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"Strength does not mean you are not tired,

it does not mean you are not in pain,

it does not mean you are not exhausted,

it just means that you have the strength to keep going”



Abstract

A stroke, also known as a cerebrovascular accident (CVA), occurs when blood
flow to a part of the brain is interrupted or when a blood vessel in the brain
bursts. Stroke remains the second-leading cause of death and the third-leading
cause of death and disability combined in the world. Only 12% of stroke survivors
achieve complete upper limb functional recovery. Robotic rehabilitation has be-
come a pivotal tool in improving the recovery process for stroke survivors, offering
targeted support to enhance motor function. However, many patients develop
compensatory movements—unintended patterns that allow them to work around
mobility limitations but reinforce incorrect motor behaviors. This thesis aims
to develop a machine learning framework to detect and evaluate compensatory
movements in stroke patients using 3D skeletal data extracted from video frames.
By identifying and correcting compensatory movements, our approach promotes
more personalized and effective rehabilitation, potentially easing the burden on
therapists and healthcare facilities with a scalable solution. A previous study was
conducted using 2D reconstruction through OpenPose, in this work we advanced
the analysis by exploiting the third dimension. We collected data from 22 subjects,
including 8 therapists and 14 non-specialized subjects. Therapists were tasked with
simulating compensatory movements, similar to those exhibited by patients, while
interacting with a robotic end-effector arm, which was used to assist in performing
the movements. Normative data were gathered by considering all the subjects. By
extracting biomechanically relevant features from this data, and selecting them, we
developed hierarchical models that initially identify compensatory movements and
subsequently classify them into specific categories. Three scenarios were considered:
(1) differentiation between Normative and Compensatory Movements, (2) Single
Compensatory Movements vs Multiple Compensatory Movements, and (3) distinc-
tion between seven Single Compensatory Movements (e.g. Trunk Extension, Trunk
Flexion, Trunk Rotation, Shoulder Elevation). As first approach, we used Random
Forest with K Fold Cross-Validation and Leave One Subject Out (LOSO) methods
to evaluate the models’ performance. Our goal was to develop robust models that
could accurately detect and classify compensatory movements, for this reason we
conclude our study by considering a further approach with the introduction of
an uncertain class. Our models delivered promising results. Considering the F1
score metric for the LOSO per target study, we reached: (1) a value of 0.83 for the
classification of Normative vs. Compensatory Movements, (2) a score of 0.74 for the
classification of Single vs. Multiple Compensatory Movements, and (3) a value of
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0.79 for the classification of Single Compensatory Movements. This thesis presents
an innovative approach to automatically detect compensatory movements using
3D skeletal reconstruction and machine learning algorithms. It provides a frame-
work for improving compensatory movement detection in rehabilitation scenarios
and could be extended for real-time analysis to support automated therapeutic
assistance.
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The Motion Analysis Lab

I had the honor of developing this project at the Motion Analysis Lab (MAL) of
Harvard Medical School, based at Spaulding Rehabilitation Hospital in Boston,
Massachusetts. The MAL is a cutting-edge research facility focused on advancing
biomechanics and exploring the most effective methods for restoring mobility. Their
research incorporates innovative technologies such as wearable sensors and robotics
and has a profound impact on the treatment of neurological conditions, including
stroke, cerebral palsy, spinal cord injuries, and Parkinson’s disease.

During my experience at the MAL, I had the unique opportunity to actively con-
tribute to multiple phases of various projects, gaining valuable hands-on experience
in this dynamic field.

Rehab-Pal

The REHAB-PAL (Rehabilitation Engagement at Home with a socially Assistive
roBot for Pediatric Adherence) project aims to enhance adherence to home-based
physical therapy for children with Cerebral Palsy (CP) through the use of a Socially
Assistive Robot (SAR). Cerebral Palsy is a prevalent motor disorder in children,
affecting over 500,000 individuals in the U.S.

Traditional therapy relies on extensive repetition and is often limited by time and
logistical challenges, making at-home engagement crucial for effective rehabilitation.

Research shows that Active Video Games (AVGs) improve engagement in
rehabilitation but lack the interactive and motivational features necessary for
full adherence. In contrast, SARs provide non-contact support through social
interactions, such as speech and gestures, offering motivation and accountability
that can lead to better patient engagement compared to screen-based solutions.
SARs have been effective in various rehabilitation scenarios, such as weight loss
and post-stroke recovery.

REHAB-PAL introduces a SAR that works in conjunction with an AVG to
create a more interactive and engaging therapy environment for children. The
project aims to observe the reaction of children comparing three conditions: 1)
therapy with an AVG alone, 2) therapy with the SAR, and 3) therapy with a
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The Motion Analysis Lab

virtual agent. The goal is to assess whether the robot can lead to greater adherence
and better quality of therapeutic performance at home.

I initially contributed to this project by comparing 2D and 3D skeleton re-
construction, determining which type of camera was more suitable for accurately
tracking patient movements during therapy. This analysis was crucial in selecting
the right technology for the preliminary study.

Posture Check - Phase I and Phase 11

My thesis is part of the Posture Check project, which focuses on detecting compen-
satory movements in stroke patients during robot-assisted upper limb rehabilitation
therapy. During Phase 1, we utilized 2D skeleton reconstruction and OpenPose
framework to analyze video data of patients performing rehabilitation exercises
with the assistance of a robotic arm. This allowed for effective classification of
compensatory movements. The results of this phase, along with the introduction of
Phase 2, were presented in a poster at the AI Cures Conference, co-hosted by Mass
General Brigham (MGB) and the Massachusetts Institute of Technology (MIT), in
which I had the honor to participate.



Chapter 1

Introduction

A stroke, also known as a cerebrovascular accident (CVA), occurs when blood flow
to a part of the brain is interrupted or when a blood vessel in the brain bursts.
A stroke can result in permanent brain damage, long-term impairment, or death.
Stroke remains the second-leading cause of death and the third-leading cause of
death and disability combined in the world, responsible for over 6.55 million deaths
annually [1]. Every year, over 12.2 million people suffer from a stroke, with more
than 101 million survivors globally. These numbers are expected to double by 2050,
making stroke rehabilitation an increasingly pressing priority [1].

One of the most debilitating consequences of stroke is upper limb motor impair-
ment. It is estimated that between 50% and 80% of stroke survivors suffer from
upper limb deficits immediately following the event, with around 50% of these
patients continuing to experience functional limitations six months later [2]. These
impairments significantly hinder a patient’s ability to perform essential daily tasks,
such as dressing, eating, and personal hygiene, ultimately reducing independence
and overall quality of life. Despite advances in rehabilitation techniques, only
12% of stroke survivors achieve complete upper limb functional recovery [3]. The
pathophysiology of motor deficits in stroke patients primarily arises from damage to
the corticospinal tract (CST), which disrupts neural communication to the affected
limbs [4][5]. The middle cerebral artery, which supplies blood to the upper limb
motor cortex, is most frequently involved in strokes, leading to impairments such
as weakness, paralysis, and loss of dexterity [6]. For many patients, this loss of
function persists despite conventional therapy, necessitating innovative and intensi-
fied rehabilitation approaches [4]. Contemporary stroke rehabilitation focuses on
personalized, high-intensity interventions, such as task-specific training, strength
training, and electrical stimulation. It is recommended that stroke patients receive
at least three hours of therapy per day, five days a week, to optimize motor recovery
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Introduction

[7]. Emerging therapies, such as robotic rehabilitation and virtual reality, are
gaining traction as adjunctive methods to enhance recovery outcomes [3].

Despite the pivotal role of robotic rehabilitation in improving the recovery
process, many patients develop compensatory movements, i.e., unintended patterns
that allow them to work around mobility limitations but reinforce incorrect motor
behaviors [8][9][10]. In the clinic, methods to determine whether a patient performs
compensatory movements have traditionally relied on visual observation, facilitated
through one-on-one interaction between the therapist and the patient [11]. However,
this approach demands a significant amount of time from therapists, who must
guide stroke survivors through repetitive exercises and functional activities while
providing corrective feedback. Given the increasing number of stroke survivors and
the shortage of trained therapists and caregivers capable of assisting individuals
with disabilities, society faces a substantial challenge in providing adequate care [11].
Robotic devices, meanwhile, offer the potential to enhance motor re-learning by
providing high-dosage, variable-intensity therapy tailored to the individual needs of
patients. These devices hold the promise of enabling more efficient rehabilitation by
delivering intensive, personalized therapy while reducing the burden on healthcare
professionals [12].

In this thesis, the focus is on leveraging machine learning and 3D skeleton
reconstruction from video frames to detect and evaluate compensatory movements
in stroke survivors during robotic-assisted upper limb rehabilitation. The goal
is to offer a scalable solution that can augment current therapeutic practices by
promoting a more personalized and effective recovery pathway. The thesis starts
with a brief exploration of the fundamental concepts of stroke, rehabilitation,
and human-pose estimation and finally presents the contributions of this work in
developing machine-learning algorithms for the automatic detection of compensatory
movements during robot-assisted upper limb therapy.

In the first chapter, a thorough introduction is provided on the impact of stroke,
particularly focusing on upper limb motor impairment. Additionally, it covers
skeletal reconstruction techniques using video data, offering a comparison between
2D and 3D methods and their respective advantages.

The second chapter dives into the materials and methods of the presented study.
This chapter describes how data was collected, how features were extracted, and
the techniques used to develop machine-learning models to detect and classify
compensatory movements.

Chapter three then presents the results derived from the analysis of the 3D skele-
tal data. This section evaluates the performance of the developed machine learning
models, assessing their ability to accurately detect compensatory movements.

Finally, chapters four and five bring the thesis to a conclusion by summarizing
the key findings and discussing the clinical implications of the work. The chapters
also outline potential future directions for this research, highlighting areas where
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further development could enhance both the detection of compensatory movements
and the overall effectiveness of rehabilitation strategies.

1.1 Post-Stroke Rehabilitation

Post-stroke rehabilitation is a complex and multidisciplinary process aimed at
recovering motor, cognitive, and sensory functions that have been compromised
due to brain lesions. Neural plasticity, the brain’s capacity to reorganize and adapt
after injury, is crucial for motor recovery following a stroke. However, not all forms
of neural adaptation are beneficial. Takeuchi and Izumi [13] introduced the concept
of maladaptive plasticity, a phenomenon where certain neural changes post-stroke
impede rather than facilitate recovery, resulting in incomplete or abnormal motor
function.

One of the primary mechanisms contributing to maladaptive plasticity is the
development of compensatory movements [13]. Stroke patients often rely on the
unaffected side or use proximal muscles on the affected side to compensate for their
deficits. While this helps with daily tasks, these compensatory strategies reinforce
abnormal movement patterns and prevent the full recovery of normal motor control
in the affected limbs. Another maladaptive mechanism involves ipsilateral motor
projections, where increased activity from the same side of the brain as the affected
limb attempts to compensate for the damage [14]. This strategy, however, is often
insufficient, particularly in restoring fine motor control in distal muscles, leading to
suboptimal motor outcomes.

The imbalance between the two hemispheres of the brain, known as interhemi-
spheric inhibition, further exacerbates motor dysfunction [15]. The unaffected
hemisphere can inhibit the recovery of the affected hemisphere too much, prevent-
ing the relearning of normal motor patterns. This inhibition also contributes to
competitive interactions within the affected hemisphere, where different muscle
groups, such as those controlling the hand and proximal arm, compete for domi-
nance. This competition, driven by disinhibition, often results in impaired motor
coordination [15].

To counteract these maladaptive processes, Takeuchi and Izumi [13] propose
targeted rehabilitation strategies. Rehabilitation programs should aim to minimize
compensatory movements, encouraging the restoration of normal motor patterns in
the affected limbs. Additionally, noninvasive brain stimulation (NIBS) techniques,
such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct
current stimulation (tDCS), may help modulate cortical activity to foster more
adaptive plasticity. These techniques can either enhance excitability in the affected
hemisphere or reduce excessive activity in the unaffected hemisphere, helping to
restore interhemispheric balance and improve motor recovery outcomes.
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In addition to medical and surgical treatments in the acute phase of stroke,
rehabilitation is a key factor in improving patient outcomes. Conventional therapies,
including physical therapy (PT), occupational therapy (OT), and speech therapy
(ST), target different areas of recovery [16]. PT focuses on improving limb movement,
gait, and balance, while OT helps with daily living tasks and cognitive functions
such as memory and attention. ST addresses communication challenges like
aphasia. Despite these well-established methods, many stroke survivors continue to
experience significant disabilities. This is often due to insufficient therapy dosage,
lack of patient motivation, and the absence of real-time, objective feedback—factors
crucial for driving functional improvements and long-term recovery [16].

Recently, advanced technologies such as robotic rehabilitation have emerged,
offering mechanical support to perform repetitive and precise movements, thereby
enhancing cortical plasticity and promoting motor recovery [17]. These robotic
devices can adapt to the specific needs of each patient and allow for longer and
more repetitive exercise sessions compared to manual therapy alone.

1.2 Detection of Compensatory Movements

The detection of compensatory movements is a crucial area of research, particu-
larly in rehabilitation settings where patients, such as stroke survivors, develop
compensatory strategies to perform tasks that their impaired limbs can no longer
do effectively. These compensations, while useful for immediate functionality, often
lead to long-term negative consequences by reinforcing maladaptive movement
patterns and limiting motor recovery [13].

In the literature, different approaches to detection have been proposed.

Marker-based Systems

Traditional compensatory movement detection has relied on marker-based mo-
tion capture systems like VICON. These systems track reflective markers placed
on specific body parts, capturing detailed kinematic data. This data can then be
used to identify compensatory movements such as trunk lean, scapular elevation,
or abnormal gait patterns in stroke patients. While highly accurate, these systems
are expensive, require specialized environments, and are not easily accessible for
continuous monitoring outside of clinical settings [18].

Inertial Measurement Units (IMUs) and Accelerometers

More recent methods leverage inertial sensors and accelerometers worn by pa-
tients [19]. These sensors detect deviations from normal movement patterns by

6



Introduction

measuring acceleration, angular velocity, and other parameters. For example,
wearable systems have been used to detect compensatory trunk movements during
upper limb reaching tasks, achieving high precision in detecting compensations by
analyzing standard deviation of acceleration and angular velocity [19]. These sys-
tems are portable, relatively low-cost, and can provide real-time feedback, making
them suitable for home-based rehabilitation.

In the context of low back pain (LBP) rehabilitation, the system developed by
Asaad Sellmann et al. [20] was used to monitor and detect compensatory move-
ments during exercises like Prone-Rocking, Bird-Dog, and Rowing. The goal was
to differentiate between correctly performed movements (CPE) and compensatory
movements (TCM). Using wearable inertial sensors placed on the back and head,
the system successfully identified compensatory movements with high accuracy (up
to 98.9%), aiming to enhance autonomous rehabilitation by providing feedback on
movement quality.

Robotic Systems

Robotic systems are increasingly used in rehabilitation to both assist with move-
ment and monitor for compensatory behaviors [21]. For example, robots used in
upper limb rehabilitation can detect compensatory patterns such as trunk leaning
or shoulder elevation through integrated sensors that track force and movement
trajectories, as demonstrated in the study by Laut et al. [21]. Real-time feedback
from the robot can then guide the patient to correct these compensations, promot-
ing proper movement patterns and improving recovery outcomes.

Machine Learning for Automated Detection

Machine learning (ML) is transforming compensatory movement detection by
allowing for more automated, scalable, and precise analyses. Deep learning algo-
rithms like Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks have been used to classify compensatory motions based on data
from sensors or vision-based systems [22]. These models learn from labeled datasets
of human motion to automatically detect compensatory patterns, offering a powerful
tool for monitoring in both clinical and home environments.

1.3 Automatic Detection of Compensatory Move-
ments
The paper “Towards Personalized Interaction and Corrective Feedback of a Socially

Assistive Robot for Post-Stroke Rehabilitation Therap” presents an interactive
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approach that integrates machine learning (ML) and rule-based (RB) models. The
goal is to automatically assess rehabilitation exercises and provide personalized
corrective feedback. The system was evaluated using a dataset of upper-limb
rehabilitation exercises from 15 post-stroke patients. The method included:

1. Feature Extraction: joint coordinates were collected from a Kinect sensor, and
various kinematic features such as joint angles, speed, and smoothness were
computed.

2. Machine Learning Model: Neural Networks (NNs) and other ML algorithms
were applied to predict the quality of patient movements.

3. Rule-Based Model: based on knowledge from therapists, rules were used to
assess specific aspects of the exercises.

4. Hybrid Model: a combination of ML and RB models, using a weighted average,
was used to improve the overall accuracy of the assessment.

5. Ensemble Voting: to improve frame-level assessment, predictions from multiple
frames were combined using an ensemble voting method.

The study found that combining ML. and RB models significantly improved the
system’s ability to provide personalized feedback. The average F'1-score of the hybrid
model increased from 0.7447 to 0.8235 after tuning with the patients’ unaffected
motions. Additionally, using an ensemble voting method further improved the
accuracy of detecting compensatory movements, especially at the frame level.

One limitation noted is that the rule-based model initially performed poorly
because the rules were generic and not tuned for individual patients’ specific physical
conditions. The performance improved when the model was personalized using
data from the patient’s unaffected side. However, there is still the challenge of fully
adapting the system to handle diverse patient conditions and physical limitations
dynamically.

Another relevant study in the topic is the work “Vision- based Automatic De-
tection of Compensatory Postures of after-Stroke Patients During Upper-extremity
Robot-assisted Rehabilitation: A Pilot Study in Reaching Movement” [23]. The
study investigates the feasibility of using vision-based detection systems to auto-
matically detect compensatory postures during upper-limb rehabilitation of stroke
patients. The main elements of the methodology include:

1. Participants: ten stroke survivors (aged 59.4 & 5.44 years) performed scripted
reaching movements with robot assistance.

2. Data Collection: two RGB cameras recorded upper-body joint movements
using the OpenPose software to track skeletal joint positions in 2D. This data
was transformed into 3D coordinates using a reconstruction method.
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3. Feature Extraction: relevant joint angles were computed for trunk flexion,

trunk rotation, shoulder flexion, and elbow extension. These features were
used to detect compensatory postures.

Compensatory Postures: forward trunk displacement, trunk rotation, shoul-
der elevation, insufficient elbow extension were the compensatory postures
monitored.

Classification Algorithms: two machine learning models were used, Multi-label
k-Nearest Neighbor (ML-KNN), and Multi-label Decision Tree (ML-DT).

Both models were trained to classify the compensatory postures based on the
extracted features. In table 1.1 an overview of the results obtained.

Movement ML-KNN F1-Score | ML-DT F1-Score
Forward Trunk Displacement 0.69 0.68
Trunk Rotation 0.67 0.60
Shoulder Elevation 0.53 0.50
Insufficient Elbow Extension 0.73 0.80

Table 1.1: F1-Scores for different compensatory movements using ML-KNN and
ML-DT classifiers.

Some limitations arose:

1.

Feature Selection: only certain joint angles were used as features (e.g., trunk
and shoulder angles). This limited the ability to detect more complex com-
pensatory movements, as the influence of other upper body joints was not
considered.

. Dataset Size: the dataset was relatively small, with only ten participants.

This limited the generalizability of the models.

3D Reconstruction Errors: the use of 3D reconstruction based on 2D camera
data introduced some errors, potentially affecting the accuracy of the feature
extraction process.

Manual Labeling: the compensatory movements were labeled manually by
raters, which may have introduced subjective bias and errors in the ground
truth data.

First-order Strategy: the classifiers did not consider the correlation between
multiple compensatory movements occurring simultaneously. High-order clas-
sification strategies might improve detection performance.
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The study concludes that it is feasible to detect compensatory postures in stroke
patients during robot-assisted rehabilitation using RGB cameras and machine
learning classifiers, though improvements are needed in feature selection and model
strategies to enhance accuracy.

Finally, the last work that is worth mentioning is “Automatic Detection of
Compensation During Robotic Stroke Rehabilitation Therapy” [24]. The methods
involved using a Kinect v2 camera to track the 3D joint positions of stroke patients
and healthy participants during rehabilitation exercises. The participants performed
a series of movements, and compensatory strategies such as shoulder elevation,
trunk rotation, and leaning forward were simulated by the healthy participants
and naturally exhibited by the stroke survivors. The researchers employed machine
learning models, including Support Vector Machines (SVM) and Recurrent Neural
Networks (RNN), to detect compensatory movements. They used Leave-One-
Participant-Out Cross-Validation (LOPOCV) to evaluate the classifier performance.

The findings revealed that the SVM model performed well in detecting com-
pensatory movements in healthy participants, particularly for lean-forward com-
pensations, with Fl-score of 0.82. However, the performance dropped significantly
when applied to stroke survivors, with much lower F1-scores. This indicated that
detecting compensatory movements in stroke survivors is more challenging than in
healthy individuals.

The limitations of the study included the small dataset size and imbalanced class
distribution, particularly between compensatory and non-compensatory movements,
which affected the classifier’s performance. Another limitation was the use of a
single Kinect sensor placed at an oblique angle, which caused partial occlusion of
body parts and impacted the accuracy of detecting certain compensations, like trunk
rotation. Furthermore, the study’s focus on simulated compensations by healthy
participants, rather than real compensations from stroke survivors, highlighted the
need for a more robust dataset involving real-world scenarios.

1.4 Human-Pose Estimation - State-of-the-Art

Human Pose Estimation (HPE) is a rapidly evolving field that focuses on determin-
ing the configuration of a human body in a given image or video by estimating the
spatial coordinates of key body joints (keypoints) [25]. Over the years, significant
progress has been made in this area, driven largely by advances in deep learning
and computer vision techniques.

The task of pose estimation can be classified into 2D and 3D pose estimation,
where the former focuses on detecting keypoints in the 2D plane of an image, and
the latter aims to estimate the 3D coordinates of the human body joints.

In the early days of HPE, classical methods such as pictorial structures and
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deformable part models were prevalent [25]. These methods relied heavily on hand-
crafted features and optimization techniques to predict the location of body parts.
While effective in controlled environments, they often struggled with challenges
like occlusion, variations in lighting, and complex or cluttered backgrounds, which
limited their robustness in real-world applications.

The introduction of deep learning, particularly Convolutional Neural Networks
(CNNs), marked a turning point for HPE. Deep learning-based models, such as
DeepPose [26] and OpenPose [27], significantly improved accuracy by learning
rich, high-level feature representations directly from image data. These models
transformed the field by mapping image pixels to joint coordinates, allowing for more
precise and scalable pose estimation even in challenging settings, thus surpassing
classical approaches.

We can identify different groups of approaches [25]:

, Direct regression
, Single Person Pipeline .

/ \ Heatmap based
2D Pose Estimation .

; Top-down Approach

! Multi-Person Pipeline

\ Bottom-up Approach

Figure 1.1: Taxonomy of HPE methodologies [25].

e Single-Person Pose Estimation: this method assumes that the position of a
person in the image is known, focusing solely on predicting the keypoints. It
is a constrained problem where the number of keypoints is predetermined,
and the task involves solving a regression problem to locate these points.
Single-person approaches can be further categorized into two pipelines [25]:

— Direct Regression-Based Approaches: these methods directly regress the
keypoint coordinates from feature maps. Toshev and Szegedy’s [26] cas-
caded deep neural network (DNN) is a key example, predicting keypoints
in a straightforward fashion but facing challenges with mapping complex
features.

— Heatmap-Based Approaches: these approaches generate heatmaps, where
each pixel’s value reflects the likelihood of a keypoint existing at that
location. Techniques such as Convolutional Pose Machines (CPMs) or
Stacked Hourglass networks use heatmaps to iteratively refine keypoint
predictions [25].
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o Multi-Person Pose Estimation: the challenge in multi-person estimation is
greater because the number and location of people in the image are unknown.
The task requires solving both detection and keypoint localization, which leads
to two primary strategies [25]:

— Top-down approaches: the model first detects the person (bounding
box) and then estimates the pose within that region. These methods,
like HRNet [28], generally produce more accurate results but require
significant computational resources. Figure 1.2 illustrates the pipeline of
the approach.

— Bottom-up approaches [29][30]: on the other hand, directly detect key-
points across the entire image, followed by grouping them into individual
poses. Models like OpenPose have demonstrated excellent real-time per-
formance and multi-person pose estimation capabilities but may struggle
with fine-grained accuracy in crowded scenes [18]. Figure 1.3 illustrates
the pipeline of the approach.

o Transformers in Pose Estimation: more recently, transformer-based models,
originally developed for natural language processing, have been adapted for
human pose estimation. Transformers allow for global attention mechanisms,
enabling the model to consider the relationship between distant body parts,
which is critical for complex poses and occlusion handling [31][32].

Figure 1.2: An illustration of top down pipeline. (a) Input image, (b) two persons
detected by human detector, (c) cropped single person image, (d) single person
pose detection result, and (e) multi-person pose detection result [25].

HPE is widely used in fields such as augmented reality, sports analysis, ani-
mation, and healthcare. In healthcare, for instance, pose estimation can assist
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Figure 1.3: An illustration of bottom-up pipeline. (a) Input image, (b) keypoints
of all the person, and (c) all detected keypoints are connected to form human
instance [25].

with monitoring rehabilitation exercises or detecting fall risks in elderly patients.
In animation and gaming, accurate pose tracking enables more lifelike character
movements [25].

Despite remarkable progress, several challenges remain in achieving robust HPE:

e Occlusion and Crowded Scenes: in real-world applications, occlusion, i.e.

where body parts are blocked by objects or other people, remains a significant
hurdle [33].

o Computational Efficiency: achieving real-time, high-accuracy pose estima-
tion on edge devices like mobile phones is still challenging due to the high
computational demands of deep learning models [34].

o Generalization: models trained on specific datasets often struggle to generalize
to unseen environments, lighting conditions, or human poses not represented
in the training data [28].

Future research is likely to focus on improving efficiency, handling occlusions
more effectively, and enhancing the generalization of pose estimation models to
work across diverse settings and tasks [25].

1.4.1 2D Human-Pose Estimation

As mentioned, 2D human pose estimation aims to identify the spatial coordinates
of human body keypoints (joints like the elbows, knees, and shoulders) from a
single image or video. The challenge in this field comes from occlusions, varying
lighting conditions, body pose variations, and complex backgrounds. Despite these
challenges, significant advances have been made, particularly through the use of
deep learning and convolutional neural networks (CNNs).
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The bottom-up approach is one common method used in 2D pose estimation.
Algorithms like OpenPose [27] and HRNet [28] have set benchmarks in this space.
OpenPose, for instance, uses Part Affinity Fields (PAFs) to estimate keypoints for
multiple individuals in an image, offering real-time, multi-person pose detection.
High-Resolution Networks (HRNet) stand out for their ability to maintain high-
resolution representations throughout the network, significantly improving accuracy
in keypoint detection even in challenging scenarios. This method has set benchmarks
for accuracy in several public datasets like COCO and MPII [28].

1.4.2 3D Human-Pose Estimation

3D human pose estimation extends 2D keypoint detection into the third dimension,
reconstructing the spatial positions of keypoints in 3D space. This technique is
crucial for applications in virtual reality, animation, and sports analytics, where
depth information is essential.

3D pose estimation can be performed using monocular (single camera) or multi-
view (multiple cameras) systems. Monocular approaches are inherently more
challenging because depth information is lost in a single 2D image, which requires
sophisticated algorithms to infer 3D structures. Approaches like DeepPose [26] and
HMR (Human Mesh Recovery) [35] use deep learning to infer 3D joint locations
directly from images.

However, one of the biggest challenges in monocular 3D pose estimation is
resolving depth ambiguity—objects at different distances can appear similarly in
2D [36]. To address this, techniques such as lifting 2D poses to 3D have been
explored, where a 2D pose estimate is first obtained, and then a model predicts
the 3D joint coordinates based on the 2D inputs. This has been the foundation for
methods like Martinez et al. (2017) [36], which introduced a simple yet effective
deep neural network for this task.

Multi-view systems, on the other hand, use multiple cameras to capture different
angles of a scene and merge these perspectives to generate accurate 3D poses.
Although more reliable, these systems are expensive and require complex setups,
limiting their use in everyday applications [37][38].

Recent innovations include RGB-D cameras that combine RGB (color) images
with depth information to improve 3D accuracy [39]. Additionally, the integration
of temporal data from videos has enabled models to consider motion information,
leading to smoother and more accurate 3D pose sequences.

1.5 Posture Check - Phase 1

Posture Check Phase I was the clinical research study which preceded the study
presented in this manuscript [40]. The overall goal of the Phase-I study was to
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assess the suitability of image processing techniques and 2D skeleton reconstruction,
based on Deep Learning, to detect compensatory movements performed by stroke
survivors during robot-assisted upper-limb training.

Materials and Methods
« Data Acquisition:

— Data was collected from 50 stroke survivors and 10 physical therapists. The
subjects engaged in a series of games designed to elicit various upper limb
movements. Therapists simulated compensatory movements of varying
severity.

— Videos of the sessions were analyzed by six clinical researchers who an-
notated compensatory movements, such as the use of non-affected limbs,
shoulder elevation, and trunk rotation. In total, 6585 examples of com-
pensatory strategies were identified.

— The compensatory movements considered are: Assist, Inclination (af-
fected side and non-affected side), Shoulder Elevation, Trunk Extension,
Trunk Flexion, Trunk Rotation (affected side and non-affected side), Feet
adjustment.

o Skeleton Tracking:

— OpenPose was used to track the 3D positions of key body joints using
the BODY_ 25 model, which estimates 25 key points (e.g., head, neck,
shoulders).

o Feature Extraction:

— A total of 46 features were extracted, including angles between segments
(e.g., shoulders and neck) and segment lengths (distances between key
joints). Additional features were scaled relative to normative posture.

« Model Development:

— A hierarchical model comprising multiple Random Forest classifiers was
created. The model had three stages: (1) classification of Normative vs.
Compensatory Movements, (2) distinction between Single and Multiple
Compensatory Movements, and (3) classification of specific compensatory
strategies (e.g., trunk extension, shoulder elevation).
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Results

The model achieved 90% accuracy in distinguishing Compensatory from Norma-
tive Movements and in classifying Single Compensatory Movements. The model
effectively identified specific compensatory movements, such as trunk rotation and
shoulder elevation, though some movements were harder to classify due to their
subtlety or lack of training data. Classifying Single vs Multiple Compensatory
Movements proved more difficult, with an accuracy of about 77.8%, mainly due to
the limitations of 2D human pose estimation and the complexity of compensatory
strategies occurring simultaneously.

Limitations

o« Data Limitations: the dataset lacked a sufficient number of examples
involving multiple compensatory movements, which hindered the model’s
ability to generalize in those scenarios.

e Technical Challenges: 2D human pose estimation was used in the pilot
study, which struggled to capture movements in 3D space accurately, especially
compensations involving the z-axis (depth). The OpenPose model faced issues
with occlusion from the robotic arm during the therapy, which caused some
inaccuracies in skeletal tracking.

1.6 Aims, Objectives, and Research contributions
of the project

The aims, objectives, and research contributions of the project are outlined and
discussed.

Aims

1. Develop an automated framework for detecting compensatory movements
during robot-assisted stroke rehabilitation using 3D skeletal data derived from
video.

2. Improve the efficiency of therapy by providing real-time feedback to patients
and therapists to correct undesirable compensatory movements.

3. Enhance rehabilitation outcomes by personalizing treatment strategies based
on detected movement patterns.
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Objectives

1. Data Collection and Preprocessing:
o Collect 3D skeletal data from video footage of therapists simulating
compensatory movements.

o Collect 3D skeletal data from video footage of therapists and non-specialized
subjects performing normative movements.

e In the future, collect data from stroke patients during rehabilitation
sessions to expand the dataset and test developed models.

« Normalize and preprocess the data to ensure consistency across different
subjects, movements, and simulated scenarios.

2. Feature Extraction:
o Identify and extract biomechanically relevant features such as joint angles.
3. Model Development:

o Train machine learning models to automatically classify movements as
compensatory or normative, while also distinguishing between single and
multiple compensations, as well as identifying individual compensatory
movement types.

4. Validation and Evaluation:

o Assess the model’s performance through a basic stratified KFold cross-
validation approach.

o Additionally, evaluate the system’s performance on unseen data through
a Leave-One-Subject-Out cross validation technique.

 Evaluate model’s performance on patients data (ongoing).
5. Implementation in Real-Time (ongoing):

o Implement the framework in a clinical environment to provide real-time
feedback during rehabilitation sessions.
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Research contributions

In this work, several improvements are proposed compared to existing research.
First, we aim to create a dataset that includes a sufficient number of normative,
single, and multiple compensatory movements, allowing for a more comprehensive
analysis of different types of movements. To enhance the accuracy of the data,
we use a 3D camera, specifically the Intel RealSense, which provides better depth
perception. Our approach is designed to be independent of the subject, with a
robust cross-validation technique using Leave-One-Subject-Out (LOSO) to ensure
that the model generalizes well across different individuals. We have also developed
a more robust model by incorporating an “uncertain” class to handle cases where
the prediction is unclear.

The model focuses on seven compensatory movements: shoulder elevation, trunk
extension, trunk flexion, trunk inclination on affected and non-affected sides, and
trunk rotation on affected and non-affected sides. Additionally, we consider multiple
targets in space, with a setup of 11 targets, and multiple types of compensations,
expanding the range of scenarios.

The study explores three different scenarios: Normative vs Compensatory Move-
ments, Single vs Multiple compensations, and Single Compensatory Movements
alone. Unlike previous research, which mainly focused on the identification of upper
body features [23], our approach takes into account various angles from the entire
body, providing a more detailed analysis of movement patterns.
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Chapter 2

Materials and Methods

In this chapter, a detailed description of the materials and methods applied
throughout this study is provided, focusing on several crucial steps, including data
collection, processing, feature extraction, and model development.

Skeleton reconstruction

Features Extraction Features Selection

Figure 2.1: Pipeline.
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Materials and Methods

2.1 Preliminary stage Phase 11

As mentioned, different reasons have motivated this study. First, 3D HPE offers
greater potential than 2D methods in understanding the biomechanics of body
movements and positions. Additionally, with a three-dimensional estimation of
the subject’s skeleton, it becomes possible to capture features that 2D approaches
either inaccurately estimate or are unable to detect. The ability to estimate
these new features may prompt us to potentially allow for the identification of
new compensatory movement strategies. Lastly, 3D HPE could enable a more
comprehensive analysis of multiple compensatory movement strategies, an area
where 2D estimation has shown limitations.

For this step, we decided to leverage LightBuzz’s potential for the skeleton
reconstrution.

LightBuzz

LightBuzz [41] is a company offering body-tracking software compatible with
various platforms and devices. One of their products is the LightBuzz SDK, a
cross-platform software development kit for creating motion capture applications.
It supports a wide range of cameras, including smartphone cameras, USB webcams,
Apple LiDAR, Intel RealSense, Azure Kinect, Structure Core, Luxonis OAK-D,
and more. The LightBuzz SDK can track up to 20 human bodies with 35 joints
each (Figure 2.2) and analyze human motion across different planes.

These devices provide the (x, y) coordinates of the subject’s keypoints, and with
depth cameras, the z-coordinate can also be captured. However, relying solely on
LiDAR technology for 3D pose reconstruction has limitations, such as potential
obstructions between the patient’s body and the camera, like the robotic arm in
our case. LightBuzz compensates for these limitations by post-processing the depth
data, improving the accuracy of human pose estimations.

The robotic arm presents a challenge, as it can obstruct accurate predictions of
the subject’s skeleton. In some instances, the predictions exhibit significant errors
(examples in Figure 2.3). To improve skeleton prediction, we focused on two key
strategies:

1. Stabilizing the hip position: upon reviewing the side view of the skeleton, we
noticed that the hip position often deviated from its original alignment. Given
the seated posture of the subject, we chose to fix the hip position. While not
an ideal solution, it is acceptable for this preliminary phase, though future
efforts will focus on finding a more robust approach.

2. Estimating the subject’s arm position using the robotic arm’s position (ongoing
implementation): marker points were placed on the robotic arm to track its
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spatial position. Using geometric calculations, the aim is to improve the
accuracy of the subject’s keypoints, leading to a more accurate skeleton
estimation.

While improvements are noticeable, particularly in the lower body, LightBuzz’s
predictions still deviate from reality, prompting us to explore alternative solutions.
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Figure 2.2: Skeleton of the subject provided by LightBuzz.
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Figure 2.3: Outliers in skeleton reconstruction with Lightbuzz.
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2.2 Experimental Setup and Workstation Config-
uration

Three components make up the complete system used (Figure 2.4):

1. Upper Limb Robotic Device (BURT - Barrett Upper-Extremity Robotic
Trainer) [42]: a cohesive hardware and software rehabilitation system (Figure
2.4).

2. Cameras to capture compensatory movements (Intel RealSense).

3. A tool to support data collection, to assist during therapy sessions and (ongo-
ing) provide feedback (PostureCheck Tool).

The setup used for this study is depicted in Figure 2.5, which illustrates the
configuration of the upper limb robotic device. This device can be positioned on
either the right or left side, depending on the affected limb of the subject. To
capture the movements, we used an Intel RealSense camera placed approximately
two meters in front of the subject, aligned with their chest.

et
' » A
.0,
L |
\_‘__m 1 —

Figure 2.4: Upper Limb Robotic Device and workstation.

A custom-developed interface in Unity was used to initiate the recording process.
This interface triggered the motion capture and skeleton reconstruction framework,
which automatically ran during each session. For each frame, the system produced
three output files:

1. Body file: containing 35 joints with 3D coordinates (x, y, z) and a confidence
measurement for each joint.

2. Color file: providing the RGB image of the scene.
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3. Depth file: representing the depth map of the captured area.

The data was captured at a rate of 30 frames per second and automatically
stored in folders corresponding to each specific movement, facilitating the labeling
process for the classification model.

LEFT CONFIGURATION £ ]l Monifor ; RIGHT CONFIGURATION

(

Figure 2.5: Upper Limb Robotic Device Setup.

2.3 Data Collection

The starting point of this project foresees the creation of the dataset, by gathering
data from 22 participants, which included:

o 8 experienced therapists, who simulated compensatory movements as part of a
preliminary phase, other than contributing to the normative movement data.

e 14 non-specialized individuals, who contributed to the normative movement
data.

All movements were performed using the Upper Limb Robotic Device, which
provided support and ensured consistent motion patterns across subjects. It is
also possible to adjust the level of support provided by the system; however, this
functionality was not utilized during data collection. To establish a foundation
for the models, we initially collected simulated compensatory movements from
therapists, as their expertise provided a reliable representation of these movements.
This phase was designed to test and refine the model before moving on to patient
data. In future stages, we aim to reduce the need for extensive patient data
collection, using patient-specific data primarily to validate and fine-tune the model.
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Using simulated data in stroke rehabilitation offers two key advantages. First,
post-stroke fatigue limits patients’ ability to consistently perform therapy exercises,
making it hard to gather sufficient training data from them. Second, stroke patients’
varying levels of physical impairment can prevent them from completing specific or
difficult tasks, further complicating data collection [24].

For this study, we identified 11 target movements across both compensatory
and normative categories (Figure 2.6):

1. Reaching forward

2. Reaching backward (towards the body)

3. Reaching level and affected (0 degrees)

4. Reaching up and affected (45 degrees)

5. Reaching up and center (90 degrees)

6. Reaching up and non-affected (135 degrees)
7. Reaching level and non-affected (180 degrees)
8. Reaching down and non-affected (225 degrees)
9. Reaching down and center (270 degrees)
10. Reaching down and affected (315 degrees)
11. Center position

In total, the ontology of the collected movements is composed by 852 unique com-
binations, encompassing both single compensatory movements and combinations
of up to four simultaneous compensatory movements. This reflects the common
occurrence of multiple compensations during movement, which often overlap in
real-world scenarios. Each movement was performed with varying levels of severity,
categorized as either severity 2 or 3. For multiple compensatory movements, all
possible combinations of severities were recorded—such as both movements per-
formed at severity 2 or 3, or a combination of severity 2 for one movement and
severity 3 for another. This detailed ontology was developed in close collaboration
with clinical experts, ensuring the dataset’s clinical relevance and robustness.

Due to time constraints and the availability of therapists, it was not feasible
to collect the entire ontology. Collecting data for every possible combination of
compensatory movements would have required a significant amount of time and
resources. Furthermore, given the early stage of this project, it would have been
difficult to fully utilize all the data. Therefore, we prioritized a subset of the
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Figure 2.6: Illustration of the 11 target movements. (a) Center, (b) Reaching
backward, (c) Reaching forward, (d) Reaching level and affected (0 degrees), (e)
Reaching up and affected (45 degrees), (f) Reaching up and center (90 degrees), (g)
Reaching up and non-affected (135 degrees), (h) Reaching level and non-affected
(180 degrees), (i) Reaching down and non-affected (225 degrees), (1) Reaching down
and center (270 degrees), (m) Reaching down and affected (315 degrees).
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ontology, allowing us to focus on key aspects that are manageable at this point,
while still laying the groundwork for further expansion in future phases.

In this phase of the project, we focused on collecting data for single compensatory
movements associated with each specific target. It is worth noting that certain
compensatory movements, which were deemed unlikely to occur with specific
targets, were excluded. For instance, trunk flexion was only recorded in association
with targets where it was most likely to be observed, based on clinical expectations.

Additionally, only three therapists contributed in the collection of multiple
compensatory movements, with a focus on cases involving two simultaneous com-
pensatory movements, with all the combinations of severities.

For each subject, we recorded five repetitions of every battery of compensatory
movements: a single battery of single compensatory movements was composed
of 76 movements, while, for multiple compensatory movements, we collected 244
movements for each repetition. On the other hand, all participants contributed
to the collection of normative movement data, performing up to 30 repetitions for
each of the 11 target movements. This provided a comprehensive dataset of 330
normative movements per subject.

The result is a robust and well-structured dataset that captures a wide range of
compensatory and normative movements. The variety of compensations, coupled
with the inclusion of multiple severity levels, allows for a detailed analysis of
compensatory strategies. This dataset lays the groundwork for training models to
accurately detect and differentiate between normative and compensatory move-
ments, and to handle the complexity of overlapping compensations in real-world
scenarios.

Overview of Compensatory Movements

In this study, we focused on seven specific compensatory movements, which were
identified as key for analyzing compensatory strategies in upper limb rehabilitation.
These movements include:

1. Trunk extension

2. Trunk flexion

3. Trunk inclination towards the affected side

4. Trunk inclination towards the non-affected side
5. Trunk rotation towards the affected side

6. Trunk rotation towards the non-affected side
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7. Shoulder elevation

A detailed description in the Table 2.1.

Table 2.1: Single Compensatory Movements Description.

Movements Biomechanical Description

Rotational angle of trunk and/or alignment of clavicles/shoulders

Trunk Rotation A )
relative to pelvis

Angle and/or displacement of trunk segment to their left

Trunk Inclination or right. May display appropriate shortening/lengthening of sides

Trunk Flexion Angle and/or displacement of trunk segment to the front

Trunk Extension Angle and/or displacement of trunk segment to the back

Shoulder Elevation | Angle and/or displacement of clavicles/shoulder upwards

2.4 Data Preprocessing

In our data collection and processing workflow, the primary focus was on body
files, as they contain the essential data for skeleton reconstruction, with the 35
joint coordinates. Each frame captured during the motion sequence resulted in
three output files: a body file with 3D joint positions, a color file for RGB images,
and a depth file for distance measurements. For each movement, we selected 10
key body files corresponding to frames where the subject was closest to the target
position. The rationale behind this was to capture the motion as it approaches the
target and reaches its peak extension, and to avoid to rely on only one frame. The
division of the movement into two parts—one from the start to the target and the
other from the target back to the initial position—allowed us to focus on the most
critical and insightful part of the motion.

Before analyzing the data, we needed to ensure consistency in the orientation of
the body files, especially when the robotic device was placed on the left side of the
subject. To account for this, we flipped the images so that the affected arm was
always positioned on the right side, ensuring uniformity across the dataset.

In addition, we excluded the target center movement from our analysis. This
movement did not involve significant motion, as the subject was required to stay
relatively still, and thus, it did not provide meaningful compensatory behavior
data.
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Normalization of the Data

Before outlier removal step, we normalized the data to ensure that all measure-
ments were comparable across subjects. For normalization, we used a reference
position called Reaching Level and Affected (0°) for each subject. In Figure 2.7, the
RGB image and skeleton reconstruction of the reference position are depicted. For
this reference position, as with all movements, we considered 10 frames. Instead of
calculating the normalization trunk length based on a single frame, we averaged
the trunk length across all 10 frames of that position. All subsequent data was
normalized by dividing each coordinate by the average trunk length to account for
variations in body size and posture among subjects. In Figure 2.8, we can see a
comparison between the skeletons reconstructed before and after the normalization.

xy plane view (conf: 0.864) Normative

y-axis
)
~
]

125 T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X-axis

Figure 2.7: Reference position: RGB image and skeleton reconstruction.

Outlier Removal

We then performed an outlier removal process to enhance data quality. One of
the main causes of inaccurate reconstruction is the occlusion caused by the robotic
device. In certain movements, particularly when the device passes in front of the
subject or very close to the limbs, it may be mistaken for part of the body. As a
result, the system might incorrectly identify the robotic arm as the actual limb,
leading to errors in the reconstruction process.

First of all, in the body file reading phase, we removed body files with more
than 35 joints (due to other subjects in the scene) and empty body files. After-
wards, outliers were defined as skeleton configurations where specific segments
(i.e. left arm joint segments, neck-chest-xiphoid joint segments, chest-waist-pelvis
joint segments, trunk length, right leg segments, and left leg segments) showed
abnormal lengths. We computed the mean (u) and standard deviation (o) for
the segments considered over multiple movements per subject, and excluded any
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Figure 2.8: Skeleton reconstruction before and after normalization for center
(first row) and 45° targets (second row).
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skeletons where the measure considered exceeded the p 4 o. This process helped to
remove inconsistencies caused by noisy sensor data or erroneous joint estimations.
Some outliers examples in Figure 2.9.
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Figure 2.9: Examples of inaccurate skeleton reconstruction on coronal, transverse,
sagittal planes.

The described preprocessing steps, including flipping for consistency, normaliza-
tion, and outlier removal, ensured that the dataset was ready for further analysis,
providing a stable basis for understanding compensatory movement patterns in
upper limb rehabilitation.

In Figure 2.10, an overview of the cleaned dataset.
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Figure 2.10: Overview of the cleaned dataset (Normative data -Label 0, Compen-
satory Movements - Label 1).

The next step in the project involves feature extraction and selection, aimed
at identifying the most relevant characteristics from the skeletal data, and the
model development, where machine learning algorithms are trained on the cleaned
dataset to classify and predict compensatory behaviors. By focusing on both the
identification of key features and the construction of accurate models, we aim
to enhance the system’s ability to effectively analyze and detect compensatory
movements, ultimately contributing to more targeted rehabilitation strategies.

2.5 Feature Extraction

In the feature extraction phase, following clinicians suggestions, we identified three
main groups of biomechanical features: spine metrics, upper and lower axis metrics,
and joint coordinates. A total of 60 features were extracted, along with the target
information, to capture the compensatory movement strategies of the patients. An
overview of the features considered with an accurate description in Figure 2.13,
Figure 2.14, and Figure 2.15.

Specifically, we focused on three axes: the upper axis, lower axis, and spine axis.
The upper axis covers joints in the upper part of the body, including the neck,
clavicles, and shoulders, while the lower axis includes the pelvis and hips.

To model the relationship between these points, we calculated the coefficients
of a regression line for both the upper and lower axes using the linear regression
formula [43]:
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where

_ 55
- SS..
m, = mean(z), m, = mean(y)

SSey =D (y-x)—n-my-my, SSp = (¢?)—n-m}

These axes were projected in the form of linear regression lines using customized
linear regression techniques, which allowed for a more nuanced and more accurate
understanding and projection of the movements being performed. After deriving
the coefficients of the regression lines, we computed the angles between these
lines and a reference, by calculating the § = arctan(slope), which were evaluated
across three different planes: the xy (Coronal) plane, xz (Transverse) plane, and zy
(Sagittal) plane.

Additional features were derived by calculating the average of distances between
points and lines using the following distance formula:

by

b():my—bl'mx

abs(—m -z +y —b)
m? +1

distance = (2.2)

where m is the slope of the line.
For the spine metrics, instead of applying regression, we computed the line
passing through two key points, the neck and pelvis, using the equation:

m — Y2 — U 7
To — X1
In a similar way to what was done for the upper and lower regression lines, we
also calculated angles for the spine line using § = arctan(slope), where the slope is
represented by m.

Furthermore, to calculate the angles between body segments (Figure 2.11), the
segments must first be identified. Each pair of body segments shares a common
joint, denoted as joints[0]. Using this common joint, we define two vectors, vy and
va, representing the segments. The angle between the segments is then calculated
using the cosine of the angle between the two vectors [44]:

g=y —m- 1 (2.3)

vy = joints[1] — joints[O0]
vy = joints[2] — joints|0]
. Vi V2

cosinef) = —————
[val[l[ve]

6 = arccos(cosined)
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Figure 2.11: Example of angle between body segments.

Finally, we exploited the Euclidean distance to compute the distance between
two points, using the standard formula [44]:

distance = \/(x2 —21)2 4+ (Y2 —y1)? + (22 — 21)? (2.4)

Additionally, we measured the differences in angles and distances between
joints, capturing variations in movement patterns across different planes. By
incorporating these biomechanically meaningful features, we aimed to accurately
identify compensatory movements and provide a detailed characterization of patient
posture during therapy. In Figure 2.12, some features illustrated.

Finally, after calculating the features for each frame, we grouped the 10 frames
per movement per subject, and we averaged across the features.
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Figure 2.12: Example of features.
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Spine Metrics Description

zy_spine_axis_complementary
Xy_spine_axis_complementary

zy_spine_axis
Xy_spine_axis

xy_necknose_angleCompl
zy_necknose_angleCompl

Xy_necknose_angle
zy_necknose_angle

trunkLengthNeck3D
skullNeckDistance3D

distanceTrunkJointstoTrunk

Complementary angle of the spine inclination along the zy and xy
planes (sagittal and coronal).

Inclination of the spine along the zy and xy planes (sagittal and
coronal).

Complementary angle of the neck-to-nose line inclination along the
zy and xy planes (sagittal and coronal).

Angle of the neck-to-nose line inclination along the zy and xy planes
(sagittal and coronal).

Length of the neck-pelvis segment in 3D.
Length of the skull- neck segment in 3D.

Mean of distances of joints along the trunk to spine line (zy view -
lateral view).

ratioTrunkShoulder3D

Ratio between trunk length and shoulders distance in 3D.

Figure 2.13: Description of the spine metrics features.

Xy_upper_axis
Xz_upper_axis

xyUpperSlope
xzUpperSlope

shlength3D

xz_upper_lower_angle

xy_upper_lower_distance
xz_upper_lower_axis_distance

ratiodistancesUpperLower

distance_chestRightWrist
distance_chestLeftWrist

xy_LeftShoulder_inclination
xz_LeftShoulder_inclination

xy_RightShoulder_inclination
xz_RightShoulder_inclination

leftShoulderArmAngle (3D)
rightShoulderArmAngle

trunkRightHipAngle
trunkLeftHipAngle

trunkRightShoulderAngle
trunkLeftShoulderAngle

Inclination of the upper axis along the xy
and xz planes (coronal and transverse).

Slope of the upper axis along the xy and
xz planes (coronal and transverse).

Shoulders distance in 3D.

Angle between the upper and lower axis
along the xz-axis (transverse).

Mean of distances of upper axis joints to
lower axis along the xy and xz planes.

(xy_upper_lower_distance/xz_upper_lo
wer_axis_distance)

Distance between the chest and
right/left wrist joint.
Inclination of the line linking left

shoulder to left clavicle along the xy and
xz planes.

Inclination of the line linking right
shoulder to right clavicle along the xy
and xz planes.

Angle between the left/right shoulder
and left/right arm.

Angle between the trunk and right/left
hip.

Angle between the trunk and right/left
shoulder.

xz_lower_axis
xy_lower_axis

xyLowerSlope
xzLowerSlope

lengthHip3D

xy_hipshoulder_difference

xy_upper_lower_slope_difference
xz_upper_lower_slope_difference

kneePelvisWaist_angle

sum_of_means_upper_lower

ratioShoulderHipLength

ratioshLength_axisDistance_xy

kneeDistance

neckLeftShoulderAngle
neckRightShoulderAngle

Inclination of the lower axis along
the xy and xz planes (coronal and
transverse).

Slope of the lower axis along the xy
and xz planes (coronal and
transverse).

Hips distance in 3D.

(xy_upper_axis - xy_lower_axis)

(xyUpperSlope - xyLowerSlope)
(xzUpperSlope - xzLowerSlope )

Angle formed between waist, pelvis,
and knees (zy — sagittal plane)

(xy_mean_upper_lower_slope +

xz_mean_upper_lower_slope)
(shlength3D/lengthHip3D)

(shlength3D/xy_upper_lower_dista
nce)

Distance between the knees.

Angle between the neck and
left/right shoulder.

Figure 2.14: Description of the upper and lower axis metrics features.
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xNose, yNose, zNose 3D coordinates of the nose.

XChest, yChest, zChest 3D coordinates of the chest.
xShoulderR, yShoulderR, zShoulderR 3D coordinates of the right shoulder.
xShoulderL, yShoulderL, zShoulderlL 3D coordinates of the left shoulder.

Figure 2.15: Description of the joint coordinates features.
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2.6 Feature Selection

Feature selection is a crucial step in machine learning that aims at improving model
performances by identifying the most relevant features and discarding irrelevant
or redundant ones. This process not only reduces overfitting but also speeds up
training time, enhances model interpretability, and lowers computational cost,
allowing models to generalize better [45].

Feature selection techniques can be broadly categorized into two main approaches:
supervised and unsupervised feature selection [46].

Supervised Feature Selection

Supervised feature selection relies on labeled data to guide the selection process
and is typically divided into three main methods:

« Wrapper Methods [45]: wrapper methods evaluate different subsets of features
by training models and assessing their performance. Although highly accurate,
they are computationally expensive due to the multiple iterations of model
training required. A common wrapper method is Recursive Feature Elimination
(RFE), which recursively removes the least important features to optimize
model performance.

o Filter Methods [45]: filter methods evaluate each feature independently of
model training, using statistical techniques to score the relevance of features
based on their relationship with the target variable. These methods are com-
putationally efficient and fast, although they may overlook feature interactions.
Common statistical techniques include: Pearson’s correlation for numerical
input and output to assess linear relationships, ANOVA (Analysis of Variance)
for numerical input and categorical output, Chi-squared tests for categori-
cal input and output, and mutual information, which works well with both
numerical and categorical data.

o Embedded Methods [45]: embedded methods integrate feature selection di-
rectly into the model training process. Algorithms like Lasso regression and
decision trees perform automatic feature selection by assigning importance
scores to features during the learning phase. These methods balance accuracy
and efficiency, as feature selection occurs simultaneously with model fitting.

Unsupervised Feature Selection

Unsupervised feature selection does not rely on labeled data. It focuses on
identifying the most informative features based on the inherent structure of the
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dataset, often using techniques such as clustering or Principal Component Analysis
(PCA) to reduce dimensionality without regard to the target variable [45].

Choosing the appropriate statistical measure is crucial for accurately capturing
the relevant relationships between features and the target variable. Filter-based
methods are efficient for handling high-dimensional datasets and are often used
during the initial stages of model development due to their speed and simplicity.

In this study, we employed a combination of the correlation matrix, feature
importance given by the Random Forest, and the forward selection method to refine
the features set. Initially, a correlation study has been conducted by exploiting
pandas function [47][48]. Each value in the matrix represents the strength and
direction of the linear relationship between two variables, ranging from -1 to 1. A
value of 1 indicates a perfect positive correlation (both variables increase or decrease
together), -1 indicates a perfect negative correlation (as one variable increases,
the other decreases), and 0 suggests no linear relationship [47]. We applied the
standard Pearson’s correlation with a threshold of 0.80 to eliminate features that
were highly correlated with each other, reducing redundancy.

Then, features were ordered by importance using the Random Forest algorithm.

Next, we applied the Forward Selection method, adding one feature at a time
from the ordered list and retaining it only if it improved the model’s performance by
more than 0.01. This process enabled us to build a model using the most significant
features while avoiding overfitting and eliminating unnecessary complexity.

In the first step of the feature selection, instead of splitting the dataset into
training and testing sets, we optimized feature selection on the entire dataset. Al-
though substantial, our dataset was not large enough to risk degrading performance
by reducing the available data for training. By working with the full dataset, we
maximized the utility of the data and ensured optimal feature selection. To further
enhance model robustness, we balanced the dataset using downsampling, which
involved reducing the size of the majority class to match that of the minority
class. This prevented bias in model predictions. Subsequently, before ordering the
features, we splitted the dataset in train/test set (80/20), we downsampled the
training set, we prepared it (further detail in the next section), and we trained the
model and the Forward Selection technique to identify the final relevant features.

2.7 Model Development

The model development process is essential for crafting a successful machine learning
solution. It encompasses various stages, including dataset preparation, selecting
the most suitable model, and fine-tuning it for optimal performance.

We developed and tested models for each of the three distinct scenarios (Figure
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2.16):

« Normative vs Compensatory Movements (binary classification): this scenario
aimed to differentiate between Normative and Compensatory movements

during therapy sessions.

« Single vs Multiple Compensatory Movements (binary classification): in this

scenario, we tested the model’s ability to identify a single compensatory
movement versus multiple compensatory movements within the same session.

 Single Movements (multiclass classification): lastly, we focused on detecting

the presence of a single compensatory movement, testing the model’s sensitivity

to even the smallest deviation from normative behavior.

Complete dataset

/
Normative C%él:%o

Single

oy
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[ Shoulder elevation ] /

Trunk rotation
affected/non-affected side

\

Compensatory

.

Multiple

[ Trunk flexion
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Figure 2.16: Three proposed scenarios.

We can identify some key steps shared by the three scenarios.
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Preparation of the dataset

For our analysis, we utilize different subsets of the dataset across three scenarios.
The dataset we collected consists of Normative Movements, Single Compensatory
Movements, and Multiple Compensatory Movements.

In the first scenario, we focus on all available data, where Normative Movements
are labeled as 0, and both Single and Multiple Compensatory Movements are
combined under the label 1.

For the second scenario, we narrow the analysis to only Single and Multiple
Compensatory Movements, excluding normative ones; in this case, Single Com-
pensatory Movements are labeled as 0, and Multiple Compensatory Movements as
1.

Finally, in the third scenario, we focus exclusively on Single Compensatory
Movements, further refining our analysis to capture these movements in isolation.

Preparation of the training set

Before selecting the relevant features and training the model, we focused on
preparing the input data to ensure a balanced and representative training set.
As said, in order to select the relevant features, after applying the correlation
matrix, we divided the dataset in train/test (80/20) and before proceeding with
the selection, we considered the following steps: balancing the dataset, normalizing
it, and categorical features encoding.

Balancing the dataset

Balancing the dataset is a critical step in machine learning, especially when
dealing with classification problems where the number of instances in each class
is highly imbalanced. In such cases, the model tends to favor the majority class,
resulting in poor predictive performance for the minority class [49]. To address
this issue, balancing techniques are applied to ensure that each class contributes
equally during training, improving both model accuracy and generalization.

There are several techniques for balancing a dataset [49]:

1. Undersampling/Downsampling: this method involves reducing the size of the
majority class by randomly selecting a subset of its instances. While it helps
achieve balance, it risks discarding potentially valuable data, which may affect
model performance.

2. Oversampling: in this technique, additional samples are generated for the
minority class, often by duplicating existing instances or using more advanced
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methods like SMOTE (Synthetic Minority Over-sampling Technique). This
approach helps balance the dataset without losing information but may lead
to overfitting if not used carefully.

3. Hybrid Methods: a combination of both undersampling and oversampling can
also be employed to maintain a balance between the majority and minority
classes while mitigating the risks of overfitting or information loss.

To create a balanced dataset, we relied on downsampling to reduce the size of
the majority class. By doing so, we ensured that each class had a similar number
of samples, preventing the model from being biased toward the majority class.

Normalization

Normalization is a data preprocessing technique used to scale the features of
a dataset so that they fall within a specific range, typically between 0 and 1 [50].
This process ensures that all features contribute equally to the model training
process, preventing features with larger numerical values from dominating those
with smaller values.

Normalization is achieved by applying a transformation to each feature in the
dataset. The two most common methods are [50]:

1. Min-Max Normalization: this method scales each feature to a specified
range, typically between 0 and 1, using the formula:

X - Xmin

X' = - Cmin
Xmax - Xmin

Here, Xin and X represent the minimum and maximum values of the
feature, respectively. This technique is useful when you want to preserve
the relationships between the original data points but scale them down to a
comparable range.

2. Z-Score Normalization (Standardization): unlike Min-Max normaliza-
tion, this method standardizes the features by transforming them into a
distribution with a mean of 0 and a standard deviation of 1, using the formula:

_X—n
N o

X/

where p is the mean of the feature and o is its standard deviation. This
method is commonly used when the features have varying units or when the
dataset follows a normal distribution.
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Normalization can help speed up the training process by providing a well-
conditioned dataset that is easier for optimization algorithms to handle.

In this study, we applied StandardScaler as part of the data preprocessing
pipeline. The StandardScaler standardizes the features by removing the mean and
scaling them to unit variance. This ensures that each feature has a mean of 0
and a standard deviation of 1, making the features comparable and improving the
efficiency of algorithms that are sensitive to the scale of input data.

In this project, the StandardScaler helped normalize the input data, ensuring
that the model training was not influenced by the varying scales of the features
and that the optimization process converged more smoothly.

For the fourth approach—LOSO by target with an uncertain class, presented
later in 2.7.4—we used the Min-Max Scaler instead, which scales the data to a range
between 0 and 1. However, the overall performance remained similar compared to
the StandardScaler.

Encoding of categorical features

Another essential preprocessig step is the encoding of categorical features [51],
to convert non-numerical data into a numerical format that can be interpreted
by algorithms. Many models, such as decision trees, random forests, and neural
networks, require numerical input to process data efficiently. Categorical encoding
techniques vary depending on the type of data and the requirements of the algorithm.

The most common encoding methods include [52]:

« One-Hot Encoding: converts each category into a new binary feature (0 or
1) for every unique category value. It is ideal when dealing with nominal
categorical variables that do not have an inherent order.

o Label Encoding: assigns a unique integer to each category. This method is
more compact but can mislead the model into thinking that the categories
have an ordinal relationship when they don’t.

» Binary Encoding: a hybrid technique that first converts categories into integers
and then applies binary encoding, representing these integers in a binary format.
This method reduces dimensionality compared to one-hot encoding, making it
useful for datasets with high cardinality (many unique categories).

In this study, the target variable representing 11 distinct movement categories was
transformed into a binary format, by applying the binary encoding method. This
method compresses the categorical data while retaining the meaningful distinctions
between the different types of movements. Binary encoding is particularly efficient
when dealing with multiple categories, as it reduces dimensionality compared to
one-hot encoding.
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Diving in the model development, for all three scenarios mentioned, we considered
four approaches:

Random Forest with StratifiedKFold cross validation.

Leave-One-Subject-Out (LOSO) cross validation.

Leave-One-Subject-Out (LOSO) cross validation with a model per target
(LOSO x target).

LOSO x target, with a classification model based on three classes: 0, 1, and
uncertain class (2). This model was applied only to the binary scenarios.

2.7.1 Random Forest

For the initial and basic step of our classification task, we employed the Random
Forest Classifier, a simple yet powerful ensemble learning method. Random Forest
[53] is a popular choice for classification due to its ability to construct multiple deci-
sion trees and then aggregate their results, which enhances both accuracy and model
stability. This approach is particularly well-suited for handling high-dimensional
data, as it mitigates overfitting by using bagging (bootstrap aggregating). In our
case, we selected this model to provide a straightforward starting point for the
classification task.

To ensure the model could generalize well and not be biased by specific therapist-
related information, we trained it without including any therapist-related features.
The features used were those identified in the feature selection phase, ensuring that
only the most relevant characteristics were considered.

We also used Stratified K-Fold Cross-Validation to validate our model (with 5
folds). Cross-validation [54] helps ensure that the model is not overfitting to the
training data, and by using the stratified version of K-Fold, we ensured that each
fold maintained the same proportion of labels, making the validation process more
balanced and reliable.

2.7.2 Leave-One-Subject-Out Study - LOSO

The motivation for the second approach arises from concerns regarding the general-
izability of the Random Forest model when using simple cross-validation, as all
subjects were included in the training set. This raised doubts about the model’s
ability to perform well on unseen data. To address this, we opted for a more robust
validation technique: Leave-One-Subject-Out (LOSO) cross-validation [54]. LOSO
is particularly effective for datasets with inherent group dependencies, such as data
collected from different subjects. It ensures that the model is tested on data from
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a subject who was entirely excluded from training, offering a stronger measure of
the model’s generalization capability.

LOSO cross-validation is advantageous in scenarios like ours, where individual
differences between subjects can introduce variability in the data. By excluding one
subject per iteration, we simulate real-world conditions where the model encounters
previously unseen data, better assessing its performance on new subjects. This
method is especially important in medical and biomechanical datasets where
subject-specific variations are common and critical to evaluate.

In each LOSO iteration:

e One subject’s entire data is left out as the test set, ensuring that the model
has never seen the subject’s data during training.

o We apply downsampling on the training set to address class imbalance, followed
by standard scaling and binary encoding of the categorical target variable to
ensure consistency across iterations.

e The Random Forest Classifier is trained on the remaining subjects’ data,
without exposure to the left-out subject.

e The model is then evaluated on the held-out subject, and this process is
repeated for each subject in the dataset.

By using LOSO, we obtain a more reliable estimate of the model’s performance,
as it mimics the scenario of applying the model in real-world clinical settings, where
the goal is to generalize well across unseen subjects.

This version enhances the description of LOSO’s utility, especially in terms of
group dependencies and subject-specific variability, and how it simulates real-world
testing conditions.

2.7.3 LOSOxTarget

The third cross-validation scenario involves applying the previously described LOSO
approach but with a separate model trained for each of the 10 movement targets
(since the center target was discarded). Since these targets are distributed around
the subject, some movements experienced robot occlusion, potentially affecting
the model’s performance. Training a model for each target allows us to evaluate
whether the model remains robust across all targets or performs better on specific
ones. During each iteration, we apply downsampling and normalization, but remove
information related to the target itself, as it does not contribute meaningfully to
the classification task.

43



Materials and Methods

2.7.4 Uncertainty in Model Predictions

The final approach adopts a more conservative strategy by focusing on reducing
misclassifications, specifically false positives and false negatives. This method
introduces an additional challenge: predicting an uncertain class when it was
unclear whether a movement belonged to one of the two primary classes (e.g.,
Compensatory vs Normative, or Single vs Multiple Compensatory Movements).
We leveraged the probability scores [53] provided by the Random Forest classifier
using the tools available in scikit-learn [50]. A threshold of 0.65 was set for both
classes—if the probability for a given class exceeded this threshold, the movement
was classified accordingly; otherwise, it was assigned to the uncertain class. This
approach was applied only to the binary classification scenarios. In each step, we
applied downsampling and normalization, as we used the LOSOxtarget method,
where one subject was left out during training. While this conservative approach
reduces errors, it also results in the exclusion of potentially correct classifications,
which further contributes to its conservative nature.

2.7.5 Model Evaluation

For classification tasks, several evaluation metrics are commonly used [55]:

o Accuracy: the percentage of correct predictions out of all predictions. It
works well when the dataset is balanced, but can be misleading for imbalanced
datasets.

e Precision: the proportion of true positive predictions out of all positive
predictions made by the model.

 Recall (Sensitivity): the proportion of true positives out of all actual positives
in the dataset.

e F1 Score: the harmonic mean of precision and recall, providing a single measure
of performance, especially useful for imbalanced datasets. There are two types
of F1 scores, F1-macro and Fl-micro. Fl-macro calculates the F1 score for
each class separately and then averages them, giving equal weight to all classes,
regardless of size. This is useful for imbalanced datasets where smaller classes
need equal consideration. Fl-micro, on the other hand, computes precision
and recall globally, treating all samples equally and emphasizing larger classes,
making it suitable for evaluating overall performance in balanced datasets.

For each of the four approaches, different sets of metrics are employed to evaluate
the model’s performance. These metrics are tailored to the specific characteristics
and objectives of each approach, ensuring a comprehensive assessment of the
classification tasks in each scenario:
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Random Forest with Stratified K-Fold Cross-Validation: accuracy.

LOSO: Fl-micro score.

LOSOxtarget: F1l-micro score.

LOSOxtarget with uncertain class: we introduced several performance metrics
to evaluate the classification results when incorporating the uncertain class.
These include:

— Correct Class 0: it measures the recall of class 0 (Normative Movements/S-
ingle Compensatory Movements, first and second scenario).

— Correct Class 1: which reflects the recall of class 1 (Compensatory Move-
ments/Multiple Compensatory Movements).

— Percentage of Decision: which represents the specificity of class 2 (uncer-
tain).

— Class 0 Wrongly Classified: which shows the percentage of true class 0
instances incorrectly classified as class 1.

— Class 0 Without Decision: which captures the percentage of true class 0
instances classified as uncertain.

— Class 1 Wrongly Classified: reflects the percentage of true class 1 instances
incorrectly labeled as class 0.

— Class 1 Without Decision: indicates how often true class 1 samples are
assigned to the uncertain class.

Results and confusion matrix showing the true positive, false positive, true
negative, and false negative predictions, of the performances achieved are highlighted
in the next chapter.
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Chapter 3
Results

In this chapter, we present the results of the four selected methods across the
three proposed scenarios. For each scenario, an overview of the results is provided
in terms of accuracy and F1l-micro score. Following this, we present the ranked
features extracted from the data, the overall confusion matrix for all four methods,
and individual confusion matrices for each target, where a separate model was
trained for each target.

Each scenario is analyzed using the following methods: the Random Forest
model, Leave-One-Subject-Out (LOSO) cross-validation, LOSO by target, and
LOSO by target with uncertain classes. The Random Forest model was chosen
with 100 trees and a random seed of 42. Feature selection was performed using a
correlation matrix, followed by feature ranking through Random Forest, forward
selection method, and a final Random Forest model trained on the selected features
to provide the official feature ordering.

Ten targets were considered, with the “center” target removed from the analysis.
While we draw conclusions from the confusion matrices for each target, it is
important to note that the distribution of compensatory movements across targets
is not uniform. This reflects the real-world conditions of data collection, where
certain targets are associated with more likely movements, as suggested by clinicians.
Therefore, the number of movements per target varies naturally, which could
influence the model’s performance for certain targets.

The fourth approach—LOSO by target with uncertain classes—was applied only
in the binary classification scenarios, and not for the final proposed scenario.
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3.1 Normative vs Compensatory Movements

In this section, we dive into the results obtained for the first scenario, which aims
to discriminate between Normative and Compensatory movements. The original
dataset before downsampling was composed of 3931 Normative Movements and
7193 Compensatory Movements.

Figure 3.1 provides an overview of the accuracy and F1-micro scores obtained
for the three proposed approaches. In the Subsection 3.1.4 the metrics associated
with the LOSO by target method, combined with the uncertain class approach, are
also presented.

Threshold Features Accuracy RF LOSO F1 micro LOSOxtarget
Selection F1 micro
0.01 4 0.88 0.82 0.83

Figure 3.1: Normative vs Compensatory Movements: overview of the results
obtained for the three methods.

3.1.1 Random Forest (RF)
In Figure 3.2, the ranking given by the RF of the features selected.
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Figure 3.2: Normative vs Compensatory Movements: RF feature ranking.

The accuracy achieved in this scenario is 0.88, and Figure 3.3 highlights the
confusion matrix of the test set classification.
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Figure 3.3: Normative vs Compensatory Movements: RF Confusion Matrix.

3.1.2 LOSO study

In the LOSO study, we generated a global confusion matrix (Figure 3.4) by
aggregating the confusion matrices obtained during each iteration. In each iteration,
one subject was left out, and the corresponding confusion matrix was computed.
These individual matrices were then combined to form the overall confusion matrix.
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Figure 3.4: Normative vs Compensatory Movements: Confusion Matrix for LOSO
Classification.
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3.1.3 LOSO x Target movement study

In the LOSO by target movement study, we first present the results for each
individual target (Figure 3.5) and then a global confusion matrix (Figure 3.6)
where we combined the results across all subjects for every target.

We observe some performance drops, which can likely be attributed to the small
dataset size. This is particularly evident for the Reaching down and center (270°)
target, where only a limited number of compensatory movements were recorded,
reflecting the real-worlds scenario. Additionally, some targets, such as 135°, 180°,
225°, involve occlusions caused by the robotic arm; however, this does not seem to
affect the model’s performance significantly. The model remains robust despite the
occlusions.
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Figure 3.5: Normative vs Compensatory Movements: LOSOxTarget Confusion
Matrix.
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Figure 3.6: Normative vs Compensatory Movements: global Confusion Matrix
for LOSOxTarget Classification.

3.1.4 LOSO x Target movement study with uncertain class

In the LOSO by target with the uncertain class study, as outlined in the theoretical
section 2.7.4, we introduced an uncertain class to the standard LOSO by target
study. We set a threshold of 65% for the probability decision of the Random Forest
model. The results are presented both per target and globally (Figure 3.8 and
Figure 3.9).

We experimented with adjusting the threshold, but its optimal value depends
on which metrics we aim to improve. Ideally, we want to increase the number of
correctly classified samples, reduce the number of wrongly classified samples, and
raise the percentage of decisions made by the model. A balanced trade-off was
achieved with the 0.65 threshold. The metrics are displayed in Figure 3.7.

When examining the performance per target, we observe a similar conclusion
to the standard LOSO by target study: the results are comparable between
targets with and without occlusion, demonstrating the robustness of the model.
Additionally, we observe that for certain targets, such as 90° and 135°, there
are many unclassified samples, highlighting, as previously mentioned, how this
approach is conservative. It is important to note that these unclassified samples
include both false classifications and potentially correct classifications, which means
that we may be losing some valuable information.
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Normative Wrongly Classified 10.79%
Normative Without Decision 19.18%
Compensatory Wrongly Classified 10.83%
Compensatory Without Decision 10.72%

Figure 3.7: Normative vs Compensatory Movements: Performance Metrics for
LOSOxTarget with uncertain class classification.

Gonfusion Matri for Reaching up and afected (45)
d: 6

Conluslon Mamx for Reaching forward Confusion Matrix for Reaching backwards (towards body) Confusion Mamx for Reaching level and affected (0) True label 0 not classifiet
el 0 not classified: 47 ue label 0 not classified: 85 e label 0 not classified: 81 Trie label 1 not aceifiod: o1
True Jabel 1 not dlassifiod: 21 True label 1 not classified: 89 Thie label 1 not daseiied: 70
350
300 800 o 1000
N o N 2
2 300 2 o @ H 700 g 302 30
g 3 250 £ 29 2 2 800
2 250 z 2 600 2
2 o
i g H 500 s 600
£ 200 k) 200 | F}
° g ° E o
3 2 2 a0 5 400
= - 150 z Fa g § -
5 g - 150 £ - 300 § 2 D
g g 70 g 99 £
2 33 - 100 g 5 | -200
g £ g 200 8
£ 8 -100 3
8 _s0 - 100
Normative ~ Compensatory
Normative ‘Compensatory Predicted labels
Normative Compensatory
Normative Compensatory Predicted labels
Predicted labels Predicted labels
Confusion Matrix for Reaching up and non-affected (135) Confusion Matrix for Reaching level and non-affected (180)  Confusion Matrix for Reaching down and non-affected (225)
Confusion Matrix for Reaching up and center (90) True label 0 not classified: 108 True label 0 not classified: 69 True label 0 not classified: 47
True label 1 not classified: 142 True label 1 not classified: 163 500 True label 1 not classified: 125 True label 1 not classified: 30
700
700
° 600 3 2 2
H s 226 62 0 s 249 76 600 g
4 251 48 £ H E
5 500 s s 2
W’ ° 400 o 500 @
3 2 2 2
2 400 8 ] 00 s
3 ] - 300 3 3
g - 300 Fz Fe e - 150
H | [ A
g) 145 705 -200 é 129 607 - 200 § 122 749 3 - 100
£ 2 g -200 §
°© 100 3 38 -50
100 -100
Normative Compensatory Normative Compensatory Normative Compensatory Normative Compensatory
Predicted labels Predicted labels Predicted labels Predicted labels
Confusion Matrix for Reaching down and center (270) Confusion Matrix for Reaching down and affected (315)
True label 0 not classified: 126 True label 0 not classified: 23
True label 1 not classified: 22 True label 1 not classified: 18
200
350
. 175 .
] 203 63 ] 1 300
£ 150 £
2 2
o o 250
K 125 3
8 8
a2 = - 200
s 100 s
= =
z z 150
] 7s g
§ 18 56 § & -100
g -50 E
o 8 -50
-25
Normative  Compensalory Normative  Compensatory
Predicted labels Predicted labels

Figure 3.8: Normative vs Compensatory Movements: LOSOxTargetxUncertain
class confusion matrix per target.
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Figure 3.9: Normative vs Compensatory Movements: LOSOxTargetxUncertain
class global confusion matrix.

3.2 Single vs Multiple Compensatory Movements

In this section, we present the results for the Single Compensatory vs Multiple
Compensatory Movements scenario. The original dataset before downsampling was
composed of 3533 Simple Compensatory Movements and 3668 Multiple Compen-
satory Movements.

The structure of this section follows a similar outline to the previous section
on Normative vs Compensatory Movements. We begin by presenting the overall
results in a summary table (Figure 3.10).

Threshold Features N features Accuracy RF LOSO F1 micro LOSOxtarget F1

Selection micro
| 0.01 | 6 [ 0.82 | 0.74 | 0.74

Figure 3.10: Single vs Multiple Compensatory Movements: overview of the results
obtained for the three methods.

3.2.1 Random Forest (RF)

In this subsection, we present the selected features (Figure 3.11) and the results
obtained from the Stratified K-Fold cross-validation (Figure 3.12).
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Figure 3.11: Single vs Multiple Compensatory Movements: RF feature ranking.
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Figure 3.12: Single vs Multiple Compensatory Movements: RF Confusion Matrix.

3.2.2 LOSO study

We present the aggregated confusion matrices for the LOSO study, where each
subject was left out in each iteration (Figure 3.13).
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Global Confusion Matrix
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Figure 3.13: Single vs Multiple Compensatory Movements: Confusion Matrix for
LOSO Classification.

3.2.3 LOSO x Target study

In this study, a consistent pattern emerged, showing a decrease in performance
when the dataset was small, although the model remained robust across occlusion
and non-occlusion targets (Figure 3.14).

The confusion matrix for the 270° target is particularly interesting, as it shows
no false positives or incorrect predictions. This is because no multiple compensatory
movements are associated with that target.

One of the challenges in this task is that the features do not have a one-to-one
correspondence with compensatory movements. It is common for patients to per-
form multiple compensatory movements, which may resemble single compensatory
movements. This may explain the observed drop in performance, with the model
achieving 74% accuracy.
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Figure 3.14: Single vs Multiple Compensatory Movements: LOSOxTarget Confu-
sion Matrix per target.
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Figure 3.15: Single vs Multiple Compensatory Movements: global Confusion
Matrix for LOSOxTarget classification.
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3.2.4 LOSO x Target study with uncertain class

Finally, we present the study incorporating the uncertain class, including the
associated metrics (Figure 3.16), target-specific confusion matrices (Figure 3.17),
and the global confusion matrix (Figure 3.18). Notably, the 270° target is excluded
from this analysis since no multiple compensatory movements were associated with
it, so classification was not performed.

Metric

Figure 3.16: Single vs Multiple Compensatory Movements: Performance Metrics
for LOSOxTarget with uncertain class classification.
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Figure 3.17: Single vs Multiple Compensatory Movements: LOSOxTargetxUncer-
tain class Confusion Matrix per target.
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Figure 3.18: Single vs Multiple Compensatory Movements: LOSOxTargetxUncer-
tain class global Confusion Matrix.

3.3 Single Compensatory Movements

In this paragraph of the results, we discuss the Single Compensatory Movements
scenario performance. The dataset was composed of 3533 instances of Single
Compensatory Movements. Figure 3.19 provides the data distribution according to
these Single Compensatory Movements. After that, we present a figure displaying
the overall results for the Random Forest, LOSO, and LOSOxTarget study (Figure
3.20).
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e~ G\@b O\@b
4@ &«

label

Figure 3.19: Distribution of Single Compensatory Movements.
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Threshold Features Accuracy RF LOSO F1 micro LOSOxtarget F1
Selection micro
0.01 7 0.84 0.76 0.79

Figure 3.20: Single Compensatory Movements: overview of the results obtained
for the three methods.

3.3.1 Random Forest (RF)

In Figure 3.21 and Figure 3.22, we show the ranked selected features and the
corresponding confusion matrix. Following this, we provide a table summarizing
the performance obtained for each movement (Table 3.1).

Feature Importances

Xy_necknose_angleCompl
Xy_upper_axis
Xy_spine_axis_complementary

ratioTrunkShoulder3D

Feature

skullNeckDistance3D
Xz_upper_lower_angle

yNose

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Importance

Figure 3.21: Single Compensatory Movements: RF feature ranking.
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Figure 3.22: Single Compensatory Movements: RF Confusion Matrix.

Class F1-Score (%)
Shoulder Elevation 1%
Trunk Extension 82%
Trunk Flexion 92%
Trunk Inclination (affected) 85%
Trunk Inclination (non-affected) 89%
Trunk Rotation (affected) 88%
Trunk Rotation (non-affected) 84%

Table 3.1: Single Compensatory Movements: Fl-score from RF for each class.

3.3.2 LOSO study

In the case of the LOSO study, we observe a drop in performance, especially with
difficulties discriminating movement types like extension and shoulder elevation, as
we can see in the Figure 3.23. In Table 3.2, a detail of the F1-scores obtained for
each class.
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Global Confusion Matrix
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Figure 3.23: Single Compensatory Movements: Confusion Matrix for LOSO
Classification.

Class F1-Score (%)
Shoulder Elevation 55%
Trunk Extension 73%
Trunk Flexion 92%
Trunk Inclination (affected) 1%
Trunk Inclination (non-affected) 82%
Trunk Rotation (affected) 73%
Trunk Rotation (non-affected) 73%

Table 3.2: Single Compensatory Movements: Fl-score from LOSO study for each
class.
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3.3.3 LOSO x Target study

For the LOSOxTarget study, we see a 3% improvement compared to LOSO, although
there is a small drop from the Random Forest results. We then present the confusion
matrix for the targets (Figure 3.24). As seen earlier, not all targets are associated
with the same movements, as some movements are less frequent for certain targets.
The 270° target is particularly noteworthy, even in the case of Single Compensatory
Movements scenario, as only the flexion movement is associated with this target.

Lastly, we display the global confusion matrix (Figure 3.25). The difficulty in
discriminating movements can be explained by the fact that different compensatory
movements can result in similar biomechanical patterns.

To conclude, Table 3.3 offers a recap of the performance achieved for each class.

Class F1-Score (%)
Shoulder Elevation 60%
Trunk Extension 68%
Trunk Flexion 93%
Trunk Inclination (affected) 78%
Trunk Inclination (non-affected) 88%
Trunk Rotation (affected) 82%
Trunk Rotation (non-affected) 78%

Table 3.3: Single Compensatory Movements: F1-score from LOSOxTarget study
for each class.

We also include 2D and 3D projections of the movements (Figure 3.26). Re-
garding the dimensionality reduction technique, t-SNE (t-distributed Stochastic
Neighbor Embedding) was used [56]. This method, t-SNE, is widely adopted for vi-
sualizing high-dimensional data by projecting it into a lower-dimensional space (2D
or 3D). It preserves local similarities by mapping nearby points in high-dimensional
space to nearby points in the lower-dimensional representation, making it an excel-
lent choice for visualizing complex biomechanical movements [56]. However, it is
not without limitations, such as difficulties with global structure and computational
intensity for larger datasets. The projections also reflect the conclusions made
regarding the difficulty in distinguishing some movements, particularly for those
that exhibit similar biomechanical patterns, confirming the challenges highlighted
in the classification results.
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Figure 3.24: Single Compensatory Movements:

the LOSOxTarget study.
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Global Confusion Matrix
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Figure 3.25: Single Compensatory Movements: global Confusion Matrix for
LOSOxTarget Classification.
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Figure 3.26: Single Compensatory Movements: projections in 2D and 3D using
t-SNE.
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3.4 Recap of Results

In this section, we present two images summarizing the key results of the study.
The first figure below presents a comparison across three scenarios (Figure 3.27):
Normative vs Compensatory Movements, Single vs Multiple Compensatory Move-
ments, and Single Compensatory Movements. Overall, the results demonstrate
that the model consistently achieves a performance exceeding 80% accuracy across
the different scenarios.

The second figure focuses on the F'1 micro-scores obtained in the three scenarios
using the LOSO (Leave-One-Subject-Out) approach by target (Figure 3.28). The
trends observed in the F1 micro-scores closely follow those seen in the accuracy
from the first figure, showing a similar pattern of performance across the different
scenarios. This consistency reinforces the robustness of the model across varying
movement types and target-specific analyses.

Accuracy RF for Different Classification Problems

Single Compensatory Movements

Figure 3.27: RF accuracy for the three scenarios.

66



Results
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Figure 3.28: Fl-micro score LOSOxTarget approach for the three scenarios.
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Chapter 4

Discussion

This chapter will outline the preliminary phase that led to the selection of the
system used for the project’s implementation, specifically the choice of the Lightbuzz
platform. This initial phase involved exploring various solutions to determine the
most suitable one based on the project’s requirements and objectives. After careful
consideration, the chosen system was used to conduct the analysis and validate the
results.

Following this, the chapter will present final observations regarding the outcomes,
highlighting the limitations encountered during the development and testing process,
and proposing potential improvements and future steps for the project. In particular,
it will address the challenges faced in distinguishing certain movements and the
practical implications of these difficulties.

4.1 Preliminary stage Phase II

A preliminary exploration was conducted during Phase II, we conducted a focused
evaluation of two primary systems, OpenCap and Lightbuzz, for addressing the
research problem of skeleton reconstruction. This comparative exploration allowed
us to test both frameworks under the same conditions. Lightbuzz ultimately
emerged as the preferred solution based on its overall suitability for our research
goals.

OpenCap

OpenCap [37] is a platform designed to assess human movement kinematics and
dynamics using videos captured from multiple smartphones.
Before recording begins, camera details are captured using a checkerboard visible

68



Discussion

to all cameras. Then, a neutral pose recording (Figure 4.1) is done to adjust a
musculoskeletal model using OpenSim’s scaling tool [57]. Recordings can then
begin, using at least two iOS devices (released after 2018). The subject’s skeleton
is tracked in each video using open-source Human Pose Estimation algorithms like
OpenPose [27] and HRNet [28]. After extracting keypoints, OpenCap employs a
triangulation process using Direct Linear Transformation. A weighted least-squares
approach then adjusts each camera’s contribution based on keypoint confidence
scores [37]. Since HPE algorithms estimate keypoints frame by frame, this can lead
to inconsistencies in the 3D trajectory, which are addressed by training an LSTM
network to improve temporal inconsistencies. The 3D kinematics are calculated
by applying inverse kinematics to marker trajectories, using a musculoskeletal
model with biomechanical constraints [58][59]. This process determines joint angles
and movements in 3D space, providing a realistic representation of the subject’s
movement (Pipeline illustrated in Figure 4.2).

During the initial phase of the project, various camera setups were tested to
ensure a robust skeleton representation, while minimizing the number of cameras
to avoid bulkiness. The final setup, shown in Figure 4.3, employs three cameras on
the subject’s unaffected side for OpenCap recordings and one RealSense camera
for LightBuzz recordings. Some single compensatory movements frames obtained
with OpenCap are shown in Figure 4.4.

Figure 4.1: Neutral position.

The two frameworks, Light Buzz and OpenCap have been tested in parallel.

Comparison between OpenCap and LightBuzz

Despite their shared goal of capturing 3D skeletons, OpenCap and LightBuzz
differ significantly. LightBuzz uses a single RGB-D camera, while OpenCap requires
at least two iOS devices, making LightBuzz easier to set up in smaller labs.
Additionally, LightBuzz offers real-time detection of compensatory movements,
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Figure 4.2: OpenCap Pipeline [37].
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Figure 4.3: Scheme of the final setup.

unlike OpenCap, which requires post-recording processing. However, OpenCap
offers greater precision in 3D reconstruction and occlusion handling, thanks to
multiple cameras and a downstream biomechanical model. Despite these advantages,
OpenCap’s requirement for a neutral pose recording can be a limitation, especially
for stroke patients unable to stand or walk. Ultimately, the choice between the two
systems relied on the specific use case, as each excels in different aspects.

OpenCap addressed several issues, improving certain aspects of the study.
However, it also introduced new limitations. One of the main challenges was the
requirement for two cameras. This conflicted with the limited space available in
the study setup, making implementation more difficult. We decided to leverage
LightBuzz’s potential, as it is better suited for real-time detection.
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Figure 4.4: Some single compensatory movements frames obtained with OpenCap.

4.2 Limitations and future steps of the study

This study has made significant strides in improving 3D pose estimation tech-
niques and expanding the dataset to enhance the generalization capabilities of
the models. A rigorous cross-validation method was applied, exploring both the
model’s performance when excluding specific subjects and analyzing its behavior
across various target positions. However, no fine-tuning of hyperparameters was
conducted due to the limited size of the dataset. In general, this technique involves
adjusting the parameters of the model, such as learning rate or batch size, to
optimize performance and it represents a good practice in the model development
[60]. This process would be more appropriate with a larger dataset, where there is
a greater range of variability to properly adjust the model parameters.

One limitation of this study is that the models are tested on data generated by
therapists, meaning the dataset comprised simulated rather than real-world patient
data. The next step is to apply the models to patient data. Preparing this data
is a time-intensive process, as therapy sessions are still ongoing, and a selected
team of clinicians will need to label the relevant frames for training and evaluation.
Two additional challenges arise in this real-world setting: first, the robot may be
activated, altering the force that supports the patient, and second, the range of
motion (ROM) varies between individuals, particularly in stroke patients. Stroke
survivors often experience restricted ROM, which can impact their movement
patterns. These factors must be considered to ensure the model’s adaptability
in clinical applications. A possible next step involves fine-tuning the model with
real-world patient data to improve its adaptability and precision [61]. Fine-tuning
becomes particularly crucial when initial predictions are inaccurate, allowing the
model to be refined for specific patient populations, such as stroke survivors with
restricted range of motion (ROM). By calibrating the model to accommodate these
movement limitations, it can effectively learn new patterns while still leveraging
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the general knowledge from earlier stages of training.

Implementing transfer learning can make this process more efficient, enabling
the model to incrementally update itself as it encounters fresh data without losing
prior knowledge [61]. This approach not only ensures that the model becomes more
responsive to patient-specific conditions but also enhances its ability to generalize
across diverse cases by dynamically adapting to the constraints of each patient.
Ultimately, this refinement makes the model more robust, bridging the gap between
simulated data and real-world clinical applications.

One issue that emerged during the analysis was that different compensations
can lead to similar biomechanical movements, complicating the classification. Ad-
ditionally, we aim to implement robot tracking through ArUco markers, which
are widely used in computer vision for pose estimation and object tracking [62].
This approach could improve the precision of compensatory movement detection
by providing more detailed biomechanical data for analysis.

Another factor to consider is the uneven distribution of compensatory movements
across targets. For instance, the model may perform better on well-represented
targets (e.g., 0° or 90°) and struggle with less frequent ones (e.g., 270°), potentially
skewing precision, recall, and accuracy metrics. While gathering more data for
underrepresented targets could address this imbalance, it may not reflect real-
world conditions. In clinical practice, certain compensatory movements occur
less frequently or are not applicable to specific targets. Thus, we acknowledge
this natural variability, ensuring that the dataset accurately represents observed
behaviors during rehabilitation. While this may introduce some variability in model
performance, it mirrors the variability seen in real-world scenarios.

Despite these challenges, the dataset created for this study is both consistent
and extensive. As additional data were collected throughout the study, performance
improvements were observed, further validating the model’s robustness. If the
results from patient testing are promising, the ultimate goal is to develop a real-time
system capable of alerting clinicians to the detection of compensatory movements,
providing timely feedback during therapy sessions.
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Chapter 5

Conclusion

This thesis focused on the detection of compensatory movements in stroke patients
during robot-assisted upper limb rehabilitation therapy, with the goal of developing a
robust system capable of identifying such movements during rehabilitation exercises.
The research began by collecting a comprehensive dataset of both normative and
compensatory movements, simulated by therapists and non-therapists across 22
subjects. Simulating movements allowed us to overcome the challenges of directly
using patient data, particularly considering the variability in post-stroke recovery.
Post-stroke fatigue is a significant challenge for data collection, as it affects patients’
physical endurance, preventing them from consistently performing therapy exercises.
This fatigue, coupled with varying levels of physical impairment, makes it difficult
to gather adequate training data solely from patients [24]. Some patients may even
struggle to perform certain exercises altogether. Simulating these motions provided
a valuable alternative source of data to train our classifiers, which can later be
tested on actual patient data.

The goal of using simulated movements was to create a foundation for real-
time detection of compensatory movements in patients, with the ultimate aim
of developing a system capable of prompting users to correct their posture when
necessary. Such a system has the potential to significantly improve rehabilitation
outcomes by reducing harmful compensatory behaviors early in the recovery process.

The next stage involved extracting skeletal data using the Lightbuzz framework,
followed by normalizing the data, removing outliers, extracting and selecting fea-
tures, and preparing the dataset for model development. The classification problem
was approached from three perspectives: (1) Normative vs Compensatory Move-
ments, (2) Single vs Multiple Compensatory Movements, (3) Single Compensatory
Movements.
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In all three scenarios, the Random Forest classifier with Stratified K-Fold cross-
validation achieved an accuracy exceeding 80%, demonstrating the model’s potential
for reliably identifying compensatory movements. While there are certainly areas
for improvement, the results are promising, paving the way for future tests on real
patient data.

In conclusion, this study lays the groundwork for a system that can be tested
with patient data and, if successful, could be developed into a real-time solution
for detecting compensatory movements during therapy. This system would alert
patients and therapists to postural issues, helping to optimize recovery and improve
the overall effectiveness of rehabilitation exercises.
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