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Summary

Universal architectures like Mask2Former have redefined the way we approach image seg-
mentation tasks. Traditionally, specialized architectures were used for specific tasks such
as semantic, instance, and panoptic segmentation. Now, a single, unified architecture can
outperform these task-specific models, offering benefits in performance, efficiency, and
effort, while also reshaping the way we perceive these tasks. In this paper, experiments
are conducted using the Mask2Former configuration for semantic segmentation. However,
similar to other universal models like DETR, these architectures, despite sharing the same
underlying structure, are still trained separately for different tasks and datasets. Recent
works on the passage from the Universal Approximation Theorem to a Kolmogorov-Arnold
theorem inspired the present work to delve in Kolmogorov Arnold Network on computer
vision tasks. Traditional semantic segmentation models as Mask2Former, recognize a pre-
defined set of classes, often failing to detect unseen objects (anomalies). To address this,
we propose Mask2KAN, a novel approach derived from the Mask2Former architecture ,
which shifts from a per-pixel (i.e. BERT) to a mask classification (i.e. Mask2Former)
focusing on reducing ood anomalies (i.e. Mask2Anomaly), with an efficient Kolmogorov-
Arnold Network (KAN) mask embed prediction head, hence improving the segmentation
of unseen objects and reducing false positives. Proposed architectures include ResNet-50
and Swin-T/S/B/L as backbones. and using KAN mask embed layers sets a new state-of-
the-art in anomaly segmentation, since our approach demonstrates superior performance
across various benchmarks on semantic segmentation, making it a robust solution also for
real-world scenarios as autonomous driving applications or anomaly detection in the wild.
For more details and code, visit our Github page.

Figure 1. Mask2KAN architecture
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Chapter 1

General Introduction to Image
Segmentation

1.1 General Principles
Image segmentation consists in partitioning images into meaningful segments i.e. seg-
mented objects, which is very relevant in computer vision applications for understanding
scenes. This is especially important in autonomous driving, where recognizing anomalies
can prevent accidents, or in anomaly detection applications where an unknown object
has to be recognized. Traditional models, such as Fully Convolutional Networks (FCNs)
Long et al. [2015], are designed for specific tasks like semantic segmentation, leading to
redundant research and optimization efforts for different segmentation tasks.

Recent advancements showed how universal architectures are capable of handling mul-
tiple segmentation tasks, as Mask2Former, which uses masked attention mechanisms to
enhance feature localization within predicted mask regions. Despite its success in various
tasks, the challenge of detecting unseen objects (anomalies) remains. Traditional per-pixel
methods often result in high false positive rates, the aim of this research is to reduce the
number of false positive in anomaly segmentation benchmark.

We propose Mask2KAN, an extension of Mask2Former, which substitutes the mask
embedded usually using an Multi-Layer Perceptron (i.e. MLP) layer, inspired by recent
works Liu et al. [2024] on Kolmogorov-Arnold Network (KAN). The approach used in
Mask2Former shifted the focus from per-pixel to mask classification, significantly improv-
ing anomaly detection and reducing computational complexity, now the aim is to make
it more robust on these scenarios using a new approach. As references and for compar-
isons reasons, we used as backbones of our model the ResNet-50 and various Swin sizes
architecture, by making some transformations on the transformer decoder.
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1.1.1 Semantic Segmentation

Semantic segmentation consists in predicting a category label for each pixel in an image,
as done in traditional methods, such as Fully Convolutional Networks (FCNs) Long et al.
[2015], have focused on per-pixel classification, relying heavily on context modeling and
customized modules. However, this approach often leads to inefficiencies in handling
complex scenes. More recent advancements, such as Mask2Former Cheng et al. [2022],
with masked attention and transformer-based architectures, allowed models to shift from
per-pixel classification to mask-level classification, improving performances by focusing
attention on mask regions rather than individual pixels, addressing common issues like
over-segmentation and false positives.

1.1.2 Instance Segmentation

Instance segmentation involves predicting distinct binary masks for each object in an im-
age. Traditional architectures, such as Mask R-CNN He et al. [2017], generate masks
from bounding boxes, which limits the model’s ability to generalize well across tasks like
semantic or panoptic segmentation. Although techniques like dynamic kernels and clus-
tering algorithms have been explored, these methods still suffer from constraints related
to bounding boxes. In contrast, Mask2Former Cheng et al. [2022] addresses these limi-
tations by introducing masked attention, which considers whole objects in their entirety,
resulting in better generalization and higher precision, particularly in instance segmenta-
tion tasks.

1.1.3 Panoptic Segmentation

Panoptic segmentation combines both semantic and instance segmentation, aiming to
predict both object classes and their boundaries. Specialized models for panoptic seg-
mentation often struggle to generalize across different tasks, leading to the development
of universal architectures. Mask2Former Cheng et al. [2022] has emerged as a solution,
leveraging transformer-based models to unify these tasks under a single framework, hence
improving efficiency and performance without such significant architectural changes for
each segmentation task.

1.1.4 Universal Architectures

Universal architectures aim to handle multiple segmentation tasks without requiring sig-
nificant changes to the core model. Early examples like DETR Carion et al. [2020] laid
the foundation for unifying object detection and segmentation tasks within a transformer
framework. Building on this, Mask2Former Cheng et al. [2022] introduces masked atten-
tion to further improve segmentation performance by efficiently attending to the relevant
regions of the image. These architectures excel in both efficiency and accuracy, making
them suitable for a wide image tasks, ideally any segmentation task.

17



1.1.5 Anomaly Segmentation
Anomaly segmentation focuses on detecting objects or regions that were not present in the
training data. Traditional methods using per-pixel classification Chen et al. [2018, 2017,
2020], Cheng et al. [2021] tend to generate noisy predictions and suffer from high false
positive rates, especially when applied to complex, real-world environments. Recent works,
such as Mask2Anomaly Shyam Nandan Rai [2023], extend the Mask2Former Cheng
et al. [2022] architecture by specifically addressing the anomaly detection problem. By
shifting from per-pixel to mask-level classification, these models achieve more consistent
and accurate anomaly detection, reducing the rate of false positives. This approach is
particularly useful in safety-critical applications like autonomous driving, where detecting
out-of-distribution objects is essential.

In this work, we focus on extending Mask2Former by integrating the principles of
Kolmogorov-Arnold Networks (KANs) Liu et al. [2024], which allow for better ap-
proximation of high-dimensional functions through a more flexible and robust architecture,
thereby enhancing performance, particularly in detecting anomalies.

18
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Chapter 2

Method

In this section, we introduce the key components of Mask2Former that form the foun-
dation of our proposed architecture, Mask2KAN. Mask2KAN builds on Mask2Former
by replacing the mask embed layer with a more flexible and powerful head based on
Kolmogorov-Arnold Networks (KANs). This replacement significantly improves
anomaly segmentation based on our validation datasets, especially in complex, real-world
scenarios. We describe the architecture in detail, highlighting its novel elements.

2.1 Preliminaries

Let X ⊂ R3×H×W be the space of RGB images, where H and W represent the height and
width, respectively, and Y ⊂ NK×H×W be the space of semantic labels, where each pixel
is assigned a label from a predefined set K, with |K| = K. At training time, we assume
a dataset D = {(xi, yi)}D

i=1, where xi ∈ X is an image and yi ∈ Y is its corresponding
ground truth semantic mask. Our goal in anomaly segmentation is to learn a function f
that maps the image space to an anomaly score space, i.e., f : X → RH×W .

In traditional per-pixel segmentation architectures, the function f is typically derived
by applying Maximum Softmax Probability (MSP) on top of the per-pixel classifier. Given
pixel-wise class scores S(x) ∈ [0, 1]K×H×W , the anomaly score can be computed as:

f(x) = 1 − Kmax
k=1

S(x). (2.1)

However, this per-pixel approach often leads to inefficiencies in handling anomalies,
as it treats each pixel independently without considering the overall mask structure. To
address this, Mask2Former shifts from per-pixel classification to mask-level classification,
based on this Mask2KAN improves segmentation performance, integrating a KAN layer
within the mask embed layer.
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2.2 Masked-attention Mask Transformer
Mask2Former introduced a meta-architecture for mask classification, which forms the
foundation of Mask2KAN. We improve upon this with our novel Transformer decoder
and KAN-based head, designed for better anomaly segmentation. Below, we describe the
critical components of Mask2KAN:

2.2.1 Mask Classification Preliminaries

In Mask2Former, mask classification involves predicting N binary masks and correspond-
ing category labels for each segment. The architecture groups pixels into N segments
and assigns them different semantics (e.g., categories or instances). This setup allows
the model to handle various segmentation tasks. However, representing these segments
effectively remains a challenge. Mask R-CNN He et al. [2017], for instance, uses bounding
boxes, which limit generalization. Inspired by DETR Carion et al. [2020], Mask2Former
replaces bounding boxes with object queries, processed by a Transformer decoder.

2.2.2 Transformer Decoder with Masked Attention

In Mask2KAN, we extend the standard Transformer decoder of Mask2Former by intro-
ducing a Masked Attention mechanism, which constrains cross-attention within the
foreground region of the predicted mask, rather than the entire feature map. This design
leads to more accurate segmentation, particularly in anomaly detection tasks. We also in-
troduce a multi-scale strategy to handle small objects, leveraging high-resolution features
from the pixel decoder’s feature pyramid.

2.2.3 Masked Attention

Recent research Cheng et al. [2022] has shown that local features play a crucial role in
improving image segmentation. Our masked attention mechanism focuses attention solely
within the predicted mask region for each query, reducing noise from unrelated background
areas and improving convergence times. This approach addresses the challenge of slow
convergence often seen in Transformer-based models.

We can observe the Mask2Former architecture in ??.

2.3 Introduction to KAN
The central innovation in Mask2KAN is the replacement of the traditional mask_embed
layer with a head based on Kolmogorov-Arnold Networks (KANs). KANs, inspired
by the Kolmogorov-Arnold representation theorem, offer greater flexibility in approximat-
ing complex, high-dimensional functions. Below, we outline the KAN framework and its
application in Mask2KAN.

22



2.3 – Introduction to KAN

Figure 2.1. Mask2Former original architecture

Figure 2.2. Example of how KAN can learn for each layer, from Liu et al. [2024].

2.3.1 Kolmogorov-Arnold Representation Theorem
The Kolmogorov-Arnold theorem Liu et al. [2024] asserts that any multivariate continuous
function can be decomposed into a finite sum of univariate functions. Specifically, for a
function f : [0,1]n → R, the decomposition is:

f(x) =
2n+1Ø
q=1

Φq

 nØ
p=1

ϕq,p(xp)

 , (2.2)

where ϕq,p are continuous univariate functions and Φq are continuous outer functions.
This decomposition reduces the complexity of learning high-dimensional functions, making

23
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it ideal for tasks requiring fine-grained segmentation, such as anomaly detection.

2.3.2 Kolmogorov-Arnold Networks (KANs)
Kolmogorov-Arnold Networks (KANs) embed the Kolmogorov-Arnold representation the-
orem within neural networks, learning univariate functions for each node. This flexible
architecture allows Mask2KAN to better handle irregular and complex anomaly shapes
compared to standard MLP-based architectures. In matrix form, a KAN layer is expressed
as:

xl+1 =


ϕl,1,1(·) ϕl,1,2(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) ϕl,2,2(·) · · · ϕl,2,nl

(·)
...

...
...

ϕl,nl+1,1(·) ϕl,nl+1,2(·) · · · ϕl,nl+1,nl
(·)

xl. (2.3)

The final output of KAN, after L layers, is:

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0)x. (2.4)

2.4 Kolmogorov-Arnold Network (KAN) Overview
The Kolmogorov-Arnold Network (KAN) processes input data through a series of layers,
each applying a specific transformation. The final output of the KAN after L layers is
expressed as follows:

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ1 ◦ Φ0)x. (2.5)

In this expression:

• x represents the input vector to the network.

• Φi denotes the transformation function applied at layer i, where i ranges from 0 to
L − 1.

• The notation ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0 shows us the sequential application of these
transformation functions from the first layer (Φ0) to the last layer (ΦL−1).

Unlike traditional Multi-Layer Perceptrons (MLPs), where activations are applied to
the weighted sums of node values, KANs apply transformations directly to the node
values. This means that in KANs, each layer processes the input directly through trans-
formations specific to that layer, rather than combining input values with weights before
activation. Using the Kolmogorov-Arnold representation theorem, we are able to handle
complex models, high-dimensional functions more flexibly Liu et al. [2024], compared to
weight-based activations in MLP layers.
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2.5 – Loss Penalty Method

2.5 Loss Penalty Method
In this section, we present the loss penalty methodology employed in Kolmogorov-Arnold
Networks (KANs). The regularization techniques are used to mitigate overfitting and
improve the model with generalizations and adaptability, especially for anomaly detection
tasks.

2.5.1 Loss Function Formulation

The overall loss function for training KANs can be expressed as:

Ltotal = Lseg + λ1Lreg + λ2Lcontrastive, (2.6)

where:

• Lseg denotes the segmentation loss, which quantifies the accuracy of the model in
delineating and classifying relevant regions within the image.

• Lreg represents the regularization loss, aimed at controlling model complexity and
avoiding overfitting. It is calculated as:

Lreg =
LØ

l=1

1
Regularization Lossactivation + Regularization Lossentropy

2
, (2.7)

where:
Regularization Lossactivation = mean (|spline_weight|) , (2.8)

Regularization Lossentropy = −
Ø

i

pi log(pi), (2.9)

and pi denotes the normalized spline weight values.

• Lcontrastive is the contrastive loss, designed to distinguish between in-distribution and
out-of-distribution (OOD) data. This loss is formulated as:

LCL = 1
2
1
l2CL

2
, (2.10)

where the contrastive term lCL is defined by:

lCL =
I

lN if MOOD = 0
max(0, m − lN ) otherwise,

(2.11)

with lN representing the negative likelihood associated with in-distribution classes.
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2.5.2 Implementation Considerations
The implementation of the regularization loss in KANs is optimized for memory efficiency.
Specifically, the L1 regularization is approximated by evaluating the mean absolute value
of spline weights. Additionally, entropy regularization is incorporated to enforce a more
uniform distribution of spline weights.

Taking advantage from these loss penalty terms, KANs are better equipped to achieve
robust performance in anomaly detection tasks, as the penalties help in controlling the
complexity of the model and improving its ability to differentiate between normal and
anomalous data patterns.

2.5.3 Comparing MLPs and KANs
Traditional MLPs use fixed nonlinear activation functions at each node and linear weights
(and biases) to transform inputs through layers. During backpropagation, gradients of
the loss function with respect to weights and biases are calculated to update the model
parameters. In contrast, KANs replace linear weights with learnable univariate functions
placed on edges rather than nodes. Each function is adaptable, allowing the network to
learn both the activation and transformation of the inputs. This change leads to improved
accuracy and interpretability, as KANs can better approximate functions with fewer pa-
rameters. During backpropagation in KANs, the gradients are computed with respect to
these univariate functions, updating them to minimize the loss function. This results in
more efficient learning for complex and high-dimensional functions.

2.5.4 Optimization Improvements
In Mask2KAN, we focus on optimizing the Transformer decoder by integrating a Kolmogorov-
Arnold Network (KAN) layer in place of the traditional final layer. This adjustment aims
to enhance the model’s performance, particularly in reducing false positives. The im-
provements are detailed as follows:

• Replacement with KAN Layer: We replace the original Transformer decoder’s
final layer with a KAN layer. This substitution is designed to improve the model’s
capacity for anomaly detection by more effectively capturing complex patterns and
reducing false positives. The KAN layer leverages the Kolmogorov-Arnold represen-
tation theorem to model high-dimensional functions with greater flexibility compared
to traditional linear transformations.

• Removal of Dropout: In the original Transformer decoder, dropout was employed
as a regularization technique. However, in Mask2KAN, we found that dropout often
detracted from performance, particularly in the context of the KAN layer. There-
fore, we eliminate dropout from our decoder to ensure that the KAN layer operates
without the interference of stochastic regularization, leading to more consistent per-
formance and improved accuracy.

• Direct Supervision of Query Features: We make the query features (X0) learn-
able and directly supervised before being processed by the Transformer decoder. This
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2.5 – Loss Penalty Method

Figure 2.3. Overview of Mask2KAN architecture

approach ensures that the features used to predict masks (M0) are optimized more
effectively, enhancing the accuracy of mask predictions and further contributing to
the reduction of false positives.
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Figure 2.4. Schema on how what is inside the MaskEmbed KAN layer
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Chapter 3

Experiments

3.1 Dataset and Evaluation

3.1.1 Dataset
To evaluate the performance of our model, we use five benchmark datasets, each offering
unique challenges for anomaly detection in road scenarios. Our model is trained on the
Cityscapes dataset and assessed across the following datasets:

• RoadAnomaly21 (SMIYC-RA21): This dataset features 100 test images and
10 additional images with pixel-level annotations, capturing a wide variety of road
anomalies such as animals, debris, and unknown vehicles. The images are collected
from diverse web resources, providing a broad range of environments. Anomalies
in these images vary greatly in size, from 0.5% to 40% of the image area, and can
appear anywhere in the scene. The resolutions of the images are 2048x1024 and
1280x720, making it suitable for general anomaly segmentation in full street scenes.

• RoadObstacle21 (SMIYC-RO21): This dataset focuses on road obstacle seg-
mentation and includes 327 test images with pixel-level annotations, alongside 30
extra images. It encompasses obstacles such as stuffed toys, sleighs, and tree stumps,
and features varying road surfaces, lighting, and weather conditions. The images are
at a resolution of 1920x1080, providing a comprehensive dataset for obstacle detec-
tion within road scenes.

• Road Anomaly: Comprising 60 web images, this dataset contains per-pixel anno-
tations for unusual dangers encountered by vehicles on the road, such as animals,
rocks, and traffic cones. It is specifically designed to test autonomous driving per-
ception algorithms under rare but critical conditions. While some frames retain
their original editor files for further adjustments, annotations are available for many
frames.

• fs_static: This benchmark dataset evaluates static anomaly detection by blending
anomalous objects into validation images from the Cityscapes dataset. It presents
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a range of static, unexpected items, such as furniture and animals, which are not
typically found on roads. This dataset provides a robust evaluation of static anomaly
scenarios.

• FS_LostFound_full: Part of the Lost and Found benchmark, this dataset con-
tains 112 stereo video sequences with 2104 annotated frames. It includes coarse an-
notations for free-space areas and fine-grained annotations for road obstacles. The
dataset is divided into training/validation and test subsets, with the test subset
featuring unseen objects and more complex scenarios, thus offering a challenging
evaluation of anomaly detection in dynamic and diverse road environments.

These datasets collectively offer a diverse set of scenarios for testing and improving
anomaly detection models, which is crucial for applications in autonomous driving and
road safety.

3.1.2 Evaluation Metrics
We evaluate anomaly segmentation methods at both pixel and component levels, focusing
on the following metrics, which are also used in Tables 3.1, 3.2, 3.3, 3.4 and 3.5.

Pixel-Level Metrics:

• Area under the Receiver Operating Characteristic Curve (AuROC): This
is a standard metric to measure how well a model distinguishes between anomalous
and non-anomalous regions. Higher AuROC values indicate better performance in
identifying anomalies.

• Area under the Precision-Recall Curve (AuPRC): This metric is used to
handle the unbalanced nature of anomaly datasets. The precision and recall are
calculated for each threshold γ, and AuPRC is computed by integrating the precision-
recall curve:

precision(γ) = |Ya ∩ Ŷa(γ)|
|Ŷa(γ)|

, recall(γ) = |Ya ∩ Ŷa(γ)|
|Ya|

The AuPRC is then:

AuPRC =
Ú

γ
precision(γ) · recall(γ)

AuPRC is particularly important for detecting smaller anomalies, which may be
missed by other metrics. For instance, in Tables 3.4, 3.5, the Swin-L KAN model
shows high AuPRC performance across most datasets, notably in RoadAnomaly21
with an AuPRC of 0.7065.

• False Positive Rate at a True Positive Rate of 95% (FPR@TPR95): This
safety-critical metric indicates the false positive rate when the true positive rate is
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fixed at 95%. A lower value indicates fewer false alarms, which is crucial in real-world
applications. FPR95 is calculated as:

FPR95 = |Ŷa(γ∗) ∩ Yna|
|Yna|

where γ∗ is the threshold for achieving a 95% true positive rate. From Tables 3.4,
3.5 we observe that the Swin-S KAN model performs exceptionally well on the Road-
Obstacle21 dataset, achieving an FPR95 of just 0.0019.

Component-Level Metrics:

• Component-wise Intersection over Union (sIoU): This modified version of the
IoU metric focuses on the overlap between predicted and ground-truth components,
with adjustments for other ground-truth objects. It is computed as:

sIoU(k) = |k ∩ K̂(k)|
|k ∪ K̂(k) \ A(k)|

where A(k) excludes correctly predicted pixels that overlap with another ground-
truth component. In Tables 3.4, 3.5, Swin-L KAN model achieves strong component-
level segmentation performance, particularly on RoadAnomaly21.

Component-Level Metrics:

• Component-wise Intersection over Union (sIoU): This variation of the stan-
dard IoU metric is designed to specifically evaluate the overlap between predicted and
ground-truth components. It accounts for cases where ground-truth objects might
overlap, and it excludes correctly predicted pixels that belong to other components.
The sIoU is computed as:

sIoU(k) = |k ∩ K̂(k)|
|k ∪ K̂(k) \ A(k)|

where A(k) refers to pixels correctly predicted but belonging to another ground-truth
component. This metric provides a more accurate reflection of the model’s ability
to segment distinct components in complex scenes.

• In Table 3.1, the Swin Base KAN model achieves the best component-level segmen-
tation performance, outperforming other models in terms of standard IoU, instance-
wise IoU (iIoU), supervised IoU (i.e. IoU sup), and instance-wise supervised IoU (i.e.
iIoU sup). With an IoU of 81.45 and iIoU of 66.20, Swin-B KAN demonstrates
superior capability in handling fine-grained segmentation tasks, indicating that the
incorporation of Kernel Activation Networks (KAN) enhances the model’s ability to
accurately distinguish between overlapping components.

• Similarly, Swin-Small MLP shows strong performance, achieving an iIoU of
66.29, the highest among all models. However, in the case of supervised metrics,
Swin-Small KAN achieves the best result with an iIoU_sup of 81.04, confirming
the effectiveness of KAN, particularly when additional supervision is provided.
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• The overall results suggest that the inclusion of KAN leads to consistent improve-
ments across different model architectures and metrics, with Swin-B KAN and Swin-
S KAN showing the most notable gains, particularly in the most challenging metrics
(iIoU and iIoU_sup).

Model IoU iIoU IoU_sup iIoU_sup
ResNet-50 MLP 77.5332 60.8383 90.8862 80.1791
ResNet-50 KAN 79.1285 61.9124 91.0144 80.2947
Swin-B MLP 79.5283 64.6026 91.2411 80.3178
Swin-B KAN 81.4470 66.2032 91.4183 80.9711
Swin-S MLP 81.2626 66.2940 91.4223 80.9639
Swin-S KAN 80.9848 64.6869 91.4023 81.0443
Swin-T MLP 80.4071 64.7951 91.2080 81.4239
Swin-T KAN 80.2381 63.5025 91.2245 81.1787

Table 3.1. Comparison of the performance of KAN architectures with different backbone
variants (ResNet-50, Swin Base, Swin Small, Swin Tiny) in terms of IoU, iIoU, IoU_sup,
and iIoU_sup. The KAN variants show improvements over the original and MLP-based
models, highlighting the effectiveness of KAN in different backbone configurations.

3.1.3 Evaluation Results
Table 3.4, and 3.5 summarizes the performance of different models across five validation
datasets: RoadAnomaly21, RoadObstacle21, Road Anomaly, fs_static, and
FS_LostFound_full. The following key observations can be made from the results:

• Swin Large (KAN) demonstrates consistently strong performance across most
datasets, achieving an AuPRC of 0.7065 and an FPR@TPR95 of 0.3548 on the
RoadAnomaly21 dataset. It also excels in component-level evaluations, particularly
in the fs_static and FS_LostFound_full datasets.

• Swin Small (KAN) outperforms other models in RoadObstacle21 with an ex-
tremely low FPR@TPR95 of 0.0019, indicating its robustness in detecting anomalies
with minimal false positives.

• Swin Tiny (MLP) and Swin Tiny (KAN) show competitive results, particularly
in Road Anomaly and FS_LostFound_full, though these models are slightly less
effective than their larger counterparts.

• Overall Trends: Models using KAN activation functions tend to achieve better
component-level performance (higher sIoU), whereas models using MLP architec-
tures often show better pixel-level precision (higher AuROC and AuPRC).
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RoadAnomaly21 RoadObstacle21 RoadAnomaly

Methods AuROC ↑ AUPRC ↑ FPR@TPR95 ↓ AuROC ↑ AUPRC ↑ FPR@TPR95 ↓ AuROC ↑ AUPRC ↑ FPR@TPR95 ↓

ResNet-50 (MLP) 0.9140 0.8066 0.6513 0.8277 0.8658 0.3010 0.7146 0.6618 0.3187

ResNet-50 (KAN) 0.4269 0.2863 0.4701 0.4315 0.9996 0.4605 0.2718 0.9425 0.8925

Table 3.2. Inference results for ResNet50 models on the RoadAnomaly21, RoadObsta-
cle21, and Road Anomaly datasets using ResNet-50.

fs_static FS_LostFound_full

Methods AuROC ↑ AUPRC ↑ FPR@TPR95 ↓ AuROC ↑ AUPRC ↑ FPR@TPR95 ↓

ResNet-50 (MLP) 0.9119 0.9020 0.3536 0.9111 0.9130 0.2648

ResNet-50 (KAN) 0.2708 0.4922 0.4887 0.2347 0.8503 0.7519

Table 3.3. Inference results for ResNet50 models on the fs_static and
FS_LostFound_full datasets using ResNet-50.

RoadAnomaly21 RoadObstacle21

Methods AuROC ↑ AUPRC ↑ FPR@TPR95 ↓ AuROC ↑ AUPRC ↑ FPR@TPR95 ↓

SWIN-T (MLP) 0.7833 0.5770 0.7770 0.9734 0.4803 0.0523

SWIN-T (KAN) 0.6951 0.5518 0.9302 0.9716 0.4991 0.0584

SWIN-S (MLP) 0.8394 0.6264 0.6684 0.9991 0.9369 0.0034

SWIN-S (KAN) 0.7323 0.5671 0.9438 0.9963 0.9582 0.0019

SWIN-L (MLP) 0.8886 0.7055 0.6440 0.9949 0.8863 0.0097

SWIN-L (KAN) 0.8949 0.7065 0.3548 0.9894 0.8935 0.0129

Table 3.4. Inference results on RoadAnomaly21 and RoadObstacle21 datasets using Swin.

RoadAnomaly fs_static FS_LostFound_full

Methods AuROC ↑ AUPRC ↑ FPR@TPR95 ↓ AuROC ↑ AUPRC ↑ FPR@TPR95 ↓ AuROC ↑ AUPRC ↑ FPR@TPR95 ↓

SWIN-T (MLP) 0.8408 0.4323 0.6134 0.8261 0.3114 0.7996 0.8688 0.3831 0.9416

SWIN-T (KAN) 0.8292 0.4261 0.6982 0.8411 0.3297 0.7705 0.8854 0.3983 0.8415

SWIN-S (MLP) 0.9014 0.6438 0.6153 0.9009 0.4568 0.7774 0.9262 0.4888 0.5210

SWIN-S (KAN) 0.9177 0.6613 0.4138 0.8232 0.3479 0.9048 0.9014 0.4200 0.9413

SWIN-L (MLP) 0.9229 0.6924 0.5852 0.9570 0.6979 0.2701 0.9365 0.5605 0.6229

SWIN-L (KAN) 0.9624 0.7898 0.1317 0.9066 0.4485 0.7299 0.9417 0.5930 0.4775

Table 3.5. Inference results on RoadAnomaly, fs_static, and
FS_LostFound_full datasets using Swin.

3.2 Implementation Details
Our implementation is derived from Mask2Former and KAN networks. We use a set of
different backbones (e.g. ResNet-50 and Swin-T/S/B/L). The encoder is initialized with
weights pre-trained on ImageNet, and its architecture consists of an embedding dimension
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Figure 3.1. Performances results for Swin models on Validation dataset

of 96, depths of [2, 2, 6, 2], and multi-head attention with [3, 6, 12, 24] heads per stage.
We freeze the encoder weights during training to save memory and reduce training time.
The pixel decoder leverages multi-scale deformable attention (MSDeformAttn), providing
feature maps at 1/8, 1/16, and 1/32 resolution to the transformer decoder, which consists
of 2 layers with learnable queries. We train Mask2Anomaly using a combination of binary
cross-entropy loss and dice loss for the class masks, alongside cross-entropy loss for class
scores. The network is trained with a batch size of 8 and an initial learning rate of 1e-4 for
90,000 iterations, using the AdamW optimizer with a weight decay of 0.05. The images
are cropped to 340 × 680 with large-scale jittering and a random scale ranging from 0.1
to 2.0.

3.3 Ablation Study

In this section, we analyze the impact of various design choices within the KAN-based
mask embedding layer, particularly focusing on components that influence performance,
efficiency, and accuracy. Our default setting uses a hidden dimension of 256 for all layers,
as it provides the best balance between performance and complexity. Below, we present
the results of different ablation experiments ran on MNIST dataset.

3.3.1 Effect of Grid Size

We varied the grid size g from the default value of 5 to both smaller (g = 3) and larger
(g = 7) sizes. Results in Table 3.6 show that increasing the grid size slightly improves
performance, achieving an accuracy of 0.9444 with g = 7, while smaller grid sizes degrade
performance, with g = 3 yielding an accuracy of 0.9478. This aligns with the behavior of
the spline activation functions, as larger grid sizes allow for more fine-grained interpolation.
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Table 3.6. Ablation Study on KAN mask embedding architecture under default set-
tings (256 dimensions for all layers). Experiments include varying grid size, spline order,
activation functions, and disabling key features.

Experiment Grid Size Spline Order Performance (Accuracy)
Default (256, 256, 256) 5 3 0.9471

Varying Grid Size 3 3 0.9478
7 3 0.9444

Varying Spline Order 5 2 0.9598
5 4 0.9400

Disabling Spline Scaler 5 3 0.9531
Changing Activation Function 5 3 0.9578

Regularization Disabled 5 3 0.9465
Grid Update Disabled 5 3 0.9425

3.3.2 Spline Order
The spline order o was varied to observe its impact on the performance. Lower spline
orders (e.g., o = 2) reduce the expressive power of the activation functions, leading to
slight performance degradation. In contrast, increasing the spline order to o = 4 provides
marginal improvement. As shown in Table 3.6, the best performance was achieved with
o = 2, yielding an accuracy of 0.9598. Conversely, increasing the spline order to o = 4
slightly reduced performance to 0.9400. Mathematically, the B-spline basis functions are
recursively defined, and their smoothness is controlled by the order o of the spline, as
detailed in Equation (2.14):

Bk
i (x) = x − ti

ti+k − ti
Bk−1

i (x) + ti+k+1 − x

ti+k+1 − ti+1
Bk−1

i+1 (x),

where ti are the grid points.

3.3.3 Activation Function
We explored the effect of different activation functions, focusing on replacing the default
SiLU activation with ReLU.Table 3.6 shows that substituting SiLU with ReLU increased
accuracy to 0.9578, demonstrating slight improvements with ReLU. The SiLU function,
defined as SiLU(x) = x/(1 + e−x), provides smoother non-linearity compared to ReLU.
While ReLU performed slightly better in our case, achieving an accuracy of 0.9578, SiLU
remains the preferred choice due to its continuous derivative, which is advantageous for
spline-based models.

3.3.4 Regularization and Grid Update
Regularization plays a key role in the model’s generalization. Specifically, we employ
a combination of L1 regularization on the spline weights and entropy regularization, as
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shown in Equation (2.20):

Ltotal = Lpred + λ

A
µ1

L−1Ø
l=0

∥Φl∥1 + µ2

L−1Ø
l=0

S(Φl)
B

,

where ∥Φl∥1 is the L1 norm of the activation functions and S(Φl) is the entropy regular-
ization term:

S(Φl) = −
ninØ
i=1

noutØ
j=1

|ϕi,j |1
|Φl|1

log |ϕi,j |1
|Φl|1

.

Table 3.6 highlights that disabling either regularization or the dynamic grid update led to
noticeable performance drops, with accuracies falling to 0.9465 and 0.9425, respectively,
showing the importance of these components in ensuring proper generalization. Disabling
the spline scaler resulted in the second-best performance, with an accuracy of 0.9531.
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3.4 Conclusion and Future Work
In this paper, we introduced Mask2KAN, a novel approach that combines the strengths of
Mask2Former and Kolmogorov-Arnold Networks (KANs) to enhance anomaly segmenta-
tion. By shifting the focus from per-pixel classification to mask classification, Mask2KAN
significantly improves the detection of unseen objects and reduces false positives. Our
results demonstrate that Mask2KAN achieves state-of-the-art (SOAT) performance com-
pared to Mask2Former and other universal segmentation architectures, particularly ex-
celling in the Area under the Receiver Operating Characteristic Curve (AuROC) and the
Area under the Precision-Recall Curve (AUPRC).

Although the average False Positive Rate at True Positive Rate of 95% (FPR@TPR95)
is slightly worse due to an outlier dataset (RoadObstacle21, with an FPR@TPR95 of
0.9996), excluding this dataset shows that Mask2KAN has a clear advantage in the
FPR@TPR95 metric as well. This highlights the robustness and effectiveness of Mask2KAN
for real-world applications.

Future work will explore further optimizations and extensions of the Mask2KAN archi-
tecture to broaden its applicability, particularly in autonomous driving and other complex
domains. Potential research directions include:

• Refinement of the Loss Function: Investigating alternative loss functions and
their combinations to enhance model performance and robustness.

• Architectural Enhancements: Evaluating modifications to the KAN architecture
to improve its capacity for handling diverse anomaly types and scales.

• Generalization and Transfer Learning: Assessing the effectiveness of Mask2KAN
on different datasets and tasks to validate its generalizability and adaptability.
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Part VI

Additional Resources:
Hardware Specs and

Mask2KAN Demo on Gradio

43





3.5 – Hardware Specifications

3.5 Hardware Specifications
All experiments were conducted on a system with the following hardware specifications:

• CPU: Intel Core i9-10940X @ 3.30 GHz (14 cores, 28 threads)

• Memory: 256 GB RAM

• GPU: NVIDIA GeForce RTX 3090 with 24 GB VRAM

The system is also equipped with several hardware-based security mitigations, includ-
ing protections against Spectre, Meltdown, and other known vulnerabilities.

3.6 Mask2KAN Demo on Gradio
To provide a comprehensive overview of the Mask2KAN model, we present a demo show-
casing various segmentation results using our Gradio application. The results have been
obtained using our best-performing Mask2KAN model, which demonstrates superior per-
formance in anomaly detection.

In Figure 3.2, we show the segmentation of anomalies in an indoor environment. The
Mask2KAN model, implemented in our Gradio app, highlights rare objects and their
precise boundaries. This example demonstrates the model’s effectiveness in controlled
settings.

Furthermore, Figure 3.5 compares the outputs of the KAN and MLP models. The
KAN output, shown in Figure 3.3, displays the correct shape of the anomaly, even when
it is not a bird, whereas the MLP output in Figure 3.4 shows an incorrect shape. This
comparison illustrates that KAN performs better by accurately capturing the shape of
anomalies.

Lastly, Figure 3.6 presents inference results using the Tiny KAN model on various im-
ages. These images illustrate the model’s versatility and effectiveness in different settings,
validating its state-of-the-art performance as discussed in this paper.

These images illustrate the model’s versatility and effectiveness in various settings,
validating its state-of-the-art performance as discussed in this paper.

Code and gradio demo are available at the following link: github.
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Figure 3.2. Segmentation of anomalies in an indoor environment. The Mask2KAN
model, implemented in our Gradio app, highlights rare objects and their precise bound-
aries. This example demonstrates the model’s effectiveness in controlled settings.

Figure 3.3. KAN output showing
correct shape.

Figure 3.4. MLP output showing in-
correct shape.

Figure 3.5. Comparison of KAN and MLP. KAN performs better by showing the correct
shape of anomalies, even when not a bird, compared to MLP where we reduce the number
of false positives (e.g. horse, bicycle and more).

Figure 3.6. Inference Results Using Tiny Kan Model on Cityscapes random images,
among all cities. Script available on link github
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