.0.5.2/32

0-65535 keep-state

Listing 5.7. ipfw example

5.1.3 Open vSwitch

Open vSwitch (OVS) is an open-source virtual switch designed to provide switching
capabilities for virtualized and cloud environments, primarily within hypervisors.
Additionally, Open vSwitch manages the priorities that determine the order in
which rules are evaluated [19].

If multiple rules match a packet, the rule with the highest priority will be
applied. Priorities range from 0 (highest) to 65535 (lowest), with the default priority
typically set to 0 when not specified. A rule with a priority of 0 is evaluated first,
while a rule with a priority of 65535 is evaluated last. In most configurations, low-
priority rules act as a default action, allowing or dropping any unmatched traffic.
This priority evaluation method is similar to that of ipfw, where 0 is the highest
priority and 65535 is the lowest.

The command used in the shell to execute Open vSwitch (OVS) is sudo ovs-ofctl.
Before adding rules, the bridges corresponding to the firewalls must already be cre-
ated. For instance, in the example provided in the listing, the add-flow command
is used to add a new rule to a bridge. The name that follows this command refers
to the bridge name (in this case, A).

To accept return traffic for stateful commands, a rule is inserted first with the
highest possible priority, which is 0, ensuring that these types of packets are always
permitted. At the end of the script, there is a default rule to deny other packets

74

Translators for stateful firewall technology

(action: drop). This rule has a priority of 65534, as it should only be executed
when no other rules match the packets. The priority cannot be set to 65535, as
that is reserved for default rules on the bridge, which we intend to override. These
rules are illustrated in the following Listing:

sudo ovs-ofctl add-flow A

priority=0,ct_state=+est+rel,dl_type=0x800,action=NORMAL

sudo ovs-ofctl add-flow A

priority=65534,dl_type=0x800,action=drop

Listing 5.8. ovs default rules

To create the OVS rules generated by the translator, the following options can
be specified:

• priority=priorityNumber : Defines the order in which rules are evaluated.
Rules with higher priority are applied before those with lower priority, as
previously described.

• ct state=stateType: Matches the state of connections tracked by OVS’s con-
nection tracker. The +new option matches packets that are part of a new
connection, while +est (established) and +rel (related) match packets that
are part of existing or established connections.

• dl type=packetType: Specifies the type of payload. In this context, 0x800
represents IP packets and it’s the only value used.

• nw src=sourceIp: Defines the source IP address along with its netmask. If
omitted, the rule applies to all source addresses.

• nw dst=destinationIp: Defines the destination IP address along with its net-
mask. If omitted, the rule applies to all destination addresses.

• nw proto=protocolNumber : Specifies the protocol number. For instance, 6
represents TCP packets and 17 represents UDP packets. If both protocols
are needed, separate rules must be created for each.

• tp src=portNumber : Refers to the source port at the transport layer, rep-
resented in hexadecimal format. For port ranges, bitmasks are used to effi-
ciently divide the source port space into progressively smaller ranges, reducing
the number of required rules. This optimization enhances performance when
handling large volumes of traffic.

• tp dst=portNumber : Refers to the destination port at the transport layer,
represented in hexadecimal format. Like the source port, destination ports
are also handled using bitmasks to divide port ranges, improving performance
under heavy traffic conditions by minimizing the number of rules.

• action=actionType: Defines the action to take when a packet matches the
rule. The actions used by the translator are NORMAL that forward the packet
normally and drop which discard the packet.

75

Translators for stateful firewall technology

The rules in the script are added with a priority of 1 to ensure they are executed
after the rule allowing packets from existing connections, but before the default deny
rule. An example of an OVS script is shown in Listing 5.9.

The first rule is a stateless rule that permits TCP packets from the source
address 10.0.0.3 to the destination address 30.0.5.3. The subsequent rules address
the same traffic but are categorized based on the protocols and ports. Specifically,
there are six rules: the first three apply to TCP packets, while the remaining three
apply to UDP packets, both originating from the address 10.0.0.4 and destined for
30.0.5.2. Three of these rules are necessary to segment the port range, which spans
from 6 to 10.

sudo ovs-ofctl add-flow B

priority=1,dl_type=0x800,nw_src=10.0.0.3/32,

nw_dst=30.0.5.3/32,nw_proto=6,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.2/32,nw_proto=6,tp_src=0x8/0xfffe,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.2/32,nw_proto=6,tp_src=0xa,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.2/32,nw_proto=6,tp_src=0x6/0xfffe,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.2/32,nw_proto=17,tp_src=0x8/0xfffe,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.2/32,nw_proto=17,tp_src=0xa,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.2/32,nw_proto=17,tp_src=0x6/0xfffe,action=NORMAL

Listing 5.9. ovs example

5.2 Examples

After explaining how the rules are structured in the scripts generated by the trans-
lator, we will now present some examples to demonstrate the translation results.
The following XML file is provided as input to the translator. It defines two state-
ful firewalls: the first contains two ALLOW COND rules and one ALLOW rule for
three clients, while the second includes two ALLOW COND rules from the same
address (a NAT), along with three additional rules for web clients.

76

Translators for stateful firewall technology

<node functional_type="STATEFUL_FIREWALL" name="20.0.0.3">

<neighbour name="10.0.0.1" />

<neighbour name="10.0.0.2" />

<neighbour name="10.0.0.3" />

<neighbour name="20.0.0.1" />

<configuration description="A" name="conf1">

<stateful_firewall defaultAction="DENY">

<elements>

<action>ALLOW_COND</action>

<source>10.0.0.1</source>

<destination>30.0.5.2</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>10.0.0.2</source>

<destination>30.0.5.2</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW_COND</action>

<source>10.0.0.3</source>

<destination>30.0.5.3</destination>

<protocol>UDP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</stateful_firewall>

</configuration>

</node>

<node functional_type="STATEFUL_FIREWALL" name="20.0.0.2">

<neighbour name="20.0.0.1" />

<neighbour name="30.0.5.2" />

<neighbour name="30.0.5.3" />

<neighbour name="30.0.5.4" />

<neighbour name="20.0.0.4" />

<configuration description="B" name="conf1">

<stateful_firewall defaultAction="DENY">

<elements>

<action>ALLOW_COND</action>

<source>20.0.0.1</source>

<destination>30.0.5.2</destination>

<protocol>ANY</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

</elements>

<elements>

<action>ALLOW_COND</action>

<source>20.0.0.1</source>

<destination>30.0.5.3</destination>

<protocol>UDP</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

77

Translators for stateful firewall technology

</elements>

<elements>

<action>ALLOW_COND</action>

<source>10.0.0.4</source>

<destination>30.0.5.4</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>10.0.0.5</source>

<destination>30.0.5.4</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>10.0.0.6</source>

<destination>30.0.5.4</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</stateful_firewall>

</configuration>

</node>

Listing 5.10. XML input file example

Since the XML file defines two firewalls, two separate scripts are generated, one
for each firewall, and the firewall name is included in the description field (A and
B). The first translator tested is iptables, which produced the following rules script.
As shown, there are duplicate rules for TCP and UDP protocols, as they cannot be
combined. It also includes commands to remove previous rules, as well as default
commands to either accept or reject packets.

#!/bin/sh

cmd="sudo iptables"

${cmd} -F

${cmd} -P INPUT DROP

${cmd} -P FORWARD DROP

${cmd} -P OUTPUT DROP

${cmd} -A FORWARD -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

${cmd} -A FORWARD -p tcp -s 10.0.0.1/32 -d 30.0.5.2/32 --sport 80 -m

conntrack --ctstate NEW -j ACCEPT

${cmd} -A FORWARD -p tcp -s 10.0.0.2/32 -d 30.0.5.2/32 --dport 110:120 -j

ACCEPT

${cmd} -A FORWARD -p udp -s 10.0.0.2/32 -d 30.0.5.2/32 --dport 110:120 -j

ACCEPT

${cmd} -A FORWARD -p udp -s 10.0.0.3/32 -d 30.0.5.3/32 -m conntrack --ctstate

NEW -j ACCEPT

Listing 5.11. Firewall A iptables translation

78

Translators for stateful firewall technology

#!/bin/sh

cmd="sudo iptables"

${cmd} -F

${cmd} -P INPUT DROP

${cmd} -P FORWARD DROP

${cmd} -P OUTPUT DROP

${cmd} -A FORWARD -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT

${cmd} -A FORWARD -p tcp -s 20.0.0.1/32 -d 30.0.5.2/32 -m conntrack --ctstate

NEW -j ACCEPT

${cmd} -A FORWARD -p udp -s 20.0.0.1/32 -d 30.0.5.2/32 -m conntrack --ctstate

NEW -j ACCEPT

${cmd} -A FORWARD -p udp -s 20.0.0.1/32 -d 30.0.5.3/32 -m conntrack --ctstate

NEW -j ACCEPT

${cmd} -A FORWARD -p tcp -s 10.0.0.4/32 -d 30.0.5.4/32 --sport 25 --dport

90:92 -m conntrack --ctstate NEW -j ACCEPT

${cmd} -A FORWARD -p udp -s 10.0.0.4/32 -d 30.0.5.4/32 --sport 25 --dport

90:92 -m conntrack --ctstate NEW -j ACCEPT

${cmd} -A FORWARD -p tcp -s 10.0.0.5/32 -d 30.0.5.4/32 --dport 73 -j ACCEPT

${cmd} -A FORWARD -p udp -s 10.0.0.5/32 -d 30.0.5.4/32 --dport 73 -j ACCEPT

${cmd} -A FORWARD -p tcp -s 10.0.0.6/32 -d 30.0.5.4/32 -j ACCEPT

${cmd} -A FORWARD -p udp -s 10.0.0.6/32 -d 30.0.5.4/32 -j ACCEPT

Listing 5.12. Firewall B iptables translation

Next, IpFirewall was tested, which generated the following scripts. Unlike ipt-
ables, ipfw is less verbose, as it groups different protocols together, preventing
rule duplication. This results in a more concise and readable output.Additionally,
ipfw inserts commands to delete previously added rules and manage default traffic
handling.

#!/bin/sh

cmd="/sbin/ipfw -q"

${cmd} -f flush

${cmd} delete set 31

${cmd} add 0 check-state

${cmd} add 1 set 1 allow tcp from 10.0.0.1/32 80-80 to 30.0.5.2/32 0-65535

keep-state

${cmd} add 1 set 1 allow ip from 10.0.0.2/32 0-65535 to 30.0.5.2/32 110-120

${cmd} add 1 set 1 allow udp from 10.0.0.3/32 0-65535 to 30.0.5.3/32 0-65535

keep-state

${cmd} add 65534 set 31 deny ip from any to any

Listing 5.13. Firewall A ipfw translation

#!/bin/sh

cmd="/sbin/ipfw -q"

${cmd} -f flush

${cmd} delete set 31

${cmd} add 0 check-state

${cmd} add 1 set 1 allow ip from 20.0.0.1/32 0-65535 to 30.0.5.2/32 0-65535

keep-state

${cmd} add 1 set 1 allow udp from 20.0.0.1/32 0-65535 to 30.0.5.3/32 0-65535

keep-state

${cmd} add 1 set 1 allow ip from 10.0.0.4/32 25-25 to 30.0.5.4/32 90-92

keep-state

79

Translators for stateful firewall technology

${cmd} add 1 set 1 allow ip from 10.0.0.5/32 0-65535 to 30.0.5.4/32 73-73

${cmd} add 1 set 1 allow ip from 10.0.0.6/32 0-65535 to 30.0.5.4/32 0-65535

${cmd} add 65534 set 31 deny ip from any to any

Listing 5.14. Firewall B ipfw translation

Lastly, Open vSwitch was tested in the translation, producing the following
results. As anticipated, the generated scripts are significantly more verbose than
those from the other tools, primarily due to the way Open vSwitch manages source
and destination ports.

sudo ovs-ofctl add-flow A

priority=0,ct_state=+est+rel,dl_type=0x800,action=NORMAL

sudo ovs-ofctl add-flow A

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.1/32,

nw_dst=30.0.5.2/32,nw_proto=6,tp_src=0x50,action=NORMAL

sudo ovs-ofctl add-flow A

priority=1,dl_type=0x800,nw_src=10.0.0.2/32,nw_dst=30.0.5.2/32,

nw_proto=6,tp_dst=0x70/0xfff8,action=NORMAL

sudo ovs-ofctl add-flow A

priority=1,dl_type=0x800,nw_src=10.0.0.2/32,nw_dst=30.0.5.2/32,

nw_proto=6,tp_dst=0x78,action=NORMAL

sudo ovs-ofctl add-flow A

priority=1,dl_type=0x800,nw_src=10.0.0.2/32,nw_dst=30.0.5.2/32,

nw_proto=6,tp_dst=0x6e/0xfffe,action=NORMAL

sudo ovs-ofctl add-flow A

priority=1,dl_type=0x800,nw_src=10.0.0.2/32,nw_dst=30.0.5.2/32,

nw_proto=17,tp_dst=0x70/0xfff8,action=NORMAL

sudo ovs-ofctl add-flow A

priority=1,dl_type=0x800,nw_src=10.0.0.2/32,nw_dst=30.0.5.2/32,

nw_proto=17,tp_dst=0x78,action=NORMAL

sudo ovs-ofctl add-flow A

priority=1,dl_type=0x800,nw_src=10.0.0.2/32,nw_dst=30.0.5.2/32,

nw_proto=17,tp_dst=0x6e/0xfffe,action=NORMAL

sudo ovs-ofctl add-flow A

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.3/32,

nw_dst=30.0.5.3/32,nw_proto=17,action=NORMAL

sudo ovs-ofctl add-flow A priority=65534,dl_type=0x800,action=drop

Listing 5.15. Firewall A ovs translation

sudo ovs-ofctl add-flow B

priority=0,ct_state=+est+rel,dl_type=0x800,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=20.0.0.1/32,

nw_dst=30.0.5.2/32,nw_proto=6,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=20.0.0.1/32,

nw_dst=30.0.5.2/32,nw_proto=17,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=20.0.0.1/32,

nw_dst=30.0.5.3/32,nw_proto=17,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.4/32,nw_proto=6,tp_src=0x19,tp_dst=0x5c,action=NORMAL

80

Translators for stateful firewall technology

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.4/32,nw_proto=6,tp_src=0x19,tp_dst=0x5a/0xfffe,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.4/32,nw_proto=17,tp_src=0x19,tp_dst=0x5c,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,ct_state=+new,dl_type=0x800,nw_src=10.0.0.4/32,

nw_dst=30.0.5.4/32,nw_proto=17,tp_src=0x19,tp_dst=0x5a/0xfffe,

action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,dl_type=0x800,nw_src=10.0.0.5/32,nw_dst=30.0.5.4/32,

nw_proto=6,tp_dst=0x49,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,dl_type=0x800,nw_src=10.0.0.5/32,nw_dst=30.0.5.4/32,

nw_proto=17,tp_dst=0x49,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,dl_type=0x800,nw_src=10.0.0.6/32,nw_dst=30.0.5.4/32,

nw_proto=6,action=NORMAL

sudo ovs-ofctl add-flow B

priority=1,dl_type=0x800,nw_src=10.0.0.6/32,nw_dst=30.0.5.4/32,

nw_proto=17,action=NORMAL

sudo ovs-ofctl add-flow B priority=65534,dl_type=0x800,action=drop

Listing 5.16. Firewall B ovs translation

To verify that the scripts are correctly written, the following screenshots display
their execution on a Linux machine. Specifically, Figure 5.2 shows the execution
of the first script for Iptables, named iptables A.sh. As seen in the figure, the
script runs without errors. By using the command sudo iptables -L -v -n, it
is possible to check the active firewall rules. Upon inspection, we can confirm that
the applied rules match the intended configuration.

Figure 5.2. Execution of an Iptables script on a Linux machine

In Figure 5.3, the same firewall configuration is applied on the OVS platform
using the script ovs A.sh. As with the previous case, no errors occur during execu-
tion. To run the script, Open vSwitch must first be activated on the machine by

81

Translators for stateful firewall technology

running the command sudo systemctl start openvswitch-switch. After that,
the bridge must be created with the name of the firewall (in this case, A) using the
command sudo ovs-vsctl add-br A. Once these steps are completed, the script
can be executed, and the resulting configuration can be viewed with the command
sudo ovs-ofctl dump-flows A. The output will show the active flows, which cor-
respond to the rules defined in the script.

Figure 5.3. Execution of an OVS script on a Linux machine

82

Conclusions

This thesis has explored the integration and enhancement of stateful firewalls within
the VEREFOO framework, aiming to improve network security and automate fire-
wall configuration. The work was driven by the increasing complexity of modern
networks and the rising need for robust cybersecurity solutions capable of adapt-
ing to dynamic and sophisticated threats. Through the development and testing
of stateful firewalls, this research has demonstrated their significant advantages
over stateless firewalls, particularly in their ability to monitor the state of active
connections and provide a more comprehensive layer of security.

The first key contribution of this thesis was the verification of VEREFOO’s abil-
ity to enforce Network Security Requirements (NSRs) when using stateful firewalls.
Through a series of verification tests, it was shown that the framework can accu-
rately verify whether network configurations meet the required security standards.
This achievement is crucial as it confirms the framework’s reliability in detecting
compliance with security policies, ensuring that stateful firewall rules are correctly
applied and managed across different network scenarios.

The second major contribution was the formulation of new logical statements to
solve the refinement problem for stateful firewalls. This step enhanced the frame-
work’s capability to automatically allocate firewalls in an optimal manner, ensuring
that traffic is filtered efficiently while meeting security demands. The introduction
of new constraints to model the behavior of stateful firewalls enabled a more refined
and accurate control over how traffic is handled, addressing the unique challenges
posed by stateful traffic analysis and packet filtering.

The final contribution involved the development of a translation mechanism
from medium-level XML configurations to low-level configurations for real-world
firewall technologies such as Iptables, IpFirewall, and Open vSwitch. This transla-
tion process was essential for bridging the gap between the abstract firewall rules
defined in the framework and their actual deployment on network devices.

The results of this thesis not only validate the VEREFOO framework’s func-
tionality in managing stateful firewalls but also highlight the importance of incor-
porating stateful functions into modern network security systems.

For future work, the proposed logical statements for solving the Refinement
problem can be implemented into the VEREFOO code to enable optimal allo-
cation of stateful firewalls. Additionally, further testing should be conducted to
assess VEREFOO’s scalability after the integration of stateful functions, ensuring
that it maintains both performance and accuracy as networks increase in size and
complexity.

83

Bibliography

[1] A. Akhter, M. Fragkoulis, and A. Katsifodimos, “Stateful functions as a service
in action,” Proceedings of the VLDB Endowment, vol. 12, no. 12, pp. 2073–
2086, 2020, available at https://doi.org/10.14778/3352063.3352092.

[2] V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez, J. M.
Hellerstein, and A. Tumanov, “Cloudburst: Stateful functions-as-a-service,”
Proceedings of the VLDB Endowment (PVLDB), vol. 13, no. 11, pp. 2438–2452,
2020. [Online]. Available: https://doi.org/10.14778/3407790.3407836

[3] D. Bansal, G. DeGrace, R. Tewari, M. Zygmunt, J. Grantham, S. Gai,
M. Baldi, K. Doddapaneni, A. Selvarajan, A. Arumugam, B. Raman,
A. Gupta, S. Jain, D. Jagasia, E. Langlais, P. Srivastava, R. Hazarika,
N. Motwani, S. Tiwari, S. Grant, R. Chandra, and S. Kandula, “Disaggregating
stateful network functions,” in Proceedings of the 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23). Boston,
MA, USA: USENIX Association, April 17–19 2023. [Online]. Available:
https://www.usenix.org/conference/nsdi23/presentation/bansal

[4] C. Diekmann, L. Hupel, J. Michaelis, M. Haslbeck, and G. Carle,
“Verified iptables firewall analysis and verification,” Journal of Automated
Reasoning, vol. 61, no. 2, pp. 191–242, 2018. [Online]. Available:
https://doi.org/10.1007/s10817-017-9445-1

[5] FreeBSD Document Project, FreeBSD. Firewalls, February 2010, accessed
16 May 2010. [Online]. Available: https://www.freebsd.org/doc/handbook/
firewalls.html

[6] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proceedings of the
12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’15). Oakland, CA, USA: USENIX Association, May 2015, pp.
117–130. [Online]. Available: https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/pfaff

[7] Open vSwitch Project, “Open vswitch with conntrack integration,” https://
docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/, 2023, accessed: 10
August 2024.

[8] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, ser. Lecture Notes in Computer Science, C. R.
Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008, pp. 337–340.

84

https://doi.org/10.14778/3352063.3352092
https://doi.org/10.14778/3407790.3407836
https://www.usenix.org/conference/nsdi23/presentation/bansal
https://doi.org/10.1007/s10817-017-9445-1
https://www.freebsd.org/doc/handbook/firewalls.html
https://www.freebsd.org/doc/handbook/firewalls.html
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/
https://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/

Bibliography

[Online]. Available: https://doi.org/10.1007/978-3-540-78800-3 24
[9] D. Kreutz, F. M. V. Ramos, P. J. E. Veŕıssimo, C. E. Rothenberg, S. Azodol-

molky, and S. Uhlig, “Software-defined networking: A comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015, [Online]. Available:
https://doi.org/10.1109/JPROC.2014.2371999.

[10] R. Chayapathi, S. F. Hassan, and P. Shah, Network Functions Virtualization
(NFV) with a Touch of SDN. Addison-Wesley Professional, 2016.

[11] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “Au-
tomated optimal firewall orchestration and configuration in virtualized net-
works,” in 2020 IEEE/IFIP Network Operations and Management Symposium
(NOMS). IEEE, 2020.

[12] ——, “Automated firewall configuration in virtual networks,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 20, no. 2, pp. 1559–1576,
March/April 2023, manuscript received 25 Mar. 2021; revised 2 Feb. 2022; ac-
cepted 13 Mar. 2022. Published 17 Mar. 2022, current version 14 Mar. 2023.
Supported by EU H2020 Projects ASTRID (Grant No. 786922) and Cyber-
Sec4Europe (Grant No. 830929). Corresponding author: Fulvio Valenza.

[13] D. Bringhenti and F. Valenza, “Greenshield: Optimizing firewall configuration
for sustainable networks,” IEEE Transactions on Network and Service
Management, 2024, in corso di stampa. [Online]. Available: https:
//doi.org/10.1109/tnsm.2024.3452150

[14] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and J. Yusupov,
“Improving the formal verification of reachability policies in virtualized net-
works,” IEEE Transactions on Network and Service Management, vol. 18,
no. 1, p. 713, March 2021.

[15] D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza, “A two-fold traffic flow
model for network security management,” IEEE Transactions on Network and
Service Management, vol. 21, no. 4, August 2024, accepted for publication.

[16] S. M. Mohammad and S. Lakshmisri, “Security automation in information
technology,” International Journal of Creative Research Thoughts (IJCRT),
vol. 6, no. 2, p. 901, June 2018. [Online]. Available: http://www.ijcrt.org

[17] The Linux Man-Pages Project, Linux Manual Pages: iptables(8),
2024, accessed: 2024-10-04. [Online]. Available: https://man7.org/linux/
man-pages/man8/iptables.8.html

[18] The FreeBSD Project, FreeBSD Manual Pages: ipfw(8), 2024, accessed:
2024-10-04. [Online]. Available: https://man.freebsd.org/cgi/man.cgi?ipfw(8)

[19] Open vSwitch. (n.d.) Ovs conntrack tutorial. Accessed: 2024-10-03. [Online].
Available: https://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/

85

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/tnsm.2024.3452150
https://doi.org/10.1109/tnsm.2024.3452150
http://www.ijcrt.org
https://man7.org/linux/man-pages/man8/iptables.8.html
https://man7.org/linux/man-pages/man8/iptables.8.html
https://man.freebsd.org/cgi/man.cgi?ipfw(8)
https://docs.openvswitch.org/en/latest/tutorials/ovs-conntrack/

	List of Figures
	List of Tables
	Listings
	Introduction
	Stateful Functions
	Stateful meaning
	Stateful vs. Stateless

	Network stateful functions
	Stateful Functions in Cloud

	Stateful Firewall
	Generic Structure

	Management Tools and Technologies
	Iptables
	IpFirewall
	Open vSwitch

	z3 theorem prover and VEREFOO
	z3 theorem prover
	SAT and SMT problems
	MaxSMT problem

	Network and Security context
	VEREFOO Model inputs
	Service Graph and Allocation Graph
	Network Security Requirements

	VEREFOO Model outputs
	VEREFOO Structure
	Problem formulation

	Formal models
	Traffic model
	Network Functions model
	Traffic Flow model
	Service and Allocation Graph models
	Network Security Requirements model
	Firewall configuration

	Thesis objective
	Verification test and Refinement logical model
	Stateful Verification test
	Verification Policy

	Refinement problem
	From stateless to stateful firewalls
	New constraint formulations

	Translators for stateful firewall technology
	Implementation
	Iptables
	IpFirewall
	Open vSwitch

	Examples

	Conclusions
	Bibliography

