
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

OCPP Protocol in the Smart Charging Era: Formal
Verification of Security-Related Use Cases through

ProVerif Analysis.

Supervisors

Prof. Riccardo SISTO
Dott. Simone BUSSA

Candidate

Rebecca FALCO

2023/2024

Abstract

With the growing adoption of electric vehicles and the definition of the Agenda 2030
goals, the demand for efficient charging infrastructure has significantly increased.
The need for secure and reliable communication between Charging Stations (CS)
and Charging Stations Management System (CSMS) is crucial for the digitalisation
and management of the charging process. From the study of the landscape of
protocols proposed for this purpose, the Open Charge Point Protocol (OCPP) has
emerged as the de facto standard for communication between charging stations
and management systems. Accordingly, the thesis work proceeded examining
the evolution and key characteristics of the OCPP protocol, developed by the
Open Charge Alliance (OCA) to enable interoperability and smart features in EV
charging networks. As the electric vehicle infrastructure expands, so do concerns
over the security and trustworthiness of communication systems: vulnerabilities in
the charging infrastructure could lead to potential cyberattacks. The security of
charging transactions data exchange is, therefore, of paramount importance. This
study focused on OCPP’s use cases most relevant to security, with emphasis on direct
manipulation of security parameters. The Formal Verification of these use cases is
carried out through the modelling of data exchange, authentication security profiles,
and cryptographic algorithms, using the ProVerif formal prover to analyse and
validate the security properties such as Confidentiality, Integrity and Authentication
of the Charging Station (CS) to the Charging Station Management System (CSMS)
communication protocol. This thesis provides a detailed examination of the use
cases and their associated security measures, ultimately confirming that the OCPP
protocol ensures secure communication in the studied scenarios, contributing to
the goal of a safe and sustainable e-mobility ecosystem.

Grazie
Ai miei professori per avermi ispirata

Alle mie fantastiche amiche
Ai miei genitori

A Diego

A tutti quelli che hanno rispettato i miei silenzi
e festeggiato i miei successi

iii

Table of Contents

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Introduction . 1
1.2 Structure of the document . 1
1.3 Objective of the thesis . 2

2 State of the art of Electric Charging 5
2.1 Introduction to Electric Vehicles Charging scenario 5

2.1.1 Evolution and future . 5
2.1.2 Securing the Infrastructure 9

2.2 State of the Art of EV Charging . 10
2.2.1 EV Charging Scenario . 10
2.2.2 EV Charging Protocols . 12

2.3 Why Open Protocols? . 13
2.3.1 Openness and Interoperability 13
2.3.2 Adopting Open over Proprietary communication protocols . 15

3 The OCPP Protocol 17
3.1 The Open Charge Point Protocol 17

3.1.1 Evolution and Diffusion . 17
3.1.2 Version 2.0.1 . 18

3.2 Spreading adoption of the OCPP Protocol 19
3.2.1 Why OCPP? . 20
3.2.2 Certification Program . 21

3.3 OCPP Architecture . 22
3.3.1 Key concepts . 22
3.3.2 Functional Blocks . 23
3.3.3 Use Cases, Test Cases, Certification Profiles 25

v

3.3.4 Security Objectives and Security Profiles 26

4 The ProVerif Tool 29
4.1 Formal Verification . 29

4.1.1 Theorem Proving and Model Checking 29
4.2 The ProVerif Tool . 30

4.2.1 Proverif abstractions . 30
4.2.2 Verifying Protocols Properties with ProVerif 30

5 The ProVerif model of OCPP’s Use Cases 33
5.1 A01 - Update Charging Station Password for HTTP Basic Authenti-

cation . 33
5.1.1 Description Use Case A01 33
5.1.2 Setup of the environment 34
5.1.3 A01 - Schema and Messages 35
5.1.4 Message exchange implementation 36

5.2 A05 – Upgrade Charging Station Security Profile 38
5.2.1 Description of Use Case A05 38
5.2.2 Setup of the environment 38
5.2.3 A05 - Schema and Messages 40
5.2.4 Message exchange implementation 41

5.3 Cryptographic Elements of the Proverif Models 45
5.3.1 Chosen Ciphersuite . 45
5.3.2 Asymmetric encryption . 46
5.3.3 Signature . 46
5.3.4 ECDHE . 47
5.3.5 Other functions . 47

5.4 Security Profiles . 49
5.4.1 Security Profile 2 -TLS with Basic Authentication 49
5.4.2 Security Profile 3 - TLS with Client Side Certificates 51
5.4.3 Messages . 52

6 Results of the analysis 55
6.1 Results of A01 - Update Charging Station Password 55

6.1.1 Description Use Case A01 55
6.1.2 Secrecy . 56
6.1.3 Observational Equivalence 57
6.1.4 Authentication . 58
6.1.5 Reachability of the Events 59
6.1.6 Session Correspondence . 61
6.1.7 Message Ordering . 63

vi

6.2 Results of A05 - Upgrade Charging Station Profile 64
6.2.1 Secrecy . 64
6.2.2 Observational Equivalence 67
6.2.3 Authentication . 67
6.2.4 Reachability of the Events 69
6.2.5 Session Correspondence . 71
6.2.6 Message Ordering . 74

6.3 Results Security Profiles Authentication 77
6.3.1 Security Profile 2 . 78
6.3.2 Security Profile 3 . 80

7 Conclusions and Future Work 85

Bibliography 87

A Update Charging Station Password for HTTP Basic Authentica-
tion 89

B Upgrade Charging Station Security Profile 103

vii

List of Figures

2.1 Fuel Types Of New Cars Per Year, from ACEA report Q3 2024 . . 6
2.2 Charging Points per Country, from ACEA report Q1 2024 7
2.3 Safety and Availability of the chain 8
2.4 NIST guideline main steps . 10
2.5 EV Charging Scenario . 11
2.6 Benefits of Open Protocols . 16

3.1 OCPP Evolution Milestones . 18
3.2 OCA Participants around the Globe, from OCA website, august 2024 20
3.3 Charging Process . 22
3.4 Relations in OCPP Specification . 23
3.5 OCPP Functional Blocks Categories 25
3.6 OCPP Security Profiles Authentication Requirements 27

5.1 Sequence Diagram: Update Charging Station Password for HTTP
Basic Authentication . 35

5.2 Sequence Diagram: Upgrade Charging Station Security Profile . . . 41
5.3 Sequence Diagram: TLS with Basic Authentication sequence diagram 50
5.4 Sequence Diagram: TLS with Client Side Certificates 52

6.1 Sequence Diagram: Events for A01 session correspondence 62
6.2 Sequence Diagram: Events for A01 message ordering 65
6.3 Sequence Diagram: Events for A05 session correspondence 73
6.4 Sequence Diagram: Events for A05 message ordering 1 76
6.5 Sequence Diagram: Events for A05 message ordering 2 77
6.6 Sequence Diagram: Events Authentication Security Profile 2 79
6.7 Sequence Diagram: Events Authentication Security Profile 3 82

ix

Acronyms

ACEA European Automobile Manufacturers’ Association

AES Advanced Encryption Standard

BEV Battery Electric Vehicle

CA Certification Authority

CHO Clearing House Operator

CIA Confidentiality, Integrity, Availability

CS Charging Station

CSMS Charging Station Management System

CSO Charging Station Operator

DDoS Distributed Denial of Service

DH Diffie–Hellman

DSO Distribution System Operator

DUT Device Under Test

ECDHE Elliptic-curve Diffie–Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EMS Energy Management Systems

eMSP e-Mobility Service Provider

EU European Union

xi

EV Electric Vehicle

EVSE EV supply equipment

GCM Galois Counter Mode

GDPR General Data Protection Regulation

HTTP Hyper Text Transfer Protocol

IoT Internet of Things

MAC Message Authentication Code

NIST National Institute of Standards and Technology

NSP Network Service Provider

OCA Open Charge Alliance

OCHP Open Clearing House Protocol

OCPI Open Charge Point Interface

OCPP Open Charge Point Protocol

OOB Out Of Band

OSCP Open Smart Charging Protocol

PHEV Plug-in Hybrid Electric Vehicle

PICS Protocol Implementation Conformance Statement

PRF Pseudorandom Function

REST Representational state transfer

RFID Radio frequency identification

SHA Secure Hash Algorithm

TLS Transport Layer Security

V2G Vehicle to Grid

xii

Chapter 1

Introduction

1.1 Introduction
In light of the ambitious Agenda 2030 and European Green Deal objectives, the
growing adoption of electric vehicles is creating a market need for effective com-
munication in the Electric Vehicle charging process. The Open Charge Alliance is
responsible for the development of OCPP, an open protocol that, within the land-
scape of available protocols for this purpose, facilitates interoperability and seamless
data exchange between the entities involved in the smart charging ecosystem. In
recent years, the OCPP has become the de facto standard for communication
between Charging Stations and Charging Station Management Systems. The
increasing evolution of smart connectivity also introduces potential targets for
cyberattacks. The first challenge in cybersecurity is preventing possible security
threatening events, and one effective way to address this challenge is performing
Formal Verification. Given this introduction to the entities and needs involved, this
study focuses on OCPP’s sections most relevant to security, performing formal ver-
ification carried out using the ProVerif formal prover. The scope of the verification
is to analyse and validate the security properties such as confidentiality, integrity
and authentication. This thesis provides a detailed examination of the use cases,
their associated security measures and the verification result interpretation.

1.2 Structure of the document
This section contains a summary of the content of each charper of this thesis, to
better explain the work done.

1. Introduction
Brief introduction to the chapters and the objective of this thesis.

1

Introduction

2. State of the art of Electric Charging
Introduction to the state of the art of electric charging scenario and the digi-
tisation process. It includes the state of the art of communication protocols
between the entities involved in the charging process and an in detail explaina-
tion of the concepts of openness and interoperability of open protocols, and
comparing these characteristics to proprietary solutions.

3. The OCPP Protocol
Introduction to OCPP: milestones and values underlying its continuous evo-
lution, presentation of the main features and its specification architecture,
reasons for its spreading global adoption.

4. The ProVerif Tool
The concept of formal verification with a description of the ProVerif tool
principles and usage for security properties analysis. Presentation of possible
and desirable results, with a brief introduction to the concept of undecidability.

5. ProVerif model of OCPP’s Use Cases
Summary of the protocol requirements for the selected use cases: the model
implementation in ProVerif input language is provided, along with the detailed
descriptions of the entities involved, the messages exchanged, the communi-
cation and cryptographic functions, and the overall decisions taken for the
implementation.

6. Results of the analysis
Analysis of properties required for the use cases with detailed description of
the ProVerif verification model. Description of the queries, interpretation of
the results and analisys of correspondence to expectations.

7. Conclusions and future work
Summary of the results, possible further evolution and suggestions for future
work.

1.3 Objective of the thesis
Given the state of the art of the Electric Vehicles global adoption, a preliminary
stage and first objective of this thesis has been the examination of the smart
charging protocols and a study of the main charateristics of the most relevant
ones. A comprehensive study and detailed report on the OCPP protocol evolution,
defining characteristics and architecture outlines how the objectives of the analysis
have been selected. For the scope of this thesis, the use cases, which are section
of the protocol with a specific purpose, that have been selected are the most

2

1.3 – Objective of the thesis

critical in terms of security, with less secure requirements and direct manipulation
of security parameters. This has required a comprehensive understanding of the
OCPP architectural design, its associated specifications, and the algorithms that
support its communication and security protocols. The successive phase, and main
objective, of this thesis work has been to perform Formal Verification against the
ProVerif formal prover. This stage has required to model the use cases, the security
profiles and the algorithms of the cipher suite required by OCPP specification.
The model of each selected protocol section has then been analysed through the
definition of a set of property queries. The final stage of this process has been the
interpretation of the results, with the final aim to provide a reliable interpretation
of the ProVerif formal verification outcome about the analysed security properties.

3

4

Chapter 2

State of the art of Electric
Charging

2.1 Introduction to Electric Vehicles Charging
scenario

2.1.1 Evolution and future
In recent years, theAgenda 2030 and the European Green Deal [9] have highlighted
the importance of promoting low-emission vehicles in the transport sector. In fact,
road transport accounts for the highest percentage of emissions from transport
and is therefore an important part of the package of strategic initiatives aimed
at putting the EU on the path to a green transition. To achieve these goals, EU
Member States must take concrete measures to reduce emissions and decarbonise
the economy. Among the initiatives included in the Green Deal, the 55 % Ready
package aims to translate the Green Deal’s ambition to achieve climate neutrality
by 2050 into legislation. In the series of proposals to align EU legislation with its
climate change objectives, we find new rules on CO2 emissions from cars and vans,
with progressive EU-wide emission reduction targets for 2030 and beyond, and an
end to the sale of light-duty internal combustion engine vehicles by 2035.

The response of the car market to these changes is reflected in the number of
new registrations of vehicles with reduced environmental impact recorded by Acea,
the European Automobile Manufacturers’ Association, which shows a clear market
direction in the percentage of fuel type of new cars registered [Figure 2.1]. As
the market for battery-powered vehicles grows, so does the market for charging
stations: there has been a significant increase in the number of electric vehicle
charging points in both residential and public areas. There is a clear correlation
[Figure 2.2] between the availability of public charging points and the sales of

5

State of the art of Electric Charging

battery electric vehicles: buyers want more EV chargers to overcome range anxiety
and protect their investment in an electric vehicles it is essential that the necessary
infrastructure is in place to facilitate the widespread adoption of electric vehicles.

Figure 2.1: Fuel Types Of New Cars Per Year, from ACEA report Q3 2024

The European Commission has estimated that 3.5 million charging points must
be installed by 2030 to accommodate the anticipated 30 million electric vehicles
on European roads [10]. However, the ACEA has provided a higher estimate of
8.8 million. The deployment of publicly accessible charging infrastructure for light
electric vehicles is uneven across the Union, so cooperation across the e-mobility
ecosystem is key to rapidly scaling up Europe’s transition to electric vehicles. In
view of the above, the ACEA and the electric vehicle charging industry ChargeUp
Europe have signed a joint declaration to strengthen their cooperation and dialogue
[19]. The agreement for the deployment of publicly accessible recharging infras-
tructure sets out minimum targets for Member States at the national level, based
on the total number of registered electric vehicles in each Member State. These
targets should be set using a uniform methodology that accounts for technological
advancements and should integrate distance-based targets for the trans-European
transport network.

The effects of digitalization and need of trustworthness Digital tech-
nologies have become an integral part of vehicle development, from controlling
critical driving functions (e.g., airbags, brakes, and steering) to delivering conve-
nience features. EVs are not different, relying primarily on the battery pack and its

6

2.1 – Introduction to Electric Vehicles Charging scenario

Figure 2.2: Charging Points per Country, from ACEA report Q1 2024

charging systems. It is evident that the electrification process is having a relevant
impact on the automotive industry. This transformation is also affecting digital
infrastructure. In the utility sector, for example, the need of electricity to power
the existing vehicles has significant implications for the way distribution grids are
managed. There is also potential for benefits from the grid management, allowing
EVs to feed their stored energy back to the electricity network, or through charge

7

State of the art of Electric Charging

point operators aggregating their charging networks, for flexible demand.
In the long term, digitalisation will be essential for integrating decentralised

forms of renewable energy sources into the electricity grid, reducing the dependence
on fossil fuels. To achieve this integration, a cyber response focused on the energy
sector is required. This should include improving cyber resilience and developing
and implementing a specific European cyber security maturity framework for the
energy sector: a public-private partnership to increase resilience of the supply chain
of the energy industry.

One of the key factors driving the successful transition to electric vehicles is the
readiness to embrace innovation and confidence in technology. By improving the
efficiency of EVs, the transportation industry can become more environmentally
friendly, efficient, and adaptable. However, user data security and privacy concerns
are increasing, as more and more information is collected, including personal and
financial data, car-related data, and charging logs reporting location coordinates
and driving habits.

Figure 2.3: Safety and Availability of the chain

With this increase in EV use and adoption comes an increase in cybersecurity
risks for EV Supply Equipment and the wider EV charging infrastructure ecosystem.
First and foremost, the connection and supply system must be secure and available
[Figure 2.3], otherwise malicious actors could access user data, disrupt charging or
even cause a supply chain blackout. Collaborative projects will lead to innovative
solutions that, as technologies evolve and standards are harmonised across existing
and emerging technologies, will help ensure that the future of EV charging is
secure. Key strategies to improve system reliability and security include testing
emerging EV charging technologies for cybersecurity vulnerabilities, coordinating
cybersecurity risk management strategies and approaches among EV stakeholders,
improving secure communications within the EV charging infrastructure, and
evaluating and coordinating EVSE cybersecurity standards.

8

2.1 – Introduction to Electric Vehicles Charging scenario

2.1.2 Securing the Infrastructure

Smart and V2G chargers connect EVs to the power grid using a charging device that
includes a data connection to exchange information and control commands between
various entities in the EV ecosystem. Implementing a secure system is therefore
crucial to enable both consumers and grid operators to trust smart charging and
V2G. This connectivity introduces a potential target for cybersecurity attacks, with
examples of threats including unauthorized access to information (e.g., banking
details), tampering (e.g., energy used), and denial of service (e.g., unavailability of
the charger).

To address these risks, the cybersecurity measures can be divided into prevention,
detection, and recovery. These categories can be further expanded to include pre-
ventive measures and planning, security audits and verification, incident detection,
response to cyber incidents, and system resilience. Preventive measures encompass
risk assessment, planning, and the implementation of security protocols. Security
audits involve a thorough review of an organization’s defenses and form a crucial
part of a comprehensive risk management strategy, including policy verification,
attack simulations, and activity monitoring. Incident response entails the readiness
to detect and recover from cyber incidents efficiently, adapting to the ever-changing
landscape of digital threats.

Identifying cybersecurity risks
The importance of data privacy requirements that should be applied to con-

nected smart charging systems is highlighted by new government regulations and
guidance, including the General Data Protection Regulation, a European Union
regulation that governs how companies and other organisations process personal
data and provides guidance on the Internet of Things and cybersecurity principles
for connected and automated vehicles. The GDPR specifically, define and protects
fundamental rights of the users have to be trasparently informed on the use and
it’s rights, to access, rectify or erase their data, to restrict or object processing,
also related to automated decision making and profiling, and others.

Taking into account the state of the art at the time of the data processing, the
controller and the processor must ensure a level of security appropriate to the risk,
guaranteeing the aforementioned properties of confidentiality, integrity, availability
and resilience of the processing systems and services. According to the GDPR,
this requires designing information processing with appropriate security measures,
including regular testing, assessment and evaluation of their effectiveness, to ensure
the security of processing.

As emphatised by NIST, a framework that stand out as the most highly re-
garded, in the guideline about incident response [Figure 2.4] the first challenge
in cybersecurity is preventing possible security threatening events. The Identify

9

State of the art of Electric Charging

function is perhaps the most crucial as it requires assessing the cybersecurity risk
faced by the organisation.

What are the procedures for identifying such vulnerabilities? There are several
methods of security assessment, which involve evaluating the overall security of
a system. One fundamental method is vulnerability assessment, which aims to
provide a list of security issues by predicting and classifying vulnerabilities. This is
achieved by scanning the system to find weak configurations using analysis tools
which can detect known vulnerabilities, such as errors or outdated software.

Figure 2.4: NIST guideline main steps

Security assessment methods are divided into static and dynamic approaches,
where dynamic is based on testing the running system, while static is the analysis
of code, protocols and general settings. The dynamic ones include penetration
testing, the execution of simulated attacks on the system under test. Static ones
include static code analysis and formal verification: the static code analysis is about
examining the code without executing it, looking for potential bugs, to identify
known patterns or logic errors and improve the overall quality of the code during
development.

Finally the one that this thesis aims to apply as part of the prevention measures:
Formal Verification [further details at chapter 4]. This method focuses on the
validation and analysis of system and protocols implementation, to ensure that
they comply with security standards and do not contain any vulnerabilities. In
other words, formal verification helps to identify and address potential risks before
they can be exploited by cyber-attacks.

2.2 State of the Art of EV Charging

2.2.1 EV Charging Scenario
To provide a seamless and efficient electric charging experience for EV users, a
network of specialised actors works together [Figure 2.5]. The first actor is the
owner of the electric vehicle, who has the role of registering with an e-Mobility
Service Provider (eMSP) and a Network Service Provider (NSP). They provide
charging authorisation, manage charging point reservations and support the billing
process. The Charging Station (CS), which is the physical infrastructure where
the EV plugs in to recharge, operates under the control of the Charging Station
Management System (CSMS), which has the role not only of monitoring the overall

10

2.2 – State of the Art of EV Charging

stability of the infrastructure, but also of communicating directly with the EV
charger and monitoring its usage and health status.

Figure 2.5: EV Charging Scenario

The charging stations are managed by the Charging Station Operator (CSO),
who runs them commercially and ensures that they remain operational. Ensuring
that electricity is delivered efficiently to the charging stations is a key part of
managing the energy grid. This includes also integrating renewable energy sources
when available and balancing the load on the grid during peak charging times:
both of these are under the responsibility of the Distribution System Operator
(DSO). The financial transactions and data exchange between the different service
providers are managed by the Clearing House Operator (CHO), whose role includes
enabling owners to charge their vehicles across different networks, facilitating the
billing process.

Potential targets and desired properties Just as any other connected device
is vulnerable to cyber-attack, there is an array of vulnerabilities in the commu-
nicating components of the charging station infrastructure. Adversary control
can compromise the safety and security of the basic functionality of the devices,
therefore, it is critical to protect vital information against attacks.

All operations between the different actors of the charging station are performed
via a digital connection, making them potential attack vectors for the entire energy

11

State of the art of Electric Charging

network. In this ecosystem, there are at least three attack surfaces related to
charging. The first is the EV charging infrastructure, where charging fraud could
occur through vehicle impersonation. The second is the electricity grid, which
could be the target of DDoS attacks against charging networks, aimed at disrupting
the ability to charge EVs at scale. Finally, there is the charging infrastructure to
the fleet: charging stations could potentially attack multiple vehicles at the same
time. However, all the infrastructure components and communication channels of
EV charging could be potential targets of the cyberattacks.

In order to verify that each device and protocol can be considered sufficiently
secure, the concept of security must be broken down into several categories of desired
security properties to be verified, such as the well-known CIA triad: confidentiality,
integrity and availability. In essence, confidentiality ensures that information is
only readable by the intended recipients and is protected from unauthorised third
parties, usually through encryption. This prevents information and sensitive data
from being leaked. An adversary might want to modify exchanged messages to
change operations: Integrity is the property ensuring that a message has not been
tampered with or manipulated, otherwise it would be detected. Availability ensures
that the services data or information provided by a server is accessible and usable
upon demand by an authorized client within an expected time. Availability i.e. it
measures the ability of an attacker to disrupt or prevent access to services or data.

furthermore, authentication and authorisation are the properties associated
with controlling access to resources and enforcing policies. Authentication is about
ensuring that a particular identified party is not being impersonated by someone
else, thereby providing access control, while authorisation is the determination of a
user’s level of access and then granting access based on that level, following the
principle of least privilege. Finally, the property of non-repudiation is about being
able to prove that certain actions were taken by a user or entity at a certain point
in time, so that they cannot be denied.

2.2.2 EV Charging Protocols
Due to the fact that smart EV charging is relatively new, different protocols exist
for each connection between participants, and new protocols and extensions are
constantly being developed: the protocol landscape for this infrastructure is there-
fore in continuous evolution.

Front End and Back End Protocols The main division of protocols in direct
communication with electric vehicles is between front-end and back-end protocols
[Table 2.1]. Front-end protocols such as REST and ISO 15118 interact directly
with the owner to enable communication with the charging infrastructure. The

12

2.3 – Why Open Protocols?

Representational State Transfer (REST) protocol is used for communication, data
exchange and user interaction between the EV User and the service provider’s
platform (eMSP, NSP), typically through a web or mobile application. ISO 15118
is an international standard proposed by ISO/IEC 15118 Joint Working Group,
defines a communication interface and plug-and-charge functionality, including to
dynamically exchange information based on which a proper charging schedule can
be negotiated, preventing the grid from overload.

Focusing on back-end protocols Open Charge Point Protocol [15], Open Charge
Point Interface [11], Open Clearing House Protocol [13] and Open Smart Charging
Protocol [16], which manage the operations and the interaction with the CSMS
and the network management, making the whole system work behind the scenes.
The back end protocols selected for this thesis are open. The OCPP is used for
communication between the smart CS and the back-end systems of the CSMS.
When the charging station is turned on, the software confirms its identity and
OCPP manages the transaction messages from the start of charging to the end. The
OCPI manages communication between charge station operators and the eMobility
service providers facilitating roaming for EV drivers across different charge points.
The OCHP is used to connect the service provider to the back-end networks of
another service provider to verify charging transactions at third party chargers.
Finally, key role in interoperability is played by the OSCP, as it allows EV users to
charge their vehicles at different charging stations operated by various CSOs.

2.3 Why Open Protocols?
2.3.1 Openness and Interoperability
Among the various existing protocols, the backend protocols presented in section
2.2.2 (OCPP, OCPI, OCHP, OCSP) have been chosen to be quoted in this thesis
because, as their acronym denotes, they are open. Main traits of open protocols are
openess and interoperability: they allow an integrated infrastructure of compatible
entities, allowing seamless data exchange. They also offer freedom of choice and
competition, which imply cost savings and innovation.
Openess is an overarching concept: in the context of open protocols, it refers to
the accessibility of knowledge and its collaborative nature of the development and
implementation. By being freely available to use, modify and redistribute, an open
standard implies a strong emphasis on collaboration in reviewing the code and
contributing to its evolution. Openness promotes a cooperative environment where
anyone with the appropriate expertise can participate in developing and improving
the protocol to adapt it to the changing needs of the industry. Making a protocol
accessible and transparent not only encourages innovation, but also builds trust
among users and stakeholders in the electric vehicle charging infrastructure, which is

13

State of the art of Electric Charging

ISO 15118 International
Organization for
Standardization

Proposed international standard for the defini-
tion of a communication interface to manage
communication between the electric vehicle
and the charging station, including plug-and-
charge functionality.

REST Rapresentational
State Transfer

Facilitates direct communication between the
EV user and the charging infrastructure.

OCPP Open Charge
Point Protocol

Application protocol for communication be-
tween EV charging stations and the backend
management systems. It handles charging
operations and transactions.

OCPI Open Charge
Pont Interface

Manages communication between charging
station operators and eMobility service
providers, providing real-time station infor-
mation and enabling roaming.

OCHP Open Clearing
House Protocol

Connects service providers to other networks
to verify transactions on third-party chargers,
enabling boundless charging across charging
station networks.

OSCP Open Charge
Smart Protocol

Connects to grid operators to manage elec-
tricity grid balance: communicates physical
net capacity from the DSO (or site owner) to
the back-office of the charge spot operator.

Table 2.1: Protocols in EV Charging Scenario

a key factor in the success and widespread adoption of the protocol. Open technical
standards are developed and maintained by a standards organisation and made
available to the public on a royalty-free basis. In the context of EV charging, the
OCPP, OCPI, OCHP and OCSP protocols are managed by different organisations:
the Open Charge Alliance (OCA), an established global industry alliance of EV
charging hardware and software vendors responsible for the maintenance of OCPP
and OSCP, the EVRoaming Foundation, a non-profit community of contributors to
OCPI, the innovation centres ElaadN and SmartLab GmbH, which are responsible
for the implementation of OCHP.

Interoperability warrants that the interface between the interacting entities is

14

2.3 – Why Open Protocols?

compatible, and ensures seamless flow of information. It therefore guarantees
that the charging system would function as intended without necessarily having
to replace equipment or undertake significant programming to re-establish the
compatibility of the interface between the interacting entities. An interoperability
relevant aspect is enabling freedom of choice: it would avoid situations where con-
trollability of charge points could be disabled if a third party operator implementing
a proprietary protocol is changed. OCPP, OCPI, OCHP, OCSP: these protocols
collectively enhance the interoperability of EV charging infrastructure, making it
easier for users to access and use charging stations regardless of the provider or
network. Some of these protocols play a more direct role: OCPP promotes inter-
operability across different manufacturers and operators, OCPI ensures seamless
user experience across different networks, OCHP enhances network interoperability.
This is crucial for the widespread adoption of electric vehicles and the development
of a robust, user-friendly charging ecosystem.

2.3.2 Adopting Open over Proprietary communication pro-
tocols

As highlighted in Section 2.3.1, the main properties of Open protocols are Openess
and Interoperability: analysing their implications, a chain of improvements and
benefits emerges for companies that adopt open protocols [Figure 2.6].

Starting with the basic need of a company, the property of openness saves costs
by allowing collaborative development and innovation of the bulk of grid integra-
tion protocols, allowing resources to be focused on services offered to customers.
Interoperability saves costs by enabling integration with existing systems, reducing
the need to develop or purchase expensive proprietary solutions.

Key to this is freedom of choice, which helps prevent vendor lock-in, avoids
fragmented billing infrastructure and minimises wasted investment in stranded
assets. The compatibility of entities and data exchange enables more efficient
operations through standardised protocols.

By removing competition from the shared groundwork by collaborating on the
development of open protocols, companies can instead compete to provide better
services to customers, leading to a general acceleration in innovation and the
development of optimised and customised products. In addition to enabling the
seamless integration of new technologies and systems, scalability is also achieved
through the concept of standardisation. Openness encourages the adoption of
standardised protocols, simplifying the addition of new components or services
without requiring extensive rework, while Interoperability ensures that these com-
ponents can communicate and cooperate effectively, regardless of the vendor or
technology. Overall, the benefits of standardisation are to reduce the complexity
and cost of scaling operations, from which it depends the businesses growt and a

15

State of the art of Electric Charging

Figure 2.6: Benefits of Open Protocols

more efficiently adaptation to the market demands evolutions.

16

Chapter 3

The OCPP Protocol

3.1 The Open Charge Point Protocol
Focus of this thesis is the Open Charge Point Protocol, developed by Open Charge
Alliance, a non-profit industry alliance focused on open standards and improving the
development of sustainable charging. OCPP is an open standard communication
protocol that enables the exchange of messages between Charging Stations (CS)
and central Charging Station Management Systems (CSMS). Thanks to its open
source nature and robust feature set, OCPP has been widely adopted worldwide
and is considered the de facto standard for EV charging communication.

3.1.1 Evolution and Diffusion
The necessity to procure charging stations from different vendors led this emerging
market to call for the development of a common standard for information exchange.
In the absence of a standard at this early stage of industry development, the Dutch
network operators took the initiative to found the non-profit ElaadNL organisation.
ElaadNL then started to write the OCPP.

In 2009, ElaadNL, an innovation centre specialising in smart and sustainable
charging for electric vehicles, proudly announced the launch of the OCPP. The
protocol has been made freely available from the start, in order to provide support
to the growing industry and to facilitate the process of adoption: in 2010 OCPP
version 1.2 was released to the public. In 2015 the successor OCPP 1.6 versions
really made a difference in the e-mobility world as in 2023 is still the most adopted
OCPP version worldwide. The Open Charge Alliance has been established in 2014.
ElaadNL transferred the governance of OCPP to the OCA, which is currently
responsible for the development, compliance testing, certification, and promotion
of the protocol. OCPP 2.0 has been the first version published by the OCA in

17

The OCPP Protocol

2018. Several improvements has been made when the latest OCPP version 2.0.1
launched in 2020.

Figure 3.1: OCPP Evolution Milestones

3.1.2 Version 2.0.1
After the release of OCPP 2.0, a number of issues were identified that could not be
resolved through the issuance of errata to the specification text alone, as was the
case with OCPP 1.6: these issues required changes to the machine-readable schema

18

3.2 – Spreading adoption of the OCPP Protocol

definition files, which were not backwards compatible. To avoid confusion in the
market and potential interoperability issues, OCA opted to call this new version
OCPP 2.0.1. Introduced in 2020, OCPP 2.0.1 is gradually replacing OCPP 1.6 as
the new industry standard for communication between charging stations (CS) and
management systems (CSMS).

The OCPP 2.0.1 version offers a number of additional features compared to the
previous version, OCPP 1.6. The new advanced features include the Device Manage-
ment, a long awaited feature especially welcomed by CSOs who manage a network
of charging stations from different vendors. The new version also offers an improved
configuration, inventory, error and state reporting, and a customizable monitoring
system. These features should assist CSOs in reducing the costs associated with
operating a charging station network. Traffic Management in OCPP 2.0.1 offers
improved and integrated smart charging, visualization and messaging support. The
number of charging stations and transactions that the CSMS is required to manage
is increasing. The enhanced transaction management, which permits more effective
tariff administration and cost reporting, has improvements for better handling of
large amounts of transactions like the concept of one message for all transaction
related functionalities. About data reduction, the introduction of JSON over Web-
sockets in OCPP 1.6 resulted in a significant reduction of mobile data; with OCPP
2.01 also the support for WebSocket Compression is introduced, which reduces
the amount of data even more. Load balancing facilitates the protocol’s support
for Energy Management Systems (EMS), it renders the protocol more suitable for
large-scale charging networks. The introduction of security improvements hardens
the robustness of the protocol against cyber attacks: the protocol incorporates
secure firmware updates and more sophisticated error handling, facilitating the
diagnosis and resolution of issues. It defines three levels of Security profiles [sec-
tion 5.4] for authentication and communication between the charging station and
CSMS, utilising TLS [7] encryption, certificate-based authentication and HTTP
Basic Authentication[17], with implementation of Key management for Client-Side
certificates.

3.2 Spreading adoption of the OCPP Protocol
OCPP is used across the world: the protocol has been downloaded since 2015 to
more than 70.000 individual IP addresses (from OCA website, Q3 2024), inspiring
and helping developers in all regions to develop EV charging infrastructure. As
OCPP is an open-source standard, developers are not required to join the Open
Charge Alliance in order to implement it. Those wishing to become more involved in
the development of OCPP have the option of becoming members of the OCA. There

19

The OCPP Protocol

are over 350 companies in 42 countries participating in the OCA [Figure 3.2], with
more than a quarter of them having obtained OCPP certification [subsection 3.2.2]
demonstrating their compliance with the standards for secure and interoperable
electric vehicle charging systems.

Figure 3.2: OCA Participants around the Globe, from OCA website, august 2024

3.2.1 Why OCPP?
Many key charasteristics of OCPP facilitate innovation and cost-effectiveness,
thereby encouraging the adoption of the Protocol in the long term.

• Openess. OCPP is an open standard with no cost or licensing barriers,
designed to enable different brands and models of EV charging stations to
communicate with a central system, regardless of the manufacturer This
enables a wide range of participants to engage in the growing industry and to
benefit from the openness and interoperability features [Section 2.3].

• Seamless Charging Experience One of the main advantages of OCPP is
Interoperability, it provides a consistent charging experience for EV owners,
thereby eliminating the technical complexities and confusion that may arise
from the utilisation of multiple standards and chargers.

• Reliability for the User EV users can expect consistency in timing and
performance, permitting them to plan their charging schedule better. Ulti-
mately, such reliability and consistency may facilitate greater adoption of
electric vehicles.

20

3.2 – Spreading adoption of the OCPP Protocol

• Regulatory Compliance OCPP offers built-in compliance with the General
Data Protection Regulation (GDPR) and other emerging data security laws.
This eases the burden of demonstrating compliance for those involved in the
production and distribution of EVs.

• Modular Scalability Modular scalability represents a significant advantage
of the OCPP protocol, as it enables the charging infrastructure to adapt
and expand to new technologies as they emerge. This mitigates the concern
among owners and operators of EV charging points that their equipment
may become obsolete, facilitating the adoption of emerging technologies by
the EV industry.Moreover, OCPP facilitates the integration of new charging
stations or networks to existing infrastructure, reducing associated costs and
encouraging the expansion of stations.

• Management Efficacy and Monitoring Charge point operators can lever-
age OCPP to remotely monitor and manage charging stations this simplifies
maintenance and accelerate the resolution of issues, leading to better opera-
tional efficiency. Charge point owners and operators can also maximize their
revenue by using OCPP to manage the usage of chargers efficiently.

3.2.2 Certification Program
The Open Charge Alliance offers a certification programme, which is designed to
assess and verify the competence of individuals and organisations in the field of
open charging infrastructure. The principal objective of the OCPP certification
process is to verify compliance with the OCPP standard on the part of both vendors
and purchasers of OCPP implementations. An OCPP certificate provides assurance
of interoperability and flexibility.

Certification Profiles and Procedure The certification procedure is applicable
to the certification profiles published by the OCA. A charging station may apply
for certification for a variety of profiles, reflecting the diversity of charging stations
(home chargers, fast chargers). However, the number of profiles is limited to ensure
clarity within the industry. Currently, the available profiles for certification are
the Core profile, which is mandatory for all implementations, and the Advanced
Security Profile. In order to obtain OCPP certification, a number of tests must
be successfully completed. Test of Conformity: the device under test (DUT) is
evaluated against the OCPP Compliance Testing Tool. The tool has built-in vali-
dations that should not fail during certification tests: these are performed to verify
whether the DUT has implemented the OCPP specification correctly. Performance
Measurement: the performance parameters are stated by the vendor in the Protocol
Implementation Conformance Statement (PICS) and are verified by the test lab.

21

The OCPP Protocol

3.3 OCPP Architecture
This section defines the function of the OCPP protocol, operative between a
charging station (CS) and the charging station management system (CSMS) in an
electric vehicle charging infrastructure, in the form of functional blocks and use
cases, as well as the related test cases and certification profiles.

3.3.1 Key concepts
The charging process [Figure 3.3] for electric vehicles is greatly enhanced by the
Open Charge Point Protocol (OCPP), which enables bidirectional communication
between EV Charging Stations and the charging Charging Station Management
System (CSMS). This communication allows the CSMS to monitor and control
the charging station while also receiving valuable data such as charging status,
session details, and energy consumption. The CSMS, in turn, may relay relevant
information to the vehicle owner’s app, ensuring they stay informed throughout the
charging process. The process of charging begins with the user reserving a charging

Figure 3.3: Charging Process

slot, ensuring that the availability of a station at the designated time. Before the
charging session can start, the user’s identity and payment method are verified
through the authorization process. Once authorized, a transaction is initiated,
allowing the charging to proceed. Upon the commencement of the charging process,
the charging station begins to supply energy to the vehicle, thereby initiating
the transfer of energy to the electric vehicle’s battery. During this phase, data
belonging to the charging session is exchanged continuously between the CS and
the CSMS, facilitated by OCPP. If necessary, the charging session can be paused or
suspended, providing flexible control over the process. Once the session concludes,
the user is notified that the charging is complete. This marks the end of the energy
transfer to the vehicle, and the billing process is then initiated, charging the user for
the energy consumed. By enabling the seamless exchange of critical data between
the charging station and the central management system, OCPP allows product
managers to create optimised EV charging experiences, ensuring that every aspect
of the process is smooth and efficient.

22

3.3 – OCPP Architecture

Structure and Components OCPP 2.0.1 [15] specification [Figure 3.4] is divided
into functional blocks, each of which defines a role that OCPP plays in the commu-
nication between the CSMS and the CS. Each functional block is composed of a
list of use cases that represent a specific scenario. In order to obtain certification,
a set of test cases must be validated, representing a specific feature required by the
profile. Each test case can be related to one or more use cases.

Figure 3.4: Relations in OCPP Specification

3.3.2 Functional Blocks
Each OCPP’S functional blocks [Figure 3.5] defines a role in the communication
between the CSMS and the CS:

Service Management Tracking and recording the transactions of charging ses-
sions functionality enables the generation of billing records, which are created at
the charging station and transmitted to the CSMS. The system is designed to
communicate the status of the charging station to the CSMS, including whether it
is available or out of order. This enables operators to inform users and manage

23

The OCPP Protocol

operations accordingly. The system also monitors and reports detailed metering
data to the CSMS during a charging session. This data is essential for billing and
energy management purposes.

Advanced control Provisioning manages the initial setup and configuration
of Charging Stations, including their connection to a CSMS and retrieval of config-
uration data, ensuring effective communication. The optimisation of charging is
enabled by Smart Charging, which serves to balance grid load, integrate renewable
energy sources, and enable the CSMS to control energy consumption at the station
or EV level through the utilisation of various smart charging configurations. The
Remote Control functionality allows the CSMS to manage Charging Stations re-
motely, including starting/stopping sessions, unlocking connectors, and triggering
messages for status updates or troubleshooting, while Data Transfer functionality
facilitates the exchange of additional data between the CS and CSMS, enabling
flexibility and custom functionalities in communication.

Access Control The authorization process determines whether a user is per-
mitted to commence or terminate a charging session. This is typically achieved
through the use of RFID cards or mobile applications, which then communicate
the authorization status to the CSMS. By maintaining a locally stored list on the
CS, users can continue charging even when they are disconnected from the CSMS.

Smart Features The tariff and cost functionality provides the EV driver with
cost-related information at various stages of the charging process, including before,
during and after the charging session. This information is displayed on the charging
station screen and includes detailed tariff plans and the total costs incurred. Display
Message enables the CSMS to send text messages or notifications to the Charging
Station’s screen, such as user instructions, alerts, or personalized messages. Finally,
the Reservation block allows users to reserve a Charging Station or connector in
advance, ensuring its availability when needed, which is crucial for trip planning
with limited charging stations.

Security Management Diagnostic block provides a suite of tools for the di-
agnosis and troubleshooting of issues with the charging station, facilitating smooth
operation through remote diagnostics and information retrieval. In contrast, the
Security block is responsible for ensuring secure communication between the CSMS
and the Charging Station. This is achieved through the implementation of en-
cryption, authentication, and data integrity measures, which serve to reinforce the
overall security framework as defined by OCPP. The Firmware Management feature
enables the CSMS to remotely update the Charging Station’s firmware, ensuring
its operation with the latest software version and security patches, with the CSMS

24

3.3 – OCPP Architecture

Figure 3.5: OCPP Functional Blocks Categories

informed of each update step. Finally, the ISO 15118 Certificate Management
has the role of managing digital certificates for secure communication, including
Plug & Charge, enabling certificate-based authentication and authorisation at the
Charging Station. Display Message enables the CSMS to send text messages or
notifications to the Charging Station’s screen, such as user instructions, alerts, or
personalized messages. Finally, the Reservation block allows users to reserve a
Charging Station or connector in advance, ensuring its availability when needed,
which is crucial for trip planning with limited charging stations.

3.3.3 Use Cases, Test Cases, Certification Profiles
Use Cases A use case delineates a section, a specific action or response from
one party or the other, associated with the functional block in question. Each
use case is identified in the specification with a descriptive name, an ID and the
functional block to which it belongs. It defines the objective and description of the
messages and data types required for the use case, as well as the prerequisites for
its applicability and the postcondition desired. Each use case is subject to a list of
specific requirements, including error handling and other remarks.

Test cases In the context of OCPP, a test case is defined as a sequence of
messages that are used for the purpose of testing a particular use case. The
objective is to test a specific feature, which represents a particular functionality,
using one or more test cases. Test cases are associated with a certification profile,

25

The OCPP Protocol

which constitutes a component of the OCPP certification programme. A test case
may be either mandatory to implement a certification profile or conditional, i.e.
subject to a certain condition, and mandatory in the case the condition is verified.
Test cases are identified by a descriptive name, test case ID, and use case ID(s).
They are related to a specific test scenario for both CS and CSMS, which specifies
the requisite security profile (subsection 3.3.4). They are followed by a list of
requirements, prerequisites, and post-scenario validations.

Certification profiles The OCPP certification is structured around certifica-
tion profiles, which define a set of use cases that can be certified through the
Open Charge Alliance. Each certification profile includes a list of test cases and an
overview of the required controller components for certification testing. The OCTT
test tool determines which test cases need to be executed for a charging station or
CSMS based on the features within each certification profile. The OCPP protocol
has been designed to accommodate a wide range of charging stations, and given the
varying capabilities of these stations, it is not practical to require every vendor to
certify the entire OCPP functionality, as only a subset may be necessary for specific
applications. Full OCPP certification covers all profiles, but vendors can choose to
certify only the necessary profiles for their needs. The OCPP Core profile must
always be present. It contains the basic OCPP functionality. In addition to this,
optional profiles such as Advanced Security can be included in the certification.

3.3.4 Security Objectives and Security Profiles
OCPP security has been designed to achieve several key objectives. Most important
there is the imposition of a secure communication channel between the CSMS and
the and the charging station, ensuring the integrity and confidentiality of trans-
mitted messages through the implementation of robust cryptographic techniques.
A fundamental aspect is the support of a secure firmware update process, which
allows the Charging Station to verify the source and ensures non-repudiation and
integrity. Great importance is given to the logging of security events, in order to
monitor the security of the smart charging system.

Security Profiles As outlined in the security functional block [section 3.3.2]
in OCPP the security approach relies on standard web technologies, leveraging
TLS and public key cryptography with X.509 certificates: application layer secu-
rity measures are not included. Given that the CSMS acts as the server, OCPP
reccomends that different users or role-based access control to be implemented
to ensure the appropriate level of access control on the CSMS. OCPP 2.0.1 is
capable of supporting three distinct security profiles, as illustrated in [Figure 3.6].
These profiles are distinguished by the specific authentication measures that are

26

3.3 – OCPP Architecture

applied to each component and the communication channel security level; only
one security profile can be set at a time. Each test case, as outlined in [section
3.3.1], specifies the requisite security profile for the parties involved. For the scope

Figure 3.6: OCPP Security Profiles Authentication Requirements

of this thesis, the Security Profile 1, Unsecured Trasport with Basic Authenti-
cation, is not taken in consideration because it should only be used in trusted
networks, as the Unsecured Transport with Basic Authentication Profile does not
include authentication for the CSMS, or measures to set up a secure communi-
cation channel. This means that a security analysis of the protocol when this
profile is set would be irrelevant as the protocol relies on a trusted network out of
the scope of the protocol itself. In the TLS with Basic Authentication, Security
Profile 2, the communication channel is secured using Transport Layer Security.
The CSMS, which acts as the server, authenticates itself using a TLS[7] server-
side certificate, while the charging stations authenticate themselves using HTTP
Basic Authentication[17], i.e. by means of username and password credentials.
In the TLS with Client Side Certificates profile, the communication channel is
secured using Transport Layer Security. Both the Charging Station and CSMS
authenticate themselves using certificates. In the TLS with Client-Side Certifi-
cates profile, the Security Profile 3, the communication channel is secured using
TLS, and both the Charging Station and CSMS authenticate themselves using
certificates. It is requisite that both Security Profile 2 and Security Profile 3 are
supported by TLS and CSMS, and that they support a minimum set of ciphersuites:

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384

It is recommended that the TLS_ECDHE option be selected; therefore, for the
scope of this thesis TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
ciphersuite will be the chosen option[7][4].

27

28

Chapter 4

The ProVerif Tool

4.1 Formal Verification
Formal verification is the process of ensuring that a formal model of a system
satisfies some specified formal properties and check wheter the design of the protocol
may make the system exposed to malicious interferences: analysing a protocol by
manual review can often not be enough to identify potential flaws in the design. The
goal is to verify that the system under test behaves according to the specification
and satisfies the desired properties as intended. The formal verification process
generally consists of a deep understanding of the protocol’s under test specification
and requirements, followed by the creation of a model based on it. This defined
model must then be translated into the input language of the model checker, which
will perform the verification through the automated process. The final step is a
detailed review of the outcomes and an evaluation of whether it is necessary to
recommend protocol changes based on the results of the verification.

4.1.1 Theorem Proving and Model Checking
Formal verification can be divided into two categories of approaches: Theorem
Proving and Model Checking. While both approaches can be used to verify that
a formal model satisfies some formal properties, the strategy for performing such
verification is slightly different. Theorem provers base the analysis on the mathe-
matical correctness of statements, the process involves formalizing assertions using
logic and deduction. This process involves the breaking down the theorems into
sub-objectives and applying the logical rules to produce a step-by-step demon-
stration. This method provides high assurance of the correctness of a system but
is typically reliable on human intervention for verify the correctness of complex
algorithms. The second approach, model checking, consists of automating the
exploration of all possible executions of the system to check whether it is possible

29

The ProVerif Tool

to reach a state where the formal requirements are not met. Model checkers tend
to be more immediate to use, they are designed to verify properties focused on
specific protoocl sections, making them suitable for identifying design errors and
security violations. An inevitable consequence of the state exploration approach
is that the range of system states it can handle is necessarily limited, since the
number of possible states grows exponentially with the size of the system. This
means that this technique is particularly effective for automated verification, but is
limited by the complexity and size of the model.

4.2 The ProVerif Tool
Developed by Bruno Blanchet, and reported to have shown the fastest performance
when compared with other tools [6], ProVerif [1] [2] [3] is a state-of-the-art automatic
cryptographic protocol verifier.

4.2.1 Proverif abstractions
Based on Dolev-Yao formal modelling [8], it assumes that attackers have full access
to the communication channel: they can intercept, modify, send and replay the
data exchanged by the entities. However, they cannot break the cryptographic
functions or have direct access to the private data without performing an attack. As
a theorem prover, ProVerif analyses the symbolic behaviour of protocols rather than
actually executing them. The internal representation of the protocol is based on
Horn clauses[18], which are used to express logical rules that define how a protocol
should behave. The security properties to be proved are translated into derivability
queries, which determine whether the desired security properties hold by resolving
these clauses. The horn clause representation introduces abstractions which are
key to verifying an unbounded number of sessions of protocols. The abstraction
is still precise because it preserves relationships between the messages and data
exchanged but the termination outcome is not generally guaranteed. The reason
of this is that if the outcome reports that the protocol satisfies some property,
then the property is actually satisfied. Viceversa, when ProVerif cannot prove a
property, it tries to reconstruct an attack, i.e. an execution trace of the protocol
that falsifies the desired property: the derivation may correspond to an attack, but
it may also correspond to false attacks, due to the horn clause abstractions.

4.2.2 Verifying Protocols Properties with ProVerif
The ProVerif tool takes as input a description of the protocol based on the pi
calculus, which is a mathematical formalism used to describe and analyse a system’s
communication and interaction between concurrent processes through message

30

4.2 – The ProVerif Tool

exchange. To model and verify security protocols, ProVerif uses an extension of
the pi calculus with cryptography (such as encryption or decryption of messages).
A ProVerif model of a protocol written in the tool’s input language can be divided
into three parts. The first part is the declaration of types, free names, constants and
the set of constructors and destructors representing the cryptographic operations
and other functions required for the execution of the processes. This is followed
by the definition of main process and sub-processes macros, which are reusable
definitions of processes particularly useful for easing development. The final step
is the definition of the queries, which represent the properties to be verified in
the protocol. ProVerif is capable of proving several important security properties
for cryptographic protocols by means of queries definition: these include secrecy,
authentication and observational equivalence. Secrecy is about ensuring that an
adversary cannot access confidential information, while authentication guarantees
that communication is between the intended parties. Observational equivalence
means proving the equivalence between processes that differ only in certain values.
ProVerif can also prove strong secrecy, meaning that an adversary cannot detect
changes in the value of a secret. In general, the properties used to prove all of
the above are correspondence and injective correspondence. In addition, these
properties can ensure that the actions performed by the protocol happen in a
particular order.

For each of the queries provided into the input file to prove a security property,
Proverif can display three possible reports. When the property is proved and there
are no attacks, the result of the query is true; viceversa if the result is false, it
means that the prover has discovered an attack against the protocol that falsifies
the desired security property. Along with the queries resulting in a false output,
ProVerif will provide attack derivations and attack traces, which report te property
breach that the tool has identified in the protocol’s security. The attack derivation
explains the actions the attacker must take in terms of its internal logic to break
the security property, while the attack trace corresponds to an executable trace
of the process under consideration. Given that ProVerif attempts to prove that
a state in which a property is violated is unreachable, verifying protocols for an
unbounded number of sessions is an undecidable problem as is does not scale, so
another outcome is possible: “cannot be proved”. This result means that ProVerif
could not prove that the query is true, but also could not find an attack that proves
that the query is false.

31

32

Chapter 5

The ProVerif model of
OCPP’s Use Cases

5.1 A01 - Update Charging Station Password
for HTTP Basic Authentication

This section presents the ProVerif model implementation of the OCPP protocol
section responsible for updating the password of the credentials used by the Charging
Station to perform authentication. The presentation is divided into a summary of
the role of the use case that implements the mentioned function [subsection 5.1.1],
followed by the description of the environment setup [subsection 5.1.2], the schema
of the messages exchanged [subsection 5.1.3] and a detailed report of the functions
and messages implemented [subsection 5.1.4].

5.1.1 Description Use Case A01
This Use Case A01- is part of the Security Functional Block [subsection 3.3.2]. The
Objective of the message exchange between the CSMS and the CS is to define
how to use the Basic Authentication security profile and update the credentials
at the request of the CSMS, which transmits a new value for the CS Password.
The implementation of Security Profile 2 [subsection 5.4.1] is necessary for this use
case to establish an authenticated communication channel and a shared session
symmetric key via the key exchange algorithm ECDHE [4][subsection 5.3.4]. The
Charging Station authenticate itself using HTTP Basic Authentication [17] by
means of the installed credentials, and the CSMS authenticates to the CS using
a TLS server certificate [5]. The communication between Charging Station and
CSMS is secured using TLS [3]. For the full code, please refer to Appendix A.

33

The ProVerif model of OCPP’s Use Cases

5.1.2 Setup of the environment
The cryptographic functions setup is defined by the Security Profile 2 and the
chosen ciphersuite[subsection 5.3.1]. The model of the function for encryption, key
exchange, signature and others are further explained at [section 5.3]. For this use
case three parties partecipate to the communication. The main processesprocesses
are the Charging Station and the Charging Station Management System, the enti-
ties which establish connection through OCPP Protocol and then implement this
Use Case. There is also the Certification Authority process, which is responsible
for supplying signed certificates.

CA, Certification Authority

1 l e t pCA(km_CA: keymat , pk_CSMS: pkey) =
2 out (c , penc (signCA (pk_CSMS, sk (km_CA)) , pk_CSMS)) ;
3 0 .

The Certification Authority process is responsible for signing and supplying the
signed certificate to the CSMS, which is used to authenticate with a server certifi-
cate. The CA process represents a root CA that is trusted by both the CS and the
CSMS: it produces the certificates applying a digital signature [subsection 5.3.3]
to the Certificate, represented by the public key of the CSMS. Then sends it en-
crypted by means of asymmetric Encryption [subsection 5.3.2] with the certificated
public key, to prove that the receiver is in possession of the correspondent secret key.

Installation

1 f r e e UsernameCS : b i t s t r i n g .
2 f r e e PasswordCS : b i t s t r i n g [p r i va t e] .

One aspect of this implementation in Proverif is the configuration of the protocol
actors and the associated environment. The initial element is the implementation
of OCPP Use Case A00-Installation: unique credentials are used to authenticate
the CS to the CSMS. These credentials must be installed OOB during the manu-
facturing or installation process, both on the CS by the manufacturer and on the
CSMS through the CSO. In the context of this thesis, these credentials are defined
as private global variables, UsernameCS and PasswordCS, with the password is
declared private.

Public channel

34

5.1 – A01 - Update Charging Station Password for HTTP Basic Authentication

1 f r e e c : channel .

Declaration of the public communication channel for traffic transport.

CS, CSMS, CA key material

1 proce s s
2 new km_CSMS: keymat ;
3 new km_CA: keymat ;
4

5 l e t pk_CSMS = pk (km_CSMS) in out (c , pk_CSMS) ;
6 l e t pk_CA= pk (km_CA) in out (c , pk_CA) ;
7 ((! pCSMS(km_CSMS, pk_CA))) | (! pCS(pk_CA) | (!pCA(km_CA, pk_CSMS)))

Key material for CSMS and CA are input for the correspondent process. Both
CSMS and the CS trust the CA and its’ public key pkCA. Certification Authority
also knows CSMS publik key to be signed to generate the correspondent certificate.

5.1.3 A01 - Schema and Messages
Schema of A01-Update Charging Station Password for HTTTP Basic Authenti-
cation in the Proverif model of this thesis. To set a new Charging Stations basic

Figure 5.1: Sequence Diagram: Update Charging Station Password for HTTP
Basic Authentication

authorization password via OCPP, the CSMS generates a new unique password
NewPassword for the CS, then sends a SetVariablesRequest message with the
BasicAuthPassword Configuration Variable with ComponentName: SecurityCtrlr,

35

The ProVerif model of OCPP’s Use Cases

VariableName: BasicAuthPassword and value: NewPassword to the Charging
Station. The Charging Station responds with SetVariablesResponse and StatusAc-
cepted, disconnects its current connection and connects to the CSMS with the
new password. The CSMS on the reception of StatusAccepted assumes that the
authorization key change was successful. If the Charging Station responds to
the SetVariablesRequest with a SetVariablesResponse with a status other than
StatusAccepted, the Charging Station will keep using the old credentials.

5.1.4 Message exchange implementation
In this section the implementation of each of the exchanged messages is reported
in further details.

SetVariablesRequest

1 new NewPassword : b i t s t r i n g ;
2 l e t m = SetVar iab lesRequest (Secur i tyCtr l , BasicAuthPassword ,

NewPassword) in
3 l e t i = next (i) in
4 l e t enc_m = encdh ((i , m) , symk) in
5 out (c , enc_m) ;

The CSMS generates a new password NewPassword and encapsulates it in a
message by means of the SetVariablesRequest function, along with SecurityCtrl and
BasicAuthPassword, which are modeled as global costants in this implementation.
The resulting m bitstring message is encrypted by encdh using the symmetric key
symk to provide confidentiality, togheder with i, the message identifier, which has
been incremented to the next element of the serie next(i) with next function and
avoids the message to be replaied. The encrypted message is then signed with
the CSMS secret key sk(kmCSMS) to provide authentication and non-repudiation.
Further explanation of the functions at [section 5.3].

1 in (c , m: b i t s t r i n g) ;
2 l e t x i = next (x i) in
3 l e t (= xi , msg : b i t s t r i n g) = decdh (m, symk) in
4 l e t (sc : b i t s t r i n g , bap : b i t s t r i n g , xnewPassword : b i t s t r i n g) =

SetVar iablesRequestRet (msg) in
5 i f (sc <> S e c u r i t y C t r l | | bap <> BasicAuthPassword) then 0
6 e l s e

The CS receives the SetVariablesRequest, check the sign with the function checksign,
which must return a positive result for the CSMS public key xpkCSMS to which it

36

5.1 – A01 - Update Charging Station Password for HTTP Basic Authentication

authenticated. The CS checks the correctness of the message identifier xi, which
must correspond to the next element of the serie next(i), and gets the original
message by means of getmess and decrypt function. Extraction of the values is
performed by SetVariablesRequestRet function, that reverses the SetVariablesRe-
quest’s incapsulation of the values in the message. If the values coincide to the
expected, the process proceeds. Further explanation of the functions at [section 5.3].

SetVariablesResponse

1 l e t x i = next (x i) in
2 l e t m = encdh ((xi , SetVar iab lesResponse (StatusAccepted)) , symk) in
3 out (c , m) ;
4

The CS encapsulates in a SetVariablesResponse message the StatusAccepted value,
to confirm the NewPassword received in SetVariablesRequest from the CSMS
was accepted. The message is paired to the next message identifier next(xi) and
encrypted with function encdh and the symmetric key symk.

1 in (c , m: b i t s t r i n g) ;
2 l e t i=next (i) in
3 l e t (=i , msg : b i t s t r i n g) = (decdh (m, symk)) in
4 l e t msg= SerVariableResponseRet (msg) in
5 i f (msg <> StatusAccepted) then 0 e l s e

The CSMS receives the message, decrypts it by means of the decdh decrypting
function using the symmetric key symk, checks the message identifier to coincide
to next(i) and retrives the value of the message using SetVariablesResponseRet
function. If the received response is StatusAccepted, CSMS proceeds with the
protocol.

Connection with the new password For both CS and CSMS the connection
with the new password NewPassword has been modeled for this thesis following
the schema specification of the Security Profile 2 [subsection 5.4.1]. Starting from
ChangeChiperSpec, Client performs authentication at the reconnection using the
updated set of CS credentials, the only accepted by the CSMS Server once the
SetVariablesRequest received a StatusAccepted response from the CS. For the full
code [Appendix A].

37

The ProVerif model of OCPP’s Use Cases

5.2 A05 – Upgrade Charging Station Security
Profile

This section presents the ProVerif model implementation of the OCPP protocol
section responsible for upgrading the Charging Station security profile. The
presentation is divided into a summary of the role of the use case that implements
the mentioned function, followed by the description of the environment setup,
the schema of the messages exchanged and a detailed report of the functions and
messages implemented.

5.2.1 Description of Use Case A05
The use case A05-Upgrade Charging Station Security Profile has the scope to
increase the security of the OCPP connection between the CSMS and a Charg-
ing Station. In this work, the model implements the upgrade for the Charging
Station from Security Profile 2 [Section 5.4.1] to Security Profile 3 [Section 5.4.2].
Communication between the Charging Station and the CSMS is secured using
TLS [7]. At the request of the charging station operator, and provided that the
requirements of security profile 3 are met, the charging station is required to change
from authentication via HTTP Basic Authentication [17] to TLS authentication
using certificates[5]. The CSMS authenticates in both security profiles with TLS
authentication with certificates. For further information on security profile im-
plementation, please refer to [section 5.4]. The complete code can be found in
[Appendix B].

5.2.2 Setup of the environment
The cryptographic functions setup is defined by the security profile and the selected
ciphersuite. In this scenario, two profiles are involved. For both profiles, the same
ciphersuite has been selected and implemented, as outlined in subsection 5.3.1.
Further details on the model of the function for encryption, key exchange, signature
and other processes can be found in section 5.3. In this use case, four parties
are involved in the communication process. The main processes are the Charging
Station and the Charging Station Management System. These entities establish a
connection through the OCPP Protocol and implement this use case. The Certifi-
cation Authority (CA) process is responsible for supplying signed certificates for
both the CS and the CSMS. Finally, the Charging Station Operator (CSO) process
checks that the prerequisites for the upgrade are met and signals to the CSMS to
perform the upgrade of the security profile.

CSO, Charging Station Operator

38

5.2 – A05 – Upgrade Charging Station Security Profile

1 l e t pCSO(km_CSO: keymat , pk_CSMS: pkey) =
2 l e t s e c _ p r o f i l e = S e c P r o f i l e 2 in
3 out (c , s i gn ((ChangeNetworkConfig , upgrade (s e c _ p r o f i l e)) , sk (

km_CSO))) ;
4 0 .

The CSO role is to oversee and enhance the security of the OCPP connection
between CSMS and a charging station. In accordance with the configuration of this
use case, which commences with security profile 2, secprofile, the CSO transmits
a ChangeNetworkConfig message to the CSMS, indicating the necessity for an
upgrade to the subsequent security profile. In this instance, the upgraded profile is
security profile 3, represented by the value upgrade(secprofile).

CA, Certification Authority

1 l e t pCA(km_CA: keymat , pk_CSMS: pkey , pk_CS : pkey) =
2 out (c , penc (signCA (pk_CSMS, sk (km_CA)) , pk_CSMS)) ;
3 in (c , =ack) ;
4 out (c , penc (signCA (pk_CS, sk (km_CA)) , pk_CS)) ;
5 in (c , =ack) ;
6 0 .

Before migrating to an upgraded security profile, OCPP 2.0.1 must fulfil the
prerequisites, which include the installation of certificates or the configuration of
passwords. In order to upgrade to the security profile 3, the prerequisites are the
installation of authentication certificates for both the CSMS server and the CS
client. The Certification Authority is modelled to provide such certificates for the
public keys pkCS and pkCSMS of the CS and CSMS processes, which are signed
and encrypted in accordance with the specifications outlined in [subsection 5.3.2].

Installation

1 f r e e UsernameCS : b i t s t r i n g .
2 f r e e PasswordCS : b i t s t r i n g [p r i va t e] .

Part of this implementation in Proverif is the setup of the Protocol actors and en-
vironment. Initial element is the implementation OCPP Use Case A00 Installation:
unique credentials are used to authenticate the CS to the CSMS. These credentials
must be installed out of band (OOB) during the manufacturing or installation
process, both on the CS by the manufacturer and on the CSMS through the CSO.
In the context of this thesis, these credentials are defined as private global variables,

39

The ProVerif model of OCPP’s Use Cases

UsernameCS and PasswordCS, where password is declared private.

Public channel

1 f r e e c : channel .

Declaration of the public communication channel for traffic transport.

CS, CSMS, CA key material

1 proce s s
2 new km_CSMS: keymat ;
3 new km_CA: keymat ;
4 new km_CSO: keymat ;
5 new km_CS: keymat ;
6

7 l e t pk_CSMS = pk (km_CSMS) in out (c , pk_CSMS) ;
8 l e t pk_CA= pk (km_CA) in out (c , pk_CA) ;
9 l e t pk_CSO= pk (km_CSO) in out (c ,pk_CSO) ;

10 l e t pk_CS = pk (km_CS) in out (c , pk_CS) ;
11

12 ((! pCSMS(km_CSMS, pk_CA, pk_CSO)))
13 | (! pCS(km_CS, pk_CA))
14 | (!pCA(km_CA, pk_CSMS, pk_CS))
15 | (! pCSO(km_CSO, pk_CSMS))

The key material for the Charging Station Management System , Certification
Authority and Charging Station are input for the corresponding process. The
CA is aware of the CSMS and CS public keys pkCSMS and pkCS, which it uses
to sign and encrypt in order to generate the corresponding certificate. Both the
CSMS and the CS repose trust in the CA and its public key pkCA to perform
the requisite signing and provision of certificates. They also trust the received
certificates, which have been signed with the aforementioned key, for the purpose of
mutual authentication. The Charging Station Operator utilises its key material for
the purpose of authenticating the message that is exchanged with the CSMS. The
CSMS, trusts the public key pkCSO of the Charging Station Operator, obtained
from the environment setup.

5.2.3 A05 - Schema and Messages
Schema of A05 Upgrade Charging Station Security Profile messages exchange
implementation in the Proverif model of this thesis. Once the security profile
prerequisites have been met by both the Charging Station and the Charging

40

5.2 – A05 – Upgrade Charging Station Security Profile

Figure 5.2: Sequence Diagram: Upgrade Charging Station Security Profile

Station Management System, the Charging Station Operator signals to the CSMS
Server to upgrade the Charging Station security profile to the next level. In this
thesis, is implemented the upgrade from security profile 2 [subsection 5.4.1] to
security profile 3 [subsection 5.4.2]. The CSMS sets a new value for the new,
higher security profile 3 and requests that the charging station upgrade to the same
one. The charging station responds in the affirmative and signals that a reboot
is required: in this work, for completeness the messages regarding reboot require
and reset request and response, which have the scope to let the transactions at CS
terminate, are modeled even if transaction are omittes, as they are not part of this
use case. The CSMS sends a ResetRequest(OnIdle), to which the CS responds,
indicating that it accepts, and then the charging station reboots and connects via
the new primary security profile 3.

5.2.4 Message exchange implementation
In this section the implementation of each of the exchanged messages is reported
in further details.

Change Network Configuration

41

The ProVerif model of OCPP’s Use Cases

1 out (c , s i gn ((ChangeNetworkConfig , upgrade (s e c _ p r o f i l e)) , sk (
km_CSO))) ;

The CSO sends the signal to the CSMS to request the upgrade to the next security
profile 3, the value obtained by upgrading the security profile 2 value with the
function upgrade as implemented in this work for details see [section 5.4].

1 in (c , msg : b i t s t r i n g) ;
2 l e t msg=sdec (msg , sk (km_CSMS)) in
3 i f (checks ign (msg , pk_CSO)<>ok ()) then 0
4 e l s e
5 l e t (cn f : b i t s t r i n g , x sec_pro f i l e_cso : p r o f i l e)= (getmess (msg)) in
6 i f (cn f <> ChangeNetworkConfig | | (i supgraded (s e c_pro f i l e ,

x s ec_pro f i l e_cso) <> ok ())) then 0
7 e l s e

The CSMS receives the request, checks the CSO signature and decrypts the message,
then checks that the profile to which the upgrade is required is a higher security
profile, as downgrading is not part of the OCPP protocol.

SetVariablesRequest

1 l e t m = SetVar iab lesRequest (Secur i tyCtr l ,
NetworkConf igurat ionPr ior i ty , s e c _ p r o f i l e) in

2 l e t i=next (i) in
3 l e t enc_m = encdh ((i ,m) , symk) in
4 out (c , enc_m) ;

The CSMS forwards the request to update the security profile to the CS Client,
signed and protected with its own key material and the symmetric key symk.

1 in (c , m: b i t s t r i n g) ;
2 l e t x i = next (x i) in
3 l e t (=xi , m: b i t s t r i n g) = decdh (m, symk) in
4 l e t (sc : b i t s t r i n g , ncp : b i t s t r i n g , x s e c _ p r o f i l e : p r o f i l e)=

SetVar iablesRequestRet (m) in
5 i f (sc <> S e c u r i t y C t r l | | ncp <> NetworkConf igurat ionPr ior i ty | | (

i supgraded (s e c_pro f i l e , x s e c _ p r o f i l e) <> ok ())) then 0
6 e l s e

The Charging Station receives from the CSMS a SetVariablesRequest for Network-
ConfigurationPriority containing a profile slot for a security profile value higher
than the current value. For security reasons it is not allowed to revert to a lower

42

5.2 – A05 – Upgrade Charging Station Security Profile

Security Profile using OCPP: for this reason the CS determines if the profile re-
quired represents an upgrade calling the is upgraded function on the received value
against the currently set profile.

SetVariablesResponse

1 l e t x i = next (x i) in
2 l e t m=SetVar iab lesResponse (RebootRequired) in
3 l e t m = encdh ((xi , m) , symk) in
4 out (c , m) ;

The charging station responds to the CSMS with a SetVariablesResponse in response
to a SetVariablesRequest. The attribute status RebootRequired, modelled as a
global value for simplicity, indicates that a restart is required.

1 in (c , m: b i t s t r i n g) ;
2 l e t i=next (i) in
3 l e t (=i , m: b i t s t r i n g) = (decdh (m, symk)) in
4 l e t msg= SerVariableResponseRet (m) in
5 i f (msg <> RebootRequired) then 0 e l s e

The CSMS receives the response and checks the received status.

ResetRequest

1 l e t i=next (i) in
2 l e t m = encdh ((i , ResetRequest (OnIdle)) , symk) in
3 out (c , m) ;

The CSMS responds to the CS with a ResetRequest in response to a SetVari-
ablesResponse with status RebootRequired. The attribute status OnIdle, modelled
as a global value for simplicity, indicates that a the reset is delayed until no more
transaction are active.

1 in (c , m: b i t s t r i n g) ;
2 l e t x i = next (x i) in
3 l e t (=xi , m: b i t s t r i n g) = decdh (m, symk) in
4 l e t m= ResetRequestRet (m) in
5 i f (m <> OnIdle) then 0
6 e l s e

43

The ProVerif model of OCPP’s Use Cases

The CS receives the ResetRequest and retreives the value by means of the Rese-
tRequestRet function.

ResetResponse

1 l e t x i = next (x i) in
2 l e t m = encdh ((xi , ResetResponse (StatusAccepted)) , symk) in
3 out (c , m) ;

ResetResponse sent by the Charging Station to the CSMS in response to Rese-
tRequest(OnIdle): the Charging Station responds with (StatusAccepted) where
the status means the received command to delay reboot until transaction are
terminated will be executed.

1 in (c , m: b i t s t r i n g) ;
2 l e t i=next (i) in
3 l e t (=i , m: b i t s t r i n g) = (decdh (m, symk)) in
4 l e t msg=ResetResponseRet (m) in
5 i f (msg <> StatusAccepted) then 0 e l s e

The CSMS receives the Reset Response messages and checks if the status is declared
accepted.

Connection with the new Security Profile 3 After the reboot, the Charging
Station initiates the handshake to connect to the CSMS with the new upgraded
security profile 3 TLS with Client side Certificates. Further details about this
connection and messages exchanged are described in details at subsection 5.4.2.

BootNotificationRequest

1 l e t x i = next (x i) in
2 l e t m = encdh ((xi , BootNot i f i ca t i onReques t (RemoteReset , Id_Cs)) , symk

) in
3 out (c , m) ;

This message sent by the CS signals to the CSMS that the charging station has
rebooted.

1 in (c , m: b i t s t r i n g) ;
2 l e t i=next (i) in
3 l e t (=i , m: b i t s t r i n g)=decdh (m, symk) in

44

5.3 – Cryptographic Elements of the Proverif Models

4 l e t (pu : b i t s t r i n g , xid_cs : b i t s t r i n g)= BootNot i f i cat ionRequestRet (m)
in

5 i f (pu <> RemoteReset) then 0 e l s e

CSMS at the receiving of the message checks the reason of the reboot.

BootNotificationResponse

1 l e t i=next (i) in
2 l e t m = encdh ((i , BootNot i f i ca t ionResponse (Registrat ionType , I n t e r v a l)

) , symk) in
3 out (c , m) ;

This message sent by the CSMS signals to the CS the Registration.

1 in (c , m: b i t s t r i n g) ;
2 l e t x i = next (x i) in
3 l e t (=xi , m: b i t s t r i n g)= decdh (m, symk) in
4 l e t (r t : b i t s t r i n g , i n t : b i t s t r i n g) = BootNot i f i cat ionResponseRet (m

) in
5 i f (r t <> Registrat ionType) then 0
6 e l s e

CSMS at the receiving of the message checks the RegistrationType.

5.3 Cryptographic Elements of the Proverif Mod-
els

In this section are presented the cryptographic functions implemented in the OCPP
Proverif Model Implemented for this thesis. They are common to both the Use
Cases [section 5.1, section 5.2]

5.3.1 Chosen Ciphersuite
The choice of the Cipher Suite is for the implementation of the Use Cases in this
thesis has been made between the four ciphersuites which in OCPP Specification
are required to be supported as a minimum for the Security Profiles [section 5.4.1,
section 5.4.2] required for the Use Cases application, and then selectiong the
recommended one:
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.
For the scope of this thesis, for the model of the protocol sections in Proverif [Chapter
4], the relevant alghoritms required in this ciphersuite are: Protocol: Transport

45

The ProVerif model of OCPP’s Use Cases

Layer Security (TLS) [3] Key Exchange: Elliptic Curve Diffie-Hellman Ephemeral
(ECDHE) [4] Authentication: Elliptic Curve Digital Signature Algorithm (ECDSA)
[4] TLS defines the security level of the communication, negotiated during the
Handshake phase of the Security Profiles model [section 5.4]. Key Exchange defines
the algorithm used to compute the symmetric shared session key for the CS and
CSMS encrypted phase of the protocol section. Authentication defines how the
communication parties should authenticate and check the authentication of the
sent and received messages.

5.3.2 Asymmetric encryption

1 (∗ Asymmetric Encryption ∗)
2 type pkey . (∗ pub l i c key ∗)
3 type skey . (∗ p r i va t e key ∗)
4 type keymat . (∗ key mate r i a l ∗)
5

6 fun pk (keymat) : pkey .
7 fun sk (keymat) : skey .
8 fun penc (b i t s t r i n g , pkey) : b i t s t r i n g .
9 fun senc (b i t s t r i n g , skey) : b i t s t r i n g .

10 reduc f o r a l l x : b i t s t r i n g , y : keymat ; sdec (penc (x , pk (y)) , sk (y)) = x .

Types generated for the Asymmetric Encryption are the Public Key and Secret key
types, and Key Material. Secret and Public key pair are generated from the key
material by sk and pk functions. Each certified entity has its’s own key material.
The penc function encrypts a bitstring message by means of the public key, so that
only the meant receiver can decrypt with the correspondent secret key, to ensure
confidentiality.

5.3.3 Signature

1 (∗ S ignature ∗)
2 type r e s u l t .
3 fun ok () : r e s u l t .
4 fun s i gn (b i t s t r i n g , skey) : b i t s t r i n g .
5 f o r a l l m: b i t s t r i n g , y : keymat ; getmess (s i gn (m, sk (y))) = m.
6 reduc f o r a l l m: b i t s t r i n g , y : keymat ; checks ign (s i gn (m, sk (y)) , pk (y)

) = ok () .

For the non-repudiation property, a message sent by an entity is siged by the
sign function with the secret key of the sender: checksign function is used by the

46

5.3 – Cryptographic Elements of the Proverif Models

receiver to check wheter the message was signed by the owner of the secret key
corresponding to the public key owner, the result is ok() in case the check result is
positive. Only after the check the receiver will recover the message with the getmes
function.

5.3.4 ECDHE

1 type G. (∗ d i f f i e −hellman Curve parameter ∗)
2 type dhkey .
3 type sdhpar .
4 type pdhpar
5

6 const g : G.
7 fun dh(sdhpar , G) : b i t s t r i n g .
8 fun sdh (b i t s t r i n g , sdhpar) : dhkey .
9 equat ion f o r a l l a , b : sdhpar , g :G ; sdh (dh(b , g) , a) = sdh (dh(a , g) ,

b) .
10 fun encdh (b i t s t r i n g , dhkey) : b i t s t r i n g .
11 reduc f o r a l l m: b i t s t r i n g , k : dhkey ; decdh (encdh (m, k) , k) = m.

Elliptic Curve Diffie Hellman Ephemeral : Given a curve parameter and an
ephemeral key of type sdhpar, the secret Diffie Hellman parameter, the func-
tion dh computes a bitstring which represents the public parameter of the ECDHE
exchange. An entity, with the function sdh, given the public parameter of the
other entity and it’s own ephemeral key, can compute the symmetric Diffie Hellman
premaster secret, of type dhkey. The following equation guarantees the symmetric
property of the computation. Using the PRF [section 5.3.5], the master secret
of type dhkey will be computed from the pre master secret. By means of the
encdh and decdh functions, a message can be crypted and decrypted with the same
key, i.e. symmetric encryption. A relevant aspect is that this type of encryption
definition in Proverif has an integrated check of integrity of the message decription:
therefore, MAC is intrinsecally implemented.

5.3.5 Other functions
Other Function have been implemented to guarantee properties required for the
protocol or to ensure the readability of the code.

Certificate Signature

1 fun signCA (pkey , skey) : b i t s t r i n g .

47

The ProVerif model of OCPP’s Use Cases

2 reduc f o r a l l m: pkey , km_RA: keymat ; checksignCA (signCA (m, sk (km_RA))
, pk (km_RA)) = ok () .

3 reduc f o r a l l k : pkey , km_RA: keymat ; getpKey (signCA (k , sk (km_RA)) ,
pk (km_RA)) = k .

This function scope is to avoid the type conversion or incapsulation of the certified
pkey. The function signCA represents the signature of a message of type pkey
instead of bitstring. The checksignCA and getPKey are equivalent to checksign
and getmess from Signature functions.

Message Identifier

1 (∗ Message counter ∗)
2 type counter .
3 f r e e i_seed : counter .
4 fun next (counter) : counter .

To avoid replay attacks, each message is identified by a value i in the CSMS, xi
in the CS. The type is called counter, starts from a seed in the CSMS. The value
is sent to the Client, then both Client and Server computes next(i) to be sent
with sent messages and to be checked if sequential to the previous one in received
messages.

Messages encapsulation functions examples

1 fun HTTPGET(b i t s t r i n g , b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
2 reduc f o r a l l PD, AB, UP: b i t s t r i n g ; HTTPGETret(HTTPGET(PD, AB, UP))

= (PD, AB, UP) .
3

4 fun HTTP401(b i t s t r i n g) : b i t s t r i n g .
5 reduc f o r a l l m: b i t s t r i n g ; HTTP401ret (HTTP401(m)) = m.
6

7 fun HTTP200 (b i t s t r i n g) : b i t s t r i n g .
8 reduc f o r a l l m: b i t s t r i n g ; HTTP200ret (HTTP200(m)) = m .

For code readability, some message are encapsulated with functions with a repre-
sentative name. The function itself is transparent to data, i.e. doesn’t modify the
input values. Return functions identified by the “ret” string return the original
messages incapsulated.

PRF Pseudorandom master secres

1 fun masterSecret (dhkey , nonce , nonce) : dhkey .

48

5.4 – Security Profiles

Given the public symmetric premaster secret Diffie Hellman parameter of the
ECDHE key exchange and the two nonces identifiyng the session, this function
computes the master secret.

Credential Management

1 fun c r e d e n t i a l S t r i n g (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
2 reduc f o r a l l username , password : b i t s t r i n g ; c r e d e n t i a l S t r i n g R e t

(c r e d e n t i a l S t r i n g (username , password)) = (username , password) .
3

These functions are used to construct the credential string given the username and
password, or viceversa to retrieve them given the credential string.

5.4 Security Profiles
As outlined in [subsection 3.3.4], OCPP 2.0.1 [15] is capable of supporting three
distinct security profiles, each of which defines the specific security measures that
are employed by the entity in question and the related requirements. Generic
requisites for the profiles are: Charging Station and CSMS utilise a single security
profile at any given time and terminate the connection if the other entity attempts
to establish a connection with a different profile. If the prerequisites are met, the
security profile may be upgraded via the use case A05. Conversely, the OCPP
specification does not permit the reduction of the security profile to a less secure
level. The decision regarding the selected use case is based on the necessity to test
the lower security profile. Security Profile 1, which is an unsecured transport with
basic authentication, does not include any authentication to the CSMS or measures
to establish a secure communication channel. It is therefore recommended that this
profile should only be used in trusted networks, and that it is outside the scope
of this work. Excluding from consideration for the aforementioned reasons the
security profile 1, the choice was made to model to be verified against the ProVerif
prove the use cases requiring security profile 2. The following section provides a
detailed explanation of the schema and exchanged messages required to implement
security profile 2 and security profile 3, which is related to the modelling of use
case A05 - upgrade CS security Profile [section 5.2].

5.4.1 Security Profile 2 -TLS with Basic Authentication
In the TLS with Basic Authentication profile, the communication channel is secured
through the use of Transport Layer Security (TLS). The Charging Station (CS)

49

The ProVerif model of OCPP’s Use Cases

authenticates the CSMS via the TLS server certificate, whereas the authentica-
tion of the CS is performed using the HTTP Basic authentication method. The
utilisation of TLS to secure communication within this profile will result in the
transmission of the password in an encrypted form, thereby mitigating the potential
risks associated with this authentication method. The client (CS) initiates the TLS

Figure 5.3: Sequence Diagram: TLS with Basic Authentication sequence diagram

handshake with the transmission of a Client Hello message, which serves to propose
the session exchange parameters supported by the CS. In this context, security
profile 2 is specified in this message. Subsequently, the client awaits the arrival of a

50

5.4 – Security Profiles

ServerHello message. In response to a ClientHello message, the server will transmit
a Server Hello message when it has identified an acceptable set of algorithms. This
exchange formalises the agreement upon the key exchange method, and the use of
certificates for authentication. The server transmits a Server Certificate message, as
delineated in the selected authentication scheme, and a ServerHelloDone message,
which signals the conclusion of the ServerHello and associated messages.

The parameters for the established key exchange method are contained within the
Client Key Exchange, which is immediately followed by a ChangeCipherSpec that
signals the transition to encrypted communication. The Finished Client is the
first message protected with the shared session key. It contains a summary of the
exchanged messages thereby confirming the parameters agreed upon by the entities.
The CSMS Server similarly transmits a ChangeCipherSpec and Finished Server
with analogous meaning. Once a side has transmitted its Finished message and
received and validated the Finished message from its peer, it may then begin to
transmit and receive application data over the connection.

5.4.2 Security Profile 3 - TLS with Client Side Certificates
Similary to security profile 2 [subsection 5.3.1] in security profile 3 the communica-
tion channel is secured using Transport Layer Security (TLS) and the Charging
Station authenticates the CSMS via the TLS server certificate. Differently, Charg-
ing Station authentication method is upgraded toTLS with client side certificate.
The client (CS) initiates the TLS handshake with the transmission of a Client
Hello message, the purpose of which is to propose the session exchange parameters
supported by the CS. For this work, security profile 3 is declared in this message.
Subsequently, the client awaits the arrival of a ServerHello message. In response to
a ClientHello message, the server will transmit a Server Hello message when it has
identified an acceptable set of algorithms. This message formalises the agreement
upon the key exchange method, and the use of certificates for authentication. Sub-
sequently, the server transmits a Certificate Server Request, thereby requiring the
client to send its own certificate and the Server Certificate message, as delineated
in the selected authentication scheme. The final message is the Server Hello Done
message, which signals the conclusion of the ServerHello and associated messages.

In response to the certificate request, the CS Client transmits a Client Certifi-
cate message, as specified by security profile 3 for the CS authentication. The
parameters for the established key exchange method are contained within the
Client Key Exchange, which is immediately followed by a ChangeCipherSpec that
signals the transition to encrypted communication. The Finished Client is the
first message protected with the shared session key. It contains a summary of

51

The ProVerif model of OCPP’s Use Cases

Figure 5.4: Sequence Diagram: TLS with Client Side Certificates

the exchanged messages to confirm the parameters agreed upon by the entities.
The CSMS Server similarly transmits a ChangeCipherSpec and Finished Server
with analogous significance. Once a side has transmitted its Finished message and
received and validated the Finished message from its peer, it may then commence
transmitting and receiving application data over the connection.

5.4.3 Messages
This subsection defines the message structures for the ProVerif model presented in
this thesis. Despite the simplified structure of the message, the modelled values
accurately reproduce and maintain the content and purpose of the original message
definition taken from the OCPP 2.0.1 specification. The original message names
have been maintained for clarity and readability of the modelled code.

Client Hello

52

5.4 – Security Profiles

1 out (c , (nonce_CS , proposed_suite , t l s_ver s i on , s e c _ p r o f i l e)) ;

The initial message transmitted by the CS Client comprises the CS nonce, nonceCS,
a randomly generated structure generated by the client, the version of the TLS
protocol by which the client wishes to conduct the session, the proposed cipher
suite and the security profile implemented. Thoses are modelled as a list of bit-
string variables passed from the client to the server in the ClientHello message and
contains the combinations of cryptographic algorithms supported by the client,
simplified to a single choice in this work.

Server Hello

1 l e t chosen_suite = xproposed_suite in
2 new nonce_CSMS : nonce ;
3 l e t m = (nonce_CSMS , chosen_suite) in

Server Hello Message is modeled to contain a nonce and a suite: this fields will
contain a random generated Server nonce, indipendent from the client nonce, and
one of the ciphersuites supported by the CS client, in this work modeled for sim-
plicity as a single choice, and received with Client Hello.

Server Certificate

1 l e t m = (CSMS_CAsigned_certificate) in
2 out (c , m) ;

This message transmits the server’s certificate chain to the client. In this thesis
model, the public key of the CSMS server can be directly verified with a trusted
root certification authority by the CS client. For further clarification, please refer
to section 5.3.

Certificate Server Request

1 l e t m = (Cer t i f i c a t eSe rve rReque s t , CSMS_CAsigned_certificate) in
2 out (c , m) ;

Sent alongside with the CSMS Server Certificate, the Certificare Server Request in
the security profile 3 context has the role to require the CS Client to provide its

53

The ProVerif model of OCPP’s Use Cases

Certificate to perform authentication.

Server Hello Done

1 l e t m = s ign (HelloDone , sk (km_CSMS)) in
2 out (c , m) ;

The message contains the constant "HelloDone" which signifies that the server has
concluded its transmission of messages to facilitate the key exchange and that the
client may now proceed with its designated phase of the key exchange.

Client Certificate

1 out (c , penc (CS_CAsigned_certi f icate , xpk_CSMS)) ;

In accordance with the security profile 3 requirements of CS Authentication with
Certificate, this message is transmitted subsequent to the Server’s Certificate Server
Request. It contains the CA authenticated certificate, which serves to certify the
public key of the CS.

Client Key Exchange

1 out (c , penc (dhpar_CS , xpk_CSMS)) ;

The transmission of key exchange parameters, better explained in subsection 5.3.3,
allows each entity to agree on a shared key. As the chiphersuite chosen for this
work requires, this message contains the parameters for Ephemeral Diffie Hellman
key exchange. In summary, this message contains the client’s Diffie Hellman public
parameter, dhparCS, which has been computed from the CS secret ephemeral
DH key and encrypted with the public key xpkCSMS of the CSMS server for
confidentiality.

54

Chapter 6

Results of the analysis

In this chapter are reported all the analysis performed on the implemented use
cases, with reference to the relative security profiles required. For each property, a
description of the elements, events and queries is provided. For each verification,
the results of the ProVerif analysis are reported, along with their interpretation.
About MAC and Integrity The use of MACs in conjunction with symmetric
encryption, as mentioned in the ProVerif manual [1], is generally useless in ProVerif
because the basic encryption is already authenticated. For the same reason, integrity
checks are not modelled explicitly in this work because integrity is implemented
and tested intrinsically with the decryption function and the values correspondence
tests.

6.1 Results of A01 - Update Charging Station
Password

This section presents the desired properties for the password update with use case
A01: the model includes the connection of the CS and the CSMS with Security
Profile 2 [subsection 5.3.1], and the implementation of Use Case A01 [subsection 5.1]
where the CSMS requires to the CS to update the password of its credentials.This
is followed by the CS reconnecting to the CSMS using the updated password. For
each of the desired properties, a brief summary of its meaning is reported, how the
verified elements are implemented in the model, the queries used for verification,
the result reported in the ProVerif output and its interpretation.

6.1.1 Description Use Case A01
This Use Case A01- is part of the Security Functional Block [section 3.3.2]. The
Objective of the message exchange between the CSMS and the CS is to define

55

Results of the analysis

how to use the Basic Authentication security profile and update the credentials at
the request of the CSMS, which transmits a new value for the CS Password. The
implementation of Security Profile 2 [section 5.4.2] is necessary for this use case to
establish an authenticated communication channel and a shared session symmetric
key via the key exchange algorithm ECDHE. The Charging Station authenticate
itself using HTTP Basic Authentication [17] by means of the installed credentials,
and the CSMS authenticates to the CS using a TLS server certificate [5]. The
communication between Charging Station and CSMS is secured using TLS [7]. For
the full code, please refer to Appendix A.

6.1.2 Secrecy
Secrecy queries check whether the attacker can reconstruct the tested term or not.
This can be done using two types of queries, attacker and secret. The terms tested
for secrecy in this implementation of use case A01 [subsection 5.1] are the following:

• secretApplicationData: general definition of data exchanged by the enti-
ties,typically after the implemented use cases and security profiles authentica-
tions, which should stay confidential.

• PasswordCS: CS’s password, installed OOB by manufacturer and CSO to CS
and CSMS, for CS HTTP Basic authentication.

• eph_k_CS: CS’s Ephemeral Key parameter for ECDHE key exchange

• eph_k_CSMS: CS’s Ephemeral Key parameter for ECDHE key exchange.

• credentialsCS1: string containing CS’s username and password, used to au-
thenticate to the CSMS.

• NewPasswordCS: password created to the CSMS and sent to the CS to update
the installed one.

• newCredentialsCS: string containing CS’s username and the new password
NewPasswordCS, used to authenticate to the CS to the CSMS after the
password update.

With the attacker queries, ProVerif attempts to prove that a state in which the
parameters are known to the attacker is unreachable, that is true when the names
are not derivable by the attacker. This queries requires to be applied on private
global free names.

1 query a t tacke r (s ec r e tApp l i ca t i onData) .
2 query a t tacke r (PasswordCS) .

56

6.1 – Results of A01 - Update Charging Station Password

Query secret x provides an alternative way to test secrecy to query attacker(x),
testing the secrecy of the term x, where x must correspond to a bound variable or
name inside the considered processes. In this implementation, the secret queries
used to test secrecy of aforementioned local names and variables are:

1 query s e c r e t eph_k_CS .
2 query s e c r e t eph_k_CSMS.
3 query s e c r e t c r edent i a l sCS1 .
4 query s e c r e t NewPasswordCS .
5 query s e c r e t newCredentialsCS .

Results are reported below.

Interpretation of the results:

1 Query not a t ta cke r (s ec r e tApp l i ca t i onData []) i s t rue .
2 Query not a t ta cke r (PasswordCS []) i s t rue .
3

4 Query s e c r e t eph_k_CS i s t rue .
5 Query s e c r e t eph_k_CSMS i s t rue .
6 Query s e c r e t c r edent i a l sCS1 i s t rue .
7 Query s e c r e t NewPasswordCS i s t rue .
8 Query s e c r e t newCredentialsCS_1 , newCredentialsCS i s t rue .

ProVerif attempts to prove that a state in which a property is violated is unreach-
able.It follows that, given the query attacker(M), ProVerif internally attempts to
show not attacker(M) and hence result not attacker(M) is true means that the
secrecy of M is preserved by the protocol. The output of the queries are all positive
results: true means that the tested property of secrecy holds for the term being
tested. Note: The newCredentialCS term was tested in both the CS client process
and the CSMS server process because two local names with the same identifier and
meaning were defined in the implementation.

6.1.3 Observational Equivalence
ProVerif can prove some observational equivalences, including strong secrecy. Strong
secrecy means that the attacker is unable to distinguish when the secret changes.
In other words, the value of the secret should not affect the observable behavior of
the protocol. This property has been tested for this work on the private global free
names secretApplicationData and PasswordCS. The queries used for this scope in
the implemented model are:

57

Results of the analysis

1 n o n i n t e r f s e c r e tApp l i ca t i onData .
2 n o n i n t e r f PasswordCS .

Results are reported below.

Interpretation of the results:

1 Non−i n t e r f e r e n c e sec r e tApp l i ca t i onData i s t rue .
2 Non−i n t e r f e r e n c e PasswordCS i s t rue .

The results of the queries are all positive. The true outcome indicates that the
tested property of strong secrecy is holds for both the tested terms. This means that
an attacker is unable to distinguish when the tested secrets change. In particular,
this concept is important when the secret consists of known values, as in the case
of secretApplicationData, which could represent known messages of the protocol.

6.1.4 Authentication
In order to implement A01 Update Password, the CS Client is required to perform
authentication using HTTP Basic Authentication. The CSMS will then authenticate
with a certificate, as required by Security Profile 2. The ciphersuite selected for
implementation includes ECDHE key exchange. The authentication is verified
by means of correspondence injective assertions. The verification implementation
and result are not included in this section but can be found in section 6.3. This
was done for brevity, as the same security profile is implemented and verified for
use case A05 Upgrade CS Security Profile, and the authentication verification is
analogous. In this section of the document is reported a correspondence query as a
sanity check on the ECDHE key exchange performed. The events are:

1 event dhparCSMS(pkey , b i t s t r i n g , b i t s t r i n g) .
2 event dhparCS (pkey , b i t s t r i n g , b i t s t r i n g) .

The query contains the computed symmetric key and the public parameters used
to create it. It verifies whether the CS believes it has exchanged parameters and
created a shared key with the intended CSMS server.

1 query x : pkey , z ,w: b i t s t r i n g ; in j −event (dhparCS (x , z ,w)) ==> in j −event
(dhparCSMS(x , z ,w)) .

58

6.1 – Results of A01 - Update Charging Station Password

Results are reported below.

Interpretation of the result: The results of the queries verify that an entity
performs the ECDHE key exchange with security profile 2. At each instance of the
event creation of the DH parameters at the CS Client corresponds the creation
of the same parameters at the CSMS Server. This reflects the fact that CSMS is
already authenticated.

1 Query in j −event (dhparCS (x_2 , z ,w)) ==> in j −event (dhparCSMS(x_2 , z ,w))
i s t rue .

The query output is positive, which is the expected outcome, given that the CSMS
server is already authenticated.

6.1.5 Reachability of the Events
Proving reachability properties is ProVerif’ s most basic capability. The processes
are annotated with events, which mark important stages reached by the protocol
but do not otherwise affect behavior. Relationships between event scan be specified
as correspondence assertions. These are used in this model with the objective to be
sanity checks of the implementation, as in case an event is unreachable, the result
would be meaningless. In this section are reported the queries of event reachability
for all the events defined to perform verification of the other properties presented in
this section. Reachability queries of events used for Message Ordering verification:

1 (∗ Message Ordering events ∗)
2 query event (e00_ca ()) .
3 query event (e01_csms ()) .
4 query event (e01 ()) .
5 query event (e02 ()) .
6 query event (e03 ()) .
7 query event (e04 ()) .
8 query event (e05 ()) .
9 query event (e06 ()) .

10 query event (e07 ()) .
11 query event (e08 ()) .
12 query event (e09 ()) .

Reachability queries of events used for Correspondence Session verification:

1 (∗ Correspondence Se s s i on events ∗)

59

Results of the analysis

2 query n ,m: nonce ; event (beg inCSsess ion (n ,m)) .
3 query n ,m: nonce ; event (beginCSMSsession (n ,m)) .
4 query n ,m: nonce ; event (endCSsess ion (n ,m)) .
5 query n ,m: nonce ; event (endCSMSsession (n ,m)) .

Events created for the Authentication parameters correspondence verification:

1 (∗ Authent icat ion parameters ∗)
2 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCS (x , z ,w)) .
3 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCSMS(x , z ,w)) .

Results are reported below.

Interpretation of the result:

1 Query not event (e00_ca) i s f a l s e .
2 Query not event (e01_csms) i s f a l s e .
3 Query not event (e01) i s f a l s e .
4 Query not event (e02) i s f a l s e .
5 Query not event (e03) i s f a l s e .
6 Query not event (e04) i s f a l s e .
7 Query not event (e05) i s f a l s e .
8 Query not event (e06) i s f a l s e .
9 Query not event (e07) i s f a l s e .

10 Query not event (e08) i s f a l s e .
11 Query not event (e09) i s f a l s e .
12 Query not event (beg inCSsess ion (n ,m_15)) i s f a l s e .
13 Query not event (beginCSMSsession (n ,m_15)) i s f a l s e .
14 Query not event (endCSsess ion (n ,m_15)) i s f a l s e .
15 Query not event (endCSMSsession (n ,m_15)) i s f a l s e .
16 Query not event (dhparCS (x_2 , z ,w)) i s f a l s e .
17 Query not event (dhparCSMS(x_2 , z ,w)) i s f a l s e .

The results of each query indicate that ProVerif has identified an attack trace
against the desired security property. It should be noted that ProVerif is designed
to demonstrate that a state in which a property is violated is unreachable. It
follows that when query event (M) is supplied, ProVerif attempts to demonstrate
that event (M) is not reachable. Therefore, the result is not event(M) is false when
the event is reachable. In conclusion, all the events are reachable. The reachability
verification of the events is crucial for interpreting the other correspondence queries.
If an event A is not reachable, the query event A ¯ event B would lead to a
positive result, which could lead to an erroneous conclusion that the property of
correspondence holds. Conversely, the result depends on the fact that event A
could never happen.

60

6.1 – Results of A01 - Update Charging Station Password

6.1.6 Session Correspondence
The correspondence ProVerif queries assert that if an event e has been executed,
then event e1 has been previously executed. This is useful for verifying the injective
correspondence of message exchange execution between the involved entities. The
session correspondence has been modelled with events to verify the following facts:

1 event beg inCSsess ion (nonce , nonce) .
2 event beginCSMSsession (nonce , nonce) .
3 event endCSsess ion (nonce , nonce) .
4 event endCSMSsession (nonce , nonce) .

The pair (nonceCS, nonceCSMS) identifies a specific session. Each of the event
records a meaningful fact, in details:

• event (beginCSsession(nonceCS, xnonceCSMS)) which is used by the client to
record the belief that she has accepted to run the protocol with that session
identifier.

• event(beginCSMSsession(xnonceCS, nonceCSMS)), which is used to record
the fact that the server considers he has accepted to run the protocol with
that session identifier.

• event(endCSsession(nonceCS, xnonceCSMS)) which means the client has
terminated a protocol run with that session identifier.

• event(endCSMSsession(xnonceCS, nonceCSMS)), which denotes the server’s
belief that he has terminated a protocol run with that session identifier.

Event are placed in the model as reported in schema [Figure 6.1], where for
brevity are reported only the significant messages exchanged by the protocol for
the objective of this property verification. To check that if the CS Client has
terminated the session identified by the two nonce parameters, it follows that a
CSMS Server has initiated a session with the same parameters, the following query
has been modeled:

1 query n ,m: nonce ; in j −event (endCSsess ion (n ,m)) ==> in j −event (
beginCSMSsession (n ,m)) .

To check that if the CSMS Server has terminated the session identified by the two
nonce parameters, it follows that CS Client has initiated a session with the same
parameters, the following query has been modeled:

61

Results of the analysis

Figure 6.1: Sequence Diagram: Events for A01 session correspondence

1 query n ,m: nonce ; in j −event (endCSMSsession (n ,m)) ==> in j −event (
beg inCSsess ion (n ,m)) .

To check that if the CSMS Server has terminated the session identified by the two
nonce parameters, it follows that CS Client has initiated a session with the same
parameters, the following query has been modeled:

1 query n ,m: nonce ; in j −event (endCSMSsession (n ,m)) ==> in j −event (
endCSsess ion (n ,m)) .

Results are reported below.

Interpretation of the result:

1 Query in j −event (endCSsess ion (n ,m_15)) ==> in j −event (beginCSMSsession (
n ,m_15)) i s t rue .

2

62

6.1 – Results of A01 - Update Charging Station Password

3 Query in j −event (endCSMSsession (n ,m_15)) ==> in j −event (beg inCSsess ion (
n ,m_15)) i s t rue .

4

5 Query in j −event (endCSMSsession (n ,m_15)) ==> in j −event (endCSsess ion (n ,
m_15)) i s t rue .

The ProVerif output is true for all the aforementioned queries: this indicates that
for each session, identified by the nonce value pair, terminated by the CS Client,
the same session has been initiated and terminated at the CSMS Server, and vice
versa. Consequently, it is not possible for an attacker to impersonate one of the
parties in a session.

6.1.7 Message Ordering
A typical use of correspondences is to order all messages in a protocol. ProVerif can
prove that each execution of event e01 is preceded by the execution of an instance
of e00, and that, when event e02 is executed, each execution of that instance of
e02 is preceded by the execution of an instance of e1. This can be implemented
until the last message of the protocol has been received. The following events have
been defined for this use:

1 event e00_ca () .
2 event e01_csms () .

These events have the objective to signal the CA providing the signed CSMS
Authentication certificate at the beginning of the protocol and the CSMS to receive
it.

1 event e01 () . event e02 () . event e03 () . event e04 () .
2 event e05 () . event e06 () . event e07 () . event e08 () . event e09 () .

The objective of these events is to signal the reception of messages exchanged in
the modelled section of the protocol. The placement of the events can be seen in
the ProVerif implementation schema, as reported in figure 6.2. The defined queries,
given the reachability of the events, tested in subsection 6.1.3.have the objective to
test wheter the order of the events, i.e. the order of the messages exchanged, is
respected.

1 query event (e01_csms ()) ==> event (e00_ca ()) .
2 query event (e02 ()) ==> event (e01 ()) .
3 query event (e03 ()) ==> event (e02 ()) .
4 query event (e04 ()) ==> event (e03 ()) .

63

Results of the analysis

5 query event (e05 ()) ==> event (e04 ()) .
6 query event (e06 ()) ==> event (e05 ()) .
7 query event (e08 ()) ==> event (e05 ()) .
8 query event (e09 ()) ==> event (e08 ()) .

Results are reported below.

Interpretation of the result:

1 Query event (e01_csms) ==> event (e00_ca) i s t rue .
2

3 Query event (e02) ==> event (e01) i s t rue .
4 Query event (e03) ==> event (e02) i s t rue .
5 Query event (e04) ==> event (e03) i s t rue .
6 Query event (e05) ==> event (e04) i s t rue .
7 Query event (e06) ==> event (e05) i s t rue .
8 Query event (e08) ==> event (e05) i s t rue .
9 Query event (e09) ==> event (e08) i s t rue .

The queries about the order of the events have a positive outcome. This implies that,
given the fact that each event represents the receipt of a message, the reception of
said message has been preceded by the sending of the correct message. Consequently,
a message cannot be received from an entity that is not the expected recipient.

6.2 Results of A05 - Upgrade Charging Station
Profile

In this section are presented the desired properties for the Security Profile Upgrade
with use case A05: the model includes the connection of the CS and CSMS with
Security Profile 2 [subsection 5.3.1], use case A05 implementation [subsection 5.2]
where the CSMS requires to the CS to upgrade the security profile, and finally
the reconnection of the CS to the CSMS using Security Profile 3. For each of
the desired and tested properties, is reported a brief summary of its significate,
how the verified elements are implemented in the model, the queries used for the
verification, the result reported in the ProVerif output and its interpretation.

6.2.1 Secrecy
Secrecy queries verify wheter the attacker can reconstruct the tested term or not.
This can be done by means of two types of queries, attacker and secret. The terms

64

6.2 – Results of A05 - Upgrade Charging Station Profile

Figure 6.2: Sequence Diagram: Events for A01 message ordering

which are tested for secrecy in this implementation of the use case A05 [subsection
5.2] are the following:

• secretApplicationData: general definition for data exchanged by the entities,
out of the scope of the implemented use case, which should remain confidential.

• PasswordCS: CS’s password, installed OOB by manufacturer and CSO to CS

65

Results of the analysis

and CSMS, for CS HTTP Basic authentication

• eph_k_CS and eph_k_CS2 : CS’s Ephemeral Key parameters for ECDHE
key exchange in session 1 and 2.

• eph_k_CSMS and eph_k_CSMS2: CS’s Ephemeral Key parameters for
ECDHE key exchange in session 1 and 2.

• credentialStringCS: string containing CS’s username and password, used to
authenticate to the CSMS with Security profile 2 in session 1.

With the attacker queries, ProVerif attempts to prove that a state in which the
parameters are known to the attacker is unreachable, that is true when the names
are not derivable by the attacker. This queries requires to be applied on private
global free names.

1 query a t tacke r (s ec r e tApp l i ca t i onData) .
2 query a t tacke r (PasswordCS) .

Query secret x provides an alternative way to test secrecy to query attacker(x),
testing the secrecy of the term x, where x must correspond to a bound variable or
name inside the considered processes. In this implementation, the secret queries
used to test secrecy of aforementioned local names and variables are:

1 query a t tacke r (s ec r e tApp l i ca t i onData) .
2 query a t tacke r (PasswordCS) .
3

4 query s e c r e t eph_k_CS .
5 query s e c r e t eph_k_CSMS.
6

7 query s e c r e t eph_k_CS2 .
8 query s e c r e t eph_k_CSMS2 .

Results are reported below.

Interpretation of the results:

1 Query not a t ta cke r (s ec r e tApp l i ca t i onData []) i s t rue .
2 Query not a t ta cke r (PasswordCS []) i s t rue .
3

4 Query s e c r e t eph_k_CS i s t rue .
5 Query s e c r e t eph_k_CSMS i s t rue .

66

6.2 – Results of A05 - Upgrade Charging Station Profile

6 Query s e c r e t eph_k_CS2 i s t rue .
7 Query s e c r e t eph_k_CSMS2 i s t rue .

ProVerif attempts to prove that a state in which a property is violated is unreachable.
It follows that, given the query attacker(M), ProVerif internally attempts to show
not attacker(M) and hence result not attacker(M) is true means that the secrecy of
M is preserved by the protocol. The output of the queries are all positive results:
true means that the tested property of secrecy holds for the term being tested.

6.2.2 Observational Equivalence
ProVerif can prove observational equivalences, including strong secrecy. Strong
secrecy means that the attacker is unable to distinguish when the secret changes.
In other words, the value of the secret should not affect the observable behavior
of the protocol. This property has been tested for this work on the private global
free names secretApplicationData and PasswordCS, whose role is explained in
subsection 6.2.1. The queries used for this scope in the implemented model are:

1 n o n i n t e r f s e c r e tApp l i ca t i onData .
2 n o n i n t e r f PasswordCS

Results are reported below.

Interpretation of the results:

1 Non−i n t e r f e r e n c e sec r e tApp l i ca t i onData i s t rue .
2 Non−i n t e r f e r e n c e PasswordCS i s t rue .

The output of the queries are all positive results: true means that the tested property
of strong secrecy holds for both the terms. This means that an attacker is not able
to distinguish when the those secrets change. This concept is important when the
secret consists of known values such as in the case of secretApplicationData, that
could represent known messages of the protocol.

6.2.3 Authentication
For this implementation of A05 Upgrade Security Profile, the CS Client is required
to performs authentication using HTTP Basic Authentication and the CSMS au-
thenticates with certificate, as required by Security Profile 2 in use. Then the
security profile is upgraded by the CSO: CS and CSMS reconnects by means of the

67

Results of the analysis

security profile 3 authentication requirements, which includes certificate authenti-
cation for both Client and Server. The Ciphersuite selected for the implementation
requires a ECDHE key exchange. The mutual authentication is verified by means
of correspondence injective assertions. The implementation of the verification of
security profiles 2 and 3 and their result can be found in section 6.3. This choice
was made for brevity, as the security profile 2 is also implemented and verified
for the use case A01 Update CS Password, and the authentication verification is
analogue. In this section of the document is reported a correspondence query as a
sanity check on the ECDHE key exchange performed for both Session 1 (connection
with security profile 2) and Session 2 (reconnection with security profile 3). The
events are:

1 event dhparCSMS(pkey , b i t s t r i n g , b i t s t r i n g) .
2 event dhparCS (pkey , b i t s t r i n g , b i t s t r i n g) .
3

4 event dhparCS2 (pkey , b i t s t r i n g , b i t s t r i n g) .
5 event dhparCSMS2(pkey , b i t s t r i n g , b i t s t r i n g) .

Which contain the computed symmetric key and the public parameters used to
create it. The query reported below verifies if the CS belief to have exchanged
parameters and created a shared key with the intended CSMS Server.

1 query x : pkey , z ,w: b i t s t r i n g ; in j −event (dhparCS (x , z , w)) ==> in j −
event (dhparCSMS(x , z , w)) .

2 query x : pkey , z ,w: b i t s t r i n g ; in j −event (dhparCS2 (x , z , w)) ==> in j −
event (dhparCSMS2(x , z , w)) .

Results are reported below.

Interpretation of the results:

1 Query in j −event (dhparCS (x_2 , z ,w)) ==> in j −event (dhparCSMS(x_2 , z ,w))
i s t rue .

2 Query in j −event (dhparCS2 (x_2 , z ,w)) ==> in j −event (dhparCSMS2(x_2 , z ,w))
i s t rue .

The results of the queries verify that an entity performs the ECDHE key exchange
with security profile 2 and also with security profile 3 after the reconnection. At each
instance of the event creation of the DH parameters at the CS Client corresponds
the creation of the same parameters at the CSMS Server. This reflects the fact
that CSMS is already authenticated.

68

6.2 – Results of A05 - Upgrade Charging Station Profile

6.2.4 Reachability of the Events
Proving reachability properties is ProVerif’ s most basic capability: we annotate
processes with events, which mark important stages reached by the protocol but do
not otherwise affect behavior. Relationships between events may now be specified
as correspondence assertions. These are used in this model with the objective
to be sanity checks of the implementation, as in case an event is not reachable,
other queries i.e. correspondence queries, would be meaningless. In this section
are reported the queries of event reachability for all the events used to perform
verification of the other properties presented in this Section for the Password
Update implementation. Reachability queries of events used for Message Ordering
verification:

1 (∗ Message Ordering events ∗)
2 query event (e05_cso ()) .
3 query event (e01_ca ()) .
4 query event (e02_ca ()) .
5 query event (e01 ()) .
6 query event (e02 ()) .
7 query event (e03 ()) .
8 query event (e04 ()) .
9 query event (e05 ()) .

10 query event (e06 ()) .
11 query event (e07 ()) .
12 query event (e08 ()) .
13 query event (e09 ()) .
14 query event (e10 ()) .
15 query event (e11 ()) .
16 query event (e12 ()) .
17 query event (e13 ()) .
18 query event (e14 ()) .
19 query event (e15 ()) .
20 query event (e16 ()) .
21 query event (e17 ()) .

Reachability queries of events used for Correspondence Session verification:

1 (∗ Correspondence Se s s i on 1 events ∗)
2 query n ,m: nonce ; event (beg inCSsess ion (n , m)) .
3 query n ,m: nonce ; event (beginCSMSsession (n , m)) .
4 query n ,m: nonce ; event (endCSsess ion (n , m)) .
5 query n ,m: nonce ; event (endCSMSsession (n , m)) .
6 (∗ Correspondence Se s s i on 2 events ∗)
7 query n ,m: nonce ; event (beg inCSsess ion2 (n , m)) .
8 query n ,m: nonce ; event (beginCSMSsession2 (n , m)) .

69

Results of the analysis

9 query n ,m: nonce ; event (endCSsess ion2 (n , m)) .
10 query n ,m: nonce ; event (endCSMSsession2 (n , m)) .

Events created for the Authentication parameters correspondence verification:

1 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCS (x , z ,w)) .
2 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCSMS(x , z ,w)) .
3

4 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCS2 (x , z ,w)) .
5 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCSMS2(x , z ,w)) .

These events placement in the implemented model and usage and meaning can be
seen in futher details at subsections 6.2.6, 6.2.5 and 6.2.3. Results are reported
below.

Interpretation of the results:

1 Query not event (e01) i s f a l s e .
2 Query not event (e02) i s f a l s e .
3 Query not event (e03) i s f a l s e .
4 Query not event (e04) i s f a l s e .
5 Query not event (e05) i s f a l s e .
6 Query not event (e06) i s f a l s e .
7 Query not event (e07) i s f a l s e .
8 Query not event (e08) i s f a l s e .
9 Query not event (e09) i s f a l s e

10 Query not event (e10) i s f a l s e .
11 Query not event (e11) i s f a l s e .
12 Query not event (e12) i s f a l s e .
13 Query not event (e13) i s f a l s e .
14 Query not event (e14) i s f a l s e .
15 Query not event (e15) i s f a l s e .
16 Query not event (e16) i s f a l s e .
17 Query not event (e17) i s f a l s e .
18

19 Query not event (beg inCSsess ion (n ,m_33)) i s f a l s e .
20 Query not event (beginCSMSsession (n ,m_33)) i s f a l s e .
21 Query not event (endCSsess ion (n ,m_33)) i s f a l s e .
22 Query not event (endCSMSsession (n ,m_33)) i s f a l s e .
23

24 Query not event (beg inCSsess ion2 (n ,m_33)) i s f a l s e .
25 Query not event (beginCSMSsession2 (n ,m_33)) i s f a l s e .
26 Query not event (endCSsess ion2 (n ,m_33)) i s f a l s e .
27 Query not event (endCSMSsession2 (n ,m_33)) i s f a l s e .

70

6.2 – Results of A05 - Upgrade Charging Station Profile

The results of each query indicate that ProVerif has identified an attack trace
against the desired security property. It should be noted that ProVerif is designed
to demonstrate that a state in which a property is violated is unreachable. It
follows that when query event (M) is supplied, ProVerif attempts to demonstrate
that event (M) is not reachable. Therefore, the result is not event(M) is false when
the event is reachable. In conclusion, all the events are reachable. The reachability
verification of the events is crucial for interpreting the other correspondence queries.
If an event A is not reachable, the query ’event A corresponds to event B’ would
output a positive result, which could lead to an erroneous conclusion that the
property of correspondence holds. Conversely, the result depends on the fact that
event A could never happen.

6.2.5 Session Correspondence
Correspondence ProVerif queries asserts that if an event e has been executed,
then event e1 has been previously executed. This is useful to verify the injective
correspondence of message exchange execution between the involved entities. The
session correspondence has been modeled with events to verify the following facts:

1 event beg inCSsess ion (nonce , nonce) .
2 event beginCSMSsession (nonce , nonce) .
3 event endCSsess ion (nonce , nonce) .
4 event endCSMSsession (nonce , nonce) .
5

6 query n ,m: nonce ; event (beg inCSsess ion2 (n , m)) .
7 query n ,m: nonce ; event (beginCSMSsession2 (n , m)) .
8 query n ,m: nonce ; event (endCSsess ion2 (n , m)) .
9 query n ,m: nonce ; event (endCSMSsession2 (n , m)) .

The pair (nonceCS, nonceCSMS) identifies a specific session. Each of the event
records a meaningful fact, in details:

• event(beginCSsession(nonceCS, xnonceCSMS)) and
event(beginCSsession2(nonceCS2, xnonceCSMS2)) which is used by the client
to record the belief that she has accepted to run the protocol with that session
identifier.

• event(beginCSMSsession(xnonceCS, nonceCSMS)) and
event(beginCSMSsession2(xnonceCS2, nonceCSMS2)), which is used to record
the fact that the server considers he has accepted to run the protocol with
that session identifier.

• event(endCSsession(nonceCS, xnonceCSMS)) and

71

Results of the analysis

event(endCSsession2(nonceCS2, xnonceCSMS2)) which means the client has
terminated a protocol run with that session identifier.

• event(endCSMSsession(xnonceCS, nonceCSMS)) and
event(endCSMSsession2(xnonceCS2, nonceCSMS2)) , which denotes the server’s
belief that he has terminated a protocol run with that session identifier.

Event are placed in the model as reported in schema [Figure 6.3], where for
brevity are reported only the significant messages exchanged by the protocol for
the objective of this property verification. To check that if the CS Client has
terminated the session identified by the two nonce parameters, it follows that a
CSMS Server has initiated a session with the same parameters, the following query
has been modeled:

1 query n ,m: nonce ; in j −event (endCSsess ion (n ,m)) ==> in j −event (
beginCSMSsession (n ,m)) .

2 query n ,m: nonce ; in j −event (endCSsess ion2 (n ,m)) ==> in j −event (
beginCSMSsession2 (n ,m)) .

To check that if the CSMS Server has terminated the session identified by the two
nonce parameters, it follows that CS Client has initiated a session with the same
parameters, the following query has been modeled:

1 query n ,m: nonce ; in j −event (endCSMSsession (n ,m)) ==> in j −event (
beg inCSsess ion (n ,m)) .

2 query n ,m: nonce ; in j −event (endCSMSsession2 (n ,m)) ==> in j −event (
beg inCSsess ion2 (n ,m)) .

To check that if the CSMS Server has terminated the session identified by the two
nonce parameters, it follows that CS Client has initiated a session with the same
parameters, the following query has been modeled:

1 query n ,m: nonce ; in j −event (endCSMSsession (n ,m)) ==> in j −event (
endCSsess ion (n ,m)) .

2 query n ,m: nonce ; in j −event (endCSMSsession2 (n ,m)) ==> in j −event (
endCSsess ion2 (n ,m)) .

Results are reported below.

Interpretation of the results:

72

6.2 – Results of A05 - Upgrade Charging Station Profile

Figure 6.3: Sequence Diagram: Events for A05 session correspondence

1 Query in j −event (endCSsess ion (n ,m_33)) ==> in j −event (beginCSMSsession (
n ,m_33)) i s t rue .

2 Query in j −event (endCSMSsession (n ,m_33)) ==> in j −event (beg inCSsess ion (
n ,m_33)) i s t rue .

3 Query in j −event (endCSMSsession (n ,m_33)) ==> in j −event (endCSsess ion (n ,
m_33)) i s t rue .

73

Results of the analysis

4

5 Query in j −event (endCSsess ion2 (n ,m_33)) ==> in j −event (
beginCSMSsession2 (n ,m_33)) i s t rue .

6 Query in j −event (endCSMSsession2 (n ,m_33)) ==> in j −event (
beg inCSsess ion2 (n ,m_33)) i s t rue .

7 Query in j −event (endCSMSsession2 (n ,m_33)) ==> in j −event (endCSsess ion2 (
n ,m_33)) i s t rue .

The ProVerif output is true for all the aforementioned queries: this indicates that
for each session, identified by the nonce value pair, terminated by the CS Client,
the same session has been initiated and terminated at the CSMS Server, and vice
versa. Consequently, it is not possible for an attacker to impersonate one of the
parties in each of the session.

6.2.6 Message Ordering
A typical use of correspondences is to order all messages in a protocol. ProVerif can
prove that each execution of event e01 is preceded by the execution of an instance
of e00, and that, when event e02 is executed, each execution of that instance of
e02 is preceded by the execution of an instance of e1. This can be implemented
until the last message of the protocol has been received. The following events have
been defined for this use:

The placement of the events can be seen in the ProVerif implementation schema,
as reported in figure 6.4. The defined queries, given the reachability of the events
tested in subsection 6.2.4, have the objective to verify wheter the order of the
events, i.e. the order of the messages exchanged, is respected.

1 event e01_ca () .
2 event e02_ca () .
3 event e05_cso () .

The first pair of events have the objective to signal the CA providing the signed
CSMS Authentication certificate at the beginning of the protocol and the CSMS to
receive it. The second is one of the pair used to test if the reception by the CSMS
of the signal to upgrade the security profile, is preceded by the request of the CSO
to perform it.

1 event e01 () . event e02 () . event e03 () . event e04 () . event e05 () .
event e06 () .

2 event e07 () . event e08 () . event e09 () . event e10 () . event e11 () .
event e12 () .

3 event e13 () . event e14 () . event e15 () . event e16 () . event e17 () .

74

6.2 – Results of A05 - Upgrade Charging Station Profile

The objective of these events is to signal the reception of messages exchanged in
the modelled section of the protocol. The placement of the events can be seen in
the ProVerif implementation schema, as reported in figure 6.4 and 6.5.

1 query event (e01 ()) ==> event (e01_ca ()) .
2 query event (e11 ()) ==> event (e02_ca ()) .
3

4 query event (e05 ()) ==> event (e05_cso ()) .
5

6 query event (e02 ()) ==> event (e01 ()) .
7 query event (e03 ()) ==> event (e02 ()) .
8 query event (e04 ()) ==> event (e03 ()) .
9 query event (e05 ()) ==> event (e04 ()) .

10 query event (e06 ()) ==> event (e05 ()) .
11 query event (e07 ()) ==> event (e06 ()) .
12 query event (e08 ()) ==> event (e07 ()) .
13 query event (e09 ()) ==> event (e08 ()) .
14 query event (e10 ()) ==> event (e09 ()) .
15 query event (e11 ()) ==> event (e10 ()) .
16 query event (e12 ()) ==> event (e11 ()) .
17 query event (e13 ()) ==> event (e12 ()) .
18 query event (e14 ()) ==> event (e13 ()) .
19 query event (e15 ()) ==> event (e14 ()) .
20 query event (e16 ()) ==> event (e15 ()) .
21 query event (e17 ()) ==> event (e16 ()) .

The defined queries, given the reachability of the events, tested in subsection
6.1.3.have the objective to test wheter the order of the events, i.e. the order of the
messages exchanged, is respected.

Results are reported below.

Interpretation of the results:

1 Query event (e01) ==> event (e01_ca) i s t rue .
2 Query event (e11) ==> event (e02_ca) i s t rue .
3

4 Query event (e05) ==> event (e05_cso) i s t rue .
5

6 Query event (e02) ==> event (e01) i s t rue .
7 Query event (e03) ==> event (e02) i s t rue .
8 Query event (e04) ==> event (e03) i s t rue .
9 Query event (e05) ==> event (e04) i s t rue .

10 Query event (e06) ==> event (e05) i s t rue .
11 Query event (e07) ==> event (e06) i s t rue .

75

Results of the analysis

Figure 6.4: Sequence Diagram: Events for A05 message ordering 1

12 Query event (e08) ==> event (e07) i s t rue .
13 Query event (e09) ==> event (e08) i s t rue .
14 Query event (e10) ==> event (e09) i s t rue .
15 Query event (e11) ==> event (e10) i s t rue .
16 Query event (e12) ==> event (e11) i s t rue .
17 Query event (e13) ==> event (e12) i s t rue .
18 Query event (e14) ==> event (e13) i s t rue .
19 Query event (e15) ==> event (e14) i s t rue .
20 Query event (e16) ==> event (e15) i s t rue .
21 Query event (e17) ==> event (e16) i s t rue .

76

6.3 – Results Security Profiles Authentication

Figure 6.5: Sequence Diagram: Events for A05 message ordering 2

The queries about the order of the events have a positive outcome. This implies that,
given the fact that each event represents the receipt of a message, the reception of
said message has been preceded by the sending of the correct message. Consequently,
a message cannot be received from an entity that is not the expected recipient.

6.3 Results Security Profiles Authentication
In this section is presented the verification of the Authentication property for the
Security Profiles required in the model of the Use Cases analysed in this thesis.
About the property of authentication, the protocol is intended to ensure that, if
client A thinks she executes the protocol with server B, then she really does so,

77

Results of the analysis

and vice versa. For each Security Profile are reported the declarations of events
involved in the property verification, the schema of the events placement into the
model, the queries and their meaning. Results of ProVerif verification and the
relative interpretation are reported in subsection 6.3.

6.3.1 Security Profile 2
Security profile 2 [subsection 5.4.1] requires the Charging Station to perform
authentication by means of HTTP Basic authentication, i.e. username and password
credentials, and the CSMS to authenticate with TLS Certificate. To verify the
authentication in this section of the protocol, some events are defined.

1 event acceptsCS (dhkey , pkey) .
2 event acceptsCSMS (dhkey , b i t s t r i n g) .
3 event termCS (dhkey , b i t s t r i n g) .
4 event termCSMS (dhkey , pkey) .

Each of this event, placed in the model as reported in Figure 6.6, records a
meaningful fact, in details:

• event acceptsCS(symk, xpkCSMS), which is used by the client to record the
belief that she has accepted to run the protocol with the server B and the
supplied symmetric key.

• event acceptsCSMS(symk, xcredentialsCS), which is used to record the fact
that the server considers he has accepted to run the protocol with a client,
with the proposed key supplied as the first argument and the client’s public
key as the second.

• event termCS(symk, credentialsCS), which means the client believes she has
terminated a protocol run using the symmetric key supplied as the first
argument and the client’s public key as the second.

• event termCSMS(symk, pkCSMS), which denotes the server’s belief that he has
terminated a protocol run with the CS client correspondent to the credentials
received, with the symmetric key supplied as the first argument.

The first verification to execute as a sanity check is the reachability, otherwise the
sequent corrispondence queries would be meaningless.

1 query s : dhkey , k : pkey ; event (acceptsCS (s , k)) .
2 query s : dhkey , k : pkey ; event (termCSMS(s , k)) .
3 query s : dhkey , c : b i t s t r i n g ; event (acceptsCSMS (s , c)) .
4 query s : dhkey , c : b i t s t r i n g ; event (termCS (s , c)) .

78

6.3 – Results Security Profiles Authentication

Figure 6.6: Sequence Diagram: Events Authentication Security Profile 2

It follows that verify the authentication of the CSMS, must hold the injective
correspondence between termClient and acceptsServer events: if the client has
terminated the protocol with the Server who owns the secret key correspondent to
the public key, so the same CSMS Server process must have accepted the connection
with the shared key.

1 query x : dhkey , k : pkey ; in j −event (termCSMS(x , k)) ==> in j −
event (acceptsCS (x , k)) .

For verifying the authentication of the CS, must hold the injective correspondence
between termClient and acceptsServer events: if the client has terminated the

79

Results of the analysis

protocol with the Server who owns the secret key correspondent to the public key,
so the same CSMS Server process must have accepted the connection with the
shared key.

1 query x : dhkey , k : pkey ; in j −event (termCS (x , k)) ==> in j −event
(acceptsCSMS (x , k)) .

Results are reported below.

Interpretation of the results:

1 Query not event (acceptsCS (s , k)) i s f a l s e .
2 Query not event (termCSMS(s , k)) i s f a l s e .
3 Query not event (acceptsCSMS (s , c_1)) i s f a l s e .
4 Query not event (termCS (s , c_1)) i s f a l s e .
5

6 Query in j −event (termCSMS(x_2 , k)) ==> in j −event (acceptsCS (x_2 , k)) i s
t rue .

7 Query in j −event (termCS (x_2 , c_1)) ==> in j −event (acceptsCSMS (x_2 , c_1))
i s t rue .

The results reflexts what was expected: False result for the reachability queries,
which the prover translates in “not event(e())” means that exists a path which lead
to the execution of the event, i.e. the event is reachable. A positive result for the
sanity check. True result for the injective events queries: this means that for each
event of process termination with the reported parameters of identification, the
respective and only process initiated the exchange with the same parameters. A
positive result for authentication verification.

6.3.2 Security Profile 3
Security profile 3 [subsection 5.4.2] requires both the Charging Station and the
CSMS to authenticate with TLS Certificate. To verify the authentication in this
section of the protocol, present for the reconnection after the Use Case A05 Update
profile [section 5.2], some events are defined.

1 event acceptsCS2 (dhkey , pkey) .
2 event acceptsCSMS2 (dhkey , pkey) .
3 event termCS2 (dhkey , pkey) .
4 event termCSMS2 (dhkey , pkey) .

80

6.3 – Results Security Profiles Authentication

Each of this event, placed in the model as reported in Figure 6.7, records a
meaningful fact, in details:

• event acceptsCS2(symk, xpkCSMS), which is used by the client to record the
belief that she has accepted to run the protocol with the server B and the
supplied symmetric key.

• event acceptsCSMS2(symk, xpkCSMS), which is used to record the fact that
the server considers he has accepted to run the protocol with a client, with
the proposed key supplied as the first argument and the client’s public key as
the second.

• event termCS2(symk, xpkCS), which means the client believes she has termi-
nated a protocol run using the symmetric key supplied as the first argument
and the client’s public key as the second.

• event termCSMS2(symk, xpkCS), which denotes the server’s belief that he
has terminated a protocol run with the CS client correspondent to the public
key received, with the symmetric key supplied as the first argument.

The first verification to execute, as a sanity check, is the reachability of the events,
otherwise the sequent queries would be meaningless.

1 query s : dhkey , k : pkey ; event (acceptsCS2 (s , k)) .
2 query s : dhkey , k : pkey ; event (acceptsCSMS2 (s , k)) .
3

4 query s : dhkey , k : pkey ; event (termCSMS2(s , k)) .
5 query s : dhkey , k : pkey ; event (termCS2 (s , k)) .

It follows that verify the authentication of the CSMS, must hold the injective
correspondence between termClient and acceptsServer events: if the client has
terminated the protocol with the Server who owns the secret key correspondent to
the public key, so the same CSMS Server process must have accepted the connection
with the shared key.

1 query x : dhkey , k : pkey ; in j −event (termCSMS2(x , k)) ==> in j −
event (acceptsCS2 (x , k)) .

For verifying the authentication of the CS, must hold the injective correspondence
between termClient and acceptsServer events: if the client has terminated the
protocol with the Server who owns the secret key correspondent to the public key,
so the same CSMS Server process must have accepted the connection with the
shared key.

81

Results of the analysis

Figure 6.7: Sequence Diagram: Events Authentication Security Profile 3

1 query x : dhkey , k : pkey ; in j −event (termCS2 (x , k)) ==> in j −
event (acceptsCSMS2 (x , k)) .

Results are reported below.

Interpretation of the results:

1 Query not event (acceptsCS2 (s , k)) i s f a l s e .
2 Query not event (termCSMS2(s , k)) i s f a l s e .
3 Query not event (acceptsCSMS2 (s , k)) i s f a l s e .
4 Query not event (termCS2 (s , k)) i s f a l s e .
5

6 Query in j −event (termCSMS2(x_3 , k)) ==> in j −event (acceptsCS2 (x_3 , k)) i s
t rue .

7 Query in j −event (termCS2 (x_3 , k)) ==> in j −event (acceptsCSMS2 (x_3 , k)) i s
t rue .

82

6.3 – Results Security Profiles Authentication

The results for Security Profile 3 reflexts what desired: False result for the reacha-
bility queries means that exists a path which lead to the execution of the event,
i.e. the event is reachable. A positive result for the sanity check. The true result
for the injective events queries means that for each event of process termination
with the reported parameters of identification, the respective and only process ini-
tiated the exchange with the same parameters. A positive result for authentication
verification.

83

84

Chapter 7

Conclusions and Future
Work

In summary, this thesis investigates the reasons for the widespread adoption of
the OCPP protocol, which has led to its status as the de facto standard. A
ProVerif model of the most relevant security-related section of the protocol has
been developed, comprising use case messages, security profiles, a handshake for the
authentication and cipher suite algorithms. The model has been tested against the
ProVerif formal prover, verifying the security properties and providing an in-depth
interpretation of the results for each modeled query. In conclusion, the ProVerif
output demonstrates that the desired properties were verified and that the OCPP
protocol ensures secure and trustworthy communication in the studied use cases.

For future work, this thesis aims to serve both as a starting point and as
documentation. The verification of the selected use cases has demonstrated the
absence of any attack presence, allowing the model to be analyzed using alternative
verification tools. Alternatively, this work can also be regarded as a suitable point
of departure for modelling and implementing other OCPP use cases. It includes a
complete set of implementation choices, with each omission or assumption explained
and justified, aiming to create a reliable ProVerif model of the selected use cases.
This model may be expanded in the future to cover other sections of the protocol.
This is particularly relevant given the ongoing evolution of the protocol, which may
result in the identification of new security analysis targets for further investigation.

85

86

Bibliography

[1] Blanchet, Bruno & Smyth, Ben. (2011). ProVerif 1.85: Automatic Crypto-
graphic Protocol Verifier, User Manual and Tutorial.

[2] Bruno Blanchet, Vincent Cheval ProVerif: Cryptographic protocol verifier in
the formal model. https://bblanche.gitlabpages.inria.fr/proverif/

[3] Bruno Blanchet. (2016). Modeling and verifying security protocols with the
applied pi calculus and ProVerif. Foundations and Trends in Privacy and
Security 1, 1–2 (Oct. 2016), 1–135. https://bblanche.gitlabpages.inria.
fr/publications/BlanchetFnTPS16.pdf

[4] Certicom Research, Standards for efficient cryptography, SEC 1: Elliptic Curve
Cryptography, Version 2.0, May 21, 2009. https://www.secg.org/sec1-v2.
pdf

[5] Cooper, D., et al. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile, Internet Engineering Task Force,
Request for Comments 5280, May 2008. http://www.ietf.org/rfc/rfc5280.
txt

[6] Cremers, C.J.F., Lafourcade, P., Nadeau, P. (2009). Comparing state spaces
in automatic security protocol analysis. In: Cortier, V., Kirchner, C., Okada,
M., Sakurada, H. (eds.) Formal to Practical Security. LNCS, vol. 5458, pp.
70–94. Springer, Heidelberg.

[7] Dierks, T. and Rescorla, E. (2008). The Transport Layer Security (TLS)
Protocol Version 1.2, Internet Engineering Task Force, Request for Comments
5246, August 2008. http://www.ietf.org/rfc/rfc5246.txt

[8] Dolev, D.; Yao, A. C. (1983). On the security of public key protocols. IEEE
Transactions on Information Theory. https://www.cs.huji.ac.il/~dolev/
pubs/dolev-yao-ieee-01056650.pdf

[9] European Commission, Directorate-General for Climate Action, Communi-
cation From The Commission To The European Parliament, The Council,
The European Economic And Social Committee And The Committee Of The
Regions. Stepping up Europe’s 2030 climate ambition Investing in a climate-
neutral future for the benefit of our people https://eur-lex.europa.eu/
legal-content/EN/ALL/?uri=CELEX:52020DC0562

87

https://bblanche.gitlabpages.inria.fr/proverif/
https://bblanche.gitlabpages.inria.fr/publications/BlanchetFnTPS16.pdf
https://bblanche.gitlabpages.inria.fr/publications/BlanchetFnTPS16.pdf
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5246.txt
https://www.cs.huji.ac.il/~dolev/pubs/dolev-yao-ieee-01056650.pdf
https://www.cs.huji.ac.il/~dolev/pubs/dolev-yao-ieee-01056650.pdf
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52020DC0562
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52020DC0562

Bibliography

[10] European Commission – Speech by Commissioner Thierry Breton, Launch of
the Route 35 platform. https://ec.europa.eu/commission/presscorner/
detail/en/SPEECH_22_7785

[11] EVRoaming Foundation, Open Charge Point Interface 2.2.1-d2. https://
evroaming.org/app/uploads/2024/04/OCPI-2.2.1-d2.pdf

[12] Fielding, Roy Thomas. Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of California,
Irvine, 2000. https://ics.uci.edu/~fielding/pubs/dissertation/rest_
arch_style.htm

[13] Impressum, Datenschutz, Open Clearing House Protocol 1.4. https://www.
ochp.eu/

[14] NIST, Computer Security Incident Handling Guide Recommendations of the
National Institute of Standards and Technology. https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf

[15] Open Charge Alliance, Open Charge Point Protocol 2.0.1. https://
openchargealliance.org/protocols/open-charge-point-protocol/

[16] Open Charge Alliance, Open Smart Charging Protocol 2.0. https://
openchargealliance.org/protocols/open-smart-charging-protocol/

[17] RFC 2617. HTTP Authentication: Basic and Digest Access Authentication.
https://www.ietf.org/rfc/rfc2617.txt

[18] Sakharov, Alex. "Horn Clause." From MathWorld–A Wolfram Web Re-
source, created by Eric W. Weisstein. https://mathworld.wolfram.com/
HornClause.html

[19] Sigrid de Vries, Lucie Mattera, From grids to vehicle charging experience:
building a seamless e-mobility ecosystem. https://www.acea.auto/files/
ACEA_ChargeUp_Europe_joint_declaration.pdf

88

https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_22_7785
https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_22_7785
https://evroaming.org/app/uploads/2024/04/OCPI-2.2.1-d2.pdf
https://evroaming.org/app/uploads/2024/04/OCPI-2.2.1-d2.pdf
https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ochp.eu/
https://www.ochp.eu/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-61r2.pdf
https://openchargealliance.org/protocols/open-charge-point-protocol/
https://openchargealliance.org/protocols/open-charge-point-protocol/
https://openchargealliance.org/protocols/open-smart-charging-protocol/
https://openchargealliance.org/protocols/open-smart-charging-protocol/
https://www.ietf.org/rfc/rfc2617.txt
https://mathworld.wolfram.com/HornClause.html
https://mathworld.wolfram.com/HornClause.html
https://www.acea.auto/files/ACEA_ChargeUp_Europe_joint_declaration.pdf
https://www.acea.auto/files/ACEA_ChargeUp_Europe_joint_declaration.pdf

Appendix A

Update Charging Station
Password for HTTP Basic
Authentication

1 (∗ VARIABLES AND TYPES ∗)
2

3 (∗ Publ ic key cryptography ∗)
4 type pkey . (∗ pub l i c key ∗)
5 type skey . (∗ p r i va t e key ∗)
6 type keymat . (∗ key mate r i a l ∗)
7

8 (∗ECDHE∗)
9 type G. (∗ d i f f i e −hellman Curve parameter ∗)

10 type dhkey . (∗ symmetric d i f f i e −hellman key , symk∗)
11 type sdhpar . (∗ s e c r e t d i f f i e −hellman parameter , a , b ∗)
12

13 (∗ Misce l l anea ∗)
14 type r e s u l t . (∗ r e s u l t o f check s i gna tu r e ∗)
15 type nonce .
16 type s u i t e .
17 type t l s v e r s i o n .
18 type counter .
19 type p r o f i l e .
20

21 (∗ Global v a r i a b l e s ∗)
22 const S e c P r o f i l e 2 : p r o f i l e .
23 f r e e c : channel .
24 f r e e s ec r e tApp l i ca t i onData : b i t s t r i n g [p r i va t e] .
25

89

Update Charging Station Password for HTTP Basic Authentication

26 (∗ /VARIABLES AND TYPES ∗)
27

28 (∗ FUNCTIONS ∗)
29

30 (∗ Bas ic Functions ∗)
31

32 (∗ Pseudorandom TLS master s e c r e t computation ∗)
33 fun masterSecret (dhkey , nonce , nonce) : dhkey .
34

35 (∗ Creden t i a l s management ∗)
36 f r e e UsernameCS : b i t s t r i n g .
37 f r e e PasswordCS : b i t s t r i n g [p r i va t e] .
38 fun c r e d e n t i a l S t r i n g (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
39 reduc f o r a l l username , password : b i t s t r i n g ; c r e d e n t i a l S t r i n g R e t (

c r e d e n t i a l S t r i n g (username , password)) = (username , password) .
40

41 (∗ Message counter ∗)
42 f r e e i_seed : counter .
43 fun next (counter) : counter .
44

45 (∗ Asymmetric Encryption ∗)
46 fun pk (keymat) : pkey .
47 fun sk (keymat) : skey .
48 fun penc (b i t s t r i n g , pkey) : b i t s t r i n g .
49 reduc f o r a l l x : b i t s t r i n g , y : keymat ; sdec (penc (x , pk (y)) , sk (y)) = x .
50

51 (∗ S ignature ∗)
52 fun ok () : r e s u l t .
53 fun s i gn (b i t s t r i n g , skey) : b i t s t r i n g .
54 reduc f o r a l l m: b i t s t r i n g , y : keymat ; getmess (s i gn (m, sk (y))) = m.
55 reduc f o r a l l m: b i t s t r i n g , y : keymat ; checks ign (s i gn (m, sk (y)) , pk (y)

) = ok () .
56

57 (∗ ECDHE D i f f i e −Hellman ∗)
58 (∗ const g : G. DH Curve ∗)
59 fun dh(sdhpar , G) : b i t s t r i n g . (∗ A=a∗G, B=b∗G ∗)
60 fun sdh (b i t s t r i n g , sdhpar) : dhkey . (∗ symk = B∗a = A∗b = a∗b∗G ∗)
61 equat ion f o r a l l a , b : sdhpar , g :G ; sdh (dh(b , g) , a) = sdh (dh(a , g) ,

b) .
62 fun encdh (b i t s t r i n g , dhkey) : b i t s t r i n g .
63 reduc f o r a l l m: b i t s t r i n g , k : dhkey ; decdh (encdh (m, k) , k) = m.
64

65 (∗ Root CA C e r t i f i c a t e S ignature ∗)
66 fun signCA (pkey , skey) : b i t s t r i n g .
67 reduc f o r a l l m: pkey , km_RA: keymat ; checksignCA (signCA (m, sk (km_RA))

, pk (km_RA)) = ok () .
68 reduc f o r a l l k : pkey , km_RA: keymat ; getpKey (signCA (k , sk (km_RA)) ,

pk (km_RA)) = k .
69

90

Update Charging Station Password for HTTP Basic Authentication

70 (∗/ Bas ic Functions ∗)
71

72 (∗ Handshake messages ∗)
73

74 f r e e Dumb: b i t s t r i n g .
75 f r e e ProtectedData : b i t s t r i n g [p r i va t e] .
76 f r e e Author i zat ionBas i c : b i t s t r i n g .
77 f r e e Authent icat ionRequired : b i t s t r i n g .
78 const HelloDone : b i t s t r i n g .
79 const Se rve rF in i shed : b i t s t r i n g .
80 const C l i en tF in i shed : b i t s t r i n g .
81

82 fun HTTPGET(b i t s t r i n g , b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
83 reduc f o r a l l PD, AB, UP: b i t s t r i n g ; HTTPGETret(HTTPGET(PD, AB, UP)) =

(PD, AB, UP) .
84

85 fun HTTP401(b i t s t r i n g) : b i t s t r i n g .
86 reduc f o r a l l m: b i t s t r i n g ; HTTP401ret (HTTP401(m)) = m.
87

88 fun HTTP200 (b i t s t r i n g) : b i t s t r i n g .
89 reduc f o r a l l m: b i t s t r i n g ; HTTP200ret (HTTP200(m)) = m .
90

91 (∗/ Handshake messages ∗)
92

93 (∗A01 Messages − Update Password by CSMS Request ∗)
94

95 const S e c u r i t y C t r l : b i t s t r i n g .
96 const BasicAuthPassword : b i t s t r i n g .
97 const StatusAccepted : b i t s t r i n g .
98

99 fun SetVar iab lesRequest (b i t s t r i n g , b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
100 reduc f o r a l l x , y , z : b i t s t r i n g ; SetVar iablesRequestRet (

SetVar iab lesRequest (x , y , z)) = (x , y , z) .
101

102 fun SetVar iab lesResponse (b i t s t r i n g) : b i t s t r i n g .
103 reduc f o r a l l x : b i t s t r i n g ; SerVariableResponseRet (SetVar iab lesResponse

(x)) = x .
104

105 (∗/A01 Messages − Update Password by CSMS Request ∗)
106

107 (∗ TESTS ∗)
108

109 (∗ Events ∗)
110

111 (∗ Test Secrecy ∗)
112

113 query a t tacke r (s ec r e tApp l i ca t i onData) .
114 query a t tacke r (PasswordCS) .
115

91

Update Charging Station Password for HTTP Basic Authentication

116 (∗ Test Sec r e t ∗)
117

118 query s e c r e t eph_k_CS .
119 query s e c r e t eph_k_CSMS.
120 query s e c r e t c r edent i a l sCS1 .
121 query s e c r e t NewPasswordCS .
122 query s e c r e t newCredentialsCS .
123

124 (∗ Strong s e c r e cy ∗)
125

126 n o n i n t e r f s e c r e tApp l i ca t i onData .
127 n o n i n t e r f PasswordCS .
128

129 (∗ Se s s i on Correspondence OK ∗)
130

131 event beg inCSsess ion (nonce , nonce) .
132 event beginCSMSsession (nonce , nonce) .
133 event endCSsess ion (nonce , nonce) .
134 event endCSMSsession (nonce , nonce) .
135

136 query n ,m: nonce ; event (beg inCSsess ion (n ,m)) .
137 query n ,m: nonce ; event (beginCSMSsession (n ,m)) .
138 query n ,m: nonce ; event (endCSsess ion (n ,m)) .
139 query n ,m: nonce ; event (endCSMSsession (n ,m)) .
140

141 query n ,m: nonce ; in j −event (endCSsess ion (n ,m)) ==> in j −event (
beginCSMSsession (n ,m)) .

142 query n ,m: nonce ; in j −event (endCSMSsession (n ,m)) ==> in j −event (
beg inCSsess ion (n ,m)) .

143

144 query n ,m: nonce ; in j −event (endCSMSsession (n ,m)) ==> in j −event (
endCSsess ion (n ,m)) .

145

146 (∗ Test ECDHE parameters OK∗)
147

148 event dhparCSMS(pkey , b i t s t r i n g , b i t s t r i n g) .
149 event dhparCS (pkey , b i t s t r i n g , b i t s t r i n g) .
150

151 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCS (x , z ,w)) .
152 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCSMS(x , z ,w)) .
153

154 query x : pkey , z ,w: b i t s t r i n g ; in j −event (dhparCS (x , z ,w)) ==> in j −event
(dhparCSMS(x , z ,w)) .

155

156 (∗ Test Authent icat ion OK ∗)
157

158 event acceptsCS (dhkey , pkey) .
159 event acceptsCSMS (dhkey , b i t s t r i n g) .
160 event termCSMS (dhkey , pkey) .

92

Update Charging Station Password for HTTP Basic Authentication

161 event termCS (dhkey , b i t s t r i n g) .
162

163 query s : dhkey , k : pkey ; event (acceptsCS (s , k)) .
164 query s : dhkey , k : pkey ; event (termCSMS(s , k)) .
165 query s : dhkey , c : b i t s t r i n g ; event (acceptsCSMS (s , c)) .
166 query s : dhkey , c : b i t s t r i n g ; event (termCS (s , c)) .
167

168 query x : dhkey , k : pkey ; in j −event (termCSMS(x , k)) ==> in j −
event (acceptsCS (x , k)) .

169 query x : dhkey , c : b i t s t r i n g ; in j −event (termCS (x , c)) ==> in j
−event (acceptsCSMS (x , c)) .

170 query x : dhkey , c : b i t s t r i n g ; in j −event (termCS (x , c)) ==> in j
−event (acceptsCSMS (x , c)) .

171

172 event acceptsCSMS2 (dhkey , b i t s t r i n g) .
173 event termCSMS2 (dhkey , pkey) .
174 event termCS2 (dhkey , b i t s t r i n g) .
175

176 query s : dhkey , k : pkey ; event (termCSMS2(s , k)) .
177 query s : dhkey , c : b i t s t r i n g ; event (acceptsCSMS2 (s , c)) .
178 query s : dhkey , c : b i t s t r i n g ; event (termCS2 (s , c)) .
179

180 query x : dhkey , k : pkey ; in j −event (termCSMS2(x , k)) ==> in j −
event (acceptsCS (x , k)) .

181 query x : dhkey , c : b i t s t r i n g ; in j −event (termCS2 (x , c)) ==>
in j −event (acceptsCSMS2 (x , c)) .

182

183 (∗ Test Message Order OK ∗)
184 (∗CA−CSMS∗)
185

186 event e00_ca () . event e01_csms () .
187 query event (e00_ca ()) .
188 query event (e01_csms ()) .
189

190 query event (e01_csms ()) ==> event (e00_ca ()) .
191 (∗CS−CSMS (when both Authent icated) ∗)
192

193 event e01 () . event e02 () . event e03 () . event e04 () .
194 event e05 () . event e06 () . event e07 () . event e08 () . event e09 () .
195

196 query event (e01 ()) .
197 query event (e02 ()) .
198 query event (e03 ()) .
199 query event (e04 ()) .
200 query event (e05 ()) .
201 query event (e06 ()) .
202 query event (e07 ()) .
203 query event (e08 ()) .
204 query event (e09 ()) .

93

Update Charging Station Password for HTTP Basic Authentication

205

206 query event (e02 ()) ==> event (e01 ()) .
207 query event (e03 ()) ==> event (e02 ()) .
208 query event (e04 ()) ==> event (e03 ()) .
209 query event (e05 ()) ==> event (e04 ()) .
210 query event (e06 ()) ==> event (e05 ()) .
211 query event (e08 ()) ==> event (e05 ()) .
212 query event (e09 ()) ==> event (e08 ()) .
213

214

215 (∗ /TESTS ∗)
216

217 (∗ PROCESSES ∗)
218

219 (∗ CSMS Server ∗)
220 l e t pCSMS(km_CSMS: keymat , pk_CA: pkey) =
221

222 l e t s e c _ p r o f i l e = S e c P r o f i l e 2 in
223 l e t i=i_seed in
224

225 (∗ TLS with Bas ic Authent icat ion ∗)
226

227

228

229 in (c , CSMS_CAsigned_certificate : b i t s t r i n g) ;
230

231 l e t CSMS_CAsigned_certificate = sdec (CSMS_CAsigned_certificate , sk (
km_CSMS)) in

232

233 i f (checksignCA (CSMS_CAsigned_certificate , pk_CA) <> ok ()) then 0
234 e l s e
235 event e01_csms () ;
236

237 in (c , (xnonce_CS : nonce , xproposed_suite : su i t e , x t l s _ v e r s i o :
b i t s t r i n g , x s e c _ p r o f i l e : p r o f i l e , g :G)) ;

238 i f (x s e c _ p r o f i l e <> s e c _ p r o f i l e) then 0
239 e l s e
240 l e t chosen_suite = xproposed_suite in
241 new nonce_CSMS : nonce ;
242

243 event beginCSMSsession (nonce_CSMS , xnonce_CS) ;
244

245 l e t m1 = (nonce_CSMS , chosen_suite) in
246 out (c , m1) ;
247

248 l e t m2 = (CSMS_CAsigned_certificate) in
249 out (c , m2) ; (∗ out Server C e r t i f i c a t e ∗)
250

251 l e t m3 = HelloDone in

94

Update Charging Station Password for HTTP Basic Authentication

252 out (c , m3) ; (∗ out He l lo Done ∗)
253

254 (∗ ECDHE, ClientKeyExchange ∗)
255

256 in (c , m: b i t s t r i n g) ;
257

258 l e t xdhpar_CS = sdec (m, sk (km_CSMS)) in
259 new eph_k_CSMS: sdhpar ;
260 l e t dhpar_CSMS = dh(eph_k_CSMS, g) in
261 l e t sympar = sdh (xdhpar_CS , eph_k_CSMS) in
262 l e t symk = masterSecret (sympar , xnonce_CS , nonce_CSMS) in
263

264 event dhparCSMS(pk (km_CSMS) , dhpar_CSMS , xdhpar_CS) ;
265

266 out (c , s i gn ((xdhpar_CS , dhpar_CSMS) , sk (km_CSMS))) ;
267

268 (∗ /ECDHE, ClientKeyExchange ∗)
269

270 in (c , m: b i t s t r i n g) ; (∗ in C l i en tF in i shed ∗)
271

272 l e t (= xnonce_CS , =chosen_suite , =nonce_CSMS , =
CSMS_CAsigned_certificate , =xsec_pro f i l e , x f i n i s h e d : b i t s t r i n g) =
decdh (m, symk) in

273 i f (x f i n i sh ed <> Cl i en tF in i shed) then 0
274 e l s e
275 (∗ out Serve rF in i shed ∗)
276 out (c , encdh ((xnonce_CS , xproposed_suite , nonce_CSMS ,

CSMS_CAsigned_certificate , s e c_pro f i l e , i , Se rve rF in i shed) , symk)
) ;

277

278 (∗ −−−−−−−−−−−ChangeCipherSpec−−−−−−−−−−−−−− ∗)
279

280 in (c , m: b i t s t r i n g) ; (∗ in HTTPGET (ProtectedData) ∗)
281 l e t i = next (i) in
282 l e t (=i , m: b i t s t r i n g) = decdh ((m) , symk) in
283 l e t (pd : b i t s t r i n g , ab : b i t s t r i n g , up : b i t s t r i n g) = HTTPGETret(m) in
284 i f (pd <> ProtectedData) then 0
285 e l s e
286 l e t i=next (i) in
287 l e t msg = encdh ((i , Authent icat ionRequired) , symk) in
288

289 out (c , msg) ; (∗ out HTTP401 Authent icat ion
Required ∗)

290

291 in (c , m3: b i t s t r i n g) ;
292

293 l e t i=next (i) in (∗ in HTTP GET / ProtectedData ,
Author i zat ion Basic , Username/Password ∗)

294 l e t (=i , m1: b i t s t r i n g) = decdh (m3, symk) in

95

Update Charging Station Password for HTTP Basic Authentication

295 l e t (pd : b i t s t r i n g , ab : b i t s t r i n g , up : b i t s t r i n g) = HTTPGETret(m1) in
296 i f ((pd <> ProtectedData) | | ab <> Author i zat ionBas i c) then 0
297 e l s e
298 l e t (m1: b i t s t r i n g , m2: b i t s t r i n g)=c r e d e n t i a l S t r i n g R e t (up) in
299 i f (m1 <> UsernameCS | | m2<>PasswordCS) then 0
300 e l s e
301

302 event acceptsCSMS (symk , up) ;
303

304 event e02 () ;
305 l e t i=next (i) in
306 l e t msg200 = encdh ((i , ProtectedData) , symk) in
307

308 out (c , msg200) ; (∗ out HTTP200 Protected Data ∗)
309

310 in (c , x : b i t s t r i n g) ; (∗ in s e c r e t ∗)
311

312 l e t i=next (i) in
313 l e t (=i , msg : b i t s t r i n g)=decdh ((x) , symk) in
314 i f (msg <> sec re tApp l i ca t i onData) then 0
315 e l s e
316 event e04 () ;
317

318 event termCSMS (symk , pk (km_CSMS)) ;
319

320 (∗ /TLS with Bas ic Authent icat ion ∗)
321

322 (∗A01∗)
323 new NewPasswordCS : b i t s t r i n g ;
324 l e t newCredentialsCS=c r e d e n t i a l S t r i n g (UsernameCS , NewPasswordCS) in
325

326 l e t m = SetVar iab lesRequest (Secur i tyCtr l , BasicAuthPassword ,
NewPasswordCS) in

327 l e t i = next (i) in
328

329 l e t enc_m = encdh ((i , m) , symk) in
330

331 out (c , enc_m) ; (∗ out SetVar iab leRequest ∗)
332

333 in (c , m: b i t s t r i n g) ; (∗ in SetVar iableResponse ∗)
334 l e t i=next (i) in
335 l e t (=i , msg : b i t s t r i n g) = (decdh (m, symk)) in
336 l e t msg= SerVariableResponseRet (msg) in
337 i f (msg <> StatusAccepted) then 0
338 e l s e
339 event e06 () ;
340

341 (∗ −−−−− Reconnection with new Password (ChangeCipherSpec)
−−−−−−− ∗)

96

Update Charging Station Password for HTTP Basic Authentication

342

343

344 in (c , m3: b i t s t r i n g) ;
345 l e t i = next (i) in
346 l e t (=i , m: b i t s t r i n g) = decdh (m3, symk) in (∗ in HTTP GET /

ProtectedData , Author i zat ion Basic , Username/Password ∗)
347 l e t (pd : b i t s t r i n g , ab : b i t s t r i n g , up : b i t s t r i n g) = HTTPGETret(m) in
348

349 i f ((pd <> ProtectedData) | | (ab <> Author i zat ionBas i c) | | (up
<> newCredentialsCS)) then 0

350 e l s e
351

352 event acceptsCSMS2 (symk , newCredentialsCS) ;
353

354 event e07 () ;
355 l e t i= next (i) in
356 l e t msg200 = encdh ((i , ProtectedData) , symk) in
357

358 out (c , msg200) ; (∗ out HTTP200 Protected Data ∗)
359

360 in (c , x : b i t s t r i n g) ; (∗ in s e c r e t ∗)
361

362 l e t i=next (i) in
363 l e t (=i , msg : b i t s t r i n g) = decdh (x , symk) in
364 i f (msg <> sec re tApp l i ca t i onData) then 0
365 e l s e
366 event e09 () ;
367 event termCSMS2 (symk , pk (km_CSMS)) ;
368

369

370 event endCSMSsession (nonce_CSMS , xnonce_CS) ;
371

372

373 0 .
374

375 (∗ /CSMS Server ∗)
376

377

378 (∗ CS Cl i en t ∗)
379

380 l e t pCS(pk_CA: pkey , pk_CSMS: pkey) =
381

382 l e t s e c _ p r o f i l e = S e c P r o f i l e 2 in
383

384 (∗ TLS with Bas ic Authent icat ion ∗)
385

386 new nonce_CS : nonce ;
387 new proposed_suite : s u i t e ;
388 new t l s _ v e r s i o n : t l s v e r s i o n ;

97

Update Charging Station Password for HTTP Basic Authentication

389 new g : G;
390

391 out (c , (nonce_CS , proposed_suite , t l s_ver s i on , s e c_pro f i l e , g)) ; (∗
out C l i en t He l lo ∗)

392

393 in (c , (xnonce_CSMS : nonce , chosen_suite : s u i t e)) ; (∗ in Server He l lo
∗)

394

395 event beg inCSsess ion (xnonce_CSMS , nonce_CS) ;
396

397 in (c , x se rver_cer t : b i t s t r i n g) ; (∗ in Server C e r t i f i c a t e ∗)
398

399 in (c , HD: b i t s t r i n g) ; (∗ in He l lo Done ∗)
400

401 i f ((checksignCA (xserver_cert , pk_CA) <> ok ())) then 0
402 e l s e
403 l e t xpk_CSMS = getpKey (xserver_cert , pk_CA) in
404

405 (∗ECDHE, ClientKeyExchange ∗)
406

407 new eph_k_CS : sdhpar ;
408 l e t dhpar_CS = dh(eph_k_CS , g) in
409

410 out (c , penc (dhpar_CS , xpk_CSMS)) ;
411

412 in (c , y : b i t s t r i n g) ;
413 i f checks ign (y , xpk_CSMS) <> ok () then 0
414 e l s e
415 l e t (=dhpar_CS , xdhpar_CSMS : b i t s t r i n g) = getmess (y) in
416 l e t sympar = sdh (xdhpar_CSMS , eph_k_CS) in
417 l e t symk= masterSecret (sympar , nonce_CS , xnonce_CSMS) in
418

419 event dhparCS (xpk_CSMS, xdhpar_CSMS , dhpar_CS) ;
420

421 event acceptsCS (symk , xpk_CSMS) ;
422

423 (∗/ECDHE, ClientKeyExchange ∗)
424

425 out (c , encdh ((nonce_CS , chosen_suite , xnonce_CSMS , xserver_cert ,
s e c_pro f i l e , C l i en tF in i shed) , symk)) ;

(∗ out C l i en tF in i shed ∗)
426

427 in (c , m: b i t s t r i n g) ; (∗ in Serve rF in i shed ∗)
428

429 l e t (= nonce_CS , =chosen_suite , =xnonce_CSMS , =xserver_cert , =
s e c_pro f i l e , x i : counter , x f i n i s h e d : b i t s t r i n g) = decdh (m, symk) in

430

431 i f (x f i n i s h e d <> ServerF in i shed) then 0
432 e l s e

98

Update Charging Station Password for HTTP Basic Authentication

433

434 (∗−−−−−−−−ChangeCipherSpec−−−−−−−−−−−−−−−−−−−−−−−−∗)
435

436 l e t msg = HTTPGET(ProtectedData , Dumb, Dumb) in
437 l e t x i = next (x i) in
438 l e t m = encdh ((xi , msg) , symk) in
439 out (c , m) ; (∗ out HTTP GET ProtectedData ∗)
440

441 in (c , m: b i t s t r i n g) ; (∗ in HTTP401 Authent icat ion
Required ∗)

442

443 l e t x i = next (x i) in
444 l e t (=xi , m1: b i t s t r i n g)= decdh (m, symk) in
445

446 i f (m1 <> Authent icat ionRequired) then 0
447 e l s e
448

449 event e01 () ;
450 l e t x i = next (x i) in
451 l e t c r edent i a l sCS1= c r e d e n t i a l S t r i n g (UsernameCS , PasswordCS) in
452 l e t m3 = encdh ((xi ,HTTPGET(ProtectedData , Author izat ionBas ic ,

c r edent i a l sCS1)) , symk) in
453

454 out (c , m3) ; (∗ out UsernamePasswordCS ∗)
455

456 in (c , m: b i t s t r i n g) ; (∗ in HTTP200 Protected Data ∗)
457

458 l e t x i = next (x i) in
459 l e t (=xi , m1: b i t s t r i n g) = decdh (m, symk) in
460 i f (m1 <> ProtectedData) then 0
461 e l s e
462 event e03 () ;
463

464 i f (pk_CSMS <> xpk_CSMS) then 0 e l s e
465

466 event termCS (symk , c r edent i a l sCS1) ;
467

468 l e t x i = next (x i) in
469 out (c , encdh ((xi , s e c r e tApp l i ca t i onData) , symk)) ; (∗ out s e c r e t ∗)
470

471 (∗/TLS with Bas ic Authent icat ion ∗)
472

473 (∗A01∗)
474

475 in (c , m: b i t s t r i n g) ; (∗ in SetVar iab leRequest ∗)
476

477 l e t x i = next (x i) in
478 l e t (= xi , msg : b i t s t r i n g) = decdh (m, symk) in

99

Update Charging Station Password for HTTP Basic Authentication

479 l e t (sc : b i t s t r i n g , bap : b i t s t r i n g , xnewPassword : b i t s t r i n g) =
SetVar iablesRequestRet (msg) in

480

481 i f (sc <> S e c u r i t y C t r l | | bap <> BasicAuthPassword) then 0
482 e l s e
483 event e05 () ;
484

485 l e t newCredentialsCS=c r e d e n t i a l S t r i n g (UsernameCS , xnewPassword) in
486

487 l e t x i = next (x i) in
488 l e t m = encdh ((xi , SetVar iab lesResponse (StatusAccepted)) , symk) in
489 out (c , m) ; (∗ out SetVar iableResponse ∗)
490

491 (∗−−−−−−−−−−−−−Disconnect−−−−−−−−−−−−−−−−−−−−−−−∗)
492

493 (∗−−−−−−Reconnection with new Password (ChangeCipherSpec)
−−−−−−−−−−∗)

494

495 l e t x i = next (x i) in
496 l e t m3 = encdh ((xi , HTTPGET(ProtectedData , Author izat ionBas ic ,

newCredentialsCS)) , symk) in
497

498 out (c , m3) ; (∗ out HTTP GET / ProtectedData ,
Author i zat ion Basic , UsernamePassword ∗)

499

500 in (c , m: b i t s t r i n g) ; (∗ in HTTP200 Protected Data ∗)
501 l e t x i=next (x i) in
502 l e t (=xi , m1: b i t s t r i n g) = decdh (m, symk) in
503 i f (m1 <> ProtectedData) then 0
504 e l s e
505 event e08 () ;
506

507 event termCS2 (symk , newCredentialsCS) ;
508

509 l e t x i=next (x i) in
510

511 l e t m = encdh ((xi , s e c r e tApp l i ca t i onData) , symk) in
512

513 event endCSsess ion (xnonce_CSMS , nonce_CS) ;
514

515 l e t x i = next (x i) in
516 out (c , (xi ,m)) ; (∗ out s e c r e t ∗)
517

518 0 .
519

520 (∗/CS Cl i en t ∗)
521

522 (∗CERTIFICATE AUTHORITY, t ru s t ed root CA∗)
523 l e t pCA(km_CA: keymat , pk_CSMS: pkey) =

100

Update Charging Station Password for HTTP Basic Authentication

524

525 event e00_ca () ;
526 out (c , penc (signCA (pk_CSMS, sk (km_CA)) , pk_CSMS)) ;
527 0 .
528

529 proce s s
530 new km_CSMS: keymat ;
531 new km_CA: keymat ;
532

533 l e t pk_CSMS = pk (km_CSMS) in out (c , pk_CSMS) ;
534 l e t pk_CA= pk (km_CA) in out (c , pk_CA) ;
535

536 ((! pCSMS(km_CSMS, pk_CA))) | (! pCS(pk_CA, pk_CSMS) | (!pCA(km_CA,
pk_CSMS)))

101

102

Appendix B

Upgrade Charging Station
Security Profile

1 (∗ Update CS Secur i ty P r o f i l e by CSMS reques t ∗)
2

3 (∗ VARIABLES AND TYPES ∗)
4

5 (∗ Publ ic key cryptography ∗)
6 type pkey . (∗ pub l i c key ∗)
7 type skey . (∗ p r i va t e key ∗)
8 type keymat . (∗ key mate r i a l ∗)
9

10 (∗ECDHE∗)
11 type G. (∗ d i f f i e −hellman Curve parameter ∗)
12 type dhkey . (∗ symmetric d i f f i e −hellman key , symk∗)
13 type sdhpar . (∗ s e c r e t d i f f i e −hellman parameter , a , b ∗)
14

15 (∗ Misce l l anea ∗)
16 type r e s u l t .
17 type nonce .
18 type s u i t e .
19 type t l s v e r s i o n .
20 type counter .
21 type p r o f i l e .
22

23 (∗ Global v a r i a b l e s ∗)
24 f r e e c : channel . (∗ pub l i c channel ∗)
25 f r e e s ec r e tApp l i ca t i onData : b i t s t r i n g [p r i va t e] . (∗ s e c r data ∗)
26 f r e e ack : b i t s t r i n g .
27

28 (∗ /VARIABLES AND TYPES ∗)

103

Upgrade Charging Station Security Profile

29

30 (∗ FUNCTIONS ∗)
31

32 (∗ Bas ic Functions ∗)
33

34 (∗ Pseudorandom TLS master s e c r e t computation ∗)
35 fun masterSecret (dhkey , nonce , nonce) : dhkey .
36

37 (∗ Creden t i a l s management ∗)
38 f r e e UsernameCS : b i t s t r i n g .
39 f r e e PasswordCS : b i t s t r i n g [p r i va t e] .
40 fun c r e d e n t i a l S t r i n g (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
41 reduc f o r a l l username , password : b i t s t r i n g ; c r e d e n t i a l S t r i n g R e t (

c r e d e n t i a l S t r i n g (username , password)) = (username , password) .
42

43 (∗ Message counter ∗)
44 f r e e i_seed : counter .
45 fun next (counter) : counter .
46

47 (∗ Asymmetric Encryption ∗)
48 fun pk (keymat) : pkey .
49 fun sk (keymat) : skey .
50 fun penc (b i t s t r i n g , pkey) : b i t s t r i n g .
51 reduc f o r a l l x : b i t s t r i n g , y : keymat ; sdec (penc (x , pk (y)) , sk (y)) = x .
52

53 (∗ S ignature ∗)
54 fun ok () : r e s u l t .
55 fun s i gn (b i t s t r i n g , skey) : b i t s t r i n g .
56 reduc f o r a l l m: b i t s t r i n g , y : keymat ; getmess (s i gn (m, sk (y))) = m.
57 reduc f o r a l l m: b i t s t r i n g , y : keymat ; checks ign (s i gn (m, sk (y)) , pk (y)

) = ok () .
58

59 (∗ ECDHE D i f f i e −Hellman ∗)
60 (∗ const g : G. DH Curve ∗)
61

62 fun dh(sdhpar , G) : b i t s t r i n g . (∗ A=a∗G, B=b∗G ∗)
63 fun sdh (b i t s t r i n g , sdhpar) : dhkey . (∗ symk = B∗a = A∗b = a∗b∗G ∗)
64 equat ion f o r a l l a , b : sdhpar , g :G ; sdh (dh(b , g) , a) = sdh (dh(a , g) ,

b) .
65 fun encdh (b i t s t r i n g , dhkey) : b i t s t r i n g .
66 reduc f o r a l l m: b i t s t r i n g , k : dhkey ; decdh (encdh (m, k) , k) = m.
67

68 (∗ Root CA C e r t i f i c a t e S ignature ∗)
69 fun signCA (pkey , skey) : b i t s t r i n g .
70 reduc f o r a l l m: pkey , km_RA: keymat ; checksignCA (signCA (m, sk (km_RA))

, pk (km_RA)) = ok () .
71 reduc f o r a l l k : pkey , km_RA: keymat ; getpKey (signCA (k , sk (km_RA)) ,

pk (km_RA)) = k .
72

104

Upgrade Charging Station Security Profile

73 (∗ Upgrade Secur i ty p r o f i l e check ∗)
74 const S e c P r o f i l e 2 : p r o f i l e .
75

76 fun upgrade (p r o f i l e) : p r o f i l e .
77 reduc f o r a l l s : p r o f i l e ; i supgraded (s , upgrade (s)) = ok () .
78

79 (∗/ Bas ic Functions ∗)
80 (∗ Handshake messages ∗)
81

82 f r e e Dumb: b i t s t r i n g .
83 f r e e ProtectedData : b i t s t r i n g [p r i va t e] .
84 f r e e Author i zat ionBas i c : b i t s t r i n g .
85 f r e e Authent icat ionRequired : b i t s t r i n g .
86 const HelloDone : b i t s t r i n g .
87 const C l i en tF in i shed : b i t s t r i n g .
88 const Se rve rF in i shed : b i t s t r i n g .
89

90 fun HTTPGET(b i t s t r i n g , b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
91 reduc f o r a l l PD, AB, UP: b i t s t r i n g ; HTTPGETret(HTTPGET(PD, AB, UP)) =

(PD, AB, UP) .
92

93 fun HTTP401(b i t s t r i n g) : b i t s t r i n g .
94 reduc f o r a l l m: b i t s t r i n g ; HTTP401ret (HTTP401(m)) = m.
95

96 fun HTTP200 (b i t s t r i n g) : b i t s t r i n g .
97 reduc f o r a l l m: b i t s t r i n g ; HTTP200ret (HTTP200(m)) = m .
98

99 (∗/ Handshake messages ∗)
100

101 (∗ A05 Messages − Update Secu r i ty P r o f i l e by CSMS Request ∗)
102 f r e e StatusAccepted : b i t s t r i n g .
103 f r e e newPro f i l e : b i t s t r i n g .
104 f r e e I n t e r v a l : b i t s t r i n g .
105 f r e e Id_Cs : b i t s t r i n g .
106

107 const S e c u r i t y C t r l : b i t s t r i n g .
108 const NetworkConf igurat ionPr ior i ty : b i t s t r i n g .
109 const ChangeNetworkConfig : b i t s t r i n g .
110 const RebootRequired : b i t s t r i n g .
111 const OnIdle : b i t s t r i n g .
112 const PowerUp : b i t s t r i n g .
113 const Reg ist rat ionType : b i t s t r i n g .
114 const C e r t i f i c a t e S e r v e r R e q u e s t : b i t s t r i n g .
115

116 fun SetVar iab lesRequest (b i t s t r i n g , b i t s t r i n g , p r o f i l e) : b i t s t r i n g .
117 reduc f o r a l l x , y : b i t s t r i n g , z : p r o f i l e ; SetVar iablesRequestRet (

SetVar iab lesRequest (x , y , z)) = (x , y , z) .
118

119 fun SetVar iab lesResponse (b i t s t r i n g) : b i t s t r i n g .

105

Upgrade Charging Station Security Profile

120 reduc f o r a l l x : b i t s t r i n g ; SerVariableResponseRet (
SetVar iab lesResponse (x)) = x .

121

122 fun ResetRequest (b i t s t r i n g) : b i t s t r i n g .
123 reduc f o r a l l x : b i t s t r i n g ; ResetRequestRet (ResetRequest (x)) = x .
124

125 fun ResetResponse (b i t s t r i n g) : b i t s t r i n g .
126 reduc f o r a l l x : b i t s t r i n g ; ResetResponseRet (ResetResponse (x)) = x .
127

128 fun BootNot i f i ca t i onReques t (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
129 reduc f o r a l l x , y : b i t s t r i n g ; BootNot i f i cat ionRequestRet (

BootNot i f i ca t i onReques t (x , y)) = (x , y) .
130

131 fun BootNot i f i ca t ionResponse (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
132 reduc f o r a l l x , y : b i t s t r i n g ; BootNot i f i cat ionResponseRet (

BootNot i f i cat ionResponse (x , y)) = (x , y) .
133

134 (∗ /A05 Messages − Update Secu r i ty P r o f i l e by CSMS Request ∗)
135

136 (∗/FUNCTIONS∗)
137

138 (∗ TESTS ∗)
139

140 (∗ Test Secrecy ∗)
141

142 query a t tacke r (s ec r e tApp l i ca t i onData) .
143 query a t tacke r (PasswordCS) .
144

145 query s e c r e t eph_k_CS .
146 query s e c r e t eph_k_CSMS.
147

148 query s e c r e t eph_k_CS2 .
149 query s e c r e t eph_k_CSMS2 .
150 query s e c r e t symk2 .
151

152 (∗ Strong s e c r e cy ∗)
153

154 n o n i n t e r f s e c r e tApp l i ca t i onData .
155 n o n i n t e r f PasswordCS .
156

157 (∗ Test Se s s i on ∗)
158

159 (∗ Secu r i ty P r o f i l e 2∗)
160

161 event beg inCSsess ion (nonce , nonce) .
162 event beginCSMSsession (nonce , nonce) .
163

164 event endCSsess ion (nonce , nonce) .
165 event endCSMSsession (nonce , nonce) .

106

Upgrade Charging Station Security Profile

166

167 query n ,m: nonce ; event (beg inCSsess ion (n , m)) .
168 query n ,m: nonce ; event (beginCSMSsession (n , m)) .
169

170 query n ,m: nonce ; event (endCSsess ion (n , m)) .
171 query n ,m: nonce ; event (endCSMSsession (n , m)) . (∗ ∗)
172

173 query n ,m: nonce ; in j −event (endCSsess ion (n ,m)) ==> in j −event (
beginCSMSsession (n , m)) .

174 query n ,m: nonce ; in j −event (endCSMSsession (n , m)) ==> in j −event (
beg inCSsess ion (n , m)) .

175

176 query n ,m: nonce ; in j −event (endCSMSsession (n , m)) ==> in j −event (
endCSsess ion (n , m)) .

177

178 (∗ Secu r i ty P r o f i l e 3∗)
179

180 event beg inCSsess ion2 (nonce , nonce) .
181 event beginCSMSsession2 (nonce , nonce) .
182

183 event endCSsess ion2 (nonce , nonce) .
184 event endCSMSsession2 (nonce , nonce) .
185

186 query n ,m: nonce ; event (beg inCSsess ion2 (n , m)) .
187 query n ,m: nonce ; event (beginCSMSsession2 (n , m)) .
188

189 query n ,m: nonce ; event (endCSsess ion2 (n , m)) .
190 query n ,m: nonce ; event (endCSMSsession2 (n , m)) . (∗ ∗)
191

192 query n ,m: nonce ; in j −event (endCSsess ion2 (n ,m)) ==> in j −event (
beginCSMSsession2 (n , m)) .

193 query n ,m: nonce ; in j −event (endCSMSsession2 (n , m)) ==> in j −event (
beg inCSsess ion2 (n , m)) .

194

195 query n ,m: nonce ; in j −event (endCSMSsession2 (n , m)) ==> in j −event (
endCSsess ion2 (n , m)) .

196

197 (∗ Test ECDHE parameters correspondence ∗)
198

199 event dhparCSMS(pkey , b i t s t r i n g , b i t s t r i n g) .
200 event dhparCS (pkey , b i t s t r i n g , b i t s t r i n g) .
201

202 event dhparCSMS2(pkey , b i t s t r i n g , b i t s t r i n g) .
203 event dhparCS2 (pkey , b i t s t r i n g , b i t s t r i n g) .
204

205 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCS (x , z , w)) . (∗ f a l s e ∗)
206 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCSMS(x , z , w)) . (∗ f a l s e ∗)
207 query x : pkey , z ,w: b i t s t r i n g ; in j −event (dhparCS (x , z , w)) ==> in j −

event (dhparCSMS(x , z , w)) . (∗ t rue ∗)

107

Upgrade Charging Station Security Profile

208

209 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCS2 (x , z , w)) . (∗ f a l s e ∗)
210 query x : pkey , z ,w: b i t s t r i n g ; event (dhparCSMS2(x , z , w)) . (∗ f a l s e ∗)
211 query x : pkey , z ,w: b i t s t r i n g ; in j −event (dhparCS2 (x , z , w)) ==> in j −

event (dhparCSMS2(x , z , w)) . (∗ t rue ∗)
212

213 (∗ Test Authent icat ion ∗)
214

215 (∗ Secu r i ty P r o f i l e 2∗)
216

217 event acceptsCS (dhkey , pkey) .
218 event acceptsCSMS (dhkey , b i t s t r i n g) .
219 event termCSMS (dhkey , pkey) .
220 event termCS (dhkey , b i t s t r i n g) .
221

222 query s : dhkey , k : pkey ; event (acceptsCS (s , k)) .
223 query s : dhkey , k : pkey ; event (termCSMS(s , k)) .
224 query s : dhkey , c : b i t s t r i n g ; event (acceptsCSMS (s , c)) .
225 query s : dhkey , c : b i t s t r i n g ; event (termCS (s , c)) .
226

227 query x : dhkey , k : pkey ; in j −event (termCSMS(x , k)) ==> in j −
event (acceptsCS (x , k)) .

228 query x : dhkey , c : b i t s t r i n g ; in j −event (termCS (x , c)) ==> in j
−event (acceptsCSMS (x , c)) .

229 query x : dhkey , c : b i t s t r i n g ; in j −event (termCS (x , c)) ==> in j
−event (acceptsCSMS (x , c)) .

230

231 (∗ Secu r i ty P r o f i l e 3∗)
232 event acceptsCS2 (dhkey , pkey) .
233 event acceptsCSMS2 (dhkey , pkey) .
234 event termCSMS2 (dhkey , pkey) .
235 event termCS2 (dhkey , pkey) .
236

237 query s : dhkey , k : pkey ; event (acceptsCS2 (s , k)) .
238 query s : dhkey , k : pkey ; event (termCSMS2(s , k)) .
239 query s : dhkey , k : pkey ; event (acceptsCSMS2 (s , k)) .
240 query s : dhkey , k : pkey ; event (termCS2 (s , k)) .
241

242 query x : dhkey , k : pkey ; in j −event (termCSMS2(x , k)) ==> in j −
event (acceptsCS2 (x , k)) .

243 query x : dhkey , k : pkey ; in j −event (termCS2 (x , k)) ==> in j −
event (acceptsCSMS2 (x , k)) .

244

245 (∗ Test Message Order ∗)
246

247 (∗CA−CSMS∗)
248

249 event e01_ca () .
250 event e02_ca () .

108

Upgrade Charging Station Security Profile

251 query event (e01_ca ()) .
252 query event (e02_ca ()) .
253 query event (e01 ()) ==> event (e01_ca ()) .
254 query event (e11 ()) ==> event (e02_ca ()) .
255 (∗ CSO−CSMS∗)
256

257 event e05_cso () .
258 query event (e05_cso ()) .
259 query event (e05 ()) ==> event (e05_cso ()) .
260

261 (∗ CS−CSMS (when both Authent icated) ∗)
262

263 event e01 () . event e02 () . event e03 () . event e04 () . event e05 () .
event e06 () .

264 event e07 () . event e08 () . event e09 () . event e10 () . event e11 () .
event e12 () .

265 event e13 () . event e14 () . event e15 () . event e16 () . event e17 () .
266

267 query event (e01 ()) .
268 query event (e02 ()) .
269 query event (e03 ()) .
270 query event (e04 ()) .
271 query event (e05 ()) .
272 query event (e06 ()) .
273 query event (e07 ()) .
274 query event (e08 ()) .
275 query event (e09 ()) .
276 query event (e10 ()) .
277 query event (e11 ()) .
278 query event (e12 ()) .
279 query event (e13 ()) .
280 query event (e14 ()) .
281 query event (e15 ()) .
282 query event (e16 ()) .
283 query event (e17 ()) .
284

285 query event (e02 ()) ==> event (e01 ()) .
286 query event (e03 ()) ==> event (e02 ()) .
287 query event (e04 ()) ==> event (e03 ()) .
288 query event (e05 ()) ==> event (e04 ()) .
289 query event (e06 ()) ==> event (e05 ()) .
290 query event (e07 ()) ==> event (e06 ()) .
291 query event (e08 ()) ==> event (e07 ()) .
292 query event (e09 ()) ==> event (e08 ()) .
293 query event (e10 ()) ==> event (e09 ()) .
294 query event (e11 ()) ==> event (e10 ()) .
295 query event (e12 ()) ==> event (e11 ()) .
296 query event (e13 ()) ==> event (e12 ()) .
297 query event (e14 ()) ==> event (e13 ()) .

109

Upgrade Charging Station Security Profile

298 query event (e15 ()) ==> event (e14 ()) .
299 query event (e16 ()) ==> event (e15 ()) .
300 query event (e17 ()) ==> event (e16 ()) .
301

302 (∗ /TESTS ∗)
303

304 (∗ PROCESSES ∗)
305

306 (∗ CSMS Server ∗)
307 l e t pCSMS(km_CSMS: keymat , pk_CA: pkey , pk_CSO: pkey) =
308

309 l e t s e c _ p r o f i l e = S e c P r o f i l e 2 in
310 l e t i=i_seed in
311

312 (∗ TLS with Bas ic Authent icat ion ∗)
313

314 in (c , CSMS_CAsigned_certificate : b i t s t r i n g) ; (∗ in CSMS c e r t i f i c a t e
from CA∗)

315 l e t CSMS_CAsigned_certificate = sdec (CSMS_CAsigned_certificate , sk (
km_CSMS)) in

316

317 i f ((checksignCA (CSMS_CAsigned_certificate , pk_CA) <> ok ()) | | (
getpKey (CSMS_CAsigned_certificate , pk_CA)<> pk (km_CSMS))) then 0

318 e l s e
319

320 out (c , ack) ;
321 event e01 () ;
322 (∗ in C l i en t He l lo ∗)
323 in (c , (xnonce_CS : nonce , xproposed_suite : su i t e , x t l s_ve r s i on :

b i t s t r i n g , x s e c _ p r o f i l e : p r o f i l e , g :G)) ;
324

325 i f (x s e c _ p r o f i l e <> s e c _ p r o f i l e) then 0
326 e l s e
327

328 l e t chosen_suite = xproposed_suite in
329 new nonce_CSMS : nonce ;
330

331 event beginCSMSsession (nonce_CSMS , xnonce_CS) ;
332 l e t m1 = (nonce_CSMS , chosen_suite) in
333 out (c , m1) ; (∗ out Server He l lo ∗)
334

335 l e t m2 = (CSMS_CAsigned_certificate) in
336 out (c , m2) ; (∗ out Server C e r t i f i c a t e ∗)
337

338 l e t m3 = HelloDone in
339 out (c , m3) ; (∗ out He l lo Done ∗)
340

341 (∗ ECDHE, ClientKeyExchange ∗)
342

110

Upgrade Charging Station Security Profile

343 in (c , m: b i t s t r i n g) ;
344

345 l e t xdhpar_CS = sdec (m, sk (km_CSMS)) in
346 new eph_k_CSMS: sdhpar ;
347 l e t dhpar_CSMS = dh(eph_k_CSMS, g) in
348 l e t sympar = sdh (xdhpar_CS , eph_k_CSMS) in
349 l e t symk = masterSecret (sympar , xnonce_CS , nonce_CSMS) in
350

351 event dhparCSMS(pk (km_CSMS) , dhpar_CSMS , xdhpar_CS) ;
352

353 out (c , s i gn ((xdhpar_CS , dhpar_CSMS) , sk (km_CSMS))) ;
354

355 (∗ /ECDHE, ClientKeyExchange ∗)
356

357 in (c , m: b i t s t r i n g) ; (∗ in C l i en tF in i shed ∗)
358 l e t (= xnonce_CS , =chosen_suite , =nonce_CSMS , =

CSMS_CAsigned_certificate , =xsec_pro f i l e , x f i n i s h e d 2 : b i t s t r i n g)=
decdh (m, symk) in

359 i f (x f i n i s h e d 2 <> Cl i en tF in i shed) then 0
360 e l s e
361 (∗ out Serve rF in i shed ∗)
362 out (c , encdh ((xnonce_CS , xproposed_suite , nonce_CSMS ,

CSMS_CAsigned_certificate , x s e c_pro f i l e , i , Se rve rF in i shed) , symk
)) ;

363

364 (∗ −−−−−−−−−−ChangeCipherSpec−−−−−−−−−−−−−−−− ∗)
365

366 in (c , m: b i t s t r i n g) ; (∗ in HTTPGET (ProtectedData) ∗)
367 l e t i = next (i) in
368 l e t (=i , m: b i t s t r i n g) = decdh ((m) , symk) in
369 l e t (pd : b i t s t r i n g , ab : b i t s t r i n g , up : b i t s t r i n g) = HTTPGETret(m) in
370 i f (pd <> ProtectedData) then 0
371 e l s e
372 l e t i=next (i) in
373 l e t msg = encdh ((i , Authent icat ionRequired) , symk) in
374

375 out (c , msg) ; (∗ out HTTP401 Authent icat ion
Required ∗)

376

377 in (c , m3: b i t s t r i n g) ;
378

379 l e t i=next (i) in (∗ in HTTP GET / ProtectedData ,
Author i zat ion Basic , Username/Password ∗)

380 l e t (=i , m1: b i t s t r i n g) = decdh (m3, symk) in
381 l e t (pd : b i t s t r i n g , ab : b i t s t r i n g , up : b i t s t r i n g) = HTTPGETret(m1) in
382 i f ((pd <> ProtectedData) | | ab <> Author i zat ionBas i c) then 0
383 e l s e
384 l e t (m1: b i t s t r i n g , m2: b i t s t r i n g)=c r e d e n t i a l S t r i n g R e t (up) in
385 i f (m1 <> UsernameCS | | m2<>PasswordCS) then 0

111

Upgrade Charging Station Security Profile

386 e l s e
387

388 event acceptsCSMS (symk , up) ;
389

390 event e02 () ;
391 l e t i=next (i) in
392 l e t msg200 =encdh ((i , ProtectedData) , symk) in
393

394 out (c , msg200) ; (∗ out HTTP200 Protected Data ∗)
395

396 in (c , x : b i t s t r i n g) ; (∗ in s e c r ∗)
397

398 l e t i=next (i) in
399 l e t (=i , msg : b i t s t r i n g)=decdh ((x) , symk) in
400 i f (msg <> sec re tApp l i ca t i onData) then 0
401 e l s e
402 event e04 () ;
403 event endCSMSsession (nonce_CSMS , xnonce_CS) ;
404 event termCSMS (symk , pk (km_CSMS)) ;
405

406 (∗ /TLS with Bas ic Authent icat ion ∗)
407

408 (∗A05∗)
409

410 in (c , msg : b i t s t r i n g) ; (∗ in ChangeNetworkConfig from CSO
∗)

411 l e t msg=sdec (msg , sk (km_CSMS)) in
412 i f (checks ign (msg , pk_CSO)<>ok ()) then 0
413 e l s e
414 l e t (cn f : b i t s t r i n g , x sec_pro f i l e_cso : p r o f i l e)= (getmess (msg)) in
415 i f (cn f <> ChangeNetworkConfig | | (i supgraded (s e c_pro f i l e ,

x s ec_pro f i l e_cso) <> ok ())) then 0
416 e l s e
417 event e05 () ;
418 l e t s e c _ p r o f i l e=xsec_pro f i l e_cso in
419

420 l e t m = SetVar iab lesRequest (Secur i tyCtr l ,
NetworkConf igurat ionPr ior i ty , s e c _ p r o f i l e) in

421 l e t i=next (i) in
422 l e t enc_m = encdh ((i ,m) , symk) in
423

424 out (c , enc_m) ; (∗ out SetVar iab leRequest ∗)
425

426 in (c , m: b i t s t r i n g) ; (∗ in SetVar iableResponse ∗)
427 l e t i=next (i) in
428 l e t (=i , m: b i t s t r i n g) = decdh (m, symk) in
429 l e t msg= SerVariableResponseRet (m) in
430

431 i f (msg <> RebootRequired) then 0

112

Upgrade Charging Station Security Profile

432 e l s e
433 event e07 () ;
434

435 l e t i=next (i) in
436 l e t m = encdh ((i , ResetRequest (OnIdle)) , symk) in
437

438 out (c , m) ; (∗ out ResetRequest OnIdle ∗)
439

440 in (c , m: b i t s t r i n g) ; (∗ in SetVar iableResponse ∗)
441 l e t i=next (i) in
442 l e t (=i , m: b i t s t r i n g) = (decdh (m, symk)) in
443 l e t msg=ResetResponseRet (m) in
444

445 i f (msg <> StatusAccepted) then 0
446 e l s e
447 event e09 () ;
448

449 (∗−−−−−−−−−−−CS Reboots −−−−−−−−−−−∗)
450

451 (∗−−−−−Connection with new Secur i ty P r o f i l e 3 −−−−−−−∗)
452

453 (∗ TLS with C l i en t Side C e r t i f i c a t e s ∗)
454 (∗ in C l i en t He l lo ∗)
455 in (c , (xpk_CSMS: pkey , xnonce_CS2 : nonce , xproposed_suite2 : su i t e ,

x t l s_ve r s i on2 : b i t s t r i n g , x s ec_pro f i l e_cs : p r o f i l e , g2 :G)) ;
456

457 i f ((xpk_CSMS<> pk (km_CSMS)) | | (xsec_pro f i l e_cs <> x s e c _ p r o f i l e))
then 0

458 e l s e
459 event e10 () ;
460 l e t chosen_suite2 = xproposed_suite2 in
461 new nonce_CSMS2 : nonce ;
462

463 event beginCSMSsession2 (nonce_CSMS2 , xnonce_CS2) ;
464

465 l e t m1 = (nonce_CSMS2 , chosen_suite2) in
466 out (c , m1) ; (∗ out Server He l lo ∗)
467

468 l e t m2 = (Cer t i f i c a t eSe rve rReque s t , CSMS_CAsigned_certificate) in
469 out (c , m2) ; (∗ out Server C e r t i f i c a t e ∗)
470

471 l e t m3 = s ign (HelloDone , sk (km_CSMS)) in
472 out (c , m3) ; (∗ out He l lo Done ∗)
473

474 in (c , c l i e n t _ c e r t : b i t s t r i n g) ; (∗ in C l i en t C e r t i f i c a t e from CS∗)
475 l e t c l i e n t _ c e r t=sdec (c l i en t_ce r t , sk (km_CSMS)) in
476 i f (checksignCA (c l i en t_ce r t , pk_CA) <> ok ()) then 0
477 e l s e
478 l e t xpk_CS = getpKey (c l i en t_ce r t , pk_CA) in

113

Upgrade Charging Station Security Profile

479

480 (∗ ECDHE, ClientKeyExchange ∗)
481

482 in (c , m: b i t s t r i n g) ; (∗ in DH parameter sec_prof_3 ∗)
483 i f (checks ign (m, xpk_CS)<>ok ()) then 0
484 e l s e
485 l e t (xpk_CSMS: pkey , xdhpar_CS2 : b i t s t r i n g) = sdec (getmess (m) , sk (

km_CSMS)) in
486 i f (xpk_CSMS<> pk (km_CSMS)) then 0
487 e l s e
488 new eph_k_CSMS2 : sdhpar ;
489 l e t dhpar_CSMS2 = dh(eph_k_CSMS2, g2) in
490 l e t sympar2 = sdh (xdhpar_CS2 , eph_k_CSMS2) in
491 l e t symk2 = masterSecret (sympar2 , xnonce_CS2 , nonce_CSMS2) in
492

493 event dhparCSMS2(pk (km_CSMS) , dhpar_CSMS2 , xdhpar_CS2) ;
494

495 event acceptsCSMS2 (symk2 , xpk_CS) ;
496

497 out (c , s i gn ((xpk_CS , xdhpar_CS2 , dhpar_CSMS2) , sk (km_CSMS))) ;
498

499 (∗ /ECDHE, ClientKeyExchange ∗)
500

501 in (c , m: b i t s t r i n g) ; (∗ in C l i en tF in i shed ∗)
502

503 l e t (= xnonce_CS2 , =chosen_suite2 , =nonce_CSMS2 , =
CSMS_CAsigned_certificate , =s e c_pro f i l e , x f i n i s h e d 2 : b i t s t r i n g)=
decdh (m, symk2) in

504 i f (x f i n i s h e d 2 <> Cl i en tF in i shed) then 0
505 e l s e
506 event e12 () ;
507

508 (∗ out Serve rF in i shed ∗)
509 out (c , encdh ((xnonce_CS2 , xproposed_suite2 , nonce_CSMS2 ,

CSMS_CAsigned_certificate , s e c_pro f i l e , i , Se rve rF in i shed) , symk2
)) ;

510

511 (∗ −−−−−−−−−−ChangeCipherSpec−−−−−−−−−−−−−−− ∗)
512

513 in (c , x : b i t s t r i n g) ; (∗ in Appl icat ionData (s e c r e t) ∗)
514

515 l e t i=next (i) in
516 l e t (=i , msg : b i t s t r i n g)=decdh (x , symk2) in
517 i f (msg <> sec re tApp l i ca t i onData) then 0
518 e l s e
519 event e14 () ;
520

521 event endCSMSsession2 (nonce_CSMS2 , xnonce_CS2) ;
522

114

Upgrade Charging Station Security Profile

523 event termCSMS2 (symk2 , pk (km_CSMS)) ;
524

525 (∗ /TLS with C l i en t Side C e r t i f i c a t e s ∗)
526

527 (∗−−−−−/Connection with new Secur i ty P r o f i l e 3 −−−−−−−−−−−−∗)
528

529 in (c , m: b i t s t r i n g) ; (∗ in BootNot i f i ca t i onReques t ∗)
530 l e t i=next (i) in
531 l e t (=i , m: b i t s t r i n g)=decdh (m, symk) in
532 l e t (pu : b i t s t r i n g , xid_cs : b i t s t r i n g)= BootNot i f i cat ionRequestRet (m)

in
533

534 i f (pu <> PowerUp) then 0
535 e l s e
536 event e15 () ;
537 l e t i=next (i) in
538 l e t m = encdh ((i , BootNot i f i ca t ionResponse (Registrat ionType , I n t e r v a l)

) , symk) in
539

540 out (c , m) ; (∗ out BootNot i f i ca t ionResponse ∗)
541

542 (∗/A05∗)
543

544 in (c , x : b i t s t r i n g) ; (∗ in s e c r e t ∗)
545

546 l e t i=next (i) in
547 l e t (=i , msg : b i t s t r i n g) = decdh (x , symk) in
548 i f (msg <> sec re tApp l i ca t i onData) then 0
549 e l s e
550 event e17 () ;
551 0 .
552

553 (∗ /CSMS Server ∗)
554

555

556 (∗ CS Cl i en t ∗)
557

558 l e t pCS(km_CS: keymat , pk_CA: pkey) =
559

560 l e t s e c _ p r o f i l e = S e c P r o f i l e 2 in
561

562 (∗ TLS with Bas ic Authent icat ion ∗)
563

564 new nonce_CS : nonce ;
565 new proposed_suite : s u i t e ;
566 new t l s _ v e r s i o n : t l s v e r s i o n ;
567 new g :G;
568

115

Upgrade Charging Station Security Profile

569 out (c , (nonce_CS , proposed_suite , t l s_ver s i on , s e c_pro f i l e , g)) ; (∗
out C l i en t He l lo ∗)

570

571 in (c , (nonce_CSMS : nonce , chosen_suite : s u i t e)) ; (∗ in Server He l lo
∗)

572

573 event beg inCSsess ion (nonce_CSMS , nonce_CS) ;
574

575 in (c , s e rve r_ce r t : b i t s t r i n g) ; (∗ in Server C e r t i f i c a t e ∗)
576

577 in (c , HD: b i t s t r i n g) ; (∗ in He l lo Done ∗)
578

579 i f ((checksignCA (server_cert , pk_CA) <> ok ())) then 0
580 e l s e
581 l e t xpk_CSMS = getpKey (server_cert , pk_CA) in
582

583 (∗ECDHE, ClientKeyExchange ∗)
584

585 new eph_k_CS : sdhpar ;
586 l e t dhpar_CS = dh(eph_k_CS , g) in
587

588 out (c , penc (dhpar_CS , xpk_CSMS)) ; (∗ out DH parameter ∗)
589

590 in (c , y : b i t s t r i n g) ;
591 i f checks ign (y , xpk_CSMS) <> ok () then 0
592 e l s e
593 l e t (=dhpar_CS , xdhpar_CSMS : b i t s t r i n g) = getmess (y) in
594 l e t sympar = sdh (xdhpar_CSMS , eph_k_CS) in
595 l e t symk = masterSecret (sympar , nonce_CS , nonce_CSMS) in
596

597 event dhparCS (xpk_CSMS, xdhpar_CSMS , dhpar_CS) ;
598 event acceptsCS (symk , xpk_CSMS) ;
599

600 (∗/ECDHE, ClientKeyExchange ∗)
601

602 out (c , encdh ((nonce_CS , chosen_suite , nonce_CSMS , server_cert ,
s e c_pro f i l e , C l i en tF in i shed) , symk)) ; (∗ out C l i en tF in i shed ∗)

603

604 in (c , m: b i t s t r i n g) ; (∗ in Serve rF in i shed ∗)
605

606 l e t (= nonce_CS , =chosen_suite , =nonce_CSMS , =server_cert , =
s e c_pro f i l e , x i : counter , x f i n i s h e d : b i t s t r i n g) = decdh (m, symk) in

607

608 i f (x f i n i s h e d <> ServerF in i shed) then 0
609 e l s e
610

611 (∗−−−−−−−−−ChangeCipherSpec−−−−−−−−−−−−−−−−−−∗)
612

613 l e t msg = HTTPGET(ProtectedData , Dumb, Dumb) in

116

Upgrade Charging Station Security Profile

614 l e t x i = next (x i) in
615 l e t m = encdh ((xi , msg) , symk) in
616 out (c , m) ; (∗ out HTTP GET ProtectedData ∗)
617

618 in (c , m: b i t s t r i n g) ; (∗ in HTTP401 Authent icat ion Required ∗)
619

620 l e t x i = next (x i) in
621 l e t (=xi , m1: b i t s t r i n g)= decdh (m, symk) in
622

623 i f (m1 <> Authent icat ionRequired) then 0
624 e l s e
625 l e t x i = next (x i) in
626 l e t c r eden t i a lS t r i ngCS = c r e d e n t i a l S t r i n g (UsernameCS , PasswordCS) in
627 l e t m3 = encdh ((xi ,HTTPGET(ProtectedData , Author izat ionBas ic ,

c r eden t i a lS t r i ngCS)) , symk) in
628

629 out (c , (m3)) ; (∗ out HTTP GET / ProtectedData , Author i zat ion
Basic , UsernamePassword ∗)

630

631 in (c , m: b i t s t r i n g) ; (∗ in HTTP200 Protected Data ∗)
632

633 l e t x i = next (x i) in
634 l e t (=xi , m1: b i t s t r i n g) = decdh (m, symk) in
635 i f (m1 <> ProtectedData) then 0
636 e l s e
637 event e03 () ;
638 event endCSsess ion (nonce_CSMS , nonce_CS) ;
639 event termCS (symk , c r edent i a lS t r i ngCS) ;
640

641 l e t x i = next (x i) in
642 out (c , encdh ((xi , s e c r e tApp l i ca t i onData) , symk)) ; (∗ out s e c r e t ∗)
643

644 (∗/TLS with Bas ic Authent icat ion ∗)
645

646 (∗A05∗)
647

648 in (c , m: b i t s t r i n g) ; (∗ in SetVar iab leRequest ∗)
649

650 l e t x i = next (x i) in
651 l e t (=xi , m: b i t s t r i n g) = decdh (m, symk) in
652 l e t (sc : b i t s t r i n g , ncp : b i t s t r i n g , x s e c _ p r o f i l e : p r o f i l e)=

SetVar iablesRequestRet (m) in
653

654 i f (sc <> S e c u r i t y C t r l | | ncp <> NetworkConf igurat ionPr ior i ty | | (
i supgraded (s e c_pro f i l e , x s e c _ p r o f i l e) <> ok ())) then 0

655 e l s e
656 l e t x i = next (x i) in
657 l e t m=SetVar iab lesResponse (RebootRequired) in
658

117

Upgrade Charging Station Security Profile

659 l e t m = encdh ((xi , m) , symk) in
660

661 out (c , m) ; (∗ out SetVar iableResponse ∗)
662

663 in (c , m: b i t s t r i n g) ; (∗ in ResetRequest OnIdle ∗)
664

665 l e t x i = next (x i) in
666 l e t (=xi , m: b i t s t r i n g) = decdh (m, symk) in
667 l e t m= ResetRequestRet (m) in
668 i f (m <> OnIdle) then 0
669 e l s e
670 event e08 () ;
671 l e t x i = next (x i) in
672 l e t m = encdh ((xi , ResetResponse (StatusAccepted)) , symk) in
673 out (c , m) ; (∗ out ResetResponse StatusAccepted ∗)
674

675 (∗−−−−−−−−−−−Reboot−−−−−−−−−−−−−∗)
676

677 (∗−−−−−−−−Connection with new Secur i ty P r o f i l e 3 −−−−−−−−−−−−∗)
678

679 (∗ TLS with C l i en t Side C e r t i f i c a t e s ∗)
680 new nonce_CS2 : nonce ;
681 new proposed_suite2 : s u i t e ;
682 new t l s_ve r s i on2 : t l s v e r s i o n ;
683 new g2 :G;
684

685 out (c , (xpk_CSMS, nonce_CS2 , proposed_suite2 , t l s_ver s i on2 ,
x s e c_pro f i l e , g2)) ; (∗ out C l i en t He l lo ∗)

686

687 in (c , (nonce_CSMS2 : nonce , chosen_suite2 : s u i t e)) ; (∗ in Server
He l lo ∗)

688

689 event beg inCSsess ion2 (nonce_CSMS2 , nonce_CS2) ;
690

691 in (c , (m: b i t s t r i n g , s e rve r_ce r t : b i t s t r i n g)) ; (∗ in
Ce r t i f i c a t eSe rve rReque s t , Server C e r t i f i c a t e ∗)

692 i f ((m<> C e r t i f i c a t e S e r v e r R e q u e s t) | | (checksignCA (server_cert ,
pk_CA) <> ok ())) then 0

693 e l s e
694 l e t xpk_CSMS2 = getpKey (server_cert , pk_CA) in
695 (∗ i f (xpk_CSMS2 <> xpk_CSMS) then 0
696 e l s e ∗)
697

698 in (c , CS_CAsigned_cert i f icate : b i t s t r i n g) ; (∗ in CS C e r t i f i c a t e from
CA∗)

699 l e t CS_CAsigned_cert i f icate = sdec (CS_CAsigned_certi f icate , sk (km_CS))
in

700 i f ((checksignCA (CS_CAsigned_certi f icate , pk_CA) <> ok ()) | | (getpKey
(CS_CAsigned_certi f icate , pk_CA)<> pk (km_CS))) then 0

118

Upgrade Charging Station Security Profile

701 e l s e
702 out (c , ack) ;
703

704 in (c , HD2: b i t s t r i n g) ; (∗ in Server He l lo Done ∗)
705

706 i f (checks ign (HD2, xpk_CSMS2)<> ok () | | getmess (HD2) <> HelloDone)
then 0

707 e l s e
708 event e11 () ;
709 out (c , penc (CS_CAsigned_certi f icate , xpk_CSMS2)) ; (∗ out C l i en t

C e r t i f i c a t e ∗)
710

711 (∗ECDHE, ClientKeyExchange ∗)
712

713 new eph_k_CS2 : sdhpar ;
714 l e t dhpar_CS2 = dh(eph_k_CS2 , g2) in
715

716 out (c , s i gn (penc ((xpk_CSMS2, dhpar_CS2) , xpk_CSMS2) , sk (km_CS))) ;
717

718 in (c , y : b i t s t r i n g) ; (∗ in DH parameters s ec pro f 3∗)
719 i f (checks ign (y , xpk_CSMS2) <> ok ()) then 0
720 e l s e
721 l e t (=pk (km_CS) , =dhpar_CS2 , xdhpar_CSMS2 : b i t s t r i n g) = getmess (y)

in
722 l e t sympar2 = sdh (xdhpar_CSMS2 , eph_k_CS2) in
723 l e t symk2 = masterSecret (sympar2 , nonce_CS2 , nonce_CSMS2) in
724

725 event dhparCS2 (xpk_CSMS2, xdhpar_CSMS2 , dhpar_CS2) ;
726

727 event acceptsCS2 (symk2 , xpk_CSMS2) ;
728

729 (∗/ECDHE, ClientKeyExchange ∗)
730

731 out (c , encdh ((nonce_CS2 , chosen_suite2 , nonce_CSMS2 , server_cert ,
x s e c_pro f i l e , C l i en tF in i shed) , symk2)) ; (∗ out C l i en tF in i shed ∗)

732

733 in (c , m: b i t s t r i n g) ; (∗ in Serve rF in i shed ∗)
734 l e t (= nonce_CS2 , =chosen_suite2 , =nonce_CSMS2 , =server_cert , =

xsec_pro f i l e , x i : counter , x f i n i s h e d 2 : b i t s t r i n g) = decdh (m, symk2)
in

735

736 i f (x f i n i s h e d 2 <> ServerF in i shed) then 0
737 e l s e
738 event e13 () ;
739

740 (∗−−−−−−−−−−ChangeCipherSpec−−−−−−−−−−−−∗)
741

742 event endCSsess ion2 (nonce_CSMS2 , nonce_CS2) ;
743

119

Upgrade Charging Station Security Profile

744 l e t x i = next (x i) in
745 out (c , encdh ((xi , s e c r e tApp l i ca t i onData) , symk2)) ; (∗ out s e c r e t ∗)
746

747 (∗ /TLS with C l i en t Side C e r t i f i c a t e s ∗)
748

749 (∗−−−−−−−/Connection with new Secur i ty P r o f i l e 3 −−−−−−−−−−−∗)
750 l e t x i = next (x i) in
751 l e t m = encdh ((xi , BootNot i f i ca t i onReques t (PowerUp , Id_Cs)) , symk) in

(∗ out BootNot i f i ca t i onReques t ∗)
752 out (c , m) ;
753

754 in (c , m: b i t s t r i n g) ; (∗ in BootNot i f i cat ionResponse ∗)
755

756 l e t x i = next (x i) in
757 l e t (=xi , m: b i t s t r i n g)= decdh (m, symk) in
758 l e t (r t : b i t s t r i n g , i n t : b i t s t r i n g) = BootNot i f i cat ionResponseRet (m

) in
759 i f (r t <> Registrat ionType) then 0
760 e l s e
761 event e16 () ;
762

763 (∗/A05∗)
764

765 event termCS2 (symk2 , pk (km_CS)) ;
766 l e t x i=next (x i) in
767 l e t m = encdh ((xi , s e c r e tApp l i ca t i onData) , symk) in
768

769 out (c , (m)) ; (∗ out s e c r e t ∗)
770 0 .
771

772 (∗/CS Cl i en t ∗)
773

774 (∗CERTIFICATE AUTHORITY, t ru s t ed root CA∗)
775 l e t pCA(km_CA: keymat , pk_CSMS: pkey , pk_CS : pkey) =
776

777 event e01_ca () ;
778

779 out (c , penc (signCA (pk_CSMS, sk (km_CA)) , pk_CSMS)) ; (∗ Server
C e r t i f i c a t e ∗)

780 in (c , =ack) ;
781

782 event e02_ca () ;
783

784 out (c , penc (signCA (pk_CS, sk (km_CA)) , pk_CS)) ; (∗ C l i en t
C e r t i f i c a t e ∗)

785 in (c , =ack) ;
786 0 .
787

788 (∗ Charging Stat i on Operator ∗)

120

Upgrade Charging Station Security Profile

789 l e t pCSO(km_CSO: keymat , pk_CSMS: pkey) =
790

791 l e t s e c _ p r o f i l e = S e c P r o f i l e 2 in
792 event e05_cso () ;
793

794 out (c , s i gn ((ChangeNetworkConfig , upgrade (s e c _ p r o f i l e)) , sk (
km_CSO))) ;

795

796 0 .
797

798 proce s s
799 new km_CSMS: keymat ;
800 new km_CA: keymat ;
801 new km_CSO: keymat ;
802 new km_CS: keymat ;
803

804 l e t pk_CSMS = pk (km_CSMS) in out (c , pk_CSMS) ;
805 l e t pk_CA = pk (km_CA) in out (c , pk_CA) ;
806 l e t pk_CSO = pk (km_CSO) in out (c , pk_CSO) ;
807 l e t pk_CS = pk (km_CS) in out (c , pk_CS) ;
808

809 ((! pCSMS(km_CSMS, pk_CA, pk_CSO)))
810 | (! pCS(km_CS, pk_CA))
811 | (!pCA(km_CA, pk_CSMS, pk_CS))
812 | (! pCSO(km_CSO, pk_CSMS))

121

122

	List of Figures
	Acronyms
	Introduction
	Introduction
	Structure of the document
	Objective of the thesis

	State of the art of Electric Charging
	Introduction to Electric Vehicles Charging scenario
	Evolution and future
	Securing the Infrastructure

	State of the Art of EV Charging
	 EV Charging Scenario
	EV Charging Protocols

	Why Open Protocols?
	Openness and Interoperability
	Adopting Open over Proprietary communication protocols

	The OCPP Protocol
	The Open Charge Point Protocol
	Evolution and Diffusion
	Version 2.0.1

	Spreading adoption of the OCPP Protocol
	Why OCPP?
	Certification Program

	OCPP Architecture
	Key concepts
	Functional Blocks
	Use Cases, Test Cases, Certification Profiles
	Security Objectives and Security Profiles

	The ProVerif Tool
	 Formal Verification
	 Theorem Proving and Model Checking

	 The ProVerif Tool
	 Proverif abstractions
	 Verifying Protocols Properties with ProVerif

	 The ProVerif model of OCPP's Use Cases
	 A01 - Update Charging Station Password for HTTP Basic Authentication
	 Description Use Case A01
	 Setup of the environment
	 A01 - Schema and Messages
	 Message exchange implementation

	 A05 – Upgrade Charging Station Security Profile
	 Description of Use Case A05
	 Setup of the environment
	 A05 - Schema and Messages
	 Message exchange implementation

	 Cryptographic Elements of the Proverif Models
	 Chosen Ciphersuite
	 Asymmetric encryption
	 Signature
	 ECDHE
	 Other functions

	 Security Profiles
	 Security Profile 2 -TLS with Basic Authentication
	 Security Profile 3 - TLS with Client Side Certificates
	 Messages

	 Results of the analysis
	 Results of A01 - Update Charging Station Password
	 Description Use Case A01
	 Secrecy
	 Observational Equivalence
	 Authentication
	 Reachability of the Events
	 Session Correspondence
	 Message Ordering

	 Results of A05 - Upgrade Charging Station Profile
	 Secrecy
	 Observational Equivalence
	 Authentication
	 Reachability of the Events
	 Session Correspondence
	 Message Ordering

	 Results Security Profiles Authentication
	 Security Profile 2
	 Security Profile 3

	 Conclusions and Future Work
	Bibliography
	Update Charging Station Password for HTTP Basic Authentication
	Upgrade Charging Station Security Profile

